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OPEN

ORIGINAL ARTICLE

Molecular analyses of circadian gene variants reveal sex-
dependent links between depression and clocks
S-q Shi1,10, MJ White2,10, HM Borsetti3,10, JS Pendergast4, A Hida5, CM Ciarleglio6, PA de Verteuil7, AG Cadar7, C Cala1, DG McMahon1,
RC Shelton8, SM Williams9 and CH Johnson1,7

An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic
component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and
major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach
to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This
approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and
hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the
hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-
dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by
which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in
circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a
sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders,
and confirm a key connection between circadian gene variation and major depression.

Translational Psychiatry (2016) 6, e748; doi:10.1038/tp.2016.9; published online 1 March 2016

INTRODUCTION
Circadian rhythms pervasively control the behavior, physiology
and biochemistry of humans, including the timing of sleep.
Circadian irregularities and/or sleep abnormalities have been
linked to mood disorders such as major depressive disorder
(MDD), bipolar disorder and seasonal affective disorder by studies
of jet lag, sleep deprivation, chronotype, stress and comorbidity of
mood disorders with advanced or delayed sleep phase
syndrome.1–6 Indeed, altered sleep/wake cycles are a critical
feature for diagnosis of many mood disorders in the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition. Several
effective pharmacological and non-pharmacological therapies for
mood disorders, including bright light, sleep deprivation and/or
phase-resetting paradigms, appear to function by modulating
circadian parameters.3,4,6,7 Moreover, a recent study of postmor-
tem human brains reported that daily rhythmic patterns of gene
expression in the brain are seriously disrupted and/or desynchro-
nized in MDD subjects,8 further emphasizing the correlation
between abnormal circadian rhythms and the risk and severity of
mood disorders.
There is also a strong genetic component underlying many

mood disorders,9,10 and there have been a few tantalizing
suggestions of links between clock gene polymorphisms and
bipolar disorder.11–13 Nevertheless, most association studies to
date have concluded that genetic associations between circadian

clock gene variants and MDD are weak at best.4,11–15 However, in
psychiatric disorders such as MDD, bipolar disorder, schizophrenia
and so on, phenotyping the overt manifestations of the disorder
may lead to misleading interpretations of etiology. In other words,
overlapping and/or common symptoms for a psychiatric disorder
may group syndromes that do not have a common mechanistic
cause. Therefore, interpreting diagnoses/phenotypes can be
problematic for genetic studies of psychiatric disorders, especially
in meta-analyses where the standard of phenotyping may be very
different among studies. Moreover, the previous genome-wide
association studies (GWAS) might have missed significant
associations because GWAS studies often include so many
subjects and phenotypes that significant associations and biology
can be lost in multiple testing corrections. In addition, several
disorders associated with disruptions in circadian systems,
including MDD, display significant disparities in prevalence and/
or severity between the sexes.16 This could be, in part, due to sex-
specific genetic effects that have not been generally explored in
GWAS studies.
The process of re-examining the molecular impact of a

polymorphism in the three-prime untranslated region (3′-UTR) of
the human CLOCK protein led us to a re-evaluation of the
published GWAS studies for clock gene polymorphisms in
association with MDD. We found significant sex-dependent
associations of MDD with the circadian genes hClock, hPer3 and
hNpas2. In the currently accepted molecular model of the
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circadian clock,17 positive and negative core clock proteins form
an ~ 24-h feedback loop. Two bHLH-PAS transcription factors,
CLOCK and ARNTL1/2 (aka mBMAL1/2 in mouse), heterodimerize
and act as positive elements to initiate transcription from genes
containing E-box cis-regulatory elements, including the Per-1/2/3
and Cry-1/2 genes.18–20 PER and CRY proteins heterodimerize and
subsequently repress transcription of their own (and other) genes
by directly inhibiting CLOCK/ARNTL.18–20 Therefore, PER-1/2/3 and
CRY-1/2 function as negative components in the transcription/
translation feedback loop. In some parts of the brain (especially
forebrain), neuronal PAS domain protein 2 (NPAS2) appears to be
an alternative key partner with ARNTL.21,22 The CLOCK(NPAS2)/
ARNTL complex regulates rhythmic transcription of clock-
controlled genes in tissues throughout the body, and this includes
at least 15% of all mammalian transcripts;23,24 many of these gene
expression patterns are disrupted in humans suffering from MDD.8

Our data indicate that polymorphisms in hClock and hPer3 genes
impact the functional activity of these proteins and, together with
a polymorphism in hNpas2, exhibit sex- and stress-dependent
association with MDD in humans.

MATERIALS AND METHODS
Human subjects
In an effort to aid in the advancement of genetic research directed at
severe neuropsychiatric disorders, the National Institute of Mental Health
(NIMH) funded the Human Genetics Initiative (see full acknowledgments in
the Supplementary Information).25 The Human Genetics Initiative compiled
a database of clinically diagnosed MDD pedigrees, including MDD cases
and affected relatives (Depression 2.0, NIMH Major Depression Genetics
Initiative). All the participants were administered the Diagnostic Interview
for Genetic Studies (DIGS v2.0) by trained interviewers. Probands who self-
reported as Caucasian and carried a clinical diagnosis of subtype 1 MDD,
also termed melancholia, were selected from this data set for our study.
The Human Genetics Initiative also collected a broad-based control sample
to aid in case–control association studies focused on neuropsychiatric
disorders. These controls were phenotyped using an online lifetime version
of the Composite Instrument for Diagnostic Interviewing Short Form; an
online clinical self-report assessment of MDD and several other psychiatric
conditions that have been previously described.26 Informed consent was
obtained for all Human Genetics Initiative data set and NIMH Major
Depression Genetics Initiative participants before DNA collection. Further
information is provided in the Supplementary Materials and Methods.
A diagnosis of subtype 1 MDD (melancholia) was used to define MDD

case status; participants with no evidence of any form of MDD, either by
clinical diagnosis or via targeted survey questions, were labeled study
controls. After quality control procedures, 592 MDD cases and 776 MDD
controls remained for analyses (further described in Supplementary
Materials and Methods and in demographic information of
Supplementary Tables S1A and S1B).

Genotyping and association analyses
Samples were genotyped for a total of 32 genetic variants from eight
genes. These markers were chosen based on their common frequency in
the Caucasian population and/or their potential functional significance
based on well-characterized roles in regulating circadian rhythms and/or
sleep disorders.27,28 After genotyping, the samples were assessed for
genotyping efficiency (single-nucleotide polymorphism (SNP) and sample
level) and deviation from Hardy–Weinberg equilibrium as measures of
quality control. Hardy–Weinberg equilibrium was assessed in case and
control samples separately. The following quality control exclusion criteria
were applied to the data set: (1) SNP genotyping efficiency o95% and (2)
sample genotyping efficiency o95%, Hardy–Weinberg equilibrium test P-
value o0.001. All quality control testing was performed using PLINK.29

After quality control, 18 genetic variants remained for analysis in our data
set. Before beginning analysis, we performed power calculations using PS
Power30 to determine whether our study was adequately powered to
detect common variants with modest effects on MDD. A priori power
calculations indicated that our study was well powered (⩾80%) to detect
common variants (minor allele frequency ⩾ 0.2) with modest effect sizes,
and α=0.5 (Supplementary Figure S1).

To assess statistical association between the analyzed SNPs and MDD,
single locus analyses were performed in the combined data set (n= 592
cases, 776 controls). Allelic and genotypic chi-square analyses were
performed, using PLINK.29 Where appropriate, Fisher’s exact test of
association was performed. To investigate the possibility of potentially
differing effects of the analyzed SNPs on MDD between the genders, sex-
separated analyses were also performed (males, n= 94 cases, 253 controls;
females, n= 498 cases, 523 controls) for all markers that showed a P-value
o0.2 in chi-square genotypic or allelic tests in the full data set. Correction
for multiple testing of chi-square P-values was performed using false
discovery rate (q= 0.1).31 An alternative single locus analysis, prevalence-
based association testing, based on the principles of Hardy–Weinberg
equilibrium has been shown in simulation studies to be more powerful
than chi-square testing under some genetic models and was also
performed to provide independent evidence for association.32 Association
analysis methods are described fully in the Supplementary Materials and
Methods.

Functional analyses
The PSV40::FLuc::3′-UTR firefly luciferase reporter for the 3′-UTR of hClock
(containing the major allele T) was provided by Dr Malcolm von Schantz.33

To create a minor allele reporter, a T to C mutation at position 3111
(rs1801260) was introduced by site-directed mutagenesis (Stratagene, San
Diego, CA, USA) and verified by sequencing. To create PClock::FLuc plasmids
so that the luciferase expression is under the control of the endogenous
hClock promoter, a fragment extending from the hClock upstream region
(−1908 from the transcription start site) to the first intron (+101 from the
transcription start site) was amplified by PCR from human cell genomic
DNA and was used to replace the SV40 promoter of the PSV40::FLuc-T/C
plasmids. The hPer3 expression plasmid under the control of the CMV
promoter (PCMV::hPer3) was provided by Dr Joon-Kyu Lee. A G to C
mutation (rs228697) in the coding region of hPer3 was introduced to
change the proline at position 856 to an alanine residue by site-directed
mutagenesis (Stratagene) that was verified by sequencing. Cell culture,
immunoprecipitation and functional assay methods are fully described in
the Supplementary Materials and Methods.

Statistical analyses for functional assays
The statistical analyses for functional assays were performed by two-tail
unpaired t-test, by one-way analysis of variance with Tukey post hoc or by
two-way analysis of variance with Bonferroni post hoc test where
appropriate. Welch's correction for unequal variances was applied to t-
tests. Details of statistical analyses used for particular experiments are
described in the corresponding figure legends. For more information, see
Supplementary Materials and Methods.

RESULTS
Molecular analyses of hClock variant shows enhanced
transcriptional activity
A common polymorphism in hClock located in the 3′-UTR of the
gene (rs1801260) has been associated with chronotype.34 The
major allele at this site (position 3111 of hClock) is a T nucleotide
and the minor allele is a C. A sequence analysis predicts that this
variant will have significant effects on the secondary structure of
the hClock transcript (analysis not shown). However, in a previous
study of potential functional impact of this polymorphism, a
reporter composed of firefly luciferase (FLuc) driven by the SV40
promoter and linked to the 3′-UTR of hClock with and without the
rs1801260 SNP was tested in Cos-1 cells and the polymorphism
was found to have no significant effect upon expression/turnover
of the FLuc::3′-UTR fusion construct.33 We reasoned that this result
might have been due to the cell type used for that test, namely
Cos-1 (monkey kidney) cells. Because the expression of the
proteome can vary significantly among mammalian cell lines,
tissues and species, and the expression/turnover of molecular
circadian clock components could be strongly influenced by the
expression of other proteins, reporter constructs with human
variants should be tested in a variety of cell lines with special focus
upon cell lines derived from humans.
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We therefore re-tested the potential effect of the 3111C SNP
with a FLuc reporter (1) in a variety of cell lines derived from
humans and (2) where the 3′-UTR was coupled with the promoter
region of hClock, including 102 bp of its 5′-UTR (as compared with
the originally tested PSV40 construct33 (Figure 1a). This re-
examination revealed that the PhClock::FLuc::3′-UTR reporter
exhibited significantly higher expression of FLuc protein when it
is coupled to the 3′-UTR bearing the minor allele. Figures 1b and c
depict expression results for two human cell lines, HepG2 and
293 T, derived from different tissues (from liver for HepG2, from
embryonic kidney for 293 T). We also re-tested the original PSV40::
FLuc::3′-UTR reporter in 293 T cells (Figure 1d) and in U2OS cells (a
human osteosarcoma cell line, Supplementary Figure S2), and
found that FLuc was expressed at significantly higher levels when
coupled to the 3111C-bearing 3′-UTR (Po0.01). However, when
the PSV40::FLuc::3′-UTR reporter was expressed in the originally
tested monkey Cos-1 cell line, there was no significant enhance-
ment of FLuc expression by the SNP (Supplementary Figure S2),
which agrees with the previous report.33 Therefore, although there

is no difference between the hClock versus SV40 5′ regions
(promoters) in their interaction with the 3′-UTR, the 3111C SNP
significantly enhances the expression of the FLuc-3′-UTR (hClock)
reporter in cell type/tissue-dependent manner. Taken together,
the data indicate that in human cells the rs1801260 SNP enhances
expression of the FLuc reporter and therefore strongly suggest
that the rs1801260 SNP will modify expression of the hCLOCK
protein, which is a key molecular component of the human
circadian system.17–20 Because the clock (via hCLOCK/ARNTL-
mediated transcription) regulates expression of at least 15% of
mammalian mRNAs in tissues throughout the body,23,24 enhanced
levels of hCLOCK are likely to modify these circadian output
processes.

Genetic association analyses in humans
This newly described functional impact of 3111C of hClock
motivated us to re-evaluate its association with MDD. As
compared with previous GWAS or meta-analyses,4,13–15,35,36 the
benefit of a more focused hypothesis-driven candidate gene study
based on prior biological knowledge is the greatly reduced
multiple testing burden, especially when coordinated biological
information can be collected. We, therefore, undertook a
candidate gene study that focused upon a small number of
common polymorphisms (including rs1801260) in circadian clock
genes to test an association with MDD, performing both
combined and gender-stratified analyses, the latter based on the
450% higher prevalence of MDD in females. Our study sample
included a subset of 1368 self-described Caucasian subjects
derived from the depression (MDD) and control samples collected
by the NIMH (USA) Center for Collaborative Genetic Studies.25 A
diagnosis of subtype 1 MDD (melancholia) was used to define
MDD case status; participants with no evidence of any form of
MDD, either by clinical diagnosis or via targeted survey questions,
were labeled study controls. After quality control procedures, 592
MDD cases and 776 MDD controls remained for analyses (further
described in Supplementary Materials and Methods and demo-
graphic information in Supplementary Tables S1A and S1B).
Samples were genotyped for a total of 32 genetic variants from
eight circadian genes common in the Caucasian population27

(Supplementary Table S2). These markers were chosen based on
their common frequency in the Caucasian population and/or their
potential functional significance based on well-characterized roles
in regulating circadian rhythms and/or sleep disorders.27,28

After quality control, 18 genetic variants remained for analysis in
our data set (Supplementary Tables S3A and D). Genotypic and
allelic chi-square (χ2) analyses (or where appropriate Fisher’s exact
tests) were performed in the full data set and in gender-stratified
subsets of the data (see analysis flow chart, Supplementary
Figure S3) to identify significant associations between genetic
variants and susceptibility to MDD (Table 1, nonsignificant
associations shown in Supplementary Table S4). Five variants
had genotypic or allelic χ2 P-values less than 0.05 in the full and/or
sex-stratified data sets (rs228697, rs17031614, rs4851377,
rs34705978 and rs1801260). The variants with Po0.2 in the full
data set were further assessed in gender-stratified subsets of the
data to explore the genetic factors that may associate with MDD in
males or females only. Of the three variants significant in the total
data set (rs228697, rs17031614 and rs4851377), only rs228697 in
hPer3 associated in a gender-specific analysis (female P= 0.041;
Table 1). However, sex-stratified analyses identified two variants
that were significantly associated with MDD in only one gender;
the hClock SNP rs1801260 was associated with MDD in males
(P= 0.028), and rs34705978 in hNPAS2 in females (P= 0.034;
Table 1). Of the two variants in hPer3, rs228697
(0.007oPo0.011) and rs17031614 (0.017oPo0.026), only the
association with rs228697 remained significant after correction for
multiple testing (Table 1). In addition, a single variant in hNpas2,

Figure 1. Functional analysis of hClock SNP in cell cultures. (a)
Schematic shows the plasmids containing firefly luciferase (FLuc)
gene and 3′-UTR of Clock with or without the rs1801260 SNP (SNP is
‘C’ at position 3111 whereas the common allele is ‘T’). Two
promoters were used to drive FLuc::3′-UTR expression: PhClock
includes 102 bp of hClock’s 5′-UTR that is downstream of the
transcriptional start site, whereas PSV40 does not include any 5′-UTR.
(b) HepG2 (human liver) cells transfected with PhClock::FLuc::3′-UTR.
(c) 293 T (human kidney) cells transfected with PhClock::FLuc::3′-UTR.
(d) 293 T (human kidney) cells were transfected with PSV40::FLuc::3′-
UTR. For b–d, levels of FLuc activity were normalized to efficiency of
transfection with co-transfected Renilla luciferase reporter (PCMV::
RLuc). Activity of samples transfected with the reporter constructs
containing the common 3′-UTR allele (Pclock-Luc-T or Psv40-luc-T)
was set as 1.0. Results are shown as mean± s.e.m. of two (left panel,
total n= 10) or four (middle and right panels, total n= 20)
independent experiments with multiple repeats. **Po0.01 by
two-tailed unpaired t-test. (e) Expression of hClock is modulated
by the glucocorticoid dexamethasone (Dex) and the rs1801260 SNP.
HepG2 (human liver) cells were transfected with PhClock::FLuc::3′-UTR
with or without the rs1801260 SNP (n = 12 from three independent
experiments) and exposed to Dex at concentrations of 0, 50 and
500 nM for 2 h, starting at 22 h after transfection. *Po0.05,
**Po0.01 and ***Po0.001 by one-way analysis of variance with
Tukey post hoc. SNP, single-nucleotide polymorphism; UTR, untrans-
lated region.
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rs4851377 (P= 0.034) was associated with MDD susceptibility in
the full data set, however significance did not remain after
multiple testing correction.

MDD associates with a hClock variant in males and a hPer3 variant
in females
Several studies, including a recent meta-analysis, failed to report
an association between MDD and the rs1801260 SNP of
hClock.4,13–15,35,36 However, the majority of these studies were in
Asian populations and did not include gender-stratified analyses.
Because MDD is more common in females, it is highly likely that
MDD data sets are heavily biased towards females and if
rs1801260 were interrogated in such a data set, the association
signal would likely have been masked, as it was in our combined
male/female analysis (Table 1). In addition, if the effect of
rs1801260 on susceptibility to MDD is also population specific,

the lack of association in Asian populations may not be general-
izable to other continental populations.35 Our discovery of a
functional impact of this SNP on luciferase activity when
expressed in human cells (Figure 1) encouraged us to re-
evaluate previous association reports and include this marker in
our association analyses, leading to the identification of a
significant association by χ2 analysis between rs1801260 in hClock
and MDD in male study participants (Table 1).
Furthermore, an independent analysis testing for association,

prevalence-based association testing,32 provided additional evi-
dence for the significant association with four variants previously
identified using χ2 analyses (rs228697 and rs17031614 in hPER3,
and rs485133 and rs34705978 in hNPAS2; Supplementary Table
S5). Prevalence-based association testing analysis in the male
subset revealed a novel association between MDD and a single
variant in Arntl2, rs7137588 (P= 0.008; Supplementary Table S5).
Although none of the SNPs reached significance at the P⩽ 0.05
level in the male case-only data set in the prevalence-based
association testing analysis, rs1801260 of hClock was the only SNP
in the male case-only subset that was marginally significant
(P= 0.081, Supplementary Table S5). Finally, univariate logistic
regression analyses using an additive model were performed to
determine the strength and direction of effects for variants that
were determined to be significantly associated with MDD in our
data set (Table 2). In hPer3, rs228697 and rs17031614 were
significantly associated with an increased risk for MDD in the full
data set, while rs228697 was also significantly associated in the
female-only subset. Moreover, rs1801260 in hClock was again
significantly associated with a decreased risk for MDD in the male-
only subset.

hClock variant shows differential transcriptional response to
glucocorticoids
On the basis of our results indicating a functional difference
between the two alleles at 3111 in the hCLOCK 3′-UTR and the
gender-specific association results, we tested whether hormones
that might recapitulate the in vivo gender-specific environments
affect expression in vitro. Neither testosterone nor estrogen
influenced the expression of FLuc in the assay (not shown).
However, the synthetic steroid glucocorticoid dexamethasone
(Dex) had an unexpected effect on the expression assay
(Figure 1e). In HepG2 cells that were transfected with the
PhClock::FLuc::3′-UTR reporter, Dex from 50 to 500 nM significantly
increased the expression level of FLuc relative to 0 nM Dex in the
presence of the major allele (T), whereas constructs with the minor
allele (C) had the opposite effect, namely Dex decreased the level
of expression (Po0.001, Figure 1e). This result is interesting for
three reasons. First, analysis of transcriptional factor binding
motifs of the 3′ region of hClock revealed a glucocorticoid
response element (GRE) in the SNP region (Supplementary
Figure S4). Previous analyses of GRE-containing promoter

Table 1. Genetic loci significantly associated with MDD in combined
data set and/or sex-separated subsets

Chr SNP Gene Testa Combined
P-valueb

Female
P-valuec

Male
P-valued

1 rs228697 PER3 Geno 0.011 0.055 0.440e

1 rs228697 PER3 Allelic 0.007f 0.041 0.255

1 rs17031614 PER3 Geno 0.026e 0.119e 0.108e

1 rs17031614 PER3 Allelic 0.017 0.076 0.135

2 rs4851377 NPAS2 Geno 0.034 0.081 0.748
2 rs4851377 NPAS2 Allelic 0.070 0.125 0.839

2 rs34705978 NPAS2 Geno 0.056 0.034 0.974e

2 rs34705978 NPAS2 Allelic 0.184 0.121 0.679

4 rs1801260 CLOCK Geno 0.402 0.883 0.079
4 rs1801260 CLOCK Allelic 0.178 0.622 0.028

11 rs70965440 ARNTL Geno 0.152e 0.076e 0.462e

11 rs70965440 ARNTL Allelic 0.237 0.111 0.611

Abbreviations: MDD, major depressive disorder; SNP, single-nucleotide
polymorphism. aDescribes the type of chi-square test performed;
genotypic (Geno) or allelic. bP-values are from chi-square test performed
in the combined data set unless otherwise noted. cP-values are from chi-
square tests performed in the female-only subset unless otherwise noted.
dP-values are from chi-square tests performed in the male-only subset
unless otherwise noted. eFisher’s exact P-value or one-sided Fisher’s exact
P-value is shown. fSNP remained significant after multiple testing
correction with false discovery rate q= 0.2. Significant P-values (P⩽ 0.05)
are shown in bold. Gender-separated studies performed only for
select SNPs.

Table 2. Logistic regression analysis of significant loci from chi-square or PRAT analyses

Chr SNP Gene Combined odds ratio Combined P-value Female odds ratio Female P-value Male odds ratio Male P-value

1 rs228697 PER3 1.39 0.007 1.38 0.041 1.38 0.261
1 rs17031614 PER3 1.68a 0.022a 1.52b 0.091b 2.04 0.217
2 rs4851377 NPAS2 0.87 0.073 0.88 0.136 0.97 0.843
2 rs34705978 NPAS2 1.14 0.186 1.19 0.116 0.91 0.684
4 rs1801260 CLOCK 0.89 0.187 0.96 0.647 0.66 0.036
12 rs10548381 ARNTL2 1.04 0.759 0.96 0.762 1.37 0.245

Abbreviations: PRAT, prevalence-based association testing; SNP, single-nucleotide polymorphism. aIndicates that exact logistic regression analysis was used.
bExact logistic regression was attempted but was not computationally feasible, therefore standard logistic regression analysis using a dominant genetic model
was applied. An odds ratio41 indicates that possessing the minor allele at this variant increases the odds of MDD; an odds ratio o1 indicates that possessing
the minor allele at this variant decreases the odds of MDD. Significant P-values (P⩽ 0.05) are shown in bold.
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sequences37 predict the T to C polymorphism at 3111 in hClock
converting the putative GRE from a ‘repressed GRE motif’ toward
an ‘activated GRE motif’ (Supplementary Figure S4). On the basis
of the glucocorticoid responses of many genes,37 this conversion
will reverse the glucocorticoid response. We also observed a
reversal in the response to glucocorticoids for the rs1801260
variant in the 3′-UTR of the hClock gene (Figure 1e). Second,
cortisol levels differ between females and males,38–40 and this
difference correlates with the sex-dependent association of MDD
with rs1801260 (Table 1). Finally, recent studies indicate that
modulation of glucocorticoid-mediated stress response may
constitute a common mechanism by which the circadian clock
affects psychiatric disorders.41 Overall, the data suggest that sex
differences in glucocorticoid levels may influence expression of
hClock and thereby lead to sex-dependent effects on clock-
influenced gene expression pathways, thereby altering suscept-
ibility to MDD in a gender-specific manner.

hPer3 variant is a stronger transcriptional repressor
Coordination of functional assays was also examined for variants
in hPer3, hNpas2 and Arntl2 that showed significant association
results (Tables 1 and 2, Supplementary Table S5). Appropriate
functional tests are difficult to design for the variants rs17031614
(synonymous codon in hPer3), rs4851377 and rs34705978 (intron
variants in hNpas2), and rs10548381 (upstream variant in Arntl2).
However the rs228697 SNP is a missense mutation in the coding
region of hPer3 that changes a proline at position 856 to an
alanine residue. Proline residues often have profound effects upon
protein structure, so we tested the impact of this polymorphism in
a transcriptional assay designed to test the regulation of E-box-
containing promoters by CLOCK and BMAL1.18–20 PER3 is known
to repress CLOCK/BMAL activation of E-box cis-reporters, and
therefore we tested the repressive capability of hPER3 with and
without the rs228697 SNP. As shown in Figures 2a and b, the
variant-containing hPER3 is a stronger repressor of CLOCK/BMAL-
stimulated transcription on two different E-box cis-reporters (PPK2.8
and PAVP). As compared with the protein encoded by the common
allele, the rs228697 variant stabilizes hPER3 (Supplementary
Figure S5) and recruits more PER2 into a transcription repression
complex (Supplementary Figure S6). Because PER3, PER2 and PER1
interact to synergistically promote nuclear translocation,20 the
rs228697 variant augmentation of hPER3 stability and PER
complex formation predict enhanced repressive activity, as
depicted in Figures 2a and b. Moreover, when hPER3 is transiently
expressed in mammalian fibroblasts, the rs228697 variant causes a
significant dose-dependent lengthening of the circadian period as
compared with the native version of hPer3 (Figures 2c–e).
Although this period effect is statistically significant, the small
magnitude of the period effect indicates that the primary impact
of the rs228697 hPer3 variant is likely to be upon clock-regulated
transcription pathways (as in Figures 2a and b) rather than upon
the central clock mechanism itself.

DISCUSSION
Molecular assays of functional activity affected by hClock and
hPer3 polymorphisms
Functional and association analyses indicate that common
polymorphisms in core circadian genes affect the activity of the
encoded proteins and provide a connection between clock
function and MDD. Critical is the sex-dependent nature of these
associations with MDD, which is a sexually dimorphic disorder.41

The rs1801260 allele is protective in males, so males with this
polymorphism are less likely to present with MDD. The rs1801260
polymorphism in the 3′-untranslated region (3′-UTR) of the hClock
gene33 stabilizes a reporter construct when expressed in the
human cell lines (Figure 1), and higher abundance of the hCLOCK

protein is known to alter circadian period and phase.17

Glucocorticoid levels exhibit age-dependent differences between
males and females.38,39 Moreover, 3′ noncoding regions of other
transcripts contain glucocorticoid-responsive elements that reg-
ulate activity.42 As glucocorticoids reciprocally modulated the
expression of the 3′-UTR reporter in vitro in an allele-specific
manner (Figure 1e), our results revealed a potential glucocorticoid
regulatory region in the 3′-UTR of the hClock transcript, which
resonates with recent proposals suggesting that glucocorticoid-
mediated stress response constitutes a common mechanism by
which the circadian clock affects psychiatric disorders including
MDD.41,43 Finally, the 3′-UTR of the mouse homolog of Clock is
significantly different from that of hClock, and, in particular,
mClock does not include a homologous region to that of the
rs1801260 region of hClock. Consequently, although mClock-
mutant mice have been proposed as models of mania,44 they will
not allow an adequate test of a human stress/MDD connection
mediated through the rs1801260 region of the hClock 3′-UTR.
The re-analyses of association of circadian gene polymorphisms

with MDD also revealed potential associations within hPer3 and
hNpas2 (Table 1, Supplementary Table S5). As in the case with
rs1801260, these associations were sex-dependent, but unlike
hClock’s rs1801260, SNPs within hPer3 (rs228697) and hNpas2
(rs34705978) strongly associated with MDD in females (Table 1).
The NPAS2/ARNTL1 complex is a key regulator of circadian
transcriptional activation;17 the rs4851377 and rs34705978 SNPs of
hNpas2 are both intronic and might influence expression of the
NPAS2. The PER3 protein is part of the negative feedback process
that controls circadian transcriptional networks and its effects are
highly tissue dependent; knockout of Per3 in mice does not cause
significant effects on the central clock mechanism in the brain,45

but it has large effects on clock-regulated gene expression in
other tissues such as liver, colon, esophagus and adipose tissue.46

Although the hPer3 variant that we studied here has a significant
influence on circadian period (Figures 2c–e), this effect is smaller
than its action on PER-modulated gene expression (Figures 2a/b),
suggesting that rs228697 hPer3 variant acts more strongly on
clock-regulated output pathways than upon the central clockwork.
Moreover, expression of Per3 may be sex dependent, as
interactions exist between the estrogen receptor, menstrual/
estrus cycles and expression of Per genes in humans and
rodents.16,47 The exonic SNP rs228697 is predicted to change a
proline to an alanine within the hPER3 amino acid sequence, and
our functional data support the conclusion that the rs228697
variant slows hPER3 turnover, thereby enhancing the effective
repressive activity of hPER3 on CLOCK/BMAL1-mediated transcrip-
tional activity (Figures 2a and b, Supplementary Figures S5 and
S6). Interestingly, rs228697 of hPer3 is significantly associated with
altered phasing of daily activity/sleep timing,48 which together
with our observations (Tables 1 and 2, Supplementary Table S5
and Figure 2) resurrects a hypothesis that MDD is at least partially
due to suboptimal phasing of activity/sleep with the
environment.2–4,6 If true, circadian phase resetting may be an
effective therapy. Intriguingly, our results with rs1801260 of hClock
are also consistent with a phasing interpretation because a
stabilization of hCLOCK that leads to increased protein levels
should alter circadian period and phase.17 Indeed, the first report
of rs1801260 of hClock suggested its impact upon human phase,34

and therefore rs1801260 of hClock and rs228697 of hPer3 are
similar in sharing a delayed phase phenotype (specifically, a
delayed morningness–eveningness preference).34,48

Sex-dependent association of clock gene polymorphisms with
MDD
Studies of the affective disorders MDD, bipolar disorder and
seasonal affective disorder have long suggested that disrupted
circadian (daily) timing mechanisms may contribute to the
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development or severity of depression,1–4,6,7 but genetic links
between clocks and mood disorders have been
tenuous.4,11,12,14,15,35,36,49 However, the earlier case/control
attempts to associate rs1801260 in hClock used sample sizes that
were relatively small and did not stratify for sex.35,36 Given that
MDD is much more common in females, failure to stratify may
have led to an association of rs1801260 with MDD being
overlooked in males, especially as the effect of this SNP in females
was so close to unity (odds ratio = 0.95). Moreover, meta-analyses
that combined different ethnic groups to increase sample size,35

could mask associations that are population specific. Previous
GWAS and/or meta-analyses that used large sample sizes and
which searched for polymorphisms that associate with MDD did
not discover variants in clock genes.13–15 But those studies may
have suffered from inconsistent phenotype criteria and the
enhanced multiple testing burden that is incumbent in tests of
thousands of SNPs and multiple phenotypes. Also these studies
did not perform gender-stratified analyses. We believe that our
study revealed heretofore unappreciated associations because of
a combination of factors: (1) a hypothesis-driven approach
inspired and enhanced by functional data, (2) a targeted case/
control analysis of a limited number of polymorphisms and
phenotypes, (3) a consistent set of criteria that were professionally
assessed by the NIMH Center for Collaborative Genetic Studies
project and (4) a sex-stratified approach enabled by a sample size
with a sufficient number of males to make gender comparisons. A
further key is that we connected association results to explicit
functional differences at the cell level.

We propose that the impact of the hClock and hPer3 SNPs on
transcription and/or expression (Figures 1 and 2) may not be on
the core circadian oscillator, but on global output transcriptional
pathways17,23,24 that are mediated sex-dependently by the
circadian system. This interpretation is consistent with (and
potentially explanatory for) observations of disrupted transcrip-
tional patterns in the brains of humans suffering from MDD.8

These output pathways can include targets of CLOCK-mediated
E-box transcription such as the neuropeptide cholecystokinin that
is involved in mood disorders.50 Moreover, this clock system
controls neurotransmitters and their receptors (for example,
serotonin) that are known to be modulators of mood.4 As such,
the polymorphisms that we report herein reveal core circadian
genes to be targeted for functional and clinical studies to
understand the connections between the circadian system and
MDD, which may ultimately lead to noninvasive therapies that
ameliorate the symptoms of MDD.51
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