

University of Kentucky UKnowledge

Chemistry Faculty Publications

Chemistry

10-2014

Crystal Structure of (E)-13-{4-[(Z)-2-cyano-2-(3,4,5-trimethoxyphenyl)ethenyl] methanol hemisolvate

Narsimha Reddy Penthala University of Arkansas

Shobanbabu Bommagani *University of Arkansas*

Venumadhav Janganati University of Arkansas

Sean Parkin University of Kentucky, s.parkin@uky.edu

Peter A. Crooks University of Arkansas, pacrooks@uams.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub Part of the <u>Chemistry Commons</u>

Repository Citation

Penthala, Narsimha Reddy; Bommagani, Shobanbabu; Janganati, Venumadhav; Parkin, Sean; and Crooks, Peter A., "Crystal Structure of (E)-13-{4-[(Z)-2-cyano-2-(3,4,5-trimethoxyphenyl]phenyl]phenyl}parthenolide methanol hemisolvate" (2014). *Chemistry Faculty Publications*. 30. https://uknowledge.uky.edu/chemistry_facpub/30

This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

$\label{eq:crystal} Crystal \ Structure \ of \ (E)-13-\{4-[(Z)-2-cyano-2-(3,4,5-trimethoxyphenyl)ethenyl] phenyl \ parthenolide \ methanol \ hemisolvate$

Notes/Citation Information

Published in Acta Crystallographica Section E: Crystallographic Communications, v. 70, part 10, p. o1092-o1093.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Digital Object Identifier (DOI)

https://doi.org/10.1107/S1600536814019333

data reports

OPEN a ACCESS

Crystal structure of (*E*)-13-{4-[(*Z*)-2cyano-2-(3,4,5-trimethoxyphenyl)ethenyl]phenyl}parthenolide methanol hemisolvate

Narsimha Reddy Penthala,^a Shobanbabu Bommagani,^a Venumadhav Janganati,^a Sean Parkin^b and Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington KY 40506, USA. *Correspondence e-mail: pacrooks@uams.edu

Received 22 May 2014; accepted 26 August 2014

Edited by J. Simpson, University of Otago, New Zealand

The title compound, $C_{33}H_{35}NO_6$ [systematic name: (Z)-3-(4- $\{(E)\-1a,5\-dimethyl-9\-oxo-2,3,7,7a\-tetrahydrooxireno-$ [2',3':9,10]cyclodeca[1,2-b]furan-8(1aH,6H,9H,10aH,10bH)-ylidene]methyl}phenyl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile methanol hemisolvate], C₃₃H₃₅NO₆.0.5CH₃OH, was prepared by the reaction of (Z)-3-(4-iodophenyl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile with parthenolide [systematic name: (*E*)-1a,5-dimethyl-8-methylene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-9(1aH)-one] under Heck reaction conditions. The molecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings with a $\{4-[(Z)-2-cyano-2-(3,4,5-trimethoxyphenyl)ethenyl]$ phenyl}methylidene group as a substituent. The 4-[(Z)-2cyano-2-(3,4,5-trimethoxyphenyl)ethenyl]phenyl group on the parthenolide exocyclic double bond is oriented in a trans position to the lactone ring to form the E isomer. The dihedral angle between the benzene ring of the phenyl moiety and the lactone ring mean plane is $21.93 (4)^{\circ}$.

Keywords: crystal structure; parthenolide derivatives; Heck synthesis; biological activity.

CCDC reference: 1021449

1. Related literature

For the biological activity of parthenolide, see: Hall et al. (1979). For the biological activity of parthenolide derivatives similar to the title compound, see: Hanson et al. (1970); Hehner et al. (1998); Kupchan et al. (1971); Neelakantan et al.

(2009); Oka et al., 2007); Ralstin et al. (2006); Sun et al. (2006); Penthala et al. (2013b). For the synthesis and crystal structures of similar molecules, see: Han et al. (2009); Penthala et al. (2013a). For details of the experimental procedure, see: Hope (1994); Parkin & Hope (1998);

 $V = 2920.18 (10) \text{ Å}^3$

 $0.18 \times 0.15 \times 0.10 \ \mathrm{mm}$

Cu Ka radiation

 $\mu = 0.71 \text{ mm}^{-1}$

T = 90 K

Z = 4

0	10 C		
·)	HV	Orim	ontal
<u> </u>			cinai

2.1. Crystal data

C33H35NO6.0.5CH4O M = 557.64Orthorhombic, $P2_12_12_1$ a = 9.3347 (2) Å b = 16.2442 (3) Å c = 19.2580 (4) Å

2.2. Data collection

Bruker X8 Proteum diffractometer 40379 measured reflections Absorption correction: multi-scan 5349 independent reflections (SADABS; Sheldrick, 2008b) 5303 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$ $T_{\min} = 0.836, \ T_{\max} = 0.963$

2.3. Refinement	
$R[F^{2} > 2\sigma(F^{2})] = 0.024$ $wR(F^{2}) = 0.065$ S = 1.03 5349 reflections 387 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$	$\Delta \rho_{\min} = -0.13 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack <i>x</i> determined using 2283 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et al.</i> , 2013) Absolute structure parameter: 0.02 (2)

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008a); molecular graphics: XP in SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a), CIFFIX (Parkin, 2013), PLATON (Spek, 2009) and local program (Parkin, 2000).

Acknowledgements

This work was supported by NIH/NCI (grant No. CA158275).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5404).

References

- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hall, I. H., Lee, K. H., Starnes, C. O., Sumida, Y., Wu, R. Y., Waddell, T. G., Cochran, J. W. & Gerhart, K. G. (1979). J. Pharm. Sci. 68, 537–542.
- Han, C., Barrios, F. J., Riofski, M. V. & Colby, D. A. (2009). J. Org. Chem. 74, 7176–7179.
- Hanson, R. L., Lardy, H. A. & Kupchan, S. M. (1970). Science, 168, 378-380.
- Hehner, S. P., Heinrich, M., Bork, P. M., Vogt, M., Ratter, F., Lehmann, V., Osthoff, K. S., Dröge, W. & Schmitz, M. L. (1998). J. Biol. Chem. 273, 1288– 1297.
- Hope, H. (1994). Prog. Inorg. Chem. 41, 1-19.
- Kupchan, S. M., Eakin, M. A. & Thomas, A. M. (1971). J. Med. Chem. 14, 1147–1152.

- Neelakantan, S., Nasim, S., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.
- Oka, D., Nishimura, K., Shiba, M., Nakai, Y., Arai, Y., Nakayama, M., Takayama, H., Inoue, H., Okuyama, A. & Nonomura, N. (2007). *Int. J. Cancer*, **120**, 2576–2581.
- Parkin, S. (2000). Acta Cryst. A56, 157-162.
- Parkin, S. (2013). CIFFIX, http://xray.uky.edu/people/parkin/programs/ciffix.
- Parkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945-953.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Penthala, N. R., Janganati, V., Parkin, S., Varughese, K. I. & Crooks, P. A. (2013a). Acta Cryst. E69, 01709–01710.
- Penthala, N. R., Sonar, V. N., Horn, J., Leggas, M., Yadlapalli, J. S. & Crooks, P. A. (2013b). Medchemcomm, 4, 1073–1078.
- Ralstin, M. C., Gage, E. A., Yip-Schneider, M. T., Klein, P. J., Wiebke, E. A. & Schmidt, C. M. (2006). *Mol. Cancer Res.* 4, 387–399.
- Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, H.-X., Zheng, Q.-F. & Tu, J. (2006). Bioorg. Med. Chem. 14, 1189-1198.

supporting information

Acta Cryst. (2014). E70, o1092-o1093 [doi:10.1107/S1600536814019333]

Crystal structure of (*E*)-13-{4-[(*Z*)-2-cyano-2-(3,4,5-trimethoxyphenyl)ethenyl]phenyl}parthenolide methanol hemisolvate

Narsimha Reddy Penthala, Shobanbabu Bommagani, Venumadhav Janganati, Sean Parkin and Peter A. Crooks

S1. Comment

Parthenolide (PTL) and its analogs belong to the class of sesquiterpene lactones. These compounds are currently being used in the development of anti-cancer agents for the treatment of hematological tumours (Sun *et al.*, 2006; Hehner *et al.*, 1998; Ralstin *et al.* 2006; Oka *et al.*, 2007; Kupchan *et al.*, 1971 and Hanson *et al.*, 1970). Recently, we have reported the crystal structure of (*E*)-13-(4-aminophenyl)parthenolide, a Heck reaction derivative of parthenolide (Penthala *et al.* 2013*a*), and we have also reported on *Z*-2-(3,4,5-trimethoxyphenyl)acrylonitrile analogs (Penthala *et al.* 2013*b*) as anticancer agents. As part of a program for the development of parthenolide analogs as anti-leukemic agents (Neelakantan *et al.* 2009), and small molecule analogs as anti-cancer agents, our research group is focusing on the synthesis of *E*-olefinic analogues of PTL which can be obtained from the reaction of parthenolide with iodoaromatic reagents utilizing Heck chemistry (Han *et al.* 2009). The title compound was obtained from the reaction of parthenolide with (*Z*)-3-(4-iodo-phenyl) -2-(3,4,5- trimethoxyphenylacrylonitrile under Heck reaction conditions. To obtain detailed information on the structure of the title compound and to establish the geometry of the exocyclic C13—C14 double bond, a single-crystal X-ray structure determination has been carried out.

Recrystallization of the title compound from methanol afforded light yellow coloured crystals that were suitable for X-ray analysis. The X-ray studies revealed that the title compound was identified as the *E*-isomer (conformation about the exocyclic methylidene C=C bond; the conformation about the C=C bond in the ten-membered ring is also *E*). The molecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings with a (*Z*)-3-(4-phenyl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile group as a substituent. The dihedral angle between the benzene ring of the phenyl moiety and the lactone ring mean plane is 21.93 (4) Å.

S2. Experimental

A mixture of parthenolide (1.0 mmol), diisopropylethylamine (3.0 mmol), and (*Z*)-3-(4-iodophenyl)-2-(3,4,5-trimethoxyphenyl acrylonitrile (1.1 mmol) in toluene (1 ml) was treated with palladium (II) ferrocene (0.01 mmol) and then stirred at 353 K for 24 h. The reaction mixture was cooled to room temperature, water (8 ml) was added, and the mixture was extracted with ethyl acetate (10 mlx3). The separated organics were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The obtained crude residue was purified using silica flash chromatography (7:3, hexanes/EtOAc) to afford the title compound, which was recrystallized from methanol as light yellow coloured crystals suitable for X-ray analysis (87% yield; M·P.: 478–480 K); ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 3.6 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.46 (s, 1H), 6.88 (s, 2H), 5.29 (d, *J* = 11.2 Hz, 1H), 3.94 (s, 6H, 2xOCH₃), 3.90 (s, 3H, OCH₃), 3.3 (m, 1H), 2.85 (d, *J* = 8.4 Hz, 1H), 2.41–2.46 (m, 1H), 2.10–2.27 (m, 5H), 1.69 (s, 3H, CH₃), 1.46–1.55 (m, 2H), 1.32 (s, 3H, CH₃), 1.27–1.30 (m, 1H) *p.p.m.*. ¹³C NMR (100 MHz, CDCl₃): δ 17.60,17.70, 24.54, 30.58, 36.33, 42.13, 47.16, 55.60, 61.27, 61.94, 66.71, 83.30, 103.75, 113.21, 118.04, 125.48, 129.53, 129.95, 130.56, 130.97, 134.88, 134.96, 135.69, 137.06, 139.77, 140.34, 153.89, 170.85 *p.p.m.*.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were found in difference Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95% A (C_{sp2} H), 0.98Å (RCH₃), 0.99Å (R_2 CH₂), 1.00Å (R_3 CH) and 0.84Å (OH). U_{iso} (H) parameters were set to values of either 1.2 U_{eq} or 1.5 U_{eq} (RCH₃ and OH only) of the attached atom.

The partial occupancy methanol molecule refined to an occupancy of about one half. For the final rounds of refinement its occupancy was fixed at exactly 0.5 for the sake of simplicity. This is reasonable because other crystals from the same batch would almost certainly have had varying amounts of solvent incorporated, due to unpredictable rates of solvent loss dependent on such things as crystal handling. The position of this half-occupancy methanol is consistent with an O— $H\cdots\pi$ weak hydrogen bonding interaction in which the distance between atom O1M and the centroid of the trimethoxy-phenyl ring (C24-C29) is 3.212 (3)Å.

Figure 1

A view of the molecule with displacement ellipsoids drawn at the 50% probability level.

(Z)-3-(4-{(E)-[(E)-1a,5-Dimethyl-9-oxo-2,3,7,7a-tetrahydrooxireno[2',3':9,10]cyclodeca[1,2b]furan-8(1aH,6H,9H,10aH,10bH)-ylidene]methyl}phenyl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile methanol hemisolvate

Crystal data	
C ₃₃ H ₃₅ NO ₆ ·0.5CH ₄ O	Z = 4
$M_r = 557.64$	F(000) = 1188
Orthorhombic, $P2_12_12_1$	$D_{\rm x} = 1.268 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.3347 (2) Å	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
b = 16.2442 (3) Å	Cell parameters from 9693 reflections
c = 19.2580 (4) Å	$\theta = 3.6 - 68.4^{\circ}$
$V = 2920.18 (10) \text{ Å}^3$	$\mu = 0.71 \text{ mm}^{-1}$

T = 90 KIrregular cut wedge, pale yellow

Data collection	
Bruker X8 Proteum diffractometer	40379 measured reflections 5349 independent reflections
Radiation source: fine-focus rotating anode	5303 reflections with $I > 2\sigma(I)$
Detector resolution: 5.6 pixels mm ⁻¹	$R_{\rm int} = 0.036$
φ and ω scans	$\theta_{\rm max} = 68.4^{\circ}, \ \theta_{\rm min} = 3.6^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 2008b)	$k = -13 \rightarrow 19$
$T_{\min} = 0.836, T_{\max} = 0.963$	$l = -20 \rightarrow 23$
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0363P)^2 + 0.5907P]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.065$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.03	$\Delta ho_{ m max} = 0.14 \ m e \ m \AA^{-3}$
5349 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{\AA}^{-3}$
387 parameters	Extinction correction: SHELXL2014 (Sheldrick,
0 restraints	2008a), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.00092 (14) Absolute structure: Flack x determined using
Secondary atom site location: difference Fourier map	2283 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et</i> <i>al.</i> , 2013)
Hydrogen site location: difference Fourier map	Absolute structure parameter: 0.02 (2)

 $0.18 \times 0.15 \times 0.10 \text{ mm}$

Hydrogen site location: difference Fourier map

Special details

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.48351 (13)	0.18048 (7)	0.54248 (6)	0.0242 (3)	
O2	0.35142 (13)	0.32648 (7)	0.48438 (5)	0.0210 (2)	
03	0.34451 (13)	0.45934 (7)	0.45520 (6)	0.0237 (3)	
O4	0.02191 (12)	0.41510 (7)	-0.22367 (6)	0.0225 (3)	
05	0.14060 (12)	0.30869 (7)	-0.31036 (5)	0.0219 (2)	
06	0.30389 (14)	0.18270 (7)	-0.26366 (6)	0.0261 (3)	
N1	0.35753 (19)	0.14312 (9)	0.01607 (8)	0.0311 (4)	
C1	0.35744 (17)	0.04178 (10)	0.37932 (8)	0.0203 (3)	
H1	0.4318	0.0590	0.3489	0.024*	

C2	0.40090 (19)	-0.01340 (10)	0.43865 (9)	0.0231 (3)
H2A	0.4617	-0.0586	0.4208	0.028*
H2B	0.3143	-0.0381	0.4598	0.028*
C3	0.48435 (19)	0.03537 (10)	0.49458 (9)	0.0249 (4)
H3A	0.5000	0.0001	0.5358	0.030*
H3B	0.5792	0.0516	0.4761	0.030*
C4	0.40199 (18)	0.11124 (10)	0.51545 (8)	0.0213 (3)
C5	0.42653 (17)	0.18504 (10)	0.47296 (8)	0.0187 (3)
Н5	0.5005	0.1772	0.4360	0.022*
C6	0.31309 (17)	0.24713 (9)	0.45417 (8)	0.0180 (3)
H6	0.2182	0.2288	0.4727	0.022*
C7	0.30239 (17)	0.26039 (9)	0.37424 (8)	0.0170 (3)
H7	0.3909	0.2376	0.3522	0.020*
C8	0.17085 (17)	0.21982 (10)	0.33974 (8)	0.0197 (3)
H8A	0.0932	0.2152	0.3745	0.024*
H8B	0.1362	0.2559	0.3019	0.024*
C9	0.20236 (18)	0.13380 (10)	0.30982 (8)	0.0211 (3)
H9A	0.1211	0.1168	0.2801	0.025*
H9B	0.2887	0.1370	0.2801	0.025*
C10	0.22602 (17)	0.06913 (9)	0.36481 (8)	0.0189 (3)
C11	0.30617 (16)	0.35309 (9)	0.36819 (8)	0.0175 (3)
C12	0.33264 (17)	0.38809 (9)	0.43821 (8)	0.0191 (3)
C13	0.29827 (17)	0.40414 (9)	0.31380 (8)	0.0188 (3)
H13	0.2959	0.4610	0.3254	0.023*
C14	0.09048 (18)	0.04115 (11)	0.39995 (9)	0.0253 (4)
H14A	0.1121	-0.0048	0.4313	0.038*
H14B	0.0213	0.0231	0.3648	0.038*
H14C	0.0498	0.0869	0.4267	0.038*
C15	0.2653 (2)	0.09726 (11)	0.55515 (9)	0.0265 (4)
H15A	0.2874	0.0715	0.5999	0.040*
H15B	0.2021	0.0610	0.5283	0.040*
H15C	0.2175	0.1501	0.5631	0.040*
C16	0.29273 (16)	0.38648 (9)	0.23919 (8)	0.0175 (3)
C17	0.33360 (19)	0.31137 (10)	0.20977 (8)	0.0217 (3)
H17	0.3699	0.2690	0.2389	0.026*
C18	0.32232 (19)	0.29741 (10)	0.13921 (8)	0.0226 (3)
H18	0.3514	0.2459	0.1207	0.027*
C19	0.26861 (17)	0.35823 (10)	0.09458 (8)	0.0182 (3)
C20	0.23537 (17)	0.43490 (10)	0.12358 (8)	0.0189 (3)
H20	0.2037	0.4782	0.0942	0.023*
C21	0.24764 (17)	0.44897 (9)	0.19415 (8)	0.0191 (3)
H21	0.2252	0.5018	0.2123	0.023*
C22	0.24427 (18)	0.34952 (10)	0.01995 (8)	0.0202 (3)
H22	0.2131	0.3986	-0.0022	0.024*
C23	0.25803 (18)	0.28451 (10)	-0.02315 (8)	0.0201 (3)
C24	0.22173 (17)	0.28790 (10)	-0.09850 (8)	0.0201 (3)
C25	0.13268 (17)	0.35015 (10)	-0.12349 (8)	0.0194 (3)
H25	0.0903	0.3882	-0.0922	0.023*

C26	0.10621 (17)	0.35628 (10)	-0.19439 (8)	0.0188 (3)	
C27	0.16914 (17)	0.30063 (10)	-0.24085 (8)	0.0189 (3)	
C28	0.25283 (18)	0.23611 (10)	-0.21509 (8)	0.0213 (3)	
C29	0.27962 (18)	0.22993 (10)	-0.14397 (8)	0.0229 (3)	
H29	0.3372	0.1863	-0.1266	0.027*	
C30	-0.07334 (18)	0.45919 (11)	-0.17877 (8)	0.0228 (3)	
H30A	-0.1350	0.4201	-0.1541	0.034*	
H30B	-0.1327	0.4966	-0.2064	0.034*	
H30C	-0.0175	0.4910	-0.1451	0.034*	
C31	0.26452 (18)	0.32355 (10)	-0.35293 (8)	0.0219 (3)	
H31A	0.3352	0.3552	-0.3265	0.033*	
H31B	0.2362	0.3547	-0.3943	0.033*	
H31C	0.3065	0.2709	-0.3671	0.033*	
C32	0.3951 (2)	0.11810 (11)	-0.24020 (9)	0.0294 (4)	
H32A	0.4758	0.1416	-0.2143	0.044*	
H32B	0.4314	0.0873	-0.2802	0.044*	
H32C	0.3409	0.0810	-0.2099	0.044*	
C33	0.31313 (19)	0.20649 (10)	0.00030 (8)	0.0219 (3)	
O1M	0.4544 (3)	0.42249 (17)	-0.16592 (16)	0.0371 (6)	0.5
H1M	0.3705	0.4054	-0.1596	0.056*	0.5
C1M	0.5516 (4)	0.3704 (3)	-0.1313 (2)	0.0338 (8)	0.5
H1M1	0.6414	0.4001	-0.1230	0.051*	0.5
H1M2	0.5705	0.3218	-0.1600	0.051*	0.5
H1M3	0.5104	0.3532	-0.0868	0.051*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0286 (6)	0.0255 (6)	0.0187 (5)	-0.0042 (5)	-0.0075 (5)	0.0020 (5)
O2	0.0323 (6)	0.0182 (5)	0.0125 (5)	-0.0012 (5)	-0.0003 (5)	-0.0012 (4)
O3	0.0345 (7)	0.0187 (5)	0.0181 (5)	-0.0004 (5)	-0.0002 (5)	-0.0042 (4)
O4	0.0247 (6)	0.0275 (6)	0.0153 (5)	0.0082 (5)	-0.0013 (5)	0.0017 (5)
05	0.0190 (6)	0.0349 (6)	0.0118 (5)	0.0016 (5)	-0.0008 (4)	0.0001 (5)
O6	0.0331 (7)	0.0291 (6)	0.0161 (5)	0.0110 (5)	-0.0011 (5)	-0.0044 (5)
N1	0.0477 (10)	0.0227 (7)	0.0228 (7)	0.0045 (7)	-0.0131 (7)	-0.0036 (6)
C1	0.0219 (8)	0.0184 (7)	0.0205 (8)	-0.0015 (6)	0.0034 (6)	-0.0030 (6)
C2	0.0208 (8)	0.0193 (7)	0.0293 (9)	0.0014 (6)	0.0023 (7)	0.0014 (7)
C3	0.0251 (8)	0.0239 (8)	0.0258 (8)	0.0009 (7)	-0.0036 (7)	0.0060 (7)
C4	0.0245 (8)	0.0228 (8)	0.0165 (7)	-0.0033 (7)	-0.0049 (7)	0.0017 (6)
C5	0.0200 (8)	0.0223 (8)	0.0137 (7)	-0.0030 (6)	-0.0017 (6)	-0.0007 (6)
C6	0.0217 (8)	0.0178 (7)	0.0145 (7)	-0.0029 (6)	0.0008 (6)	-0.0011 (6)
C7	0.0189 (7)	0.0183 (7)	0.0137 (7)	0.0018 (6)	0.0008 (6)	-0.0001 (6)
C8	0.0226 (8)	0.0192 (7)	0.0172 (7)	0.0022 (6)	-0.0032 (6)	-0.0011 (6)
C9	0.0252 (8)	0.0208 (8)	0.0174 (7)	-0.0003 (6)	-0.0019 (6)	-0.0049 (6)
C10	0.0232 (8)	0.0165 (7)	0.0169 (7)	-0.0015 (6)	0.0018 (6)	-0.0057 (6)
C11	0.0179 (7)	0.0192 (7)	0.0154 (7)	0.0020 (6)	0.0005 (6)	-0.0017 (6)
C12	0.0209 (8)	0.0205 (8)	0.0158 (7)	0.0009 (6)	0.0022 (6)	0.0000 (6)
C13	0.0206 (7)	0.0175 (7)	0.0183 (7)	0.0008 (6)	-0.0012 (6)	-0.0012 (6)

supporting information

C14	0.0209 (8)	0.0256 (8)	0.0295 (9)	0.0005 (7)	0.0010 (7)	0.0009 (7)
C15	0.0329 (9)	0.0265 (8)	0.0201 (8)	-0.0039 (7)	0.0032 (7)	0.0039 (7)
C16	0.0160 (7)	0.0200 (7)	0.0165 (7)	-0.0013 (6)	-0.0008 (6)	0.0002 (6)
C17	0.0293 (9)	0.0201 (7)	0.0158 (7)	0.0052 (7)	-0.0011 (6)	0.0029 (6)
C18	0.0316 (9)	0.0192 (8)	0.0172 (7)	0.0065 (7)	-0.0005 (7)	-0.0003 (6)
C19	0.0194 (7)	0.0205 (7)	0.0147 (7)	0.0005 (6)	0.0011 (6)	0.0015 (6)
C20	0.0196 (7)	0.0192 (7)	0.0178 (7)	0.0018 (6)	-0.0006 (6)	0.0040 (6)
C21	0.0226 (8)	0.0164 (7)	0.0183 (7)	0.0002 (6)	0.0002 (6)	-0.0005 (6)
C22	0.0245 (8)	0.0202 (7)	0.0159 (7)	0.0027 (7)	-0.0007 (6)	0.0042 (6)
C23	0.0226 (8)	0.0219 (8)	0.0158 (7)	0.0015 (7)	-0.0013 (6)	0.0023 (6)
C24	0.0237 (8)	0.0215 (7)	0.0151 (7)	-0.0016 (6)	-0.0008 (6)	0.0014 (6)
C25	0.0215 (8)	0.0227 (7)	0.0140 (7)	0.0003 (6)	0.0002 (6)	-0.0006 (6)
C26	0.0177 (7)	0.0217 (7)	0.0170 (7)	-0.0006 (6)	-0.0011 (6)	0.0024 (6)
C27	0.0174 (7)	0.0263 (8)	0.0130 (7)	-0.0016 (6)	-0.0006 (6)	0.0010 (6)
C28	0.0225 (8)	0.0245 (8)	0.0168 (7)	0.0003 (7)	0.0003 (6)	-0.0029 (6)
C29	0.0277 (8)	0.0229 (8)	0.0181 (8)	0.0047 (7)	-0.0028 (6)	0.0007 (6)
C30	0.0222 (8)	0.0269 (8)	0.0192 (8)	0.0048 (7)	-0.0010 (6)	-0.0031 (7)
C31	0.0230 (8)	0.0264 (8)	0.0165 (7)	0.0005 (7)	0.0029 (6)	0.0007 (6)
C32	0.0359 (10)	0.0292 (9)	0.0231 (8)	0.0125 (8)	-0.0005 (8)	-0.0024 (7)
C33	0.0301 (8)	0.0225 (8)	0.0130 (7)	-0.0001 (7)	-0.0046 (6)	-0.0031 (6)
O1M	0.0289 (13)	0.0360 (14)	0.0465 (16)	-0.0027 (12)	0.0055 (12)	0.0064 (13)
C1M	0.0213 (17)	0.044 (2)	0.0359 (19)	-0.0039 (15)	0.0058 (16)	-0.0010 (18)

Geometric parameters (Å, °)

01—C5	1.4426 (18)	C14—H14B	0.9800
O1—C4	1.454 (2)	C14—H14C	0.9800
O2—C12	1.3500 (19)	C15—H15A	0.9800
O2—C6	1.4587 (18)	C15—H15B	0.9800
O3—C12	1.208 (2)	C15—H15C	0.9800
O4—C26	1.3602 (19)	C16—C17	1.398 (2)
O4—C30	1.4321 (19)	C16—C21	1.400 (2)
O5—C27	1.3713 (18)	C17—C18	1.382 (2)
O5—C31	1.4381 (19)	C17—H17	0.9500
O6—C28	1.3619 (19)	C18—C19	1.402 (2)
O6—C32	1.425 (2)	C18—H18	0.9500
N1—C33	1.151 (2)	C19—C20	1.400 (2)
C1-C10	1.334 (2)	C19—C22	1.462 (2)
C1—C2	1.508 (2)	C20—C21	1.383 (2)
C1—H1	0.9500	C20—H20	0.9500
С2—С3	1.547 (2)	C21—H21	0.9500
C2—H2A	0.9900	C22—C23	1.349 (2)
C2—H2B	0.9900	C22—H22	0.9500
C3—C4	1.507 (2)	C23—C33	1.440 (2)
С3—НЗА	0.9900	C23—C24	1.491 (2)
С3—Н3В	0.9900	C24—C29	1.395 (2)
C4—C5	1.470 (2)	C24—C25	1.395 (2)
C4—C15	1.505 (2)	C25—C26	1.391 (2)

C5—C6	1.506 (2)	С25—Н25	0.9500
С5—Н5	1.0000	C26—C27	1.401 (2)
С6—С7	1.558 (2)	C27—C28	1.398 (2)
С6—Н6	1.0000	C28—C29	1.396 (2)
C7—C11	1.511 (2)	С29—Н29	0.9500
C7—C8	1.544 (2)	С30—Н30А	0.9800
С7—Н7	1.0000	С30—Н30В	0.9800
C8—C9	1.540(2)	С30—Н30С	0.9800
C8—H8A	0.9900	C31—H31A	0.9800
C8—H8B	0.9900	C31—H31B	0.9800
C9—C10	1.508 (2)	C31—H31C	0.9800
С9—Н9А	0.9900	C32—H32A	0.9800
С9—Н9В	0.9900	C32—H32B	0.9800
C10—C14	1.505 (2)	С32—Н32С	0.9800
C11—C13	1.338 (2)	O1M—C1M	1.408 (5)
C11—C12	1.484 (2)	O1M—H1M	0.8400
C13—C16	1.466 (2)	C1M—H1M1	0.9800
C13—H13	0.9500	C1M—H1M2	0.9800
C14—H14A	0.9800	CIM—HIM3	0.9800
	0.9000		0.9000
C5—O1—C4	60.96 (10)	C4—C15—H15A	109.5
C12—O2—C6	111.14 (11)	C4—C15—H15B	109.5
C26—O4—C30	117.40 (12)	H15A—C15—H15B	109.5
C27—O5—C31	114.60 (12)	C4—C15—H15C	109.5
C28—O6—C32	117.42 (12)	H15A—C15—H15C	109.5
C10—C1—C2	127.16 (15)	H15B—C15—H15C	109.5
C10—C1—H1	116.4	C17—C16—C21	117.62 (14)
C2—C1—H1	116.4	C17—C16—C13	123.93 (14)
C1—C2—C3	111.01 (13)	C21—C16—C13	118.42 (14)
C1—C2—H2A	109.4	C18—C17—C16	121.39 (15)
C3—C2—H2A	109.4	C18—C17—H17	119.3
C1—C2—H2B	109.4	C16—C17—H17	119.3
C3—C2—H2B	109.4	C17—C18—C19	120.96 (14)
H2A—C2—H2B	108.0	C17—C18—H18	119.5
C4—C3—C2	110.34 (14)	C19—C18—H18	119.5
С4—С3—НЗА	109.6	C20-C19-C18	117.49 (14)
С2—С3—НЗА	109.6	C20—C19—C22	116.35 (14)
C4—C3—H3B	109.6	C18—C19—C22	126.16 (15)
С2—С3—Н3В	109.6	C21—C20—C19	121.39 (14)
НЗА—СЗ—НЗВ	108.1	C21—C20—H20	119.3
O1—C4—C5	59.12 (10)	C19—C20—H20	119.3
O1—C4—C15	112.24 (13)	C20—C21—C16	120.93 (14)
C5—C4—C15	122.56 (15)	C20—C21—H21	119.5
O1—C4—C3	117.45 (14)	C16—C21—H21	119.5
C5—C4—C3	116.05 (14)	C23—C22—C19	131.73 (15)
C15—C4—C3	116.40 (14)	C23—C22—H22	114.1
O1—C5—C4	59.92 (10)	C19—C22—H22	114.1
O1—C5—C6	121.09 (13)	C22—C23—C33	122.00 (14)

C4—C5—C6	124.78 (14)	C22—C23—C24	123.24 (15)
O1—C5—H5	113.6	C33—C23—C24	114.74 (14)
С4—С5—Н5	113.6	C29—C24—C25	120.25 (14)
С6—С5—Н5	113.6	C29—C24—C23	119.87 (14)
02	108.87 (12)	$C_{25} - C_{24} - C_{23}$	119.86 (14)
02 - C6 - C7	106.71(12)	$C_{26} = C_{25} = C_{24}$	119.76 (15)
C_{5} C_{6} C_{7}	112 02 (12)	$C_{26} = C_{25} = H_{25}$	120.1
02—C6—H6	109 7	C_{24} C_{25} H_{25}	120.1
C5-C6-H6	109.7	$04-C^{26}-C^{25}$	120.1 124.05(14)
C7—C6—H6	109.7	$04-C^{2}6-C^{2}7$	11554(13)
$C_{11} - C_{7} - C_{8}$	114 26 (13)	C_{25} C_{26} C_{27}	120.41(15)
$C_{11} - C_{7} - C_{6}$	102.28(12)	05-027-028	120.41(13) 121.77(14)
C_{1}^{8} C_{7}^{7} C_{6}^{6}	102.20(12) 114.66(13)	05 - C27 - C26	121.77(14) 118 71 (14)
$C_{3} - C_{7} - C_{0}$	108 /	$C_{28} = C_{27} = C_{26}$	110.71(14) 110.73(14)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	108.4	$C_{26} = C_{27} = C_{20}$	119.43(14) 124.43(15)
	100.4	06 - 028 - 027	124.43(13)
$C_0 = C_1 = H_1$	100.4	00-028-027	113.43(13)
C_{2}	113.30 (13)	$C_{29} = C_{28} = C_{27}$	120.14(14)
C_{2} C_{3} H_{8A}	108.9	C_{24} C_{29} C_{28} C_{24} C_{29} L_{29}	119.87 (15)
$C = C = H \delta A$	108.9	C24—C29—H29	120.1
C9—C8—H8B	108.9	C28—C29—H29	120.1
C = C = H B B	108.9	$04 - C_{30} - H_{30}$	109.5
H8A—C8—H8B	107.7	04—C30—H30B	109.5
C10_C9_C8	113.42 (12)	H30A—C30—H30B	109.5
С10—С9—Н9А	108.9	O4—C30—H30C	109.5
C8—C9—H9A	108.9	H30A—C30—H30C	109.5
С10—С9—Н9В	108.9	H30B—C30—H30C	109.5
С8—С9—Н9В	108.9	O5—C31—H31A	109.5
Н9А—С9—Н9В	107.7	O5—C31—H31B	109.5
C1—C10—C14	125.32 (15)	H31A—C31—H31B	109.5
C1—C10—C9	120.92 (15)	O5—C31—H31C	109.5
C14—C10—C9	113.76 (14)	H31A—C31—H31C	109.5
C13—C11—C12	118.88 (14)	H31B—C31—H31C	109.5
C13—C11—C7	132.60 (14)	O6—C32—H32A	109.5
C12—C11—C7	108.40 (13)	O6—C32—H32B	109.5
O3—C12—O2	121.34 (14)	H32A—C32—H32B	109.5
O3—C12—C11	128.93 (15)	O6—C32—H32C	109.5
O2—C12—C11	109.63 (13)	H32A—C32—H32C	109.5
C11—C13—C16	130.38 (15)	H32B—C32—H32C	109.5
C11—C13—H13	114.8	N1—C33—C23	177.04 (16)
С16—С13—Н13	114.8	C1M—O1M—H1M	109.5
C10—C14—H14A	109.5	O1M—C1M—H1M1	109.5
C10-C14-H14B	109.5	O1M—C1M—H1M2	109.5
H14A—C14—H14B	109.5	H1M1—C1M—H1M2	109.5
C10-C14-H14C	109.5	O1M—C1M—H1M3	109.5
H14A—C14—H14C	109.5	H1M1—C1M—H1M3	109.5
H14B—C14—H14C	109.5	H1M2—C1M—H1M3	109.5
C10—C1—C2—C3	-107.33 (19)	C11—C13—C16—C17	-18.2 (3)

C1—C2—C3—C4	51.42 (18)	C11—C13—C16—C21	163.60 (17)
C5-01-C4-C15	-115.66 (16)	C21—C16—C17—C18	-3.6 (2)
C5—O1—C4—C3	105.42 (16)	C13—C16—C17—C18	178.17 (16)
C2—C3—C4—O1	-154.06 (13)	C16—C17—C18—C19	-0.3 (3)
C2—C3—C4—C5	-87.00 (17)	C17—C18—C19—C20	3.8 (2)
C2—C3—C4—C15	68.71 (18)	C17—C18—C19—C22	-176.49 (17)
C4—O1—C5—C6	114.86 (17)	C18—C19—C20—C21	-3.4 (2)
C15—C4—C5—O1	98.13 (16)	C22-C19-C20-C21	176.89 (15)
C3—C4—C5—O1	-107.79 (15)	C19—C20—C21—C16	-0.6 (2)
O1—C4—C5—C6	-108.93 (16)	C17—C16—C21—C20	4.1 (2)
C15—C4—C5—C6	-10.8 (2)	C13-C16-C21-C20	-177.64 (15)
C3—C4—C5—C6	143.28 (15)	C20—C19—C22—C23	-176.47 (17)
C12—O2—C6—C5	135.46 (13)	C18—C19—C22—C23	3.8 (3)
C12—O2—C6—C7	14.37 (17)	C19—C22—C23—C33	-4.2 (3)
O1—C5—C6—O2	44.08 (18)	C19—C22—C23—C24	177.52 (16)
C4—C5—C6—O2	116.99 (15)	C22—C23—C24—C29	159.30 (17)
O1—C5—C6—C7	161.85 (13)	C33—C23—C24—C29	-19.1 (2)
C4—C5—C6—C7	-125.24 (16)	C22—C23—C24—C25	-19.2 (3)
O2—C6—C7—C11	-11.56 (16)	C33—C23—C24—C25	162.36 (15)
C5—C6—C7—C11	-130.62 (13)	C29—C24—C25—C26	-2.5 (2)
O2—C6—C7—C8	-135.79 (13)	C23—C24—C25—C26	175.96 (15)
C5—C6—C7—C8	105.15 (15)	C30—O4—C26—C25	-16.8 (2)
C11—C7—C8—C9	147.81 (13)	C30—O4—C26—C27	164.02 (14)
C6—C7—C8—C9	-94.58 (15)	C24—C25—C26—O4	-179.51 (15)
C7—C8—C9—C10	70.67 (17)	C24—C25—C26—C27	-0.4 (2)
C2-C1-C10-C14	-8.4 (3)	C31—O5—C27—C28	-63.9 (2)
C2-C1-C10-C9	171.04 (14)	C31—O5—C27—C26	119.53 (16)
C8—C9—C10—C1	-104.35 (17)	O4—C26—C27—O5	-0.7 (2)
C8—C9—C10—C14	75.17 (18)	C25—C26—C27—O5	-179.93 (14)
C8—C7—C11—C13	-54.0 (2)	O4—C26—C27—C28	-177.44 (14)
C6—C7—C11—C13	-178.52 (17)	C25—C26—C27—C28	3.4 (2)
C8—C7—C11—C12	130.10 (14)	C32—O6—C28—C29	-2.5 (2)
C6—C7—C11—C12	5.60 (16)	C32—O6—C28—C27	177.21 (15)
C6—O2—C12—O3	172.42 (15)	O5—C27—C28—O6	0.3 (2)
C6—O2—C12—C11	-10.86 (17)	C26—C27—C28—O6	176.89 (14)
C13—C11—C12—O3	2.6 (3)	O5—C27—C28—C29	179.97 (15)
C7—C11—C12—O3	179.18 (17)	C26—C27—C28—C29	-3.4 (2)
C13—C11—C12—O2	-173.76 (14)	C25—C24—C29—C28	2.5 (2)
C7—C11—C12—O2	2.78 (18)	C23—C24—C29—C28	-176.03 (15)
C12—C11—C13—C16	170.76 (16)	O6—C28—C29—C24	-179.82 (16)
C7—C11—C13—C16	-4.8 (3)	C27—C28—C29—C24	0.5 (2)