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RESEARCH ARTICLE

Thrombospondin 1 Deficiency Ameliorates
the Development of Adriamycin-Induced
Proteinuric Kidney Disease
Hasiyeti Maimaitiyiming1,2, Qi Zhou1,2, Shuxia Wang1,2*

1 Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky,
United States of America, 2 Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States
of America

* swang7@uky.edu

Abstract
Accumulating evidence suggests that thrombospondin 1 (TSP1) is an important player in

diabetic nephropathy. However, the role of TSP1 in podocyte injury and the development of

non-diabetic proteinuric kidney disease is largely unknown. In the current study, by using a

well-established podocyte injury model (adriamycin-induced nephropathy mouse model),

we examined the contribution of TSP1 to the development of proteinuric kidney disease.

We found that TSP1 was up-regulated in the glomeruli, notably in podocytes, in adriamycin

injected mice before the onset of proteinuria. ADR treatment also stimulated TSP1 expres-

sion in cultured human podocytes in vitro. Moreover, increased TSP1 mediated ADR-

induced podocyte apoptosis and actin cytoskeleton disorganization. This TSP1’s effect was

through a CD36-dependent mechanism and involved in the stimulation of p38MAPK path-

way. Importantly, in vivo data demonstrated that TSP1 deficiency protected mice from ADR

induced podocyte loss and foot process effacement. ADR induced proteinuria, glomerulo-

sclerosis, renal macrophage infiltration and inflammation was also attenuated in TSP1 defi-

cient mice. Taken together, these studies provide new evidence that TSP1 contributes to

the development of non-diabetic proteinuric kidney disease by stimulating podocyte injury

and the progression of renal inflammation.

Introduction
Thrombospondin1 (TSP1) belongs to a family of five secreted glycoproteins encoded by sepa-
rated genes. It is released from activated platelet and is also synthesized and secreted by many
cell types including endothelial cells, smooth muscle cells, kidney mesangial cells, tubular cells,
and podocytes et al. [1]. TSP1 is a 420–450 kDa homotrimer with individual subunits of
approximately 145 kDa. It is composed of several domains that can interact with specific cell
surface receptors/molecules to modulate cell adhesion, growth, motility, differentiation, and
survival [2–7]. Recently, accumulating evidence suggests that TSP1 is an important player in a
variety of kidney diseases such as ischemia-reperfusion induced kidney injury and obesity/
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diabetes associate nephropathy [8–15]. TSP1 has been identified to be an important physiologi-
cal activator for latent TGF-β activation [16,17]. Previous studies from our lab and others dem-
onstrated that glomerular mesangial cells produced excessive amount of TSP1 in response to
diabetic stimuli, which stimulated the profibrotic factor-TGF-β activation and the development
of glomerulosclerosis [8,10,12,13,18–22]. Although the effect of TSP1 on mesangial cell func-
tion has been extensively studied, a role for TSP1 in regulating podocyte function and its con-
tribution to non-diabetic proteinuric kidney disease has not been explored.

Podocytes are highly differentiated cells that play a critical role in maintaining glomerular
infiltration barrier. Podocyte dysfunction, injury or loss leads to a broad spectrum of clinical
syndromes such as diffuse mesangial sclerosis, focal segmental glomerulosclerosis (FSGS),
and diabetic nephropathy (DN) et al [23]. There is evidence that injured podocytes expressed
more TSP1 as determined by in situ hybridization of specimens from patients with primary
FSGS [24]. Moreover, in type 1 diabetic mouse model, global TSP1 deficiency or TSP1 antag-
onist preserved podocyte marker expression (e.g. nephrin) and attenuated albuminuria
[18,21]. In addition, in a high fat diet-induced obesity-related nephropathy mouse model in
our previous studies, global TSP1 deficiency protected podocyte from FFA induced apoptosis
and attenuated albuminuria [8,25]. Together, all of these in vivo animal and human data sup-
port the important role of TSP1 in podocyte injury and the development of proteinuric kid-
ney disease.

In the current study, we utilized a well-established podocyte injury and experimental FSGS
animal model: adriamycin (ADR) induced nephropathy mouse model. The rationale for choos-
ing this ADR-nephropathy model to study TSP1’s effect is based on a human study showing
that podocyte TSP1 was significantly elevated in patients with primary FSGS [24]. Therefore,
by using this model, the contribution of TSP1 to the podocyte injury and the development of
proteinuric kidney disease in vitro as well as in vivo was examined.

Materials and Methods

Experimental animals and protocols
All experiments involving animals conformed to the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and were approved by the University of Kentucky
Institutional Animal Care and Use Committee. Eight week old male TSP1 -/- mice and wild
type (WT) controls (on C57BL6/J background, maintained colony by our lab) were used in
this study. Considering the relative resistance of B6 strain to Adriamycin (ADR) induced
nephropathy [26], a single high dose of ADR (19 mg/kg) was administered into TSP1-/- and
WT mice through tail vein [27–29]. After two weeks of ADR injection, mice underwent 24 h
urine collection in metabolic cages and then sacrificed by Carbon Dioxide asphyxiation and
followed by cervical dislocation. Kidneys were harvested for further analysis. In another set
of experiment, we used BALB/c mice to determine how glomerular TSP1 expression was
altered in ADR-induced nephropathy. BALB/c mouse has been identified to be a susceptible
strain to ADR induced nephropathy [30,31]. Eight week old male BALB/c mice was injected
with a single dose of ADR at 11 mg/kg body weight by tail vein as previously described [32].
After 3, 7, or 14 days of injection, mice were sacrificed and kidneys were harvested for
further analysis. Saline injection was used as control. Each time points contained 3–5 mice.
In these experiments, animals with more than 20% weight loss were sacrificed by Carbon
Dioxide asphyxiation (followed by cervical dislocation) and excluded from the study
(humane endpoints).

TSP1 in Proteinuric Kidney Disease
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Renal function, immunohistochemical or immunofluorescence staining,
and electromicroscopy
Urinary albumin and creatinine were determined by using mouse albumin ELISA and creati-
nine companion kits (Philadelphia, PA USA) following manufacturer’s protocols. Serum levels
of creatinine were determined by using a kit from Biovision (Milpitas, CA). For immunohisto-
chemical staining, formalin-fixed and paraffin-embedded renal tissues were cut into 4- to 5-
μm sections. The slides were stained with anti-collagen IV (Cell Signaling) or F4/80 antibody
(Serotec) using VECTASTAIN Elite ABC system (Vector Lab) as described previously [25].
For immunofluorescence staining: frozen kidney samples were sectioned and fixed in cold ace-
tone. The slides were stained with anti-WT1 antibody (Novus) and then with fluorescence con-
jugated secondary antibodies (Life Technologies). After washing, slides were incubated with
DAPI for 5 minutes and coverslipped. In addition, kidney electron microscopy (EM) was per-
formed by using the service from the Imaging Center at University of Kentucky.

Western blotting analysis
Glomeruli were isolated from mice by gradually sieving method as previously described [33].
Briefly, kidneys were minced and digested in collagenase A (Sigma) at 37°C for 30 minutes
with gentle agitation. The digested kidney tissues were gently pressed through a 100-μm cell
strainer. The filtered tissues were then passed through 70 μm and 40 μm cell strainer. The final
filtered tissues were collected and centrifuged at 2,000 rpm for 5 minutes. The pellet enriched
in glomeruli was collected. Mouse glomeruli and podocytes were homogenized. Equal amount
of total protein was subjected to SDS-PAGE gel under reducing conditions and transferred
onto a nitrocellulose membrane. After blocking, the membrane was incubated with anti-TSP1
(Thermo Scientific), anti-CD36 (Novua), anti-phospho-p38 and anti-total p38 antibodies (Cell
Signaling) and then with horseradish peroxidase-conjugated secondary antibody (Jackson
Labs). The reaction was visualized using an enhanced chemiluminescence system (Pierce).
Immunoblots were analyzed by scanning densitometry and quantified by Quantity One gel
Analysis software (Bio-Rad Laboratories).

Real-time PCR
Total RNA was isolated from glomeruli or podocytes using TRIzol reagent (Invitrogen) and
treated with DNaseI (Roche). The treated RNA was cleaned up using an RNeasy kit (Qiagen).
Two micrograms of total RNA was used for cDNA synthesis with a High Capacity cDNA
Reverse Transcription kit (Invitrogen). Real-time PCR analyses were performed using a SYBR
Green PCRMaster Mix kit with a MyiQ Real-time PCR Thermal Cycler (Bio-Rad Laborato-
ries). The quantities of each test gene and internal control 18S RNA were then determined
from the standard curve using MyiQ system software, and mRNA expression levels of test
genes were normalized to 18S RNA levels as described previously. The primer sequences were
provided in Table 1.

Human podocyte culture and treatments
Immortalized human podocytes (generously provided by Dr. Moin Saleem from Bristol Royal
Hospital for Children, Bristol, UK) were cultured and differentiated as described previously
[25,34]. Differentiated podocytes were treated with ADR (Sigma, 20μg/ml) for different time
periods. After treatment, 1). Cells were harvested and mRNA levels of TSP1 and CD36 were
determined by real-time PCR. 2). Podocyte apoptosis was determined by a transferase-medi-
ated dUTP nick-end labeling (TUNEL) staining of podocytes according to the manufacturer's

TSP1 in Proteinuric Kidney Disease
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instructions (Roche). Caspase 3 activity in cell lysate was measured by using caspase-3 colori-
metric assay kit (R&D) as described previously [25]; 3). For F-actin Staining: cells were grown
on four-well chambers. After overnight treatment with ADR, cells were fixed in 4% parafor-
maldehyde solution, permeablized with 0.1% Triton X-100, blocked in 1% BSA/PBS and
stained with Texas Red-Phalloidin (Lifetech). After washing, the slides were sealed with DAPI
mounting medium and visualized under fluorescence microscope. In addition to ADR treat-
ment, differentiated human podocytes were treated with recombinant human TSP1 (R&D sys-
tem) at 0.1–5 μg/ml in the presence or absence of anti-CD36 antibody (10–15 ug/ml, clone
FA6-152 IgG1 from Abcam) or SB202190 (p38 inhibitor, at 10−5 mol/L, Sigma) for indicated
time periods. After treatment, cell apoptosis assay and F-actin staining were performed as
described above. The levels of phospho-p38MAPK and total p38 in cell lysates were deter-
mined by immunoblotting.

Isolation of murine podocytes and treatments
Podocytes from TSP1 knockout mice or control wild type mice were isolated using the protocol
as previously described [25,35,36]. The purity of isolated podocytes was determined by staining
with the podocyte marker WT1 or by determining WT1 mRNA levels by real-time PCR. Podo-
cytes of passages 1 or 2 were used for the experiments. Podocytes were treated with ADR
(20 μg/ml) for 24 hours. After treatment, 1) Cell apoptosis was determined by TUNEL assay. 2)
Caspase 3 activity in cell lysates was analyzed by using caspase-3 colorimetric assay kit (R&D).
3) Cells were stained with Texas Red-Phalloidin to examine the actin cytoskeleton organization
as described above.

Statistical analysis
Data are the mean ± SEM. Differences between groups were determined by two-way ANOVA
or one-way ANOVA followed by Turkey's post hoc tests or Student's t-test as appropriate. The
significance level was P<0.05.

Results

Expression of TSP1 and its receptor-CD36 expression was up-regulated
in podocytes from adriamycin (ADR) treatment in vivo as well as in vitro
To address the role of TSP1 in podocyte injury and the development of proteinuric kidney dis-
ease, first, we studied its expression in glomerulus from experimental FSGS model-ADR
induced nephropathy. Under normal conditions, immunoblot analysis of mouse glomerular

Table 1. Primer sequences for q-PCR.

FORWARD REVERSE

mCD11c CTGGATAGCCTTTCTTCTGCTG GCACACTGTGTCCGAACTC

mF4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG

mIL-1β TGGAGAGTGTGGATCCCAAGCAAT TGTCCTGACCACTGTTGTTTCCCA

mCollagen IV AGG GTTCCCAGGTTCTAA GCCCAACGTCACCTTTAT

mTNF-α AGCCGATGGGTTGTACC TGAGT GGTCCCCCTTCT

mMCP-1 CAGCCAGATGCAGTTAACGC GCCTACTCATTGGGATCATCTTG

hTSP1 CCGCCGATTCCAGATGATTCCT ACGAGTTCTTTACCCTGATGGCGT

hCD36 CCCTGTTACTACCACAGTTG ATGTCGCAGTGACTTTCC

mCD31 ACACTATGTGGACTGGCAGTGGTT TGAGGCTCGATTGTTCAGCTGCTA

doi:10.1371/journal.pone.0156144.t001
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lysates showed minimal TSP1 expression. TSP1 expression was markedly increased in the glo-
meruli lysates from ADR injected BALB/c mice as early as three days after ADR injection, a
time point without onset of proteinuria [30–32] and continued to increase till the end of the
study (day 14) (Fig 1A). In addition, double immunofluorescence staining data showed that
increased expression of TSP1 in the glomeruli was mostly colocolized with podocyte marker-
nephrin (Fig 1B). This data is consistent with studies from primary human FSGS kidney sam-
ples showing that injured podocytes expressed more TSP1 in glomeruli [24], suggesting that
podocyte is a cellular source of increased glomerular TSP1 in both human and experimental

Fig 1. TSP1 expression was up-regulated in podocytes from adriamycin (ADR) treatment in vivo as well as in vitro. (A). Glomeruli TSP1 expression
from ADR injected BALB/c mice was determined by immunoblotting. Data are represented as mean ± SE (n = 3 mice /group). * p<0.05, ** P<0.01 vs.
control. (B). Colocolization of TSP1 with nephrin in glomeruli was determined by immunofluorescence staining of kidney samples from ADR injected mice.
ADR (20μg/ml) treated human podocyte was harvested for analyzing TSP1 expression in mRNA (C) and protein (D) levels by real-time PCR and
immunoblotting, respectively. Data are presented as mean ± SE (n = 3 individual experiments).

doi:10.1371/journal.pone.0156144.g001
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FSGS models. This is further supported by in vitro data showing that ADR treatment signifi-
cantly induced TSP1 expression in cultured human podocytes (Fig 1C and 1D). However,
ADR treatment had no effect on TSP1 expression in mesangial cells or glomerular endothelial
cells (data not shown).

Next, we determined the expression of CD36 (one of TSP1’s receptors on podocytes) in this
model. Similar to the TSP1 levels, CD36 expression was also upregulated in the glomeruli from
ADR injected BALB/c mice or in ADR treated human podocytes (Fig 2). Taken together, these
results indicated that expression of TSP1 and its receptor-CD36 was up-regulated in podocytes
from ADR treatment in vivo as well as in vitro.

ADR or TSP1 treatment induced podocyte injury through a
CD36-dependent activation of p38MAPK pathway
We determined the effect of ADR or TSP1 treatment on human podoyte injury in vitro. As
shown in Fig 3, ADR or TSP1 treatment induced podocyte actin cytoskeletal disorganization
(determined by F-actin staining) and apoptosis (determined by TUNEL staining and Caspase 3
activity measurement).

The mechanism of TSP1 induced podocyte apoptosis was further investigated. Previously,
we demonstrated that interaction of TSP1 and CD36 contributes to obesity-associated podocy-
topathy [25]. CD36 has been shown to activate p38 MAPK pathway to mediate apoptosis
induced by TSP1 in endothelial cells [37]. In platelets, CD36-dependent pathways including
JNK and p38MAPK were activated by TSP1 [38]. Based on these reports, we determined
whether activation of p38MAPK pathway is involved in TSP1-induced podocyte apoptosis. As
shown in Fig 4A, we found that short time treatment of podocytes with TSP1 at 5 μg/ml stimu-
lated phospho-p38 MAPRK levels, which was inhibited by anti-CD36 functional blocking anti-
body [39–41]. Furthermore, treatment of podocytes with an inhibitor of p38MAPK-SB212090
prevented TSP1 induced podocyte apoptosis (Fig 4B), suggesting that TSP1 induced podocyte
injury was mediated by CD36-dependent activation of p38MAPK pathway.

Fig 2. CD36 expression was up-regulated in podocytes from ADR treatment in vivo as well as in vitro.
(A). Glomeruli CD36 expression from ADR injected BALB/c mice was determined by immunoblotting. Data
are represented as mean ± SE (n = 3 mice /group). * p<0.05, ** P<0.01 vs. control. (B). ADR (20μg/ml)
treated human podocyte was harvested for analyzing CD36 expression by real-time PCR. Data are
presented as mean ± SE (n = 3 individual experiments). ** P<0.01 vs. 0h.

doi:10.1371/journal.pone.0156144.g002
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TSP1 deficient podocytes had reduced ADR-induced injury
To further determine the role of TSP1 in ADR induced podocyte injury, podocytes from TSP1
deficient mice and wild type control mice were isolated and characterized as previously
described [25,35,36]. The purity of these cells was reached about 80% (Fig 5A). These cells
were treated with ADR and then cell apoptosis or actin cytoskeletal disorganization was deter-
mined. The results demonstrated that ADR induced podocyte apoptosis and actin cytoskeleton
disorganization was significantly diminished in TSP1 deficient podocytes (Fig 5B), suggesting
that TSP1 partially mediates ADR induced podocyte injury.

Genetic TSP1 deficiency attenuates ADR-induced podocyte injury and
the development of proteinuric kidney disease
To determine whether TSP1 contributes to ADR-induced proteinuric kidney disease in vivo,
global TSP1-/- mice and wild type controls were administered with ADR. The development of

Fig 3. ADR or TSP1 treatment induced human podocyte apoptosis and actin cytoskeleton disorganization.Human podopcytes were treated with
ADR (20μg/ml) or TSP1 (5μg/ml) for 24 hours. Then, TUNEL and F-actin staining was performed (A). TUNEL positive cells were calculated (B). Caspase 3
activity in cell lysates was measured (C). Data are presented as mean ± SE (n = 3 individual experiments). ***, P <0.001 vs. control.

doi:10.1371/journal.pone.0156144.g003

TSP1 in Proteinuric Kidney Disease
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podocyte injury and proteinuria kidney disease in these mice was examined. At the end of the
study, ADR administration induced similar level of body weight reduction in wild type and
TSP1-/- mice (data not shown). In wild type mice, ADR injection induced proteinuria, renal
fibrosis, and increased macrophage infiltration into glomeruli (q-PCR and immnohistochem-
ical staining of F4/80 in kidney sections) and increased production of pro-inflammatory cyto-
kines (q-PCR for MCP-1, CD11c, TNF-α, and IL-1β). All of these phenotypes were
significantly reduced in TSP1-/- mice (Figs 6 and 7). In addition, angiogenesis marker-CD31
gene expression was comparable between wild type and TSP1-/- mice under either saline or
ADR injection conditions (Fig 7B). Moreover, as compared to ADR injected wild type mice,
ADR injected TSP1-/- mice had less podocyte loss (WT1 staining and counting in kidney sec-
tions) and podocyte foot process enfacement (from transmission electron microscopy images)
(Fig 8). Taken together, these data provide in vivo evidence of the contribution of TSP1 to
podocyte injury and the development of proteinuric kidney disease.

Discussion
In the current study, we demonstrated that glomerular/podocytes TSP1 expression was upre-
gulated in adriamycin (ADR) induced focal segmental glomerulosclerosis (FSGS) mouse

Fig 4. TSP1 treatment induced human podocyte apoptosis through activation of CD36-dependent p38 MAPK pathway. (A).
Human podocytes were treated with different concentration of TSP1 (0.1, 1, and 5μg/ml) in the presence or absence of anti-CD36
antibody (15 μg/ml) for 15 minutes. Then phospho-p38MAPK level in cell lysates was determined by immunoblotting and normalized to
total p38 levels. (B) Human podocytes were pre-incubated with SB202190 (p38 inhibitor, at 10−5 mol/L) and anti-CD36 antibody (15 μg/
ml) for 2 h and then treated with TSP1 (5μg/ml) for 24 hours. Cells were then stained with TUNEL to calculate apoptotic cells. Data are
presented as mean ± SE (n = 3 individual experiments). ***, P <0.001 vs. Ctrl; ##, P<0.01 vs.TSP1; ###, P<0.001 vs. TSP1 (5).

doi:10.1371/journal.pone.0156144.g004
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model. ADR treatment also stimulated TSP1 expression in human podocytes in vitro.
Increased TSP1 partially mediated ADR-induced podocyte apoptosis and actin cytoskeleton
disorganization. This TSP1’s effect was through a CD36-dependent activation of p38MAPK
pathway. Importantly, in vivo data demonstrated that TSP1 deficiency attenuated ADR
induced nephropathy by showing attenuated proteinuria, reduced glomerulosclerosis, renal
macrophage infiltration and inflammation, and podocyte injury. Taken together, these studies
provide novel evidence of the contribution of TSP1 to podocyte injury and the development of
non-diabetic proteinuric kidney disease.

TSP1 is a matricellular protein and expressed by many cell types including mesangial cells
and podocytes. Accumulating evidence suggests that TSP1 is an important player in a variety
of kidney diseases such as ischemia-reperfusion induced kidney injury and obesity/diabetes
associate nephropathy [8–15,25]. Furthermore, current study provides new knowledge to the
role of TSP1 in regulating podocyte function and its contribution to non-diabetic proteinuric

Fig 5. ADR induced podocyte apoptosis and actin cytoskeleton disorganization was attenuated in TSP1 deficient podocytes. (A). Podocytes
were isolated from wild type or TSP1deficient mice and characterized by staining cells with WT1. (B). Cells were treated with ADR (20 μg/ml) for 24 h. After
treatment, TUNEL staining and F-actin staining were performed. TUNEL positive cells were counted. Data are presented as mean ± SE (n = 3 individual
experiments). *P<0.05.

doi:10.1371/journal.pone.0156144.g005
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kidney disease. In this study, we utilized a well-established podocyte injury and experimental
FSGS model- adriamycin (ADR) induced nephropathy mouse model [30,31]. We found that
glomeruli TSP1 was up-regulated from ADR injected mice and was mostly co-localized with
podocytes. In patients with primary FSGS, increased TSP1 (mRNA and protein) was also
found in podocytes of the sclerotic segments [24], suggesting that podocyte might be an impor-
tant cellular source of increased TSP1 in glomeruli from both human and animal FSGS models.
This is supported by our in vitro data showing that ADR stimulated TSP1 expression in cul-
tured human podocytes but not in cultured mesangial cells or glomeruli endothelial cells. The
stimulatory effect of ADR on TSP1 expression might be cell type specific and the detail molecu-
lar mechanism by which ADR stimulates TSP1 expression in podocytes warrants further
investigation.

Fig 6. ADR-induced proteinuria and glomerulosclerosis was attenuated in TSP1 deficient mice. ADR was injected into male TSP1-/- mice and wild
type control mice. After 14 days of injection, urinary albumin and creatinine ratio (A) and serum creatinine (B) levels were determined. (C) Glomerular
collagen type IV mRNA levels were determined by real-time PCR. Data are presented as mean ± SE (n = 3–5 mice /group). *, P <0.05 and **, P<0.01. (D)
Representative images of immunohistochemical staining of kidney samples with anti-collagen IV antibody were shown. The positive staining was shown as
brown.

doi:10.1371/journal.pone.0156144.g006
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Increased TSP1 induces podocyte injury. Previously, we showed that addition of purified
TSP1 to the cell culture media induced human podocyte to undergo apoptosis [25]. This effect
has been confirmed in the current studies. Although TSP1 is an important regulator for latent
TGF-β activation [42] and TGF-β induces podocyte apoptosis [43,44], we have demonstrated

Fig 7. ADR-induced renal macrophage infiltration and inflammation was attenuated in TSP1 deficient mice. (A). Kidney samples from ADR or saline
injectedWT or TSP1-/- mice were stained with anti-F4/80 antibody. Representative images were shown. The positive brown staining was indicated by red
arrows. (B). mRNA levels of pro-inflammatory cytokines including F4/80, MCP-1, CD11c, TNF-α, IL-1β and CD31 in the glomeruli were determined by real-
time PCR. Data are presented as mean ± SE (n = 3–5 mice /group). * P <0.05; ** P<0.01; ***P<0.001.

doi:10.1371/journal.pone.0156144.g007

Fig 8. ADR-induced podocyte injury was attenuated in TSP1 deficient mice. ADR was injected into male TSP1-/- mice and wild type control mice to
induced nephropathy. (A) Representative overlay images of immunofluorescence staining of frozen kidney sections with WT1 (green) and DAPI (purple)
were shown. WT1 positive cells in glomeruli were counted. Data are presented as mean ± SE (n = 3–5 mice /group). *, P <0.05. (B) Representative images of
electron microscopy showed that ADR injected wild type mice had foot process effacement (red arrow).

doi:10.1371/journal.pone.0156144.g008
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that TSP1 induced podocyte apoptosis is through a TGF-β independent mechanism [25]. In
the current studies, we further determined the mechanisms of TSP1 induced podocyte apopto-
sis. TSP1 is a large homotrimer with multiple domains to interact with a variety of different cell
surface receptors e.g. CD36, CD47, integrins. As a receptor for TSP1, CD36 exists on podocytes
[45–47] and our current data demonstrated that CD36 expression was upregulated by ADR
treatment in vitro as well as in vivo. Consistently, CD36 on podocytes was also upregulated in
puromycin aminonucleoside induced rat FSGS [47]. Since CD36 mediates apoptotic signaling
induced by TSP1 in endothelial cells [37], by ox-LDL in macrophages [48], by advanced end
product (AGE) in tubular cells, or by palmitate in podocytes [25,45], we determined whether
CD36 is involved in TSP1 mediated podocyte apoptosis. Our data demonstrated that TSP1
treatment stimulated phospho-p38MAPK pathway in podocytes, which was inhibited by pre-
treatment of anti-CD36 antibody. AKT of JNK pathway was not affected by TSP 1 treatment
(data not shown). Moreover, an inhibitor of p38 MAPK prevented TSP1 induced podocyte
apoptosis. Taken together, these data provide new evidence that TSP1 induces podocyte apo-
ptosis is through a CD36 dependent mechanism and involves in stimulation of p38MAPK
pathway. Our current studies demonstrated a contribution of extracellular interaction of TSP1
with its receptor to podocyte injury. Recently, TSP1 intracellular interactions have been
reported. Interestedly, an interaction of TSP1 with ERK in the cytoplasm in Ras retrovirus
infected lung fibroblasts has been shown by Bake et al [49]. Whether this TSP1 intracellular
interaction contributes to podocyte apoptosis in FSGS model is unknown and will be deter-
mined in the future.

In addition to the direct effect of TSP1 on podocyte injury, our studies also suggest a pro-
inflammatory effect of TSP1 on podocyte injury and the development of proteinuric kidney
disease. It is known that inflammation is an important causal factor in the development of
chronic kidney disease. Several components of innate immunity including TLRs and macro-
phages have been implicated in the progression of renal disease [50]. Our previous studies have
demonstrated that TSP1 is an important regulator of macrophage function and plays a role in
obesity associated inflammation and insulin resistance [51]. A pro-inflammatory role of TSP1
in the development of chronic kidney disease (ureteric obstruction model) has been also
reported [52]. In agreement with these reports, in the current study, we found that ADR
administered TSP1 deficient mice had reduced renal MCP-1 level, which was associated with
reduced macrophage infiltration into the kidney. The expression of pro-inflammatory cyto-
kines such as TNF-α and IL-1β in the kidney was also significantly reduced in these mice.
Together, these data suggest a role for TSP1 in promoting renal inflammation in FSGS mouse
model. Since TSP1 is an anti-angiogenesis factor, we also determined whether TSP1 regulated
angiogenesis and contributed to ADR-nephropathy. We found that kidney CD31 mRNA levels
were comparable among WT saline, TSP1-/- saline, WT ADR and TSP1-/- ADR mice (Fig 7B).
This data suggests that angiogenesis is unlikely to play a role in TSP1 mediated proteinuria kid-
ney injury in ADR-model.

In summary, our data demonstrated that TSP1 is an important contributor to podocyte
injury and the development of non-diabetic proteinuric kidney disease. The effect of TSP1 on
podocyte injury is mediated by a CD36-dependent activation of p38MAPK pathway. TSP1 also
stimulates macrophage infiltration and renal inflammation in FSGS model. These data may
provide new therapeutic strategies for treatment of proteinuric kidney disease.
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