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Abstract
High quality Sr4Ru3O10 nanoflakes are obtained by the scotch tape-basedmicro-mechanical
exfoliationmethod. Themetamagnetic transition temperatureTm

flake is found to decrease in linewith
the decrease of thickness, while the ferromagnetic (FM) phase, the ordinary, and anomalousHall
effects (OHE andAHE) are independent on the thickness of the flake. Analysis of the data
demonstrates that theAHE reflects the FMnature of Sr4Ru3O10, and the decrease of thickness favors
the Rumoments aligned in the ab-plane, which induces a decrease of themetamagnetic transition
temperature comparedwith the bulk.

1. Introduction

Rutheniumoxide perovskites Srn+1RunO3n+1 (n= 1, 2, 3,∞) are strongly correlatedmaterials involving
complex interactions between the charge, spin, orbit and lattice degrees of freedom. Their ground states present
a rich of exotic physical properties, such as the unconventional spin-triplet superconductivity in Sr2RuO4

(n= 1) [1], the quantum criticality and nematicity in Sr3Ru2O7 (n= 2) [2–4], and the spontaneous itinerant
ferromagnetism in the infinite layer of SrRuO3 (n=∞) [5, 6]. Sr4Ru3O10 is the n= 3member of the
Srn+1RunO3n+1 family. It belongs to quasi-two-dimensionalmetal with an orthorhombic unit cell, which is
composed of triple layers of corner-shared RuO6 octahedra separated by double rock-salt Sr-O layer [7]. This
member has attracted considerable attention in recent years due to its uniquemagnetic properties [7–17]. By
applying amagnetic fieldH (0.01T) along the c-axis, the temperature dependentmagnetizationMc(T) exhibits a
FM transition at a Curie temperatureTc∼ 105 K, followed by another sharp transition at temperature Tm

bulk of
about∼50 Kwith a large irreversibility. In contrast, by applying afield (H= 0.01 T)within the ab-plane, the
Mab(T) displays aweak cusp atTc and a pronounced peak atTm

bulk with amuch smaller irreversibility, and below
about 20 K, theMab is almost unmeasurable [7, 8]. Interestingly, if the in-plane field reaches a critical fieldHc, a
rapid increase ofMab in a narrow range ofmagnetic field is observed on theM-H curves at temperatures below
T ,m

bulk and theHc increases with the decrease of temperature ( )~H 2 Tc
2K [8]. This transition is considered to

be themetamagnetic transition.
Themetamagnetic transition observed in Sr4Ru3O10 belowTm

bulk contains rich physics associatedwith the
lattice, spin, orbit, and electronic inhomogeneity, which has not beenwell understood. Firstly, this transition is
accompanied by strong spin-lattice coupling [9, 14, 18]. The crystal structure undergoes a significant change
when the applied in-plane field crosses over the criticalfieldHc [9, 14]. Secondly, the occurrence of the transition
is possibly through a phase separation process withmagnetic domain formation, for the in-plane
magnetoresistivity nearHc exhibits large hysteresis ormultiple ultra-sharp steps at extreme low temperatures
(<1 K) [10, 11, 17]. Thirdly, the angle-resolvedmagnetization andmagnetoresistivity suggest themetamagnetic
transition is orbit-dependent, where the Ru 4dxz,yz orbit is responsible for themetamagnetic transitionwhile the
4dxy orbit is ferromagnetic in the ground state [12, 13]. The understanding of themetamagnetic transition in
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Sr4Ru3O10 is challenged by recent neutron study, where the Rumoments at zero field and belowTc are found to
be FM-aligned along the c-axis only, there is no any signature of either long-range antiferromagnetic (AFM) or
FMorder in the ab-plane [14]. However, the neutron data cannot exclude a possibility that themetamagnetism
is afield-induced short-range AFMorder to FM transition. To date, themagnetic nature of Sr4Ru3O10 below
Tm

bulk is still unclear and remains elusive.
In this work, we present the electrical transportmeasurements of twomechanically exfoliated Sr4Ru3O10

nanoflakes with thickness of 31 nmand 260 nm. Itfinds that themetamagnetic transition temperature, T ,m
flake

in the flake ismuch smaller than the bulk, ~T 50 K,m
bulk and decreases with decreasing thickness, but its

saturationfieldHs along the c-axis increases with the decrease of thickness, indicating the Rumoment in the
thinner sample ismore difficult to be aligned along the c-direction.However, the FM transition, the ordinary
and anomalousHall effects are independent on the thickness, where the dominant carriers derived from the
ordinaryHall coefficientR0 are always hole-type and the anomalousHall conductivity sxy

A follows the typical
scaling law s sµ j

xy
A

xx (σxx: longitudinal conductivity)with different scaling exponent,ϕ∼ 1, 0 and 1.6, as the
increase of temperatureT. The decrease of themetamagnetic transition temperature thus cannot be attributed
to the changes of the unit cell or the electronic structures, but can be understood by the shape anisotropy
induced rearrangement of the Rumoments due to the size effect.

2. Experimental

Sr4Ru3O10 single crystal is grown by theflux technique [8]. The temperature dependentmagnetization of the
bulk crystal along the c-axismeasured under 0.01 T is shown in figure 1(a), which is well consistent with those
reported previously [7, 8]. The characteristic temperatures Tm

bulk ∼50 K andTc∼ 105 Kof the single crystal are
indicated by the arrows. The Sr4Ru3O10flakes are obtained by the scotch tape-basedmicro-mechanical
exfoliation from the bulk single crystal, and then transferred to a silicon substrate coveredwith 300 nm-thick
silicon dioxide on the top of the surface. The thickness, d, of theflake is determined by atomic forcemicroscopy.
Conventional six terminal electrical contacts aremade using electron-beam lithography (EBL) technique. To

Figure 1. (a)Magnetization as a function of temperaturemeasured along the c-axis at 0.01 T of the Sr4Ru3O10 single crystal under
zero-/orfield cooling condition. (b) SEM image of a Sr4Ru3O10flake (d= 260 nm)with patterned electrodes. (c) and (d) are,
respectively, the temperature dependence of the longitudinal resistivity ρxx of the Sr4Ru3O10 flakes with different thickness d; the
insets are, respectively, the blow-up of the ρxx-T curves in low-T rangemeasured under in-planefields.
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ensure ohmic contacts, we etch the e-beampatterned contact areas for a few seconds by in situAr-plasma to
remove the possible residual PMMA resist firstly, and then deposit 5 nmTi and 150 nmAuworking as the
electrical leads by thermal evaporation.With this process, the successful rate for ohmic contacts is higher than
90%, and the resistance ratio between the contact resistance and the sample is usually less than 15%. The
scanning electronmicroscope (SEM) image of a device with patterned electrode is shown infigure 1(b). The
longitudinal resistivity (ρxx) and theHall resistivity (ρxy) aremeasured as functions of temperature (T) and
externalmagnetic field (H) by a physical propertymeasurement system (PPMS,QuantumDesign). The ρxx is
measured by the standard four-probe configuration, where the contact resistance is believed to be negligible.
TheHall resistance ρxy is determined from ρxy= [ρxy(H)-ρxy(-H)]/2 in order to subtract the longitudinal
component of ρxx arising from the smallmisalignment of the transverse contacts.

3. Results and discussion

Figures 1(c) and (d) show ρxx versusT curves of twoflakes (d= 31 and 260 nm)measured at zeromagnetic field.
For eachflake, the ρxx decreasesmonotonically asT decreases. The residual resistance ratio,

r r=RRR ,xx xx
300 K 2 K of eachflake reaches about 60 (data not shown), indicating the crystals are high quality,

where the residual resistivity of bothflakes at 2 K is about 3.77 μΩ.cm (d= 31 nm) or 4.15 μΩ.cm (d= 260 nm).
Two anomalies on the resistivity can be clearly identified from themagnetoresistivity (MR)measured under
various in-planemagnetic fieldsH as shown infigure 2, whereMR is defined as [ρxx(H)-ρxx(0)]/ρxx(0). The data
is obtained by the zerofield cooling from above 160 K to exclude the influence of thefield history. The ‘valley’
observed on theMR-T curves is as expected due to the itinerant FMnature of Sr4Ru3O10 [8], which is caused by
the suppression of carrier scattering from spin fluctuations under in-planemagneticfield [19]. TheTc is
determined to be∼106 K and 101 K for the 31 nm- and 260 nm-thickflakes, respectively, from the negative
maximumof the ‘valley’ [19], which is almost independent on the thickness and consistent with the bulk.With
decreasingT belowTc, the Sr4Ru3O10 undergoes another transition called themetamagnetic transition at about

~T 25 Km
flake and 37 K for the 31 nm- and 260 nm-thickflakes, below Tm

flake theMR shows a positive
behavior, while abovewhich theMR is always negative due to the FMnature of Sr4Ru3O10. This feature is
consistent with that reported in the bulk [11], except for theTm

flake is almost 20 K lower than the ~T 50 K.m
bulk

Itfinds that themetamagnetic transition temperature decreases with decreasing the thickness of the flake, while
theTc remains unchanged. Previously, both the electronic and lattice structures have been suggested to be the
driving force for the formation of themetamagnetic phase [7, 12–15]. A fact that our sample preparation process
does notmake any variations of the electronic or lattice structures provides an indication that themetamagnetic
transition in Sr4Ru3O10 should have an origin of internalmagnetic orders, whichmaybe changed as the decrease
of thickness. To understand themechanism in detail, we performed theHall effect study on theflakes.

Figure 3 shows theH-dependence of ρxy at various temperatures, whereH is applied perpendicular to the ab-
plane of theflake. As a FMnature of Sr4Ru3O10 belowTc, both theOHE andAHEmake contributions to the total
Hall resistivity [20], characterized by the ‘knee’ profile as shown infigure 3. At temperatures far aboveTc, the

Figure 2.ThemagnetoresistivityMR of Sr4Ru3O10flakes as a function of temperatureT under various in-planemagnetic fields.
(a) d= 31 nm; (b) d= 260 nm.
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OHE resistivity rxy
o governs the total ρxywith a linearH dependence of r = R Hxy

o
0 (e.g. see the dashed line in

figure 3(d)), which is due to the orbital effect ofH on the carriers, hereR0 is the ordinaryHall coefficient.With
decreasingT, the AHE gradually dominates the ρxy, and the AHE resistivity rxy

A reaches amaximumat about

80 K. Then rxy
A decreases rapidly with the further decrease ofT and becomes extremely small at 10 Kbut can

still be recognized (e.g. see the dashed line infigure 3(c)). In spite of the FM-induced hysteresis behavior in the
lowfield range, the trace of the observed ρxy at afixed temperature can bewell described by the equation of
r r= +R H ,xy xy

A
0 which contains both theOHE andAHE components. The ordinaryHall coefficientR0 can

be extracted from the high field slope, i.e. dρxy/dH forH= 5 T, of theHall isotherm, and the rxy
A belowTc can

be simultaneously obtained by extrapolating the linear term to the zero field.
The ordinaryHall coefficientR0 as a function of temperature is shown infigure 4(a).R0 is positive in the

whole temperature range, indicating the dominant carriers in Sr4Ru3O10 are holes. TheR0-T curves for both
flakes present almost a same ‘S-shaped’-like behavior. Specifically, theR0(T) shows amaximumnearT1∼ 22 K
and aminimumnearT2∼ 60 KbelowTc, and these kinks showno direct correlationwith themagnetic
structures, such as themetamagnetic transition nearTm

flake and the FM transition atTc. Generally, the
temperature dependentR0(T) in quasi-two-dimensionalmetal is related to the changes of thewave vector
dependent electronmean free path or the reconstruction of the Fermi surface [21, 22]. The almost identical
R0(T) in bothflakes implies that the electronic structures are almost independent on the thickness of theflakes as
expected.We noticed that bothR0(T) display a similarT-dependent feature as the variations of the lattice

Figure 3.Hall resistivity ρxy of the Sr4Ru3O10flakes as a function ofmagnetic fieldH along the c-axis at various temperatures. (a), (b)
are for d= 31 nm; (c), (d) for d= 260 nm.

Figure 4. (a)The temperature dependence of the ordinaryHall coefficientR0. (b)The scaling relation between the anomalousHall
conductivity sxy

A and the longitudinal conductivity σxx.
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parameter c determined by the neutron diffraction study [14], indicating that the variations ofR0 in Sr4Ru3O10

might be closely connected to this structural change.
Nowwe turn to the AHE component and use the universal scaling relation [20], s sµ j,xy

A
xx to uncover the

physical implication belowTc (∼100 K) in theflakes, where sxy
A andσxx are, respectively, the anomalousHall

and longitudinal conductivity, andϕ is the scaling exponent. Here, sxy
A is estimated by

[ ( ) ]s r r r r r= + »xy
A

xy
A

xx xy
A

xy
A

xx
2 2 2 since rxy

A is at least two orders smaller than ρxx in our case. As shown

infigure 4(b), the sxy
A is also independent on the thickness of the flake, and can be categorized into three regions

labeled as I, II and III with an exponent ofϕ∼ 1.08 inT< 23 K (orσxx> 7.5× 104 S cm−1),ϕ∼ 0with
sxy

A = 235 S cm−1 in 23 K<T< 55 K (or 2.2× 104 S cm−1<σxx< 7.5× 104 S cm−1) andϕ∼ 1.61 or 1.72 in
T> 55 K (orσxx< 2.2× 104 S cm−1), respectively. It is well-known that both the extrinsic and intrinsic
mechanisms are proposed for theAHE [20], inwhich the s sµxy

A
xx (j∼ 1) in region I indicates the extrinsic

skew-scatteringmechanism is dominant based on the asymmetric impurity scattering caused by the spin–orbit
interaction (SOI), whileϕ∼ 0with a large value of sxy

A in region II suggests the intrinsic Berry-phase
contribution governs theAHE [23]. Recently, Onoda et al (2008) have developed a unified theory of the AHE in
ferromagnets and proposed three scaling regions as a function of the carrier lifetime τ related Born scattering
amplitude ћ t (ћ:Planck constant). For ћ t <∼ESO (ESO: spin–orbit interaction energy),ϕ= 1, the extrinsic
skew-scattering arising from the vertex correction yields a dominant contribution; For∼ESO< ћ t < EF,ϕ= 0,
sxy

A becomes insensitive to the scattering strength because of the intrinsic dissipationless topological Berry-
phase contribution. Further increasing ћ t, ϕ= 1.6 [23, 24]. Usually, it is difficult to observe all the proposed
regions in one ferromagnetic sample, possible due to a small variation of ћ t [20, 25]. The scaling behavior in a
Sr4Ru3O10flake can present all the three scaling regions indicates there is a large change of ћ t in thismaterial.
The reason for such change is possibly attributed to the large variation of the structures in Sr4Ru3O10 as well [14],
for the two crossovers, one at about 23 K and the other at about 55 K, among the three scaling regionsmatchwell
with the temperaturesT1 andT2 shown infigure 4(a). In otherwords, the AHE reflects the FMnature of theflake
belowTc, andwhich is independent on the thickness.

Figure 5 shows the saturation fieldHs along the c-axis of the twoflakes determined from the ρxy-H curves (see
figure 3), where the inset representatively displays an enlarged ρxy-H curve of the 260 nm-thickflakemeasured at
40 K, and theHs is 0.65 T indicated by the arrow. TheHs increases as the decrease of thickness at afixed
temperature, indicating that themagneticmoments in the thinner flake aremore difficult to be polarized along
the c-axis. In other words, the shape anisotropy caused by the decrease of thickness favors themagnetic
moments aligned in the ab-plane (possibly arranged to be aweak FMorder). This assignment is consistent with
the observation of themetamagnetic transitionTm

flake decreases with the decrease of thickness (see figure 2),
where the in-planemagnetic order stabilized by the reduced thickness will suppress themetamagnetic phase.

4. Conclusions

In summary, we have investigated the transport property of twomechanically exfoliated Sr4Ru3O10 nanoflakes.
The result shows that the change of thickness has little effect on the FMphase, theOHE andAHE, but can
modulate themetamagnetic transition temperatureTm

flake significantly, which is about 25 K for the 31 nm-
thickflake and 37 K for the 260 nm-thick flake, respectively. The identical Hall effect in the twoflakes suggests
the decrease ofTm

flake cannot be attributed to the changes of the unit cell or the electronic structure. However,

Figure 5.The saturationmagneticfieldHs of the two Sr4Ru3O10 flakes as a function of temperature. The inset show a typical ρxy-H
curve of the 260-thick flakemeasured at 40 Kundermagneticfields along the c-axis.
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wehave found that the saturation field along the c-axis in the twoflakes increases as the decrease of thickness,
indicating the Rumoment is aligned closer to the ab-plane in the thinner flake due to the size effect, and the
metamagnetic transition in Sr4Ru3O10 is thus caused by a rearrangement of the Rumoments.
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