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Abstract: Irrigation is crucial to agriculture in arid and semi-arid areas and significantly contributes
to crop development, food diversity and the sustainability of agro-ecosystems. For a specific crop,
the separation of its irrigated and rainfed areas is difficult, because their phenology is similar and
therefore less distinguishable, especially when there are phenology shifts due to various factors,
such as elevation and latitude. In this study, we present a simple, but robust method to map irrigated
and rainfed wheat areas in a semi-arid region of China. We used the Normalized Difference Vegetation
Index (NDVI) at a 30 ˆ 30 m spatial resolution derived from the Chinese HJ-1A/B (HuanJing(HJ)
means environment in Chinese) satellite to create a time series spanning the whole growth period of
wheat from September 2010 to July 2011. The maximum NDVI and time-integrated NDVI (TIN) that
usually exhibit significant differences between irrigated and rainfed wheat were selected to establish
a classification model using a support vector machine (SVM) algorithm. The overall accuracy of the
Google-Earth testing samples was 96.0%, indicating that the classification results are accurate. The
estimated irrigated-to-rainfed ratio was 4.4:5.6, close to the estimates provided by the agricultural
sector in Shanxi Province. Our results illustrate that the SVM classification model can effectively
avoid empirical thresholds in supervised classification and realistically capture the magnitude and
spatial patterns of rainfed and irrigated wheat areas. The approach in this study can be applied to
map irrigated/rainfed areas in other regions when field observational data are available.

Keywords: irrigated and rainfed areas; growth characteristics; phenology; support vector machines

1. Introduction

Irrigation plays a key role in increasing crop production [1], especially in arid and semi-arid
regions. It has been shown that the amount of water used for agricultural irrigation accounts for 84%
of total human water consumption [2]. Approximately 40% of the world's harvest is produced on
irrigated arable land, which accounts for about 20% of the total arable land area [3], 70% of which
is located in Asia [4]. Crop yields are usually higher when crops are fully irrigated as compared to
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non-irrigated crops that usually suffer water deficiencies [5]. In China, irrigated land occupies more
than 40% of total farmland, but produces 80% of the nation’s food [3]. More than two-thirds of all
water use in China is from the agriculture sector. It is a widespread concern that China will face serious
water shortages as its economy booms and urbanization increases. Realistic estimations of irrigation
area are important for evaluating regional water and carbon cycles and ensuring food security [6–10].

Currently, three major methods are used to classify irrigated and rainfed areas. (1) The water
resources inventory, developed by the Food and Agriculture Organization of the United Nations
(FAO), has been used to map the worldwide distribution of irrigated areas using statistical data [11,12].
Generally, inventory data cannot accurately and timely reflect the spatial distribution of irrigated
and rainfed areas. Statistical data are usually based on county/regional information (or even coarser
scales) and span different time intervals. Recently, the FAO released a 2010 land cover map of
Afghanistan, derived from the Satellite Pour l’Observation de la Terre (SPOT), Landsat imagery and
aerial photographs [13]; (2) Unsupervised classification has been widely used for the classification
of irrigated and rainfed areas [14,15]. The U.S. Geological Survey (USGS) and International Water
Management Institute (IWMI) classified and mapped global irrigated and rainfed areas in the U.S.
Geological Survey Global Land Cover Characterization (GLCC) and Global Irrigated Area Map (GIMA),
respectively [16–18]. This method can be easily used when local information is sparse; however, it is
hard to control the number of classes. In addition, the calibration and combination of each cover type
after unsupervised classification is strongly affected by subjective factors; (3) Supervised classification
was used by Ozdogan and Gutman (2008) [19] to map irrigated and rainfed areas in the U.S. with
a decision tree method based on eight-day synthesis Moderate Resolution Imaging Spectrometer
(MODIS) Greenness Index data (500 ˆ 500 m resolution). Kamthonkiat et al. (2005) [20] classified
irrigated and rainfed rice in Thailand using 10-day synthesis SPOT NDVI data at a 1 ˆ 1 km resolution,
10-day synthesis precipitation data and ancillary data. The advantage of the supervised classification
method is that training samples can be controlled; therefore, unnecessary classes can be avoided,
though classification accuracy is usually significantly influenced by training samples.

Since the 1980s, satellite remote sensing has been widely used for the classification of irrigated
areas because it can provide a near real-time capability to dynamically monitor land surfaces on a
regional scale. However, improvements in classification methods for the identification of irrigated
areas are still necessary [21]. Currently, the most commonly-used satellite data are MODIS products,
with a mean spatial resolution of 250 ˆ 250 m. Such data are generally sufficient to characterize
large-scale spatial patterns, but may bring large uncertainties in arid and semi-arid regions, where
irrigation is typically practiced in small and scattered areas. Pervez et al. (2014) [22] used the same
growth period to calculate the time-integrated NDVI (TIN) for irrigated and rainfed wheat. However,
there are distinct differences between irrigated and rainfed wheat in growth processes, the length of the
growing season and the periods of peak NDVI. Moreover, the NDVI threshold used in the supervised
classification method usually has to be modified for local conditions, which may reduce the accuracy
of the classification [5,9].

To overcome the aforementioned disadvantages in mapping irrigated and rainfed areas,
we propose an improved classification method based on the following three aspects. First, we used data
from two of China’s small environmental satellites, the HJ-1A/B (HuanJing(HJ) means environment in
Chinese) satellites, launched on 6 September 2008. A spatial resolution of 30 ˆ 30 m and a two-day
repeat cycle make them suitable for dynamic monitoring of irrigated and rainfed areas on a regional
scale [23]. Second, the support vector machine (SVM) algorithm was used as a classification method
to avoid subjectivity in the definition of NDVI thresholds. The SVM is a pattern recognition method
developed on the basis of statistical learning theory with high flexibility, global optimization, high
efficiency and robustness [24–26]. It has been widely used in the remote sensing classification [27–29].
Third, considering the differences between irrigated and rainfed wheat, peak NDVI and TIN were
selected as feature vectors for classification. During this process, sowing and maturity dates derived
from NDVI thresholds were set as the start and end points of the growing period for TIN calculations.
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In this study, we mapped irrigated and rainfed land in the semi-arid hilly areas of Shanxi Province,
China. Due to the high fragmentation of arable land, smallholder management, long growth period
of winter wheat and dispersed irrigation times, it is difficult to estimate irrigated areas in this region.
Until now, there are no reliable maps of irrigated winter wheat in Shanxi Province. Our major research
objectives were to: (1) develop a novel classification method for irrigated and rainfed areas based on
high resolution satellite data, the SVM algorithm, and site-level observations; (2) map irrigated and
rainfed winter wheat in the south central part of Shanxi Province; and (3) quantify the spatial patterns
of sowing and maturation dates of winter wheat under different water supply conditions.

2. Study Area

Shanxi Province, located on the central Loess Plateau of Northern China, is characterized by
typical loess hills and gully topography (Figure 1). The surface area of Shanxi Province is 156,700 km2,
and approximately 80.1% of the land area is covered with mountains and hills. As the largest
coal-producing province, Shanxi Province accounts for one fourth of the total coal production in
China [30]. Groundwater is exploited for food production, as well as for coal mining. The climate
in most areas of Shanxi Province is semi-arid and is under the influence of the continental monsoon,
with obvious zonal and vertical variations. The annual average temperature varies between ´1 ˝C
and 14 ˝C, decreasing from south to north and from plain to mountain areas. The annual average
precipitation varies from 400 mm in the northwest to 650 mm in the southeast. Approximately 70% to
80% of the annual precipitation occurs during the monsoon season from June to September.
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In the study area, crop cultivation is vulnerable to drought due to little precipitation during
critical growth stages. Smallholders comprise a large force in Shanxi’s agricultural sector, and the
most commonly planted crops include wheat, corn, millet, beans and tubers. Wheat is the most
widely-grown staple crop throughout south central Shanxi; it is usually sown during mid-September
to late October and harvested from mid-May to early July. The wheat-planting area in south central
Shanxi Province was about 710,100 ha during 2010 to 2011. In general, irrigated areas are distributed
throughout south central Shanxi. Irrigation activities mainly occur before dormancy, greening, jointing
and grain filling, and irrigation is largely determined by the availability of surface and groundwater.

Irrigated areas can be divided into the area equipped for irrigation and the actual irrigated area.
The irrigated area is typically smaller than the area equipped for irrigation due to water availability,
climatic conditions, economic factors, labor availability, land management decisions, etc. In this study,
we focus on the actual irrigated area, which reflects the real irrigation conditions.

3. Materials and Methods

3.1. Datasets

3.1.1. Observation Data from Agrometeorological Stations

There are nine agrometeorological stations in south central Shanxi Province that observe wheat
growth, five of which observe irrigated wheat. Crop growth, development and yield are strongly
influenced by climatic factors, such as temperature, precipitation and solar radiation [31–33]. The water
demand of winter wheat during the growing season is approximately between 450.0 and 650.0 mm.
The observed precipitation at the agrometeorological stations varies from 83.3 to 190.8 mm during the
winter wheat growing period (2011) (Table 1). This amount usually does not meet the water demand
of wheat for normal growth, and it is necessary to irrigate crops with supplementary water to reduce
water stress at critical growth stages [34]. Generally, irrigated wheat suffers less from water stress
compared to rainfed wheat, resulting in distinct differences in growth characteristics.

In this study, we focus on the wheat growth period from 2010 to 2011. During this period, winter
wheat suffered from more severe drought stress than during other years. The precipitation throughout
the growing season was 48.8 mm lower than the average precipitation during 2006 to 2014. Field
survey data show that growth conditions and yield production between irrigated and rainfed wheat
are significantly different. The average yield of irrigated wheat is 2.3-times higher than that of rainfed
wheat, based on the agrometeorological station observations.

3.1.2. HJ Satellite Data

The HJ satellite (Small Satellite Constellation for Environmental Prediction and Disaster
Monitoring) carries two sensors, HJ-1A and HJ-1B, and features two main characteristics, i.e., a short
revisit time of two days and large spatial coverage. The swath width of the charged coupled device
sensor (CCD) aboard the HJ satellite is 360 km, and the spatial resolution is 30 ˆ 30 meters. The CCD
sensor has four bands (blue, green, red and near-infrared) with a spectral range of 0.43 to 0.90 µm
and a radiometric resolution of 8 bits. Landsat TM/ETM+ imagery has the same spatial resolution,
but has difficulty meeting the high frequency demand for its 16-day return cycle and cloudiness.
The MODIS imagery has high temporal resolution, but its spatial resolution is relatively coarse for
small and scattered agricultural fields. The HJ satellite has the advantages of both Landsat and MODIS
and therefore is more suitable for dynamic monitoring of multi-temporal and spatial variations in
irrigated areas.
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Table 1. Observed environmental conditions and wheat yield at agrometeorological stations in south central Shanxi Province.

Yanhu Yaodu Ruicheng Wanrong Jincheng Fenyang Jiexiu Anze Changzhi Average

Irrigated/rainfed Irrigated Irrigated Irrigated Rainfed Rainfed Irrigated Irrigated Rainfed Rainfed
Elevation (m) 376.0 450.0 507.0 590.0 744.0 749.0 750.0 858.0 991.0
Longitude 111.02 111.50 110.71 110.83 112.83 111.76 111.93 112.25 113.06
Latitude 35.03 36.06 34.70 35.40 35.51 37.25 37.05 36.16 36.05
Sowing dates 10/7 9/28 10/17 9/25 9/21 10/6 10/16 9/30 9/23 9/30
Maturity dates 6/6 6/6 6/12 6/12 6/13 6/26 6/22 6/24 6/20 6/15

Yield (kg/ha) 2011 3825.0 3750.0 4800.0 1935.0 2658.0 5325.0 6150.0 1950.0 3670.5 3784.5
2006 to 2014 3700.5 5394.0 5286.0 2142.0 3000.0 5674.5 5617.5 2484.0 3621.0 4102.5

Cumulated
precipitation (mm)

2011 125.8 102.0 108.0 112.2 118.3 83.3 99.9 190.8 176.5 124.1
2006 to 2014 162.4 143.9 160.0 194.9 192.0 132.1 127.9 231.2 211.6 172.9

Cumulated
temperature (˝C)

2011 2258.4 2291.7 2027.7 2520.1 2264.9 2220.5 2055.7 1888.6 2068.5 2177.3
2006 to 2014 2290.5 2309.1 2039.8 2412.3 2178.8 2224.0 2120.7 1910.7 2032.6 2168.7

Cumulated sunshine
duration (hours)

2011 1438.7 1679.1 1481.8 1665.9 1905.8 1513.1 1642.9 1835.2 1845.1 1667.5
2006 to 2014 1270.1 1317.9 1372.4 1432.6 1665.3 1522.4 1450.8 1654.6 1725.3 1490.2
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The HJ satellite datasets span the time period September 2010 to July 2011, covering the whole
growth period of wheat (Table 2). Most of the HJ-1 A/B images used in this study are cloud-free.
The DN value was converted to radiance values using radiometric calibration coefficients from the
China Center for Resources Satellite Data and Application (available at http://www.cresda.com).
The images were then processed with ENVI FLAASH for atmospheric correction. Landsat TM8
images (Level: L1T) covering Shanxi Province were used for geometric correction with an error of
less than one pixel. When using the FLAASH module, the center position, access time and other
information are obtained from the header file of each image. We selected the mode rural aerosol and
the atmospheric mode as mid-latitude winter or mid-latitude summer, depending on the acquisition
time. NDVI (NDVI = (ρnir – ρred)/(ρnir + ρred)) is calculated from red and near-infrared reflectance.
Finally, images of 24 phases were stacked in sequence to produce NDVI time series with a 30 ˆ 30 m
spatial resolution.

Table 2. Landsat 8 and HJ-1A/B images used in this study.

Sensor Year Date of Imagery

HJ-1A/B CCD
2010 9/11, 9/17, 9/27, 10/5, 10/15, 11/3, 11/13, 11/19, 11/28, 12/8, 12/16, 12/26
2011 1/12, 1/24, 2/23, 3/10, 3/24, 4/9, 4/24, 5/12, 5/28, 6/7, 6/28, 7/8

Landsat 8 2013 11/18, 11/27, 12/11

3.2. Methods

The major steps involved in mapping irrigated and rainfed wheat areas include the extraction
of winter wheat areas, estimation of seeding and maturity dates and the determination of kernel
functions and parameters used in the SVM algorithm (Figure 2). The ground information included
the latitude, longitude and water management practices (irrigated or rainfed) for the survey sites,
which is an essential part during the establishment of SVM classification model. As the corresponding
maximum NDVI and TIN can be extracted based on the information of latitude and longitude, the SVM
classification model can be established considering the water management conditions (irrigated
or rainfed).
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3.2.1. Wheat Surface Area Extraction

Identifying crop surface area is the first step to mapping irrigated and rainfed areas based
on remote sensing images. NDVI time series are commonly used for the classification of different
crops, as time series are generally able to represent seasonal rhythms and phenological variations in
crops [35–37].

During the growth period of winter wheat, NDVI increases from seeding to dormancy. It then
decreases from dormancy to greening, increases again during greening and heading and finally
decreases from heading to maturity (Figure 3). For the winter wheat, NDVI exhibits a distinct changing
pattern during two periods. The first is from early October to the dormancy period. For other land-use
types, NDVI gradually decreases with decreasing temperature. Wheat NDVI, however, gradually
increases and reaches a peak in greenness as a result of vigorous growth after sowing. During this
period, the time-NDVI slope of wheat is greater than zero, but the corresponding slopes of other land
cover types are less than zero. The second occurs from May to June (heading to maturity), which
usually corresponds to the late growth period of wheat. Nutrients are gradually transferred from
organs, such as roots, stems and leaves, to grains, resulting in a gradual decrease in greenness and
NDVI. During this period, the time-NDVI slope of wheat is less than zero, but the slopes for other
land-cover types are greater than zero. Therefore, winter wheat can be classified based on the slopes
during these two stages.
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Generally, the peak NDVI for irrigated wheat is larger than that for rainfed wheat. However,
sometimes, the peak NDVI for rainfed wheat may be nearly almost the same as irrigated wheat,
or even lightly higher. After rainfed wheat reaches its peak NDVI, the NDVI value decreases rapidly.
On the contrary, the peak NDVI for the irrigated wheat appears later and decreases more slowly
compared to rainfed wheat.

In this study, we used DEM (digital elevation model) information to extract the wheat surface area.
The information of wheat planted areas at the county level was derived from the Shanxi Bureau of
Statistics. The relationship between planted areas and their corresponding elevations showed that the
elevation of most counties where wheat is planted is generally below 1000 m. Therefore, we defined a
1000-m height as the upper elevation limit for wheat. This means that elevations above 1000 m are not
considered suitable for growing wheat.
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3.2.2. Estimation of the Wheat Growing Period Based on Satellite Data

In situ observations cannot capture large-scale spatiotemporal changes in phenology. Remote
sensing enables low-cost monitoring of vegetative multi-temporal dynamics over the entire region and
therefore is a powerful tool to examine phenological changes on a regional scale [38,39].

NDVI represents seasonal and annual variations in crop growth and development (i.e., cyclical
changes from planting, emergence, heading to maturity and harvest). Estimation of plant phenology
using NDVI time series has been widely carried out during recent decades [40–43]. Many phenological
parameters can be derived from remote sensing time series data, such as average NDVI, maximum
NDVI, TIN (the integrated NDVI from sowing to maturity, defined as the area of the region between
the fitted function and the zero level [44]), date of maximum NDVI and length of the growing
season. The classification accuracy of remote sensing imagery can be improved by combining these
phenological parameters.

NDVI time series reflecting vegetation growth processes are usually continuous and smooth
curves. During the acquisition process, however, satellite data are subject to various interferences,
such as solar and observation angles, clouds, water vapor and aerosols, resulting in fluctuations in
time series and changes in seasonal trends, which may affect the estimation of vegetation phenology.
Therefore, it is necessary to smooth time series of original vegetation index data to reduce noise.
In this study, double logistic functions were used to smooth the raw NDVI time series [44–46].

Usually, the start of vegetation growth derived from satellite remote sensing is later than the
time of the first leaf unfolding or budburst [47]. It does not represent the beginning of the growing
season when individual leaves turn green, but when canopy greenness reaches a specific value that
can be recognized by a satellite sensor. Earlier studies have used dynamic threshold methods to
estimate the start and end of the growing season for natural vegetation based on NDVI time series
data [43,48,49]. However, for cropland, there is usually a period after crop sowing when crops cannot
be recognized with remote sensing, which means that the sowing date cannot be directly detected.
Lobell et al. (2013) [50] defined the green-up date as the earliest time at which vegetation growth
can be reliably detected with satellite sensors. They found that the date should be offset from the
actual sowing date by a fixed number of days. They compared satellite-based sowing dates and
ground-based observations in Punjab and found that the average difference between these dates is
two days, indicating that satellite remote sensing is capable of realistically estimating the sowing date
of wheat.

In this study, double logistic functions were fit to each NDVI time series on a pixel-by-pixel basis
to estimate green-up and maturity dates using Timesat [44]. Then, the wheat sowing date was obtained
based on the relationship between the green-up and sowing dates presented by Lobell et al. (2013) [50].

3.2.3. NDVI Time Series-Based Classification

Relationship between the NDVI time series and vegetation activities has been well established
theoretically and empirically. The NDVI curve properties and characteristics can generate a set of
metrics (such as the onset of greening/senescence, timing of maximum NDVI, the growing season
length, rates of NDVI changes, etc.) that measure the timing and magnitude of NDVI response and
summarize the spatial and temporal distribution of crop growth and phenology, therefore being widely
used as an input for classification. A range of classification algorithms has been developed based
on NDVI time series, such as the supervised classification methods, spectral matching techniques,
decision tree algorithms, neural network methods, support vector machines, and so on [21,22,51–53].
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3.2.4. Classification Features Selection: Peak NDVI and Time-Integrated NDVI

The growth characteristics (growth conditions, growth period and yield) between irrigated and
rainfed wheat are significantly different, which can be reflected by dynamic changes in NDVI time
series. First, the peak of NDVI for irrigated wheat is larger than that for rainfed wheat [54,55].
Maximum NDVI for a yearly time series is a proxy for the peak level of photosynthetic activity,
maximum biomass and the densest vegetation cover [5]. Second, the time at which rainfed wheat
reaches its maximum NDVI is earlier than that for irrigated wheat, because rainfed wheat generally
suffers from severer water stress, resulting in accelerated growth. Therefore, peak NDVI and TIN values
during the wheat growth period can be used as feature vectors to classify irrigated and rainfed wheat.

3.2.5. Classification of SVM

SVM is a pattern recognition method that can solve pattern recognition problems, such as small
sample size, nonlinearity, high dimensionality and local minima [24]. SVM has been widely used in
remote sensing studies and can improve classification accuracy as compared to traditional classification
methods, such as the maximum likelihood classification [27,56,57]. SVM projects raw input data into a
higher dimensional space to enlarge the separability between different classes when they cannot be
appropriately separated by a linear hyperplane. This transformation is realized through different kernel
functions and training samples, which cause more scatter after projection into a higher dimensional
space. Linear, polynomial, radial basis (RBF) and sigmoidal functions are the most commonly-used
core functions, and the performance of the classification model is strongly influenced by different
kernel functions [58].

(1) Maximum Margin Hyperplane

The maximum margin hyperplane is the farthest hyperplane from the training samples.
The smallest distance from each training sample to a given hyperplane is regarded as a margin.
The maximum margin hyperplane is related to the classification hyperplane that the margin between
different classes is the largest [26]. The training samples that define the maximum margin hyperplane
make up the support vector, and the other training samples do not contribute to the estimation of the
hyperplane position. Accordingly, it is possible to obtain high classification accuracy through SVM
using a small number of samples.

(2) Variable Determination

Variable determination plays a key role in improving the predictive ability of trained SVMs
and ensuring that unknown data can be accurately predicted. The performance of SVMs is mainly
influenced by kernel functions. Once the type of kernel functions is selected, variables (such as γ)
and the error penalty C, which are closely related to the kernel function, should be carefully chosen
to ensure the most satisfactory classification results. A large value of C corresponds to higher error
(i.e., overfitting the training sample), which can reduce the generalization capacity. It has been
suggested that SVMs show a high degree of robustness to variations in variable values [59].

Variables (such as γ and C) related to kernels can be estimated through a grid search, which is
similar to an exhaustive search within a solution space [60]. The performance of a t-fold cross-validation
is evaluated by including randomly-generated variables into the classifier. Then, the values of these
variables are tuned and the performance is re-evaluated until all of the selected variables are tested.
The variable pair (γ and C) that exhibits the highest cross-validation accuracy is selected.
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(3) t-Fold Cross-Validation

During the process of t-fold cross-validation, training samples are equally divided into a
user-defined number of subsets, t. When establishing a SVM classification model, one of the t subsets
is set as a validation sample, and the remaining t-1 subsets are set as training samples. This process is
repeated sequentially until all datasets have been tested. The average error of a t-trial cross-validation
is defined as the classification error. The percentage of correctly classified validation samples is defined
as the accuracy. This method can effectively avoid overfitting and less learning, thus resulting in more
realistic and accurate classification results compared with the one-trial method.

4. Results

4.1. Planted Wheat Area and Growth Periods Derived from Satellite Remote Sensing in South Central
Shanxi Province

The estimated wheat-planting area in south central Shanxi Province was 774,538 ha during 2010
to 2011, slightly higher than that determined by the census data (710,100 ha). This estimated area was
then used as a basis for the subsequent classification of irrigated and rainfed wheat.

Nine sowing and maturity dates were estimated with HJ-1A/B satellite data, corresponding to
the nine agrometeorological stations, respectively (Table 3). The differences between the estimated
results (sowing and maturity dates) and ground-based observations were within 12 days, less than
13.5 days of the average revisit interval of HJ-1A/B imagery, indicating that the estimation accuracy
of the wheat growth period is acceptable. The estimations at Jiexiu and Ruicheng stations exhibited
larger errors due to the small wheat plots, and hence, the associated mixing of wheat pixels with those
of other land use types. The average differences in sowing and maturity dates between HJ-1A/B and
ground-based estimates were within six and two days respectively, indicating that the method used in
this study is robust for estimating the wheat growing period.

Table 3. Comparison of sowing and maturity dates (DOY) estimated with HJ-1A/B satellite and
ground-based data.

Reported
Sowing

Date

HJ Sowing
Date

Difference
(HJ-Reported)

Reported
Maturity

Date

HJ Maturity
Date

Difference
(HJ-Reported)

Yanhu 280 270 ´10 157 164 7
Yaodu 271 267 ´4 157 165 8

Ruicheng 290 275 ´15 163 170 7
Wanrong 268 269 1 163 169 6
Jincheng 264 267 3 164 170 6
Fenyang 279 271 ´8 177 172 ´5

Jiexiu 289 271 ´18 173 170 ´3
Anze 273 268 ´5 175 172 ´3

Changzhi 266 268 2 171 173 2
Average 276 270 ´6 167 169 2

4.2. Spatial Distribution of Wheat Sowing and Maturity Dates in South Central Shanxi Province

Our results show that, in 2010, wheat sowing in south central Shanxi Province mainly occurred
during 17 September and 10 October (Figure 4a). The sowing dates significantly varied with
increasing elevation (y = ´0.0106x + 271.1763, p < 0.05). In 2011, the wheat maturity phase mainly
occurred from 2 June to 29 June. Lagged maturity dates significantly varied with increasing elevation
(y = 0.0101x + 162.0040, p < 0.05) (Figure 4b). The spatial distributions of sowing and maturity dates
generally exhibited opposite patterns, i.e., sowing occurred earlier and harvest occurred later at high
elevation, whereas at low elevation, sowing occurred later and harvest earlier. In general, the spatial
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patterns of sowing and maturity dates were related with elevation and latitude, suggesting that
temperature is a key variable controlling this spatial pattern.Remote Sens. 2016, 8, 207 6 of 19 
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4.3. Validation of the SVM Classification Model

Peak NDVI and TIN of 83 irrigated and rainfed wheat survey samples were used as feature vectors
during classification. The variables C and γ in SVM were estimated through a five-fold cross-validation
using a grid search (Figure 5). Then, based on this pair of global optimal parameters (C = 1.4142 and
γ = 2.8284), the SVM model was used for the classification of irrigated and rainfed wheat in south
central Shanxi Province.Remote Sens. 2016, 8, 207 6 of 19 

 

 
Figure 5. SVM parameter selection (a) and accuracy of five-fold cross-validation (b) for training 
samples. (a) shows the pair of global optimal parameters (C and γ) through the grid search; (b) is the 
visualization of classification of irrigated and rainfed wheat when the training data were mapped into 
a higher dimensional feature space using the RBF kernel function. 

4.4. Spatial Distribution of Irrigated and Rainfed Wheat in South Central Shanxi Province 

The spatial distribution of irrigated and rainfed wheat was scattered and staggered in most 
regions of south central Shanxi Province. This pattern is primarily due to the high fragmentation in 
wheat fields, which is different from the continuous distribution of wheat in plains (Figure 6). 
Furthermore, topography and water resources also influence irrigation activities.  

Figure 5. SVM parameter selection (a) and accuracy of five-fold cross-validation (b) for training
samples. (a) shows the pair of global optimal parameters (C and γ) through the grid search; (b) is the
visualization of classification of irrigated and rainfed wheat when the training data were mapped into
a higher dimensional feature space using the RBF kernel function.
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An additional 774 testing samples (388 irrigated and 386 rainfed wheat) were randomly selected
from Google-Earth and used to validate the capacity of the SVM model. The overall accuracy was
92.4% for the NDVI time series-based classification model, while the overall accuracy was 96.0% for
the peak NDVI and TIN classification model (Table 4). It is inevitable to use the same start and end
period for the NDVI time series in the NDVI time series-based method. Therefore, discrepancies in
the growing period (sowing and maturity dates) and growing length of irrigated and rainfed wheat
are greatly ignored. This may cause uncertainty in the classification results, especially in arid and
semi-arid regions, such as south central Shanxi Province in this study. The peak NDVI and TIN values
can reflect crop growth characteristics under different water conditions. Thus, the use of peak NDVI
and TIN as feature vectors for classification has a large advantage over the NDVI time series-based
method and may result in higher classification accuracy.

Table 4. Error matrix for SVM classification. TIN, time-integrated.

Data Sources Google Earth Additional Testing Samples

Feature vectors NDVI time series Peak NDVI and TIN

Classification Irrigated Rainfed Total
User’s

accuracy
(%)

Irrigated Rainfed Total
User’s

accuracy
(%)

Irrigated 349 20 369 94.6 377 20 397 95.0
Rainfed 39 366 405 90.4 11 366 377 97.1

Total 388 386 774 388 386 774
Producer’s

accuracy (%) 89.9 94.8 97.2 94.8

Overall accuracy
(%) 92.4 96.0

4.4. Spatial Distribution of Irrigated and Rainfed Wheat in South Central Shanxi Province

The spatial distribution of irrigated and rainfed wheat was scattered and staggered in most
regions of south central Shanxi Province. This pattern is primarily due to the high fragmentation
in wheat fields, which is different from the continuous distribution of wheat in plains (Figure 6).
Furthermore, topography and water resources also influence irrigation activities.

In this study, the classification results derived from satellite imagery were quantitatively evaluated
against the ground reference information. First, we evaluated the ratio of irrigated-to-rainfed wheat
area. The Second Agricultural Census of Shanxi Province provides the areas of irrigated and rainfed
arable land, but does not distinguish different crop types. Moreover, these census datasets were
manually collected, and only the available water resources and irrigation facilities were considered,
which are not equivalent to the actual irrigated area. In this case, the ratio of irrigated-to-rainfed wheat
area was used to verify the accuracy of the SVM classification result. According to census data from
agricultural sectors in Shanxi Province, the ratio of irrigated-to-rainfed wheat area was approximately
4:6, whereas our result was 4.4:5.6. Second, our classification results of irrigated and rainfed wheat in
the survey sites agreed with the ground-based photographs taken from 26 to 31 May 2011. The survey
photos showed that irrigated wheat is stout with dark green leaves, whereas rainfed wheat is shorter
with yellow leaves and significantly slower in growth. Third, the regional spatial distribution of
irrigated and rainfed wheat from this study is consistent with a visual interpretation of high spatial
resolution Google Earth images, which reflect wheat growth conditions (Figure 6a,b). The discrepancies
between irrigated and rainfed wheat are mainly due to water availability.
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Google Earth multi-spectral imagery provides topography and land cover/land use information.
Water availability is influenced by topography and thus results in different wheat growth conditions.
These discrepancies were clearly reflected through visual interpretation of Google Earth imagery
(Figure 6b). The growth conditions of wheat planted in the majority of the northwest region were
worse due to scarce water resources compared to wheat planted in the southeast.

Irrigated wheat generally benefits from better growth conditions and a longer growth period
compared to the rainfed wheat and, hence, has higher NDVI and TIN values (Figure 7). The spatial
distribution patterns of peak NDVI and TIN agree well with the distribution of irrigated and
rainfed wheat.
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4.5. Spatial Distribution of Sowing and Maturity Dates of Irrigated and Rainfed Wheat in South Central
Shanxi Province

Spatial variations in sowing and maturity dates are associated with various factors, such as water
conditions (i.e., irrigated or rainfed conditions), latitude and elevation [61,62]. The sowing dates of
rainfed and irrigated wheat in south central Shanxi Province were mainly between 17 September and
10 October 2010 (Figure 8a,b). Rainfed and irrigated wheat exhibited similar spatial patterns with
respect to sowing dates, increasing from southwest to northeast and were significantly related to
elevation (rainfed: y = ´0.0082x + 269.4273; irrigated: y = ´0.0124x + 272.6023; p < 0.05). The maturity
dates of rainfed wheat were mainly from 2 to 21 June, whereas irrigated wheat matured between
8 and 29 June (Figure 8c,d). Rainfed and irrigated wheat exhibited different spatial patterns with
respect to maturity, and the overall maturity dates of irrigated wheat was 15 days later than that of
rainfed wheat. The maturity dates of rainfed and irrigated wheat were significantly related to elevation
(rainfed: y = 0.0077x + 160.6768; irrigated: y = 0.0197x + 160.0829; p < 0.05), increasing from southwest
to northeast, and irrigated wheat varied faster than rainfed wheat.



Remote Sens. 2016, 8, 207 15 of 19

Remote Sens. 2016, 8, 207 6 of 19 

 

respect to maturity, and the overall maturity dates of irrigated wheat was 15 days later than that of 
rainfed wheat. The maturity dates of rainfed and irrigated wheat were significantly related to 
elevation (rainfed: y = 0.0077x + 160.6768; irrigated: y = 0.0197x + 160.0829; p < 0.05), increasing from 
southwest to northeast, and irrigated wheat varied faster than rainfed wheat.  

 
Figure 8. Sowing dates of rainfed (a) and irrigated (b) wheat. Maturity dates of rainfed (c) and 
irrigated (d) wheat in south central Shanxi Province. 

5. Discussion 

5.1. Validation of SVM Classification Model 

Water availability is the main limiting factor for crop growth in arid and semi-arid regions. There 
are large discrepancies between irrigated and rainfed wheat in Shanxi Province. Compared to 
irrigated wheat, rainfed wheat matures earlier and experiences inferior growth conditions. The peak 
NDVI and TIN values extracted from remote sensing data can realistically reflect these discrepancies. 
Therefore, these two feature vectors were used to establish an SVM classification model for irrigated 
and rainfed wheat. Quality and quantitative evaluations were conducted to validate the SVM 
classification model. The results showed that our proposed peak NDVI and TIN-based method has 
obvious advantages and obtains higher classification accuracy as compared to conventional NDVI 
time series-based methods. 

Figure 8. Sowing dates of rainfed (a) and irrigated (b) wheat. Maturity dates of rainfed (c) and irrigated
(d) wheat in south central Shanxi Province.

5. Discussion

5.1. Validation of SVM Classification Model

Water availability is the main limiting factor for crop growth in arid and semi-arid regions. There
are large discrepancies between irrigated and rainfed wheat in Shanxi Province. Compared to irrigated
wheat, rainfed wheat matures earlier and experiences inferior growth conditions. The peak NDVI and
TIN values extracted from remote sensing data can realistically reflect these discrepancies. Therefore,
these two feature vectors were used to establish an SVM classification model for irrigated and rainfed
wheat. Quality and quantitative evaluations were conducted to validate the SVM classification model.
The results showed that our proposed peak NDVI and TIN-based method has obvious advantages and
obtains higher classification accuracy as compared to conventional NDVI time series-based methods.

5.2. Spatial Distribution and Variation Patterns of Wheat Sowing and Maturity Dates

The growth period and crop yield are strongly influenced by water deficit. Rainfed wheat may
suffer severe water stress and exhibit significant differences compared to irrigated wheat. During
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the growing season, an increase in air temperature may result in a shorter growth period and earlier
maturity date under deficient water supply, as shown in rainfed wheat in arid and semi-arid areas
in this study. The growth and crop yield of rainfed wheat are severely affected by water deficit, e.g.,
during the filling stage of winter wheat when photosynthetic products in roots, stems and other organs
are transported to grains.

This study quantified spatial variations and rates changes of the wheat growth period under
different water supply conditions based on an enhanced classification method. The results show
that the sowing dates of rainfed and irrigated wheat exhibit similar spatial patterns, and both are
significantly related to elevation. Irrigated wheat varies faster than rainfed wheat. The maturity
dates of rainfed and irrigated wheat are significantly postponed when elevation increases; however,
they exhibit distinct spatial patterns.

5.3. Uncertainties and Future Needs

Uncertainties are inherent for most satellite data, including the HJ-1A/B satellite. Errors may
exist when translating satellite data into sowing and maturity dates. In this study, a 30 ˆ 30 m
pixel was considered as 100% irrigated or rainfed, and thus, fragmented small fields may not have
been well resolved. The above two aspects may have induced uncertainty in our estimated irrigated
and rainfed surface areas. Typically, satellite data with higher spatial resolution perform better in
mapping irrigated and rainfed areas for regions with small and scattered crop fields, but such data
may be limited by a long satellite revisit time. Satellite data, such as MODIS, have a high temporal
resolution and provide broad coverage area. Therefore, data assimilation is required to take advantage
of different satellites and obtain high spatiotemporal resolution datasets for irrigated area mapping.
Heterogeneous and small patchy crop areas are another challenge for classification. Some methods
(e.g., mixed pixel decomposition) are needed to estimate the fraction of irrigated and rainfed areas in
one grid cell, especially for regions with scattered farmland and a variable topographic surface.

6. Conclusions

A simple, but effective method based on an SVM algorithm was developed to map irrigated and
rainfed wheat areas in a semi-arid region of China. This method avoids repeated tuning of thresholds in
supervised classification. The overall accuracy of the Google-Earth testing samples is 96.0%, indicating
that the SVM classification model is robust. The estimated ratio of irrigated-to-rainfed wheat area in
this study is close to that estimated by the agricultural sector of Shanxi Province. The classification
of irrigated and rainfed areas for the survey points also agrees with the field level photographs.
In addition, maps of maturity dates and sowing dates were generated. It was shown that irrigated and
rainfed wheat exhibit distinct maturity dates, although the spatial patterns of sowing dates are similar.

Accurate training samples, which were obtained from ground surveys in this study, are essential
for the presented method. The proposed method can be applied in other arid and semi-arid regions
with the availability of accurate training samples and multi-temporal data at high spatial and temporal
resolutions similar to HJ-1 A/B (or higher). The HJ-1 A/B has an advantage over Landsat in temporal
resolution, although they have the same spatial resolution in the red and near-infrared band. Different
temporal resolution may influence the classification result of irrigated and rainfed wheat area, and
the comparison of HJ-1 A/B time series with Landsat or Sentinel time series for classifications in
partially-irrigated areas is a potential field area of future research. In addition, the performance of the
proposed method in areas with more than one major crop type needs to be evaluated in the future.
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