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Executive Summary 

 
Preventing bridge corrosion is one of the most challenging maintenance issues state transportation agencies 
face. Corrosion of reinforcing steel is problematic because it leads to the spalling and deterioration of 
concrete cover. The corrosion of reinforced concrete bridges first emerged as a serious problem in the 
United States in the late-1960s and early-1970s after state and local transportation agencies increased their 
use of deicing salts to keep roads and bridges free of ice and snow during the winter months. Deicing salts 
and deicing chemicals are effective in keeping roads clear, however, they permeate the concrete of bridge 
decks, barrier walls, and foundations, and accelerate the corrosion of the reinforcing steel. Chloride 
penetration shortens bridge service lives and drives up expenses for agencies with already-tight budgets. 
The Kentucky Transportation Cabinet (KYTC) has increased its use of deicing chemicals in recent years. 
From 2004 to 2011, KYTC tripled the amount of deicing chemicals it applied to its roadways. Much of this 
increase came from expanding the use of liquid salts. Widespread use of deicing materials has increased 
the chloride levels of KYTC’s bridges. To identify the most effective strategies of inhibiting or mitigating 
bridge corrosion, the Cabinet asked Kentucky Transportation Center (KTC) researchers to identify current 
best construction and maintenance practices. To accomplish this goal, researchers investigated the use and 
performance of various reinforcing materials, supplementary cementitious materials (i.e., admixtures), and 
concrete sealers. Along with this literature review, KTC administered a survey to state transportation 
agencies around the United States focused on what strategies are currently used to prevent bridge corrosion.    
 
All steel eventually corrodes, but different types corrode at different rates. Since the 1970s, state 
transportation agencies have routinely turned to epoxy-coated reinforcing steel (ECR) as a cost-effective 
option for delaying the onset of corrosion, especially in severe environments. Most research studies confirm 
that ECR inhibits corrosion. Some researchers have questioned its durability, citing epoxy’s propensity to 
disbond after prolonged exposure to moisture. Over time, epoxies inevitably break down, and moist and 
humid environments can accelerate this process. Accordingly, ECR may not be the best option in these 
settings. Solid stainless steel is recommended if agencies want to attain a service life up to 100 years, but it 
is very costly and generally reserved for critical projects (e.g., interstate bridges). Other options, such as 
galvanized steel or stainless clad rebar, may enhance corrosion resistance, but they are not immune from 
problems. Small holidays (gaps) in the coatings and imperfectly sealed end caps facilitate the entry of 
chlorides and moisture, potentially accelerating corrosion. Chrome steels, because they are price 
competitive with black steel, appear promising, however, there are limited data on its field performance. 
Some agencies (e.g., Virginia) are opting for chrome steels over ECR. Fiber reinforced polymer reinforcing 
material eliminates corrosion, but testing has been limited. It is unclear if they will perform well under a 
variety of environmental conditions, or if degradation will be problematic.  
 
Supplementary cementitious materials are also used to inhibit corrosion. Admixtures reduce the 
permeability of concrete, improve concrete density, and increase the electrical resistivity of concrete — all 
of which delays the onset of corrosion. The most frequently used admixtures include fly ash, silica fume, 
ground granulated blast furnace slag, and calcium nitrite. Most of the studies in the literature review 
confirmed the benefits to using admixtures, as they limit the penetration of chlorides. One potential 
downside of using an admixture is the slight loss of compressive strength, although no studies indicated the 
loss of compressive strength would be sufficient to negatively impact bridge performance. Nonetheless, 
ongoing and future studies examining the utility of admixtures should be attentive to the issue of 
compressive strength and determine whether there are tradeoffs involved in their use. Transportation 



 

KTC Research Report Long-Term Corrosion Protection of Bridge Elements 8 

agencies interested in using admixtures should explore ternary concrete formulations that contain at least 
two admixtures in addition to cement because some research has indicated they outperform binary mixtures.   

Surface treatments (i.e., sealants) are organic and inorganic materials that are applied to deck surfaces to 
prevent the ingress of moisture and chloride. The most commonly used surface treatments are silanes and 
siloxanes. These have generally proven more effective than silicates and epoxies. Some research indicates 
that surface treatments reduce corrosion and the infiltration of contaminants, however, their performance is 
strongly tied to the environmental setting, concrete formulation, the condition and structure of concrete, 
and traffic levels. A positive correlation exists between the depth of sealant penetration and overall 
performance. Although some sealers may increase carbonation, this will not necessarily translate into more 
significant corrosion if excessive moisture is not present. Most sealers need to be reapplied every 5 to 20 
years. Transportation agencies should carefully weigh the costs and benefits of repeated applications to 
decide whether alternative methods of protection will be more cost-effective.   

The survey of state transportation agencies found that most continue to use ECR for many of its projects. 
Stainless steel reinforcement is most common on high-profile projects. Most agencies use high performance 
concrete for bridge construction, while cover thickness of 2.5 inches is most common. The use of sealants 
is widespread. The most popular are silanes and siloxanes, epoxies, and methacrylates. Agencies typically 
apply sealants during construction and maintenance activities, although there is more variability among 
agencies with respect to frequency of reapplication. While some agencies lack a fixed schedule, others 
reapply sealants at 4-10 year intervals. All but one agency applies crack sealants to bridge decks. The most 
frequently used crack sealants are methacrylate and epoxies. Approximately half the agencies use multiple 
methods to prevent or minimize corrosion. These agencies stated that different combinations of materials 
are used depending on the project context (e.g., frequency of deicing chemical use, traffic levels).    

Based on the literature review and analysis of practices used by other state transportation agencies, this 
study recommends the use of multiple corrosion-inhibition methods to defend against bridge corrosion. For 
the construction of new reinforced concrete structures, a multiple approach to corrosion resistance could 
prove highly beneficial. This approach blends high performance concrete, which establishes an effective 
barrier that limits the rates of chloride penetration and carbonation, with reinforcing bar materials that are 
more resistant to corrosion (e.g. MMFX® ChromX, or in more critical/severe applications stainless steel). 
As the survey of the literature indicated, there is disagreement over the effectiveness of various treatments. 
But researchers were practically unanimous in their endorsement of using a sufficient cover of high-quality 
concrete to slow the progression of corrosion. Other treatments are supplemental and cannot serve as a 
replacement for high-quality concrete. The findings lead to the following recommended actions for KYTC:  

• Develop specifications for high-performance concrete for use on bridge decks. 
• Continue to monitor the performance of current bridge decks that have been constructed with 

experimental reinforcing steel as well as conventional decks treated with protective sealants. 
• Evaluate corrosion activity of painted structural concrete. 
• Conduct further evaluations of sealant types and determine which work best with specific concretes. 
• Perform a cost-benefit analysis to evaluate the anticipated benefits of using various protection 

methods/treatments. 
• Identify and implement experimental maintenance activities related to sealing bridge decks/cracks. 
• Experiment with multiple corrosion-protection systems on newly constructed bridges and apply one or 

more of those routinely for new bridges and deck replacement projects. 
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Chapter 1 Introduction 
 
Preventing bridge corrosion is one of the most challenging maintenance issues state transportation agencies 
face. The corrosion of reinforced concrete bridges emerged as a serious problem in the late-1960s and early-
1970s after state and local transportation agencies increased their use of deicing salts to keep roads and 
bridges free of ice and snow during the winter months. Deicing salts and deicing chemicals are effective in 
keeping roads clear, however, they permeate the concrete of bridge decks, barrier walls, and foundations, 
and accelerate the corrosion of the reinforcing steel. Chloride penetration shortens bridge service lives and 
drives up expenses for agencies with already-tight budgets. Like many state transportation agencies, the 
Kentucky Transportation Cabinet (KYTC) has increased its use of deicing chemicals. From 2004 to 2011, 
the Cabinet tripled the quantity of deicing chemicals applied. Much of this increase came from ramping up 
the use of liquid salts. As the use of deicing materials has become more widespread and intense, chloride 
levels have increased in KYTC’s bridges. Higher chloride concentrations have and will continue to corrode 
reinforcing steel, which leads to the spalling of concrete cover.     
 
Given the expanding use of deicing chemicals, it is critical for KYTC and other state transportation agencies 
to develop and implement proactive strategies and building activities that delay the onset of corrosion in 
reinforced concrete bridges. There are numerous options available to mitigate corrosion and extend the 
service lives of bridges. The objective of this study is to discuss corrosion protection methods that have 
been used over the past 40 years, determine which have proven the most successful and are therefore the 
most promising, and make recommendations for Cabinet staff to consider when selecting materials and 
treatments for use in new construction, rehabilitation, and maintenance activities. The remainder of this 
first chapter addresses project objective and provides a high-level discussion of bridge corrosion, including 
a review of the processes which drive corrosion as well as the materials and protective treatments that have 
been devised to slow its onset and progression. Later chapters deal with reinforcing materials, concrete and 
follow-on treatments, covering both field and laboratory evaluations. We restrict our focus to different types 
of reinforcement (e.g., epoxy-coated reinforcing steel, stainless steel, galvanized steel), concrete admixtures 
(e.g., pozzolans such as fly ash and silica fume), concrete sealers (e.g., siloxanes and silanes), and multiple 
corrosion-inhibition systems (which combine two or more of the solutions listed — for example, epoxy-
coated rebar and admixtures). Previously, the Kentucky Transportation Center (KTC) investigated 
protecting reinforced concrete, other than bridge decks, with thin film coatings (Palle et al. 2005 and Meade 
et al. 2016) and penetrating sealers (Wells et al. 2014).  KTC is also investigating bridge deck waterproofing 
materials (e.g., membranes and impermeable asphalts) under a separate project, KYSPR 17-531 
Waterproofing Options for Bridge Decks. It is anticipated that work will be completed and reported on in 
2019. 
 
1.1 Project Objectives 
The objective of this research was to identify current industry practices and materials specified in bridge 
design and used in construction, maintenance, and rehabilitation activities to extend bridge service lives by 
cost effectively enhancing the corrosion resistance of reinforced concrete bridge elements.  
 
To achieve those goals, KTC researchers addressed the following tasks: 
 

1) Perform a literature search and summary of recent publications to identify current options/practices for 
improving corrosion resistance of concrete reinforcing materials, concrete materials, and deck maintenance 
practices. 

2) Perform a survey of DOTs to identify current uses of various types of concrete reinforcements/ 
costs/performance along with deck maintenance actions to prevent corrosion including costs/durability. 
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3) Conduct directed inquiries (by telephone) to researchers, material suppliers, construction companies, and 
DOT representatives to resolve conflicting information and elicit specific details not addressed in Tasks 1 
and 2. 

4) Prepare this report summarizing the results of Tasks 1-3 and develop recommendations for practices related 
to bridge design and maintenance.  
 
One of the challenges confronted during this study was making direct comparisons between different 
studies. This was problematic because of the large number of treatments that are used to mitigate corrosion 
as well as the varied methodologies used to evaluate them in the laboratory and field. For this reason, the 
goal of this report is to derive from the literature general rules of thumb that accurately characterize the 
performance of various corrosion mitigation techniques. Also compared are the first costs of different 
materials and treatments. In concert with the performance studies, they can help officials select appropriate, 
cost-effective options for future bridge projects. Life-cycle costs for some materials and treatments were 
difficult to estimate as the service lives of some materials and durability of some treatments have not been 
firmly established despite the many reports and papers addressing their use. That is especially true of 
Kentucky where most of the materials and treatments have seen only limited research or field use. Chapter 
four discusses a survey of state highway agencies to determine their current practices. The report closes 
with a summary of key conclusions and a short list of recommendations.    
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Chapter 2 Literature Review Summary 
2.1 The Problem of Bridge Corrosion 
The primary problem with reinforced concrete is the corrosion of the reinforcing steel. Historically, the 
most common material used for reinforcement has been conventional black steel reinforcing bars (rebars)1. 
Although conventional rebar bolsters the compressive and tensile strength of concrete, there is a problem 
— over time steel begins to corrode, which leads to gradual deterioration of the concrete. Corrosion is not 
immediate because freshly poured concrete has a high pH (approximately 13). The high pH helps form a 
passivating layer on the steel that is in direct contact with the concrete. This layer protects steel by 
suppressing electrochemical corrosion. As concrete ages, however, the concrete’s pH begins to fall (to about 
11), which typically results from either the introduction of chloride ions or carbonation. While carbonation 
can promote corrosion, the primary driver of corrosion on most bridges is the ingress of chloride ions. As 
chloride ions penetrate concrete they lower concrete’s pH, which in turn foments the breakdown of the 
steel’s passivating layer, thus facilitating corrosion. This process begins at steel grains that become anodes, 
where iron ions form and release electrons. These electrons flow through the steel to steel grains that act as 
cathodes, where water and oxygen combine with electrons to form hydroxide. In response, iron ions and 
hydroxide flow through the concrete pore solution to balance the charges. When iron ions react with oxygen, 
rust formation begins. Because the volume of rust is three to six times that of the original steel, the corroding 
steel exerts significant tensile forces that exceed the concrete’s tensile capacity. This causes cracking, 
delamination, and spalling of the concrete.  

On bridges with thick layers of concrete cover, the migration of chloride ions toward the reinforcing steel 
is the most significant contributor to corrosion. Figure 1 summarizes this process. Introducing chloride ions 
generally produces more localized corrosion than carbonation. When chloride ions react with steel they are 
not consumed, which exacerbates corrosion. And since chlorides remain present, it leads to corrosive 
pitting. Over time, pits deepen and the acid formed during the reaction accelerates corrosion and further 
deepens the pits (contributing to the positive feedback loop in which corrosion, once it begins, stimulates 
more corrosion).  

Concrete cracking presents problems because the cracks open new pathways through which chloride-laden 
water can travel directly to the reinforcing steel. Repeated freeze-thaw cycles acting on concrete expand 
cracks as well. Once cracking begins, a positive feedback loop begins whereby cracking introduces more 
corrosion-inducing water and chemicals to the concrete (Figure 1). Infiltrating chloride ions penetrate 
concrete and eventually reach the reinforcing steel and break down its passivating layer. Eventually this 
leads to corrosion. As corrosion products build up, the concrete spalls and cracks. Cracking opens new 
pathways through which chloride ions enter, aggravating the corrosion process through a positive feedback 
loop. Dissolved minerals remain after water evaporates, increasing concrete’s vulnerability to the future 
ingress of water and chlorides.  

	

Figure 1 Simplified Representation of the Chloride-Induced Corrosion Process 

																																																													
1 Much of the material in this section was taken from NACE (2012), To avoid excessive in-text citations, this 
footnote should be viewed as the controlling reference for this section. 

Deterioration	of	Steel's	
Passivating	Layer

Cracking	and	Spalling	
of	ConcreteCorrosionIngress	of	Chloride	Ions

+

+

++



 

KTC Research Report Long-Term Corrosion Protection of Bridge Elements 12 

 
A host of internal and extrinsic (i.e., environmental variables) factors impact corrosion rates and the pace 
of concrete deterioration. Table 1 summarizes how different aspects of the ambient environment affect 
corrosion. Temperature, moisture availability, freeze-thaw cycles, and chloride (irrespective of its source) 
all factor into corrosion. Some of the key concrete properties that influence the rate of deterioration include: 
1) magnitude and extent of chloride permeation, 2) sensitivity of the passivating layer to chloride attack, 3) 
the rate of corrosion reactions once corrosion has begun, and 4) the rate at which concrete cracks and spalls 
once it has been exposed to expansive tensile forces.  

 
Table 1 Factors Influencing Corrosion Rate 

Factor Explanation 
Temperature • Warmer temperatures promote corrosion 

• With every 10-degree increase in air 
temperature, the corrosion rate doubles 

Freeze-Thaw Cycles • More frequent and numerous freeze-thaw 
cycles accelerate weather and encourage the 
formation of cracks 

• Chloride-laden water infiltrates cracks, 
penetrating toward reinforcing steel 

Humidity  • Higher relative humidity speeds corrosion 
Atmospheric Contaminants and Debris • Pollutants, sulfur and nitrous oxides, carbon 

dioxide, and airborne chloride ions facilitate 
corrosion 

Marine Environments • Airborne chlorides (generated from, e.g., salt 
spray) foster corrosion 

Soils • Chloride ions and sulfates contained in soils 
can stimulate the corrosion of reinforcement 
in bridge foundations 

Drainage • Configuration of bridge drains influence 
water runoff  

• Drains that are improperly configured (i.e., 
fail to convey water away from the bridge 
deck) facilitate corrosion  

 

All steel eventually corrodes, however, there are many treatments and strategies bridge owners can use to 
slow down the corrosion process and achieve a service life of 75-100 years. Most transportation agencies 
now aim for a 75- to 100-year service life for new bridges — especially for highly trafficked bridges. These 
methods are briefly introduced here.  

Using a high-performance concrete, which is manufactured by lowering the water-to-cement ratio and 
incorporating supplementary cementitious materials (admixtures) into the formulation, reduces the speed 
of chloride ingress and therefore reduces corrosion. Silica fume and fly ash are the most commonly used 
admixtures. Admixtures reduce concrete permeability and increase the threshold at which corrosion begins. 
Once corrosion is initiated, admixtures can help slow its rate of progression. In the presence of admixtures, 
more cumulative corrosion can occur before concrete begins to crack. Admixtures also positively influence 
concrete electric resistance, which helps to minimize macro-cell corrosion. With sufficiently thick concrete 
cover, the use of admixtures can extend a bridge’s service life by 20 to 25 years.  
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Another option for mitigating corrosion is to either modify conventional rebar (by using epoxy coatings or 
metallic coatings or cladding) or select alternative materials to manufacture them (e.g., stainless steel, fiber 
reinforced polymer). Epoxy-coated rebar (ECR) has been the most popular choice among state highway 
agencies to mitigate corrosion. Epoxy powder is sprayed over preheated rebar and fuses, which forms a 
coating. The resultant coatings form protective barriers between the steel rebar and the chloride ions and 
moisture in the concrete thereby preventing corrosion of the rebar. Under ideal conditions, ECR may extend 
a bridge’s service life up to 30 years. In field applications, the performance of ECR has been uneven. Over 
time, prolonged moisture exposure works to disbond epoxy from the underlying steel. Small imperfections 
in epoxy coatings also let chloride ions penetrate to the surface of the steel, leading to corrosion. Several 
conditions undermine the ability of ECR to mitigate corrosion: significant cracking in the concrete, shallow 
concrete cover, high concrete permeability, and high chloride concentrations.  

A second option for protecting plain steel rebar is to envelop it with a metallic coating or to clad it with 
corrosion-resisting metal. The most common coating is zinc and the most common cladding is stainless 
steel. Research on the comparative performance of hot-dipped galvanized reinforcing steel with other types 
of rebar has produced contradictory results. Although cladding rebar extends its life, the return on 
investment that transportation agencies can expect is unclear, especially for bridges in chloride-saturated 
environments. There has been limited use of cladded rebars compared to other alternatives.  

A third option is to use a combination of a polymer (epoxy) coating over a metallic coating (zinc) on steel 
rebar (Z-bar). This product has been tested with some good results, but experimental results and service 
experience with the material are not extensive. 

Fabricating rebar out of alternative materials such as stainless steel, fiber reinforced polymers, and chrome 
steel (e.g. MMFX® ChromX) has shown promise, however, they have downsides. While stainless steel 
resists corrosion and virtually assures a 75- to 100-year service life, it is also much more expensive than 
conventional black steel. Accordingly, its use is typically restricted to bridges with high traffic volumes 
(e.g., interstate bridges) or locations near marine (salt) exposures where it is possible to justify the higher 
costs. Fiber reinforced polymers will not corrode, however, their expense and the durability issues they 
encounter under some circumstances makes them a less attractive option. MMFX® ChromX is a proprietary 
steel that has been recommended by several researchers due to its high corrosion resistance, however, 
extensive long-term field and laboratory studies are lacking and there are questions over whether it may 
prove too brittle to attain the durability necessary for long-term use on bridges.  

The final category of corrosion prevention measures is treatments using concrete sealants. Included among 
these are silanes, siloxanes, and other organic and inorganic materials. Surface treatments prevent chloride 
ions from entering the concrete substrate. Many surface treatments also mitigate carbonation (although 
siloxanes and silanes do not). Sealants are applied by brush or roller, or in some cases the deck is flooded 
with them. Often, they are not applied until several years after construction, although there is no definitive 
guidance on the optimal time to begin their application (noting that the concrete must be cured if a sealant 
is to be applied at/just after construction). Some sealants (e.g., high-molecular-weight methacrylates) can 
be used after cracking develops to heal them and inhibit the further ingress of contaminants. To maintain 
their effectiveness, sealants should be applied at regular intervals (every 5-20 years depending on location). 
However, exposure to vehicular traffic and the ambient environment can degrade their performance. As 
many sealants don’t penetrate deeply into concrete, their use on bridge decks typically requires more 
frequent applications due concrete wear in wheel paths.        

Once corrosion begins, several additional rehabilitation strategies are available to reduce chloride levels. 
Some methods, like cathodic protection and electrochemical chloride removal and re-passivation are quite 
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expensive, while other solutions are more affordable (e.g., using overlays). Cathodic protection introduces 
external voltage to the surface of reinforcing steel, which transitions it to a cathodic state. This increases 
the number of reduction reactions while reducing the number of anodic reactions (anodic reactions are 
responsible for steel deterioration). Cathodic protection is not typically installed upon bridge construction 
because even in severe environments it takes upwards of 10 to 20 years for corrosion to begin in most cases. 
Installing cathodic protection systems on newly constructed bridges is also problematic because 
transportation agencies must pay for their maintenance, and it is possible the system’s design life will have 
lapsed by the time corrosion begins. The use of overlays is a viable and commonly implemented technique 
to rehabilitate bridge decks. Overlays, such as latex-modified concrete, low-slump concrete, high-density 
concrete, and polymer concrete, can extend the life of a bridge deck by 15-20 years in many cases.   

The remainder of this report examines different corrosion prevention measures in greater detail as well as 
the survey results. The end of each chapter includes a bulleted list of key takeaway messages that summarize 
key findings.  

2.2 Reinforcement Materials 
This section describes the manufacturing processes of different types of reinforcing materials and presents 
the findings of selected research studies that have investigated their corrosion resistance. The following 
kinds of reinforcing materials are covered: 
 
• Epoxy-coated reinforcing steel 
• Stainless steel  
• Stainless steel cladded reinforcing steel 
• Galvanized reinforcing steel 
• Continuous galvanized reinforcing steel 
• Chrome (MMFX® ChromX) reinforcing steel 
• Multi-coating reinforcing steel 
• Fiber reinforced polymers 

 
The goal of this section is not to exhaustively review all available research literature (there is simply too 
much). It provides a high-level overview with the goal of identifying the strengths and weaknesses of each 
rebar material. Generally, there are few long-term field-based studies of these materials. The one exception 
is epoxy-coated reinforcing steel. The reason for this is that epoxy-coated reinforcing steel has been in 
widespread usage for the longest amount of time, while the other materials have only been used over the 
past 30 years. Since the projected service lives of these materials can range from 75 to 100 years, the limited 
field data is understandable. In more favorable environments traditional carbon steels may not experience 
corrosion in the first 20 years following their placement. Although every effort has been made to include 
as many long-term field studies as possible in this section, many of the studies discussed are either based 
on laboratory experiments or they report on the short-term performance of demonstration projects, both of 
which may not accurately capture a material’s long-term corrosion resistance. Laboratory studies attempt 
to replicate real-world conditions by accelerating concrete’s exposure to harsh environmental conditions 
(e.g., application of deicing salts, temperature fluctuations). These experiments do not perfectly replicate 
the actual environments materials are placed in, however. Thus, laboratory experiments may not capture 
how materials will respond once they are exposed real-world environmental stresses.      

2.2.1 Epoxy-Coated Reinforcing Steel 
In the late-1960s and early-1970s, once transportation officials and engineers recognized that environmental 
agents such as deicing salts were to blame for the rapid corrosion of bridge decks, a search began for a 
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technique that would protect steel reinforcements from deterioration. Epoxy-coated reinforcing steel (ECR) 
was initially used in the 1970s, and today is probably the most commonly used material to inhibit bridge 
corrosion. Over 65,000 bridges throughout the United States have been constructed with ECR. It is also 
used throughout the world, from the Middle East, where it protects bridges and other concrete structures 
from the deleterious effects of marine- and salt-contaminated soils, to Europe and Asia, where it has been 
the preferred material for bridge construction in coastal and marine settings (McDonald, 2016). The 
manufacturing process is straightforward. Mill scale and oxidation are first removed from steel bars with 
grit blasting. The bars are then heated to approximately 450° F before undergoing an electrostatic powder-
coating process. The heat of the bars melts the powder on contact, which produces a polymer coating. The 
most widely used standards for ECR are ASTM A775 Standard Specification for Epoxy-Coated Steel 
Reinforcing Bars and ASTM A934 Standard Specification for Epoxy-Coated Prefabricated Steel 
Reinforcing Bars, while ASTM D3963 Standard Specification for Fabrication and Jobsite Handling of 
Epoxy-Coated Steel Reinforcing Bars provides direction on the handling of finished bars. ECR should not 
be exposed to direct sunlight because ultraviolet radiation degrades the coating. Bars coated with epoxy 
must be stored separately from reinforcing steel not coated with epoxy. If protected and non-protected bars 
are stored together, the epoxy layer of ECR may be damaged by the rougher surfaces of uncoated steel. 
Any damage to epoxy coatings should be repaired before ECR is used for construction.   

Conventional straight ECR meeting ASTM A775 is pigmented green and termed green bar. It may need to 
be formed by bending, which can fracture the epoxy. If fractured, the epoxy is repaired, typically with a 
liquid-applied coating. Repairs (or the lack thereof) with this type of ECR can result in poor field 
performance. The ASTM A934 rebar is preformed prior to epoxy coating. It is termed purple bar. The cost 
of purple bar is greater than green bar but avoids coating damage encountered in rebar bending operations.  

Epoxy coatings have proven a relatively effective means of guarding reinforcing steel against the worst 
effects of corrosion. Numerous studies have indicated that epoxy helps prevent spalling and delamination 
of concrete, but at the same time, research also indicates epoxy coatings degrade over time (NACE, 2012). 
Epoxy coatings offer the most robust protection of underlying steel when concrete is uncracked. However, 
prolonged exposure to moisture softens the coating. Moisture also compromises the adhesive bond between 
epoxies and steel reinforcement, which gradually exposes the steel to the ambient environment. Defects 
introduced during the manufacturing process can be problematic. Holidays — small imperfections and 
openings in epoxy coatings — let moisture and deicing fluids seep into the area surrounding the reinforcing 
steel, eventually resulting in corrosion. The following paragraphs discuss studies that have endorsed ECR 
as a viable way of impeding corrosion as well as studies that have questioned its long-term benefits.  

Smith and Virmani (1996) authored perhaps the first large-scale study of ECR performance in bridge decks. 
They inspected 92 bridge decks constructed with ECR throughput the United States and Canada. At the 
time of the study, all the bridges had been in service for periods of between three and 20 years. Delamination 
was observed on ten bridge decks, although 81 percent of the ECR segments showed no signs of corrosion. 
Just two percent of the samples indicated significant corrosion. Where corrosion occurred, it was generally 
associated with shallow concrete cover and high chloride concentrations. Chloride levels for most bridges 
exceeded the threshold required to initiate corrosion on unprotected steel. Commonly accepted guidelines 
specify the thresholds for different magnitudes of steel corrosion as follows: 
  
• 0.03 percent chloride to weight of concrete (≈1.2 lb./yd3) = initiation of corrosion 
• 0.08 percent chloride to weight of concrete (≈2.4 lb./yd3) = accelerated corrosion 
• 0.18 percent chloride to weight of concrete (≈7.2 lb./yd3) = major section loss of steel (Morse, 2009) 
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The best performing decks had ECR installed in both the top and bottom rebar mats. Despite the positive 
evaluation, Smith and Virmani (1996) noted that the adhesive strength of epoxy decreased over time, and 
that ECR in the study’s oldest bridges exhibited the most significant loss of adhesion. Despite its limitations 
the researchers concluded ECR is effectively defends against corrosion when paired with sufficiently thick 
concrete cover and regular inspections.   

Pincheira et al. (2008, 2015) discussed the long-term performance of four Minnesota bridge decks 
constructed using ECR in the 1970s. Overall, the study decks were in good condition, with only a small 
percentage of deck area experiencing delamination (less than 1.1% for all bridges). Researchers did, 
however, observe significant corrosion activity near expansion joints, cracks, and areas where delamination 
and spalling had occurred — ECR corrosion was most severe at expansion joints and longitudinal or 
transverse cracks. Researchers noted the presence of light rust on bars with bar-level chloride content as 
low as 0.40 lb./yd3 (0.24 kg/m3) and widespread rust where chloride content reached 5.05 lb./yd3 (3 kg/m3). 
Beneath unbroken concrete surfaces, corrosion damage was minimal. Changes in coating adherence were 
not correlated with either corrosion or chloride ion concentrations — loss of coating adherence took place 
on both corroded and non-corroded bars as well as in the presence of high and low chloride concentrations. 
Pincheira et al. (2015) recommended the following procedures to guard against future corrosion: sealing 
cracks and expansion joints to prevent the infiltration of chloride ions, using a bar cover of at least 3.0 
inches (7.62 cm), and using concrete admixtures to reduce its permeability.   

Lawler et al. (2011) presented the results of a study examining the long-term performance of ECR on bridge 
decks in West Virginia exposed to aggressive environmental conditions (i.e., significant applications of 
deicing salts, repeated freeze-thaw cycles). Thirty-three bridge decks were included — 14 had ECR and 19 
were fabricated with uncoated black steel. Among the bridges sampled, corrosion and deterioration were 
observed on all the decks reinforced with uncoated steel bars. Only three of the decks built using ECR had 
deteriorated. Corrosion occurred on just four out of the 45 ECR segments extracted from bridge decks. 
Decks that contained ECR in the top and bottom mats experienced no deterioration, whereas decks with a 
top mat fabricated out of ECR and bottom mat made with uncoated steel increased a bridge’s vulnerability 
to corrosion. Most of the deterioration witnessed by the researchers occurred around construction joints, 
which funnel chlorides into the deck. Lawler et al. concluded that epoxy coatings conferred a significant 
degree of protection to reinforcing steel. The lowest chloride concentration where ECR corroded was 0.132 
percent by weight of concrete (~528 lb./yd3), but there were also areas where concentrations up to 0.263 
percent by weight of concrete  (~1,052 lb./yd3) did not result in corrosion.     

The Iowa Department of Transportation currently uses ECR in the top and bottom mats of all bridges. 
Fanous and Wu (2005) described the long-term performance of bridges constructed with ECR. The oldest 
deck included in their sample was built 20 years prior to study. Researchers found no evidence of 
delamination or spalling on bridge decks constructed with ECR. All rebar embedded in uncracked concrete 
evinced no signs of corrosion, even where chloride contents exceeded 1.23 lb./yd3 (0.73 kg/m3), a threshold 
commonly associated with the onset of corrosion. Where corrosion impacted ECR, it was due to cracking 
in the bridge deck. However, there were some potentially worrying signs. The adhesive bonds between the 
epoxy and steel bars had weakened with age. Moisture and high chloride concentrations had also degraded 
the coating adhesion. Fanous and Wu (2005) argued that having sufficiently thick concrete cover will delay 
the onset of corrosion, and is something transportation agencies should consider. In a separate project, Wiss, 
Janney, Elstner Associates, Inc. (2011) surveyed the condition of eight Iowa bridges — four with ECR in 
only the top mat and four in which ECR was used in the top and bottom mats. They found corrosion-related 
damage on five of the eight bridges. Four bridges exhibited damage on less than four percent of the deck 
area. The lowest chloride concentration associated with corrosion of an undamaged ECR bar segment was 
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0.179 percent by weight of concrete (~716 lb./yd3), five times the amount required to instigate corrosion on 
unprotected steel. In some locations where chloride concentrations were as high as 0.304 percent by weight 
of concrete (~1,216 lb./yd3) ECR presented no signs of corrosion. Corrosion-related damage was most 
common in areas with transverse cracks positioned directly atop the reinforcing bars. Researchers 
concluded that installing ECR prolongs bridge service life. However, defects and holidays in epoxy coating 
undermine its performance, and no coating creates an impenetrable barrier against moisture, chlorides, and 
electrical currents. 

Examining two bridges in Switzerland and Germany, Zintel et al. (2014; see also Keßler et al., 2016) 
concluded that ECR offered an effective means of deterring corrosion activity. The two bridges were 
constructed in 1989 and 1991, and so the study speaks to bridge conditions after 20+ years of service. Epoxy 
coatings on both bridges remained in good condition. There was high average coating resistance, suggesting 
that the ECR had not been damaged by ambient environmental conditions and is a dependable option for 
safeguarding bridges against corrosion even in severe environments.  

Sagüés et al.’s (1991) investigation of bridges in Florida was one of the first to cast doubt on the 
effectiveness of ECR. After identifying several bridges in the Florida Keys where ECR had significantly 
corroded due to the harsh marine environment and defects in epoxy coatings, Sagüés et al. (1994) examined 
30 additional bridges throughout Florida to investigate the performance of epoxy coatings. None of the 
other ECR bridges in this study exhibited corrosion, however, the level of chloride penetration had not yet 
exceeded the threshold necessary to initiate corrosion. Despite the lack of corrosion, Sagüés et al. (1994) 
observed that nearly all the epoxy coatings displayed a significant reduction in the adhesive bond between 
the epoxy and underlying reinforcing steel. This was observed on all structures over five years of age, 
irrespective of chloride content. Laboratory tests conducted as part of the study demonstrated that the 
likelihood of corrosion goes up significantly when disbonding occurs, because it exposes tiny portions of 
the steel to the concrete matrix. Simulation models developed using empirical observations indicated the 
best performing bridges are constructed with modern concrete formulations — high-performance varieties 
that incorporate admixtures such as fly ash. Ultimately, Sagüés et al. (1994) contended that concrete quality 
and the depth of concrete cover are likely to have the most significant impact on bridge performance, as the 
failure of ECR in the Florida Keys revealed the limitations of epoxy coatings.  

Brown et al. (2003) reported on a comparative study in the state of Virginia that examined whether ECR 
outperformed conventional black steel in terms of durability and corrosion resistance. A particular focus 
was on determining if the extra cost of ECR could be justified based on its performance. Under 25% of 
bridge decks constructed since 1981, they concluded, were likely to experience sufficient corrosion within 
100 years to necessitate rehabilitation, regardless of the type of reinforcing material that had been used. 
Based on its performance, they observed that ECR is not a cost-effective technique for mitigating corrosion 
(cf. Sagüés et al., 1994) because it only extends the service life of a bridge deck — on average — by five 
years over what is expected with carbon steel, and that in harsh environments state DOTs can expect the 
highest returns on investment with stainless steel reinforcement (316LN). Where exposure to severe 
environmental conditions is not a problem, Brown et al. (2003) argued the optimal technique to prolong 
bridge lives the use of low-permeability concrete, which inhibits the passage of chloride ions to the 
reinforcing bars.  

In a follow-up study, Weyers et al. (2006), summarized the findings of a 14-year research project that 
investigated the performance of ECR on Virginia bridges. Mirroring other studies, they found that epoxy 
coatings naturally degrade when exposed to highly alkaline and moist environments. Holidays introduced 
during the manufacturing process undermined ECR’s performance and led to epoxy disbondment, with 
disbonding occurring in as little as four years. Echoing Brown et al., (2003), Weyers et al. (2006) stated 
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that the average service life benefit of ECR (over carbon steel) is 3-6 years. Because of the limited benefits 
conferred by ECR, they did not regard it as the most cost-effective treatment option. As such, they proposed 
guidelines for minimizing corrosion. For non-critical decks, beams, and substructure elements that are not 
exposed to severe marine environments or large quantities of deicing salts, they recommended pairing low-
permeability (i.e., high-performance) concrete with conventional steel. For bridge segments less that 500 
feet long on major routes — but which are not part of the National Highway System — corrosion-resistant 
metallic reinforcing bars (MMFX® ChromX), they contended, would offer the necessary performance and 
longevity. On highly trafficked bridges that are exposed to severe environmental conditions, Weyers et al. 
(2006) advised using stainless steel.  

Ramniceanu et al. (2008) also studied the performance of Virginia bridge decks (following up on the work 
of Brown et al. [2003] and Weyers et al. [2006]). Their findings generally align with those previous studies. 
They found that defects introduced during the manufacturing process can seriously undermine the field 
performance of ECR. On many ECR samples they assessed, the epoxy coatings had not been allowed to 
fully cure. These bars were unevenly heated and did not reach a high enough temperature. Samples that 
were not fully cured exhibited a larger number of holidays and increased moisture absorption due their 
increased porosity. Like other studies that have questioned the utility of ECR, Ramniceanu et al. (2008) 
observed significant declines in adhesion, and many samples had little or no epoxy coatings remaining on 
the surface. This is problematic because once the epoxy is no longer affixed to the surface it leaves the 
reinforcing steel exposed to the ambient environment, and corrosion can proceed unimpeded.  

Covino et al. (2000) reported on ECR performance following the rehabilitation of the Perley Bridge in 
Ottawa, Ontario, Canada. To extend the service life of one span, ECR was installed in both directions, 
however, the concrete cover thickness varied. Within six years, ECR on the bridge’s southbound lane had 
begun to corrode, but no signs of corrosion appeared on the northbound lane. The key difference between 
the two lanes was that the concrete cover thickness on the northbound lane was approximately twice that 
of the southbound lane. Insufficient cover depth promoted more rapid corrosion on the southbound lane. 
Covino et al. (2000) estimated that ECR only added one to four years to the bridge’s service life. Another 
issue that may have contributed to the ECR’s faulty performance was the less restrictive manufacturing 
standards acceptable in the 1970s. At the time, up to two percent of the epoxy surface could be flawed and 
still meet standards. The presence of these flaws, even across a small area, likely contributed to the poor 
performance of ECR on the southbound lane (see Pfeiffer et al., 1993 on the implications of changing 
manufacturing standards). Covino et al. (2000) argued the two factors which appeared to most significantly 
influence corrosion were cover depth and the level of chloride contamination. The marginal benefits 
conferred by ECR were — presumably — not sufficient to justify its added expense. 

2.2.2 Galvanized and Continuously Galvanized Reinforcing Steel 
Galvanizing traditional carbon steels with a zinc coating improves their corrosion resistance. The outer zinc 
coating functions as a sacrificial anode by establishing cathodic protection and protects underlying steel 
from corrosive agents by creating a physical barrier (Dallin et al., 2015). It also resists the de-passivating 
effects of carbonation. Key factors influencing the speed of corrosion in galvanized rebar are the source 
and abundance of chloride ions, the condition of the galvanized coating, and concrete cover thickness. 
Unprotected carbon steel embedded in ordinary concrete depasssivates once the pH falls below 11.5. In 
concretes contaminated with chlorides, this critical pH for corrosion may be higher. Steel galvanized with 
zinc, on the other hand, remains passivated until the pH drops below 9.5 (Yeomans, 2004). The chloride 
threshold at which corrosion initiates on galvanized rebar is typically at least 2-4 times that of unprotected 
carbon steel, and the onset of corrosion may be 4-5 times longer when zinc galvanization is present. Unlike 
other coating materials (e.g., ECR, paints), the galvanized zinc is metallurgically bonded to the underlying 
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steel (Yeomans, 2004). Compared to ECR, galvanized rebar can better tolerate damage that occurs during 
transportation and handling (Pianca and Schell, 2005). In the United States, ASTM A767 Standard 
Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement, applies to the 
manufacture of zinc-coated steel bars. Field observations of structures built over the past 70 years presents 
a mixed picture on its performance. Some studies have cited benefits from using galvanized rebar, 
demonstrating that it effectively keeps corrosion in check. Other research (e.g., Pianca and Schell, 2005) 
has questioned the utility of galvanization, noting that galvanized rebar may be more vulnerable to the 
effects of chloride ions. In 1979, the FHWA recommended against using galvanized reinforcement after a 
series of laboratory experiments questioned its ability to deter corrosion. However, the agency rescinded 
this recommendation in 1983 (Maki, 2010).    

Historically, the hot-dip method has been the technique most widely used to galvanize steel. During this 
process, cleaned steel bars are immersed in molten zinc that has been heated to 450º C. This produces a 
series of zinc-iron alloy layers and an outer surface coating of almost pure zinc. The pure zinc is more 
completely passivated than zinc-iron alloy layers, corroding uniformly at a rate less than 10 percent of 
untreated carbon steels. Some of the zinc-iron layers created during conventional hot-dipping are brittle and 
will crack if deformed. Therefore, reinforcing bars must be bent to size before they are galvanized. When 
zinc eventually corrodes, corrosion products (principally zinc oxide and zinc hydroxide) migrate from the 
site of corrosion, densifying the surrounding concrete in the process while filling voids and micro-cracks 
(Yeomans, 1998). This decelerates corrosion and increases the bond strength between the reinforcing steel 
and concrete. As such, galvanization offers strong adherence and produces a surface that is resistant to 
abrasion. To prevent galvanized reinforcement from creating gas bubbles when in contact with wet cement, 
chromate quenching is sometimes specified for galvanized reinforcing bars as a safeguard, though it is not 
always employed.  

More recently, a new type of reinforcing steel has become commercially available — continuously 
galvanized rebar. It is produced using a method comparable to the hot-dip method, although the specifics 
of the process differ slightly. Small amounts of aluminum are added to the zinc bath, and a shorter 
immersion time is used to prevent formation of the zinc-iron alloy layers. Aluminum impedes zinc-iron 
reactions and produces a very flexible zinc coating. After steel bars are preheated, they are dipped into 
molten zinc for 4-5 seconds. Preheating the steel bars reduces the potential for embrittlement and improves 
the final product’s ductility. Continuously galvanized rebar may also be covered with an epoxy coating to 
improve its corrosion resistance. Though the continuously galvanized rebar zinc coating is thinner than 
typically found on conventional hot-dipped rebar, manufacturers claim that it has a potential service life of 
100 years.  

In 2009, the International Federation of Structural Concrete (Yeomans, 2009) released a study that 
discussed numerous examples of galvanized reinforcement’s real-world performance. Bermuda was the 
first country to use galvanized rebar on a widespread basis, with applications dating to at least the 1930s 
(see also Maki, 2010). Officials chose galvanized steel because of the island’s harsh marine environment 
and the nature of local aggregates, which have high chloride concentrations. After its initial application on 
a dock project, the country’s Department of Public Works recommended galvanized reinforcements for all 
structures (its use is legally mandated today). Following World War II, many structures — docks, jetties, 
bridges — were constructed with galvanized steel. Surveys in 1991 found little evidence of corrosion in 
these structures despite their exposure to high chloride levels well above the threshold for initiating 
corrosion in unprotected steel. In 1981 and 1991, the Portland Cement Association commissioned studies 
to document the performance of galvanized reinforcement in six bridge decks (including one in Florida that 
was exposed to seawater). After 24 years, the galvanized bars exhibited superficial corrosion in sound, 
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uncracked concrete even in the presence of extremely high chloride levels. In Pennsylvania, inspections of 
237 bridge decks constructed with galvanized steel revealed that just one bridge displayed significant 
deterioration due to corrosion. But the damaged bridge was also hampered by defective concrete, which led 
to chloride infiltration and corrosion. None of the bridges constructed with galvanized steel that had decks 
in conformance with standard concrete specifications exhibited failures of the steel or deck.   

Pianca and Schell (2005) reported on the condition of galvanized reinforcement that was used in three 
Ontario, Canada, bridges after 30 years of use. Since each bridge performed in a slightly different manner, 
brief summaries are presented here. Bridge 1 was constructed in 1975 and was inspected in 1995 and 2004. 
By 1995, chloride concentrations at the level of reinforcement had reached the threshold generally required 
to initiate corrosion in black steel. There was no evidence of significant corrosion. By 2004, chloride 
concentrations at the level of reinforcement were six times the threshold. The bridge continued to perform 
well, with only minor delaminations. Researchers estimated that galvanization added at least three years to 
the steel’s service life. Bridge 2 was originally built early in the 20th century; it was rehabilitated with 
galvanized steel in 1976. Twenty years later, the deck remained in fair condition, with approximately 10% 
of the deck exhibiting corrosion-induced deterioration. By 2004, 15% of the bridge’s deck either showed 
signs of deterioration or had undergone rehabilitation to fix corrosion-related defects. The third bridge was 
constructed in 1975. In the years immediately following construction, a waterproof membrane was applied 
to the concrete surface, which enhanced its corrosion resistance. In 2004, the deck remained in good 
condition and presented no signs of corrosion-induced damage. Overall, corrosion affected approximately 
one percent of the deck surface. Pianca and Schell (2005) speculated that the waterproofing membrane 
effectively blocked chloride ions in the years immediately following construction, although by 2004 
chloride concentrations at the level of reinforcement had passed the corrosion-initiation threshold. In 
comparison, a sidewalk next to the road that was also built with galvanized steel but lacked waterproof 
membrane experienced delaminations across 12.3 percent of its area. Pianca and Schell advised against 
relying on galvanized reinforcement as either the primary or sole method of corrosion protection. They 
argued for applying waterproofing membranes and the use of concrete of adequate thickness and quality to 
slow the ingress of chloride ions.     

In another study of the long-term performance of galvanized reinforcement, Helene et al. (2004) presented 
their findings after investigating a 40-year-old bridge on the Uruguay coast, which is an environmentally 
harsh setting due to its seawater exposure. Constructed in 1966, the bridge was fabricated out of pre-stressed 
concrete and galvanized rebar. Several problems arose during the bridge’s construction that could have 
undermined its performance — concrete segregation, concrete formulations of varying quality, and the 
application of concrete cover that was too thin. Despite these issues, the bridge exhibited good overall 
performance. On galvanized strands that had been exposed to the atmosphere, corrosion was significant. 
Elsewhere, corrosion was scarce or not present. Helene et al. concluded that using galvanized steel is an 
effective option to protect against corrosion; there was no evidence of fractures due to hydrogen 
embrittlement (as opposed to the findings of other researchers). The results suggested that galvanized steel 
can have a service life up to twice that of ordinary black steel. However, state DOTs should remain attentive 
to two issues when considering the use of galvanized steel. First, the manufacturing process may create 
imperfections in the zinc surface layer that can shorten the duration of its protective capacity. Second, 
corrosion can occur unevenly, even while some portions of the zinc layer remain protective.         

2.2.3 Stainless Steel  
Stainless steel has emerged as a popular option for reinforcement, particularly in environments that are 
extremely harsh. Stainless steels are defined as iron-based alloys with a minimum chromium content of 11 
percent. Alloying elements, including nickel, molybdenum, copper, and nitrogen, are added to achieve the 
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necessary mechanical, fabrication, and corrosion resistant-characteristics (Hansson, 2016). Stainless steel 
resists corrosion due to a passive protective film that develops on its surface. The protective film is a very 
thin layer of chromium-rich oxide. Stainless steel is also exceptionally adherent, inert, and self-repairing. 
Higher chromium content facilitates greater corrosion resistance. Stainless steels have many advantages 
over more traditional carbon steels. They have good ductility (meaning they can be readily worked), 
excellent weldability, and a homogeneous microstructure. Also, the cut ends of stainless steel bars do not 
require protection (cf. stainless clad rebar). Four types of stainless steel are available for use in commercial 
applications: martensitic, ferritic, austenitic, and duplex (ferritic-austenitic). Austenitic stainless steels have 
16-26 percent chromium, while their nickel content is between 6 and 22 percent. The chromium content of 
duplex stainless steels is between 18 and 29 percent, and typically have a nickel content of 4-9 percent. 
Molybdenum enhances pitting resistance, however, adding this element can significantly increase costs. 
Manufacturers have experimented with new formulations to reduce their price. Common strategies have 
been to replace some nickel with manganese and reduce or eliminate molybdenum.     

Like any steel, however, stainless steel eventually corrodes. Six types of corrosion may impact stainless 
steel: uniform, pitting, crevice, galvanic, intergranular, and stress corrosion cracking. Uniform corrosion is 
quite rare because environments are not generally aggressive enough to produce it. Pitting begins in 
extremely small surface irregularities or at the location of non-metallic inclusions. This type of corrosion 
spreads via electrochemical reaction. Factors which influence the pitting include temperature, chloride 
concentration, and the amount of alloying elements present in the steel. Crevice corrosion affects small, 
confined spaces such as gaps, where two components meet, under gaskets and seals, inside cracks and 
seams, beneath sludge piles, and in spaces filled with deposits. Galvanic corrosion occurs when two metals 
with divergent galvanic potentials are brought into contact. Under this scenario, the most anodic metal is 
attacked. Avoiding the use of dissimilar metals wards off galvanic corrosion. Intergranular corrosion is 
caused when chromium carbides form at grain boundaries. This reduces the passive layer’s chromium 
content and stability, leading to corrosion. Lastly, stress cracking corrosion is the result of a component 
suddenly cracking and failing without deformation. This may occur when a component is stressed by an 
applied load or by residual stress. Highly aggressive environments can also promote stress cracking 
corrosion.  While many research studies discussed here have found that stainless steel, when used as a 
reinforcing material, performs well and resists corrosion, its expense is a serious obstacle. Because of this, 
state DOTs have generally reserved stainless steel for bridge projects in severe environments and heavily 
trafficked routes. Readers should bear in mind the difficulty of proposing sweeping generalizations about 
the performance of stainless steels, as many grades of stainless steel have been used for bridge construction 
and rehabilitation. Different grades, which are distinguished according to their metal composition, resist 
corrosion to varying degrees (see Hansson, 2016). 

The use of stainless steel has expanded mostly over the past 20-30 years, however, there are several 
examples of stainless steel being used for bridge construction as many as 80 years ago. A 1999 Arminox 
study reported on a concrete pier located in the Port of Progresso, Yucatan, Mexico, that was originally 
built with stainless steel reinforcement. The pier was completed in 1941, and designers chose stainless steel 
due to the severe marine environment and the use of extremely porous concrete. Petrographic analysis 
suggested a high water-to-cement ratio for the concrete of 0.55 to 0.60. Optical emission spectroscopy 
analysis of the steel indicated it was comparable to AISI 304-grade (18-8 grade). Visual inspections of the 
pier revealed it to be in good condition. Four spalled areas exposed significant corrosion of the 
reinforcement that lacked cover. On covered reinforcement, only light surface corrosion was present on 
over 5-20 percent of its surface area. Chloride analysis indicated very high concentrations, generally 
averaging from 0.6 percent to 1.0 percent by weight of concrete (~24 to 40 lb./yd3) with some readings as 
high as 1.9 percent by weight of concrete (~76 lb./yd3). The condition of the pier built with stainless steel 
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was particularly notable given that a nearby pier approximately 200 meters (~220 yd.) away constructed in 
the 1960s with plain carbon reinforcement steel exhibited significant deterioration in the columns and 
decks. In another study that assessed the long-term corrosion resistance of stainless steel, MacGregor (1998) 
documented the performance of AISI 316 stainless steel reinforcement in exterior precast cladding panels. 
After 20 years, no corrosion was visible despite the marine environment and less than one inch of concrete 
cover (about 20 mm).      

An investigation by Garcia-Alonso et al. (2007) examined the corrosion properties of several steels 
including reinforcing carbon steel, AISI 304 and 316L stainless steels, and HSS1 and HSS2, two relatively 
novel stainless steels that replace a significant fraction of nickel with manganese. Steel bars were embedded 
in two types of concrete (normal and high-performance) and exposed to varying levels of chlorides over 
the course of approximately two years. Although the carbon steel corroded, there was no evidence of pitting 
corrosion in steel exposed to chloride concentrations of 2 percent and 4 percent (~40 to 80 lb./yd3) by weight 
of concrete. Two of the steels tested — AISI 304 and HSS2 —repassivated after pitting initiated. These 
results are consistent with other studies that have found austenitic and duplex stainless steels are most 
resistant to corrosion. The critical chloride concentration threshold for corrosion of austenitic stainless 
steels is at least 10 times higher than for traditional carbon steels.       

Serdar et al. (2013) studied the long-term corrosion behavior of six different stainless steels that were 
embedded in mortar and exposed to a simulated marine environment over the course of two years. The 
steels evaluated were AISI types 410, 204Cu, 2101, 304, 2304, and 316 (see Table 1 of Serdar et al. [2013] 
for the chemical composition of each steel grade). The steels’ surfaces did not undergo preparation before 
they were embedded in a mortar. Usually, stainless steel rebars are abrasive blasted or pickled prior to use 
to remove surface oxides. After curing, the specimens were partially submerged in a sodium chloride (NaCl) 
solution for a period of two years. AISI type 2304 displayed the best performance, which researchers 
attributed to robust protection established by a passive layer that contained chromium, nickel, and 
molybdenum. Two other steel types with a small amount of nickel but large amounts of nitrogen and 
manganese — AISI 204Cu and 2101 — displayed good long-term performance, however, they were more 
vulnerable to corrosion than common austenitic steels (e.g., AISI types 304 and 316).     

Van Niejenhuis et al. (2016) conducted laboratory experiments to understand the corrosion resistance of 
six grades of austenitic and duplex stainless steel at lower price points than the grades that have typically 
been used for transportation applications. Included among the steel types were S31653, S32205, S32101, 
S30403, S24100, and S32302 (UNS designations; see Van Niejenhuis et al., 2016, Table 1, p. 363 for the 
chemical makeup of each steel). Each specimen had one inch (25 mm) of concrete cover, significantly less 
than the 63.5-76.2 mm (2.5-3.0 in) of concrete cover mandated by most state DOTs. The performance of 
stainless steel in cracked and uncracked concrete was examined. All samples were exposed to salt brines 
continuously for two years, with ambient temperatures in the 68-70° F (20-25° C) range. Except for S32205, 
all specimens housed in the cracked concrete exhibited signs of corrosion. Corrosion in the cracked 
specimens was localized and restricted to locations near the intersection of the crack and steel 
reinforcement. Observations indicated that corrosion began at the root of cracks and then spread along the 
reinforcement’s surface. Corrosion current densities over the bar surface did not increase in a consistent 
manner, impeding efforts to accurately estimate time to corrosion. No bars embedded in unbroken concrete 
exhibited corrosion. Duplex stainless steels had slightly better corrosion resistance than austenitic steels, 
most likely because they contain higher levels of chromium. Van Niejenhuis et al.’s (2016) ranked the 
performance of each steel, noting their results were the inverse of those in Bertolini and Gastaldi (2011), 
which they attributed to different preparation methods — Van Niejenhuis et al. did not pickle bars prior to 
testing, a practice which eliminates some imperfections. 
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Hansson (2016) provides the most thorough review of different stainless steels, their corrosion-resistant 
properties, chloride thresholds, and methodological approaches to evaluating their performance. Along with 
ranking the different alloys currently available on the market (see below), Hansson described some of the 
factors which affect post-initiation corrosion rates in stainless steel: 

• Distribution and magnitude of localized attacks  
o This influences the lateral growth of a corrosion pit and the spread of corrosion products.  

• How effectively non-corroding areas function as a cathode affects the rate of corrosion  
o Stainless steels are less effective as a cathode than black steel. Once the passive film 

deteriorates locally and anodic areas form, corrosion pits expand slowly because the adjacent 
steel surface is an inefficient cathode.  

• The composition, solubility, and specific volume of corrosion products 
• How effectively corrosion products protect underlying steel from rapid corrosion rates 

o When corrosion begins, the current density is extremely high, however, it decreases over time. 
As such, the progressive development of corrosion products may eventually moderate 
corrosion. 

• Whether corrosion products block or partially block pre-existing cracks 
o As other studies (see above) demonstrated, corrosion occurs preferentially where the concrete’s 

structural cracks adjoin reinforcing steel. Van Niejenhuis et al. (2016) observed that corrosion 
was localized proximate to cracks and that corrosion products deposited near cracks may create 
a sort of blocking effect.   
 

Reviewing several studies, Hansson ranked the performance of different alloys (Figure 2, see p. 78 of 
Hansson [2016]. This table, reproduced here, summarized the findings of 11 studies. While not exhaustive 
and limited to six alloys, it could inform the selection of reinforcing materials for bridge construction. For 
each reference, the table should be read from left to right. For example, Bertolini and Gastaldi (2011), found 
that 316LN performed the best, followed by ASIS 2304 and ASIS 2101. 
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Figure 2 Rankings of Common Stainless Steel Alloys Used as Reinforcement Material 
	
Consistent with some researchers who have studied the performance of ECR, Hansson (2016) argued that 
while stainless steels are effective at reducing corrosion, designers should invest their energies in 
eliminating or reducing the number of cracks in concrete because the roots of cracks are where corrosion is 
most likely to begin. Hansson presented two options to reduce the number of cracks. The first is to reduce 
the thickness of concrete cover. Because stainless steels are more corrosion resistant than other materials, 
using less concrete should not be problematic. Reducing the thickness may diminish the number of load-
induced cracks and the widths of shrinkage cracks. The second option is using prestressed concrete, as this 
approach has showed promise in earlier studies.  

2.2.4 Stainless Clad Rebar 
Solid stainless steel reinforcement is remarkably effective at resisting corrosion, however, as noted in the 
previous section, it is very costly and because of its expense is used for only the most critical infrastructure 
projects. To obtain the benefits of stainless steel without its high price, manufacturers developed stainless 
steel clad rebar, which is conventional black steel that is clad with 316LN stainless steel during the 
manufacturing process. It is much less expensive than solid stainless steel rebar, although it is a bit more 
expensive than ECR. However, the long-term costs of stainless clad rebar are less than ECR, and it is 
expected to prolong the service life of bridge decks. Most studies confirm the effectiveness of stainless clad 
rebar, and yet it is not without problems. For instance, imperfect bonding between the stainless steel and 
underlying carbon steel can make the latter vulnerable to corrosion.  

Rasheeduzzafar et al. (1992) in an early study of stainless clad rebar compared its performance to ECR, 
galvanized, and untreated steels. Specimens were embedded in mortar with a water-to-cement ratio of 0.45 
and then exposed to three levels of chloride concentration — 4, 8, and 32 lb./yd3 (2.37, 4.74 and 18.96 
kg/m3) — for seven years. Severe corrosion afflicted the untreated steel while the galvanized steel delayed 
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the onset of corrosion. Galvanized steel exhibited significant corrosion at higher chloride exposures, 
particularly in areas near cracks in concrete. At low chloride levels, the ECR performed well, although at 
higher chloride concentrations significant corrosion took place. The stainless clad reinforcing steel 
performed the best. After seven years, even at the highest chloride levels, there was no evidence of corrosion 
or cracking.  

Through a series of laboratory experiments, Cross et al. (2001) estimated that stainless clad rebar with end 
coatings has a service life of between 50 and 60 years before the onset of concrete damage. However, flaws 
or imperfections in the surface or coating of stainless clad rebar can dramatically reduce its service life. 
Holes in the cladding reduce its service life by 15-40 years. Occasionally gaps may form between the 
cladding and underlying steel. If this occurs it can promote cracking and significantly diminish service life. 
Cross et al. (2001) enumerated several problems that DOTs should factor into their decision making about 
stainless clad rebar. If a proper metallurgical bond does not form between the steel and cladding, voids may 
develop where the underlying steel and cladding adjoin. Cross et al. witnessed this in many of their 
specimens, with continuous voids emerging at the core-cladding interface. Premature cracking results from 
this. Another potential issue is internal corrosion. This occurs when the underlying black steel corrodes 
despite there being no visible evidence of corrosion on the cladding. Kahrs et al. (2001) echoed some of the 
concerns of Cross et al. (2001), observing that while stainless clad rebar is more resistant to corrosion than 
conventional types of reinforcing steel, its cut ends require protection because the underlying black steel is 
exposed to ambient conditions. While Cross et al. (2001) estimated that stainless clad rebar can have a 
service life of up to 75 years, imperfect bonding between the cladding and underlying steel must be resolved 
to achieve this level of durability.  

Cui and Sagüés (2003) examined the corrosion behavior of stainless clad rebar under a variety of test 
conditions: no cladding breaks, purposefully introduced cladding breaks, different simulated concrete pore 
solutions, and concretes with varying levels of chloride. Stainless clad rebar fabricated with isolated ends, 
which had their ends protected with a stainless steel cap or welding overlay, were very resistant to corrosion, 
even when exposed to a liquid solution with extremely high chloride levels. One year after exposure, the 
stainless clad rebar still exhibited no corrosion when embedded in concrete with chloride concentrations of 
up to 8 percent by weight of concrete. Stainless clad rebar that was placed in a saturated Ca(OH)2 (calcium 
hydroxide) solution at 104o F (40o C) for six months remained passive. After being moved into a chamber 
with a relative humidity of 100 percent corrosion did not occur on these samples. Specimens with 1-mm 
holes drilled into the cladding did, however, display signs of corrosion after being placed in a Ca(OH)2 
solution for 100 days. Using observation data, Cui and Sagüés (2003) developed simulation models that 
demonstrated the rate of corrosion for carbon steel enveloped by stainless steel cladding is influenced by 
the concrete’s resistivity and the size of clad breaks. High-performance concretes and no (or very small) 
imperfections in the cladding should result in less corrosion. Cui et al. (2003) reaffirmed many of the 
findings of Cui and Sagüés (2003), noting that stainless clad reinforcing steel without imperfections or 
holidays is extremely resistant corrosion when immersed in Ca(OH)2 solutions with chloride concentrations 
of up to 5 percent by weight of concrete. Specimens with breaks in their cladding underwent localized 
corrosion in a Ca(OH)2 solution with a chloride concentration of 1 percent by weight of concrete.         

2.2.5 Chrome Reinforcing Steel 
Beginning in the early 1990s, the FHWA, American Iron and Steel Institute, and the U.S. Navy embarked 
on a project to develop low carbon, high-performance steels for use in bridge construction. Out of this 
research, several commercially available alloys emerged, one of which was MMFX® ChromX, which is a 
nanostructure modified steel (Rana et al., 2009). Its microstructure differs from conventional steel, having 
a laminated lath structure that is often described as resembling plywood. This confers greater strength, 
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ductility, toughness, and corrosion resistance than black steel. Proponents claim that its corrosion resistance 
is on par with stainless steel despite it being much less expensive. Some states have begun to use MMFX® 
ChromX and phase out ECR. Weyers et al (2006) reported that the Virginia DOT planned to use MMFX® 
ChromX along with stainless steel and stainless clad rebar for structural elements in highly corrosive 
environments. At the time, the price of MMFX® ChromX was comparable to black steel and less than 
ECR. Mirmiran et al. (2009) also recommended the use of MMFX® ChromX in the state of Florida, 
concluding that it has the potential to serve as an alternative means of reinforcement, although they 
suggested further testing (e.g., pull-out tests to evaluate bond length and the effectiveness of hooks and 
mechanical anchorages, assessment of fatigue performance). Barr and Wixom (2009) discussed a pilot 
project in Utah that incorporated MMFX® ChromX steel and suggested that bridge decks likely to be 
exposed to high traffic volumes or significant quantities of deicing salts would benefit from using MMFX® 
ChromX, stainless clad rebar, or stainless steel reinforcement for construction. Although it has received 
mostly favorable notices, research focused on MMFX® ChromX steel remains scarce, although early 
results appear promising. Indeed, the chloride concentration threshold at which corrosion will initiate in 
MMFX® ChromX is approximately four times that of conventional black steels (Barr and Wixom, 2009).  

Rizkalla et al. (2005) discussed an experiment that compared the performance of Grade 60 steel and 
MMFX® ChromX steel. The experiment investigated three concrete bridge decks with span-to-depth ratios 
of 12.5 and tested them until they failed using concentrated loads (i.e., simulated truck wheel loadings). 
Three test conditions were examined: Grade 60 steel, MMFX® ChromX steel, and 33 percent less MMFX® 
ChromX steel. For the latter condition, MMFX® ChromX steel was used, however there was one-third the 
amount used as reinforcement than in the MMFX® ChromX base scenario to determine the benefits of its 
high-strength properties. The simulated deck with one third MMFX® ChromX steel attained the same 
ultimate load-carrying capacity and deflection at service load as decks reinforced with Grade 60 steel. 
Disbonding of MMFX® ChromX steel bars lowered the ultimate strength 6 percent. Overall, the MMFX® 
ChromX steel displayed good performance and Rizkalla et al. (2005) endorsed the claims of higher 
corrosion resistance.   

Chajes et al. (2005) performed several laboratory simulations in preparation for the use of MMFX® 
ChromX on the reconstruction of a bridge in Newark, Delaware. Based on laboratory results, they observed 
that MMFX® ChromX has a yield strength approximately twice that of regular steel. But they cautioned 
that designers must be careful not to produce designs in which beams are over-reinforced. They also 
observed that the steel does not have a clear yield point and that it is less ductile than black steel. The 
strength of MMFX® ChromX was comparable to standard black steel, however, they warned that beams 
reinforced with MMFX® ChromX could potentially develop larger cracks than beams constructed using 
black steel.    

Chiaw and Harik (2005) wrote about a KYTC bridge along CR5128 in Scott County, Kentucky, that was 
constructed with both stainless clad rebar and MMFX® ChromX steel (one span was built with each 
material). During testing, they found that MMFX® ChromX had a nonlinear moment-curvature response, 
and that decks constructed with MMFX® ChromX steel exhibited higher ultimate strengths than decks 
fabricated with stainless clad rebar — 57 percent higher in the positive moment region and 85 percent in 
the negative moment region. MMFX® ChromX also had a nonlinear stress-strain relationship. The area 
underneath the moment-curvature curves was smaller for MMFX® ChromX than stainless clad rebar. As 
of their writing, field investigations had been conducted over a limited period (one year). The decks 
remained in excellent overall condition with only very minor cracks detected — so small they could not be 
measured. The study established a long-term monitoring program, however, no additional published results 
have been made available.  
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DeJong et al. (2009) studied the fatigue performance of MMFX® ChromX and 316LN stainless steel in 
corrosive environments. They compared the performance of both materials under variable amplitude 
fatigue, applied in both an ambient laboratory setting and corrosive conditions. Corrosive conditions were 
simulated through an impressed current or by ponding a NaCl solution on test specimens. The 316LN 
stainless steel and MMFX® ChromX steel were less vulnerable to corrosion fatigue than black reinforcing 
steel. Both materials also retained their intrinsic fatigue limits under corrosive conditions, which indicated 
that their resistance to corrosion fatigue at low stresses was significantly better than black steel. Under 
ambient environmental conditions, the MMFX® ChromX fatigue limit was 1,150 MPa. This fell to 900 
MPa when the material was exposed to corrosive surroundings. Both materials also performed worse in 
corrosive environments when overloads were applied, with their lifespans being 50-85% shorter than in 
ambient conditions, however, this performance far outpaced that of conventional black steel. Although the 
stainless steel did not develop rust in corrosive conditions, some light surface rusting emerged on the 
MMFX® ChromX. While DeJong et al. did not offer a recommendation, their conclusions appear to suggest 
that both materials are viable replacements for conventional black steel in bridge construction.   

2.2.6 Multi-Coating Reinforcing Steel 
Several reinforcing steel types are available or coming available that combine a polymer (e.g., epoxy) 
coating over zinc coated steel. One product, Z-bar, uses thermally bonded zinc (probably a powder) over 
black bars with a thermally bonded epoxy layer (yellow in color to distinguish it from green rebar). 
Continuous galvanized rebar can also be coated with a polymer. In both cases, if the polymer coating is 
breached, the zinc layer will protect the steel rebar from corrosion. In both cases, since the zinc coating is 
ductile, the coated bars can be bent. Tremblay et al. (2012) performed laboratory tests of eight metallic 
rebar materials including: black, MMFX® ChromX, epoxy coated, Z-Bar, stainless clad, high-nickel 
stainless, high-manganese stainless and duplex stainless steel. Rebars were subjected to a 3 percent sodium 
chloride solution bath three days a week for 8 hours. The samples were removed from the bath and dried 
under ambient conditions. This procedure was repeated for 260 cycles, thought to be equivalent to 10 years’ 
exposure under Vermont’s climatic conditions. Z-bar, stainless clad and solid stainless steel rebars all 
showed low corrosion compared to the other materials.  
 
2.2.7 Fiber Reinforced Polymers 
The application of fiber reinforced polymers (FRPs) to civil engineering projects has increased over the 
past 30 years. The first application of FRP (glass) on a U.S. bridge occurred in 1996. Project designers and 
engineers have increasingly turned to FRPs because they are lightweight, ductile, and durable (Keller, 
2001). Wanting a reinforcement solution for bridges that does not corrode when subjected to harsh 
environmental conditions, state DOTs have experimented with various forms of FRPs as a replacement for 
more conventional reinforcement methods (e.g., carbon steel, ECR). While the American Concrete Institute 
(ACI) has only issued non-mandatory design guidance for FRPs, it has authored mandatory specifications 
for using carbon FRP and glass FRP to reinforce concrete (ACI 440.5-08 Specification for Construction 
with Fiber-Reinforced Polymer Reinforcing Bars and ACI 440.6-08 Specification for Carbon and Glass 
Fiber-Reinforce Polymer Bar Materials for Concrete Reinforcement). The American Association of State 
Highway Transportation Officials has also released guidance on the use of FRP. 

FRPs have two components — a fiber, which is made from a material, such as carbon, glass, aramid, and 
recently, basalt, and a resin (polymer) — and come in a variety of forms including shot, chopped, long, and 
woven (Busel, 2012). Glass FRP is typically the least expensive (Benmokrane et al., 2002) and has found 
the most widespread use. Although basalt FRP has received greater attention because it is environmentally 
friendly (Dhand et al., 2015). Fibers are the source of strength and stiffness whereas the polymer protects 
and transfers the load between fibers. Resins fall into two categories. Thermoset resins, which are most 
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commonly used for structural purposes, are liquid at room temperature. Once they have been heated and 
cured they attain a solid state, after which they cannot revert to liquid or be reformed. The most common 
thermoset resins are polyester, vinyl ester, polyurethane, and epoxy. Each of these come with advantages 
and disadvantages (Busel, 2012). The other class of resins is thermoplastic resins, which are solid at room 
temperature and liquefy upon heating. Once they have been heated, they are cooled under pressure, re-
attaining a solid form. Because FRP is anisotropic, it possesses high strength in the direction of fibers and 
enhances shear strength, dowel action, and bond performance. FRP does not exhibit yielding and remains 
linear elastic until failure.  

Many researchers have discussed the benefits and downsides of FRPs in a civil engineering context (e.g., 
Keller, 2001; Bakis et al., 2002; Hastak et al., 2004; Alampalli and Ettouney, 2006; Böer et al., 2013). From 
a structural perspective, FRPs display high strength-to-weight ratios, high stiffness-to-weight ratios, good 
ductility, and are lightweight, which can lead to a quicker and smoother installation once construction crews 
become accustomed to assembling them. The tensile strength of FRPs is better than steel despite being one-
quarter of the weight. Other benefits of FRPs include greater durability and more reliable performance, 
lower lifecycle costs compared to traditional methods of reinforcement, high corrosion and fatigue 
resistance, and a high live load capacity. Additionally, FRPs minimize the use of heavy equipment and 
provide a good option for extending the lives of superstructures needing repairs.   

Understandably, state DOTs have been intrigued by a reinforcing material that is seemingly impervious to 
chloride-induced deterioration. Although promising, researchers have also reported on the negative 
qualities of FRPs. As Böer et al. (2013) observed, FRPs are not immune from deterioration when exposed 
to harsh environmental conditions. Subjecting FRPs to salts and freeze-thaw cycles may accelerate their 
degradation, the latter owing to the expansion and contraction of salt deposits. Using FRPs as a reinforcing 
material is also much more expensive than conventional steels. Nystrom et al. (2003) argued on the basis 
of two demonstration bridge projects that the improvements in performance FRPs offer does not justify 
their much higher costs, and they would not be cost competitive with traditional reinforced-concrete 
bridges. However, they suggested FRPs might be a viable option for standard short-span bridges. Other 
challenges associated with the use of FRPs include the restricted number of design figurations they can be 
fabricated into, structural engineers having little experience with them, and possible failures of the wearing 
surface (e.g., Alampalli and Ettouney, 2006). Because their adoption for civil engineering application is 
recent, there are no long-term performance data for FRPs (see below). Another potential drawback of FRPs 
is they often require a deflection-driven design because they have a low modulus of elasticity. Evidence 
also suggests that FRPs are more sensitive to thermal changes than steel or concrete.     

The short-term performance of FRP reinforcement is somewhat mixed, however, several studies have 
concluded it is an effective approach and resists deterioration better than steel reinforcement. Mufti et al. 
(2005) examined concrete cores of bridges constructed with glass FRP (composed of E-glass and vinyl 
ester) over a 5-8 year period against control specimens. Although laboratory tests have shown that alkali 
has a propensity to attack and undermine glass FRP, Mufti et al. did not observe gaps between the glass 
FRPs and concrete. There were no outward signs of degradation on the matrix or glass fibers either. This is 
critical because degradation at the glass fiber-polymer interface can impair the stability of glass FRP and 
lead to disbonding. No hydrolysis reaction occurred in the glass FRP exposed to natural environments, nor 
were there significant changes in the glass transition temperature. Phillips et al. (2005) reviewed a 
demonstration project in Virginia that involved construction of a three-span bridge. Two spans were 
reinforced entirely with ECR while on the third span glass FRP in the top mat was paired with ECR in the 
bottom mat. The researchers instrumented the bridge and monitored its performance over the course of two 
years. They found that glass FRP bars distributed the transverse load in the same manner as the spans 
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reinforced just with ECR. Impact factors were less than design values in the first year, but rose above the 
design values during the second year. However, researchers did not find evidence of cracking or anomalous 
structural behaviors. The measured stress in the glass FRP bars were less than the design allowable stress. 
Gooranorimi et al. (2016) evaluated GFRP rebar from a TXDOT bridge after 15 years of service and found 
the rebar to be in good physical and structural condition.     

Trejo et al. (2005), based on a series of laboratory experiments, observed that glass FRPs exposed to water 
and alkaline solutions could have a lower capacity than the design tensile strength. However, these 
experiments did not replicate field conditions (i.e., direct exposure to water and alkaline solutions). 
Reinforcement embedded in concrete does not encounter these conditions because concrete does not have 
saturated pores. Following this research, the samples of glass FRP-reinforced concrete samples were stored 
outside with the aim of testing them later. Trejo et al. (2009) reported on this follow-up testing. Glass FRP 
bars were removed from concrete specimens and tested for residual tensile capacity and modulus of 
elasticity. After determining the glass FRP exhibited reduced capacities, they developed a numerical model 
to simulate the behavior of glass FRP reinforcement in concrete. The model indicated that during the first 
several years the loss of mean stress capacity occurs rapidly but wanes over time. This decay is likely to be 
more severe in smaller bars. The model anticipated that the probability of bars not meeting ACI 440 
requirements was 0.44 for #3 bars, 0.25 for #5 bars, and 0.2 for #6 bars. While this should not necessarily 
preclude the use of FRPs for bridge construction, Trejo et al. (2009) cautioned that additional research is 
needed, especially given that the specimens they examined were not exposed to the loads generally expected 
of real-world situations.  

Key Takeaways 
• No steel is immune to corrosion. All steel types eventually corrode, although the timetable varies 

according to the type of preventative actions taken.  
• ECR has been the most popular choice among transportation agencies to deal with the problem of 

premature bridge corrosion. Research studies from the past 25 years present a mixed (although mostly 
favorable) picture. Some have endorsed the utility of ECR, while others have questioned its protective 
capacity, citing instances where epoxy coatings failed to arrest corrosion, disbonded from the 
underlying steel, or disintegrated themselves. Epoxy coatings break down over time, and this may occur 
more quickly in moist and humid environments.  

• Galvanized steels have seen limited use compared to ECR and other materials. Its proliferation was 
likely hobbled in the 1970s by an FHWA statement discouraging its use (although this was later 
withdrawn). Field studies indicate that decks engineered with galvanized rebar have generally 
performed well. Like stainless clad rebar, imperfections in zinc surfaces can expose the underlying steel 
to corrosive agents. 

• Solid stainless steel is probably the material recommended most often to achieve a 75-100 year service 
life. It is much more expensive than alternative options and typically reserved for the most corrosive 
and high-traffic environments. 

• Stainless clad rebar carries many of the benefits of solid stainless steel but at a lower price point. There 
are several potential issues with stainless clad rebar — holidays and other imperfections in the cladding 
can allow the infiltration of chlorides and moisture; imperfectly sealed end caps can also let in moisture 
and chlorides. Both these issues may accelerate corrosion.  

• There is still little field research available on FRPs. Their installation on demonstration projects is quite 
recent, and therefore there are no long-term performance data. Laboratory experiments have indicated 
additional work is necessary to understand how severe environmental conditions affect the degradation 
of FRPs as well as how their stress capacities change over time. 
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• Numerous authors observe that merely protecting a bridge deck’s reinforcing steel is not sufficient to 
delay the onset of corrosion. Establishing a thick cover with high-performance concrete is at least as 
important for extending the service life of a bridge. Preventing the development of cracks is also critical 
for delaying corrosion.  

 

2.3 Supplementary Cementitious Materials 
In the 1970s state DOTs began to incorporate supplementary cementitious materials (i.e., admixtures), into 
concrete formulations to improve their durability and delay the onset of corrosion. Common admixtures are 
silica fume, fly ash, ground granulated blast furnace slag, calcium nitrite, sodium monofluorophosphate, 
and hydroxyalkylamines (see below for a description of each; often the blanket term pozzolans is applied 
to these materials). A less widely used supplementary cementitious materials is disodium tetrapropenyl 
succinate. The logic underpinning the use of these materials is straightforward. They produce a denser 
concrete, reduce its permeability, constrain the flow of ions, increase electrical resistivity and slow down 
the corrosion current (McDonald, 2011; Hornbostel et al., 2013). Numerous researchers have demonstrated 
that supplementary cementitious materials decrease porosity and limit chloride infiltration (Dhir and Jones, 
1999). Along with these benefits, Rupnow (2012) observed that using admixtures improves the workability 
and finishability of concrete; produces a higher ultimate strength than Portland cement concrete; reduces 
the early rate of heat generation; and creates a final concrete whose freeze-thaw resistance, modulus of 
elasticity, and resistance to deicing salts is roughly equivalent to those of Portland cement concrete. 
Incorporating materials, such as fly ash, into a concrete mixture reduces the concrete’s capillary pore system 
and diminishes its permeation properties, making it harder for chloride-infused water to reach the level of 
steel reinforcement (Dhir and Jones, 1999). Because most supplementary cementitious materials are 
industrial waste, reusing them in concrete can have an environmentally positive impact. Table 2 summarizes 
the characteristics of several materials typically used as admixtures.  

Hansson et al. (2012) noted that some admixtures are termed corrosion inhibitors. Corrosion inhibitors are 
defined as chemical compounds that reduce the corrosion rate by affecting the anodic or cathodic half-cell 
reactions, or both. Materials that affect the transport mechanism of the aggressive species to the reinforcing 
steel bars are not considered inhibitors such as pozzolans (e.g., microsilica) or sealants. Hansson noted that 
corrosion-inhibiting admixtures in concrete function by: 

• Increasing the resistance of the passive film on the steel to breakdown by chlorides; 
• Creating a barrier film on the steel; 
• Increasing the degree of chloride binding in the concrete; 
• Scavenging the oxygen dissolved in the pore solution; and 
• Blocking the ingress of oxygen. 

There are many questions about the efficiency of the inhibitors in steel reinforced concrete structures. Lack 
of understanding about the mechanistic, environmental, and safety aspects are some of the major limitations 
of using inhibitors in reinforced concrete structures. For example, the use of calcium nitrite is allowed in 
many jurisdictions but not permitted in others. Corrosion inhibitors should conform to ASTM C 1582, 
Standard Specification for Admixtures to Inhibit Chloride-Induced Corrosion of Reinforcing Steel in 
Concrete. 

Concrete mixtures that blend cement and one supplementary cementitious material (i.e., fly ash) are termed 
binary concrete mixtures, while a formulation that contains cement plus two supplementary cementitious 
materials are classified as ternary mixtures. Researchers have begun to investigate whether including two 
or more supplementary cementitious materials produces significant benefits (e.g., Civjan et al., 2005; 
Nidiffer et al., 2014). While there is no consensus on whether ternary formulations are more effective at 
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limiting corrosion than binary mixtures, there is evidence to suggest this is the case. Ternary formulations 
do have several downsides: increased setting times, unpredictable changes in the time between the initial 
and final set, a slower gain in strength compared to other concrete blends, and a prolonged curing time, 
which discourages its use in very cold settings.   

Table 2 Key Types of Supplementary Cementitious Materials 
Material Notable Properties and Features 
Fly Ash • Derived from the burning of coal, the most 

frequently used supplementary cementitious 
material 

• Consists primarily of silicate glass, it contains 
silica, alumina, iron, calcium, and a number of 
minor constituents 

• There are two classes of fly ash: 
o Class F fly ash (most commonly used in 

the US) has a low calcium content (< 
10% CaO) and is less than 5% carbon 

o Class C fly ash has a much higher 
calcium content (between 10% and 30% 
CaO), and is less than 2% carbon 

Ground Granulated Blast Furnace Slag • A byproduct of iron production, it is passed 
through a granulator and ground prior to its 
incorporation into concrete 

• Three grades are available: Grades 80, 100, and 
120 

• Grades 100 and 120 are most often used in 
concrete structures because they gain strength 
more quickly than Grade 80   

Silica Fume • A byproduct produced when coal is burned 
• A noncrystalline form of silicon dioxide (typically 

> 85%) 
• Available in powder and liquid forms 

Calcium Nitrite • A powder manufactured by reacting hydrated lime 
with NOx gas 

• Used to inhibit corrosion and accelerate the setting 
of concrete 

• Converts to nitrate in the environment, which has a 
lower toxicity  

 
Thomas and Bamforth (1999) discussed the results of a long-term study that examined the field performance 
of concretes formulated with slag and fly ash in a variety of settings — laboratory, sea walls, hydraulic 
dams, and the splash zone of sea fronts. To test concrete performance for the latter condition, the researchers 
cast and cured reinforced concrete blocks using three distinct concrete formulations — one contained only 
Portland cement (control condition), one contained Portland cement and 30% fly ash, and the final mixture 
contained Portland cement and 70% slag. Models for chloride diffusivity were developed based on the 
performance of the concrete blocks and data collected from the other field sites mentioned. Observations 
revealed that after two years the diffusivity of concrete mixed with fly ash was one order of magnitude 
lower than the mixture containing only Portland cement. The model anticipated this to be two orders of 
magnitude lower after 100 years. Concrete formulated with slag exhibited significantly higher diffusivity 
than other mixtures the first month after it was cast, however, this quickly declined with the passage of 
time. After 30 years of exposure in a marine environment, the chloride concentrations at a depth of about 2 
inches (50 mm) in fly ash and slag concrete should be negligible. Their modeling indicated that 
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approximately 200 years would need to elapse before chloride concentrations hit threshold levels in the fly 
ash concrete mixture and that transport rates fall as concrete ages. Both points underscore the importance 
of using adequate concrete cover over reinforcing steel. Thomas and Bamforth recommended the use of fly 
ash or slag to prolong the service lives of concrete structures, especially in environments saturated with 
chlorides.   

In a far-reaching study, Civjan et al. (2005) investigated the effects of different combinations of admixtures 
on corrosion resistance. They studied 14 concrete formulations, which contained varying amounts of 
Portland cement, calcium nitrite, silica fume, fly ash, ground granulated blast furnace slag, and disodium 
tetrapropenyl succinate (DSS) (see Table 1, Civjan et al, 2005, p. 690 for exact formulations). Each 
formulation contained from one to three admixtures. Researchers mixed and placed the concrete pursuant 
to ASTM C 192-02. Blocks then went through testing cycles in which they were exposed to a ponded NaCl 
solution, dried, and then exposed to the solution again. Testing lasted for approximately two years. The 
researchers found that calcium nitrite, when used by itself, established reliable protection against corrosion 
in uncracked concrete. However, if cracking was present, it was less effective, and the chloride threshold 
was quickly exceeded. DSS exhibited the best performance when used by itself or in combination with 
calcium nitrite. It significantly reduced the permeability of concrete and warded off corrosion even in the 
presence of cracking. One tradeoff involved in the use of DSS, however, is its negative impact on the 
compressive strength of concrete. Concrete formulations that contained only silica fume, or silica fume and 
calcium nitrite, were more prone to micro-cracking. To achieve maximum protection, Civjan et al. 
recommended using a ternary mixture consisting of calcium nitrite, silica fume, and fly ash (all in moderate 
amounts), or a combination of calcium nitrite and blast furnace slag. Except for the formulations with DSS, 
all the mixtures had a higher compressive strength and displayed better performance and higher quality 
than a formulation that contained only Portland cement.        

Although their findings mostly reaffirmed the conclusions of earlier work, Montemor et al.’s (2002) 
investigation of how binary concrete mixtures perform in environments with high levels of carbon dioxide 
offers a useful starting point for understanding conditions where admixtures actually degrade the resistivity 
of concrete. Their study looked at the effects of fly ash in concrete with high chloride levels and exposure 
to an atmosphere with high CO2 concentrations — 5 percent. In the high-CO2 environment, the presence of 
fly ash during the setting process facilitated carbonation, which increased concrete porosity and reduced 
concrete resistance. This reaction was exacerbated by chlorides. In environments with natural levels of CO2, 
carbonation proceeded slowly, consumption of Ca(OH)2 was insignificant, and the inclusion of fly ash 
helped to bind chloride and block pores, which in turn diminished the rate at which chlorides penetrated 
concrete. In the CO2-rich environment, fly ash increased the corrosion rate by an order of magnitude. There 
were complex competition effects among the carbonation rate, pozzolanic reactions, and chloride diffusion 
that influenced chloride concentrations. While the level of CO2 in the experiments was well above natural 
atmospheric levels, Montemor et al. cautioned against using fly ash in extremely polluted environments.         

Although its use is uncommon today, volcanic ash was one of the first natural pozzolans used to densify 
concrete. Fajardo et al. (2009) investigated the use of volcanic ash (composed of andesite) from Mexico to 
measure how well it enhances corrosion resistance. Three different concrete formulations were studied — 
a control mixture that only contained Portland cement and two additional formulations whose proportions 
of natural pozzolans were 10 percent and 20 percent, respectively. All testing occurred in a laboratory 
setting. During each testing cycle, specimens were exposed to chlorides through a partial immersion in a 
NaCl solution for three days and then allowed to dry for four days. Fajardo et al. observed that the inclusion 
of natural pozzolans lowered the porosity of the mortar matrix and increased the specimens’ electrical 
resistivity. The best performing concrete contained 20 percent natural pozzolans. It had the highest 
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resistivity, which significantly increased induction time and lowered the corrosion rate by an order of 
magnitude. Although including pozzolans at this level decreased the concrete’s compressive strength, the 
authors argued this loss in strength was a reasonable tradeoff given its better corrosion protection and the 
concrete’s ability to stymie the passage of chlorides. If users are unwilling to compromise in this area, they 
recommended the addition of superplasticizers during mortar preparation, as they can replace some of the 
lost compressive strength.  

Cracking that occurs soon after the placement of concrete influences the rate and magnitude of chloride 
penetration. As such, limiting early-age cracking helps delay the onset of corrosion. Bayard et al. (2010) 
investigated the influence of supplementary cementitious materials, water-to-cement ratio, and placement 
and curing temperatures on the development of stresses and early-age cracking in concrete. They tested five 
concrete mixtures at various temperatures to simulate placement during the four seasons. Three of the 
formulations included supplementary cementitious materials — Classes C and F fly ash and ground 
granulated blast furnace slag. After casting the concrete, rigid cracking frame testing and free shrinkage 
testing were performed to evaluate shrinkage and cracking. Lowering the placement and curing 
temperatures postponed and reduced the temperature peak, reduced stresses, and delayed cracking. Higher 
amounts of admixtures, through their effects on hydration rate, temperature, and stiffness development were 
associated with increased time to cracking. The cracking times for the formulations with admixtures were 
significantly less than those for the control condition (a mixture that contained only Portland cement). The 
combination of a reduced rate of heat generation and modulus of elasticity development were the primary 
factors that improved cracking resistance. Tensile stresses developed more slowly in formulations with 
admixtures that were placed during hot summer temperatures. Overall, Bayard et al. concluded that 
supplementary cementitious materials were effective in delaying cracking when concrete was poured during 
hot weather. Whiting et al (2000) found that the addition of silica fume likely does not have much of an 
impact on early-age cracking. However, Alaskar and Hooton (2016), based on laboratory experiments, 
argued that concretes with supplementary cementitious materials may be more susceptible to autogenous 
and thermal shrinkage, and therefore more vulnerable to early-age cracking. Given the inconsistency in 
research findings, practitioners should identify the potential benefits and drawbacks of particular 
admixtures. Because cracking provides an entry point for chlorides, transportation agencies wanting to 
minimize the penetration of chlorides early in the lifecycle of concrete decks should thoroughly investigate 
the performance of the supplementary cementitious materials they plan to use, and recognize there may be 
uncertainty over how specific concrete formulations will perform.   

Given their study area’s proximity to Kentucky, Nidiffer et al.’s (2014) investigation of Tennessee bridges 
warrants extended discussion. This research combined analysis of field specimens with laboratory 
experimentation to determine the most effective concrete formulations for inhibiting chloride penetration. 
Rapid chloride penetration tests and surface resistivity tests were used to characterize the performance of 
different concrete mixes. The state currently uses binary concrete formulations, and all samples obtained 
from the field were Class D mixtures, which contained cement, Class F fly ash, limestone, and natural sand. 
All samples collected from the field had a below average ability to resist the penetration of chloride ions. 
Twenty-eight days after casting, the binary mixtures displayed moderate to high chloride ion penetrability 
characteristics; 56 days following casting, the penetrability characteristics had improved modestly. 
However, Nidiffer et al. remarked that achieving sufficient durability with binary mixes is unlikely, and 
that over time concrete deterioration is likely due to poor resistivity. Based on laboratory work, they 
proposed a ternary concrete mixture to improve concrete durability and resistivity. Their formulation 
contains 50 percent cement, 30 percent slag, and 20 percent Class F fly ash, along with quantities of coarse 
and fine aggregates similar to the Class D mixtures they examined. Laboratory analysis indicated that 
ternary mixtures exhibited very low chloride ion penetrability within 28 days of casting and a higher 
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compressive strength than binary mixtures. No evident shrinkage cracking was visible in the ternary-
formulation concrete a month following casting. The laboratory observations encompassed a relatively 
short period (56 days), however, the authors proposed a ternary blend specification (see Table 6 in Nidiffer 
et al., 2014) for use by the state in bridge construction. The blend contains less cementitious material than 
binary mixes. Because of this and the use of less water during mixing, it should undergo less shrinkage than 
binary concrete blends. Nidiffer et al. commented that other states could benefit from the use of ternary 
blends as they yield a finished concrete with greater durability that more effectively resists the chloride ion 
penetration. This finding meshes with an earlier analysis from Smith et al. (2004), who also observed that 
supplementary cementitious materials, and more specifically ternary mixtures, successfully reduced the 
infiltration of chloride and prolonged the corrosion initiation period. A key benefit of using a ternary 
mixture was the higher resistivity it conferred to the concrete — resistivity values were higher for ternary 
mixtures than for binary mixtures.  

Several other studies are worth quickly highlighting, although not in the same level of detail as those 
presented above, given that they largely corroborate other researchers’ findings. Sideris and Savva (2005) 
investigated how the addition of calcium nitrite impacts corrosion resistance and concrete durability, 
finding that addition improved the corrosion resistance of all the concrete formulations they tested, most of 
which contained additional supplementary cementitious materials, such as fly ash and natural pozzolans. 
Carbonation depth fell or remained unchanged, while it did not appear that it significantly affected concrete 
permeability. Choi et al (2006), based on laboratory experiments, confirmed that fly ash improves the 
corrosion resistance of concrete and reduces the corrosion rate. Fly ash decreased the permeability of 
concrete, which contributed to the improved resistance. Different admixtures affect concretes in sometimes 
disparate ways, making it imperative for practitioners to thoroughly research what the most likely effects 
are of their chosen admixture(s).  

Key Takeaways 
• Research studies have confirmed that supplementary cementitious materials improve the density of 

concrete, reduce its porosity, and increase electrical resistivity. 
• These properties delay the onset of corrosion, prolonging the service life of the bridge decks in which 

they are used. 
• The use of some admixtures may slightly reduce the compressive strength of concrete. Decisions 

regarding which admixture to use should account for potential tradeoffs between increased corrosion 
protection and loss of compressive strength. 

• Recent work on ternary concrete formulations, which contain cement plus two supplementary 
cementitious materials, indicate better performance than binary mixtures as they are less prone to 
cracking and more effectively block the passage of chloride ions. Engineers should investigate the blend 
of materials that is mostly likely to achieve the best performance in Kentucky’s varied environmental 
conditions.   
 

2.4 Surface and Crack Treatments 
This section reviews the performance of concrete sealants2, which are applied to the surface of concrete, or 
cracks within concrete, to slow the ingress of water and chloride ions. Although concrete formulations used 
for bridge decks should adequately protect against vehicle traffic and environmental conditions, sealants 
offer more uniform protection, safeguarding vulnerable portions of the bridge deck against corrosive agents 
(Attanayake et al., 2006). The American Concrete Institute recommends applying sealants to cracks greater 
than .007 inches (0.18 mm) in width or protecting them with a system designed to prevent the ingress of 

																																																													
2 Throughout this section, sealant, sealer, and surface treatment will be used interchangeably.  
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chloride ions. Accordingly, there are many situations in which concrete decks can benefit from the use of 
sealants.   

The first portion of the review briefly discusses various sealants and how they work. Much of this discussion 
draws heavily from several recent articles and reports that provide useful overviews of sealant types and 
their long-term field performance (Freitag and Bruce, 2010; Johnson et al., 2009; Giannini et al., 2015; Pan 
et al., 2017a, 2017b)3. After covering the basic properties of sealants, the report discusses studies that have 
attempted to determine which sealants excel at slowing the ingress of chloride ions — and therefore the 
corrosion of reinforcing steel — in various environments. As in other sections, field studies are included as 
much as possible. Because the number of field studies is limited, several laboratory studies are discussed; 
despite imperfectly replicating field conditions, they are nonetheless instructive. Some reports and articles, 
in their assessments, explicitly mention the names of commercially available products, whereas others refer 
to generic types of sealants (e.g., siloxanes) and enumerate their chemical properties. If a piece mentioned 
brand names, they are included here.  

Broadly, there are two categories of concrete surface treatments — organic and inorganic. Although organic 
treatments are used most frequently (e.g., linseed oil) they can have poor fire resistance, easily crack and 
detach from the underlying concrete, have a limited service life, and may be challenging to remove once 
their protective capacity diminish. Inorganic treatments have greater durability than organic materials, 
however, they have not been researched as thoroughly as organic sealants. Common inorganic surface 
treatments include sodium silicate, potassium silicates, lithium silicate, and fluosilicates. Pan et al. (2017a) 
grouped surface treatments into four categories based on their mode of operation: surface coatings, 
materials that produce a hydrophobic effect, pore-blocking treatments, and multifunctional surface 
treatments. Giannini et al. (2015) include a fifth category, which are thick surface treatments produced by 
combining mortar and a polymer matrix.  

Once applied, surface coatings form a continuous polymer film that blocks substances from entering the 
concrete substrate. Examples of surface coatings include traditional polymer coatings (epoxy resins, acrylic, 
polyurethane, and linseed oil), polymer/-clay nanocomposite coatings, and cementitious coatings. 
Generally, the protective films formed by surface coatings are less than 1 mm thick and do not penetrate 
concrete pores. These treatments are often used for repair work and for preventing the ingress of additional 
moisture once water ingress begins. Concrete surfaces treated with polymers resist water due to the barrier 
effect produced by the coating. Polymer nanocomposite coatings are stronger than traditional polymers, 
and have greater tensile modulus, abrasion and heat resistance, and thermal stability. Adding nanoparticles 
to a coating may reduce gas permeability on its surface and lower flammability. Incorporating nanoparticles 
increases the length of diffusion pathways, with the result being that the rate of polymer degradation may 
decline. A frequently used type of concrete protection is cementitious coatings. Polymer modified coatings 
are manufactured using a blend of polymer, cement, and aggregate. Although their use for transportation 
structures has been limited, geopolymers have shown promise in terms of enhancing the durability of 
concrete.  

Sealers that produce a hydrophobic effect (Giannini et al., 2015 refers to these as penetrant pore liners) 
penetrate the pores of concrete substrate. As they penetrate, they enlarge the contact angle. Without 
treatment, the contact angle can be small. Smaller contact angles produce a stronger molecular attraction 
between the water and concrete (de Vries and Polder, 1997). Once the angle exceeds 90 degrees, the surface 
becomes hydrophobic and inhibits water penetration. The treatments do not create a continuous membrane, 

																																																													
3 This is mentioned here to avoid numerous in-text citations, which would quickly become repetitive and distracting 
to the reader.  
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and thus water vapor can generally enter or exit the pores, letting the concrete breathe. Several factors 
influence the depth of penetration: 1) the type of sealant, 2) the concrete’s water-to-cement ratio, 3) the 
concrete’s initial moisture content, and 4) surface preparation of the concrete substrate (Dai et al., 2010). 
The most common penetrant pore liners are silane and siloxane, which are derived from silicone. Many 
commercial sealers contain a combination of silane and siloxane; combining them produces a sealant that 
has the most desirable features of both materials — silane increases penetration depth, improves water 
repellency, and enhances durability, while the siloxane component blocks pores and diminishes the 
sealant’s volatility (Freitag and Bruce, 2010). Johnson et al. (2009) found that the most commonly used 
deck treatment in the Midwest US is silane, with solvent-based silanes being a more popular choice than 
water-based silanes because of their deeper penetration into the concrete substrate. While transportation 
agencies generally prefer solvent-based silanes because they release volatile organic compounds, 
environmental regulations can limit their use of the material. When selecting a formulation, transportation 
agencies should be attentive to the project context and the type and quality of concrete being used. Freitag 
and Bruce (2010) observed that silanes/siloxanes with small molecules offer reliable protection for high-
quality concrete with a fine pore structure, whereas siloxanes with larger molecules may prove to be a 
sounder option for highly porous concrete.    

Pore-blocking surface treatments include lithium silicate, calcium silicate, and sodium silicate. After they 
are applied, they work by blocking capillary pores in the concrete surface. This increases the hardness of 
the surface and reduces its permeability. Blocking pores reduces the movement of air, water vapor, and 
other liquids in concrete, which may reduce the infiltration of chloride and carbon dioxide (thereby delaying 
corrosion caused by chlorides or carbonation). Some research has indicated that silicate-based solutions, 
like those listed above, are the most effective treatments. The most widely used pore-blocking sealant is 
likely sodium silicate. One downside of silicate solutions, according to Freitag and Bruce (2010) is that 
they may not perform well in concretes made with supplementary cementitious materials (e.g., slag, fly ash, 
amorphous silica) because these materials reduce the amount of calcium hydroxide in the concrete’s pore 
solution. They also warned against using silicate-forming treatments on cracked concrete (and uncracked 
concrete that may crack) because they may not penetrate sufficiently to protect the concrete that has been 
exposed by cracking.  

The final category of sealants is multifunctional surface treatments, which are named as such because they 
offer at least two modes of protection. Most of the products in this category have been developed in recent 
years and do not fit into the other classifications discussed. Treatments included in this group are silane-
clay nanocomposites (SCN), ethyl silicate, and super-hydrophobic paper sludge ash coating. SCNs produce 
a hydrophobic effect while modifying the microstructure of the underlying concrete, lowering the 
concrete’s permeability and reducing the infiltration of liquids and gasses. The clay reduces surface 
roughness, which means less surface area is directly exposed to ambient environmental conditions and to 
potentially severe conditions. Another multifunctional treatment, ethyl silicate, is an alkoxysilane 
compound that, when applied, forms a silica gel that fills the concrete’s pore networks. It potentially offers 
an environmentally friendly method of protecting concrete, however, it has several downsides — a slow 
reactive rate, potential cracking during shrinkage and drying, and limited ability to deter the effects of 
carbonation.       

Many factors influence the performance of surface treatments. The first is air permeability. Greater air 
permeability increases the carbonation rate, which can precipitate corrosion. However, it is important that 
a completely impermeable layer not sit atop the concrete. Lacking permeability, concrete is unable to 
breathe, which may lead to a build-up of water beneath the surface and intensify the damage and cracking 
that results from freeze-thaw cycles. For many polymer coatings, air permeability is near zero, which is one 
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of their principal drawbacks. Pan et al. (2017a) noted that studies have demonstrated silane and siloxane do 
not significantly affect air permeability and therefore are not resistant to the ingress of carbon dioxide. 
Bonding strength is the second factor that affects performance. To achieve their intended effect, surface 
treatments must adhere well to the concrete substrate — the bonding strength should not be less than 203-
254 psi (1.4–1.75 MPa). The strength of adhesion is the result of the chemical properties of the coating and 
primer, method of application, the quality and condition of the substrate, and the surface roughness of the 
substrate. The next variables to consider are penetration depth and coating thickness. Pore penetrating 
sealers must penetrate as deeply as possible to offer long-term protection and durability. Some of the factors 
which influence the penetration depth of sealants are molecular size and viscosity, solvent type, properties 
of the concrete substrate such as porosity and saturation degree, reaction time, reaction rate, and the 
thickness of the application. Table 3 contains a full list, which is reproduced from Attanayake et al. (2006).  

Table 3 Influences on the Depth of Sealant Penetration 
Concrete • Pore size 

• Pore distribution 
• Moisture 
• Crack width and density 
• Tortuosity of pore structure 
• Pore surface topology 

Penetrating Sealants • Viscosity 
• Contact angle 
• Surface tension 
• Molecular size 
• Molecular weight 

Environment • Temperature 
• Relative humidity 
• Application pressure 
• Sealant reactivity with substrate 

 
For coatings that do not penetrate the surface, the overriding consideration should be coating thickness. The 
fourth performance factor to examine is cracking resistance. If a treatment cannot heal cracks or provide 
sufficient resistance against cracking, its ability to function as a barrier will be compromised quickly. 
Lastly, the substrate properties and methods used to apply a sealer impact its performance. The effectiveness 
of any treatment will be influenced by characteristics such as the age and water content of the concrete 
substrate, treatment method (e.g., spraying, brushing, flooding), and the amount of sealer applied. A 
positive relationship between the performance of the surface treatment and concrete porosity has been 
detected, as concrete with higher porosity encourages the deeper penetration of sealers (Baltazar et al., 
2014).  

Before discussing individual studies, the report briefly summarizes the findings of several review articles 
that have attempted to document the performance of various sealers and draw general conclusions. Some 
of these pieces refer to individual research articles and reports. To avoid confusion over questions of 
attribution, the original articles are cited during the discussion of their content. 

Pan et al. (2017b) offer extensive commentary on sealant performance. As they note (and which should be 
kept in mind moving forward), it is unwise to directly compare the results from different research studies 
because of the wide variety of testing methods that are in use. Overall, it appears that surface treatments are 
effective in limiting chloride penetration, however, the effectiveness of individual products is contingent 
on the sealant type and the environment it is applied in. Generally, except for silane and siloxane, all surface 
treatments can reduce the rate of carbonation. Silane and siloxane control the moisture content of concrete 
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substrate, however, they do not reduce the air permeability, and therefore the diffusivity of carbon dioxide. 
Organic polymer coatings are generally the most effective at inhibiting carbonation. Many surface 
treatments increase the ability of concrete to resist abrasion. Epoxies confer the greatest protection in this 
regard while silanes offer more modest protection. Similarly, most surface treatments can mitigate the 
effects of freeze-thaw cycles, particularly in very cold environments. For example, if silane is used, two 
primary factors influence its effect on resistance to freeze-thaw cycles — the concrete’s initial moisture 
content (if initially dry, silane bolsters resistance) and whether the water pressure produced by freezing and 
thawing exceeds the hydrophobic forces inherent to the silane. Silane also offers additional protection if 
deicing agents are in use. Just as surface treatments reduce carbonation and the effects of abrasion, they 
have a relatively good track record of extending the service lives of reinforced concrete. However, the 
results have been uneven; several researchers have demonstrated that the application of silane reduces the 
corrosion current and delays the onset of corrosion in uncracked concrete. Other researchers have shown 
that silane may accelerate corrosion in cracked concrete (Tittarelli and Moriconi, 2010). Indeed, 
hydrophobic treatments are not the best choice if cracks are present because they may promote additional 
cracking by increasing the corrosion current. The additional cracking is a consequence of oxygen diffusing 
more quickly than it otherwise would through unsaturated pores, which are created by the hydrophobic 
effect. Pan et al. (2017b) cautioned readers about the potential issues that arise with surface treatments as 
they age and degrade. As degradation takes place, there is a tendency for the diffusion rate of chloride ions 
to exceed the rate of diffusion in untreated concrete. There are two reasons for this. First, significant 
amounts of chloride ions accumulate on the protected surface. As this protection breaks down, it opens 
pathways for the chloride ions, which may quickly descend into the concrete substrate. Second, before 
coatings begin to fail, they trap water, which leaves the concrete matrix saturated and potentially more 
vulnerable to chloride ingress.    

Johnson et al. (2009) authored a comprehensive review of sealants, summarizing several previous studies, 
both laboratory and field investigations, which we discuss in turn.  

Whiting (1992) studied the performance of three treatments in a laboratory — 1) a water-based silane with 
40 percent solids, 2) a solvent-based silane with 40 percent solids, and 3) a solvent-based siloxane with 20 
percent solids. Under dry conditions, the siloxane was the best performer, while silanes were more effective 
on moist concrete specimens. Concrete treated with the solvent-based silane (40 percent solids) displayed 
chloride contents between 9 and 36 percent lower than the water-based silane.  

Wright et al. (1993) established that siloxane and linseed oil are more effective at reducing chloride 
infiltration than silane. And specimens treated with just linseed oil significantly outperformed siloxane. 
Ultraviolet radiation exposure, however, can undermine the protective capacity of linseed oil. Weyers 
(1995) found that siloxane and silane performed better than epoxies in blocking chloride ions. On the other 
hand, Hagen (1995) found that epoxy coatings reduced chloride ingress more effectively than most of the 
silanes and siloxanes included in the study.  In the field component of his investigation, Wright et al. (1993) 
found that portions of a bridge treated with linseed oil contained less chloride than sections protected by 
silane and siloxane. The study also indicated that siloxane protected highway surfaces more effectively than 
silane, whereas silane outperformed siloxane on local roadways. Although there was no clear reason for the 
difference, Wright speculated that it may have been due to the siloxane having shallower penetration on 
highway applications.  

Hagen (1995) noticed there was little correlation between lab and field results. The reductions in chloride 
observed in field settings were considerably less than those documented in the lab. Also, there were clear 
year-over-year declines in the field performance of all sealants. Based on this observation, Hagen concluded 
that exposure to freeze-thaw cycles and vehicle-induced abrasion negatively impacted sealant performance, 
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and therefore explained the discrepancy between laboratory and field results. There were also no clear 
performance trends with respect to silanes versus siloxanes, solvent-based versus water-based sealers, or 
the solids content. Silanes and siloxanes were clearly better performers than thermoplastic emulsions and 
sodium-silicate surface coatings. Epoxies did not exhibit good performance. Hagen ordered the best 
performing sealants as follows: 1) water-based silane with 40 percent solids, 2) siloxane/silane mixture with 
40 percent solids, and 3) solvent-based siloxane with 15 percent solids. Smutzer (1993), like Hagen (1995) 
noted a large discrepancy between the field and laboratory performance of sealants. In the field, silanes 
were associated with the most significant chloride reductions, followed by epoxies and siloxanes. However, 
the performance of the epoxies and siloxanes were not statistically distinguishable from one another. As 
Wright (1993) observed, Smutzer (1993) found that a sealant’s ability to protect against chloride ingress 
waned over time. These results underscore an important point that should be kept in mind when comparing 
field and laboratory studies — laboratory studies tend to indicate much larger reductions in chloride ingress 
than do field studies because they are unable to simulate the ambient environment bridges are located in.  

As part of an exhaustive discussion of surface treatments, Freitag and Bruce (2010), based on previous 
research, commented on the performance of silanes, siloxanes, and sodium silicate-based sealants. 
Laboratory and field studies alike have repeatedly found that silanes can reduce water absorption while not 
diminishing the breathability of concrete. Conversely, there is more of a mixed picture with respect to 
carbonation, with silanes reducing the amount of carbonation in some cases, but being associated with 
increases in others. Sodium silicate-based sealants appear to have a positive effect on carbonation, routinely 
reducing it, however, they are less effective at preventing the ingress of chloride and the occurrence of 
corrosion. Many studies have demonstrated the efficacy of silane and silane-siloxane treatments at 
significantly reducing the infiltration of chlorides. Although these products can withstand intermittent 
exposure to chlorides (e.g., salt spray in marine environments, deicing materials), they are less resistant 
when continuously immersed in water with high chloride levels. While this is probably irrelevant for most 
bridge structures, it may be a salient consideration for structures located in particularly harsh environments. 
Consistent with findings that silane and silane-siloxane treatments limit the ingress of water and chloride 
ions, they also dampen corrosion rates. However, the moisture content of concrete and the amount of 
cracking may offset the effects of sealants. While silane and silane-siloxane surface treatments are generally 
quite durable, they must be reapplied eventually. Studies quote a wide range of reapplication intervals, from 
5 to 20 years. Reapplication intervals are contingent on the exposure conditions and product selected.    

Pincheira and Dorshorst (2005) used laboratory tests to understand the performance of bridge deck and 
crack sealers. Ponding and chloride ion tests were used to evaluate sealants’ performance when exposed to 
chlorides. They studied 13 commercially available deck products, encompassing both water-and solvent-
based sealants. For specimens not subjected to freeze-thaw cycles, in general solvent-based products 
outperformed water-based sealants. Figure 3 summarizes the ratio of absorbed chloride for specimens not 
exposed to freeze-thaw conditions. The ratio compares the performance of sealed concrete to unsealed 
concrete. As the chloride ratio values approach one, the chloride protection from the sealant decreases. 
Figure 4 summarizes the chloride ratio values for specimens exposed to freeze-thaw cycles. Depth 
penetration tests showed that the average penetration for sealants ranged between 0.06 and 0.15 inches (1.4 
mm and 3.8 mm). A critical point to note, however, is that on any deck the penetration depth will have 
considerable spatial variability.  
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Figure 3 Ratio of Absorbed Chlorides for Tested Sealants Not Exposed to Freeze-Thaw Cycles (Pincheira and 

Dorshorst, 2005) 
 

	
Figure 4 Ratio of Absorbed Chlorides for Tested Sealants Exposed to Freeze-Thaw Cycles (Pincheira and 

Dorshorst, 2005) 
 
Overall, silanes tended to penetrate more deeply than other materials. None of the sealers tested penetrated 
to the depths claimed by their manufacturers. Consistent with research conducted elsewhere, there was a 
positive correlation between penetration depth and the chloride absorption ratio. Based on their 
observations, Pincheira and Dorshorst grouped the tested sealers into three groups. Group I showed the best 
performance, Group II sealers exhibited moderate performance, while Group III displayed the worse 
performance. Figure 5 shows their rankings.       
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Figure 5 Rankings of Tested Sealers from Pincheira and Dorshorst (2005) 
 

During a wide-ranging laboratory investigation, Almusallam et al. (2003) studied the performance of five 
coating types — acrylic, polymer emulsion, epoxy resin, polyurethane, and chlorinated rubber. For each 
coating type, the researchers obtained samples from two manufacturers for testing. Following the 
procedures specified by ASTM C 1202, sealants were applied to concrete discs and allowed to set. 
Specimens were then immersed in a solution of 5 percent NaCl for three months. While the chloride 
permeability of all coatings rated as either negligible or very low, there were differences in their 
performance. The chloride permeability of polyurethane, chlorinated rubber, epoxy, or acrylic coatings was 
approximately 10 percent of that measured in untreated concrete. Polymer emulsion coatings exhibited 
slightly worse performance, with chloride permeability being approximately 20 percent of that found in 
untreated concrete. A key point to keep in mind is that a coating’s permeability is directly related to the 
porosity of the film it forms on a concrete surface. At lower porosities, a lower charge passes through the 
film. Coatings such as polyurethane and epoxies are particularly resistant to chloride ions because they are 
solvent-based and leave a tough film after curing. The water absorbed by the acrylic, chlorinated rubber, 
polyurethane, and epoxy coatings ranged from 0.23 percent to 1.85 percent. In comparison, the weight gain 
for polymer emulsions ranged from 3.3 to 3.4 percent (cf. untreated concrete, which experienced a 5 percent 
increase in weight). Based on their findings, Almusallam et al. observed that when selecting a sealant, 
transportation agencies must be attentive to the service conditions it will be exposed to. In settings where 
chloride is abundant, polyurethane, chlorinated rubber, or epoxies are the most appropriate choices, whereas 
locations typified by high rainfall and humidity are better served with epoxies, chlorinated rubber, or 
acrylics.  

Al-Zahrani et al. (2002) tested four surface treatments to determine which exhibited the best performance 
with respect to water permeability, chloride permeability, pull-off strength, and accelerated reinforcement 
corrosion. Included among the four treatments were: 1) a cement-based polymer-modified coating, 2) a 
cement-based coating, 3) a polyurethane-based coating system, and 4) an epoxy-based coating system. 
Specimens underwent tests, including repeated exposure to wetting/drying cycles and heating/cooling 
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cycles, ASTM C 1202 to assess chloride permeability, ASTM D 4541 to evaluate pull-off strength, and 
immersion in a 5 percent NaCl solution. The cement-based coating had poorer durability than the polymer- 
and epoxy-based coatings. Further, the polymer-modified, polyurethane-, and epoxy-based coatings were 
the most effective at preventing water absorption. After specimens underwent repeated heating/cooling 
cycles, the polymer-modified and epoxy-based coatings showed a diminished ability to prevent water 
absorption. The polymer-modified and polyurethane-based coatings provided the best resistance against 
corrosion by limiting the ingress of chloride ions. Al-Zahrani et al. characterized the polyurethane-based 
coating system as the best all-a round performer. A secondary argument they put forward was that water 
absorption capacity is a simple metric to predict how well a coating system will protect against corrosion. 
Conversely, Calder and McKenzie (2009), after testing the long-term field performance of bridge decks 
treated with a silane-siloxane sealant, concluded that sealants offered modest gains in protection compared 
to deck surfaces treated with silicate-based products or left untreated. They also found that surface 
roughness, both at the time of sealant application and during testing, can significantly influence water 
absorption tests. On this basis, they recommended using the amount of chloride ingress as primary metric 
to assess the effectiveness of a surface treatment.          

Several researchers have examined sealants’ ability to prevent water absorption, chloride ingress, and 
corrosion in aggressive (e.g., marine) environments. For example, Moradllo et al. (2012) studied the 
performance of concrete structures in the Persian Gulf. They observed degradation of coatings over time, 
and found that epoxy, polyurethane and aliphatic acrylic coatings offered the best protection against 
corrosion. Dai et al. (2010), after Tittarelli and Moriconi (2008) found that silane-based treatments did not 
prevent corrosion in cracked concrete, undertook a study that sought to determine how cracking impacts 
sealant performance. The experiment used cracked and uncracked concrete specimens with a water-to-
cement ratio of 0.68 and tested six treatments: four silane-based products (including one silane-siloxane 
liquid) and two sodium silicate-based products. One of the silane treatments came in gel form, another was 
a cream, and the others were liquids. Specimens were cyclically exposed to salt water spray over the course 
of a year. Each day, specimens were sprayed with salt water — in an outdoor environment — for 8 hours 
and underwent 16 hours of drying time. Overall, the silane-based products significantly reduced water 
absorption, while the sodium silicate-based treatments were much less effective. Water resistance and 
performance correlated with penetration depth. The more deeply a sealant penetrated, the better its 
performance tended to be. Silane-based treatments that penetrated at least 5 mm beneath the surface 
prevented corrosion, whereas the sodium silicate-based treatment and a silane-siloxane product did not 
reduce corrosion in uncracked concrete. In cracked specimens, silane prevented corrosion in areas where it 
penetrated to a depth of at least 5 mm. When the silane-based and silane-siloxane treatments penetrated up 
to 5 mm in cracked specimens they reduced the rate of corrosion but did not inhibit it entirely. The silanes 
in gel and cream form exhibited the best overall performance. The sodium silicate-based pore blockers 
failed to suppress water absorption and chloride ingress, making them poor choices for protecting reinforced 
concrete. Dai et al. observed, as well, that within each specimen there was considerable unevenness in the 
depth of chloride penetration, a fact which they attributed to the spatial variability in concrete 
microstructures (cf. Pincheira and Dorshorst [2005]).   

Although nearly half of state DOTs use it to seal bridge deck cracks, there is little published research on 
high-molecular-weight methacrylate, a type of gravity-fil sealer (HMWM). HMWM is an adhesive made 
of methacrylate monomers. It has been used to seal deck cracks since at least the early-1980s. Because of 
their low viscosity and surface tension, HMWMs effectively penetrate cracks (Rahim et al., 2010, Liang et 
al., 2014). However, as Hasenkamp et al. (2012) observed, HMWMs, because of their low viscosity, readily 
flow away from inclined and vertical surfaces. As such, their applications should be restricted to horizontal 
surfaces. Rahim et al. (2010) provided a comprehensive review of its use. Few studies have looked at its 
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ability to improve resistance again water and chloride, but most have examined its properties and ability to 
successfully fill cracks. For example, a study of Virginia bridge decks on which HMWM monomers had 
been applied filled, on average, approximately 95 percent of cracks’ widths; cores extracted from a bridge 
deck in San Antonio revealed that HMWM, where used, filled approximately 60 to 80 percent of cracks. A 
study of eight bridge decks in Kansas indicated that HMWM, among other sealants, did not effectively 
block the ingress of chlorides. However, Rahim et al. (2006) recommend applying HMWM at 3–6 month 
intervals following bridge construction to lower the risk of chloride penetration, and Liang et al. (2014; see 
below) commented favorably on the performance of HMWM. In settings where deicing chemicals are not 
used or where there is no ambient chloride, applying HMWM to narrow cracks may improve structural 
bond strength and flexural strength.    

Liang et al. (2014) studied the performance of four surface treatments on a Colorado bridge: 1) HMWM, 
2) super low viscosity, low modulus epoxy 3) low viscosity, high modulus epoxy, and 4) silane. Skid 
resistance, temperature variation, moisture fluctuations, and chloride concentrations profiles were 
measured. Immediately following application, all the sealers had lower skid resistance compared to a bare, 
untreated bridge deck. After one year, the bridge section treated with silane exhibited skid resistance 
comparable to that of the bare deck. Although the sealers created a pronounced increase in temperature 
gradients, this increase was small, not large enough to damage the concrete. All the sealers were effective 
in preventing the movement of moisture into and out of the bridge deck. In terms of chloride resistance, the 
HMWM and both epoxies, at least initially, blocked the ingress of chloride ions. The silane was less 
effective. After a year of observations, it became apparent that the epoxies’ performance had degraded and 
did not resist chlorides as successfully. HMWM, however, maintained its durability and continued to 
perform well. Three-and-a-half years after the treatments were applied, all the sealers offered some level of 
protection. However, HMWM exhibited the best overall performance.    

Pritzl et al. (2015) conducted a follow-up investigation of nine Wisconsin bridges that had received various 
treatments to inhibit corrosion, including supplementary cementitious materials and penetrating sealers. 
Some of the bridges were treated only with admixtures, others with sealers only. At least two bridges had 
the sealer periodically reapplied to ensure ongoing protection. The long-term study examined bridge 
performance after 12-16 years of exposure. The sealer applied to bridges was a low-viscosity oligomeric 
organosiloxane material (i.e., a tri-siloxane sealer). Compared to untreated decks, bridges on which the tri-
siloxane sealer was applied and reapplied held the ingress of chlorides in check by reducing the effective 
surface concentrations of chloride. The decks in question were not sealed immediately following their 
construction. Rather, they were left untreated for several years and then sealed. The chloride profiles of two 
additional bridges where sealer was applied immediately after construction but not reapplied in subsequent 
years were similar to untreated bridges. Pritzl et al. suggested that applying sealers once construction has 
concluded and reapplying them later works to maintain their protective capacity and reduce the infiltration 
of chloride. A single application following bridge construction is not sufficient to minimize the effects of 
chloride over the long-term.   

Currently, the Alabama Department of Transportation applies epoxy sealers to bridge surfaces to protect 
them against carbonation and corrosion. To determine whether the state is using sealants effectively, 
Giannini et al. (2015) investigated the performance of five surface treatments, which were applied to three 
concrete mix designs. The three mix designs were as follows: 100 percent Portland cement with a water-
to-cement ratio of 0.5 (MD1), 100 percent Portland cement with a water-to-cement ratio of 0.4 (MD2), and 
a mix containing 80 percent Portland cement and 20 percent Class F fly ash (MD3), with a water-to-cement 
ratio of 0.4. The waterproofing performance of specimens was assessed before and after sandblasting, which 
was used to simulate traffic wear. To understand sealants’ performance in the face of chloride intrusion, 
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specimens were immersed in a 15 percent solution of NaCl. Figure 6 summarizes the chemical properties 
and makeup of each sealer.   

Initial waterproofing tests (i.e., before sandblasting) indicated that Sealers D and E performed best on 
average across the three concrete formulations, whereas Sealer A fared the worst. Because grinding and 
sandblasting compromised their protective abilities, the post-abrasion performance of all sealants declined, 
although Sealers C and D experienced the most significant drop-offs in waterproofing capacity. Following 
immersion in the NaCl solution Sealers C and D both had acceptable performance for MDs 1 and 2, but did 
not perform satisfactorily for MD 3. Sealer E hit the performance threshold for MD 2, but did not offer 
adequate protection on MDs 1 and 2. Sealers A and D failed for all the concrete mixtures. Overall, Giannini 
et al. found that Sealers C, D, and E outperformed Sealers A and B, with Sealer E exhibiting the best overall 
performance. It consistently prevented the ingress of chloride and water. They found Sealer C to be 
vulnerable to cracking, while Sealer A had the worst overall performance. They cautioned, however, that 
Sealer A’s poor performance may have been attributable to not following the manufacturer’s application 
instructions. Nonetheless, they noted that its thinness would likely make it vulnerable to disturbance when 
exposed to vehicle traffic.   

	
Figure 6 Sealants tested by Giannini et al. (2015) 
  
In a broad review of penetrating sealants, Attanayake et al. (2006) prescribed steps for selecting an 
appropriate concrete sealant. In addition to explaining how penetrating sealers work, they recounted the 
procedures necessary to clean a deck surface prior to the application of a sealant. Before applying 
penetrating sealers decks should be power washed and allowed to dry for at least two days. In wetter or 
more humid conditions, additional drying time may be necessary. If the environment will not permit drying 
within a short time period, agencies may want to consider the use of dustless abrasive shot blasting. While 
having a clean and dry surface is critical for successfully applying sealants, the concrete substrate should 
retain some moisture as this promotes the chemical reactions necessary for sealants to establish protection.  

Figure 7 depicts Attanayake et al.’s flow chart of the recommended decision-making process transportation 
agencies should consider using when choosing a sealer. Along with this stepwise process, they described 
several factors to consider when selecting a sealer. At the outset, it is important to inspect the original deck 
to ascertain whether it is new construction or the result of remedial work, the condition of the deck, previous 
surface treatments, and the level of surface contamination. From an environmental perspective, agencies 
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should be attentive to the prevailing atmospheric conditions as well as to the presence of moisture and 
pollutants. Third, it is critical to investigate sealers’ durability. This entails identifying their penetration 
depth, resistance to ultraviolet radiation and alkalis, characteristic reactivity with hydrated cement paste, 
and durability in the face of weathering. Next, the level of protection afforded by individual sealers should 
be examined, including how well they absorb water and chlorides, their water vapor transmission, and 
resistance to scaling produced by deicing materials. With respect to service performance, it is critical to 
understand the level of skid resistance a sealer provides. The conditions under which sealants can be applied 
warrant study as well. Important variables to consider here include steps required to prepare the concrete 
surface, method of application, a sealant’s tolerance of substrate moisture and temperature dependency, and 
the ease of accessing the site and potential lane closures. Lifecycle costs are also an important consideration, 
including the unit cost, the number of applications needed to protect concrete, and the cost of labor and 
maintenance.   

	
Figure 7 Decision-Making Procedure for Selecting Penetrating Sealants (Attanayake et al., 2006) 

 
Key Takeaways 
• Surface treatments generally offer added protection to concrete bridge decks, which can delay the onset 

of corrosion and deterioration. The presence of cracking can undermine the performance of some 
treatments. 

• Silanes and siloxanes are the most common form of surface treatment, and most studies have 
demonstrated they perform better than other materials such as silicates and epoxies. 
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• The performance of a sealant is contingent on many factors, such as the product used, the environment 
a bridge is located in, concrete formulation, concrete structure and condition, and traffic levels. 

• Numerous studies have demonstrated a strong positive correlation between sealant performance and 
depth of penetration. 

• Some sealants may increase carbonation. However, this may not automatically translate into increase 
corrosion if there are low moisture levels. 

• Most sealants will need to be reapplied at 5–20 year intervals. Some researchers argue they may extend 
the service lives of bridges up to 50 years with proper maintenance. 

• Laboratory studies tend to result in more optimistic assessments of surface treatments than field studies 
because they cannot replicate real-world conditions. 

• Sealants in gel or cream form appear to be more effective than liquid sealers because they adhere to 
and penetrate the deck surface more deeply.    

 

2.6 Multiple Corrosion-Inhibition Systems 
As the previous sections revealed, researchers have often investigated the performance of anti-corrosion 
treatments (e.g., different varieties of steel protection, concrete admixtures, and sealants) individually. 
Several of the papers cited previously mentioned the utility of combining multiple treatments to delay the 
onset of corrosion. This section extends these discussions by reporting on studies that have explicitly 
investigated the performance of multiple corrosion-inhibition systems. Following Darwin et al. (2014), a 
multiple corrosion-inhibition system is one that incorporates two or more two treatments (e.g., ECR plus a 
concrete admixture such as fly ash or silica fume). Because relatively few studies have investigated the 
long-term performance of multiple systems, either in the field or laboratory, this section is comparatively 
brief.   

Berke and Hicks (1998) used a laboratory study to investigate the combined effect of ECR and calcium 
nitrite on corrosion rates in high-quality concrete. Experimental treatments had water-to-cement ratios of 
0.40 and 0.45. A 30 percent calcium nitrate solution was mixed into some specimens, with dosage rates 
ranging from 2.7 to 5.4 gallons/yd3 (13.5 to 27 l/m3). Specimens with uncoated black steel were used as a 
control, while some of the bars with epoxy coatings were deliberately damaged to simulate what occurs 
during installation. Specimens were cast in two forms: lollipops and mini-beams. Concrete lollipops were 
submerged to a depth of ~3 inches (75 mm) in a 3 percent NaCl solution, while mini-beams were cyclically 
pponded with a 3 percent NaCl solution. The experiment’s duration was seven years. In the lollipops, the 
beneficial effects of calcium nitrite were evident. After five years, lollipops with just calcium nitrite 
outperformed those with damaged epoxy coatings and performed comparably to undamaged ECR. The 
chloride content of lollipops ranged from 20.6 to 25.3 lb./yd3 (12.2 to 15 kg/m3). No specimens with calcium 
nitrite corroded. After seven years, the chloride contents were between 26.9 and 38.7 lb./yd3 (16 and 23 
kg/m3). Significant disbondment was observed, and the researchers attributed the rapid increase in corrosion 
activity to corrosion spreading beneath the epoxy coatings. Mini-beam specimens containing calcium nitrite 
also performed well, with no signs of corrosion visible despite the chloride values exceeding the threshold 
at which corrosion typically initiates. Berke and Hicks remarked that using ECR and calcium nitrite in 
tandem may produce significant benefits. In all cases, ECR outperformed black steel housed in a concrete 
mixture that did not include calcium nitrite. Even for flawed ECR, the addition of calcium nitrite will 
enhance its performance and delays corrosion. Calcium nitrite’s primary benefit lies in its ability to increase 
the chloride threshold at which corrosion begins. However, Berke and Hicks cautioned that the performance 
of calcium nitrite is contingent upon the amount and quality of concrete cover.  
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In a series of articles and reports, Cusson et al. (2008; Cusson and Qian, 2007; Qian et al. 2008) reported 
on the findings of a long-term study of nine corrosion-inhibiting systems that were applied to a bridge in 
Montreal, Quebec, Canada. As they noted, long-term field investigations are often more valuable sources 
of information than long-term laboratory studies because they are exposed to ambient meteorological 
rhythms, the effects of deicing salts, and traffic. One caveat to keep in mind is that the studies did not look 
at bridge deck performance. Their focus was on reinforced barrier walls. The main reinforcement was 
located at a depth of ~ 3 inches (75 mm), although ladder bars were present at depths of ~ 0.50, 1.00, 1.50 
and 2.00 inches (13 mm, 25 mm, 38 mm, and 50 mm). Table 4 lists the properties of each corrosion-
inhibiting system used. Each system was applied to barrier wall approximately 37 yd. (34 m) in length. The 
walls were cast in fall 1996 and measurements commenced in June 1997. After being cast, researchers 
found transverse cracking on the barrier walls, which they attributed to uncontrolled thermal effects and 
autogenous shrinkage, which often occurs when concrete formulations with a high cement content and low 
water-to-cement ratio are used. Cusson et al. (2008) discussed performance after five years, while Cusson 
and Qian (2007) reported on performance after 10 years.   

Table 4 Corrosion-Inhibiting Systems (Cusson et al. [2007, 2008] Studies) 
Corrosion-Inhibiting System Description 
Control • Carbon-steel reinforcement 
Epoxy • Epoxy-coated reinforcement 
A • Rebar coating (water-based liquid blend, Portland 

cement, fine silica sand) 
B • Organic concrete admixture (alkanolamines) 

• Rebar coating applied only on anchor bars from 
slab (water-based epoxy, Portland cement) 

C • Organic/inorganic concrete admixture (amine 
derivatives, sodium nitrite) 

D • Rebar coating (water-based epoxy, cementitious 
components) 

E • Organic concrete admixture (amines and esters) 
F • Organic concrete admixture (alkanolamines and 

amines, and their salts with organic/inorganic 
acids) 

G • Organic concrete admixture (alkanolamines, 
ethanolamine, and phosphate) 

• Rebar coating applied only on anchor bars from 
slab (water-based epoxy, Portland cement) 

H • Inorganic concrete admixture (calcium nitrite) 
 

After five years, half-cell potential across all treatments had undergone the sharpest changes along the top 
bar (i.e., nearest to the surface), with Treatments D and H producing the lowest corrosion rates on the first 
and second bars. Treatments A and G were associated with the least-negative half-cell potential values. 
Treatments A and B were linked to the smallest overall decrease in half-cell potential. Half-cell potentials 
for the epoxy treatment were more positive than all other treatments after one year, but trended negative 
thereafter, likely due to the deterioration of epoxy and the beginning of localized corrosion. The most 
aggressive corrosion rates were detected at locations where there were cracks in the concrete. At depths of 
~1 to 2 inches (25 to 50 mm), the chloride content of all barrier walls exceeded the corrosion initiation 
threshold of 0.1 percent by weight of concrete, while at depths of ~2 to 3 inches (50-75 mm), chloride 
content did not break the threshold. Chloride ions penetrated most slowly in areas with Treatments E and 
H. Treatment G performed well in this respect for the first year, but in the following years it showed no 
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reduction in chloride ingress compared to systems without sealants. Despite the variations in performance, 
there were no significant differences between the control treatment and walls treated with corrosion-
inhibiting systems. Cusson et al. attributed this to the relatively short duration of the study, as corrosion 
usually does not begin in uncracked concrete within the first five years of environmental exposure. Based 
on their observations, they concluded that Treatment H had the best performance overall. Treatments B, E, 
and G were at the greatest corrosion risk, with the highest corrosion rates on ladder bars with 13 mm of 
cover.  

Cusson and Qian (2007) discussed performance of the same barrier walls after 10 years of service. 
Irrespective of treatment, all barrier walls had chloride levels below or near the threshold value at depths 
of ~ 2 to 3 inches (50 to 75 mm). Localized pitting corrosion was observed in areas where the concrete had 
cracked. Likewise, corrosion was active on the bars near the surface (i.e., at depths of ~ 0.50 in (13 mm)) 
and there was evidence of damage on wall surfaces. Treatments H and F exhibited the least negative half-
cell potentials at the ~1 inch (25 mm) level (greater than or equal to -550 mV), meaning they were at the 
lowest risk of corrosion. Nondestructive testing at the ~1 inch (25 mm) level indicated that Treatment H 
continued to have the best overall performance, followed by Treatments B, E, and F. Cusson and Qian 
argued that even a 10-year field observation study was too short to adjudicate a clear winner. Additional 
years of observation and evaluation are needed to understand the long-term performance of various 
treatments, which reaffirms the challenge of making definitive judgments about the efficacy of systems 
based on compressed field or laboratory studies. They argued that the use of corrosion-inhibiting systems 
should not be used as the primary means to fortify reinforced concrete against corrosion. The systems 
should be viewed as a second line of defense, and cannot operate as a substitute for good, high-quality 
concrete, with low water and chloride permeability, and sufficient cover.  

Darwin et al. (2011, 2014) assessed the performance of several corrosion-inhibition systems, including 
fusion-bonded ECR combined with inorganic and organic corrosion inhibitors, reinforcing steel coated with 
zinc prior to applying epoxy, and chemical pretreatments and epoxy formulations intended to strengthen 
the adhesion of epoxy to the underlying steel. In total, they examined 11 systems that combined ECR and 
other corrosion protection systems as well as three systems that consisted of untreated black steel and a 
corrosion inhibitor. Seven bar types were evaluated, one uncoated and six with fusion-bonded epoxy 
coating. Different concrete formulations with varying water-to-cement ratios were also used. After 
specimens were cast, they were exposed to cyclical ponding with a 15 percent NaCl solution. Wet and dry 
cycles were alternated for 96 weeks. Specimens tested in the field were monitored over a period of 250 
weeks. Corrosion occurred on laboratory specimens where the ECR was damaged, however, adding 
calcium nitrite enhanced resistance against chloride ingress. Calcium nitrite increased the conductivity of 
the concrete it lowered the diffusion coefficient. The overall effect of calcium nitrite was to reduce the 
concrete permeability. Less corrosion occurred on both coated and uncoated steel when paired with a low 
water-to-cement ratio. The benefits of corrosion inhibitors and calcium nitrite were most pronounced in 
uncracked concrete. Although they enhanced the corrosion resistance of cracked concrete, their effects were 
less apparent. Bars with multiple zinc-epoxy coatings exhibited better performance, however, this was 
obtained mostly through the sacrificial loss of zinc. Darwin et al. (2011) concluded that fusion-bonded 
epoxy coatings bolstered corrosion resistance, extend the service lives of bridges, and offer a cost-effective 
option to improve concrete durability. Furthermore, use of a corrosion inhibitor with either conventional 
black steel or ECR will prolong service life, delay the onset of corrosion, and potentially extend the time to 
repair.       

Aldykiewicz et al. (2005) reported on long-term laboratory and field experiments that sought to determine 
whether different combinations of concrete formulations and admixtures could postpone the onset of 
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corrosion in severe environments. For the laboratory portion of their work, they looked at several concrete 
mixtures with water-to-cement ratios between 0.30 and 0.50. These were blended with different 
combinations of pozzolanic materials (Class F fly ash and silica fume) and calcium nitrite, all in varying 
amounts. After curing, specimens were ponded in a 3 percent NaCl solution continuously. In the specimens 
used for field testing, the water-to-cement ratio of different concrete mixtures varied from 0.38 to 0.50, as 
did the amount of concrete cover. Similarly, the amount of fly ash and calcium nitrite varied among 
treatments (silica fume was not investigated in a field setting). Some of the reinforcement bars were coated 
with epoxy. The field trials entailed placing specimens in a pool containing filtered ocean water, the height 
of which was varied diurnally to simulate tidal exposure. Field specimens were exposed to these conditions 
for 18 years. For specimens tested in the lab, those with higher water-to-cement ratios (0.48), adding 
calcium nitrite lowered the diffusion coefficient by a factor of two but increased pore solution conductivity. 
Adding silica fume significantly reduced concrete permeability. Lower water-to-cement ratios (0.38) did 
not measurably affect chloride ingress, but adding silica fume yielded a less porous concrete and therefore 
impeded the ingress of chloride and delayed the onset of corrosion. As such, there was a positive correlation 
between the delay in the onset of corrosion and the amount of silica fume added. Incorporating fly ash into 
a mixture tended to diminish the conductivity of concrete. Overall, concrete mixtures that included silica 
fume and fly ash exhibited the lowest total corrosion. Blending calcium nitrite and silica fume also 
significantly increased the time to corrosion. For the lab specimens, reductions in diffusion coefficients 
although sharp at first tended to level off within five years. Among specimens exposed to field conditions, 
those with a lesser amount of cover (38 mm) experienced significantly longer times to corrosion when 
calcium nitrite was included. This trend was particularly noticeable in concrete formulations with low 
water-to-cement ratios (i.e., 0.38). Among specimens manufactured with 70 mm of cover, only those which 
integrated calcium nitrite displayed enhanced performance. Mixes that only blended fly ash with ECR did 
not effectively mitigate corrosion. Based on the evidence of laboratory and field studies, Aldykiewicz et al. 
concluded that concrete formulations with lower water-to-cement ratios extend the time to corrosion. Also, 
supplementing concrete with calcium nitrite delays the onset of corrosion. The effectiveness of calcium 
nitrite increases when high-quality concrete is used to provide ample cover. Based on the field testing, 
Aldykiewicz et al. recommended against using epoxy as the only corrosion inhibitor in environments with 
high chloride exposure.  

Key Takeaways 
• Using multiple protection strategies can enhance the resistance of reinforcing steel, but the magnitude 

of their benefits remains unclear and will likely require further laboratory and field testing. 
• Adding calcium nitrite appears to significantly improve corrosion resistance. Multiple studies cited here 

highlighted its benefits. 
• Using multiple treatments can increase service life, however, to maximize their performance they 

should be used in conjunction with a high-quality or high-performance concrete with low permeability, 
which restricts the ingress of chloride and water and provides sufficient cover. 

• Concrete formulations with low water-to-cement ratios generally inhibit corrosion activity.  
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2.7 Material Pricing 
Table 5 summarizes the current average price of key treatments in the previous chapters. While this 
information can be instructive for readers wanting a quick comparison among treatments, any decision 
about what treatment or system to use should be guided by a detailed cost-benefit analysis that quantifies 
the long-term benefits of each. 

Table 5 Average Price of Corrosion-Inhibition Treatments 
Treatment Cost 
Reinforcements (material cost)  
Black Reinforcing Steel $0.32-$0.52/lb. 
ECR $0.46-$0.80/lb. 
Stainless Steel $1.82-$3.44/lb. 
Stainless Steel Cladded Reinforcing Steel $2.50/lb. 
Galvanized Reinforcing Steel $0.50-$0.73/lb. 
MMFX® ChromX Reinforcing Steel $0.65-$0.94/lb. 
Continuous Galvanized Reinforcing Steel Pricing not set – expected to be similar to ECR 
Fiber Reinforced Polymers $1.00-$1.44/lb. 
  
Admixtures (additional cost per cubic yard of concrete) 
Silica Fume $12.00-$15.00/yd3 
Fly Ash $3.00/yd3 
Calcium Nitrite $15.00-$20.00/yd3 
Ground Granulated Blast Furnace Slag $6.00/yd3 
  
Surface Treatments (material cost)  
Silane $0.09/ft2 
Siloxane $0.16/ft2 
Linseed Oil $0.02/ft2 
Silicates $0.14/ft2 
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Chapter 3 State DOT Survey 
	
KTC prepared a survey for state DOTs that touched on critical topics ranging from the type of reinforcing 
steel commonly used for bridge construction and maintenance and steps used to reduce the permeability of 
concrete, to how the application of protective sealants, membranes, and overlays can help reduce corrosion. 
AASHTO assisted KTC by distributing this survey to all 50 state DOTs. Eventually there were nine 
responses. The information collected is representative of DOT practices throughout the U.S. On several 
questions respondents had the option of selecting more than one answer. Accordingly, the total number of 
responses for each question is typically greater than nine. The remainder of this chapter briefly discusses 
the survey’s findings. Appendix A reproduces the survey in its entirety and contains summary graphs, which 
readers can use to quickly apprehend the range and frequency of answers for each question.   

The first group of questions asked DOTs to identify what types of reinforcing steel they choose for routine 
bridge construction. The most popular choice is epoxy coated reinforcing steel (ECR), followed by stainless 
reinforcing steel and black reinforcing steel. Galvanized reinforcing steel, carbon fiber reinforced polymer, 
and proprietary materials are less common. Overwhelmingly, Grade 60 steel is most frequently used for the 
epoxy coated bars and black reinforcing steel. Four agencies that have adopted stainless reinforcing steel 
use austenitic-ferritic (Duplex) while three others use austenitic steel. Multiple grades of austenitic and 
austenitic-ferritic reinforcing steel are in use at these agencies. A list of the various grades in use is provided 
in Q1.4 and Q1.5 of Appendix A. 

Next, the agencies were asked to comment on what types of concrete they use for bridge construction and 
what preventative measures they have adopted to inhibit corrosion. Five of the nine agencies use high 
performance (low permeability) concrete. When asked about the required concrete cover over the upper 
deck of the mat, seven agencies specified 2.5 inches (63.5 mm) — the other two agencies required minimum 
thicknesses of 2 and 3 inches (~50 and 75 mm), respectively. None of the responding DOTs supplement 
concrete with inhibiting admixtures to inhibit corrosion. Two of the nine agencies use surface-applied 
inhibitors to protect reinforcing steel against corrosion. Just one agency applies densifiers to reduce concrete 
permeability — and only on new construction. Five agencies report using cathodic protection. Four of these 
agencies implement it during maintenance operations while the other does so for new construction. 

Seven agencies currently use sealants. The most popular of these are silanes/siloxanes, epoxies, and 
methacrylates. One agency applies Pavon® Indeck, a methacrylate crack sealer. All the DOTs that 
responded to our question about the timing of application (seven) said they apply sealants during both 
construction and maintenance activities. There is, however, considerable variability with respect to how 
often agencies reapply sealants. Three agencies lack a fixed schedule, while the other four reapply them at 
intervals ranging from three to ten years. Eight agencies apply crack sealants to bridge decks, with 
methacrylate and epoxies being the most frequently used (two agencies reported using polyurethanes). Five 
of the agencies currently use healer-sealers to fill and seal cracks.  

The final thematic set of questions related to membranes, overlays, and laminates. Eight DOTs currently 
employ overlays, three use membranes, and one uses other kinds of these materials. Five agencies use 
membranes during maintenance activities. Six DOTs install overlays during maintenance, and three 
agencies use them for new construction and maintenance. Just one agency installs laminates during 
maintenance and new construction, while three agencies report using other materials (e.g., slurries, chip 
seals) only during maintenance. When asked about the type of membranes they use, two agencies said they 
have adopted sheeting membranes and two use liquid applied membranes. There is considerable diversity 
in the types of overlays used. Low slump concrete, latex concrete, and microsilica concrete are equally 
popular (three responses each), followed by epoxy polymer, asphaltic, and chip seals.     
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The survey’s final two questions asked about methods used to prevent or minimize corrosion as well as the 
combinations of materials used to do so. Five of the nine agencies routinely leverage multiple methods to 
prevent or minimize the corrosion of bridge decks. The final question asked the agencies to specify what 
combinations of materials they use to prevent and mitigate corrosion. While five DOTs provided 
information on combinations of materials, only two — Minnesota and South Dakota — make a link between 
project type and the materials used. Minnesota’s DOT uses epoxy coated reinforcing (ECR) steel and high 
performance concrete in areas with low average daily traffic (ADTs). In areas with higher ADT and larger 
populations, it opts for ECR, high performance concrete, and overlays. For bridge projects that cost over 
$25 million, the agency combines stainless reinforcing steel with high performance concrete. South 
Dakota’s DOT specified three materials–projects combinations. ADT and the amount of deicing chemicals 
applied on a route influence what combination of materials the agency selects. On routes with low ADT 
and little use of deicing chemicals, the agency uses ECR, high performance concrete, and deck sealants. 
For bridges constructed on routes with more traffic and a higher rate of deicing chemical application, it uses 
stainless steel, high performance concrete, and deck sealants. For routes with the highest ADT and deicing 
chemical usage, the agency employs Z-bar or dual coated reinforcing steel, high performance concrete, and 
deck sealants. Neither agency elaborated on threshold criteria used to decide on what materials are chosen 
(i.e., they did not specify what constituted low/medium/high ADT or low/high thresholds for deicing 
chemicals).  

Key Takeaways 
• ECR and stainless steel are the materials DOTs most commonly use to achieve corrosion resistance on 

concrete bridge decks.  
• DOTs were split on the use of high performance concrete and cathodic protection. None of the DOTs 

incorporate inhibiting admixtures to reduce corrosion. And just two use surface applied inhibitors. Only 
one DOT uses densifiers to lower concrete permeability.  

• Applying sealants to bridge decks is commonly done during both new construction and maintenance 
activities (seven of nine agencies report doing so). All but one responding DOT uses crack sealants on 
decks. Five agencies use heater-sealers to repair cracks. 

• Most responding DOTs apply some combination of membranes, overlays, and laminates. The 
combination of materials and the timing of their installation varies among agencies. 

• Five of the nine responding DOTs routinely use multiple corrosion prevention and/or minimization 
methods for bridge decks.  
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Chapter 4 KYTC Bridges with Corrosion-Resistant Rebar and Treatments 
 

KYTC currently has several experimental bridges with decks that contain corrosion resisting reinforcing 
steel. These are listed in Table 6.  

Table 6 KYTC Experimental Bridge Decks 
Bridge Location, Identifier, Date Constructed Treatment 
• Elkin State Road Bridge over Two-Mile 

Creek in Clark County (BN-025C0062N) 
• Built 2001 

• CFRP Bars 

• Galloway Road Bridge over North Elkhorn 
Creek in Scott County (BN-105C00111N) 

• Built 2003 

• Stainless Steel Clad and MMFX® ChromX 

• KY 3302 over Sugar Tree Branch in Fleming 
County (BN-035B00100N) 

• Built 2011 

• Stainless Steel 

• KY 2262 Approach Spans over Ohio River in 
Daviess County (BN-030B00118N) 

• Built 2012 

• Stainless Steel (Top Mat) 

• KY 6 over Lynn Camp Creek in Knox County 
(BN-061B11075N) 

• Built 2014 

• Galvanized Rebar 

 
KYTC has also used concrete sealers on a number of bridges throughout the state. Several bridges on I-471 
over 6th Street (northbound and southbound) in Newport (Campbell County) had portions of their decks 
treated experimentally with different silanes (BN-019B00056L and BN-019B00056R) in 2012. Four 
bridges on I-24 (westbound over a railroad, eastbound over a railroad, eastbound over Lone Oak Road and 
eastbound over Poole Road) in McCracken County had several transverse deck cracks routed and sealed 
experimentally by KTC personnel in 2013 (BN073B00103L, BN073B00104R, BN073B00112R and 
BN073B00114R) with a methyl methacrylate crack sealer one year after the decks had been washed and 
sealed using a silane. 
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Chapter 5 Conclusions and Recommendations 
 
KYTC uses a standard corrosion protection system for new bridge decks that consists of: 

• Class AA concrete 
• Epoxy-coated reinforcements in the top and bottom mats 
• At least 2.5” of concrete cover over the top mat 

 
KYTC’s Structures Manual also recommends the use of additional protective treatments for critical 
structures. Critical structures are those “whose size, design, location, or importance to the transportation 
network would create unusual owner and/or user costs if its use were restricted for deck repairs” (see KYTC 
Structural Design Manual, section SD-501-3). These structures are most often found where there are high 
traffic volumes or major stream crossings. Precast segmental concrete bridges and cast-in-place box girder 
bridges are also designated as critical structures. The manual lists several options for enhancing the 
protection of these structures: corrosion-inhibiting admixtures, exotic overlay materials, high performance 
concrete, and shrinkage compensating cement.  

The Standard Specifications Manual (601.03.03C 2) instructs the use of AA concrete (used for bridge 
decks) having a W.C. of 0.42 and using 620 lb. of cement per cubic yard of concrete. The specification 
allows the substitution of fly ash, ground granulated blast furnace slag, or microsilica at the option of the 
contractor for up to 40 percent of the weight of cement. Other DOTs are using binary or ternary mix designs 
with those types of substitutions specified to achieve high performance concrete.     

The List of Approved Materials provides detailed contact and product information for materials that have 
been approved for use on KYTC projects. Neither the Structures Manual nor Standard Specifications 
Manual mention the use of concrete sealants; the List of Approved Materials does not reference these either.   

KYTC specifications for bridge deck construction are adequate to achieve service lives of 20-plus years 
prior to requiring repairs — typically by installation of latex overlays. However, like most transportation 
agencies, the Cabinet is facing serious budgetary constraints, making it even more critical to maximize the 
service lives of new and rehabilitated bridges. For new bridges, this probably means aiming for a service 
life of 75-100 years. While this may not be attainable under all circumstances, the corrosion-inhibiting 
products currently available on the market, when used in combination, are sufficient for achieving this goal 
in all but the most severe environments. The findings of this report can assist KYTC as it decides whether 
to implement new strategies to delay the onset of corrosion and therefore extend bridge service life. This 
paper underscored that the large number of protective strategies (from rebar coatings to concrete 
admixtures) and laboratory and field testing procedures make it exceedingly hard to adjudicate one material 
or system as the best. Most studies have examined the performance of materials over relatively short time 
periods, and laboratory testing cannot replicate the real-world conditions that bridge decks face. Their 
findings are nonetheless instructive, and may be used as a starting point to identify promising methods to 
implement on Kentucky’s bridges.   

With respect to steel reinforcement, ECR has long been the preferred method of slowing the onset of 
corrosion. Beginning in the 1970s, transportation agencies rapidly turned to ECR as a cost-effective option 
for protecting steel from harsh environments — particularly in areas where deicing chemicals are used 
frequently. Although many of the studies analyzed supported the use of ECR by demonstrating it 
successfully protects underlying reinforcement, some researchers have questioned its durability, citing the 
propensity of the epoxy to disbond after prolonged exposure to moisture. Over time, epoxies inevitably 
break down, and moist and humid environments can accelerate this process. Researchers are generally 
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confident in the durability of solid stainless steel and believe it can help a bridge achieve of service life of 
up to 100 years. However, solid stainless steel is prohibitively expensive, and should be reserved for critical 
projects (e.g., interstate bridges). Other means of protecting steel reinforcement, such as galvanization, may 
enhance corrosion resistance, but they are not immune from problems. Small holidays in the coatings and 
imperfectly sealed end caps serve as conduits that facilitate the entry of chlorides and moisture, which 
promote corrosion. The Virginia DOT is supplanting ECR with chrome reinforcing steel for normal 
applications because of its performance and low price, which is comparable to black steel. FRP rebars 
certainly eliminate corrosion, however, there has only been limited testing on these materials and it is 
unclear if they perform well under a variety of environmental conditions. They should be investigated 
further to determine if their long-term performance will warrant their future use in KYTC bridge decks.  

A second method of mitigating corrosion is to add supplementary cementitious materials (or admixtures) 
to concrete. Admixtures reduce the permeability of concrete, improve concrete density, and increase the 
electrical resistivity of concrete — all of which delay the onset of corrosion. The most frequently used 
admixtures include fly ash, silica fume, ground granulated blast furnace slag, and calcium nitrite. Most of 
the studies analyzed confirmed there are benefits to using admixtures, as they limit the penetration of 
chlorides. One potential downside of using an admixture is the slight loss of compressive strength. None of 
the studies identified suggested the loss of compressive strength would be problematic for bridge 
performance, however, ongoing and future studies examining the utility of admixtures should be attentive 
to the issue of compressive strength and determine whether there are tradeoffs involved in their use. As one 
study (Nidiffer et al., 2014) pointed out, transportation agencies interested in using admixtures should 
explore ternary concrete formulations that contain at least two admixtures in addition to cement as these 
may more effectively limit corrosion than binary formulations.    

Lastly, surface treatments (i.e., sealants) are organic and inorganic materials that are applied to deck 
surfaces to prevent the ingress of moisture and chloride. The most commonly used surface treatments are 
silanes and siloxanes. These have generally proven more effective than silicates and epoxies. There is 
evidence that indicates surface treatments reduce corrosion and the infiltration of contaminants. A positive 
correlation exists between the depth of sealant penetration and overall performance. Although some sealers 
may increase carbonation, this will not necessarily translate into more significant corrosion if excessive 
moisture is not present. Most sealers need to be reapplied every 5 to 20 years. Transportation agencies 
should carefully weigh the costs and benefits of repeated applications to decide whether alternative methods 
of protection will be more cost-effective.   

Cracking of bridge decks remains a critical problem. Concrete cracking can allow aggressive materials to 
access the reinforcing materials directly and short-circuit the benefits of dense, high performance concrete 
or thick cover. KTC research has indicated a potential benefit of conventional sealants for tight cracks 
<0.010 inches. However, larger cracks need to be repaired with spot applications of crack sealers or flood 
applications of healer sealers. Corrosion-resisting reinforcing bars are the critical second line of defense 
where deck cracking is present. The Virginia DOT (2009) Guide Manual for Causes and Repair of Crack 
in Bridge Decks notes that repairs may work for dormant cracks but repairs to moving cracks may prove 
short-lived because new cracks may form parallel to the repair. The manual notes that cracks exceeding 0.2 
mm (0.007 in) should be filled. It prescribes repair methods including gravity filled polymers (healer 
sealers), routing and filling with epoxy, and epoxy injection after placement with a polymer mesh.  

If there is a consensus among researchers, it is this — treatments are supplemental. By itself, no treatment 
will adequately slow down the corrosion process. The key to extending the service life of any bridge is the 
use of a sufficient cover of high quality concrete over reinforcement. Without this, the effectiveness of the 
treatments discussed in this report will be limited at best.  
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KYTC and other transportation agencies may want to consider the more extensive use of multiple corrosion-
resisting methods to protect against bridge corrosion. For the construction of new reinforced concrete 
structures, KTC recommends a multiple approach to corrosion resistance. This approach combines high 
performance concrete, which establishes an effective barrier that limits the rates of chloride penetration and 
carbonation, with reinforcing bar materials that are more resistant to corrosion (e.g. MMFX® ChromX, or 
in more critical/severe applications, stainless steel) (Hansson et al., 2010). For existing structural concrete 
other than decks, sealants and coatings can be used to provide corrosion resistance along with the addition 
of waterproofing treatments for protecting bridge decks (not addressed in this report).  

KYTC practices that prevent corrosion in deck reinforcement and in other reinforced concrete applications 
can be improved to provide greater service lives. Although KTC now has field performance data for bridges 
constructed with ECR and concrete overlays dating to the 1970s and 1980s, the use of other methods is 
more recent, and accelerated laboratory testing can only reveal so much. Arguably, there will not be a 
comprehensive understanding of how these protective strategies perform until they have been in real-world 
use for another 20-30 years (perhaps even more in some cases). In the meantime, based on the findings we 
recommend that KYTC take the following actions: 

• Develop specifications for high-performance concrete for use on bridge decks. 
• Continue to monitor the performance of current bridge decks that have been constructed with 

experimental reinforcing steel as well as conventional decks treated with protective sealants. 
• Evaluate corrosion activity of painted structural concrete. 
• Conduct further evaluations of sealant types and determine which work best with specific concretes. 
• Perform a cost-benefit analysis to evaluate the anticipated benefits of using various protection 

methods/treatments. 
• Identify and implement experimental maintenance activities related to sealing bridge decks/cracks. 
• Experiment with multiple corrosion-protection systems on newly constructed bridges and apply one or 

more of those routinely for new bridges and deck replacement projects. 
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Appendix A – DOT Survey Summary 

Q1 - Which of the following reinforcing bar types does your agency use on a routine (non-
experimental) basis for new construction? 

Black Reinforcing Steel 27.27% 3 

Epoxy Coated Reinforcing Steel 100.00% 11 

Chrome Reinforcing Steel - ASTM A1035 MMFX2/ChromX 0.00% 0 

Stainless Reinforcing Steel 45.45% 5 

Galvanized Reinforcing Steel 9.09% 1 

FRP / Carbon 18.18% 2 

Proprietary (e.g. Z-bar) 18.18% 2 

Other 0.00% 0 

Q1.1 - What grade(s) of black reinforcing steel does your agency use? 

ASTM A 615 grade 60 

60 

60 grade and 80 grade 

Q1.2 - What grade(s) of Epoxy Coated Bars does your agency use? 

60 

Grade 60 

Grade 60 

60 

grade 60 bars coated in accordance with ASTM A 775 

AASHTO M31 

60 

Grade 60 

60 

60 

Grade 60 and 80 
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Q1.3 - What type of stainless reinforcing steel does your agency use? 

Austenitic-Ferritic (Duplex) 100% 4 

Austenitic 75% 3 

Q1.4 - What grade(s) of austenitic stainless reinforcing steel does your agency use? 

S24000, S24100, S20910, S30400, S31603, S31803, S31653 

Unknown 

316 LN 

Q1.5 - What grade(s) of austenitic-ferritic (duplex) stainless reinforcing steel does your 
agency use? 

S32205, S32304 

Unknown 

60 

2205 

Q1.5 - What grade(s) of galvanized reinforcing steel does your agency use? 

Grade 60 

Q1.6 - What is the tensile strength of FRP/Carbon reinforcement your agency uses? 

95 ksi 

100 KSI 

Q2 - Does your Agency use high performance (low permeability) concrete? 

Yes 50.00% 5 

No 50.00% 5 

Q2.1 - What is the specified concrete cover (inches) over the upper mat of the deck? 

2 inches 10 1 

2.5" 70 7 

3" minimum* 20 2 
*One respondent typically uses 3” cover for #6 bars 
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Q2.2 - Does your agency use inhibiting admixtures to reduce corrosion of reinforcing steel? 

Yes 0.00% 0 

No 100.00% 10 

Q2.3 - Does your agency use surface applied inhibitors to reduce corrosion of reinforcing 
steel? 

Yes 20.00% 2 

No 80.00% 8 
 

Q2.4 - Does your agency use densifiers to reduce concrete permeability? 

Yes 11.11% 1 

No 88.89% 8 

Q2.5 - When are densifiers applied? 

New construction 100.00% 1 

Maintenance 0.00% 0 

Both 0.00% 0 

Q2.6 - Does your agency use cathodic protection? 

Yes 55.56% 5 

No 44.44% 4 

Q2.7 - When does your agency use cathodic protection? 

New construction 20.00% 1 

Maintenance 80.00% 4 

Both 0.00% 0 

Q3 - Does your agency apply sealants to bridge decks? 

Yes 77.78% 7 

No 22.22% 2 

 
  



 

KTC Research Report Long-Term Corrosion Protection of Bridge Elements 67 

Q3.1 - What type of deck sealant(s) does your agency use? 

Silanes/Siloxanes 85.71% 6 

Epoxies 71.43% 5 

Methacrylates 42.86% 3 

Linseed oil 0.00% 0 

Other (specify)* 14.29% 1 

*Pavon InDeck 

Q3.3 - Are deck sealants applied during new construct or maintenance? 

New construction 0.00% 0 

Maintenance 0.00% 0 

Both 100.00% 7 

Q3.3 - At what frequency are deck sealants re-applied? 

5 years 

Do not have a schedule to re-apply 

no set frequency 

Variable 

60-120 months 

36 (for InDeck) to 84 (for Silane) (recommended) 

5-10 years 

Q3.4 - Does your agency apply crack sealants to bridge decks? 

Yes 88.89% 8 

No 11.11% 1 

Q3.5 - What type of crack sealant(s) does your agency use? 

Methacrylate 75.00% 6 

Epoxies 75.00% 6 

Polyurethanes 25.00% 2 

Other (specify) 0.00% 0 
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Q3.6 - Does your agency use healer-sealers on bridge decks? 

Yes 56% 5 

No 44% 4 

Q4 - Does your agency use membranes, overlays, and/or laminates? 

 YES  NO  Total 

Membranes 42.86% 3 57.14% 4 7 

Overlays 100.00% 8 0.00% 0 8 

Laminates 0.00% 0 100.00% 5 5 

Other (slurries, Chip seals, etc.) 100.00% 1 0.00% 0 1 

Q4.1 – When does your agency used membranes, overlays, and/or laminates? 

 New 
Construction  Maintenance  Both  Total 

Membranes 0.00% 0 100.00% 5 0.00% 0 5 

Overlays 0.00% 0 66.67% 6 33.33% 3 9 

Laminates 0.00% 0 0.00% 0 100.00% 1 1 
Other (slurries, Chip seals, 
etc.) 0.00% 0 100.00% 3 0.00% 0 3 

Q4.2 - What type of membrane does your agency apply? (Select all that apply) 

 % Count 

Sheeting 66.67% 2 

Liquid applied 66.67% 2 

Other (specify) 0.00% 0 

Q4.3 - What type of overlays does your agency apply? (Select all that apply) 

 % Count 

Low Slump Concrete 37.50% 3 

Latex Concrete 37.50% 3 

Microsilica Concrete 37.50% 3 

Impermeable Asphalt (e.g. Rosphalt) 0.00% 0 
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Other (specify) - (Epoxy Polymer, Asphaltic, Chip Seals) 25.00% 2 

Q5 - Does your agency routinely employ multiple corrosion prevention/minimization 
methods in bridge decks? 

Yes 56% 5 

No 44% 4 

Q6 - Using the numerical equivalent of the materials listed below indicate various 
combinations that your agency employs on bridge decks (new construction) and on what 
type of route. Example: Epoxy coated reinforcing steel, stainless reinforcing steel, and high 
performance concrete would be (2, 4 & 9 used on high ADT routes with heavy de-icing 
chemical usage. 
1 Black Reinforcing Steel 8 Other Proprietary Reinforcement 15 Healer-Sealers 
2 Epoxy Coated Reinforcing Steel 9 High Performance Concrete 16 Membranes 
3 Chrome Reinforcing Steel 10 Inhibiting Admixtures 17 Overlays 
4 Stainless Reinforcing Steel 11 Surface Applied Inhibitors 18 Laminates 
5 Stainless Clad Reinforcing Steel 12 Densifiers 19 Cathodic protection 
6 Galvanized Reinforcing Steel 13 Deck Sealants 20 Other 
7 FRP/Carbon Reinforcing Bars 14 Crack Sealants   

Minnesota DOT: 
Combination 1 – ECR steel and high performance concrete is used in minimum ADT areas. 
Combination 2 – ECR steel, high performance concrete, and overlays are used on routes in more 
populous areas with higher ADT. 
Combination 3 – Stainless reinforcement and high performance concrete is used on bridges with 
costs above $25 million. 

Utah DOT: 
Combination 1 – ECR and deck sealant 
Combination 2 – ECR and overlays 
Combination 3 – ECR and healer/sealers 
Combination 4 – Stainless reinforcement and overlays 
Combination 5 – Stainless reinforcement and healer/sealers 

South Dakota DOT: 
Combination 1 – ECR, high performance concrete, and deck sealants on routes with lower ADT 
and lower deicing chemical usage. 
Combination 2 – Stainless reinforcement, high performance concrete, and deck sealants are used 
on routes with higher ADT and deicing chemical usage. 
Combination 3 – Z-bar or dual coated reinforcing (metalized and epoxy coated)t, high 
performance concrete, and deck sealants used routes with higher ADT and deicing chemical 
usage. 

Missouri DOT: 
Combination 1 – ECR and deck sealants during construction. 
Combination 2 – Deck sealants, crack sealants, and overlays throughout the life of the bridge. 
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Oregon DOT: 
Combination 1 – Black reinforcing steel, high performance concrete, deck sealant, crack 
sealants, and healer-sealers. 
Combination 2 – ECR, high performance concrete, deck sealant, crack sealants, and membranes. 
Combination 3 – Stainless reinforcing steel, high performance concrete, and deck sealant. 
Combination 4 – FRP/Carbon reinforcing bars, high performance concrete, and deck sealant. 
 

Additional Comments: 

Epoxy chip seals are being applied after 5-10 years on new bridges in higher ADT and higher de-
icing chemical usage areas that we have used epoxy coated steel on.  On new bridges in higher 
ADT and higher de-icing chemical usage areas we are using stainless steel with Z-bar as an 
alternate.  Epoxy chip seals and low slump overlays are also being used on a routine basis for 
maintenance of existing structures. 
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