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RESEARCH ARTICLE

Experimental Genome-Wide Determination
of RNA Polyadenylation in Chlamydomonas
reinhardtii
Stephen A. Bell1¤, Chi Shen2, Alishea Brown2, Arthur G. Hunt1*

1 Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of
America, 2 Division of Computer Science, Kentucky State University, Frankfort, Kentucky, United States of
America

¤ Current address: Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United
States of America
* aghunt00@uky.edu

Abstract
The polyadenylation of RNA is a near-universal feature of RNAmetabolism in eukaryotes.

This process has been studied in the model alga Chlamydomonas reinhardtii using low-

throughput (gene-by-gene) and high-throughput (transcriptome sequencing) approaches

that recovered poly(A)-containing sequence tags which revealed interesting features of this

critical process in Chlamydomonas. In this study, RNA polyadenylation has been studied

using the so-called Poly(A) Tag Sequencing (PAT-Seq) approach. Specifically, PAT-Seq

was used to study poly(A) site choice in cultures grown in four different media types—Tris-

Phosphate (TP), Tris-Phosphate-Acetate (TAP), High-Salt (HS), and High-Salt-Acetate

(HAS). The results indicate that: 1. As reported before, the motif UGUAA is the primary, and

perhaps sole, cis-element that guides mRNA polyadenylation in the nucleus; 2. The scope

of alternative polyadenylation events with the potential to change the coding sequences of

mRNAs is limited; 3. Changes in poly(A) site choice in cultures grown in the different media

types are very few in number and do not affect protein-coding potential; 4. Organellar polya-

denylation is considerable and affects primarily ribosomal RNAs in the chloroplast and mito-

chondria; and 5. Organellar RNA polyadenylation is a dynamic process that is affected by

the different media types used for cell growth.

Introduction
RNA processing in eukaryotic organisms is an intricate process comprised of multiple events
that all appear to take place simultaneously before an mRNA is exported to the cytoplasm
where translation to protein takes place [1–3]. Primarily, the major events that comprise post-
transcriptional RNA processing include 5’-end methylguanosine capping, intron/exon splicing,
and 3’-end polyadenylation. Processing at the 3’-end of pre-mRNA transcripts has been well
documented in animals, plants, and fungi where many similarities have been identified in addi-
tion to key differences amongst these kingdoms [4, 5]. While this process has often been

PLOSONE | DOI:10.1371/journal.pone.0146107 January 5, 2016 1 / 21

OPEN ACCESS

Citation: Bell SA, Shen C, Brown A, Hunt AG (2016)
Experimental Genome-Wide Determination of RNA
Polyadenylation in Chlamydomonas reinhardtii. PLoS
ONE 11(1): e0146107. doi:10.1371/journal.
pone.0146107

Editor: James G. Umen, Donald Danforth Plant
Science Center, UNITED STATES

Received: September 14, 2015

Accepted: December 14, 2015

Published: January 5, 2016

Copyright: © 2016 Bell et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The Illumina
sequences generated in this study are available in
Bioproject PRJNA294481, accessed through the
NCBI web site. These sequences have not been
demultiplexed or otherwise processed; these
manipulations may be performed following the
procedures described in S1 File.

Funding: This research was supported by the US
National Science Foundation (www.nsf.gov) Award
MCB-1243849 and an REU Supplement to NSF
Award IOS-0817818. The funder had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146107&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nsf.gov


dubbed ubiquitous and even overlooked in terms of importance, demonstrations of its links to
critically important cellular fates continue to emerge. For example, alternative polyadenylation
has been linked to oncogene activation in human cancer cells as well as flowering time in plants
[6, 7].

Despite the great progress that has been made in understanding polyadenylation in plants,
animals, and fungi, considerably less is known about the specifics of this process in algae. His-
torically, the green alga Chlamydomonas reinhardtii has attracted the attention of countless sci-
entists and has contributed significantly to the fields of photosynthesis and cell motility [8, 9].
While Chlamydomonas still holds an important place in these areas, it has gained momentum
as a host for biotechnological applications over the past 25 years; these include using Chlamy-
domonas as a platform for the renewable production of hydrogen gas as well as therapeutic
proteins and high-value small molecules (reviewed in [10–12]).

Despite this interest, however, and the inherent benefits of Chlamydomonas (generally rec-
ognized as safe, fast growing, photosynthetic, sequenced genome), bioengineering of this
organism has only been successful in a context dependent fashion. Whereas many successful
accounts have been made for the expression of transgenes from the chloroplast genome [13,
14], particular difficulties have been faced during efforts to bioengineer the metabolism of
Chlamydomonas via nuclear transgenes although progress has been made to better understand
the limitations [15, 16]. To date, the best example of expressing catalytically active, non-select-
able enzyme from the nuclear genome was done by Rasala et al. where the ble coding sequence,
2A peptide bond skipping sequence, and coding sequence for a xylanase were combined as a
single fusion construct [17]. In the presence of zeocin, Chlamydomonas was forced to express
both the ble resistance enzyme (to survive) and as a by-product, the xylanase which was cata-
lytically active. Whether or not this approach will result in significant manipulations of metab-
olism in Chlamydomonas has yet to be demonstrated to the best of our knowledge.

Interestingly, problems expressing nuclear transgenes also existed during early efforts to
engineer higher plants [18] and were ultimately overcome by researchers who demonstrated
the importance of having the correct cis-elements in the 3’-end of gene constructs [19–22].
These cis-elements, important for the proper polyadenylation of resulting mRNA species, were
ultimately responsible for inefficient transgene expression in higher plants. Given this and the
observations that have been reported for Chlamydomonas (as well as firsthand attempts), we
surmised one possibility for the lack of success in bioengineering metabolism directed by
nuclear transgenes, could be the result of poorly understood gene processing events. Hence, we
set out to analyze global polyadenylation practices by Chlamydomonas as a function of cultur-
ing conditions that have commonly been used by researchers attempting to engineer and grow
this alga under laboratory conditions.

Materials and Methods

Media
The media recipes used for all experimental work are as follows and can be found on the
Chlamy Center website (http://www.chlamy.org/media.html). Tris-Phosphate (TP) media
(originally described by Gorman and Levine [23]) was prepared by mixing 2.5 g Tris, 25 mL
Solution 1 (per liter: 15 g NH4Cl, 4 g MgSO4 • 7H2O, 2 g CaCl2 • 2H2O), 0.375 mL Solution 2
(per 100 mL: 28.8 g K2HPO4, 14.4 g KH2PO4) and 1 mL of Hutner’s trace elements (see http://
www.chlamy.org/trace.html for recipe), adjusting the pH to 7 then the final volume to 1 L with
Milli-Q H2O. To prepare Tris-Phosphate-Acetate (TAP) media, the same recipe for TP was fol-
lowed except 2 g of sodium acetate trihydrate was added. High-Salt (HS) media (originally
described by Sueoka [24]) was prepared by mixing 5 mL of Solution 1 (per liter: 100 g NH4Cl,
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4 g MgSO4 • 7H2O, 2 g CaCl2 • 2H2O), 5 mL of Solution 2 (per 100 mL: 28.8 g K2HPO4, 14.4 g
KH2PO4), and 1 mL of Hutner’s trace elements, adjusting the pH to 7 then the final volume to
1 L with Milli-Q H2O. To prepare High-Salt-Acetate (HAS) media, the same recipe for HS was
followed except 2 g of sodium acetate trihydrate was added. All media types used were steril-
ized by autoclave immediately after preparation and stored at room temperature until needed.

Strains and culture conditions
The wild type Chlamydomonas reinhardtii strain CC-1690 (obtained from Chlamy Center)
was used for all experiments described in this work. Generally, this strain was maintained on
TAP agar slants at room temperature, which were restreaked at approximately one-month
intervals. Liquid starter cultures were generated as follows: CC-1690 cells from a fully grown
slant culture (2–4 weeks old) were transferred to 10 mL of TP or HS media in a 50 mL flask
using a 1 mL serological pipet. These cultures were then grown for approximately 2 weeks in
an orbital shaker at 25°C with 150 rpm shaking under continuous lighting (fluorescent, ~325
lux). From these cultures, 5 mL was used to inoculate 50 mL of TP or HS media in a 250 mL
flask (foam stoppers were used instead of aluminum foil to minimize blockage of light) which
was grown for 5 days at 25°C with 150 rpm shaking under continuous lighting. 2 mL of this
5-day-old 50 mL TP starter culture was used to inoculate 100 mL of TP or TAP in a 500 mL
flask with a foam stopper; triplicate cultures for each media type were started at the same time.
The same was done for 100 mL triplicate cultures in HS and HAS media, but using the 50 mL
HS starter culture instead. After five days of growth, cells from each culture were collected by
centrifugation, the media was removed, and the cell pellets were stored at -80°C until RNA was
extracted.

Chlamydomonas RNA Isolation
All RNA was isolated using TRI REAGENT1 fromMolecular Research Center, Inc. according
to their protocol. Typically, RNA for a given sample was isolated as follows. 50–100 mg of fro-
zen cells were weighed and resuspended in 1 mL of TRI REAGENT1. A homogeneous mixture
was obtained by vigorously vortexing, which was then incubated at room temperature for
5 minutes. Next, 200 μL of chloroform was added, vortexed for 15 seconds, then incubated at
room temperature for 15 minutes. Phase separation was accomplished by centrifuging at
12,000 x g for 15 minutes at 4°C. The aqueous (upper) phase was transferred to a new tube
being very careful not to touch or remove any of the interphase layer. 250 μL of isopropanol
was added to this along with 250 μL of salt solution (0.8 M sodium citrate, 1.2 M NaCl), mixed
well, and incubated at room temperature for 10 minutes. The RNA was pelleted by centrifuging
at 12,000 x g for 8 minutes at room temperature, the supernatant was removed, and 1 mL of
cold 75% ethanol was added, then vortexed. Again, the RNA was pelleted by centrifuging at
12,000 x g for 5 minutes at room temperature and the ethanol was removed. The pellet was air
dried for 5 minutes, dissolved in 30 μL of nuclease free water, and heated to 65°C for 5 minutes.
Quantity and quality measurements were taken using standard spectrometric techniques in
addition to visualization on a 0.8% agarose gel to assess intactness.

Poly(A) tag library preparation and sequencing
So-called poly(A) tags, short cDNAs that query the mRNA-poly(A) junction, were prepared
following Method B1 as described in Ma et al. [25], using between 1 and 5 μg of total RNA per
library. These libraries were sequenced on a MiSeq instrument and the sequencing data pro-
cessed using the pipeline detailed in S1 File.

Polyadenylation in C. reinhardtii
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Results

Preparation and sequencing of poly(A) tag libraries prepared from
Chlamydomonas
To study poly(A) site choice in Chlamydomonas, the wild type strain CC-1690 was grown in
four different media types: Tris-Phosphate (TP), Tris-Phosphate-Acetate (TAP), High-Salt
(HS), and High-Salt-Acetate (HAS). Triplicate cultures for each media type were grown under
constant light at 25°C with 150 rpm orbital shaking for five days until cells were collected and
RNA was isolated. Under these conditions and at the time of harvest, the cells were early in an
active growth phase (S1 Fig); the TAP culture was at a decidedly higher density than the other
three, but at a stage in the growth process reflective of rapid growth (as opposed to stationary
phase). These parameters were chosen because they have often been used as the initial labora-
tory conditions by researchers attempting to bioengineer Chlamydomonas. Hence, we envi-
sioned that this subset of culturing conditions would provide a rich, diverse, but still relevant
data set regarding important effects on polyadenylation and gene expression in this alga under
typical laboratory conditions.

So-called poly(A) tags (PATs), short cDNAs that contain the mRNA-poly(A) junction,
were prepared from the isolated RNA following the protocol described in Ma et al. and Pati
et al. [25, 26]. Following PAT sequencing, the data was processed as described in S1 File.
Briefly, the raw sequences were demultiplexed using the bar codes built into the reverse tran-
scription primers and the remaining tracts of oligo-dT as well as segments of the sequencing
adapters were removed (present in cases where short inserts were sequenced). The sequences
were then mapped to the Chlamydomonas genome (Creinhardtii_281_v5.5); the results of this
exercise are summarized in S2 File. Mapped tags and the corresponding genome coordinates
were recovered followed by “reduction” of the tags to one-base coordinates that corresponded
to the 5’-end of the tag (or 3’-end of the corresponding RNA). This collection of sequences and
coordinates were then used for the analyses described in the following sections.

To evaluate the reproducibility of the library preparations and the representation of the
PATs with respect to genes that should be expressed in cells grown under the four conditions,
the trimmed PATs were used to estimate relative gene expression levels in the four growth con-
ditions. These results are compiled in S3 File. The library-by-library comparison for gene
expression values indicates a high degree of correlation between libraries, with only one library
being somewhat different from the others (S2 Fig). 2,551 genes (of a total of 17,721 annotated
genes; 14.39%) showed differential expression in at least one of the four growth regimens (S3
File) suggesting that these commonly employed media types can have important effects on
gene expression in Chlamydomonas.

Of particular interest among the annotated, differentially expressed genes were those
involved in the carbon concentrating mechanism (CCM) for Chlamydomonas. This process
has not only been well studied and therefore had many of the key players characterized
(reviewed in [27]), but it also presented a good opportunity to examine differential gene
expression as a function of media type, primarily in the plus/minus acetate media. Chiefly, the
genes involved include a series of carbonic anhydrases (CAH) that localize to specific cellular
compartments, several (proposed) transporters and channels thought to be responsible for
translocation of the carbon forms involved (CO2 and HCO3

-), and a few regulators of the path-
way (reviewed in [27]). Given the media types used, one might expect that CCM-related genes
would be expressed at higher levels for algae grown in media that did not contain acetate.
These algae would be solely reliant upon CO2/HCO3

- dissolved in the media as opposed to the
algae grown in the presence of acetate, which could readily be taken up and utilized as the main
carbon source. As expected, the majority of carbonic anhydrase genes known to be associated
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with the CCM in Chlamydomonas were expressed at higher levels for algae that were grown in
the absence of acetate (Fig 1).

Genome-wide distribution of poly(A) sites in Chlamydomonas
The collection of PATs from the twelve libraries define numerous possible poly(A) sites
although many of these could be the result of inadvertent and rare priming events, as opposed
to authentic priming at the poly(A)–mRNA junction. To focus on high-confidence sites, only
sites that were represented by 10 or more individual tags in the collection of libraries were
retained for subsequent analyses. This process yielded 46,308 individual poly(A) sites (or PAS;
these are listed in S4 File); these sites were defined by 94.6% of all of the poly(A) tags and thus
represent the overwhelming majority of gene expression in the study. The vast majority of
these sites (40,996, or>88%) were of the same orientation as their associated annotated genes.
Of these, more than 96% mapped to annotated 3’-UTRs, or within 25 nts of the 3’-ends of
annotated 3’-UTRs (S4 File). Approximately 2% of sites mapped to within protein-coding
regions, while 0.84% and 0.76%, respectively, mapped to 5’-UTRs or introns. 0.2% of PATs
mapped to genomic regions whose annotations are ambiguous (usually due to the overlap of
features of alternative transcripts). Of the sense-oriented PATs that mapped to annotated
regions of the genome, more than 97% mapped to annotated 3’-UTRs, or within 25 nts of these
regions (S4 File).

The 40,996 sense-oriented poly(A) sites mapped to 9,232 Chlamydomonas genes. 75% of
these genes had at least two poly(A) sites, and almost 25% had more than five (Fig 2A). How-
ever, visual inspection suggested that many of these poly(A) sites occurred as clusters, similar
to what has been observed in higher plants [28, 29]. Accordingly, the individual poly(A) sites

Fig 1. Comparative expression analysis of Chlamydomonas carbonic anhydrase (CAH) genes.Cells grown in two different media types with and
without acetate (TP–Tris-Phosphate, TAP–Tris-Phosphate-Acetate, HS–High-Salt, HAS–High-Salt-Acetate) were profiled for poly(A) site choice via
construction of PATs followed by mapping of the tags to the annotated Chlamydomonas genome. Total PAT counts for each gene were normalized using the
values from triplicate samples grown in the four different media types and presented as tags per million (tpm) for each of the genes shown. Phytozome 10.3
gene IDs for the CAHs used are as follows: CAH1 –Cre04.g223100, CAH2 –Cre04.g223050, CAH4 –Cre05.g248400, CAH5 –Cre05.g248450, CAH6 –

Cre12.g485050, CAH8 –Cre09.g405750.

doi:10.1371/journal.pone.0146107.g001
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Fig 2. Chlamydomonas genes with multiple poly(A) sites. (A) Fraction of all genes with 1, 2, 3, 4, or >5
individual poly(A) sites (PAS). Total number of PAS = 41,048. (B) Fraction of all genes with 1, 2, 3, 4, 5, or >5
poly(A) site clusters (PACs). Total number of PACs = 19,674.

doi:10.1371/journal.pone.0146107.g002

Polyadenylation in C. reinhardtii
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were clustered together (before filtering for numbers of PATs) such that sites within 24 nts of
each other were grouped together into single poly(A) clusters (PACs). PACs that were defined
by fewer than ten PATs were removed followed by identification of the sense-oriented PACs.
This exercise resulted in a collection of 22,410 PACs (S5 File) defined by 98.4% of all mapped
poly(A) tags. 19,574 of these PACs mapped to 11,887 annotated genes and had the same orien-
tation. As was the case for individual PAS (S4 File), almost all (92%) of the sense-oriented
PACs mapped to 3’-UTRs or the adjacent 25 nts (S5 File). Only 8% of PACs mapped to geno-
mic regions (introns, 5’-UTRs, protein-coding regions) that, if chosen for polyadenylation,
could affect mRNA functionality. Of the 11,887 genes with PACs, almost 60% had a single
PAC, and almost 95% had three or fewer PACs (Fig 2B). These results indicate that individual
poly(A) sites tend to occur in clusters, and that most Chlamydomonas genes have but a single
PAC that is situated within annotated 3’-UTRs.

Sequence elements associated with different classes of poly(A) sites
Previous reports have suggested that Chlamydomonas has a distinctive polyadenylation signal
(UGUAA) [30–32], which is quite different from the canonical motifs associated with polyade-
nylation in mammals, yeast, and plants [4, 5]. To explore this issue further, sequences associ-
ated with several different classes of poly(A) sites as defined by the poly(A) tags generated in
this study were characterized. Two analyses were performed. In one, the general nucleotide
composition surrounding each class of site was determined (Fig 3). In the other, specific
sequence motifs associated with distinctive positions with respect to each class of site were
identified and displayed (Fig 4).

Shown in Fig 3A, the general nucleotide composition surrounding poly(A) sites situated in
annotated 3’-UTRs had a distinctive profile, with two features. The first feature was a distinc-
tive peak of U- and A- richness between 10 and 20 nts 5’ (or upstream) of the poly(A) site. This
coincides with the highly conserved UGUAA signal that has been noted by others and was also
apparent in the motif analysis (Fig 4). The second feature was a trend towards G+C at the poly
(A) site itself, flanked by a peak of A. Interestingly, while the latter trend was unmistakable, it
did not reflect the presence of a conserved motif at the poly(A) site (Fig 4). Similar trends, espe-
cially in the -10 to -20 region, were seen with sites situated in 5’-UTRs (Fig 3B). The result
obtained from an analysis of intron-situated sites did not display the UGUAAmotif in the -10
to -20 region (Fig 3C), suggesting that these sites may be different in nature from those found
in the UTRs. Important to note here, however, is that this assignment is more tentative than
others due to the low prevalence of such sites. Poly(A) sites situated within protein-coding
regions displayed a distinctly different pattern and were typically located within A+G-rich
regions (Fig 3D). This trend is very similar to what has been reported for coding region-situ-
ated poly(A) sites in higher plants [29, 33].

The results of searches for over-represented motifs in the vicinities of 3’-UTR-situated poly(A)
sites are shown in Fig 4. This analysis demonstrated a clear enrichment for the UGUAAmotif
between 10 and 20 nts upstream of the poly(A) site. This motif was found in this location in 58%
of all the sites situated in 3’-UTRs, and related motifs (with four of the five positions matching the
UGUAA consensus) are found in 95% of all such sites. The remaining sites almost always were
variants of this motif that differed in only two positions, or were located outside of the -10 to -20
window. This was reflected in the decided nucleotide composition of these sites (S3 Fig).

Poly(A) sites situated within 5’-UTRs possessed the same UGUAAmotif that was observed
in sites located in 3’-UTRs (S6 File). No such association was seen for poly(A) sites situated in
introns (S6 File). These sites did possess two possible motifs (GGGGG and UUUUU) but the
small sample number makes a firm assessment tenuous. CDS-situated sites also lacked the

Polyadenylation in C. reinhardtii

PLOSONE | DOI:10.1371/journal.pone.0146107 January 5, 2016 7 / 21



UGUAAmotif (S6 File) and instead, were enriched in motifs that reflect the high A+G content
of these sites (Fig 3D).

Some 5,300 poly(A) sites, defined by 3 million PATs, map to as-yet unannotated regions of
the Chlamydomonas genome, or to regions annotated as other than protein-coding (S4 File).
These sites have the same general base composition (S4A Fig) and motif bias (S4B Fig) as do
sense-oriented sites that map to 3’-UTRs. This suggests that these are authentic sites and not
the products of inadvertent priming by reverse transcriptase or artifactual over-amplification
during the PCR steps in library preparation. These sites, however, were much more disposed to
possess an additional motif (UUUUU) near or at the cleavage/polyadenylation site. Of these
sites, 835 (16%) fell within 100 bp of annotated 3’-UTRs that had been extended by 25 nts and
were in the same orientation as the PAS (S7 File); these probably represent 3’-UTR extensions
for the respective genes. The remaining 84% likely define as-yet unidentified genes.

Alternative poly(A) site usage in Chlamydomonas
As indicated in Fig 2, about 40% of Chlamydomonas genes possessed two or more PACs.
While somewhat lower than what has been observed in other eukaryotes, this number still

Fig 3. Position-by-position base composition of poly(A) sites for different genic regions in Chlamydomonas genes. The panels shown depict the
following genic regions: (A) 3’-UTRs, (B) 5’-UTRs, (C) introns, and (D) protein-coding regions. Y-axis values are the fractional nucleotide content at each
position (plotted along the x-axis) with individual traces color-coded as indicated in the legend. On the x-axis, “0” denotes the actual cleavage/polyadenylation
site–negative values represent positions that are 5’ (upstream) of the poly(A) site and positive values are positions 3’ (downstream) of the poly(A) site.
Number of poly(A) sites used for each analysis are as follows: A = 39,412, B = 343, C = 311, and D = 840.

doi:10.1371/journal.pone.0146107.g003
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allows for a considerable potential for alternative poly(A) site choice. To study this, poly(A)
site usage in cells grown in the four different media types was compared and individual PACs
whose usage varied in statistically-significant ways were identified. The DEXSeq package,
developed to study alternative splicing [34], was used for this analysis. 273 individual PACS (of
more than 19,500) were found to exhibit significantly different usage under one or more of the
four conditions studied (S8 File). These differential site choices impacted 172 genes, most
(76%) of which were present within 3’-UTRs (S8 File). 5% of the differentially utilized sites
mapped to 5’-UTRs that were within 250 bp of a nearby, upstream gene with the same orienta-
tion (S8 File); these sites are probably flagged as alternatively processed because of altered
expression of the upstream gene.

For the most part, sites located outside of 3’-UTRs represented low-abundance transcript
isoforms, and the changes in usage did not have a significant effect on the abundance of the
major mRNA isoform associated with the affected gene (this may be gleaned from inspection
of S8 File). In some cases, though, the major isoforms differed in different conditions (examples
are shown in S5 Fig).

The four growth regimens studied here incite significant changes in the expression of
numerous genes (S3 File). To study possible associations between altered poly(A) site choice
and differential gene expression, the changes in expression in the set of 172 genes affected by
alternative poly(A) site choice were compared with the range of such changes of all genes. The
results (Fig 5) show at best modest association of altered gene expression with alternative poly
(A) site choice.

Polyadenylation of organellar RNAs
The process of RNA polyadenylation in eukaryotes is not limited to the nucleus in eukaryotes,
but also affects organellar RNAs [35]. Since the RNA samples used for library preparation were
derived from whole cells, and not fractionated extracts, the representation of organellar RNAs
in the PAT libraries was examined (S2 File). A relatively large number of PATs were found to
map to the chloroplast genome, and a much smaller but nonetheless significant number to the
mitochondrial genome. Interestingly, in both compartments, the overwhelming majority of
PATs mapped to ribosomal RNAs (Fig 6A and 6B). In the mitochondria, almost all PATs
mapped to various rRNA-encoding regions of the genome (Fig 6B). The distribution of PATs
along the rRNA transcription units in the two organelles was not random, but localized to a
few regions. Thus, in the chloroplast, most of the PATs mapped to the rrn7 locus, and seemed
to define polyadenylation events occurring within the corresponding RNA (Fig 6C). Other
events could be inferred near the 5’-end of the 23S RNA and the middle of the 16S RNA (Fig
6C). In mitochondria, most of the rRNA-associated PATs mapped to the 3’-end of the rrnL6
module (Fig 6D). Other clusters of PATs mapped to the 3’-ends of rrnL7, rrnS2, rrnL3b, and
rrnS3 modules (Fig 6D). “Internal” clusters throughout the ribosomal RNA genes were also
apparent (Fig 6D).

Polyadenylation has been noted to affect all classes of RNA in the Chlamydomonas chloro-
plast [36]; this is corroborated by the data presented in this study. Specifically, while the large
majority of PATs that map to the chloroplast genome map to rRNA-encoding regions, there is
an abundance of tags that map throughout the chloroplast genome (S9 File). The mapped posi-
tions include both the extremities and internal sites of protein-coding genes (e.g., Fig 7A), as
well as tRNA loci (an example of two such loci is shown in Fig 7B). Interestingly, most tRNA-
associated PATs define 3’-ends that are internal to the mature, full-length tRNA. Importantly,
the polyadenylated 3’-ends of atpB, petD, and trnR1 RNAs described in Komine et al. [36] are
recapitulated in this study (S6 Fig). The rrn5 3’-ends described in Komine et al. are 10 nts
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removed from one of the sites seen in this study (S6 Fig). Komine et al. noted a difficulty in
generating specific 3’-RACE products for this gene, which may be related to this slight discrep-
ancy. No reads mapped to the trnE1 gene in this study. Taken together, the agreement of the
results presented here with those described earlier indicates that the organellar poly(A) sites
identified in the current study are accurate and reflect the scope of polyadenylation of Chlamy-
domonas chloroplast RNAs.

Others have noted that the “poly(A)” tails present on organellar RNAs are often heteropoly-
meric, with an occasional nucleotide other than A present [37]. Because of the nature of the
reverse transcription primer (being anchored in a way that would allow priming at positions
within the poly(A) tail that have a non-A base), it is possible to examine the occurrence of such
instances. As shown in Fig 7C and 7D, heteropolymeric tracts can indeed be seen; the two
examples shown illustrate the phenomenon for a polyadenylated tRNA (Fig 7C) and protein-
coding mRNA (Fig 7D).

PATs map to 97 annotated features of the chloroplast genome (S9 File). For more than half
(61) of the annotation units, the relative abundances of PATs that map to individual genes
changes in significant ways in at least one of the four growth conditions (S10 File). The affected
genes include ones that encode ribosomal RNAs, tRNAs, and various proteins. These observa-
tions suggest that RNA polyadenylation in the chloroplast is dynamic and may respond to dif-
ferent conditions in a gene- and RNA- specific fashion.

Discussion

An updated view of nuclear polyadenylation in Chlamydomonas
The results of the genome-wide determination of poly(A) sites in Chlamydomonas presented
here reinforce previous conclusions regarding the process, but also give cause for some revision
of prior conclusions. Early studies involving analysis of individual clones and ESTs (e.g., [31])
suggested that the motif UGUAA was a probable polyadenylation signal in Chlamydomonas
and other Chlorophyta species, and was analogous to the A-rich “near-upstream element”, or
NUE, seen in the polyadenylation signals of higher plants [38]. A more recent study, involving
almost 17,000 EST sequences containing poly(A) tracts, confirmed this suggestion, as this
motif was found associated with about 52% of confirmed poly(A) sites in Chlamydomonas
[30]; this value is similar to that (58%) reported here. Another report involving analysis of
large EST, Illumina, and 454 datasets drew similar conclusions, but noted a somewhat lower
association of this motif with poly(A) sites [32].

The reports to date (e.g., [30–32, 39]) leave little doubt as to the importance of the UGUAA
motif in specifying poly(A) sites in Chlamydomonas. Indeed, if one base substitutions in the
motif are allowed, then more than 95% of all sites identified here can be associated with the
UGUAAmotif. This strongly suggests that poly(A) sites in Chlamydomonas are defined pri-
marily by this motif which stands it apart from higher plants, animals, and yeast. The reasons
for these differences are not clear and raise tantalizing possibilities. In animals, recent studies
indicate that two core polyadenylation complex subunits, CPSF30 andWdr33, associate with
the AAUAAAmotif [40, 41]. While the RNA-binding properties of recombinant Wdr33 have

Fig 4. Motif analysis of regions surrounding 3’-UTR-situated poly(A) sites in Chlamydomonas. The occurrences of 5 nt motifs was determined using
SignalSleuth2 [51]. The relative position of the motif is given on the x-axis, with the poly(A) site being set as “0”; in these plots, regions extending from 80 nts
5’ (upstream) to 80 nts 3’ (downstream” from the poly(A) sites are shown. The numerical count of each motif is given on the y-axis. The plot shows the
distributions of the 50 most-abundant motifs, which are listed in the legend embedded on the right. The number of sites used for this analysis was 39,415. (A)
Profiles of the 10 most abundant motifs. The individual motifs are noted in the caption in the upper right corner. (B) Profiles of the next 40 most abundant
motifs. The individual motifs are noted in the caption on the right. Note that the y-axis scale for panel B is 10% of that for panel A.

doi:10.1371/journal.pone.0146107.g004
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not been studied, CPSF30 by itself has little sequence preference beyond one for U-rich
sequences [42]. Thus, the association of these proteins with AAUAAA in the complex probably
reflects altered associations or sequence preferences that are due to the combined properties of
the complex (that includes RNA binding proteins in addition to these two). Chlamydomonas
possesses genes that encode possible orthologs of each of these proteins [43]. However, while
the similarity between the Chlamydomonas and plant Wdr33 proteins is high, the putative
Chlamydomonas CPSF30 ortholog has very limited sequence similarity with either the plant or
animal CPSF30 orthologs. Thus, it is possible that in Chlamydomonas, the CPSF30 protein has
evolved preferential affinity for a different and relatively exacting sequence in the polyadenyla-
tion signal.

A different parallel suggests an alternative scenario. The so-called CFIm sub-complex in
animals includes a 25 kDa subunit, CFIm25. This subunit has a strong preference in vitro for
RNAs that possess the motif UGUA [44]. This motif is included in the highly-conserved Chla-
mydomonas polyadenylation signal (UGUAA). Chlamydomonas possesses a probable
CFIm25 ortholog that is highly conserved [43]. The similarity in the Chlamydomonas poly(A)
signal and preferred CFIm25 binding motif raises the possibility that, in this organism, the
CFIm25-RNA contact has replaced other contacts as the primary or sole determinant of poly
(A) site choice. Indeed, given the very limited similarity between the suggested Chlamydomo-
nas CPSF30 subunit and its orthologs in other eukaryotes, it is conceivable that the putative
Chlamydomonas CPSF30 is in fact not an authentic polyadenylation factor subunit. In this sce-
nario, the function of CPSF30 in the complex would be replaced by additional roles for
CFIm25. Of course, all of this is rather speculative, and these alternatives seem far-fetched.
Nonetheless, the curious substitution of the A-rich polyadenylation signal with UGUAA raises

Fig 5. Box plot comparing the changes in expression of genes affected by alternative polyadenylation (“APA”) with the changes of all genes
expressed in at least one of the four treatments (“all”). Numbers of genes: for “all” = 16,784, for “APA” = 172. Values on the y-axis denote the absolute
value for the maximum fold-change for a given gene in the pairwise comparisons that were performed.

doi:10.1371/journal.pone.0146107.g005
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Fig 6. Genome browser views of PATmappings to the Chlamydomonas chloroplast andmitochondrial genomes. Panels A and B depict the results
of mappings to the complete chloroplast and mitochondrial genomes, respectively, while C and D showmappings to the rRNA-encoding regions in the
chloroplast and mitochondria, respectively (in the case of panel C, only one of the two chloroplast rRNA-encoding regions is shown). In panels A and B, the
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interesting questions regarding the composition and functioning of the Chlamydomonas poly-
adenylation complex, and more generally of the evolution of this complex.

The scope and impact of alternative polyadenylation
The results presented in this report indicate that some 75% of expressed Chlamydomonas
genes possess more than one poly(A) site (Fig 2A). However, when nearby sites are grouped
into poly(A) site clusters, only some 40% of expressed genes are found to possess more than

uppermost plots denote the locations of annotated genes, the middle plots show the locations of annotated protein-coding regions, and the lower plots are
bar graphs representing the tag abundance across the genome. In panels C and D, the uppermost plots depict details of the gene annotations, the middle line
(“consensus”) shows the overall extent of contiguous tag mappings, and the lower plots shows the relative tag abundances across the depicted genomic
regions.

doi:10.1371/journal.pone.0146107.g006

Fig 7. Details of poly(A) tracts for previously described Chlamydomonas chloroplast genes. (A) Genome browser representation of tag mapping to a
selected portion of the chloroplast genome that omits the rRNA-encoding regions. The uppermost plots depict details of the gene annotations, the middle line
(“consensus”) shows the overall extent of contiguous tag mappings, and the lower plot shows the mappings of individual tags (green or red tics). Red and
green tics denote tags oriented in the left-to-right (5’-3’) or right-to-left (5’-3’) directions. (B) Close-up browser view of reads that map to the chloroplast trnD
gene. The sequences of the individual reads are visible; lettering in light shaded fonts denote extraneous sequence that does not map to the genome, but
rather represents the mixed heteropolymeric tract as noted in the text. (D) Close-up browser view of reads that map to the chloroplast atpH gene. The
sequences of the individual reads are visible; lettering in light shaded fonts denote extraneous sequence that does not map to the genome, but rather
represents the mixed homopolymer as noted in the text.

doi:10.1371/journal.pone.0146107.g007
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one such cluster (Fig 2B). This number is somewhat lower than another recent estimate (about
68%; [32]). The reasons for this discrepancy are not clear, although Zhao et al. [32] compiled
their data by extracting poly(A)-containing sequences or reads from extant EST, 454, and Illu-
mina RNA-Seq datasets, and not from dedicated poly(A) tags (as done in this report). Zhao
et al. suggest that the overall depth of sequence coverage may affect the overall tabulation of
poly(A) sites in Chlamydomonas. If this is the source of the discrepancy, then it seems likely
that those sites apparently missed in this report are sites that are chosen at very low levels, or
that are associated with genes whose expression is low. It is notable that the nucleotide compo-
sition profiles for poly(A) sites in this report (Fig 3A) is very similar to sites defined by curated
EST and 454 data, but different from that seen in sites derived from poly(A) reads extracted
from Illumina RNA-Seq reads (Fig 2 in [32]). This may be an indication that many of the sites
identified from extracted Illumina reads are either non-canonical or artifactual. Given this and
the consistency seen among the EST- and 454- derived PAC lists in Zhao et al. with the PACs
described in this report, it is likely that the true extent of possible alternative polyadenylation
(represented by the numbers of genes with more than one site) is lower than the 68% number
assigned before, and closer to the value (some 40%) as indicated by the results in this report.

The numbers of genes possessing more than one poly(A) site provides an upper limit (of
sorts) of the extent of possible alternative poly(A) site choice, and very likely does not reflect the
true extent of such choices. Interestingly, the results presented here (S5 Fig and S8 File) indicate
that a very small number of all PACs (at most, some 1.4%) are utilized to different extents under
one or more of the four growth conditions used in this study. Moreover, the overwhelming
majority of such events involve sites situated in 3’-UTRs, and thus likely do not affect the pro-
tein-coding capacity of associated genes. While limited to a relatively small number of different
growth conditions, these data nonetheless suggest that true alternative polyadenylation is not
extensive in Chlamydomonas, but is likely limited to a small number of sites and genes. This
places Chlamydomonas in significant contrast to animals, in which more extensive networks of
differentially-utilized poly(A) sites have been documented (e.g., [45, 46]).

As unicellular algae continue to be pursued as production platforms for various biotechno-
logical industries, understanding the critical cellular process of mRNA polyadenylation (in all
three compartments) and the implications of it could eliminate undesirable, and potentially
costly, oversights during design and implementation phases. For instance, Lumbreras et al. has
shown that incorporation of the RbcS2 intron 1 near the promoter of transgene constructs
leads to increased levels of transgene expression [47]. However, given that some Chlamydomo-
nas introns carry within them poly(A) sites, blindly selecting intron sequences for inclusion in
genetic constructs could have deleterious effects for the desired outcome, as alternative polya-
denylation sites within introns could lead to a non-functional protein. With the data set pro-
vided here, one could potentially eliminate these unwanted possibilities but still retain the
desired benefits of including an intron(s) in the transgene sequence of interest, given that the
growth conditions employed matched those of this study.

Organellar polyadenylation
A number of previous studies have documented the relevance of polyadenylation to organellar
RNA homeostasis in Chlamydomonas, linking the process to a destabilization of RNAs [35,
48]. The results presented here provide a global overview of the impact of polyadenylation on
RNAmetabolism in the chloroplast and mitochondria and offer additional insight into how it
might be affecting the status of these organelles.

The general distribution of mapped PATs along the chloroplast genome (Fig 6A) is consis-
tent with earlier results indicating that the three generic classes of RNA–mRNA, tRNA, and
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rRNA–are all polyadenylated in the Chlamydomonas chloroplast [36]. However, the large
majority of chloroplast-associated PATs map to the rRNA-encoding cluster (Fig 6A), and are
decidedly non-random in their distribution. In particular, the major rRNA-situated poly(A)
sites observed in Fig 6C are internal sites that fall within the 7S and 23S rRNA coding regions.
While not exactly coincidental, these sites are reminiscent of the sites of polyadenylation of
Escherichia coli rRNA breakdown products [49], suggesting that a primary function of polyade-
nylation in the chloroplast is associated with the turnover of ribosomal RNAs. Interestingly,
the fraction of PATs that map to the chloroplast (and primarily to the plastid rRNAs) changes
significantly under the different growth conditions with most PATs observed for cells grown in
acetate-supplemented media (S2 File). This suggests another parallel with prokaryotes [50],
namely that growth status can have a significant impact on ribosome composition and turn-
over in the Chlamydomonas chloroplast.

While the bulk of polyadenylated RNAs in the chloroplast are ribosomal RNAs, polyadeny-
lated RNAs that map to almost every annotated chloroplast gene are also seen (S9 File). The
profiles seen in this study extend the known scope of RNA polyadenylation in the Chlamydo-
monas chloroplast. As chloroplast RNA polyadenylation is typically associated with turnover,
these profiles may reflect a complexity in turnover pathways or mechanisms heretofore unreal-
ized. The substantial changes in poly(A) site profiles that are seen in the different growth con-
ditions in this study (S10 File) suggest that, as seems to be the case for ribosomal RNAs, the
polyadenylation (and thus degradation) of other classes of chloroplast RNAs is dynamic and
responsive to changes in growth and environment.

As is seen in the chloroplast, almost all mitochondrial RNA polyadenylation is associated
with ribosomal RNAs (Fig 6B and 6D). However, in the mitochondrion, most of the polyade-
nylated RNA 3’-ends correspond to the 3’-ends of mature ribosomal RNAs (Fig 6D). The
meaning of this is not clear, given that RNA polyadenylation in mitochondria is associated
with RNA turnover [35]. The polyadenylation seen at mature 3’-ends may reflect early steps in
rRNA turnover; perhaps the mitochondrial rRNA must first be polyadenylated before being
broken down. Alternatively, it is possible that ribosomal RNA polyadenylation in the Chlamy-
domonas mitochondrion is associated with processes apart from turnover. These issues await
further experimental study.

Summary
The results presented in this study confirm the central role of the motif UGUAA as a polyade-
nylation signal in nuclear genes in Chlamydomonas reinhardtii, and indicate that as many as
95% of all poly(A) sites in the organism are controlled by motifs related to UGUAA. In so
doing, the conclusions of several earlier reports are confirmed and extended. However, in con-
trast to earlier studies, the data presented herein suggest at most a limited role for alternative
poly(A) site choice in gene expression in Chlamydomonas. This in turn raises the possibility
that posttranscriptional control via alternative polyadenylation would seem to have limited
potential as a tool for manipulating foreign gene expression in the nuclear genome of this
organism. Finally, this report provides a detailed genome-wide view of RNA polyadenylation
in the two organelles, suggesting both a dynamic and changing contribution of RNA polyade-
nylation towards gene expression in these compartments and a significant role for polyadenyla-
tion in ribosomal RNA metabolism and turnover.

Supporting Information
S1 Fig. Growth stage analysis of Chlamydomonas cultures grown in the four different
media types used in this study. A five-day-old culture of Chlamydomonas grown in TP or HS
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was used to inoculate 100 mL of TP and TAP media or HS and HAS media, respectively. OD
values were measured at 750 nm using a NanoDrop spectrophotometer and 2 μL of sample at
one-day intervals following inoculation.
(TIF)

S2 Fig. Principal component analysis of gene expression for the twelve Chlamydomonas
PAT libraries created. Gene expression was determined by mapping trimmed PATs to genes
using Bedtools and porting the outcomes into CLC Genomics Workbench. The latter was then
used to assess gene expression using the “Empirical Analysis of DGE” tool. Parameters used for
this were: Total count filter cutoff = 5.0. Estimate tagwise dispersions = Yes. Comparisons = All
pairs. Bonferroni corrected = Yes. FDR corrected = Yes. Common dispersion estimate:
2.4520e-02, coefficient of biological variation: 1.5659e-01. The PCA plot was generated using
these results. In the plot, red dots represent TP samples, green dots TAP, blue dots HS, and yel-
low dots HAS.
(TIF)

S3 Fig. Plots of the position-by-position base composition of poly(A) sites that map cannot
be linked with recognizable UGUAAmotifs. Y-axis values are the fractional nucleotide con-
tent at each position (plotted along the x-axis); individual traces are color coded as indicated.
On the x-axis, “0” denotes the actual cleavage/polyadenylation site; negative values represent
positions 5’ (upstream) of the poly(A) site and positive values are positions 3’ (downstream) of
the poly(A) site. The number of sites used to generate this plot was 1,942.
(TIF)

S4 Fig. Characteristics of poly(A) sites that map to unannotated genomic positions. (A)
Plots of the position-by-position base composition of poly(A) sites that map to unannotated
regions of the Chlamydomonas genome. Y-axis values are the fractional nucleotide content at each
position (plotted along the x-axis); individual traces are color-coded as indicated. On the x-axis, “0”
denotes the actual cleavage/polyadenylation site; negative values represent positions 5’ (upstream)
of the poly(A) site and positive values are positions 3’ (downstream) of the poly(A) site. (B) Motif
analysis of poly(A) sites that map to unannotated positions in the Chlamydomonas genome. The
occurrences of 5 nt motifs was determined using SignalSleuth2 [51]. The relative position of the
motif is given on the x-axis, with the poly(A) site being set as “0”. The numerical count of each
motif is given on the y-axis. The plot shows the distributions of the 50 most-abundant motifs; these
are listed in the legend embedded on the right. For the plots in panels A and B, n = 5,307.
(TIF)

S5 Fig. Genome browser representations of genes whose poly(A) site usage varies in one or
more of the experimental conditions used for this study. For each plot, a representation of
the respective gene is shown at the top. Beneath are illustrations showing the numbers of loca-
tions of PATs that map to the respective genes in each of the four treatments. Treatment desig-
nations are given on the left. For these plots, the three replicates for each treatment were
pooled before mapping. Red tics denote tags oriented in a left-to-right (5’-3’) direction. Green
tics represent tags oriented in a right-to-left (5’-3’) orientation. Other colored interruptions in
the individual tics represent Illumina sequencing errors.
(TIF)

S6 Fig. Close-up genome browser illustrations of mappings to three chloroplast genes
whose poly(A) sites have been reported elsewhere (see the text). The general features of the
gene representations and tag color coding are as in S5 Fig. Above each gene representation are
the positions of poly(A) sites reported in Komine et al. [36], noted with brackets or diamond
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symbols. Note that, for this figure, the homopolymeric poly(A)/poly(T) tracts present in the
PATs have been trimmed (and hence will not be displayed). Also note that, as in Fig 7, hetero-
polymeric tracts that do not map to the genome are represented as lightly-shaded lettering.
(TIF)

S1 File. Computational pipeline used to analyze the sequencing data.
(DOCX)

S2 File. Summaries of read mapping outcomes for the twelve libraries.
(XLSX)

S3 File. Results of the gene expression analysis conducted using CLC Genomics Work-
bench.
(XLSX)

S4 File. Poly(A) site (PAS) list.
(XLSX)

S5 File. Poly(A) site Cluster (PAC) list.
(XLSX)

S6 File. Motif discovery for poly(A) sites that map to 5’-UTRs, introns, and protein-coding
regions.
(XLSX)

S7 File. Annotation features closest to PACs that map to unannotated regions.
(XLSX)

S8 File. DEXSeq analysis output.
(XLSX)

S9 File. Lists of PAS for the Chlamydomonas organelles.
(XLSX)

S10 File. Results of the chloroplast gene expression analysis conducted using CLC Geno-
mics Workbench.
(XLSX)
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