



**Chemistry Faculty Publications** 

Chemistry

7-2015

# Crystal Structure of Orthorhombic {bis-[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine- $\kappa^3 N, N', N''$ }chloridocopper(II) Perchlorate

Katherine A. Bussey Saint Mary's College

Annie R. Cavalier Saint Mary's College

Jennifer R. Connell Saint Mary's College

Margaret E. Mraz Saint Mary's College

Kayode D. Oshin Saint Mary's College

See next page for additional authors

**Bishty links to open differ have form in a per / the follow we were the former to be the strong of the strong of** 

#### **Repository Citation**

Bussey, Katherine A.; Cavalier, Annie R.; Connell, Jennifer R.; Mraz, Margaret E.; Oshin, Kayode D.; Pintauer, Tomislav; Gray, Danielle L.; and Parkin, Sean, "Crystal Structure of Orthorhombic {bis-[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine- $\kappa^3 N, N', N''$ }chloridocopper(II) Perchlorate" (2015). *Chemistry Faculty Publications*. 62. https://uknowledge.uky.edu/chemistry\_facpub/62

This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

#### Authors

Katherine A. Bussey, Annie R. Cavalier, Jennifer R. Connell, Margaret E. Mraz, Kayode D. Oshin, Tomislav Pintauer, Danielle L. Gray, and Sean Parkin

 $\label{eq:crystal} Crystal Structure of Orthorhombic {bis-[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine-$\kappa^3N,N',N''$ chloridocopper(II) Perchlorate$ 

#### Notes/Citation Information

Published in Acta Crystallographica Section E: Cyrstallographic Communications, v. 71, part 7, p. 847-851.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

#### Digital Object Identifier (DOI)

https://doi.org/10.1107/S2056989015011792



Received 6 June 2015 Accepted 19 June 2015

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; four-coordinate copper(II); hetero-scorpionate complex; Atom Transfer Radical Addition (ATRA) reactions; disorder in cation and counter-ion

CCDC reference: 1407833 Supporting information: this article has supporting information at journals.iucr.org/e





## Crystal structure of orthorhombic {bis[(pyridin-2yl)methyl](3,5,5,5-tetrachloropentyl)amine- $\kappa^3 N, N', N''$ }chloridocopper(II) perchlorate

# Katherine A. Bussey,<sup>a</sup> Annie R. Cavalier,<sup>a</sup> Jennifer R. Connell,<sup>a</sup> Margaret E. Mraz,<sup>a</sup> Kayode D. Oshin,<sup>a</sup>\* Tomislav Pintauer,<sup>b</sup> Danielle L. Gray<sup>c</sup> and Sean Parkin<sup>d</sup>

<sup>a</sup>Department of Chemistry & Physics, Saint Mary's College, Notre Dame, IN 46556, USA, <sup>b</sup>Department of Chemistry & Biochemistry, Duquesne University, Pittsburgh, PA, 15282, USA, <sup>c</sup>School of Chemical Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA, and <sup>d</sup>Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA. \*Correspondence e-mail: koshin@saintmarys.edu

In the title compound,  $[CuCl(C_{17}H_{19}Cl_4N_3)]ClO_4$ , the Cu<sup>II</sup> ion adopts a distorted square-planar geometry defined by one chloride ligand and the three nitrogen atoms from the bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine ligand. The perchlorate counter-ion is disordered over three sets of sites with refined occupancies 0.0634 (17), 0.221 (16) and 0.145 (7). In addition, the hetero-scorpionate arm of the bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropent-yl)amine ligand is disordered over two sets of sites with refined occupancies 0.839 (2) and 0.161 (2). In the crystal, weak Cu···Cl interactions between symmetry-related molecules create a dimerization with a chloride occupying the apical position of the square-pyramidal geometry typical of many copper(II) chloride hetero-scorpionate complexes.

#### 1. Chemical context

The mechanistic and structural study of Atom Transfer Radical Addition (ATRA) reactions is a growing and promising field in organometallic chemistry. These reactions involve the formation of carbon-carbon bonds through addition of a poly-halogenated saturated hydrocarbon to alkenes (Eckenhoff & Pintauer, 2010). Also known as the Kharasch reaction, most proceed either in the presence of a free-radical precursor as the halogen transfer agent, or a transition metal complex as the halogen transfer agent (Muñoz-Molina et al., 2011). What makes these types of reactions attractive is generation of halogen-group functionalities within the product; which can be used as starting reagents in further functionalization reactions (Kleij et al., 2000). Of interest to this project is analysis of hetero-scorpionate complexes incorporating weakly coordinating olefinic moieties in ATRA reactions. Since their discovery in the 1960s by Swiatoslaw Trofimenko (Pettinari, 2004), scorpionate ligands are considered to be some of the most useful ligand structures available in modern coordination chemistry (Trofimenko, 1999). As such, we report the synthesis and crystal structure of the title compound  $[Cu(C_{17}H_{19}N_3Cl_4)(Cl)][ClO_4]$  (1).

#### 2. Structural commentary

The title complex, (1) (Fig. 1), adopts a distorted squareplanar geometry, as shown in the bond angles around the Cu<sup>II</sup> ion. The Cu<sup>II</sup> ion is coordinated by the binding of the two pyridine and amine nitrogen atoms and a chlorido ligand. A  $\tau$ -

### research communications

4 analysis of the distortions about the Cu<sup>II</sup> ion yields a value of 0.15, slightly deviant from an ideal value of zero for perfect square-planar geometry  $[\tau - 4 = [360 - (\alpha + \beta)]/141$ ; Yang *et al.*, 2007] where  $\alpha$  and  $\beta$  are the two greatest valence angles of the coordination center]. The Cu<sup>II</sup> ion sits 0.0922 (4) Å out of the mean basal plane formed by Cl1 and the three coordinating N atoms, giving rise to the distortion from true square-planar geometry. The Cu–Cl1 [2.2519 (8) Å], Cu–N(amine) [2.027 (2) Å], and Cu–N(py) [1.982 (3) and 1.987 (3) Å] bond lengths are in the anticipated range for copper(II) complexes.



#### 3. Supramolecular features

Weak [2.8535 (9) Å] Cu···Cl interactions between adjacent molecules creates a dimerization with two Cl atoms bridging the Cu<sup>II</sup> atoms (Fig. 2). The inter-copper distance between neighbouring cations is 3.4040 (7) Å. When considered, the

| Table 1   |             |           |     |
|-----------|-------------|-----------|-----|
| Hydrogen- | bond geomet | try (Å, ' | °). |

| $D - H \cdot \cdot \cdot A$         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-------------------------------------|------|-------------------------|--------------|------------------|
| $C11-H11A\cdots Cl1^{i}$            | 0.99 | 2.84                    | 3.441 (3)    | 120              |
| $C12-H12B\cdots Cl1^{i}$            | 0.99 | 2.84                    | 3.438 (3)    | 120              |
| $C2-H2\cdots O1^{ii}$               | 0.95 | 2.64                    | 3.383 (8)    | 136              |
| $C11-H11A\cdots O4^{iii}$           | 0.99 | 2.53                    | 3.123 (7)    | 118              |
| $C12-H12A\cdots O4$                 | 0.99 | 2.43                    | 3.310 (9)    | 148              |
| $C13-H13A\cdots O1^{iv}$            | 0.99 | 2.64                    | 3.578 (11)   | 157              |
| $C14-H14B\cdots O3^{iv}$            | 0.99 | 2.40                    | 3.324 (13)   | 154              |
| $C7-H7\cdots O2'^{iii}$             | 0.95 | 2.64                    | 3.14 (3)     | 113              |
| $C12-H12A\cdots O4'$                | 0.99 | 2.37                    | 3.32 (2)     | 159              |
| $C14-H14C\cdots O3'^{iv}$           | 0.99 | 2.17                    | 3.13 (2)     | 163              |
| $C14-H14D\cdots O4'$                | 0.99 | 2.41                    | 3.26 (2)     | 143              |
| $C16' - H16D \cdots O2'^{iv}$       | 0.99 | 2.32                    | 3.28 (3)     | 162              |
| C7−H7···O2" <sup>iii</sup>          | 0.95 | 2.57                    | 3.26 (2)     | 130              |
| C12−H12A···O4"                      | 0.99 | 2.53                    | 3.33 (4)     | 138              |
| $C13-H13A\cdots O1$ " <sup>iv</sup> | 0.99 | 2.45                    | 3.33 (2)     | 148              |
| $C2-H2\cdot\cdot\cdot Cl4'^{v}$     | 0.95 | 2.84                    | 3.644 (19)   | 143              |
| $C11 - H11B \cdot \cdot \cdot Cl2'$ | 0.99 | 2.70                    | 3.490 (7)    | 137              |
| $C13-H13B\cdots Cl2^{vi}$           | 0.99 | 2.90                    | 3.863 (4)    | 165              |

Symmetry codes: (i) -x, -y + 2, -z; (ii)  $x - \frac{1}{2}, -y + \frac{3}{2}, -z$ ; (iii)  $-x + \frac{1}{2}, y + \frac{1}{2}, z$ ; (iv)  $-x + \frac{1}{2}, y - \frac{1}{2}, z$ ; (v)  $x, -y + 1, z - \frac{1}{2}$ ; (vi)  $-x, y, -z + \frac{1}{2}$ .



Figure 1

The molecular structure of (1), shown with 50% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Only the primary orientations of the disordered sites are shown.

weak Cu···Cl interaction becomes the apical position of a distorted square-pyramidal geometry for the Cu<sup>II</sup> atoms. Further strengthening the dimer are weak electrostatic C–



Figure 2

Dimer interactions between two  $[Cu(C_{17}H_{19}N_3Cl_4)(Cl)]$  (1) molecules, shown with 50% probability ellipsoids for the primary orientations of the disordered sites. H atoms are removed for clarity. The symmetry operation to generate the additional cation is 1 - x, 1 - y, 1 - z.



Figure 3 Packing diagram viewed along the *b*-axis direction showing the electrostatic interactions for the primary orientations of the disordered sites.

H··· Cl interactions between C11-H11A···Cl1<sup>i</sup> and C12-H12B···Cl1<sup>i</sup> (Cl1<sup>i</sup> is generated by the symmetry operation -x, -y + 2, -z; Table 1). The three-dimensional packing structure (Fig. 3) is comprised from many weak C-H···O interactions that occur between carbon donors on the scorpionate arm or the bis(pyridin-2-ylmethyl)amine and the oxygen atoms on varying orientations of the perchlorate counter-ion. Depending on the orientation of the chlorinated scorpionate arm, there are additional weak C-H··· Cl interactions.

#### 4. Database survey

There are 200 structures with the bis(pyridin-2-ylmethyl)amine ligand coordinating to copper with at least one bound chloride ligand (Groom & Allen 2014; CSD Version 5.36). Ignoring all the structures that have tethered pairs or tethered triplets of ligands, or have ligands whose amine group has substituents that additionally coordinate to the Cu<sup>II</sup> atom, there are 58 remaining structures. Eighteen of these remaining structures have two bridging Cl ligands with one short axial Cu–Cl bond length (average 2.25 Å) and one long apical Cu–Cl bond length (average 2.72 Å).

#### 5. Synthesis and crystallization

The synthetic procedure is outlined in Fig. 4. **Synthesis of 1butene-***bis*(**pyridin-2-ylmethyl)amine**, (**B**): bis(pyridin-2ylmethyl) amine (BPMA) precursor (**A**) was synthesized and purified following literature procedures (Carvalho *et al.*, 2006). BPMA (8.064 g, 40.5 mmol) was dissolved in 15 mL of acetonitrile followed by the addition of triethylamine (4.098 g, 40.5 mmol) and 4-bromobutene (5.468 g 40.5 mmol). The reaction was sealed and allowed to mix for 4 days to ensure complete deprotonation and coupling occurred. Generation of the triethylamine hydrogen bromide salt  $Et_3NH^+ \cdot Br^-$  was observed as white crystals in the brown-colored solution. The mixture was filtered and the desired product extracted from the filtrate using a hexane/water mixture. The hexane layer was separated and solvent removed to yield the ligand as a yellow-colored oil (8.516 g, 83%). The ligand was stored in a septum sealed round-bottom flask under argon gas in a refrigerator. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta 2.31$  (dd, J = 8.0 and 21.6 Hz, 2H),  $\delta$ 2.64 (*t*, *J* = 7.2 Hz, 2H),  $\delta$ 3.83 (*s*, 4H),  $\delta$ 4.97  $(d, J = 10.4 \text{ Hz}, 1\text{H}), \delta 5.01 (d, J = 18.8 \text{ Hz}, 1\text{H}), \delta 5.75 (m, J =$ 10.4 Hz, 1H),  $\delta$ 7.13 (*t*, *J* = 6.4 Hz, 2H),  $\delta$  7.53 (*d*, *J* = 8.0 Hz, 2H),  $\delta$  7.64 (*t*, *J* = 7.6 Hz, 2H),  $\delta$ 8.51 (*d*, *J* = 4.4 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 400 MHz): δ 159.75, 149.01, 136.38, 135.38, 122.80, 121.88, 117.93, 77.13, 59.90, 57.32. FT-IR (liquid): v  $(cm^{-1}) = 3066 (w), 2922 (w), 2816 (w), 2158 (s), 1639 (s), 1588$ (s), 1361 (s), 994 (w), 756 (s). FT–IR (solid): v (cm<sup>-1</sup>) = 3394 (w), 3067 (w), 3008 (s), 2923 (w), 2817 (s), 2359 (s), 1619 (s), 1589 (s), 1432 (s).

Synthesis of  $[Cu^{I}(butene-bis(pyridin-2-ylmethyl)amine)]$ -[ClO<sub>4</sub>], (C): In the drybox, 1-butene-bis(pyridin-2-ylmethyl)amine (A) (1.00 g, 3.95 mmol) was dissolved in 5 mL acetonitrile in a 50 mL Schlenk flask. Cu(ClO<sub>4</sub>) (1.292 g, 3.95 mmol) was added to the flask to give a yellow-colored solution. The reaction was allowed to mix for 6 h, then 15 mL of pentane was slowly added to the solution to generate a yellow preci-

## research communications



**Figure 4** The synthetic scheme.

pitate. Solvent was removed from the flask through a vacuum line. The precipitate was washed twice by transferring 10 mL of pentane into the flask and stirring vigorously for thirty minutes. Solvent was removed and the precipitate dried under vacuum for 2 h to yield a yellow-colored solid (2.109 g, 92%). <sup>1</sup>H NMR (CD<sub>3</sub>CN, 400 MHz):  $\delta 2.45$  (*dd*, J = 8.8 and 22.4 Hz, 2H),  $\delta 2.77$  (t, J = 8.0 Hz, 2H),  $\delta 3.87$  (s, 4H),  $\delta 4.92$  (d, J = 10.0 Hz, 1H),  $\delta 4.98$  (d, J = 16.8 Hz, 1H),  $\delta 5.70$  (m, J = 10.4 Hz, 1H),  $\delta 7.33$  (d, J = 8.0 Hz, 2H),  $\delta 7.38$  (t, J = 6.0 Hz, 2H),  $\delta 7.80$  (t, J = 7.6 Hz, 2H),  $\delta 8.63$  (d, J = 4.8 Hz, 2H). FT–IR (solid): v (cm<sup>-1</sup>) = 3271 (w), 3083 (w), 2923 (w), 2818 (w), 2325 (s), 2303 (s), 1602 (s), 1477 (s). TOF–ESI–MS: (m/z) [M - (ClO<sub>4</sub>)]<sup>+</sup>, Calculated for C<sub>16</sub>H<sub>19</sub>N<sub>3</sub>Cu 316.0875, found 316.0897 (7 p.p.m.).

Synthesis of  $[Cu^{II}(1,1,1\text{-trichloro}, 3\text{-chloropentylbis(pyr$ idin-2-ylmethyl)amine)][Cl][ClO<sub>4</sub>], (1): In the drybox, $<math>[Cu^{I}(butene-bis(pyridin-2-ylmethyl)amine)][ClO<sub>4</sub>] (C)$ (0.50 g, 1.20 mmol) was dissolved in 5 mL acetonitrile in aglass vial with a stir bar. Nitrogen gas purged CCl<sub>4</sub> (0.174 mL,1.80 mmol) was added to the vial producing a bluish-greencolored mixture. The reaction vial was sealed with a plasticcap and allowed to mix for 4 h, then removed from the drybox. Vapour diffusion crystallization at room temperature, incorporating 1 mL of the bluish-green solution with diethyl ether as the external diffusing solvent, produced blue-colored crystals suitable for X-ray analysis.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The proposed structure model includes disorder of the hetero-scorpionate arm of the bis-[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine ligand over two sets of sites and disorder of the perchlorate anion modelled over three sites. The geometries of the disordered [ $C_5H_7Cl_4$ ] arm were restrained to be the same (s.u. 0.01Å). The perchlorate anions were also restrained to have the same geometries (s.u. 0.01 Å). In addition, the sum of the occupancies of the three orientations for the perchlorate anions were restrained to add up to one (s.u. 0.001). All disordered sites were restrained to have similar displacement amplitudes (s.u. 0.01) for atoms overlapping by less than the sum of van der Waals radii. Displacement parameters for the perchlorate anion positions were also restrained to behave relatively Table 2Experimental details.

| Crystal data                                                             |                                            |
|--------------------------------------------------------------------------|--------------------------------------------|
| Chemical formula                                                         | $[CuCl(C_{17}H_{19}Cl_4N_3)]ClO_4$         |
| M <sub>r</sub>                                                           | 605.59                                     |
| Crystal system, space group                                              | Orthorhombic, Pbcn                         |
| Temperature (K)                                                          | 150                                        |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                       | 17.4845 (13), 10.6593 (8),<br>25.1030 (18) |
| $V(Å^3)$                                                                 | 4678.5 (6)                                 |
| Ζ                                                                        | 8                                          |
| Radiation type                                                           | Μο Κα                                      |
| $\mu (\text{mm}^{-1})$                                                   | 1.65                                       |
| Crystal size (mm)                                                        | $0.72 \times 0.31 \times 0.04$             |
| Data collection                                                          |                                            |
| Diffractometer                                                           | Bruker SMART APEXII CCD                    |
| Absorption correction                                                    | Multi-scan ( <i>SADABS</i> ; Bruker, 2014) |
| $T_{\min}, T_{\max}$                                                     | 0.638, 0.746                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 51373, 6305, 4147                          |
| R <sub>int</sub>                                                         | 0.081                                      |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                     | 0.686                                      |
| Refinement                                                               |                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.045, 0.108, 1.03                         |
| No. of reflections                                                       | 6305                                       |
| No. of parameters                                                        | 437                                        |
| No. of restraints                                                        | 647                                        |
| H-atom treatment                                                         | H-atom parameters constrained              |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å <sup>-3</sup> )      | 0.56, -0.39                                |

Computer programs: APEX2, SAINT, XPREP and SADABS (Bruker, 2014), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), CrystalMaker (CrystalMaker, 1994) and publCIF (Westrip, 2010).

isotropic. All non-H atoms were refined with anisotropic displacement parameters. H atoms were included as riding

idealized contributors, with C–H = 0.95 (aromatic), 0.99 ( $sp^3$  C–R2H2), and 1.00 Å ( $sp^3$  C–R3H). The  $U_{iso}$ (H) values were set to  $1.2U_{eq}$ (C) of the carrier atom. The (002) reflection was omitted from the final refinement because it was partially obscured by the beam stop.

#### Acknowledgements

The authors would like to thank Duquesne University for instrument support.

#### References

- Bruker (2014). APEX2, SAINT, XPREP, SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Carvalho, N. M. F., Horn, A. Jr, Bortoluzzi, A. J., Drago, V. & Antunes, O. A. C. (2006). *Inorg. Chim. Acta*, **359**, 90–98.
- CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).
- Eckenhoff, W. T. & Pintauer, T. (2010). Catal. Rev. 52, 1-59.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.

Kleij, A. W., Gossage, R. A., Jastrzebski, J. T. B. H., Boersma, J. & van Koten, G. (2000). Angew. Chem. Int. Ed. 39, 176–178.

Muñoz-Molina, J. M., Sameera, W. M. C., Álvarez, E., Maseras, F., Belderrain, T. R. & Pérez, P. J. (2011). *Inorg. Chem.* **50**, 2458–2467.

- Pettinari, C. (2004). Chim. Ind. 10, 94-100.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

Trofimenko, S. (1999). In Scorpionates: The Coordination Chemistry of Poly(pyrazolyl)borate Ligands. London: Imperial College Press. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.

# supporting information

Acta Cryst. (2015). E71, 847-851 [doi:10.1107/S2056989015011792]

# Crystal structure of orthorhombic {bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine- $\kappa^3 N, N', N''$ }chloridocopper(II) perchlorate

Katherine A. Bussey, Annie R. Cavalier, Jennifer R. Connell, Margaret E. Mraz, Kayode D. Oshin, Tomislav Pintauer, Danielle L. Gray and Sean Parkin

#### **Computing details**

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT*, *XPREP* and *SADABS* (Bruker, 2014); program(s) used to solve structure: *SHELXS2014*/7 (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *CrystalMaker* (*CrystalMaker*, 1994); software used to prepare material for publication: *publCIF* (Westrip, 2010).

#### {Bis[(pyridin-2-yl)methyl](1,1,1,3-tetrachloropentyl)amine- $\kappa^3 N, N', N''$ }chloridocopper(II) perchlorate

| Crystal data<br>[CuCl(C <sub>17</sub> H <sub>19</sub> Cl <sub>4</sub> N <sub>3</sub> )]ClO <sub>4</sub><br>$M_r = 605.59$<br>Orthorhombic, <i>Pbcn</i><br>a = 17.4845 (13) Å<br>b = 10.6593 (8) Å<br>c = 25.1030 (18) Å<br>V = 4678.5 (6) Å <sup>3</sup><br>Z = 8<br>F(000) = 2440 | $D_x = 1.720 \text{ Mg m}^{-3}$<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 5135 reflections<br>$\theta = 2.2-23.3^{\circ}$<br>$\mu = 1.65 \text{ mm}^{-1}$<br>T = 150  K<br>Prism, blue<br>$0.72 \times 0.31 \times 0.04 \text{ mm}$                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |
| Bruker SMART APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>profile data from $\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2014)<br>$T_{min} = 0.638, T_{max} = 0.746$    | 51373 measured reflections<br>6305 independent reflections<br>4147 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.081$<br>$\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.0^{\circ}$<br>$h = -23 \rightarrow 23$<br>$k = -14 \rightarrow 14$<br>$l = -34 \rightarrow 34$                                            |
| Refinement                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.045$<br>$wR(F^2) = 0.108$<br>S = 1.03<br>6305 reflections<br>437 parameters<br>647 restraints                                                                                                      | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0376P)^2 + 5.7335P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.56$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.39$ e Å <sup>-3</sup> |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x             | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|---------------|-------------|---------------|-----------------------------|-----------|
| Cul  | 0.01473 (2)   | 0.91372 (4) | 0.05612 (2)   | 0.02853 (11)                |           |
| N1   | -0.01787 (15) | 1.0476 (2)  | 0.10598 (10)  | 0.0314 (6)                  |           |
| N2   | 0.06695 (16)  | 0.7705 (2)  | 0.02079 (10)  | 0.0307 (6)                  |           |
| N3   | 0.10728 (14)  | 0.9061 (2)  | 0.10463 (10)  | 0.0255 (5)                  |           |
| Cl1  | -0.09392 (4)  | 0.90746 (8) | 0.00802 (3)   | 0.03601 (19)                |           |
| C1   | 0.0368 (2)    | 0.6854 (3)  | -0.01322 (13) | 0.0409 (9)                  |           |
| H1   | -0.0161       | 0.6897      | -0.0218       | 0.049*                      |           |
| C2   | 0.0808 (3)    | 0.5933 (4)  | -0.03554 (15) | 0.0499 (10)                 |           |
| H2   | 0.0586        | 0.5343      | -0.0593       | 0.060*                      |           |
| C3   | 0.1574 (3)    | 0.5865 (4)  | -0.02351 (16) | 0.0535 (11)                 |           |
| H3   | 0.1884        | 0.5230      | -0.0390       | 0.064*                      |           |
| C4   | 0.1888 (2)    | 0.6722 (3)  | 0.01107 (15)  | 0.0439 (9)                  |           |
| H4   | 0.2418        | 0.6693      | 0.0195        | 0.053*                      |           |
| C5   | 0.14184 (18)  | 0.7632 (3)  | 0.03345 (12)  | 0.0301 (7)                  |           |
| C6   | 0.03905 (18)  | 1.0893 (3)  | 0.13719 (12)  | 0.0299 (7)                  |           |
| C7   | 0.0263 (2)    | 1.1791 (3)  | 0.17579 (14)  | 0.0394 (8)                  |           |
| H7   | 0.0667        | 1.2054      | 0.1984        | 0.047*                      |           |
| C8   | -0.0459 (2)   | 1.2302 (3)  | 0.18115 (16)  | 0.0481 (10)                 |           |
| H8   | -0.0554       | 1.2931      | 0.2071        | 0.058*                      |           |
| C9   | -0.1039 (2)   | 1.1889 (4)  | 0.14842 (17)  | 0.0495 (10)                 |           |
| H9   | -0.1537       | 1.2238      | 0.1511        | 0.059*                      |           |
| C10  | -0.0885(2)    | 1.0960 (4)  | 0.11176 (15)  | 0.0411 (9)                  |           |
| H10  | -0.1288       | 1.0654      | 0.0900        | 0.049*                      |           |
| C11  | 0.11701 (18)  | 1.0358 (3)  | 0.12597 (13)  | 0.0286 (7)                  |           |
| H11A | 0.1441        | 1.0887      | 0.0996        | 0.034*                      |           |
| H11B | 0.1477        | 1.0337      | 0.1591        | 0.034*                      |           |
| C12  | 0.17104 (17)  | 0.8613 (3)  | 0.07094 (12)  | 0.0283 (7)                  |           |
| H12A | 0.2119        | 0.8256      | 0.0936        | 0.034*                      |           |
| H12B | 0.1928        | 0.9323      | 0.0505        | 0.034*                      |           |
| C13  | 0.08923 (19)  | 0.8171 (3)  | 0.14857 (12)  | 0.0313 (7)                  |           |
| H13A | 0.0711        | 0.7373      | 0.1328        | 0.038*                      |           |
| H13B | 0.0468        | 0.8522      | 0.1700        | 0.038*                      |           |
| C14  | 0.1563 (2)    | 0.7886 (3)  | 0.18580 (13)  | 0.0380 (8)                  |           |
| H14A | 0.1893        | 0.8635      | 0.1894        | 0.046*                      | 0.839 (2) |
| H14B | 0.1875        | 0.7192      | 0.1711        | 0.046*                      | 0.839 (2) |
| H14C | 0.1674        | 0.6985      | 0.1800        | 0.046*                      | 0.161 (2) |
| H14D | 0.2001        | 0.8345      | 0.1702        | 0.046*                      | 0.161 (2) |
| C15  | 0.1234 (2)    | 0.7506 (4)  | 0.24114 (14)  | 0.0278 (8)                  | 0.839 (2) |
| H15  | 0.0768        | 0.6978      | 0.2358        | 0.033*                      | 0.839 (2) |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| Cl2  | 0.09677 (7)  | 0.89437 (12) | 0.27515 (4)  | 0.0431 (3)  | 0.839 (2)  |
|------|--------------|--------------|--------------|-------------|------------|
| C16  | 0.1823 (2)   | 0.6764 (4)   | 0.27201 (14) | 0.0298 (8)  | 0.839 (2)  |
| H16A | 0.2273       | 0.7311       | 0.2777       | 0.036*      | 0.839 (2)  |
| H16B | 0.1991       | 0.6055       | 0.2494       | 0.036*      | 0.839 (2)  |
| C17  | 0.1586 (2)   | 0.6238 (4)   | 0.32558 (16) | 0.0352 (9)  | 0.839 (2)  |
| C13  | 0.16533 (13) | 0.73299 (18) | 0.37901 (7)  | 0.0524 (5)  | 0.839 (2)  |
| Cl4  | 0.06429 (15) | 0.5634 (3)   | 0.32483 (14) | 0.0415 (5)  | 0.839 (2)  |
| C15  | 0.22215 (6)  | 0.49641 (11) | 0.34156 (5)  | 0.0460 (3)  | 0.839 (2)  |
| C15′ | 0.1645 (9)   | 0.8073 (10)  | 0.2458 (4)   | 0.032 (3)   | 0.161 (2)  |
| H15′ | 0.2176       | 0.7933       | 0.2592       | 0.038*      | 0.161 (2)  |
| Cl2′ | 0.1272 (4)   | 0.9613 (6)   | 0.2612 (2)   | 0.0464 (17) | 0.161 (2)  |
| C16′ | 0.1082 (9)   | 0.7056 (12)  | 0.2629 (5)   | 0.033 (3)   | 0.161 (2)  |
| H16C | 0.0566       | 0.7432       | 0.2661       | 0.040*      | 0.161 (2)  |
| H16D | 0.1058       | 0.6407       | 0.2347       | 0.040*      | 0.161 (2)  |
| C17′ | 0.1283 (7)   | 0.6432 (11)  | 0.3150 (5)   | 0.040 (3)   | 0.161 (2)  |
| Cl3′ | 0.1395 (7)   | 0.7557 (10)  | 0.3665 (4)   | 0.062 (3)   | 0.161 (2)  |
| Cl4′ | 0.0539 (8)   | 0.5400 (16)  | 0.3321 (8)   | 0.049 (3)   | 0.161 (2)  |
| C15′ | 0.2150 (4)   | 0.5561 (6)   | 0.3065 (3)   | 0.0541 (19) | 0.161 (2)  |
| Cl6  | 0.3626 (3)   | 0.9480 (5)   | 0.1331 (2)   | 0.0408 (9)  | 0.634 (17) |
| 01   | 0.4211 (4)   | 1.0019 (10)  | 0.1000 (3)   | 0.065 (2)   | 0.634 (17) |
| O2   | 0.3883 (6)   | 0.9535 (10)  | 0.1871 (3)   | 0.061 (2)   | 0.634 (17) |
| 03   | 0.2938 (5)   | 1.0211 (10)  | 0.1273 (5)   | 0.058 (2)   | 0.634 (17) |
| O4   | 0.3463 (6)   | 0.8219 (6)   | 0.1179 (4)   | 0.052 (2)   | 0.634 (17) |
| C16′ | 0.3611 (9)   | 0.9340 (15)  | 0.1444 (7)   | 0.051 (2)   | 0.221 (16) |
| 01′  | 0.4122 (12)  | 0.951 (2)    | 0.0995 (8)   | 0.059 (4)   | 0.221 (16) |
| O2′  | 0.4055 (14)  | 0.949 (3)    | 0.1915 (8)   | 0.056 (4)   | 0.221 (16) |
| O3′  | 0.2990 (12)  | 1.022 (2)    | 0.1436 (9)   | 0.051 (4)   | 0.221 (16) |
| O4′  | 0.3301 (11)  | 0.8105 (15)  | 0.1398 (10)  | 0.047 (4)   | 0.221 (16) |
| C16" | 0.3552 (10)  | 0.9434 (19)  | 0.1397 (7)   | 0.052 (3)   | 0.145 (7)  |
| 01"  | 0.4277 (11)  | 1.007 (2)    | 0.1349 (11)  | 0.061 (4)   | 0.145 (7)  |
| O2"  | 0.3490 (14)  | 0.902 (2)    | 0.1936 (7)   | 0.059 (4)   | 0.145 (7)  |
| O3"  | 0.2941 (15)  | 1.027 (4)    | 0.1259 (16)  | 0.053 (5)   | 0.145 (7)  |
| O4"  | 0.356 (2)    | 0.843 (3)    | 0.1021 (10)  | 0.051 (4)   | 0.145 (7)  |
|      |              |              |              |             |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$    | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|--------------|-------------|--------------|---------------|---------------|--------------|
| Cul | 0.02551 (19) | 0.0343 (2)  | 0.02575 (19) | -0.00116 (17) | -0.00341 (16) | 0.00344 (17) |
| N1  | 0.0324 (14)  | 0.0322 (14) | 0.0296 (14)  | 0.0024 (12)   | 0.0030 (12)   | 0.0078 (11)  |
| N2  | 0.0373 (15)  | 0.0336 (15) | 0.0212 (13)  | -0.0058 (12)  | -0.0016 (11)  | -0.0007 (11) |
| N3  | 0.0282 (13)  | 0.0250 (13) | 0.0234 (12)  | 0.0014 (11)   | -0.0012 (10)  | -0.0007 (10) |
| C11 | 0.0270 (4)   | 0.0476 (5)  | 0.0334 (4)   | -0.0072 (4)   | -0.0093 (3)   | 0.0132 (4)   |
| C1  | 0.053 (2)    | 0.042 (2)   | 0.0279 (17)  | -0.0150 (17)  | -0.0050 (16)  | -0.0012 (15) |
| C2  | 0.076 (3)    | 0.043 (2)   | 0.0310 (19)  | -0.006 (2)    | -0.0020 (19)  | -0.0086 (17) |
| C3  | 0.075 (3)    | 0.046 (2)   | 0.040 (2)    | 0.007 (2)     | 0.006 (2)     | -0.0131 (18) |
| C4  | 0.047 (2)    | 0.046 (2)   | 0.039 (2)    | 0.0101 (18)   | 0.0055 (17)   | -0.0053 (17) |
| C5  | 0.0344 (17)  | 0.0332 (17) | 0.0227 (15)  | -0.0004 (14)  | -0.0009 (13)  | -0.0001 (13) |
| C6  | 0.0364 (17)  | 0.0248 (15) | 0.0284 (16)  | 0.0010 (14)   | 0.0046 (13)   | 0.0050 (13)  |

| C7   | 0.053 (2)   | 0.0288 (17) | 0.0361 (19) | -0.0016 (16) | 0.0088 (17)  | 0.0013 (15)  |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C8   | 0.068 (3)   | 0.0301 (19) | 0.046 (2)   | 0.0114 (18)  | 0.027 (2)    | 0.0071 (17)  |
| C9   | 0.043 (2)   | 0.047 (2)   | 0.059 (3)   | 0.0165 (18)  | 0.023 (2)    | 0.017 (2)    |
| C10  | 0.0326 (18) | 0.047 (2)   | 0.044 (2)   | 0.0082 (16)  | 0.0095 (15)  | 0.0172 (18)  |
| C11  | 0.0317 (16) | 0.0243 (15) | 0.0297 (16) | -0.0005(13)  | -0.0034(13)  | -0.0013 (13) |
| C12  | 0.0277 (16) | 0.0302 (16) | 0.0268 (16) | 0.0015 (13)  | -0.0011 (13) | -0.0007(13)  |
| C13  | 0.0423 (19) | 0.0257 (16) | 0.0258 (16) | 0.0009 (14)  | -0.0019 (14) | 0.0022 (13)  |
| C14  | 0.051 (2)   | 0.0356 (19) | 0.0277 (17) | 0.0136 (16)  | -0.0045 (15) | -0.0004 (15) |
| C15  | 0.030 (2)   | 0.029 (2)   | 0.0240 (19) | 0.0028 (16)  | -0.0020 (16) | -0.0036 (15) |
| Cl2  | 0.0539 (7)  | 0.0435 (7)  | 0.0319 (6)  | 0.0184 (6)   | 0.0005 (5)   | -0.0079 (5)  |
| C16  | 0.0327 (19) | 0.0306 (18) | 0.0262 (17) | 0.0009 (16)  | -0.0005 (15) | 0.0009 (15)  |
| C17  | 0.038 (2)   | 0.033 (2)   | 0.034 (2)   | 0.0022 (18)  | 0.0023 (18)  | 0.0034 (17)  |
| C13  | 0.0836 (14) | 0.0450 (9)  | 0.0286 (8)  | -0.0038 (8)  | -0.0016 (7)  | -0.0030 (6)  |
| Cl4  | 0.0385 (8)  | 0.0382 (11) | 0.0478 (11) | -0.0028 (7)  | 0.0107 (7)   | 0.0139 (8)   |
| C15  | 0.0458 (6)  | 0.0461 (6)  | 0.0462 (7)  | 0.0073 (5)   | -0.0033 (5)  | 0.0156 (5)   |
| C15′ | 0.035 (5)   | 0.033 (5)   | 0.027 (5)   | 0.004 (5)    | -0.004 (5)   | -0.006 (5)   |
| Cl2′ | 0.069 (4)   | 0.032 (3)   | 0.038 (3)   | -0.006 (3)   | -0.001 (3)   | -0.002 (2)   |
| C16′ | 0.039 (5)   | 0.033 (5)   | 0.027 (5)   | 0.000 (5)    | 0.001 (5)    | -0.006 (5)   |
| C17′ | 0.046 (5)   | 0.038 (5)   | 0.036 (5)   | 0.002 (5)    | 0.002 (5)    | -0.003 (5)   |
| Cl3′ | 0.082 (7)   | 0.061 (5)   | 0.042 (5)   | -0.008 (5)   | -0.003 (4)   | -0.003 (4)   |
| Cl4′ | 0.054 (6)   | 0.043 (6)   | 0.050 (6)   | -0.009 (4)   | 0.012 (4)    | 0.019 (4)    |
| Cl5′ | 0.052 (3)   | 0.054 (4)   | 0.057 (4)   | 0.011 (3)    | -0.010 (3)   | 0.011 (3)    |
| C16  | 0.0335 (13) | 0.0350 (13) | 0.0539 (17) | 0.0105 (10)  | -0.0121 (11) | -0.0163 (11) |
| 01   | 0.047 (3)   | 0.068 (5)   | 0.079 (4)   | -0.007 (3)   | -0.008 (3)   | -0.002 (4)   |
| O2   | 0.052 (5)   | 0.073 (4)   | 0.058 (3)   | 0.013 (3)    | -0.031 (3)   | -0.026 (3)   |
| O3   | 0.039 (3)   | 0.039 (3)   | 0.095 (5)   | 0.013 (3)    | -0.028 (3)   | -0.029 (3)   |
| O4   | 0.054 (4)   | 0.031 (3)   | 0.070 (5)   | 0.010 (3)    | -0.020 (4)   | -0.018 (3)   |
| Cl6′ | 0.037 (3)   | 0.040 (3)   | 0.075 (4)   | 0.009 (3)    | -0.021 (3)   | -0.015 (3)   |
| 01′  | 0.047 (6)   | 0.058 (7)   | 0.073 (6)   | -0.001 (6)   | 0.007 (6)    | -0.002 (6)   |
| O2′  | 0.042 (7)   | 0.063 (7)   | 0.064 (7)   | 0.007 (6)    | -0.023 (6)   | -0.018 (6)   |
| O3′  | 0.040 (6)   | 0.042 (6)   | 0.069 (8)   | 0.013 (5)    | -0.032 (6)   | -0.025 (6)   |
| O4′  | 0.036 (6)   | 0.034 (6)   | 0.071 (7)   | 0.002 (5)    | -0.015 (6)   | -0.010 (6)   |
| C16" | 0.043 (4)   | 0.045 (4)   | 0.070 (4)   | 0.001 (4)    | -0.018 (4)   | -0.017 (4)   |
| 01"  | 0.047 (6)   | 0.063 (7)   | 0.072 (7)   | 0.004 (6)    | -0.016 (6)   | -0.013 (7)   |
| O2"  | 0.047 (7)   | 0.057 (7)   | 0.071 (7)   | 0.008 (6)    | -0.012 (6)   | -0.021 (6)   |
| O3"  | 0.041 (8)   | 0.042 (8)   | 0.076 (9)   | 0.010 (8)    | -0.021 (8)   | -0.020 (8)   |
| O4"  | 0.049 (7)   | 0.038 (7)   | 0.067 (8)   | 0.008 (7)    | -0.013 (7)   | -0.024 (7)   |
|      |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cu1—N1  | 1.982 (3)  | C14—C15′ | 1.527 (10) |  |
|---------|------------|----------|------------|--|
| Cu1—N2  | 1.987 (3)  | C14—C15  | 1.557 (5)  |  |
| Cu1—N3  | 2.027 (2)  | C14—H14A | 0.9900     |  |
| Cu1—Cl1 | 2.2519 (8) | C14—H14B | 0.9900     |  |
| N1—C6   | 1.342 (4)  | C14—H14C | 0.9900     |  |
| N1-C10  | 1.346 (4)  | C14—H14D | 0.9900     |  |
| N2—C5   | 1.350 (4)  | C15—C16  | 1.512 (5)  |  |
| N2—C1   | 1.353 (4)  | C15—Cl2  | 1.815 (4)  |  |
|         |            |          |            |  |

| N3—C12            | 1.479 (4)            | C15—H15                                               | 1.0000                |
|-------------------|----------------------|-------------------------------------------------------|-----------------------|
| N3—C13            | 1.489 (4)            | C16—C17                                               | 1.515 (5)             |
| N3—C11            | 1.492 (4)            | C16—H16A                                              | 0.9900                |
| C1—C2             | 1.367 (5)            | C16—H16B                                              | 0.9900                |
| C1—H1             | 0.9500               | C17—Cl4                                               | 1.771 (5)             |
| C2—C3             | 1.375 (6)            | C17—C13                                               | 1.780 (4)             |
| C2—H2             | 0.9500               | C17—C15                                               | 1.800 (4)             |
| C3—C4             | 1 375 (5)            | C15'—C16'                                             | 1 526 (10)            |
| С3—Н3             | 0.9500               | C15'-C12'                                             | 1.807(10)             |
| C4-C5             | 1 390 (5)            | C15'—H15'                                             | 1,0000                |
| C4—H4             | 0.9500               | C16' - C17'                                           | 1.509 (10)            |
| $C_{5}$           | 1 496 (4)            | C16' - H16C                                           | 0.9900                |
| C6-C7             | 1.190(1)<br>1.380(4) | C16'H16D                                              | 0.9900                |
| C6-C11            | 1.500(4)<br>1 504(4) | C17' - C14'                                           | 1 758 (9)             |
| C7 C8             | 1.304 (4)            | C17' - C13'                                           | 1.756(9)<br>1.774(9)  |
| C7 H7             | 0.9500               | C17' - C15'                                           | 1.774(9)<br>1.790(10) |
| $C^{2}$           | 1,277(6)             | C17 = C13                                             | 1.790(10)<br>1.427(4) |
| $C_{0}$           | 1.577(0)             | C16 - O2                                              | 1.427(4)              |
|                   | 0.9300               | $C_{10}$ $-0_2$                                       | 1.429 (3)             |
| C9-C10            | 1.578 (5)            |                                                       | 1.438 (0)             |
| С9—Н9             | 0.9500               | C16-O3                                                | 1.442 (4)             |
| C10—H10           | 0.9500               | $C16^{2}$                                             | 1.424 (8)             |
| CII—HIIA          | 0.9900               | C16' - O4'                                            | 1.429 (8)             |
| CII—HIIB          | 0.9900               | Cl6'                                                  | 1.434 (8)             |
| C12—H12A          | 0.9900               | Cl6'—O1'                                              | 1.449 (9)             |
| C12—H12B          | 0.9900               | Cl6"—O2"                                              | 1.427 (9)             |
| C13—C14           | 1.530 (4)            | Cl6"—O4"                                              | 1.429 (8)             |
| C13—H13A          | 0.9900               | Cl6"—O3"                                              | 1.436 (8)             |
| С13—Н13В          | 0.9900               | Cl6"—O1"                                              | 1.444 (9)             |
| N1—Cu1—N2         | 165.22 (11)          | C15'—C14—C13                                          | 130.4 (6)             |
| N1—Cu1—N3         | 83.05 (10)           | C13—C14—C15                                           | 108.2 (3)             |
| N2—Cu1—N3         | 82.56 (10)           | C13—C14—H14A                                          | 110.0                 |
| N1—Cu1—Cl1        | 96.74 (8)            | C15—C14—H14A                                          | 110.0                 |
| N2—Cu1—Cl1        | 97.22 (8)            | C13—C14—H14B                                          | 110.0                 |
| N3—Cu1—Cl1        | 173.97 (8)           | C15—C14—H14B                                          | 110.0                 |
| C6—N1—C10         | 119.3 (3)            | H14A—C14—H14B                                         | 108.4                 |
| C6—N1—Cu1         | 113.2 (2)            | C15′—C14—H14C                                         | 104.7                 |
| C10—N1—Cu1        | 127.5 (3)            | C13—C14—H14C                                          | 104.7                 |
| C5—N2—C1          | 119.2 (3)            | C15′—C14—H14D                                         | 104.7                 |
| C5—N2—Cu1         | 112.6 (2)            | C13—C14—H14D                                          | 104.7                 |
| C1—N2—Cu1         | 128.2(2)             | H14C—C14—H14D                                         | 105.7                 |
| C12 - N3 - C13    | 112.2(2)             | C16-C15-C14                                           | 110.0 (3)             |
| C12—N3—C11        | 114.7(2)             | $C_{16}$ $-C_{15}$ $-C_{12}$                          | 112.1 (3)             |
| C13 - N3 - C11    | 110.4(2)             | $C_{14}$ $C_{15}$ $C_{12}$                            | 1072(3)               |
| C12—N3—Cu1        | 105 74 (18)          | C16—C15—H15                                           | 109.2                 |
| C13 - N3 - Cu1    | 107 54 (18)          | C14—C15—H15                                           | 109.2                 |
| C11 - N3 - Cu1    | 105 65 (18)          | Cl2—C15—H15                                           | 109.2                 |
| $N_2 - C_1 - C_2$ | 121 4 (4)            | $C_{12} = C_{13} = 113$<br>$C_{15} = C_{16} = C_{17}$ | 117.6 (3)             |
| 112 01 02         | 141,7(7)             | 010 010 - 017                                         | 11/.0(3)              |

| N2—C1—H1       | 119.3     | C15—C16—H16A                | 107.9                  |
|----------------|-----------|-----------------------------|------------------------|
| C2             | 119.3     | C17—C16—H16A                | 107.9                  |
| C1—C2—C3       | 119.8 (4) | C15—C16—H16B                | 107.9                  |
| C1—C2—H2       | 120.1     | C17—C16—H16B                | 107.9                  |
| С3—С2—Н2       | 120.1     | H16A—C16—H16B               | 107.2                  |
| C2—C3—C4       | 119.5 (4) | C16—C17—Cl4                 | 112.3 (3)              |
| С2—С3—Н3       | 120.2     | C16—C17—Cl3                 | 114.1 (3)              |
| С4—С3—Н3       | 120.2     | Cl4—C17—Cl3                 | 107.9 (2)              |
| C3—C4—C5       | 118.9 (4) | C16—C17—C15                 | 108.0 (3)              |
| C3—C4—H4       | 120.6     | Cl4—C17—Cl5                 | 107.6 (2)              |
| C5—C4—H4       | 120.6     | Cl3—C17—Cl5                 | 106.6 (2)              |
| N2             | 121.2 (3) | C16'—C15'—C14               | 97.1 (8)               |
| N2-C5-C12      | 116.0 (3) | C16'—C15'—Cl2'              | 110.7 (9)              |
| C4—C5—C12      | 122.7 (3) | C14—C15′—Cl2′               | 107.2 (7)              |
| N1—C6—C7       | 121.3 (3) | C16'—C15'—H15'              | 113.5                  |
| N1-C6-C11      | 115.9 (3) | C14—C15′—H15′               | 113.5                  |
| C7—C6—C11      | 122.8 (3) | Cl2'—C15'—H15'              | 113.5                  |
| C6—C7—C8       | 119.3 (4) | C17'—C16'—C15'              | 113.9 (9)              |
| С6—С7—Н7       | 120.3     | C17'—C16'—H16C              | 108.8                  |
| С8—С7—Н7       | 120.3     | C15′—C16′—H16C              | 108.8                  |
| C9—C8—C7       | 119.2 (4) | C17'—C16'—H16D              | 108.8                  |
| С9—С8—Н8       | 120.4     | C15'—C16'—H16D              | 108.8                  |
| С7—С8—Н8       | 120.4     | H16C—C16′—H16D              | 107.7                  |
| C8—C9—C10      | 118.9 (3) | C16'—C17'—C14'              | 108.3 (9)              |
| С8—С9—Н9       | 120.5     | C16'—C17'—C13'              | 111.0 (8)              |
| С10—С9—Н9      | 120.5     | Cl4′—Cl7′—Cl3′              | 109.0 (9)              |
| N1-C10-C9      | 121.8 (4) | C16'—C17'—C15'              | 108.9 (8)              |
| N1-C10-H10     | 119.1     | Cl4′—Cl7′—Cl5′              | 109.4 (8)              |
| C9-C10-H10     | 119.1     | Cl3'—C17'—Cl5'              | 110.2 (8)              |
| N3-C11-C6      | 108.4 (2) | 04-C16-O2                   | 110.8 (5)              |
| N3-C11-H11A    | 110.0     | 04-C16-01                   | 111.4 (4)              |
| C6-C11-H11A    | 110.0     | $0^{2}-C^{1}6-O^{1}$        | 108.0(5)               |
| N3—C11—H11B    | 110.0     | 04-C16-O3                   | 108.3(4)               |
| C6-C11-H11B    | 110.0     | $0^{2}-C16-O3$              | 109.7(5)               |
| H11A—C11—H11B  | 108.4     | 01 - C16 - 03               | 108.6(5)               |
| N3-C12-C5      | 109.2 (2) | O2' - C16' - O4'            | 112.0(10)              |
| N3-C12-H12A    | 109.8     | O2' - C16' - O3'            | 112.0(10)<br>110.6(10) |
| C5-C12-H12A    | 109.8     | 04' - C16' - 03'            | 108.3(10)              |
| N3-C12-H12B    | 109.8     | O'' - C' O'' - O''          | 107.2(10)              |
| C5-C12-H12B    | 109.8     | 04' - C16' - 01'            | 107.2(10)<br>106.7(10) |
| H12A_C12_H12B  | 108.3     | $O_{3'} - C_{16'} - O_{1'}$ | 111.9(10)              |
| N3-C13-C14     | 114 6 (3) | 03''-01''                   | 111.9(10)<br>113.4(12) |
| N3_C13_H13A    | 108.6     | 02'' - 04'' - 04''          | 113.7(12)<br>111.3(12) |
| C14_C13_H13A   | 108.6     | 02 - 03                     | 108.4(11)              |
| N3_C13_H13R    | 108.6     | $0^{-1}$ $-0^{-1}$          | 106.9(11)              |
| C14_C13_H13B   | 108.6     | 02 - 01 - 01                | 100.9(11)<br>106.9(11) |
| H13A (13 H13B) | 107.6     | $O_{4} = C_{10} = O_{1}$    | 100.9(11)<br>100.8(12) |
| mon—c15—mbb    | 107.0     | 00 - 00 - 01                | 109.0 (12)             |

| D—H···A                                | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|----------------------------------------|-------------|-------|--------------|---------|
| C11—H11A····Cl1 <sup>i</sup>           | 0.99        | 2.84  | 3.441 (3)    | 120     |
| C12—H12B···Cl1 <sup>i</sup>            | 0.99        | 2.84  | 3.438 (3)    | 120     |
| C2—H2···O1 <sup>ii</sup>               | 0.95        | 2.64  | 3.383 (8)    | 136     |
| C11—H11A····O4 <sup>iii</sup>          | 0.99        | 2.53  | 3.123 (7)    | 118     |
| C12—H12A···O4                          | 0.99        | 2.43  | 3.310 (9)    | 148     |
| C13—H13A····O1 <sup>iv</sup>           | 0.99        | 2.64  | 3.578 (11)   | 157     |
| C14—H14 <i>B</i> ···O3 <sup>iv</sup>   | 0.99        | 2.40  | 3.324 (13)   | 154     |
| C7—H7···O2′ <sup>iii</sup>             | 0.95        | 2.64  | 3.14 (3)     | 113     |
| C12—H12A···O4′                         | 0.99        | 2.37  | 3.32 (2)     | 159     |
| C14—H14 <i>C</i> ···O3′ <sup>iv</sup>  | 0.99        | 2.17  | 3.13 (2)     | 163     |
| C14—H14 <i>D</i> ···O4′                | 0.99        | 2.41  | 3.26 (2)     | 143     |
| C16′—H16D····O2′ <sup>iv</sup>         | 0.99        | 2.32  | 3.28 (3)     | 162     |
| C7—H7···O2" <sup>iii</sup>             | 0.95        | 2.57  | 3.26 (2)     | 130     |
| C12—H12A···O4"                         | 0.99        | 2.53  | 3.33 (4)     | 138     |
| C13—H13A····O1'' <sup>iv</sup>         | 0.99        | 2.45  | 3.33 (2)     | 148     |
| C2—H2…Cl4′ <sup>v</sup>                | 0.95        | 2.84  | 3.644 (19)   | 143     |
| C11—H11 <i>B</i> ···Cl2′               | 0.99        | 2.70  | 3.490 (7)    | 137     |
| C13—H13 <i>B</i> ····Cl2 <sup>vi</sup> | 0.99        | 2.90  | 3.863 (4)    | 165     |

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) *x*-1/2, -*y*+3/2, -*z*; (iii) -*x*+1/2, *y*+1/2, *z*; (iv) -*x*+1/2, *y*-1/2, *z*; (v) *x*, -*y*+1, *z*-1/2; (vi) -*x*, *y*, -*z*+1/2.