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ABSTRACT OF DISSERTATION 
 
 
 
 

SUPPRESSION OF ANTI-TUMOR IMMUNITY IN CHRONIC LYMPHOCYTIC 
LEUKEMIA VIA INTERLEUKIN-10 PRODUCTION 

 
 The most common human leukemia is B-cell chronic lymphocytic leukemia 
(B-CLL), which is characterized by a progressive accumulation of abnormal B-
lymphocytes in blood, bone marrow and secondary lymphoid organs. Typically 
disease progression is slow, but as the number of leukemic cells increases, they 
interfere with the production of other important blood cells, causing the patients 
to be in an immunosuppressive state. To study the basis of this 
immunoregulation, we used cells from the transgenic Eμ-TCL1 mouse, which 
spontaneously develop B-CLL due to a B-cell specific expression of the 
oncogene, TCL1. Previously we showed that Eμ-TCL1 CLL cells constitutively 
produce an anti-inflammatory cytokine, IL-10. Here we studied the role of IL-10 in 
CLL cell survival in vitro and the development of CLL in vivo. We found that 
neutralization of IL-10 using anti-IL-10 antibodies or blocking the IL-10 receptor 
(IL-10R) using anti-IL-10R antibodies did not affect the survival of CLL cells in 
vitro. On the other hand, adoptively transferred Eμ-TCL1 cells grew at a slower 
rate in IL-10R KO mice vs. wild type (WT) mice. There was a significant reduction 
in CLL cell engraftment in the spleen, bone marrow, peritoneal cavity and liver of 
the IL-10R KO compared to WT mice. Further studies revealed that IL-10 could 
be playing a role in the tumor microenvironment possibly by affecting anti-tumor 
immunity. This was seen by a reduction in the activation of CD8+ T cells as well 
as a significantly lower production of IFN-γ by CD4+ T cells purified from CLL-
injected WT mice compared to those purified from CLL-injected IL-10R KO mice. 
Also CLL-primed IL-10R null T cells were more effective than those from similarly 
CLL-primed wild type mice in controlling CLL growth in immunodeficient recipient 
mice. These studies demonstrate that CLL cells suppress host anti-tumor 
immunity via IL-10 production. This led us to investigate possible mechanisms by 
which IL-10 is produced. We found a novel role of B-cell receptor (BCR) signaling 
pathway in constitutive IL-10 secretion. Inhibition of Src or Syk family kinases 
reduces the constitutive IL-10 production by Eμ-TCL1 cells in a dose dependent 
manner. We identified the transcription factor Sp1 as a novel regulator of IL-10 
production by CLL cells and that it is regulated by BCR signaling via the 
Syk/MAPK pathway. 
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CHAPTER 1 

Introduction 

 B-cell malignancies represent a diverse collection of diseases, including 

non-Hodgkin’s lymphomas (NHLs) and Hodgkin’s lymphoma [1]. NHLs are a 

heterogeneous group of more than 30 cancers that include chronic lymphocytic 

leukemia (CLL), which mainly affects B lymphocytes [1]. In the United States, B 

cell lymphomas represent 80-85% of all NHL cases, with 15-20% being T-cell 

lymphomas [1]. Regarding these B-cell lymphomas, diffuse large B-cell 

lymphoma (DLBCL) has the highest incidence of 30%, followed by follicular 

lymphoma (20%) [1]. NHL and leukemia are the seventh and eleventh most 

common neoplasms, respectively, in the US, with CLL accounting for about one 

third of all leukemia cases [1, 2]. 

	 B cell Chronic lymphocytic leukemia is a clinically heterogeneous disease 

originating from B lymphocytes that may differ in activation or maturation state 

[3]. Although CLL is rare in some countries, such as Japan and Korea, it is the 

most common adult leukemia in the Western world [4]. CLL is a disease of the 

elderly but has also been seen in younger adults [2]. CLL cells originate from 

clonal expansion of mature B cells expressing the T-cell marker CD5 [3]. The 

disease is defined by abnormal lymphocytes produced in the bone marrow that 

have defects in apoptosis, or other cell death mechanisms, leading to the 

accumulation of small, mature-appearing neoplastic lymphocytes in the blood, 

bone marrow and secondary lymphoid tissues, resulting in lymphocytosis, 
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leukemia cell infiltration of the marrow, lymphadenopathy and splenomegaly [3, 

4]. Leukemic cell accumulation occurs because of survival signals delivered to 

the cells from the external environment through a number of receptors (e.g., B-

cell receptors and chemokine and cytokine receptors) and their cell-bound and 

soluble ligands. B cell receptor (BCR) signaling influences the behavior of 

chronic lymphocytic leukemia, where engagement of surface immunoglobulin by 

antigen has been shown to be a key driver of CLL cells with outcome influenced 

by the nature of the cell, the level of stimulation and the microenvironment [5]. 

CLL patients are subdivided into two groups, those with mutations in the 

immunoglobulin variable heavy chain (IGVH) and those without mutations in the 

IGVH [3]. CLL cells that express an unmutated IGHV (U-CLL) originate from a B 

cell that has not undergone somatic hypermutation in germinal centers [4]. CLL 

cells with mutated IGHV (M-CLL), arise from a post-germinal center B cell that 

expresses immunoglobulin, which has undergone somatic hypermutation and, in 

some cases, also immunoglobulin isotype switching [4]. Patients with CLL cells 

that express an unmutated IGHV typically have more-aggressive disease than 

patients with CLL cells that express a mutated IGHV [6]. Other characteristics 

such as expression of TCL1, ZAP70 and CD38 proteins are broadly associated 

with poor prognosis [6-9]. 
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(1a) Epidemiology, diagnosis and clinical features of CLL 

 Chronic lymphocytic leukemia is more common in adults and more 

common among men than women, particularly Caucasian men (Figure 1.1) [10]. 

 

 The number of new cases of CLL was 4.7 per 100,000 men and women 

per year based on 2010-2014 cases [10]. In 2017, it is estimated that there will 

be 20,110 new cases of chronic lymphocytic leukemia and an estimated 4,660 

people will die of this disease (Figure 1.2) [10].  

  

Figure 1.1: Percent of new cases of CLL by age group. 

Adapted from SEER Cancer Stat Facts: Chronic Lymphocytic Leukemia. National Cancer Institute. 

Figure 1.2: Epidemiology of chronic lymphocytic leukemia at a glance. 

Adapted from SEER Cancer Stat Facts: Chronic Lymphocytic Leukemia. National Cancer Institute. 
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 Diagnosing CLL is based on differential blood count, flow cytometry of the 

peripheral blood to determine the immunophenotype of circulating lymphocytes, 

and examination of the peripheral smear [11]. The National Cancer Institute 

guidelines require two criteria to be met for the diagnosis of CLL. 1) Absolute B 

lymphocyte count in the peripheral blood should be ≥5000/μl [5 x 109/L], with the 

appearance of a population of morphologically mature-appearing small 

lymphocytes [11]; 2) Demonstration of clonality of the circulating B cells by flow 

cytometry. The majority of the population should express the following pattern of 

B cell markers: low levels of surface immunoglobulins (CD20 and CD79b), and 

either kappa or lambda (but not both) light chains, expression of B cell 

associated antigens (CD19, CD20, and CD23) and expression of the T cell 

associated antigen CD5 [11]. In addition, although a bone marrow test is 

normally not required for CLL initial diagnosis or confirmation, it is commonly 

performed to establish a baseline to measure response to therapy [2, 11]. A 

baseline bone marrow test for CLL patients often establishes an increase in the 

number of B lymphocytes and a decrease in the number of normal marrow cells 

[2]. How the cells are clustred in the bone marrow can also classify them into one 

of four kinds of CLL cell patterns; nodular, interstitial, mixed or diffused [2]. 

 The majority of CLL patients are asymptomatic at diagnosis and CLL is 

often found based on routine blood counts. Otherwise, patients may present with 

swollen lymph nodes, splenomegaly, fatigue, fever, weight loss and night sweats 

[2]. Many of the signs and symptoms of advanced CLL occur because the 

leukemic cells replace the normal blood cells. Therefore, patients can suffer from 
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anemia due to low red blood cell count, bleeding and bruising due to shortage of 

platelets and an increase in infections due to lower normal white blood count [2]. 

Moreover, systemic immunosuppression has been found to be associated with a 

more aggressive CLL disease and secondary cancers such as skin cancer, head 

and neck cancer, and lymphoblastic leukemia [12]. This immunosuppression 

increases susceptibility to infection, which is the leading cause of death in CLL 

patients [13-15]. Patients with CLL are at risk for infection for a variety of 

reasons.  CLL patients have inherent immune defects in humoral, as well as cell-

mediated immunity, which are related to the primary disease process. These 

defects include hypogammaglobulinaemia, abnormalities in T cell subsets and 

defects in complement activity and neutrophil/monocyte function [13, 16]. In 

addition, specific immunodeficiencies related to therapies administered to 

patients can result in additional immunosuppression [13]. 

(1b) Clinical staging and treatment of CLL 

 Two clinical staging systems are widely used for classifying CLL patients 

into three broad prognostic groups [4]. The Rai staging system is more 

commonly used in the United States, whereas the Binet classification is more 

commonly used in Europe [4]. The staging systems each recognize the 

importance of bone marrow function and define late-stage or high-risk disease by 

the presence of pronounced anemia or thrombocytopenia [4]. Table 1.1 and 

Table 1.2 summarize both classifications.  
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 Patients with CLL can manage their disease with their physicians for years 

with observation, which is referred to as the wait-and-watch method [2]. The 

watch-and-wait approach is the standard care for patients who are considered 

low-risk with slow growing disease, minimal changes in their blood counts and no 

symptoms [2]. Since no treatment to date has made a significant impact on the 

outcome of patients with early-stage CLL, when to initiate therapy becomes an 

Table 1.1: CLL Rai staging system 

Kipps, T.J., et al., Chronic lymphocytic leukaemia. Nat Rev Dis Primers, 2017. 3: p. 16096. (reporoduced with 
permission from Nature). 

Table 1.2: CLL Binet staging system 

Kipps, T.J., et al., Chronic lymphocytic leukaemia. Nat Rev Dis Primers, 2017. 3: p. 16096. (reporoduced with 
permission from Nature). 
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important decision. Generally, indications to initiate therapy include pronounced 

disease related anemia or thrombocytopenia as well as symptoms that are 

associated with active disease, such as night sweats, fatigue, weight loss and 

fever with no apparent infection [4]. For patients in need of treatment, a number 

of factors play a role in the choice of treatment. Briefly, patients with del(17p) or 

mutated TP53 are treated with therapy that does not require functional TP53, 

such as ibrutinib (Bruton tyrosine kinase (BTK) inhibitor) [4]. For patients without 

these mutations, IGHV mutational status can help define the treatment strategy 

[4]. Patients with unmutated IGHV are often considered for therapy with ibrutinib 

as CLL cells with unmutated IGHV seem to be more sensitive to inhibitors of 

BCR signaling than CLL cells with mutated IGHV [4]. Patients with mutated IGVH 

are good candidates for chemoimmunotherapy as they have excellent outcomes 

with this regimen, such as fludarabine, cyclophosphamide and rituximab (anti-

CD20 antibody), with >50% of patients having a median progression-free survival 

of >10 years [4]. Patients who develop de novo del(17p) or TP53 mutations or 

who develop resistance or intolerance to ibrutinib are often considered for 

therapy with idelalisib (phosphoinositide 3-kinase (PI3K) inhibitor) and rituximab 

or the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax [4]. Patients who develop 

resistance or intolerance to inhibitors of BTK, PI3K and/or BCL-2 are considered 

for clinical trials or alternative agents [4]. 

(1c) Cellular origin of CLL 

 A number of cell types have been suggested to give rise to CLL, with no 

consensus as to the normal counterpart of CLL cells [17]. The debate 
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surrounding the cellular origin of CLL cells mainly arise from the heterogeneity 

found in the disease. For example, the use of both unmutated and mutated IGVH 

genes, which as mentioned earlier distinguishes CLL patient subgroups, gave 

rise to a 2-cell origin model in which the 2 subgroups of CLL originated from 

distinct cell types [17]. In support of this theory, B cell receptor signaling has 

been found to be a promoting factor that could lead to differing cell biology and 

patient pathology.[17] For instance, since the development of IGVH gene 

mutations requires BCR crosslinking, then CLL cases that exhibit IGVH gene 

mutations must have ascended from previously stimulated B cells. Therefore, the 

CLL cells without IGVH gene mutations would have possibly originated from 

naïve B cells [5]. But the fact that absence of IGVH gene mutations does not 

necessary mean the lack of prior antigen stimulation, the cases of U-CLL could 

simply be derived from antigen-stimulated B cells that didn’t accumulate 

mutations [5]. Chiorazzi et al, hypothesize that the lack of mutations in those 

cases could either be a consequence of the type of antigenic stimulation that the 

cell received (e.g., T-independent) or a result of the timing of the transformation 

event (e.g., occurred before a germinal center (GC) founder cell entered a GC) 

[5].  

 On an opposing note, other studies utilizing gene expression analysis 

revealed only a small number of differences between genes expressed in U-CLL 

and M-CLL, which suggested a one-cell originating model for CLL [18, 19]. In that 

case, the difference in cellular features and clinical outcomes between U-CLL 

and M-CLL could be accounted for possibly by additional promoting factors. To 
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bring together the 2-cell origin model, which is more consistent with BCR 

findings, with the one-cell model, supported by gene expression data, a new 

theory was proposed in which both U-CLL and M-CLL derive from marginal zone 

(MZ) B cell [3, 5]. This unifying theory arose due the similarity between MZ B 

cells and CLL cells. MZ B cells (IgMhighIgDlow) respond to bacterial 

polysaccharides in a T cell-independent manner [20]. They can express either 

mutated or unmutated IGVHs [21]. Also, evidence suggest that MZ B cells may 

accumulate IGVH gene mutations outside of classical GC, possibly in the MZ 

itself, which would provide an explanation to a continuous accumulation of such 

mutations in some CLL cases [5, 17, 22]. However, despite the similarities found 

between MZ B cells and CLL cells, an MZ origin for CLL still faces some 

reservations. MZ B cells express surface IgM and IgD as most CLL clones do, 

however; they are CD5-CD23-CD22+, which is a surface phenotype different than 

that of a CLL cell [20]. It has been shown that up-regulation of CD5 and CD23 

could occur upon activation of cells, which could reflect this phenotypic difference 

[23, 24]. Since comparisons of surface phenotypes of malignant and normal B 

cells are often used to identify normal counterparts in hematological 

malignancies, challenges remain in considering MZ B cells as the normal 

counterpart of CLL. 

 Another possible cellular origin of CLL is a unique subset of B cells called 

B-1 cells. B-1 cells unlike MZ B cells express the T cell marker CD5 [25-27]. B-1 

cells express IgM, low levels of CD23 and unmutated IGVH genes [28, 29]. 

Another unique feature of B-1 cells is the secretion of polyreactive and natural 
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antibodies [28, 29]. Murine B-1 cells are predominantly found in the peritoneal 

and pleural cavities and only constitute 1-2% of splenic B cells [29, 30]. Unlike 

conventional B-2 cells, which are produced continuously in the bone marrow, 

mouse B-1 cells are generated only from hematopoietic stem cells in the fetal 

liver or in the bone marrow the first few weeks after birth and are subsequently 

maintained by self-renewal in the periphery [28, 30]. Recently, a specific B-1 cell 

restricted progenitor (Lin-CD45Rlo/-CD19+ cells) in the bone marrow has been 

identified, which preferentially reconstituted B-1 cells but not B-2 cells, in vivo 

[31, 32]. Like murine B-1 cells, the antigen specificities of CLL BCRs are more 

polyreactive, which allows the cells to bind autoantigens and therefore secrete 

natural autoantibodies [33-35]. Since developing B cells are naturally 

autoreactive until antigen-driven clonal selection and somatic IGVH mutations 

during GC reactions [36], U-CLL cases have the greater level of polyreactivity 

and autoreactivity than M-CLL [37]. However, if M-CLL gene rearrangements are 

reverted back to the germline sequence, antibodies produced by the cells can 

display polyreactivity [17, 37, 38]. In support of B-1 cell as the cellular origin of 

CLL Hayakawa et al. was able to demonstrate that early generated B-1 B cells 

with distinct BCRs can become CLL in aging mice [39]. They identified an 

unmutated BCR in mouse that is autoreactive with non-muscle myosin IIA 

(AMyIIA) [39]. B cells with this AMyIIA BCR are generated by BCR signaling 

during B-1 fetal and neonatal development [39]. These early generated B-1 cells 

can self-renew, increase during aging and can progress to aggressive CLL in 

aged mice [39]. Interestingly, BCRs autoreactive to AMyIIA are also commonly 
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seen in some human CLLs [39]. In a follow up study, they showed that B-1 B 

cells with other stereotyped BCRs commonly found in mouse CLL can generate 

CLL [40]. More importantly, the progression to CLL by B-1 B cells is not only a 

result of their ability to express specific BCRs because CLL did not develop from 

other B cell subsets even with BCRs identical to the ones on B-1 cells, 

suggesting that both specific BCRs and B-1 cell environment were important for 

CLL progression [40]. 

 Regardless of the comparable nature between B-1 and CLL cells, human 

B cells with characteristics of murine B-1 cells have not been identified. Although 

human CD5+ B cells exist in the circulation, the majority of these cells do not 

exhibit features expected of B-1 cells [5, 41]. For example, IgM antibodies 

produced by CD5+ cells in adult human blood are usually not polyreactive, 

although coded by unmutated IGHVs [42]. In addition, human CD5+ B cells do 

not proliferate when stimulated with T-cell independent antigens [17, 43]. 

However, in a recent study Griffin et al. described a 

CD20+CD27+CD43+CD70− subset present in adult and human cord blood with 

functional characteristics that would describe murine B-1 cells [44]. These cells 

spontaneously secrete IgM, maintain constitutive BCR signaling and are able to 

drive allogeneic T cell proliferation [44]. Further studies need to be performed to 

completely understand this cell subset and if it can be identified as the cellular 

origin of CLL in human patients. 
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(1d) Immunosuppression and other risks in CLL 

 Patients with CLL have an increased risk of other medical conditions such 

as infections, autoimmune diseases, or secondary cancers. Infections in CLL 

patients have been recognized as a common cause of morbidity and mortality 

[13-15]. The risk of infection increases with the increase of CLL duration. In 

addition, the new encouraging therapeutics in CLL often come at the cost of 

serious opportunistic infections [15]. In early, untreated CLL, patients infection 

risk is mainly related to hypogammaglobulinemia [15]. Infections by encapsulated 

bacteria are also common in such a setting [15]. On the other hand, patients with 

advanced CLL will mostly suffer from neutropenia and defects in cell-mediated 

immunity. A large variety of pathogens, including Listeria monocytogenes, 

mycobacteria, opportunistic fungi, Pneumocystis carinii and herpesviruses are 

seen in advanced CLL patients [15]. Pathogens seen frequently in CLL patients 

undergoing different therapeutic regimens are listed in Table 1.3 [15]. In addition, 

Table 1.4 describes some of the predominant immune defects found in different 

stages of CLL [15].  
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Table 1.3: Frequent pathogens seen in chronic lymphocytic leukemia 

patients undergoing different treatment regimens 

Tsiodras, S., Samonis, G., Keating, M.J. & Kontoyiannis, D.P. Infection and immunity in chronic lymphocytic 
leukemia. Mayo Clin Proc 75, 1039-1054 (2000). (Reproduced with permission from Mayo Clinic Proc.). 
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Tsiodras, S., Samonis, G., Keating, M.J. & Kontoyiannis, D.P. Infection and immunity in chronic lymphocytic 
leukemia. Mayo Clin Proc 75, 1039-1054 (2000). (Reprodcued with permission from Mayo Clinic Proc.). 

Table 1.4: Immune defects found in different stages of chronic 

lymphocytic leukemia 
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 Another risk factor of CLL is the development of Richter syndrome. Richter 

syndrome is the transformation of CLL to an aggressive lymphoma, commonly 

DLBCL or classic Hodgkin lymphoma [4]. Approximately 2-7% of patients with 

CLL develop Richter syndrome more frequently seen in patients with NOTCH1 

mutations or patients who express certain stereotypical immunoglobulin 

molecules [4]. The prognosis of patients with Richter syndrome is generally poor, 

especially for those who are heavily pretreated for CLL and/or who have 

transformation involving lymphocytes that are clonally related to the underlying 

CLL [4]. 

 As seen in table 1.4, there is increasing body of evidence suggesting 

impaired cell-mediated immunity in CLL. These include decreases in T helper 

activity, increases in T suppressor activity, reversal of CD4/CD8 ratio, increased 

expression of interleukin-2 (IL-2) receptors, and defects in large granular 

lymphocytes or natural killer cells [15, 45-48]. Analysis of T cell repertoire of CLL 

patients have shown that oligoclonality is much more common in CD4 and CD8 T 

cells in CLL patients than in age matched controls [49]. It is unclear however; if 

this T cell dysfunction can be reversible in CLL patients. Therefore, it is important 

to understand the molecular mechanisms leading to this immune dysfunction. To 

examine the possible mechanisms of T cell defects in CLL patients, Görgün et al. 

performed a global gene expression analysis of highly purified CD4+ and CD8+ T 

cells from peripheral blood of individuals with CLL compared with age-matched 

healthy donors [50]. Their analysis of the differentially expressed genes 

demonstrated a number of abnormalities in specific pathways. For example, in 
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CD4 cells, Ras-dependent JNK and p38 MAPK pathways were markedly 

changed [50]. These pathways play a major role in the regulation of CD4 T cell 

differentiation into T helper (Th) 1 and Th2 cells. The data demonstrated a 

decrease in the p38 MAPK pathway activator genes, which subsequently can 

impair CD4 differentiation function [50]. Gene expression analysis of CD8 cells 

revealed changes in expression of genes responsible for cytoskeleton formation 

and vesicle trafficking, which leads to decrease in cytotoxicity and effector 

functions of CD8 cells [50]. Moreover, p38 MAPK pathway was also altered in 

CD8+ T cells, which regulates the production of tumor necrosis factor alpha 

(TNF-α), perforin and granzyme [50]. Taken together, these changes in gene 

expression profile of T cells between CLL and normal donors is likely to 

contribute to the failure of T cell responses against tumor cells in CLL. A different 

study demonstrated that CD8 and CD4 T cells from CLL patients have an 

impaired ability to form an immunological synapse with antigen presenting cells 

because of defects in actin polymerization [51]. The formation of immune 

synapse in CD4 T cells allows the directed secretion of IL-2 and other cytokines 

toward the immune synapse and ultimately T cell proliferation [51]. CD8 cytotoxic 

cells form immune synapses that could deliver lethal doses of cytolytic granules 

[51]. Interestingly, a short-term cell contact between CLL cells and healthy 

allogeneic T cells induced the same immunological synapse defects [51]. In a 

follow up study Gribben and colleague found that T cell exhaustion could 

contribute to the T cell dysfunction [52]. T cells from CLL patients had an 

increased expression of exhaustion markers including CD244, CD160, and 
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programmed death-1 (PD1) in comparison to healthy donors [52]. In addition, 

CD8+ cells showed functional defects in proliferation and cytotoxicity caused by 

impaired granzyme packaging and nonpolarized degranulation [52].  

 Furthermore, CLL cells themselves have been reported to produce 

immunosuppressive factors such as transforming growth factor beta (TGF-β) and 

IL-10 [53, 54]. Very few studies have demonstrated the mechanism by which IL-

10 could be playing an immunosuppressive role that leads to CLL disease 

progression. For example, activated CLL cells were shown to inhibit macrophage 

TNF production in co-culture assays in an IL-10-dependent manner, but its 

importance for CLL disease was not tested [55]. In this dissertation we will be 

investigating multiple hypotheses regarding the role of IL-10 in CLL growth and 

disease immunosuppression. 

(1e) Interleukin-10 producing B cells and CLL 

 In addition to their roles as antibody-producing or antigen-presenting cells,  

B lymphocytes are major producers of cytokines such as interleukin-10 (IL-10), 

IL-6, lymphotoxin alpha (LT-α) and TNF-α [56-58]. They have also been reported 

to produce other cytokines such as IL-2, IL-4, interferon gamma (IFN-γ) and IL-

12 [59-61]. The notion that B cells can markedly influence immunity through the 

secretion of cytokines gained momentum when it was observed that B cells could 

differentiate into distinct cytokine-producing subsets termed Be1 and Be2, which 

could subsequently regulate the differentiation of naïve CD4+ T cells into Th1 

cells or Th2 cells, respectively, in vitro [62]. In addition, endogenous B cells were 

found to control immunity through the production of cytokines in vivo in two 
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models of inflammatory diseases, ulcerative colitis (UC) and experimental 

autoimmune encephalomyelitis (EAE) [63, 64]. In both cases, B cells limited 

pathogenic immunity, and improved the disease progression through the 

production of IL-10, a cytokine classically thought to be produced by regulatory T 

cells and some other innate immune cells [63, 64]. Moreover, it has been shown 

that B cells can have similar suppressive functions in humans leading to the 

notion of regulatory B cells (Bregs). For example, B cells from patients with 

relapsing-remitting multiple sclerosis (MS) produce less IL-10 than B cells from 

healthy patients upon stimulation in vitro, which suggests that a defect in this 

suppressive mechanism can induce onset or progression of MS [65]. In other 

studies, B cell depletion therapy resulted in exacerbation of UC in some patients 

who were treated with rituximab (anti-CD20 antibody), wherein the elimination of 

B cells correlated with a loss of IL-10 expression in the intestinal mucosa [66].  

 Regulatory B cells that produce IL-10 are now recognized as an important 

part of the immune system. A subset of B cells producing IL-10 has been recently 

identified and named B10 cells [67]. There are no unique phenotypic markers for 

B10 cells as they share surface markers with previously defined B cells including 

B-1 B cells [67]. They are CD5+CD19hiCD1dhi cells and are defined primarily by 

their competency to produce IL-10 following appropriate stimulation [67]. B10 

cells have been shown to exert a variety of IL-10-dependent regulatory effects 

that are involved in autoimmune disease. Those effects are mediated by multiple 

mechanisms affecting both the innate and adaptive immunity. For example, B10 

cells have been described to negatively regulate the ability of dendritic cells 
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(DCs) to present Antigens [68]. Also, B10 cells suppresse IFN-γ and TNF-α 

responses in vitro and IFN-γ responses in vivo by CD4+ T cells [68, 69]. The 

important regulatory effects of B10 cells have been demonstrated in a variety of 

mouse models of human autoimmune diseases including but not limited to, 

experimental autoimmune encephalomyelitis, inflammatory bowel disease, 

collagen-induced arthritis and systemic lupus erythematosus [68, 70-72]. 

Therefore, it was proposed that we can either improve autoimmune diseases by 

promoting the IL-10 mediated regulatory functions of B cells or we can improve 

antimicrobial or even antitumor immunity by turning down these inhibitory 

processes. 

 As discussed earlier, B-1 cells are thought to be a possible cellular origin 

of CLL cells. One of the interesting features of B-1 cells is their ability to produce 

IL-10 constitutively, which is unlike B10 cells [56, 73]. The production of IL-10 by 

B-1 cells has been shown to act in an autocrine manner and inhibit proliferation 

responses of B-1 cells to toll like receptor (TLR) stimulation by blocking 

degradation of IκBα and translocation of RelA to the nucleus [73]. Interestingly, 

CLL cells have been shown to share this characteristic with B-1 cells in 

constitutively producing IL-10 [54]. However, not much is known about the role of 

IL-10 produced by CLL cells. In this dissertation, we will test a few hypotheses in 

regard to the role of CLL-induced IL-10. 

(1f) Importance of IL-10 in the immune system 

 IL-10 was first described as cytokine synthesis inhibitory factor (CSIF) 

because it was produced by Th2 cells that inhibited Th1 cell activation and 
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cytokine production [74]. Later on IL-10 was shown to exert its anti-inflammatory 

effects by inhibiting antigen presentation by DCs and limiting their secretion of 

proinflammatory cytokines, such as IL-1, IFN-γ and TNF-α [75, 76].  

 IL-10 binds as a homodimer to its receptor, which is a tetramer formed of 

two α (IL-10R1) and two β (IL-10R2) chains [77]. IL-10R1 is the ligand binding 

subunit, while IL-10R2 activates downstream signaling involving Janus tyrosine 

kinases Jak1 and Tyk2 [77]. JAK1 and Tyk2 phosphorylate the cytoplasmic tail of 

IL-10R1, which leads to the recruitment of the signal transducer and activator of 

transcription 3 (STAT3) to the IL-10R [78]. Ultimately, phosphorylated STAT3 

homodimerizes and translocates to the nucleus to promote the expression of IL-

10 responsive genes [78].   

 IL-10 is now known to be produced by multiple types of cells including 

macrophages, DCs, B cells, and various subsets of CD4+ and CD8+ T cells [79]. 

In addition to its role in inhibiting the production of proinflammatory cytokines, IL-

10 is involved in inhibiting the production of various chemokines involved in 

inflammation [80]. Furthermore, IL-10 regulates T cell responses indirectly 

through its effects on macrophages and monocytes, inhibiting their MHC class II 

and costimulatory molecule B7-1/B7-2 expression and limiting their production of 

proinflammatory cytokines and chemokines [79]. IL-10 can also act directly on T 

cells, inhibiting proliferation and production of IL-2, IFN-γ, IL-4, IL-5 and TNF-α 

[81, 82]. Activation of T cells in the presence of IL-10 can induce anergy in T 

cells, which cannot be reversed by IL-2 or stimulation by anti-CD3 and anti-CD28 

[83]. Therefore, IL-10 appears to play an essential role in the regulation of 
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different immune responses. Here we show that IL-10 is also produced by 

chronic lymphocytic leukemia cells. The question here remains as to the role of 

IL-10 in in this leukemic disease sitting. 

(1g) Molecular mechanisms involved in IL-10 production 

 As noted earlier, IL-10 is expressed by various cell types, which account 

for the complexity of its regulation. Many cells of the innate and adaptive immune 

response produce IL-10 and the molecular mechanisms for its regulation differ 

according to the cell type and stimulant, although some common mechanisms 

exist [84]. IL-10 is expressed by macrophages and myeloid DCs, but not by 

plasmacytoid DCs, in response to microbial antigens. The extracellular signal 

regulated kinase 1/2 (ERK1/2) and p38 MAPkinase pathways are two of the main 

signaling pathways activated in these cells resulting in IL-10 expression [84].  

 In macrophages and DCs, the expression of IL-10 can be induced by TLR 

or non-TLR signaling [84]. Activation of TLRs and their adaptor molecules, 

myeloid differentiation primary-response protein 88 (MYD88) and TIR-domain-

containing adaptor protein inducing IFNβ (TRIF), leads to the activation of ERK1 

and ERK2, p38 and nuclear factor-κB (NF-κB) pathways, which in turn result in 

induction of IL-10 expression [84]. In myeloid DCs, non-TLR can signal through 

DC-specific ICAM3-grabbing non-integrin (DC-SIGN) and RAF1, which leads to 

increase in TLR2-induced IL-10 production [84]. Moreover, activation of dectin 1, 

which signals through spleen tyrosine kinase (Syk) and ERK results in IL-10 

production [84]. In macrophages, nucleotide-binding oligomerization domain 2 

(NOD2) signaling downstream of TLR2 has been shown to induce IL-10 
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production [84]. Macrophages from neonatal and aged mice produce more IL-10 

than those from young adults [85]. 

 In T helper cells, molecular mechanisms of IL-10 production have been 

studied to a lesser extent than in macrophages and DCs. Normally, IL-10 

production is accompanied by the expression of the another signature cytokine 

for each subset of Th cells. For example, IL-10 production was first described in 

Th2 cells, where its expression is accompanied by the expression of IL-4, IL-5 

and IL-13 [74]. Indeed IL-10 production in Th2 cells seem to be regulated by the 

same signaling pathways and transcription factors involved in the main Th2 type 

cytokine secretion, which include IL-4, STAT6 and GATA3 [84, 86, 87]. In Th1 

cells, the expression of IL-10 can be induced only under certain conditions [84, 

88]. Strong T cell receptor (TCR) stimulation and endogenous IL-12 have been 

shown to be required for the differentiation of IL-10-producing Th1 cells [89]. 

Moreover, IL-10 expression by Th1 cells is dependent on STAT4 and ERK 

activity [89]. Another T helper cell subset that has been shown to be induce to 

produce IL-10 is the Th17 subset and thus attenuate their pro-inflammatory 

activity [90]. IL-10 expression by Th17 cells appears to occur in a STAT3 and 

STAT1 dependent manner [91]. Furthermore, TGF-β have been shown to induce 

the production of IL-10 by forkhead box P3 (FOXP3)+ T regulatory (TReg) cells in 

vivo and this cytokine can also promote the development of IL-10 producing 

FOXP3- T cells from naïve T cells [92]. 

 Taken together, Th1, Th2 and Th17 cells require the same signals needed 

for their differentiation to produce IL-10. Interestingly, the production of IL-10 by 
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these subsets requires ERK activation, which indicates a common mechanism 

for IL-10 production by T helper cells. But unlike macrophages and DCs, p38 

signaling pathway is not required for the production of IL-10 by T helper cells 

[89]. In addition, it appears that all T cell subsets can produce IL-10; however, 

this depends on the environmental context and the strength of stimulus. For other 

immune cells such as B cells and mast cells, the exact signaling cascades 

leading to IL-10 production remain elusive. A summary of IL-10 expression by 

different immune cells in provided in figure 1.3 [84]. 

 

Figure 1.3: Interleukin-10 production by immune cells 

Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 10, 170-181 

(2010). (Reproduced with permission from Nature). 
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(1h) Transcription factors that regulate IL-10 expression 

 There are many transcription factors that have been described to regulate 

the expression of IL10 in APCs and T helper cells. Figure 1.4 represents both the 

signaling molecules (outer circle) and the transcription factors (inner circle) with a 

validated role in IL10 expression [84]. As relevant to the work presented in this 

dissertation, the transcription factors specific protein 1 (Sp1), Sp3, 

CCAAT/enhancer binding protein-β (C/EBPβ), IFN-regulatory factor 1 (IRF1) and 

STAT3 all have been shown to bind and transactivate IL10 in macrophage and T 

cell lines of mouse and human origin [84]. In addition, in human T cell lymphoma 

cell lines, the NF-κB p50 subunit has been describe to bind the IL10 promoter 

[93]. More importantly, many of these findings are dependent on the cell type and 

the stimulus. For instance, when THP1 cells (a human pro-monocytic cell line) 

were stimulated with LPS, IL10 promoter activity was dependent on an Sp1 site 

located between positions -636 and -631 relative to the initiation site [94]. On the 

other hand, stimulating the same cells with cyclic AMP shows that IL10 promoter 

activity relies on the C/EBP5 motif located between the TATA box and the 

translation start point [95]. Overall, vast number of studies provided evidence that 

IL-10 is not regulated in a simple manner, which is in agreement with its functions 

in regulating various immune responses.  
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(1i) Mechanisms of IL-10 production by normal and malignant B cells 

 As alluded to earlier, in addition to macrophages, DCs and CD4+ T cells, 

other cells of the immune system are also known to express IL-10. Both normal 

and malignant B cells are amongst these cells [54, 55, 73]. It is however not clear 

whether the molecular mechanisms required for the induction of IL-10 by these 

cells are regulated by the same or similar factors that regulate IL-10 production 

by T helper cells, macrophages and DCs. Therefore, the mechanisms involved in 

IL-10 production by normal B cells and CLL cells remain understudied. A recent 

report indicated the importance of B-cell-activating factor of the tumor necrosis 

factor family (BAFF) and its receptor, transmembrane activator and cyclophilin 

ligand interactor (TACI), for IL-10 production by normal and leukemic B cells [96]. 

Figure 1.4: Transcription factors involved in IL-10 production 

Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 10, 170-181 

(2010). (Reproduced with permission from Nature). 
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Stimulation of both human and mouse CLL cells with BAFF led to an increase in 

IL-10 production [96]. In addition, splenic cells from TACI-deficient mice were 

unable to secrete IL-10 following TLR stimulation [96]. Another study attempted 

to define the molecular mechanisms involved in the variation in levels of IL-10 

produced by human CLL cells. Their data suggested an epigenetic control of IL-

10 production, in which differential IL-10 gene methylation was responsible for 

the variability of IL-10 production by human CLL cells [97]. In addition, they found 

that IL-10 induction by CpG stimulation requires STAT3 activity [97].  

 Due to the importance of tonic B cell receptor signaling in the survival of 

normal B cells, as well as its impact on the survival and growth of malignant B-

cell clones in CLL and in other non-Hodgkins lymphomas, here we investigated 

the role of BCR signaling in IL-10 production by CLL cells [98-101]. We 

discovered a novel role of BCR signaling in IL-10 production by CLL cells [54]. 

Our studies described in the thesis showed that BCR dependent constitutive 

activation of Src or Syk family kinase is required for constitutive IL-10 production 

by both mouse and human CLL cells. The studies to understand the molecular 

pathways leading to IL-10 production CLL cells by BCR signaling could provide 

valuable information on possible targets for IL-10 manipulation and the 

modulating of the immune response in CLL. 

(1j) Chronic lymphocytic leukemia study models  

  Expression of T-cell leukemia oncogene 1 (TCL1) has been described as 

a molecular marker of aggressive disease and poor outcome in patients with CLL 

[9]. In 1994, Giandomenico Russo and colleagues were studying the TCL1 locus 
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on human chromosome 14q32.1 that was found to be commonly involved in 

chromosomal translocations and inversions with one of the TCR loci in human T 

cell leukemias and lymphomas [102]. They eventually discovered a gene coding 

for a 1.3 kb transcript, which is expressed only in a restricted subset of cells 

within the lymphoid lineage while expressed at high levels in leukemic cells with 

specific translocations or inversions within the chromosome regions 14q11 and 

14q32 [102]. This gene is known as the TCL1 gene, which is preferentially 

expressed early in T and B cell differentiation [102]. TCL1 has been described as 

a novel Akt kinase coactivator, which facilitates the oligomerization and activation 

of Akt in vivo, promoting Akt-dependent cell survival [103]. To study the role of 

TCL1 in the generation of T cell malignant transformation, a transgenic mouse 

model that expresses the human TCL1 gene under the transcriptional control of 

the T cell specific gene promoter p65lck was generated [104]. The lck-TCL1 

transgenic mice developed mature T cell leukemias at old age (15-20 months), 

while younger mice presented with pre-leukemic T cell expansions 

expressing TCL1 [104]. After the demonstration that TCL1 overexpression 

causes mature T cell proliferation in transgenic mice, many studies revealed 

strong expression of the gene in almost all tumor cells of B cell lineage, which 

indicated a possible role for TCL1 in B cell proliferation [105]. For example, 

TCL1 was found to be expressed in lymphoblastic lymphoma, chronic 

lymphocytic leukemia, mantle cell lymphoma, follicular lymphoma, Burkitt’s 

lymphoma, diffuse large B cell lymphoma, and primary cutaneous B cell 

lymphoma [106]. Following these studies, a new mouse model 
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with TCL1 expressed at similar levels in both B and T cells was generated [107]. 

These transgenic mice developed Burkitt-like lymphoma and diffuse large B cell 

lymphoma beginning 4 months of age and only one mouse developed a T cell 

malignancy at 15 months, which is consistent with a longer latency for 

transformation of T cells by TCL1 [107]. Finally, to elucidate the role of TCL1 in B 

cell development and B cell malignancies, Bichi et al. generated the Eµ-TCL1 

transgenic mice that overexpress the human oncogene TCL1 under the control of 

the B-cell-specific μ enhancer and the IGVH promoter to target gene expression 

specifically to B cells (Figure 2.1) [108]. Starting at 2 months of age, CD5+ B cells 

were detected in the peritoneal cavity of Eμ-TCL1 mice, which became evident in 

the spleen by 3-5 months and in the bone marrow by 5-8 months [108]. At 13-18 

months of age, the Eμ-TCL1 mice display an overt disease with an expansion of 

CD5+CD19+ B cell population in both lymphoid and non-lymphoid organs, 

associated with splenomegaly, hepatomegaly and lymphadenopathy, 

recapitulating the main features of human CLL [108]. The Eμ-TCL1 transgenic 

mouse became the first of a number of engineered mice to develop a CLL-like 

disease but one of the very few to closely resemble the real human disease 

[109]. 

 Several other mouse models mimicking genetic lesions found in CLL 

(13q14 deletion), transgenic for genes that are overexpressed in the disease 

(including APRIL, BCL2 X traf2dn, ROR1), or driven by ectopic oncogene 

expression (IgH.T and IgH.TEμ) have been generated to model CLL [109]. In all 

of these mouse models including the Eμ-TCL1 mouse, the disease develops late 
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in life and resembles the indolent disease course of CLL. In addition, 

transformation to CLL appears to be driven by the expansion of peritoneal B-1a 

cell, as suggested by the expression of CD5 and of unmutated IGHV genes, high 

levels of IgM, and low levels of IgD and CD23 [109]. However, the most notable 

difference among these CLL mouse models and the Eμ-TCL1 mouse is the 

penetrance of the phenotype. The penetrance is highest in the Eμ-TCL1 mice, 

intermediate in the 13q14-MDR and the APRIL transgenic mice and lowest in the 

ROR1 transgenic mice (5%) [109].  

 In this dissertation, we utilized the Eμ-TCL1 mouse model for our studies 

due to the close resemblance to human CLL disease and the high penetrance of 

the disease. CLL cells in mice also respond to various types of therapeutic 

regimens effective for human CLL (e.g., fludarabine, ibrutinib, etc.). More 

importantly, T cell dysregulation such as decrease in T cell activation and 

increase in regulatory T cell numbers are characteristics of both Eμ-TCL1 mice 

and human CLL patients [110]. CLL development in these transgenic mice is 

associated with similar impairment of T cell function and alteration of gene 

expression in CD4 and CD8 T cells to that observed in human patients with CLL 

[111]. T cell dysfunction in Eμ-TCL1 mice and in CLL patients has been shown to 

contribute to the immunosuppression status that is associated with disease 

progression and susceptibility to infections, which are the leading causes of 

death in CLL patients [13, 111-113]. Finally, it is worth noting that in our Eμ-TCL1 

mice cohort, mice develop a full CLL-like disease at 10-15 months of age. The 

similarities with human CLL validate the use of Eμ-TCL1 mice as a model for 
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further analyses of ways to prevent and reverse cancer-induced immune 

dysfunction. 

(1k) Study aims 

As discussed above, chronic lymphocytic leukemia disease is associated 

with an immunosuppression status, which is the leading cause of death in CLL 

patients [13-15]. Many mechanisms of immunosuppression have been 

investigated in CLL. CLL cells themselves secrete an immunosuppressive factor, 

IL-10. In this study, we utilized the Eμ-TCL1 mouse model as well as primary 

human CLL cells and the human CLL cell line MEC-1 to investigate the role of IL-

10 in both survival and immune responses in CLL by addressing the following 

specific aims: 

1. IL-10 regulates the proliferation responses to normal B-1 cells, which are 

thought to be the cellular origin of CLL. Similar to normal B-1 cells, Eμ-

TCL1 CLL cells also produce IL-10 constitutively. Here we will test the 

hypothesis that IL-10 may regulate the survival and proliferation of CLL 

cells. 

2. Since IL-10 in a well-known immunosuppressive cytokine, we will test the 

hypothesis that CLL-derived IL-10 may have role in suppression of host 

anti-CLL immune response. 

3. The mechanism of IL-10 production by B cells is understudied. We will 

investigate these possible mechanisms of IL-10 production by CLL cells 

with the aim of identifying therapeutic targets. 

Copyright © Sara Samir Alhakeem 2017 
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CHAPTER 2 

Materials and Methods 

(2a) Mice and cells 

 C57BL/6J, B6.129S2-Il10rbtm1Agt/J (IL-10R-/-), and NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were obtained from The Jackson Laboratory 

(Bar Harbor, ME). NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac (NOG) mice were obtained 

from Taconic (Hudson, NY). Eμ-TCL1 mice in BL/6 background were provided by 

Dr. John Byrd (Ohio State University, OH) and bred in house. Mice were housed 

under specific pathogen free conditions in micro-isolator cages under the 

Institutional Animal Care and Use Committee (IACUC) approved protocol. The 

University of Kentucky IACUC protocol number for this study is 2011-0904. The 

described studies are approved under this protocol. Cohorts of Eµ-TCL1 mice 

were maintained and monitored regularly for CLL cells in blood by flow 

cytometry. Mice were bled by submandibular bleeding using a lancet [114]. Blood 

was collected in K2 EDTA Microtainer tubes (BD #365974, San Diego, CA). Most 

Eµ-TCL1 mice developed CLL between 6-9 months of age (at least 30% 

CD5+CD19+ B cells in the blood). Mice were euthanized when CLL cells were 80-

90% or when their body condition score (BCS) was ≤2. BC scoring technique is 

as followed: with BCS=5 the mouse is smooth and bulky, bone structure 

disappears under flesh and subcutaneous fat; BCS=4 the mouse spine is a 

continuous column and vertebrae palpable only with firm pressure; BCS=3 the 

mouse vertebrae and dorsal pelvis is not prominent but palpable with slight 
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pressure; BCS=2 the mouse segmentation of vertebral column is evident and the 

dorsal pelvic bones are readily palpable; BCS=1 the mouse skeletal structure 

extremely prominent with little or no flesh cover and the vertebrae is distinctly 

segmented [115]. In addition to using CLL cells from primary Eμ-TCL1 mice, we 

adoptively transfer CLL cells from spleens of euthanized Eµ-TCL1 mice with 80-

90% CLL into syngeneic mice, which lead to a reliable and consistent 

development of the disease in the recipient mice within weeks of injection and 

splenomegaly (Figure 2.1). Adoptive transfer of Eμ-TCL1 cells consisted of 

transferring 1-10x106 Eμ-TCL1 splenic cells into C57BL/6J mice via retro-orbital 

injection. 

 For in vitro experiments, Eμ-TCL1 CLL cells were cultured in RPMI 1640 

medium (Corning #10-040-CV, New York, NY) supplemented with 10% Fetal 

Bovine Serum (FBS) (Atlanta Biological Systems, Flowery Branch, GA). The 

human CLL cell line, MEC1, was obtained from Dr. Natarajan Muthusamy at 

Ohio State University. MEC1 cells were cultured in Iscove's Modified Dulbecco's 

Medium (IMDM) (ThermoFisher Scientific #12440061, Waltham, MA) 

supplemented with 10% FBS. 
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(2b) Patients 

 Patients with CLL were recruited from the University of Kentucky Markey 

Cancer Center. All 18 patients gave informed consent according to protocols 

approved by the University of Kentucky Institutional Review Boards. Blood CLL 

cells were purified using Ficoll-Paque PLUS density gradients (GE HealthCare 

#17-1440-02, Pittsburgh, PA). CLL preparations were always >90% CD5+CD19+ 

B cells. For healthy controls, Leukopak units were obtained from the Kentucky 

blood bank. B cells were enriched using Ficoll-Paque PLUS density gradients 

and human CD19+ Microbeads (Miltenyi Biotech #130-050-301, San Diego, CA). 

For in vitro studies, human CLL cells were cultured in RPMI 1640 medium 

supplemented with 10% FBS. 

Spontaneous Model 

10-15 Months of age 

Primary Eµ-TCL1 Spleen 
CD5 
 

C
D

1
9

 

86.61% 

Adoptive Transfer Model 

Inject 104-107 cells IV 
no irradiation required 

Syngeneic model 

3-8 weeks post injection 

Adoptive Transfer spleen 
CD5 

C
D

19
 

92% 

β-globin 

Figure 2.1: Production of Eμ-TCL1 transgenic mice and the adoptive transfer model. 

Gene organization for the transgene was adapted from Bichi, R. et al. Human chronic lymphocytic leukemia modeled in 

mouse by targeted TCL1 expression. Proceedings of the National Academy of Sciences of the United States of America 

99, 6955-6960 (2002). Copyright © 2002, The National Academy of Sciences 
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(2c) Reagent 

 PMA (P1585), Ionomycin (407952), LPS (L2018), Thiazolyl Blue 

Tetrazolium Bromide (MTT) (M5655), and monoclonal anti-β-actin antibody 

(A5441) were from (Millipore Sigma-Aldrich, St. Louis, MO). Purified anti-mouse 

IL-10 (554463) and IL-10R (550012) antibodies were obtained from (BD 

PharMingen, San Diego, CA). AffiniPure F(ab')2 Fragment Goat anti-Mouse IgM 

(115-006-020) and AffiniPure F(ab')2 Fragment Goat anti-human IgM (109-006-

129) antibodies were purchased from (Jackson ImmunoResearch Laboratories, 

West Grove, PA). Mouse anti-CD19 MicroBeads (130-052-201), anti-CD8a 

MicroBeads (130-049-401) and CD4+ T cell isolation kits were purchased from 

Miltenyi Biotech. Dasatinib (0003-0528-11) was manufactured by (Bristol-Myers 

Squibb Company, Seattle, WA). Syk inhibitor IV (Bay 61-3606) (57-471-42MG) 

was obtained from (EMD Millipore Calbiochem, Billerica, MA). Mithramycin A 

(BML-GR305-0001) was purchased from (Enzo Life Sciences, Farmingdale, NY). 

Ibrutinib (A3001) and ERK1/2 inhibitor (A3805) were obtained from (APExBIO, 

Houston, TX). Phosphate buffered saline (PBS) (#SH30256.FS) was obtained 

from GE HealthCare. Carboxyfluorescein succinimidyl ester (CFSE) (C1157) was 

purchased from ThermoFisher Scientific. Mouse fluor-conjugated anti-CD5 

(100606 or 100608), anti-CD19 (115520 or 115508 or 115512), anti-CD45 

(103114 or 103110), anti-CD11b (101212), anti-CD4 (100412 or 100510), anti-

CD8 (100706 or 100708), anti-IL-10R (112706), anti-IFN-γ (505806), and anti-IL-

10 (505010) as well as human anti-CD5 (364022), anti-CD19 (302208) and anti-

CD45 (368512) antibodies, fixation buffer (420801) and intracellular staining 
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permeabilization wash buffer (421002) were all acquired from (BioLegend, San 

Diego, CA). Mouse Anti-CD90.2 (Thy1.2) (553013) was purchased from BD 

PharMingen. Antibodies to P-Syk (2711), total Syk (2712), P-p38 (9211), total 

p38 (9212), P-ERK1/2 (9101), P-STAT3 (9145), total STAT3 (4904) and GAPDH 

(2118) were obtained from (Cell Signaling Technology, Danvers, 

Massachusetts). Antibodies to IL-10 (SC-365858), Sp1 (SC-17824), Lyn (SC-15), 

and total ERK1 (SC-94) were acquired from (Santa Cruz Biotechnology, Santa 

Cruz, CA). Peroxidase coupled goat anti-rabbit (SC-2004) and anti-mouse (SC-

2005) Ig secondary antibodies were also acquired from Santa Cruz 

Biotechnology. Mouse IL-10 (5261) and SimpleChIP kit (9003) were purchased 

from Cell Signaling Technology.  

(2d) Immunofluoresence analysis and cell sorting 

 Single-cell lymphocyte suspensions from mouse tissues were prepared as 

described before. Spleens were pressed through a 40μm strainer using the 

plunger end of a syringe in Hank’s buffered salt solution (HBSS) (Millipore 

Sigma-Aldrich #H6136-10XL). Tibiae and femora were harvested from mice. The 

bones were flushed with a 26G syringe in HBSS to obtain bone marrow single 

cell suspension. Peritoneal cells were obtained by peritoneal lavage with ~30mL 

of HBSS. Mouse blood mononuclear cells were isolated by centrifugation after 

subjecting 100-200μl of blood to RBCs lysis. Cells were resuspended in RPMI 

1640 medium supplemented with 10% FBS. For multi-color immunofluorescence 

analysis, single-cell suspensions of mononuclear cells (106 cells) were incubated 

with normal rat IgG (10μg/106 cells) at 4°C for 15 min to block Fcγ receptors. The 
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cells were then labeled with fluorochrome-conjugated anti-mouse antibodies for 

30 minutes on ice. Cells were washed with staining buffer (2% FBS in 1xPBS). 

Cells with the forward and side light scatter properties of single viable 

lymphocytes were analyzed using Becton Dickinson (San Jose, CA) LSRII flow 

cytometer and CellQuest Pro software. Anti-CD19, anti-CD11b and anti-CD5 

were used to identify and sort B-1a (CD19+ CD5+ CD11b+), B-1b (CD19+ CD5- 

CD11b+), B-2 (CD19+ CD5- CD11b-) cells from the peritoneum of C57BL/6J 

mice using iCyt Synergy sorter system from Sony Biotechnology (San Jose, CA). 

CD45 staining was used to gate on lymphocytes and myeloid cells. Anti-CD19 

and anti-CD90.2 antibodies were used to identify and sort T cells (CD19- 

CD90.2+) for the adoptive transfer experiments also using the iCyt Synergy 

sorter. Intracellular staining was performed according to Biolegend protocol. 

Briefly, cells were stimulated with PMA (20ng/ml) and Ionomycin (1μg/ml) for 4 

hours in RPMI media supplemented with 10%FBS at 37°C. After surface 

staining, cells were fixed with 1X PBS solution containing 4% paraformaldehyde 

for 20 minutes at room temperature, permeabilized using BioLegend Intracellular 

Staining Permeabilization Wash Buffer, and finally stained with the antibody of 

interest for 30 minutes on ice. 

(2e) Enzyme-linked immunosorbent assay (ELISA)  

 For cytokine analysis, normal B-1, murine CLL and human CLL cells were 

cultured in triplicate (2x106 cells/mL) for 24 hours in 96-well plate with various 

stimulants or treatments. Cells were removed by centrifugation and supernatants 

were assayed immediately or stored at -80°C. Plasma from mice was obtained 
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by centrifuging blood collected in EDTA tubes at the time of euthanization by 

cardiac puncture and the samples were stored at -80°C. IL-10 levels in 

supernatants or plasma were quantified using IL-10 OptEIA ELISA kit (BD 

#555252). IFN-γ levels were measured using IFN-γ OptEIA ELISA kit (BD# 

555138). Human plasma or secreted IL-10 levels were quantified using IL-10 

ELISA MAX set (BioLegend #430601). 

(2f) In vitro cell survival and proliferation assays 

 CLL cell survival was determined by MTT assay [116]. Splenic CLL cells 

were stimulated with 5μg/ml LPS in the presence or absence of anti-IL-10R 

(10μg/ml) or anti-IL-10 (10μg/ml) antibodies. After 48 hours, media was changed 

and cultured with MTT for 4 hours followed by solubilization in acidic isopropanol 

and spectrophotometric measurements at 560nm and 690nm. To calculate final 

optical density (OD) counts, measurements at 690nm are subtracted from 560nm 

measurements to account for background readings.  

 For T cell proliferation and differentiation studies, CD8+ cells were purified 

using anti-CD8+ Microbeads using the autoMACS cell separator (Miltenyi 

Biotec). Cells then were and cultured (1-2 x 105 cells) with irradiated mouse CLL 

cells (25Gy) (2 x 105 cells) for 72 hours. Irradiation was performed in a Mark I-68 

Cesium γ-irradiator (J.L Shepherd and Associates) on a rotating platform. The 

cultures were pulsed with 1.0 μCi of 3[H] thymidine for 4 hours. The incorporated 

radioactivity was measured after harvesting cells onto a 96-well-plate by using a 

Matrix 96 β-counter (Packard, Downers Grove, IL). For IFN-γ analysis, 

supernatants were collected after 24 hours. All cell cultures were set in triplicates 
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in 96-well-plate at cell density of 2x106cell/mL. 

(2g) Immunoblotting 

 CLL cells (mouse or human) were cultured at 5x106 cells/well in a 6 well 

plate for treatments indicated in figures. At each time point, cells were collected 

and washed twice using HBSS. Cells were then lysed in Cell Signaling lysis 

buffer (#9803) containing 1mM PMSF (Sigma #P7626), 2mM NaF (Sigma #S-

1504), 2mM Na3VO4 (Sigma #S-6508) and 1x protease inhibitor cocktail (Roche 

#5892953001) (Indianapolis, IN) for 15 minutes on ice and collected by 

centrifuging at highest speed setting. Protein concentration in cell lysates was 

estimated by the Bicinchoninic Acid (BCA) assay kit (Thermo Scientific #23227). 

Protein lysates were diluted in 4x sodium dodecyl sulfate (SDS) sample buffer 

(100mM Tris-HCl, pH 6.8, 30% glycerol, 4% SDS, 5% 2-ME and 0.01% W/V 

bromophenol blue) to a 1x final concentration and boiled for 10 min. The BIO-

RAD Mini PROTEAN Tetra System was used for both gel electrophoresis and 

transfer. 30μg total protein/sample of total lysate was subjected to sodium 

dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. 7µl of Precision Plus 

Protein dual color ladder (BIO-RAD #1610394, Hercules, CA) with a size range 

spanning 10-250 kDa was used as a size standard for every gel. 10% or 12% 

polyacrylamide gels were run with running buffer (25mM Tris, 192mM glycine, 

0.1% SDS, pH 8.3) at 100Volts and ~150mA for 10 min to stack the proteins, and 

later at 150Volts and ~150mA for 1 h to separate the proteins. Separated 

proteins were transferred to polyvinylidene difluoride membranes (EMD Millipore 

#IPVH00010) with transfer buffer (25mM Tris, 192mM glycine, 20% methanol, pH 
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8.3). Transfer was performed at 100V and ~150mA for 1.5 h at 4°C. Membranes 

were blocked at room temperature for 1hr with 5% milk or 3% bovine serum 

albumin (when probing for phosphorylated proteins) in 1x TBST that was diluted 

from 10x TBST (0.5M Tris, 1.5M NaCl and 1% Tween-20). The membranes were 

then probed with appropriate primary antibodies at 4°C overnight, followed by 

horseradish peroxidase-conjugated secondary antibodies at room temperature 

for 1hr. The blots were developed with HyGLO chemiluminescence reagent 

(Denville Scientific #E2400, Holliston, MA) and exposed to HyBlot CL 

autoradiography film (Denville Scientific #E3012). Band densitometry analysis 

was performed using the NIH ImageJ program. Protein expression was 

normalized to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin or 

total target protein expression as appropriate. 

(2h) CLL and T cell adoptive transfer and CFSE Labeling 

 Adoptive transfers were performed by transferring 1-10x106 Eμ-TCL1 

splenic cells into C57BL/6J or IL-10R KO or NSG mice (without any 

preconditioning) intravenously via retro-orbital injection. CLL disease was 

monitored by periodic submandibular bleeding and CD5+CD19+ cells were 

quantified by flow cytometry [117]. For CFSE Labeling, CLL cells were 

resuspended at 107 cells/ml in 1xPBS + 10mM CFSE, incubated at 37°C for 20 

min, and then washed with 1xPBS to prepare for retro-orbital injection [118]. 

 For total T cell adoptive transfer experiments, C57BL/6J and IL-10R KO 

mice were injected with 4 x 106 CLL cells for priming. 14-17 days after injection, 

splenic T cells were sorted using anti-CD90.2 antibody. 4 x 106 T-depleted CLL 
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cells along with sorted 0.5 x 106 T cells (NSG) or 0.25 x 106 T cells (NOG) were 

adoptively transferred and disease was monitored weekly by bleeding. For CD8+ 

T cell adoptive transfer, C57BL/6J and IL-10R KO mice were injected with 4 x 106 

CLL cells for priming. 14 days after injection, splenic CD8+ T cells were isolated 

using CD8+ microbeads and the autoMACS cell separator. 4 x 106 T-depleted 

CLL cells along with sorted 0.125 x 106 T cells (NSG) were adoptively transferred 

and disease was monitored weekly by bleeding. 

(2i) Quantitative Real-Time PCR (qRT-PCR) 

 Total RNA was isolated from Eμ-TCL1 CLL cells using TRI reagent 

(Sigma-Aldrich #T9424). RNA was quantified and 2μg of total RNA was 

subsequently used to make cDNA using qScript cDNA SuperMix (Quanta 

Biosceince #95048-100, Gaithersburg, MD) according to the manufacturer’s 

protocol. iTaq Universal SYBR Green Supermix (BIO-RAD #172-5121) was used 

to carryout the qRT-PCR reaction. qRT-PCR was performed and analyzed 

(comparative CT (ΔΔCT) method) on StepOnePlus Real-Time PCR System from 

(Applied Biosystems, Foster City, CA). Primer sequences used are described in 

Table 2.1. The 18s-specific primers were used for loading control. All primers 

were obtained from (IDT technologies, Coralville, IA). 

Table 2.1: List of qRT-PCR Primers 

Primer Sequence Manufacturer 

IL-10 Forward 5’-ACTGGCATGAGGATCAGCAG-3’ IDT technologies 

IL-10 Reverse 5’-AGAAATCGATGACAGCGCCT-3’ IDT technologies 

SP1 Forward 5’-TGCCACCATGAGCGACCAAGATCA-3’ IDT technologies 

SP1 Reverse 5’-TGCTGCTGCTTCGAGTCTGAGAAA-3’ IDT technologies 

18S Forward 5’- CGCCGCTAGAGGTGAAATTCT -3’ IDT technologies 

18S Reverse 5’-CGAACCTCCGACTTTCGTTCT-3’ IDT technologies 
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(2j) Short hairpin RNA (shRNA) sequence and cell infection 

 Lyn shRNAs in the pLKO.1 lentiviral vector were validated and selected by 

the RNAi Consortium and glycerol stocks were purchased from ThermoFisher 

Scientific (#RHS4533). MEC1 cells were seeded at a density of 1.5 x 106 cells/ml 

in a 6-well assay plate, infected with 25-50μl of concentrated shRNA lentiviral 

supernatants with the addition of polybrene (10μg/ml) and centrifuging for 90 

minutes at 2800rpm and 10°C. Virus and cells were incubated for 24hrs at 37°C 

and then fresh media was replenished. Puromycin antibiotic selection began at 

day 3 and remained in culture for entire period of experimentation after proper 

titration. All lentiviral infections were assayed by Western blot analysis with anti-

Lyn antibody. Lyn shRNA Clone# TRCN0000010101 is represented in this paper. 

(2k) Chromatin Immunoprecipitation (ChIP) for qChIP analysis 

 ChIP analysis was performed using Cell Signaling SimpleChIP Enzymatic 

Chromatin IP kit following manufacturer’s protocol. The proteins and DNA were 

cross-linked with 1% formaldehyde, lysed, and the DNA was sheared into 150-

900 bp fragments. Proteins linked to the DNA were immunoprecipitated with anti-

Sp1 antibody (using rabbit IgG antibody as control). Subsequently, immune 

complexes were eluted from the beads, protein-DNA crosslinks were reversed, 

and DNA was isolated after phenol/ chloroform/isoamyl alcohol extraction 

followed by ethanol precipitation. For qChIP, RT-PCR was performed on the 

eluted DNA using SYBR Green Reaction Mix as described in (section 2i). The 

primers used to amplify specific regions of the IL-10 promoter described to 

contain Sp1 binding site [119] were as follows; forward, 5’- 
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GCAGAAGTTCATTCCGACCA-3’; reverse, 5’-GGCTCCTCCTCCCTCTTCTA-3’. 

For calculating fold changes, we used the fold enrichment method. This 

normalization method is also called 'signal over background' or 'relative to the no-

antibody control'. With this method, the ChIP signals are divided by the no-

antibody signals, representing the ChIP signal as the fold-increase in signal 

relative to the background signal. The assumption of this method is that the level 

of background signal is reproducible between different primer sets, samples, and 

replicate experiments. 

(2l) Tissue Histology and Disease Scoring  

Colons were dissected from euthanized mice and fixed in 10%-buffered formalin 

(Fisher Scientific #SF93-4, Fair Lawn, NJ), embedded in paraffin, and stained 

with hematoxylin and eosin (H&E) by the University of Kentucky histology 

services. Histological scoring was based on the method described previously by 

Berg et al. [120]. Briefly, a score from 0 to 4 was based on criteria summarized in 

table 2.2 [120]. 
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(2m) Statistical analysis 

GraphPad Prism 7 was used for statistical analyses (GraphPad Software, Inc., 

La Jolla, CA). Statistical significance of differences between groups was 

evaluated by Student’s t test or Tukey’s multiple comparisons test as appropriate 

and p values < 0.05 were considered significant. 

 
 
 
 

Copyright © Sara Samir Alhakeem 2017 

Grade Criteria 

0 No change from normal tissue. 

1 

Few multi-focal mononuclear cell infiltrates in the lamina propria. 

Minimal epithelial hyperplasia. 

Slight to no depletion of mucus from goblet cells. 

2 

Several multifocal, mild inflammatory cell infiltrates in the lamina propria 
composed primarily of mononuclear cells with a few neutrophils. 

Mild epithelial hyperplasia and mucin depletion. 

Occasional small epithelial erosions. 

Inflammation rarely involving the submucosa. 

3 

Lesions involved a large area of the mucosa. 

Moderate inflammation often involving the submucosa but rarely 
transmural. Inflammatory cells are a mixture of mononuclear cells as 
well as neutrophils. 

Crypt abscesses are present. 

Moderate epithelial hyperplasia and mucin depletion. 

Occasionally observed ulcers. 

4 

Lesions involved most of the intestinal section. 

Severe Inflammation, including mononuclear cells and neutrophils, and 
was sometimes transmural. 

Epithelial hyperplasia marked with crowding of epithelial cells in 
elongated glands. 

Few mucin containing cells. 

Crypt abscesses and ulcers are present. 

Table 2.2: Criteria for histological scoring of the colon 
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CHAPTER 3 

Chronic lymphocytic leukemia cells produce IL-10 constitutively, which 

does not affect their survival in vitro 

 
 Peritoneal B-1 cells were shown early on to have the ability to produce 

Interleukin-10 constitutively [56]. In a recent study, a human CD11b+ B-1 cell 

subset was also found to constitutively secrete IL-10 [121]. This constitutive 

nature of IL-10 production by B-1 cells differs from the newly described B10 

subset, which can produce IL-10 but requires further activation in order to do so, 

such as anti-CD40, CPG and LPS stimulation [122, 123]. As described earlier, B-

1 cells are further subdivided into B-1a and B-1b based on the differences in CD5 

expression [29]. Among the different subsets of peritoneal B-1 cells, B-1a cells 

produced the highest amount of IL-10 constitutively, followed by B-1b cells [73]. 

Splenic B-1a cells produced much less IL-10 than peritoneal B-1a cells but more 

than splenic B-2 cells [73]. We previously demonstrated that IL-10 has 

autoregulatory effects in peritoneal B-1 cells through an inhibitory feedback 

mechanism, which affects their proliferation response to stimulation with LPS 

[73]. This autoregulation was found in response to TLR4 as well as ligation of 

TLR2, TLR3, TLR7, and TLR9 receptors [73]. Splenic B-1 cells did not exhibit 

this autoregulation, as their TLR responses were not enhanced by anti–IL-10R 

antibodies [73]. The autoregulatory effect extends to the differentiation response 

of B-1 cells. The autoregulation was found to be a result of inhibition of the 

classical NF-κB signaling by IL-10 [73]. In a recent study, the well-known 
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hyporesponsiveness of B-1 cells to BCR signaling was also found to be a result 

of the feedback-inhibitory effects of B-1 cell–derived IL-10 [54]. As described 

earlier, B-1 B cells are thought to be a possible cell of origin for murine CLL cells. 

Normal B-1 B cells and the Eμ-TCL1 CLL cells share many characteristics. 

Preliminary studies showed that Eμ-TCL1 CLL cells constitutively produce IL-10 

[54]. Since IL-10 has autoregulatory effects in B-1 cells, we hypothesized that IL-

10 could be playing a similar role in Eμ-TCL1 CLL cells as they are also known to 

be hyporeactive to BCR and TLR ligation. Therefore, in this chapter we further 

characterized the production of IL-10 by Eμ-TCL1 CLL cells and tested if the 

constitutively produced IL-10 plays a role in the survival and proliferation of Eμ-

TCL1 CLL cells in vitro. 
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Results 

(3a) Constitutive IL-10 production by Eμ-TCL1 CLL cells  

 Eμ-TCL1 CLL cells (or simply CLL cells) are defined by the co-expression 

of the surface molecules CD5 and CD19. For the studies performed here we use 

splenic cells from the primary Eμ-TCL1 mouse as well as splenic cells from the 

CLL adoptive transfer mice described in the methods. Figure 3.1A shows a 

representative flow cytometry dot plot of spleen cells from both a normal 

C57BL/6 mouse (top) and an adoptively transferred mouse with CLL (bottom) 

stained with anti-CD5 and anti-CD19 antibodies. The majority of the splenic cells 

from the adoptively transfer mouse are CLL cells and are defined by ≥80% 

CD5+CD19+ cells, while normal C57BL/6 mouse spleen would only have <10% of 

CD5+CD19+ cells (normal B-1 cells). TCL1 expression can also be used to 

distinguish between normal B-1 cells and CLL cells as shown in Figure 3.1B.  

 Since CLL cells obtained from each Eµ-TCL1 mouse are unique (based 

on VH gene expression), we first tested if all Eµ-TCL1 CLL cells produced IL-10 

constitutively. Cells from spleens of Eμ-TCL1 mice share a similar functional 

phenotype with peritoneal CD5+CD19+CD11b+ B-1a cells in that they both 

secrete IL-10 constitutively, although this constitutive production is small in CLL 

from some Eµ-TCL1 mice with CLL (Figure 3.2A). Here we confirmed that this 

constitutive production is a property of CLL cells themselves by purifying CLL 

cells using CD19+ microBeads from spleens of Eμ-TCL1 mice. Purified CD19+ 

CLL cells produced a significant amount of IL-10 after 24 hours in culture, which 

was comparable to the unpurified splenic cells of Eμ-TCL1 de novo and adoptive 

transfer models (Figure 3.2A). Since the majority of normal B-1 cells are derived 
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from the peritoneal cavity, we also tested CLL cells derived from the peritoneal 

cavity for their ability to secrete IL-10. We found that peritoneal CLL cells also 

secrete IL-10 constitutively (Figure 3.2A). Finally, we demonstrated that LPS 

enhances IL-10 production by B-CLL cells, another property shared with normal 

B-1 cells (Figure 3.2B). In addition, even the CLL cells that produce low levels of 

IL-10 constitutively produce high levels of IL-10 upon LPS stimulation. 

(3b) Neutralization of IL-I0 or blocking with anti-IL-10R antibody does not affect 

the survival of the Eμ-TCL1 CLL cells  

 While it is known that B-CLL cells produce IL-10, very few studies address 

the direct effects of CLL-induced IL-10 on CLL cells growth and survival. We 

have previously reported that IL-10 produced by normal B-1 cells regulated their 

proliferation responses to TLR stimulation as well as to BCR ligation [54, 73]. 

However, neutralization of CLL-derived IL-10 using anti-IL-10 antibodies or anti-

IL-10R antibodies did not affect the survival of the CLL cells as shown by MTT 

assay (Figure 3.3A) or their proliferation responses shown by Thymidine uptake 

experiments (Figure 3.3B). LPS stimulation enhanced CLL survival but only had 

a modest effect on their proliferation. Neutralization of IL-10 did not affect the 

LPS induced increases in survival or proliferation. Thus, the CLL cells appear to 

be distinct from normal B-1 cells in not responding to IL-10-mediated suppressive 

affects in vitro. This lack of response to blocking IL-10 signal may be due to 

absence of IL-10R on CLL cells and therefore inability to signal. Hence, we 

measured the levels of IL-10R on the surface of CLL cells and the functional 

ability of the receptor to induce downstream signaling. Flow cytometry analysis of 
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IL-10R on the surface of CLL cells derived from Eμ-TCL1 mice confirmed the 

presence of IL-10R on CLL cell surface (Figure 3.3C). Then to confirm the 

functionality of the IL-10R, we tested if exogenous IL-10 would induce the well-

known downstream signaling by inducing phosphorylation of STAT3 transcription 

factor. Indeed, treatment of CLL cells with exogenous IL-10 induced 

phosphorylation of STAT3 in comparison to untreated cells (Figure 3.3D). Thus 

IL-10 receptor appears to be functional in CLL cells. 
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Figure 3.1A 
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Figure 3.1: Flow cytometry and western blot representation of CLL cells 

A) C57BL/6 mice injected IV with either PBS (top) or 4x106 CLL cells (Bottom). 

After 4 weeks, both splenocytes from recipient mice were stained with CD5 mAb 

and CD19 mAbs. Representative dot plots for one-mouse show frequencies of 

CD5+CD19+ cells among total CD45+ cells. In a typical experiment, 80-100% of 

recipient mice develop CLL in 4-10 weeks after transfer of CLL cells. B) CLL cells 

were harvested from the peritoneal cavity or the spleen of Eμ-TCL1 or adoptive 

transfer mice. B-1 cells were isolated from the peritoneal cavity of C57BL/6J WT 

mice. Purified CD19+ CLL cells were obtained by using CD19+ microbeads and 

the autoMACS cell separator cell separation. Protein lysates from these cells 

were analyzed for the levels of TCL1 by Western blot. β-actin is used for loading 

control.
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Figure 3.2: Constitutive IL-10 production by CLL cells 

A) CLL cells were harvested from the spleen (n=23) or peritoneal cavity (n=5) of 

Eμ-TCL1 or adoptive transfer mice (n=9). B-1a cells were isolated from the 

peritoneal cavity of C57BL/6J WT mice (n=3). Purified CD19+ Eμ-TCL1 CLL cells 

were obtained by using CD19+ microbeads and the autoMACS cell separator cell 

separation. Cells were cultured for 24 hours (no stimulation) and IL-10 was 

measured in the supernatant by ELISA. B) Splenic CLL cells (n=7) were treated 

with or without LPS (5μg/ml) for 24 hours. Supernatant was collected and IL-10 

was measured by ELISA. Values represent mean ± SE of number of mice 

indicated. ***p<0.001 
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Figure 3.3D 
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Figure 3.3: Inhibiting IL-10 signaling does not affect the survival of the Eμ-

TCL1 CLL cells in vitro 

A) Splenic Eμ-TCL1 CLL cells were cultured with αIL-10 or αIL-10R antibodies 

with or without LPS (5μg/ml) for 48 hours. Survival of CLL cells was measured by 

MTT. Values represent mean ± SD of triplicate cultures. B) Splenic Eμ-TCL1 CLL 

cells were cultured with αIL-10 or αIL-10R antibodies with or without LPS 

(5μg/ml) for 48 hours. Tritiated thymidine was added at the last 4 hours of 

culture. Proliferation was measured by tritiated thymidine incorporation using a 

beta plate reader. Values represent mean ± SD of triplicate cultures. C) Eμ-TCL1 

CLL cells stained with anti-IL-10R or isotype control antibody and analyzed by 

flow cytometry. D) Protein lysates of Eμ-TCL1 CLL cells stimulated with 

exogenous IL-10 for indicated time points were analyzed for the levels of p-

STAT3 and total STAT3 by Western blot. β-actin is used for loading control. NS; 

not significant. 
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Summary 

 During the course of our studies, we made the observation that splenic 

cells isolated from our CLL model, the Eμ-TCL1 mouse, constitutively secreted 

IL-10. We found that peritoneal CLL cells also secrete IL-10 constitutively and 

that LPS enhances this IL-10 production. On average CLL cells from both spleen 

and peritoneal cavity produced similar amounts of IL-10. This is unlike normal B-

1 cells, wherein peritoneal but not splenic B-1 cells produced IL-10 constitutively 

or upon TLR4 stimulation. As discussed above, IL-10 secretion by normal B-1 

cells regulates their proliferation responses to TLR stimulation as well as BCR 

ligation. Here we found that neutralization of IL-10 using anti-IL-10 antibodies or 

anti-IL-10R antibody did not affect the survival or proliferation of the CLL cells 

despite the fact that IL-10 receptor appears to be functional in CLL cells. An 

interesting result seen here is the amount of variability of constitutive IL-10 

production by the different Eμ-TCL1 mice. This could be due to differences in VH 

subfamily expression between the different Eμ-TCL1 CLL cells. Hence, we 

sequenced a number of Eμ-TCL1 CLL cells for the expression of VH subfamilies. 

We found no linkage between the basal level of IL-10 and VH subfamily 

expression (unpublished data). Worth noting that studies performed in this work 

always used CLL cells that constitutively produced IL-10 with at least 150pg/ml 

levels. In future chapters we will be discussing if IL-10 has a function in the 

growth of CLL cells in vivo. 

 

Copyright © Sara Samir Alhakeem 2017 
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CHAPTER 4 

The role of IL-10 during immune responses to CLL 
 

 CLL is associated with a profound immune defect, which results in 

increased susceptibility to infections as well as a failure to mount effective 

antitumor immune responses. Infections in CLL patients have been recognized 

as a common cause of morbidity and mortality [13-15]. Many mechanisms of 

immunosuppression have been described in CLL. As seen in chapter 3, CLL cells 

constitutively produce IL-10, an immunosuppressive factor. However, CLL-

induced IL-10 had no effect on CLL cell survival in vitro. This led us to 

hypothesize that the CLL-derived IL-10 may have a suppressive effect on 

immune responses against CLL. IL-10 is known to regulate T cell responses 

indirectly through its effects on macrophages and monocytes, inhibiting their 

MHC class II and costimulatory molecule B7-1/B7-2 expression and limiting their 

production of proinflammatory cytokines and chemokines [79]. IL-10 can also act 

directly on T cells, inhibiting proliferation and production of IL-2, IFN-γ, IL-4, IL-5 

and TNF-α [81, 82]. Studies presented in this chapter investigate the role of 

adaptive immune responses in CLL and the effects of IL-10 on the 

microenvironment and T cell responses in CLL using the Eμ-TCL1 mouse model.  
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Results 

(4a) Immune responses control CLL growth 

 CLL has been shown to be associated with defects in T-cell function, 

resulting in failure of antitumor immunity and increased susceptibility to infections 

[50]. Here we hypothesized that IL-10 could be playing a role in this T-cell 

dysfunction. First, we wanted to confirm the role of adaptive tumor immunity 

against CLL in the Eµ-TCL1 mouse model. Utilizing our CLL adoptive transfer 

model, we injected CLL cells into C57BL/6J wild type (WT) mice and NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice that lack mature B and T cells, as well as 

natural killer (NK) cells with secondary defects in macrophages and DCs [124, 

125]. We hypothesized that lack of adaptive immunity would lead to a change in 

the engraftment pattern of CLL cells. Indeed, comparing the percentage of 

CD5+CD19+ CLL cells in peripheral blood (PB), CLL cells in NSG mice were 

detectable as early as day 7 post injection (1-3% in CLL injected mice versus 

<0.15% in PBS injected NSG recipients) and had to be euthanized at day 16 due 

to poor body condition with an average of 70% CD5+CD19+ cells in PB (Figure 

4.1A). On the other hand, CLL cells were detectable only at day 21 post injection 

in WT mice and at day 28 an average of 50% CD5+CD19+ cells were present in 

PB (Figure 4.1A). The percentages of CLL cells in blood and spleen of both 

C57BL/6J and NSG mice at the time of euthanization are shown in Figure 4.1B. 

Kaplan-Meier analysis showed that upon CLL injection C57BL/6J mice survived 

longer than NSG mice (p<0.05) (Figure 4.1C), revealing an important role of 

adaptive immunity against CLL cells. 
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(4b) CLL cell growth is reduced in IL-10R null mice 

 Now that we confirmed the presence of anti-tumor immunity against CLL 

cells, we investigated if CLL-derived IL-10 could inhibit immune responses 

against CLL. In our hypothetical model as shown in Figure 4.2, IL-10 could be 

playing a role in inhibiting immune responses in CLL by either affecting innate 

immune cell functions in the CLL microenvironment such as their 

proinflammatory cytokine secretion or by directly affecting adaptive immune 

responses such as cytotoxic T cell role in anti-tumor immunity. To test this 

hypothesis, first using our adoptive transfer model, we injected CLL cells into WT 

and IL-10R KO mice both on the C57BL/6J background. Lack of IL-10 may 

enhance pro-inflammatory environment and increase CLL growth in IL-10R KO 

mice compared to wild type. For the possibility that IL-10 directly suppresses T 

cells, IL-10R KO mice will have more robust anti-CLL T cell responses leading to 

reduced CLL growth. Comparing the percentages of CD5+CD19+ CLL cells in PB 

of these mice, we found that CLL cells grew at a slower rate in IL-10R KO mice 

than in WT mice with the most difference at day 16 and day 20 (Figure 4.3A), 

though the differences in blood CLL levels between the two recipients at days 13, 

16, 20 and 25 were all statistically significant. After euthanization, CLL tumor 

burden in different tissues collected including spleen, bone marrow (BM), and 

peritoneal cavity (PC) was higher in WT mice than in IL-10R KO mice (p<0.05) 

(Figure 4.3B-D). Thus the presence of IL-10 signaling in WT mice appears to 

inhibit anti-tumor immunity leading to a higher growth rate and engraftment of 

CLL in these mice compared to mice unable to receive IL-10 mediated 
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immunosuppressive signals. Since it has been reported that at 12 weeks of age, 

approximately 60% of IL-10R KO mice develop chronic colitis and increased 

numbers of splenocytes resulting in splenomegaly [126], we performed our 

experiments soon after weaning, 3-4 weeks old mice. At the end of the 

experiment, colon sections from both WT and IL-10R KO mice showed no 

significant difference in inflammation by histopathology (Figure 4.3E). Moreover, 

there was no significant difference in plasma IL-10 levels between WT and IL-

10R KO mice at the end of the experiment (Figure 4.3F). 

 IL-10 is known to inhibit the function of macrophages and monocytes by 

limiting their production of proinflammatory cytokines and chemokines, which are 

thought to affect localization and survival of CLL cells in microenvironmental 

niches. We investigated this possibility in our model by testing if IL-10 is affecting 

the migration of CLL cells to the different mouse tissues in vivo. Using an 

adoptive transfer of CFSE labeled CLL cells, we found no significant difference in 

the total number of CFSE+ cells in the spleen, peritoneal cavity, bone marrow 

and lymph node between WT and IL-10R KO mice 3 days post injection, 

suggesting that differences in CLL growth in IL-10 sufficient and deficient mice 

are not due to any effects on early localization of the transferred cells (Figure 

4.4). 

(4c) Decrease in T-cell function in wild type compared to IL-10R null mice  

 We tested if the decrease in CLL growth in the IL-10R KO mice is due to 

changes in T cell levels and/or function. Indeed, frequencies of CD4+ and CD8+ T 

cells in the spleen were higher in the IL-10R KO mice in comparison to WT mice 
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injected with CLL (Figure 4.5). Therefore, to further understand the inhibitory 

effects of IL-10, we investigated the effects of CLL-derived IL-10 on T cell 

function during the course of the disease by measuring their ability to proliferate 

or secrete γ-IFN in response to stimulation with autologous CLL cells. We 

adoptively transferred CLL cells into WT and IL-10R KO mice and euthanized a 

set of mice at days 13 and 20 post injection. CD8+ cells were purified from the 

spleen of the mice using anti-CD8 antibody coupled microbeads. We found that 

proliferation of CD8+ cells isolated from IL-10R KO mice upon restimulation with 

irradiated CLL cells was significantly higher than proliferation of CD8+ T cells 

from WT mice at both time points (Figure 4.6A). CD8+ T cells isolated from IL-

10R KO mice exhibited a higher capacity to secrete IFN-γ than CD8+ T cells from 

WT mice upon restimulation with CLL cells in vitro (Figure 4.6B). In addition, 

intracellular staining of IFN-γ after a short-term (4 hours) stimulation ex vivo with 

PMA and ionomycin revealed higher percentages of both CD4+IFN-γ+ and 

CD8+IFN-γ+ cells in IL-10R KO in comparison to WT mice injected with CLL cells 

(Figure 4.6C). These data suggest a role for IL-10 in inhibiting T cell responses 

against CLL in vivo. 

(4d) T cells from IL-10R KO mice controlled CLL growth significantly longer than 

T cells from WT mice 

 To further demonstrate the functional differences between WT and IL-10R 

null T cells generated after CLL injection, we used the model of adoptive transfer 

of CLL cells into NSG mice. Here, we primed both WT and IL-10R KO mice with 

CLL cells. Then we isolated total T cells (Thy1.2+CD19-) from the spleens of the 
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mice after two weeks and adoptively transferred these T cells along with CLL 

cells used for priming into NSG mice at a ratio of one T cell to 8 CLL cells 

(experimental model shown in Figure 4.7). Overall, injection of T cells along with 

CLL cells delayed onset of disease in PB by a significant amount of time, no 

matter the source of the T cells (Figure 4.8A). At the time of euthanization, the 

number of CLL cells in the spleens indicated a difference between mice that 

received T cells from WT vs. IL-10R KO mice and was only significantly different 

between mice that received IL-10R KO T cells and mice that received no T cells 

(Figure 4.8B). 100% of the mice that received T cells from IL-10R KO mice 

survived at the end of the experiment while only 40% of the mice that received T 

cells from WT mice survived (Figure 4.8C). Thus IL-10R null T cells that cannot 

respond to IL-10 were more effective in controlling CLL disease than IL-10 

responsive wild type T cells. Similar results were obtained when NOG mice, an 

independently derived T cell, B cell and NK cell deficient mice, were injected with 

CLL cells and wild type or IL-10R KO T cells primed with CLL cells as above. The 

only difference was that the T cell to CLL ratio was decreased to 1:16. Despite 

this lower T cell to CLL ratio, none of the mice receiving CLL primed IL-10R null 

T cells developed CLL even after 184 days while only three out of five mice 

receiving primed wild type T cells developed CLL by day 50. All the NOG 

recipients receiving CLL cells without any T cells developed CLL by day 27.  
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(4e) The adoptive transfer of CD8+ T cells was sufficient in controlling CLL 

development and CD8+ T cells from IL-10R KO mice controlled CLL growth 

significantly longer than T cells from WT mice 

 To help us identify the possible subset of T cells responsible for the anti-

CLL immune response, we injected isolated CD8+ T cells from WT and IL-10R 

KO mice primed with CLL as above along with CLL cells at a ratio of 1 T cell to 

32 CLL cells into NSG mice. Interestingly, CD8+ T cells were sufficient in 

delaying CLL growth and CD8+ T cells from IL-10R KO mice were better at 

controlling disease development than CD8+ T cells from WT mice (Figure 4.9A). 

At the time of euthanization, the number of CLL cells in the spleens indicated a 

significant difference between mice that received CD8+ T cells from WT vs. IL-

10R KO mice; however, no significant difference was observed between group 

receiving T cells from IL-10R KO mice and PBS control mice (Figure 4.9B). 100% 

of the mice that received No T cells or CD8+ T cells from WT mice developed 

disease by day 30 post injection while only 16.7% of the mice that received CD8+ 

T cells from IL-10R KO mice developed disease by that time (Figure 4.9C). 
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Figure 4.1: Lack of B, T and NK cells leads to an acceleration of CLL growth 

kinetics 

A) Eμ-TCL1 CLL cells (4 x 106) were adoptively transferred into WT and NSG 

mice by retro-orbital injection. Leukemic status is determined by weekly 

submandibular bleeding. Graph shows the % CD5+CD19+ cells in the peripheral 

blood at indicated time points. Values represent arithmetic mean of six mice per 

group ± SD. B) % CD5+CD19+ cells in the spleen of C57BL/6 and NSG mice is 

analyzed at the time of euthanization by flow cytometry. Values represent 

arithmetic mean of values from six recipient mice per group ± SD. C) Kaplan-

Meier blot represents the survival of C57BL/6 and NSG mice during the course of 

the experiment (n=6). * p< 0.05 determined by Student’s t-test for panels A and B 

and by Log-rank (Mantel-Cox) test for panel C. Similar results were obtained in 

another experiment. 
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Figure 4.2: Hypothetical model for the effects of IL-10 on the immune 

system in CLL
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Figure 4.3: CLL cell growth rate is reduced in IL-10R null mice 

A) Eμ-TCL1 CLL cells (4 x 106) were adoptively transferred into WT and IL-10R 

KO mice by retro-orbital injection (n=5 mice/group). Leukemia status was 

monitored by weekly bleeding and is shown as CD5+ CD19+ cells as a 

percentage of CD45+ cells in the peripheral blood. Injection of PBS was used as 

a control. B-D) Tumor burden as total number of CD5+ CD19+ cells was 

calculated based on total cell count and % of CD5+ CD19+ cells per spleen (B), 

bone marrow (C) and peritoneal cavity lavage (D). Values represent arithmetic 

mean of five mice per group ± SD. *p< 0.05. E) Representative colon H & E 

staining from WT and IL-10R KO mice injected with CLL cells or PBS. Colon 

sections were scored as described in the methods. NS; not significant. F) IL-10 

plasma levels from WT and IL-10R KO mice were determined by ELISA at the 

end of the experiment. 
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Figure 4.4: No differences in localization of CLL cells between WT and IL-

10R KO mice 

Eμ-TCL1 CLL cells were labeled with CFSE (10μM/ml) and adoptively transferred 

into WT and IL-10R KO mice by retro-orbital injection (n=4/group). Mice were 

euthanized 3 days post injection and indicated tissues were harvested and 

stained for CD5 and CD19. Total numbers of CFSE+ CLL cells are represented. 

Injection of PBS was used as a control. Values represent arithmetic mean of four 

replicates ± SD. NS; not significant. Results from one of three experiments with 

similar outcome are shown. 
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Figure 4.5: Frequency of T cells are reduced in WT mice in compare to IL-

10R KO mice injected with CLL 

Eμ-TCL1 CLL cells (4 x 106) were adoptively transferred into WT and IL-10R KO 

mice by retro-orbital injection. At Day 23 post injection, mice were euthanized 

and splenic cells were stained for CD4 and CD8. Frequencies of CD4+CD8- cells 

(Top) and CD4-CD8+ cells (Bottom) are indicated. Values represent arithmetic 

mean of data from five mice per group ± SD. *p< 0.05. 
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Figure 4.6A 
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Figure 4.6: IL-10 caused a decrease in T cell function in mice injected with 

CLL cells 

CD8+ cells were purified from spleen of WT and IL-10R KO mice using CD8+ 

microbeads 13 and 20 days post CLL injection. CD8+ cells were cultured alone or 

with irradiated 1 x 105 CLL cells at a ratio of 1:2 or 1:1 for 72 hours. (A) Tritiated 

thymidine was added to culture in the last 4 hours and proliferation was 

measured by 3[H] incorporation using a beta plate counter. Values represent 

mean ± SD of triplicate cultures. B) CD8+ cells were cultured with irradiated CLL 

cells at a ratio of 1:2 or 1:1 for 24 hours. Supernatant was collected and IFN-γ 

was measured by ELISA. Values represent mean ± SD of triplicate cultures. C) 

Surface staining for CD4 (top panel) and CD8 (bottom panel) and intracellular 

staining of IFN-γ was performed on splenic cells from WT and IL-10R KO mice 

obtained 13 and 20 days post CLL injection. Cells were stimulated for 4 hours 

with PMA and ionomycin before staining. Values represent arithmetic mean of 

four recipient mice ± SE. *p< 0.05. Representative results from one of two 

experiments are shown. 
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Figure 4.7: Experimental model for T cell adoptive transfer experiment 

1. Inject CLL cells into WT and 
IL-10R KO to prime the T cells 

2. Two weeks post injection; purify T 
cells (Thy1.2+CD19- cells) from the 
spleen by flow cytometry sorting 

C57BL/6 (WT) IL-10R KO  

3. Inject CLL along with T cells into NSG 
mice (1:8) ratio of T cells: CLL cells 

NSG  

4. Monitor CLL growth 

Prediction: Engraftment of CLL will be lower/slower in the mice 
that received T cells from IL-10R KO mice. 

Figure 4.7 
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Figure 4.8: Adoptive transfer of CLL primed T cells delayed CLL growth  

A) WT and IL-10R KO mice received an IV injection of CLL cells. 17 days post 

injection; Thy1.2+ cells from the CLL recipient mice were sorted by flow 

cytometry. CLL cells and Thy1.2 cells were then injected into NSG mice at a ratio 

of one T cell to 8 CLL cells and leukemic status was monitored by staining for 

CD5+CD19+ cells in the blood at the time points indicated. Values represent 

mean values ± SE (n= 4-5 recipients). B) #CD5+ CD19+ cells are determined in 

the spleen of NSG mice at the time of euthanization. C) Bar graph representing 

the percentage of mice that developed CLL from each group at the end of the 

experiment.  
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Figure 4.9A 
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Figure 4.9: The adoptive transfer of CLL primed CD8+ T cells was sufficient 

in delaying CLL growth  

A) WT and IL-10R KO mice received an IV injection of CLL cells. 14 days post 

injection; CD8+ cells from the CLL recipient mice were isolated with CD8+ 

microbeads and the autoMACS cell separator. CLL cells and CD8+ T cells were 

then injected into NSG mice at a ratio of one T cell to 32 CLL cells and leukemic 

status was monitored by staining for CD5+CD19+ cells in the blood at the time 

points indicated. Values represent mean values ± SE (n=6 recipients). The 

significance indicated is by comparing the WT CD8+ T cells primed with CLL and 

the IL-10R KO CD8+ T cells primed with CLL groups. B) #CD5+ CD19+ cells are 

determined in the spleen of NSG mice at the time of euthanization. C) Bar graph 

representing the percentage of mice that developed CLL from each group at the 

end of the experiment. *p< 0.05, p**< 0.01, p***< 0.001, NS; not significant. 
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Summary 

 The immune system plays an important role in controlling tumor 

progression. Effective antitumor immune response depends on close interaction 

of several elements of the immune system. These include antigen-presenting 

cells, different subsets of T cells, B cells and NK cells. Here as predicted we 

found that adaptive immune responses played a significant role in chronic 

lymphocytic leukemia. CLL cell growth in vivo was significantly faster in mice that 

lacked B, T and NK cells in comparison to WT mice with intact immune system. 

However, eventually CLL cells, given enough time, are able to engraft tissues of 

the wild type mice equally, which indicates that tumor cells develop a number of 

mechanisms to escape recognition and elimination by immune system. CLL cells 

are capable of producing the immunosuppressive protein, IL-10, constitutively. 

Initially, we observed that engraftment of CLL cells in comparison to WT mice 

was significantly lower in IL-10R KO mice, in which IL-10 is unable to carry out its 

immunosuppressive functions. Since IL-10 has been known for its effects on a 

number of immune cells including APCs and T cells, we first tested if the 

difference in engraftment was due to IL-10 effects on APCs. Macrophages and 

monocytes are known to secrete many cytokines and chemokines that affect the 

localization and survival of CLL cells in the microenvironment. Although is our 

studies we found no significant difference in CLL cell-localization in IL-10 

sufficient and deficient mice, we cannot eliminate the role of these innate cells in 

CLL. Future studies will investigate the inhibitory effects IL-10 might have on 

macrophages and monocytes in the CLL model. Next, we examined the effects 
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of IL-10 on T cell responses in CLL model. We found that the proliferation of T 

cells isolated from IL-10R KO mice upon restimulation with irradiated CLL cells 

was significantly higher than proliferation of T cells from WT mice. In addition, 

CD8+ T cells isolated from IL-10R KO mice exhibited a higher capacity to secrete 

IFN-γ than CD8+ T cells from WT mice injected with CLL cells. Finally, upon 

transfer of primed T cells from both WT and IL-10R KO mice into CLL-injected 

NSG mice, T cells were able to delay the progression of CLL, where T cells from 

IL-10R KO mice were more effective. Interestingly, CD8+ T cells were sufficient 

in delaying CLL disease development and CD8+ T cells isolated from IL-10R KO 

primed with CLL were significantly better at controlling CLL growth than CD8+ T 

cells isolated from WT mice. Future studies will need to investigate if CD4+ T 

cells have similar effects in controlling CLL growth.  
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CHAPTER 5 

Role of BCR signaling in constitutive and induced IL-10 production by CLL 

cells and a novel role of Sp1 in regulating IL-10 production by CLL B cells 

 After having established a role for IL-10 in CLL growth, we investigated 

the possibility of targeting IL-10 to overcome its immunosuppressive effects. 

Therefore, we aimed to identify the possible mechanisms by which IL-10 is 

produced constitutively by CLL cells, which may help identify targets to prevent 

IL-10 production and immunosuppression associated with it. The molecular 

mechanisms involved in IL-10 production by many cells of the immune system 

have been extensively studied, however, it is not clear whether the molecular 

mechanisms required for the induction of IL-10 by B cells are regulated by the 

same factors that regulate IL-10 production by T helper cells, macrophages and 

DCs. Due to the importance of tonic B cell receptor signaling in the survival of 

normal B cells, as well as its impact on the survival and growth of malignant B-

cell clones in CLL and in other non-Hodgkins lymphomas, here we investigated 

the role of BCR signaling in IL-10 production by CLL cells [98-101]. We 

discovered a novel role of BCR signaling in IL-10 production by CLL cells [54]. 

BCR dependent constitutive activation of Src or Syk family kinase is required for 

constitutive IL-10 production by both mouse and human CLL cells. This work to 

understand the molecular pathways leading to IL-10 production CLL cells by 

BCR signaling would provide valuable information on possible targets for IL-10 

manipulation and modulation of the immune response in CLL.
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Results 

(5a) The novel role of BCR signaling in IL-10 production by Eμ-TCL1 CLL cells  

 During our preliminary studies, we were able to establish a novel role of 

BCR signaling in IL-10 production by normal B-1 and malignant Eμ-TCL1 CLL 

cells (Figure 5.1). For the majority of our Eμ-TCL1 CLL cells, crosslinking the 

BCR with anti-IgM led to an increase in IL-10 production (Figure 5.1A). Inhibition 

of Src, Btk or Syk family kinases that are essential for signal transduction via 

BCR reduced both constitutive and anti-IgM induced IL-10 production by Eμ-

TCL1 CLL cells in a dose dependent manner (Figure 5.1B). 

 Additionally, we utilized a human CLL cell line called MEC1 cells in our 

studies. MEC1 cells grew spontaneously from the peripheral blood of a patient 

with CLL in prolymphocytoid transformation [127]. MEC1 cell line expresses the 

same light and heavy chains as the parental CLL cells with similar intensity. 

MEC1 cells are CD19+, CD20+, CD21+ and CD22+. However, MEC1 cells are 

CD5- but also produce IL-10 constitutively and IL-10 was found to be regulated by 

BCR signaling in MEC1. Constitutive production of IL-10 by MEC1 cells is 

diminished by Src, Syk or Btk inhibition (Figure 5.1C). Here we also opted to use 

MEC1 cells in our gene silencing experiments due to the difficulties we faced in 

transfecting primary mouse or human CLL cells. We used a short hairpin RNA 

(shRNA) to knock down Lyn, a Src family kinase and one of the earliest enzymes 

activated with BCR cross-linking. MEC1 cells with 50% lyn knock-down produced 

less IL-10 than control shRNA treated cells (Figure 5.1D). Stimulation of Eμ-

TCL1 CLL cells by BCR cross-linking led to an increase of IL-10 mRNA levels 
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and inhibition of Syk reduced those levels (Figure 5.1E), suggesting that IL-10 

production is controlled at the transcript level. To further verify IL-10 production 

by Eμ-TCL1 cells, we performed IL-10 intracellular staining. 60-80% of Eμ-TCL1 

CLL cells were IL-10 producers, which was reduced by Syk inhibition (Figure 

5.2).  

(5b) IL-10 production by Eμ-TCL1 CLL cells is dependent on ERK1/2 MAPK and 

the transcription factor Sp1 but not on p38MAPK or STAT3 

Importance of P38/MAPK and STAT3 was tested since they are known to 

be involved in IL-10 production by myeloid cells. Surprisingly, phosphorylation of 

the P38/MAPK or the transcription factor STAT3 was not affected by Syk 

inhibition (Figure 5.3A). On the other hand, phosphorylation of extracellular 

signal-regulated kinase 1/2 (ERK1/2) was reduced after the inhibition of Syk 

(Figure 5.3A). In order to find a possible downstream transcription factor, which is 

involved in BCR induced IL-10 production, we tested the transcript levels of 

multiple transcription factors known to be required for IL-10 transcription in 

various immune cells. These included SMAD4, GATA3, CREB, ATF1 and Sp1 

[84]. None of these transcription factors except Sp1 were regulated by BCR 

signaling, as their transcript levels did not change upon stimulation with anti-IgM 

(Figure 5.3B). Sp1 was the only tested transcription factor found to be 

significantly enhanced by BCR signaling and reduced by Syk inhibition (Figure 

5.3C). Treatment of Eμ-TCL1 CLL cells with Mithramycin A, a well-known 

inhibitor of Sp1 [128], reduced IL-10 protein levels in a dose dependent manner 

(Figure 5.3D-E). Sp1 is proposed to bind and transactivate IL10 gene in 
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macrophages and T cells [129]. To further establish its role in IL-10 transcription 

in CLL cells, we utilized chromatin immunoprecipitation (ChIP) to test if Sp1 binds 

to the IL-10 promoter in CLL cells. RT-PCR of the ChIP product revealed 8-fold 

enrichment in binding of Sp1 to IL-10 promoter over the input sample (Figure 

5.3F). Taken together, these results indicate that IL-10 production by Eμ-TCL1 

CLL cells is dependent on the transcription factor Sp1. 

Previous studies have indicated the important role of ERK1/2 in Sp1 

activation [130]. Since we already showed that ERK1/2 activation is regulated by 

BCR signaling (Figure 5.3A), we hypothesized that ERK1/2 activation is the link 

between BCR and Sp1. Accordingly, treatment of Eμ-TCL1 CLL cells with 

SCH772984, a specific ERK1/2 inhibitor decreased IL-10 production in a dose-

dependent manner (Figure 5.4A). Interestingly, Sp1 protein levels were also 

reduced upon ERK1/2 inhibition (Figure 5.4B). Also, consistent with data using 

Syk inhibitor, ERK1/2 inhibitor did not affect the activation of STAT3 (Figure 

5.4B). To demonstrate a better correlation between reduced ERK1/2 

phosphorylation and Sp1 levels, we measured Sp1 transcript levels after ERK1/2 

inhibition and found that Sp1 mRNA was significantly reduced after ERK1/2 

inhibition (Figure 5.4C). This suggests that IL-10 production by CLL cells is 

regulated by the activation of ERK1/2 and subsequent activation of Sp1 leading 

to IL-10 transcription. 

(5c) BCR signaling regulates IL-10 production by human CLL cells 

We tested the role of BCR signaling in IL-10 production by human CLL 

cells. Table 5.1 summarizes the properties of the CLL patients’ donor pool. 



 

 88 
 

Peripheral blood mononuclear cells (PBMCs) from CLL patients produced a 

significant amount of IL-10 only after LPS stimulation or BCR cross-linking in 

comparison to normal human PBMCs, with very little constitutive production 

(Figure 5.5A). BCR cross-linking with anti-IgM leads to increased IL-10 

production by human CLL cells in a dose dependent manner (Figure 5.5B). 

There was a significant amount of IL-10 in the plasma of CLL patients while it 

was nearly undetectable in healthy age matched individuals, though there was 

some variability (Figure 5.5C). In addition, neutralization of LPS or anti-IgM 

induced-IL-10 did not affect the survival of human CLL cells (Figure 5.5D), 

consistent with data seen using mouse CLL cells (Figure 3.3). Inhibition of Src, 

Syk family kinases or Btk led to the complete abrogation of anti-IgM induced IL-

10 production by human CLL cells (Figure 5.5E). Similar to mouse CLL cells, 

inhibition of BCR signaling in human CLL reduced ERK1/2 activation, Sp1 activity 

and IL-10 levels (Figure 5.5F). 
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Figure 5.1: The role of BCR signaling in IL-10 production by Eμ-TCL1 CLL 

cells 

A) Normal peritoneal B-1 cells (Left) and Eμ-TCL1 CLL cells (Right) were 

cultured with or without αIgM (25μg/ml) for 24 hours. Supernatants were 

collected and IL-10 levels were measured by ELISA. Each line represents a 

single clone of Eμ-TCL1 CLL cells (clone=cells from one individual Eμ-TCL1 

mouse) B) Eμ-TCL1 CLL cells were cultured without (top) or with (bottom) αIgM 

(25μg/ml) and then treated with indicated doses of dasatinib (A SRC family 

kinase inhibitor), Syk inhibitor IV (BAY 61-3606) or Btk inhibitor (Ibrutinib) for 24 

hours. Supernatants were collected and IL-10 levels are measured by ELISA. 

Values are normalized to the no drug control and set to 100%. Values represent 

mean ± SD of triplicate cultures. Results are representative of 4-8 experiments. 

C) MEC1 cells were cultured with inhibitors indicated as in Panel B and 

supernatants were collected after 24 hours. IL-10 levels were measured by 

ELISA. Values represent mean ± SD of triplicate cultures. Results are 

representative of two experiments. D) Western blot showing a reduction in Lyn in 

MEC1 cells expressing Lyn specific shRNA. Lyn protein values were normalized 

to β-actin (Left). IL-10 levels were measured in the supernatant of MEC1 cells 

expressing either control shRNA or Lyn shRNA (Right). E) IL-10 mRNA levels 

are determined by qRT-PCR in Eμ-TCL1 CLL cells treated with or without αIgM 

(25μg/ml) in the presence or absence of Syk inhibitor IV (5μM) for time points 

indicated. IL-10 mRNA expression was normalized to mouse 18S RNA. Values 
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represent mean ± SD of triplicate determinations. *p< 0.05. Results are 

representative of 2-4 experiments. 
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Figure 5.2: Syk inhibition leads to decrease in the number of IL-10 

producing CLL cells 

Eμ-TCL1 CLL cells were cultured with or without Syk inhibitor IV (2μM) for 24 

hours. Then stimulated with PMA (20ng/ml) and Ionomycin (1μg/ml) for 4 hours 

and intracellular IL-10 staining was performed. A representative IL-10 histogram 

overlay of unstained, untreated, and Syk inhibitor treated samples after gating on 

viable CD5+ CD19+ cells is shown on the top. The bar graph represents an 

average of IL-10 intracellular staining of 3 Eμ-TCL1 mice CLL cells with or 

without Syk inhibition (bottom). Values represent mean ± SEM. 
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Figure 5.3A 
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Figure 5.3: IL-10 production by Eμ-TCL1 CLL cells is dependent on ERK1/2 

MAPK and the transcription factor Sp1 but not on p38MAPK or STAT3 

A) Eμ-TCL1 CLL cells were treated with 5μM of Syk inhibitor IV for indicated time 

periods. Levels of p-Syk, total Syk, p-P38 MAPK, total P38 MAPK, p-ERK1/2, 

total ERK1/2, p-STAT3, and total STAT3 were quantified by Western blot. 

Phospho-protein levels were normalized to total protein. Total protein levels were 

normalized to β-actin. Numbers indicate quantification of band intensity by 

ImageJ software. Results are representative of three experiments. B) mRNA 

levels of transcripts indicted were quantified by qRT-PCR after treatment of Eμ-

TCL1 CLL cells with αIgM (25μg/ml) for 1, 4, or 6 hours. Fold change was 

normalized to the no-treatment group (dashed line). Values represent mean ± SD 

of triplicate determinations. C) Sp1 mRNA levels were quantified by qRT-PCR 

after treatment of Eμ-TCL1 CLL cells with αIgM (25μg/ml) or Syk inhibitor IV 

(5μM) for 1, 4, or 6 hours. Fold change was normalized to the no-treatment 

group. Values represent mean ± SD of triplicate determinations. D) Eμ-TCL1 CLL 

cells were treated with various doses of mithramycin A, an Sp1 inhibitor for 24 

hours. Culture supernatants were collected and IL-10 was measured by ELISA. 

E) Western blot analysis of IL-10 protein levels in CLL cells after treatment with 

mithramycin A (5μM) for indicated time points. GAPDH was used for loading 

control. F) ChIP was carried out as described in the methods. Antibodies against 

Sp1 and IgG (control) were used for Chromatin IP. qRT-PCR was performed on 

the ChIP DNA product using primers specific for the consensus Sp1 binding site 

sequence in the IL-10 promoter. Data is calculated using the Fold Enrichment 
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Method. This normalization method is relative to the no-antibody control (2% 

input sample). *p< 0.05, ***p<0.001 
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Figure 5.4: ERK1/2 inhibition leads to Sp1 degradation and inhibition of IL-

10 production in CLL cells 

A) Eμ-TCL1 CLL cells were cultured with the ERK1/2 inhibitor (SCH772984) and 

supernatants were collected after 24 hours. IL-10 levels were measured by 

ELISA. Values represent mean ± SD of triplicate cultures. B) Eμ-TCL1 CLL cells 

were treated with ERK1/2 inhibitor (2μM) for indicated time points. Levels of p-

ERK1/2, total ERK1, p-STAT3, total STAT3 and Sp1 were quantified by Western 

blot analysis. β-actin was used for loading control. Results are representative of 

three experiments. C) Sp1 mRNA levels were quantified by qRT-PCR after 

treatment of Eμ-TCL1 CLL cells with ERK1/2 inhibitor (2μM) for 1, 4, or 6 hours. 

Fold change was normalized to the no-treatment group. Values represent mean 

± SD of triplicate determinations. ***p<0.001 
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Patient# Age Sex 
WBC 
(K/µL) 

%CD5+ 
CD19+ 

CD38 
Status 

Treatment 
IGHV 

mutation 
1 82 F 20.7 90.54 Negative No M-CLL 
2 56 F  ND 82.35 ND No U-CLL 
3 36 M 38.3 88.08 Negative No M-CLL 
4 46 M 41 44.01 Negative No M-CLL 
5 52 M 15.2 81.37 ND Yes M-CLL 
6 69 M 29 83.88 Positive No M-CLL 
7 57 M 40 50.33 ND Yes U-CLL 
8 62 F 83.7 10.55 ND No U-CLL 
9 69 M 30.2 95.71 ND No M-CLL 

10 70 M 17.4 80.45 ND No M-CLL 
11 63 M 34.8 96.97 ND No M-CLL 
12 53 M 12.1 84.73 Positive Yes U-CLL 
13 55 M 6 13.64 ND Yes M-CLL 
14 76 F 36.6 37.23 ND Yes M-CLL 
15 80 M 142 97.73 ND Yes U-CLL 

Table 5.1: Properties of the CLL patients’ donor pool 

ND; Not determined 
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Figure 5.5A 
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Figure 5.5: Human CLL cells share similar mechanisms to mouse CLL cells 

for IL-10 production  

A) Human CLL cells obtained from peripheral blood of CLL patients were 

cultured and stimulated with LPS (5μg/ml) or αIgM (25μg/ml) for 24 hours. IL-10 

was measured in the supernatant of the cells by ELISA. Values represent mean 

± SD of triplicate cultures. B) Human CLL cells were cultured and stimulated with 

increasing doses of αIgM for 24 hours. IL-10 was measured in the supernatant of 

the cells by ELISA. The graph represents data from 2 human CLL samples. 

Values represent mean ± SD of triplicate cultures. C) Human CLL patients (n=16) 

as well as normal donors (n=28) plasma levels of IL-10 were measured by ELISA 

(n=16). D) Human CLL cells were cultured with αIL-10 or αIL-10R antibodies with 

or without LPS (5μg/ml) or anti-IgM (25μg/ml) for 48 hours. Survival of CLL cells 

were measured by MTT. Values represent mean ± SD of triplicate cultures. NS; 

not significant. E) Human CLL cells stimulated with αIgM (25μg/ml) and treated 

with or without Btk inhibitor, Syk inhibitor or dasatinib for 24 hours. Supernatants 

were collected and IL-10 levels were measured by ELISA. Values represent 

mean ± SD of triplicate cultures. F) Human CLL cells were treated with Syk 

inhibitor (5μM) for indicated time points. Levels of p-ERK1/2, total ERK1, Sp1 

and IL-10 were quantified by Western blot analysis. β-actin was used for loading 

control. Results were reproducible with 3 CLL patient samples.  
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Summary 

 In this chapter we demonstrated a novel role of BCR signaling in the 

constitutive production of IL-10. Since BCR signaling is important in CLL 

subtypes such as U-CLL, BCR-induced IL-10 could be a factor in their more 

aggressive nature. We found that inhibition of the major kinases in the BCR 

signaling pathway including Src, Syk and Btk leads to the significant reduction of 

IL-10 production by Eμ-TCL1 CLL cells. We also discovered that inhibition of 

BCR signaling led to a decrease in ERK1/2 MAP kinase activation, which is 

consistent with a role for ERK1/2 in IL-10 production seen in T cells [84]. 

However, BCR signaling mediated IL-10 production was STAT3 independent. In 

addition, we were able to reveal a novel role for the transcription factor Sp1 in 

BCR signaling dependent IL-10 production by Eμ-TCL1 CLL cells. Sp1 was 

found to bind to the IL-10 promoter in Eμ-TCL1 cells and inhibition of Sp1 led to a 

decrease in IL-10 production in a dose dependent manner. We were also able to 

link the activation of ERK1/2 to Sp1 activity, which is consistent with regulation of 

Sp1 by ERK1/2 in other cell types [130, 131]. We found that ERK1/2 inhibition 

leads to Sp1 degradation and inhibition of IL-10 production in both murine and 

human CLL cells. Many studies have indicated that phosphorylation, acetylation, 

sumoylation, ubiquitination and glycosylation are among the posttranslational 

modifications that influence the transcription activity and stability of Sp1 [132]. 

For example, recent studies indicated that c-Jun NH(2)-terminal kinase 1 (JNK1) 

phosphorylates Sp1 at Thr278 and Thr739, protecting Sp1 from ubiquitin-

dependent degradation and increase its stability during mitosis in tumor cells 
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lines [133]. Here since we demonstrate that ERK1/2 inhibition leads to 

degradation of both RNA and protein levels of Sp1, we hypothesize that ERK1/2 

might be controlling Sp1 RNA stability in CLL cells. To test this hypothesis, we 

will utilize luciferase assay using a plasmid expressing the promoter for Sp1. 

After transfecting the plasmid in our CLL cells, we will use the ERK1/2 inhibitor to 

determine its effects on Sp1 transcription. The regulation of IL-10 production by 

mouse CLL cells was found to be similar in human CLL cells. Despite the fact 

that there are significantly higher levels of plasma IL-10 in human CLL patients 

compared to healthy donors, PBMCs from human CLL patients do not 

constitutively produce IL-10. However, treatment with anti-IgM leads to an 

increase in IL-10 production by human CLL cells, which is completely abrogated 

by the inhibition of kinases in the BCR signaling pathway. As seen in the murine 

system B cells from healthy human patients, which are likely to be B-2 cell 

population produce very little IL-10 even after stimulation by BCR cross-linking. 

Moreover, similar to mouse CLL cells, inhibition of BCR signaling in human CLL 

reduced ERK1/2 activation, Sp1 activity and IL-10 levels.  
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CHAPTER 6 

Discussion 

 Immune cells and humoral factors comprise two intertwined systems, 

innate and acquired. Immune cells scan the existence of any molecule that is 

considered to be nonself, which include nonself antigens presented by cancer 

cells. A specific immune response is generated, which results in the proliferation 

of antigen-specific lymphocytes. Immunity is considered acquired when antigen 

specific antibodies and T cells are upregulated. Both innate and acquired 

immune systems interact to initiate antigenic responses against tumors. A key 

driver of anti-tumor immunity is T cell. Many important discoveries had led to an 

increase in our understanding of the role of T cells in cancer. T cells are either 

cytotoxic (CD8+) or helper (CD4+). CD8+ T cells react with peptide antigens that 

have been digested from endogenous proteins and presented by MHC molecules 

on the surface of cells. CD8+ T cells then destroy the cell by perforating its 

membrane and by delivering apoptosis triggering molecules. The CD8+ T cell will 

move to another cell expressing the same MHC-peptide complex and destroys it 

as well. Ideally, CD8+ T cells create a very specific and robust response against 

tumor cells. Cytotoxic T cells are considered to be essential effectors of the cell-

mediated immune response. The ability to identify and destroy tumors as a 

central part of the immune system function is defined as the immune surveillance 

theory, which was put forward in the 1960s [134]. Later on, the theory received 

major doubts as a study demonstrated no increase in tumor incidence in athymic 

nude mice [135]. However, extensive work in the last couple of decades has 
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shown that athymic nude mice were not necessarily an appropriate model for 

studying immune surveillance due to the fact that nude mice do not completely 

lack functional T cells. On the other hand, the use of genetically modified mice 

generating defined and stable immune defects has fully supported the theory of 

surveillance. For example, mice with genetic alterations leading to deficiencies in 

B and T cells are more prone to spontaneous and induced carcinogenesis than 

wild type mice [136]. In addition, patients with acquired immune deficiencies such 

as acquired immune deficiency syndrome (AIDS) and post transplant immune 

suppression display a dramatic increase in the incidence of several tumor types, 

including lymphoid tumors, lung cancer and tumors related to viral infections 

[137]. Immune surveillance mechanisms are ideal for limiting cancer 

development; unfortunately, they are not completely efficient. Tumors that 

eventually arise are typically poorly or not immunogenic [138]. Lately, it has been 

become evident that a tumor can develop many defense mechanisms an 

immune attack. The ability to evade the immune response is a major hallmark of 

cancer [139].  

 Now, it is well established that the development of cancer is associated 

with alterations in the number and function of immune cells in the periphery and 

especially at the sites of tumor progression. In this dissertation work, I studied B 

cell chronic lymphocytic leukemia, which is a disease caused by a clonal 

expansion of small, mature B lymphocytes. Although it is often detected as a 

consequence of a lymphocytosis in otherwise asymptomatic patients, patients 

with more advanced disease can exhibit a variety of symptoms including weight 
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loss, sweats, lymphadenopathy, splenomegaly, and bone marrow failure [2]. A 

major feature of CLL is that patients are susceptible to recurrent infections, which 

are a major cause of morbidity and mortality in this disease [13, 14]. The goal of 

this study was to further investigate the underlying reasons for the 

immunosuppression seen in CLL patients as well as to identify mechanisms that 

could be used to enhance immune responses against CLL. 

(6a) Immunosuppression in chronic lymphocytic leukemia 

 The immune deficiency seen in CLL is quite varied, resulting in increased 

susceptibility to bacterial, viral and fungal infections and failure to mount an 

effective antitumor immune response [13, 14]. Nevertheless, one of the earliest 

observations of the immune system in CLL is an increase in the number of 

circulating T cells, which is primarily accounted for by an increased number of 

CD8+ T cells, resulting in a decreased CD4:CD8 ratio [46, 140, 141]. These T 

cells show diverse phenotypic and functional abnormalities. Phenotypically, they 

show an increase in CD57, CD69 and HLA-DR expression as well as a decrease 

in CD28 and CD62L expression, which suggest activation and a shift towards a 

differentiated effector-memory subtype [142, 143]. Other studies demonstrated 

oligoclonal expansions of both CD4+ and CD8+ T cells, specifically within the 

CD57+ subset [49, 144-146]. Interestingly, it has also been shown that T cells 

from CLL patients have specificity for cytomegalovirus (CMV), in which these 

CMV-specific T cells dominate the T cell repertoire in seropositive patients, 

particularly after chemotherapy [147, 148]. In spite of this, patient survival is 

reduced by almost 4 years in the CMV+ cohort. However, CMV+ CLL patients do 
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not exhibit symptoms of CMV-induced disease; the negative impact has been 

suggested to be due to CMV-specific T cell expansion constricting the overall T-

cell repertoire [149]. 

 Functionally, CD4+ and CD8+ T cells from CLL patients have been shown 

to secrete an increased amount of IL-4 [150]. IL-4 has been demonstrated to 

protect CLL B cells from apoptosis by upregulating the anti-apoptotic molecule 

Bcl-2 [151-153]. In addition, IL-4 producing CD8+ T cells from CLL patients show 

increased expression of CD30 [154]. The ligation of CD30L on the surface of CLL 

cells stimulates their production of TNF-α causing CLL cells to proliferate [154]. 

Also, binding to CD30L on the surface of CLL cells impairs isotype class 

switching and increases their sensitivity to FasL-mediated cell death [155]. 

Furthermore, expansion of CD4+CD25+ regulatory T cells (Tregs) may contribute 

to the immune defects in CLL. Number of Tregs is increased in CLL, mostly in 

patients with advanced disease [112, 156, 157]. Higher frequencies of Tregs have 

been shown to correlate with decreased T cell responses against viral and tumor 

antigens [112]. Tregs are also shown to decrease cellular immunity by soluble IL-2 

receptor (CD25) secretion, depriving T effector cells of IL-2 and therefore 

inhibiting anti-tumor T cell responses [158]. 

 Further functional defects in T cells from patients with CLL have been 

reported. A global gene expression profiling demonstrated that T cells from 

patients with CLL show a number of differentially expressed genes when 

compared with age-matched healthy donor T cells [50]. These altered genes 

were involved in cell differentiation and cytoskeletal formation in CD4+ T cells, 
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and cytoskeletal organization, vesicle trafficking and cytotoxicity pathways in 

CD8+ T cells [50]. Interestingly, these alterations in cytoskeletal formation 

pathways could be induced in healthy allogeneic T cells by co-culturing them with 

CLL cells, in a contact dependent manner [50]. In addition, these changes in the 

expression of cytoskeletal genes translated into a functional defect in actin 

polymerization, which caused the T cells from CLL patients to exhibit a defective 

immunologic synapse formation with antigen presenting cells [51]. These gene 

changes were comparable between T cells from the Eμ-TCL1 mouse and those 

from human CLL patients [111]. This work also revealed that CLL cells are the 

main driver for the changes in T cells, as introduction of malignant CLL cells into 

young and healthy Eμ-TCL1 animals induced the gene expression and functional 

defects similar to those seen in mice with frank leukemia [111]. Subsequent 

studies also demonstrated that the Eμ-TCL1 mouse accurately mimics the shift 

towards an antigen-experienced phenotype observed in human CLL disease 

[110]. 

(6b) Strategies to reconstitute the immune response in CLL 

 Reconstituting the immune response in CLL, especially T cell response, 

can provide many benefits to patients. According to the immune surveillance 

hypothesis, in order to present a clinically detectable disease, CLL cells must 

have evolved strategies for suppressing the immune system [138]. If we are able 

to restore the immune response to CLL, patients can have durable clinical 

responses. Also, T cells are known to provide help to B cells as part of their 

normal healthy function. They stimulate B cells to proliferate, induce B cell 
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antibody class switching and promote plasma cell differentiation [159]. In CLL, 

there is evidence that T cells have been skewed to provide help for the malignant 

B cells. Successful immune reconstitution should reduce the availability of T cell 

help to CLL, which could possibly lead to starvation of the CLL cells and 

apoptosis. Finally, as mentioned before infections are considered to be the 

leading cause of death in CLL. Therefore, immune reconstitution would help 

patients by enabling them to fight infections more effectively and possibly 

counteract the immune suppression induced by both the disease and current 

therapies.  

 In this dissertation work, I investigated the mechanisms underlying the 

immunosuppression induced by CLL as well as possible targets for the 

reconstitution of the immune response in CLL. During the course of my studies, I 

made the observation that splenic cells isolated from our CLL model, the Eμ-

TCL1 mouse, constitutively secreted IL-10. IL-10 is a well-known 

immunosuppressive cytokine, which has been shown to induce its effects on a 

number of immune cells including suppression of T cells. Initially, I found that 

neutralization of IL-10 using anti-IL-10 antibodies or anti-IL-10R antibody did not 

affect the survival or proliferation of the CLL cells in vitro despite the fact that IL-

10 receptor appears to be functional in CLL cells. On the other hand, I found that 

engraftment of CLL cells in comparison to WT mice was significantly lower in IL-

10R KO mice. IL-10 is known to inhibit the function of macrophages and 

monocytes by limiting their production of proinflammatory cytokines and 

chemokines, which could affect localization and survival of CLL cells in 
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microenvironmental niches. When I tested this possibility in our model, I found no 

significant difference of CLL cell migration between WT and IL-10R KO mice. 

However, this does not completely eliminate the effects of IL-10 on cells found in 

the CLL microenvironment. In preliminary data from our lab, we found that the 

spleen serves as a niche for CLL cell growth. Splenomegaly determined by 

ultrasound imaging, was observed in the CLL adoptive transfer model before CLL 

cells were detected in the peripheral blood. Current studies are investigating the 

unique stromal cells present in the spleen and their role in CLL growth. With 

finding such cells, we can further study the effects IL-10 might have on them. 

 Subsequently, I investigated the possible effects of IL-10 on T cell 

responses using our in vivo adoptive transfer model of CLL. Interestingly before 

this study, there was no direct evidence for involvement of CLL-derived IL-10 in T 

cell dysfunction. Here for the first time, I show a clear link between CLL-derived 

IL-10 and dysfunction of T cell responses to CLL cells. I demonstrated that T 

cells isolated from IL-10R KO mice primed with CLL proliferate and differentiate 

better than T cells isolated from an environment where IL-10 signaling was intact. 

In addition, injection of primed T cells along with CLL cells into NSG mice 

significantly reduced incidence of the disease. T cells from IL-10R KO mice were 

better than wild type T cells at controlling CLL growth.  

 Previous reports have shown contradictory results regarding the 

requirement of IL-10 for the survival and proliferation of B-CLL cells. Fluckiger et 

al reported that exogenous IL-10 inhibited the proliferation of human CLL cells 

and decreased the survival of CLL cells in culture by inducing apoptosis [160]. 
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They demonstrated that the addition of exogenous IL-10 to human CLL cells in 

culture decreased the viable cell recovery of the samples tested [160]. In 

addition, after one week in culture, cells cultured with IL-10 were completely lost 

while those cultured without IL-10 survived [160]. Finally, flow cytometric 

analysis, DNA gel electrophoresis, and Giemsa staining all revealed that IL-10 

induced death of CLL cells by apoptosis [160]. This observation is similar to 

normal B-1 cell regulation by IL-10, as we have demonstrated before that normal 

B-1 cell derived IL-10 inhibits their proliferation responses to TLR stimulation or 

BCR ligation [54, 73]. On the contrary, Kitabayashi et al reported that IL-10 

enhanced the survival of CLL cells in a dose dependent manner by preventing 

the apoptotic cell death of CLL cells [161]. This was also seen in a study, where 

IL-10 was required for the growth of a malignant B-1 cell clone, LNC, isolated 

from NZB mice and adapted for in vitro culture [162]. Although LNC was of B-1 

cell origin, it does not represent CLL, as LNC but not Eμ-TCL1 cells or human 

CLL cells undergo extensive proliferation in vitro. In my study both mouse and 

human CLL cells appear to be unique in not responding directly to IL10-mediated 

suppressive effects in vitro but that IL-10 affects CLL growth indirectly by 

suppressing anti-CLL T cells. 

(6c) Multiple immunosuppression mechanisms in CLL  

 The question then remains of why T cells in the de novo CLL disease do 

not completely control disease development. T cells isolated from CLL patients 

have been found to have higher expression of checkpoint molecules such as 

cytotoxic T-lymphocyte-associated protein- 4 (CTLA-4) and programmed cell 
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death protein-1 (PD-1) [163, 164]. This possibility of multiple pathways of 

immunosuppression raises the need for combination therapy to target multiple 

modulators of immune suppression. For example, the use of anti-IL-10 and 

checkpoint inhibitors should be considered, however, this could only be useful in 

tumors that produce IL-10 such as CLL and other B-lymphomas known for their 

IL-10 production. This also alludes to the fact that careful investigation of 

changes due to immunotherapy drugs such as changes in the expression pattern 

of cytokines, chemokines, tumor antigens, and other immune-related factors 

should be considered as they could provide answers to some of the 

compensatory immunosuppressive mechanisms that could be targeted by 

combination therapy. Indeed, future studies need to investigate other cytokines 

produce by CLL cells and their role in either CLL growth or immune responses to 

CLL. Surprisingly, there are only few studies that explore cytokines and 

chemokines produced by CLL cells themselves. Notably, the production of IL-6 

has been investigated in the context of CLL. One study examined the correlation 

between serum IL-6 and IL-10 levels and outcome in CLL [165]. The levels of IL-

6 and IL-10 were higher in CLL patients compared to healthy individuals [165]. 

They also found that cytokine levels correlated with clinical features and survival 

[165]. Similar to the inconsistent results found in literature about the role of IL-10 

in CLL growth, IL-6 shares the same problem. In an opposing study, authors 

demonstrated that the addition of recombinant human IL-6 significantly 

decreased the TNF-induced CLL growth [166]. Therefore according to this study, 

IL-6 is not a growth stimulatory factor but an effective inhibitor of the TNF-
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induced proliferation of the leukemic B-CLL cells [166]. Another cytokine 

produced by CLL cells, which is worth noting, is TGF-β. CLL B cells have been 

found to overexpress TGF-β, in which it functions as an autocrine growth inhibitor 

possibly accounting for the reduced proliferative responses of these leukemic 

cells to different stimuli, such as anti-IgM and anti-CD40 stimulation [53]. 

(6d) T cell adoptive transfer for the therapy of CLL 

 As seen from data in chapter 4, the transfer of primed T cells in 

combination with CLL cells into immunodeficient mice significantly delayed CLL 

disease progression, whereas T cells from IL-10R KO mice were able to 

completely abrogate disease. In fact, NOG mice injected with a ratio of 1 T cell 

(from primed IL-10R KO mice) to 16 CLL cells showed no sign of CLL even after 

150 days post injection, showing promise for long-term effectiveness. 

Interestingly, CD8+ T cells were sufficient in delaying CLL disease development 

and CD8+ T cells isolated from IL-10R KO primed with CLL were significantly 

better at controlling CLL growth than CD8+ T cells isolated from WT mice. Re-

challenging experiments will be done in the future to investigate if memory T cells 

are still present in these mice. This is such an important observation, as the idea 

of T cell adoptive transfer in treating a number of cancers has been a hot topic of 

immunotherapy in the recent years. Specifically, chimeric antigen receptor (CAR) 

T cell therapy has been an interesting area of investigation. It is the adoptive 

transfer of T cells with specificity to tumor antigens. There are two main 

strategies for generating tumor-specific T cells. The first involves gene transfer of 

TCRs with known specificity into autologous or allogeneic T cells, which are then 
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expanded in vitro and infused into patients [167]. This approach has seen some 

success in melanoma and in the use of T cells specific to Epstein-Barr virus to 

treat posttransplant lymphoproliferative disorders [168-170]. The challenge with 

this approach is the fact that recognition of tumor antigens is MHC-restricted, so 

the use of these T cells must be individualized to each patient according to their 

MHC type. Also, with this approach there is a risk that a subunit of the transgenic 

TCR could associate with an endogenous TCR, which leads to changing the 

specificity of the T cell possibly leading to autoimmunity. The second strategy 

uses an antibody-derived antigen binding part, usually a single chain variable 

fragment, fused with an internal signaling domain such as CD3ζ to form a 

chimeric antigen receptor or CAR [171, 172]. This strategy eliminates MHC 

restriction, enabling the same CAR to be used in different patients. In addition, 

the use of an antibody receptor allows the potential targets to include a variety of 

surface proteins, sugars and lipids [172]. Nevertheless, the choice of these 

targets for CARs must be selected carefully in which the antigen is not also 

expressed on normal nonmalignant tissues [172]. In the context of CLL, a 

number of targets have the potential to be used for CAR development; those 

include CD19, CD20, CD23 and receptor tyrosine kinase-like orphan receptor 1 

(ROR1). CLL B cells express high levels of CD19 and relatively reduced 

expression of CD20. However, these molecules are also expressed by normal B 

cells, so CAR T cells targeting them will also eliminate normal B cells, causing 

impaired humoral immunity worsening the immunodeficiency already seen in CLL 

patients [173]. Anti-ROR1 CAR CD8+ T cells have been successfully generated 
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from patients with CLL [174]. ROR1 has the advantage of being selectively 

expressed by malignant B cells, although it is also expressed by undifferentiated 

embryonic stem cells and in adipose tissue at low levels [174]. Likewise, anti-

CD23 CAR T cells generated from CLL patients have shown cytotoxicity against 

autologous and allogeneic CLL cells as well as in vivo antitumor effect in a 

xenograft murine model [175]. Currently, there are a number of phase 1 and 2 

clinical trials utilizing anti-CD19 CAR T cells for the treatment of B cell 

malignancies [172]. In preclinical studies, anti-CD19 CAR T cells were able to 

effectively lyse a broad panel of human CD19+ tumor cell lines and primary 

malignant B cells, in addition to demonstrating anti-lymphoma effects in a murine 

model [176, 177]. In a specific clinical trial, a group treated eight patients with 

relapsed CLL in two cohorts [178]. The first cohort had three patients who were 

treated without cyclophosphamide conditioning and showed no response [178]. 

The second cohort was treated with cyclophosphamide conditioning with a 

reduced dose of T cells. Three of these patients showed disease stabilization or 

lymph node responses [178]. In addition, this cohort showed some persistence of 

the anti-CD19 CAR T cells, which were detectable by immunohistochemistry in 

bone marrow up to 2 months after infusion [178]. This trial has pointed out the 

importance of the conditioning regimen in promoting T cell engraftment and 

activation. For instance, it may be important to eliminate Tregs, which are known 

to be expanded in CLL as well as eliminating other cell populations such as 

immature dendritic cells and any cell populations that could compete for the 

same survival and stimulatory cytokines as those T cells [156, 173]. Adoptive 
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transfer of anti-CD19 CAR T cells is a promising new approach for treating CLL. 

However, future studies will need to further identify CLL antigens that are 

recognized by T cells, which could possibly be utilized in developing new CAR T 

cell therapy for CLL. A recent study has shown promise in this area in which they 

were able to analyze the landscape of naturally presented HLA class I and II 

ligands of primary CLL, in which a novel category of tumor-associated T-cell 

antigens were identified [179]. Specific expression of these HLA ligands 

exclusively in CLL patients correlated with the frequencies of immune recognition 

by patient T cells [179]. In addition, patients displaying immune responses to 

multiple antigens exhibited better survival than those with responses to one or 

fewer antigens [179]. 

(6e) Molecular Mechanisms involved in IL-10 production 

 The fact that IL-10 was found to inhibit T cell responses to CLL makes it 

an attractive target for enhancement of this anti-CLL immune response as seen 

in our mouse model, where the lack of IL-10 signaling caused an increase in T 

cell activity and a reduction in engraftment of CLL. Unfortunately, therapy using 

anti-IL-10 or anti-IL-10R antibodies has not been successful in human patients 

[180]. This is due to the fact that IL-10 plays such an important role in regulating 

a wide range of immune cells. Manipulation of IL-10 must be balanced carefully 

to enhance anti-tumor responses but with the need to minimize host tissue 

damage. Importantly, the pleiotropic effect of IL-10 on different cell-types must 

also be considered, as the function of various immune cells may be up or down 

regulated simultaneously. Therefore, I aimed to understand the specific 
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molecular events that regulate the production of IL-10, which can help in 

designing new strategies of immune intervention. A previous study has found that 

BAFF stimulation via TACI receptor enhanced IL-10 production by leukemic B 

cells in CLL patients and Eμ-TCL1 mice [96]. Another study demonstrated an 

epigenetic control of IL-10 production, in which differential IL-10 gene methylation 

was responsible for the variability of IL-10 production by human CLL cells [97]. 

My studies demonstrated a novel role of BCR signaling in the constitutive 

production of IL-10. Since BCR signaling is important in CLL subtypes such as U-

CLL, BCR-induced IL-10 could be a factor in their more aggressive nature.  I 

found that inhibition of BCR signaling led to a decrease in ERK1/2 MAP kinase 

activation, which is consistent with a role for ERK1/2 in IL-10 production seen in 

T cells [84]. BCR signaling mediated IL-10 production was STAT3 independent. 

Moreover, a novel role for the transcription factor Sp1 in BCR signaling 

dependent IL-10 production by CLL cells is described here. Sp1 bound to the IL-

10 promoter in CLL cells and inhibition of Sp1 led to a decrease in IL-10 

production in a dose dependent manner. I was also able to link the activation of 

ERK1/2 to Sp1 activity, which is consistent with regulation of Sp1 by ERK1/2 in 

other cell types [131, 181]. My results introduce a new rationale to therapeutics 

targeting the ERK-Sp1 pathway. 

 In this study I utilized Mithramycin A as the Sp1 inhibitor [128]. 

Mithramycin A is an antitumor compound produced by Streptomyces argillaceus 

that has been used for the treatment of several types of tumors [128]. 

Mithramycin A is a DNA binding agent with relative specificity for Sp1 [182]. Its 
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mode of action involves its interaction in a noncovalent way with GC-rich DNA 

regions located in the minor groove of DNA [182]. By doing so, it prevents Sp1 

from binding to a variety of promoters [182]. It was discovered in 1961 and 

approved for use as anticancer drug in 1970 [182]. However, despite showing 

strong response rates, it has not been in use in recent years due to its adverse 

effects. Mithramycin A has a limited therapeutic window because active doses 

cause toxic effects [182]. Fortunately, the development of a number of 

derivatives of Mithramycin A is underway [182, 183]. So, future studies need to 

investigate some of these derivatives and their effects on IL-10 production, in 

which they could be possibly utilized in animal experiments as well as human 

clinical trials with limited side effects. 

 In addition to development of new therapeutic targets for IL-10 production, 

studies need to be performed to study the effects of currently used therapies in 

CLL. For example, BCR signaling inhibitors, such as ibrutinib have been FDA 

approved and widely used in the treatment of CLL. Ibrutinib was found to 

enhance antitumor immune responses induced by intratumoral injection of CpG 

in a mouse lymphoma model as well as to enhance generation of CAR T-cells for 

adoptive immunotherapy [184, 185]. My finding that ibrutinib inhibits IL-10 

production by CLL cells provides a potential mechanism by which ibrutinib 

treatment is enhancing anti-tumor immunity. This mechanism is likely to extend 

to other BCR signaling inhibitors such as fostamatinib and idelalisib.  
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Summary and future directions 

 The study presented here demonstrates that CLL derived IL-10 promotes 

immunosuppression utilizing BCR signaling, a key mechanism for the survival of 

B cells, for its regulation (Figure 6.1). I also found that CLL derived IL-10 inhibits 

T cell responses to CLL allowing for the rapid growth of CLL (Figure 6.1). Hence 

the inhibition of IL-10 pathway could be used to restore anti-tumor immunity. For 

future studies, several ideas need to be explored: 

 

1. T cells had a robust effect in controlling the development of CLL cells in 

our adoptive transfer mouse model, however, T cells in the de novo CLL 

disease do not completely control disease development. There is a higher 

expression of checkpoint molecules such as PD-1 and CTLA-4 on T cells 

isolated from CLL patients. Therefore, the use of anti-IL-10 and checkpoint 

inhibitors could be useful in tumors that produce IL-10 such as CLL. 

2. Further investigation of other immunosuppressive mechanisms in CLL 

should be done, as it could provide answers to some of the compensatory 

immunosuppressive mechanisms that could be targeted by combination 

therapy. 

3. During my T cell adoptive transfer experiments; T cells were able to 

completely prevent the development of CLL in a number of mice. Re-

challenging experiments will help investigate if memory T cells are present 

in these mice.  
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4. Although I was able to observe anti-CLL tumor response by T cells, future 

studies need to explore the identity of these T cells. Expansion of specific 

type of T cells can allow us to find out the CLL antigens that are 

recognized by these T cells and therefore generate new CAR T cells for 

the treatment of CLL. 

5. BCR signaling played a significant role in the production of IL-10 by CLL 

cells via the ERK1/2-Sp1 pathway. Another potential for combination 

therapy is the use of Sp1 inhibitors with current approved therapy to test 

the synergistic or additive effects it might have on disease development.      
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Figure 6.1: Mechanistic model of IL-10 production by CLL cells and IL-10 

effects on T cell responses 

BCR signaling controls IL-10 production by activation of the Syk-ERK1/2-Sp1 

signaling pathway. IL-10 inhibits IFN-γ production by T cells leading to the 

inhibition of anti-tumor immunity and the rapid growth of CLL cells. 
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 APPENDIX A 

List of Abbreviations 

NHLs - Non-Hodgkins lymphomas 

CLL - Cell Chronic Lymphocytic Leukemia 

DLBCL – diffuse large B-cell lymphoma 

BCR - B cell receptor 

IGVH - immunoglobulin variable heavy chain 

U-CLL - Unmutated IGHV CLL 

M-CLL - Mutated IGHV CLL 

BTK - Bruton tyrosine kinase 

PI3K - Phosphoinositide 3-kinase 

BCL-2 - B-cell lymphoma 2 

GC - Germinal center 

MZ - Marginal Zone 

AMyIIA - Non-muscle myosin IIA 

IL-2 - Interleukin-2 

Th - T helper 

TNF- α - Tumor necrosis factor alpha 

PD-1 - Programmed death-1 

TGF- β - Transforming growth factor beta 

IL-10 - Interleukin-10 

LT-α - Lymphotoxin alpha 

IFN-γ - Interferon gamma 
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UC - Ulcerative colitis 

EAE - Experimental autoimmune encephalomyelitis 

Bregs - regulatory B cells 

MS - Multiple sclerosis 

DCs - Dendritic cells 

TLR - Toll like receptor 

CSIF - Cytokine synthesis inhibitory factor 

IL-10R - IL-10 receptor 

STAT3 - Signal transducer and activator of transcription 3 

ERK - Extracellular signal regulated kinase 

MYD88 - Myeloid differentiation primary-response protein 88 

TRIF - TIR-domain-containing adaptor protein inducing IFNβ 

NF-κB - Nuclear factor-κB 

DC-SIGN - DC-specific ICAM3-grabbing non-integrin 

Syk - Spleen tyrosine kinase 

NOD2 - Nucleotide-binding oligomerization domain 2 

TCR - T cell receptor 

FOXP3 - Forkhead box P3 

TReg - T regulatory 

Sp1 - Specific protein 1 

C/EBPβ - CCAAT/enhancer binding protein-β 

IRF1 - IFN-regulatory factor 1 

BAFF - B-cell-activating factor of the tumor necrosis factor family 
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TACI - Transmembrane activator and cyclophilin ligand interactor 

TCL1 - T-cell leukemia oncogene 1 

IL-10R KO - B6.129S2-Il10rbtm1Agt/J 

NOG - NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac 

IACUC - Institutional Animal Care and Use Committee 

BCS - Body condition score 

FBS - Fetal Bovine Serum  

IMDM - Iscove's Modified Dulbecco's Medium 

MTT - Thiazolyl Blue Tetrazolium Bromide 

PBS - Phosphate buffered saline 

CFSE - Carboxyfluorescein succinimidyl ester 

HBSS - Hank’s buffered salt solution 

ELISA - Enzyme-linked immunosorbent assay 

OD - Optical Density 

BCA - Bicinchoninic Acid 

SDS - Sodium dodecyl sulfate 

GAPDH - Glyceraldehyde 3-phosphate dehydrogenase 

qRT-PCR - Quantitative Real-Time PCR 

shRNA - Short hairpin RNA 

CHIP - Chromatin Immunoprecipitation 

H&E - hematoxylin and eosin 

WT - Wild type 

NK - Natural killer 



 

 128 
 

PB - Peripheral blood 

BM - Bone marrow 

PC - Peritoneal cavity 

PBMCs - Peripheral blood mononuclear cells 

JNK1 - c-Jun NH(2)-terminal kinase 1 

AIDS - acquired immune deficiency syndrome 

CMV - cytomegalovirus 

CTLA-4 cytotoxic T-lymphocyte-associated protein- 4 

CAR - chimeric antigen receptor 

ROR-1 - receptor tyrosine kinase-like orphan receptor 1 
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