MODELING DEPONENCY IN GERMANIC PRETERITE-PRESENT VERBS USING DATR

Marie G. Bourgerie Hunter
University of Kentucky, mariebourgerie@gmail.com
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.378

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Bourgerie Hunter, Marie G., "MODELING DEPONENCY IN GERMANIC PRETERITE-PRESENT VERBS USING DATR" (2017). Theses and Dissertations--Linguistics. 23.
https://uknowledge.uky.edu/ltt_etds/23

This Master's Thesis is brought to you for free and open access by the Linguistics at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Linguistics by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student's thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Marie G. Bourgerie Hunter, Student
Dr. Gregory Stump, Major Professor
Dr. Rusty Barrett, Director of Graduate Studies

Thesis

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Linguistic Theory and Typology in the College of Arts and Sciences at the University of Kentucky By

Marie Bourgerie Hunter
Lexington, Kentucky
Director: Dr. Gregory Stump, Professor of Linguistics
Co-Director: Dr. Mark Richard Lauersdorf, Professor of
Linguistics
Lexington, Kentucky
2017
© Marie Bourgerie Hunter 2017

ABSTRACT OF THESIS

MODELING DEPONENCY IN GERMANIC PRETERITE-PRESENT VERBS USING DATR

In certain Germanic languages, there is a group of verbs called preterite-present verbs that are often viewed as irregular, but in fact behave very predictably. They exhibit a morphological phenomenon called deponency, often in conjunction with another morphological phenomenon called heteroclisis. I examine the preterite-present verbs of three different languages: Old Norse, Modern Icelandic, and Modern German. Initially, I approach them from a historical perspective and then seek to reconcile their morphology with the modern perspective. A criteria is established for a canonical preterite-present verb, and then using a lexical programming language called DATR, I create code that generates the appropriate paradigms while also illustrating the morphological relationships between verb tenses and inflection classes, among other things. DATR is a programming language used specifically for language models.

KEYWORDS: morphology, preterite-present, proto-germanic, deponency, DATR

MODELING DEPONENCY IN GERMANIC PRETERITE-PRESENT VERBS USING DATR

By
Marie Bourgerie Hunter

Gregory Stump
Co-Director of thesis
__Mark Richard Lauersdorf Co-Director of thesis

Rusty Barrett
Director of Graduate Studies
8/3/2017

To my boys,
Husband and son
Ian and Ollie Pop
(I love you both so much I sometimes feel I may burst)

Acknowledgments

I'd like to first acknowledge my committee members for their workGregory Stump, Mark Richard Lauersdorf, and Andrew Hippisley. Thank you for extensive notes and feedback, for being patient every time I altered my topic focus, for walking me through unfamiliar material. Thank you for helping me untangle data, sort through paradigms, explaining the conventions of 100-year old grammar books, translating the literature that was never in a language I spoke...Thank you for your support and unfailing optimism that I would be able to accomplish this. Many times when I was about to throw my laptop out the window, I would get an email with an answer to the problem I was agonizing over along with an encouraging word. Thank you also for your notes and criticisms!

I felt lucky to have such good friends as I went through this process as well, especially for letting me complain, often constantly. It's been so much better to go through all this with awesome people, and it's been such a blast.

Thank you to my parents! For helping me through grad school and through this thesis. Thank you to my sisters for listening to me talk about linguistics nonstop for the last two years and still being my friends on the other side (it probably won't stop though).

Thank you Ollie, my son, for making me happy every day and being an incredible miracle in my life.

Lastly, thank you to my husband, Ian. You've done so much for me, words just feel inadequate at this point. You've kept track of my sanity during this whole
process and been very good about our apartment gradually filling to the ceiling with hundred-year-old books.
Table of Contents
Acknowledgments iii
List of Tables vii
List of Figures viii
Chapter 1 - Introduction 1
Chapter 2 - Theory and Literature Review 5
2.1 - Preterite-Present Verbs 5
2.1.1 - General description 5
2.1.2 Classification Criteria 10
2.1.3 - Where do they come from? 11
Grimm's Theory: 11
Perfect origin theory: 12
Other theories: 13
2.1.4-Semantics 13
2.2 - Deponency 17
2.3 - Brief DATR Introduction 19
Chapter 3 - Languages, verbs, and their general properties 23
3.1 - Old Norse. 23
3.1.2 - Strong and Weak verbs 23
3.1.3 - Preterite-present 25
3.2 - Modern Icelandic 26
3.2.1 - Verbs. 26
3.3 - Modern German. 28
Chapter 4 - Methodology 32
Understanding Basic DATR 32
Chapter 5 - Results 37
Chapter 6 - Analysis and Conclusions 73
6.1 - Innovations in DATR and insights from this DATR theory 75
Deponency 78
Things the model did not do well. 78
Abbreviations 80
Bibliography: 81

Vita.. 83
List of Tables
Table 1 - 'skulu' 2
Table 2- PGmc Preterite-present verbs (Birkmann, 1987; Bammesberger, 1995) 4
Table 3 - Glosses (Bammesberger, 1995; Birkmann, 1987: 66-84) 6
Table 4 - brenna 8
Table 5 - skulu 9
Table 6 - fella 9
Table 7 - Glosses, broken down by language 14
Table 8 - Old English skulan 16
Table 9 - Latin verb regere with a normal inflectional pattern. 17
Table 10 - Latin verb sequī with a deponent inflectional pattern, seen by the empty passive cells 17
Table 11 - munu, icelandic 18
Table 12 - Non-paramaterized hierarchy (Tiberius, 2002, 702) 21
Table 13 - líta, Old Norse 24
Table 14 - fara, Old Norse 24
Table 15 - Strong verb suffixes in Old Norse 25
Table 16 - Old Norse strong verb suffixes (Byock, 2013) 25
Table 17 - Old Norse weak verb suffixes 25
Table 18 - Verb suffixes in Icelandic (Einarsson, 1945) 27
Table 19 - bíta, Icelandic 27
Table 20 - vita, icelandic 27
Table 21 - German verb suffixes 29
Table 22 - biegen, German strong 30
Table 23 - mögen, German pret-pres 30

List of Figures

Figure 1 - Germanic Languages (Harbert, 2007, 8) . 3

Figure 2 - Russian nouns (Hippisley 2012, 30) ... 33

Chapter 1 - Introduction

In Old Norse, the verb skulu 'shall' - which comes from the same root as modern English 'shall/should' and has an unusual conjugation pattern (Table 1). The present tense mimics the past tense of a strong verb, and the past tense resembles the weak past tense in the indicative ${ }^{1}$. This is often written off as an irregularity, but it is actually part of a much larger, systematic pattern. Skulu is part of a class of verbs named 'preterite-presents' and they occur throughout the Germanic languages. It is a small group; at the Proto-Germanic level, fourteen stems are reconstructible, and two others are introduced in a later time period. In Old Norse this combination (a morphological phenomenon called deponency-I discuss it in more depth in chapter 2.2) between the strong and the weak verb is very predictable; in other languages, particularly more modern languages, verbs in the class don't line up with this pattern as neatly. Neat or not, the inflections can all be accounted for cross-linguistically in a single theory using the programming language called DATR (that was specially designed for representing lexical patterns).

SKULU 'WILL (OBLIGATION, INTENTION)'		
	pres	past
1SG	skal	skylda
2SG	skalt	skyldir
3SG	skal	skyldi

[^0]| 1PL | skulum | skyldum |
| :--- | :--- | :--- |
| 2PL | skuluð | skylduð |
| 3PL | skulu | skyldu |

Table 1 - 'skulu' - Old English
The languages I account for in the DATR theory are Old Norse, Icelandic, and Modern German. These languages were chosen strategically as a pilot study to see how feasible a larger scale project would be. Old Norse contains preterite-present verbs that are prototypical or canonical with this theory, and represents a state of North Germanic dating to about 900 years ago. Icelandic grammar is directly descended from Old Norse so there is a direct historical comparison between these two languages. There are a lot of similarities while at the same time showing some signs of the preterite-present class being infiltrated by other factors. Modern German is from a different branch entirely, being a West Germanic language (see Figure 1 below). Which verbs stayed in the language over time, the suffixes, the location of the ablauts within the paradigm, and the ablauts themselves - these factors are similar between Modern Icelandic and Old Norse but predictably vary much more when comparing the previous languages to Modern German. ${ }^{2}$

[^1]

Figure 1 -- Germanic Languages (Harbert 2007, 8)
Not all Germanic languages have maintained the preterite-present class - Old English had the pattern, but Modern English does so only vestigially. Modern English has dropped most of the paradigm, selecting only a present and a past tense to maintain ('will'/ 'would'), and other languages, such as Danish, have done similarly. While the former preterite-present verbs in these languages have interesting features that merit discussion and study, I'm focusing on languages that have full or mostly-full paradigms.

Proto-GMC	Old Norse	Modern Icelandic	Modern German	Modern English
*witan	vita	vita	wissen	wise
*munan	muna, типи	типа, типи		
*(ga)durzan				
*kunnan	kunna	kunna	können	can
*dugan				
*magan	mega	mega	mögen, vermögen	may
*aigan	eiga	eiga		
* ōgan				
*lais				
*burban	purfa	purfa	dürfen, bedürfen	
*binah, ganah				
*unnah	unna	unna		
*mōtan			müssen	must
*skulan	skulu	skulu	sollen	shall
	knega			
			wollen	will

[^2]Chapter 2 - Theory and Literature Review
2.1 - Preterite-Present Verbs
2.1.1 - General description

Preterite-present verbs are a class of verbs among Germanic languages that are often seen as irregular but are a clear class of verbs identified by several primary features: the ablaut stems, the suffixes, and the content-form mismatch in the previous categories. Historically, there are fourteen verbs in this category in Proto-Germanic; the following table contains all of the reconstructed infinitive forms, the reconstructed stem alternants, and the glosses.

PGmc infinitive	*witan	*munan	*(ga)durzan	*kunnan	*dugan	*magan/mugan	*aigan
Stem alternants	*wait/wit	*man/mun	*dars/durz	*kann/kunn	*daug/dug	*mag/mag *mag/mug	*aih/aig
gloss	'know'	'remember' 'want'	'dare'	'know,' 'be able to'	'be suitable, good for'	'can, be able to'	'have,' 'must'

PGmc infinitive	* $\overline{\text { g }}$ an	lais (got.)	*burban	binah/ganah (got.)	*unnan	*mōtan	*skulan
Stem alternants	${ }^{*} \bar{o} g / \bar{o} g$	*lais/liz	*barf/burf	*nah/nug	*ann/unn	*mōt/mōt	*skal/skul
gloss	'be afraid'	'know'	'need, be necessary'	'permitted, allow' 'suffice’	'love'	'have to ', 'be able to', 'be allowed'	'have to'

Table 3 - Glosses (Bammesberger 1995; Birkmann 1987: 66-84)³
${ }^{3}$ The primary preterite-present resource that was used in this thesis was Birkmann (1987) - where there is conflict within the literature, I generally yield to Birkmann - his book is the most comprehensive account of the preterite-present verb class.

One goal is to establish a set of canonical characteristics for preterite-present verbs - Proto-Germanic and Old Norse represent the canonical pattern in most literature and in my theory and devaitions make a language increasingly noncanonical. It's helpful to have guidelines - when does a verb stop being a preterite-present verb? Is a verb forever in this class if it was one of the original fourteen verbs? Or are the morphological features of the verbs the only thing that's important and thus more verbs could hypothetically be added under the right historical conditions? This paper is based on the latter premise, that the features of the verb determine whether it is a part of this group or not.

There is a single known instance of a verb being added to the class that was not present in Proto-Germanic. In Gothic, it appeared as 'wiljan' just as a modal verb but later took on preterite-present characteristics in Old High German (Birkmann 1987, 116-118). This is addressed further in the semantics discussions and its implications.

Though languages are being analyzed from multiple time periods in this pilot study, the analysis is still synchronic, examining a single snalpshot of each grammar. Because of this, some factors and variables might be hidden.

Preterite-present verbs seem to be borrowing the strong-preterite stems and endings and using them in the present - this is mismatch enough, but it is also paired with a weak preterite in the past tense, with preterite and past being interchangeable in this paper.

This isn't a bad place to start, but things are not quite so canonical or simple, even in the Proto-Germanic, and from a historical perspective it's even less so. Some languages like Old Norse are canonical and match the strong verb conjugations exactly, but most require additional information to finish the paradigm, (as will be seen in the DATR theory that I develop here). Additionally, even in a canonical case, strong inflection classes complicate thing so that not every present-preterite lines up with a strong inflection class that it is borrowing from, due to ablauts (but these pret-pres verbs still retain general properties of strong verbs). However, in all cases there is a robust tie between the past tense of strong verbs and the present tense of preterite-present verbs - and this is where the action happens.

In the tables below, highlighting represents parts that borrow and come together to form the preterite-present.

BRENNA 'BURN' - STRONG CLASS, 3		
	present	past
1SG	brenn	brann
2SG	brenn-r	brann-t
3SG	brenn-r	brann
1PL	brenn-um	brunn-um
2PL	brenn-ið	brunn-uð
3PL	brenn-a	brunn-u

Table 4 - brenna - Old Norse (Byock 2013)

Fella ‘Fell' - Weak class 1

	present	past
1SG	fell-i	felld-a
2SG	fell-ir	felld-ir
3SG	fell-ir	felld-i
1PL	fell-um	felld-um
2PL	fell-ið	felld-uð
3PL	fell-a	felld-u

Table 6 - fella - Old Norse (Byock 2013)
In most preterite-present verbs, there is an ablaut change between the present singular and the present plural. In many cases, the past indicative also uses a different stem - this stem is predictable. The ablaut alternations can be put into several categories or even formal classes, though I am not adhering to a specific class system. The four ablaut patterns represented are: $a i / i, a u / u, a / u$, and a / i. These also correspond with patterns present in strong verbs in Proto-Germanic and others.

2.1.2 Classification Criteria

In total, there are three or four preterite-present verbs in Proto-Germanic that do not have ablaut alternation, depending on the reconstruction: mōt/mōt, ōg/ōg, aih/aig, and mag/mag (Birkmann reconstructs mag/mag as mag/mug.) I initially stated that the ablaut alternation was a criterion for a canonical presentpreterite, and this is true - but at this early stage at least three verbs lack an ablaut alternation, so this can't be the sole criterion that determines whether or not a verb is a present-preterite (though it is definitely a notable feature.)

The next criterion is that of the preterite-present suffixes. In a comparison of mostly historic languages, including: Old Norwegian, Old Swedish, Gothic, Old High German, Old Saxon, Middle High German, Faroese, Old Danish, Old Frisian, Old English, Old Norse, Modern German, and Modern Icelandic, some patterns are clear. The endings on the present singular stay roughly the same: present $1 / 3$ singular both equal the stem and no suffix, and the present 2 singular is the stem with a -t or -st suffix. The plural varies more than this, though there are some similarities between languages. The present 1 plural = stem + <um> or <un> most commonly; occasionally, an <o> appears instead of a <u>. The present 2 plural is equal to stem [+dental] most often, but sometimes alternates with an -in suffix, as in Old Swedish and Old Danish. Present pl 3 has three major endings: -un, -u, and -a.

The final criterion involves the content-form mismatch. Content-form mismatch refers to when the content of a paradigm is not what the form suggests that it should be; in this case, we are getting verb forms expressing the present tense whose morphology is like that of strong preterites together with verb forms
expressing the preterite whose morphology is that of weak preterites. This is a morphological phenomenon called deponency and it is the primary criterion for determining if a verb falls into this category. Deponency is described in detail in Chapter 2.2.

As mentioned previously, there is variance from these criteria, especially in modern languages. My DATR theory will account for all of these variations within Old Norse, Icelandic, and Modern German.

2.1.3 - Where do they come from?

It's important to address the historical context of preterite-present verbs and why some of these verbs are the way they are, and to do that, the question should be at least briefly answered: where do these verbs come from? There are a couple of theories. Randall and Jones provide a historical overview from a modern perspective of the most prominent theories to date (2015).

Grimm's Theory:
This theory is also referred to as the 'Strong Verb Origin Theory' by Tanaka (2011), and was put forth in 1848 by Jakob Grimm. Grimm coined the term 'praeteritopraesentia' and his very detailed work is the first attempt at reconstructing the preterite-present verbs. The claim is that all preterite-present verbs were originally strong verb preterites in PIE "where the preterite regains the sense of the present, and the original present is for the most part lost"(Randall \& Jones 2015, 139).

Grimm himself notes multiple issues with this theory. As I mentioned previously, some of the ablaut grades line up with the Germanic strong verbs, but
others do not. The preterite-presents that do not have ablaut grades also are problematic for this theory. The lack of ablaut alternation is attributed to irregularities within the ablauts but this explanation does not convince many scholars (Randall \& Jones 2015, 139). There are also several morphological features that the preterite-present has that strong verbs do not; for example, the preteritepresent creates a verbal adjective with a dental whereas strong verbs form "their past participles with the reflex of PGmc *-ana-" (Randall \& Jones, 2015, 139). This dental seems intuitive from a synchronic perspective - if we use the explanation that the past tense is formed like a weak verb, it is predictable, but that is not Grimm's explanation for how the verb came about historically and so cannot be used.

Grimm's theory is not currently the popular, supported theory in the literature. Tanaka (2011) and Birkmann (1987) - among others -- both have spoken out against it and support countertheories.

Perfect origin theory:

In his book, Birkmann supports the Perfect Origin theory (1987), along with many other scholars. While endorsement can occasionally be found for Grimm's theory or possible hybrids (see below), Perfect Origin is so widespread it has started to just be accepted as a given in literature (Randall and Jones 2015, 140).

The theory states that the origin of the preterite-present is in the PIE perfect. The Perfect Origin is removing a step and stating that the strong verbs developed parallel to the preterite-present class (Randall \& Jones, 2015, 140).

Perfect Origin theory has fewer problems than Grimm's, but it is not flawless or undisputed by all scholars.

Other theories:

Most other origin theories are small modifications of either Grimm's or the Perfect origin theory, making small changes to deal with the issues; examples are the theories advanced by Ringe (2007) and Meid (1971). But they are not so far that it puts them in different categories. One notable exception is a theory put forward by Tanaka (2011), where he posits that preterite-present verbs are neologisms introduced after PIE.

As mentioned previously, the DATR theory is a synchronic look at preteritepresent verbs. Where possible, I provide historical support, but it is not possible to efficiently model any of the historical theories in this test study; possibly with synchronic data this could change.

2.1.4 - Semantics

Semantics becomes crucial in the development of modern preterite-present verbs as a class. The table below contains the glosses for each verb.

Proto-GMC (Birkmann)	gloss	Old Norse	Modern Icelandic	Modern German	Modern English
*witan	'know'	vita	vita	wissen	
${ }^{\text {*munan }}$	'remember' 'want'	muna munu	muna munu		
*(ga)durzan	'dare'				
${ }^{*}$ kunnan	'know,' 'be	kunna	kunna	können	can
	able to'				

*dugan	'be suitable, good for'				
*magan	'can, be able to'	mega	mega	mögen 'may' vermögen 'can'	may
*aigan	'have,' 'must'	eiga	eiga		
* ögan	'be afraid'				
*lais	'know'				
*burban	'need, be necessary'	purfa	purfa	dürfen, bedürfen	
 ganah	'be permitted, allowed' 'suffice'				
*unnan	'love'	unna	unna		
*mōtan	'have to', 'be able to' 'be allowed'			müssen	must
*skulan	'have to'	skulu 'become'	skulu	sollen	shall
	'be able, can' 'know'	knega			
	'want'			wollen	will

Table 7 - Glosses, broken down by language (Birkmann 1987)

Among the initial set of preterite-present verbs, the majority have modal definitions; over time, in both German and English, the non-modal verbs fall away.

There are various theories about why, how, and when this began to happen (sources, including Lightfoot); they have been well explored elsewhere and are not relevant to repeat here. However, as a result of the majority of the semantics of preterite-presents looking like modal verbs, we have 'wellen' 'wollen' and 'will'
which are likely the only true innovation in the list. ${ }^{4}$ As previously referenced, these verbs are related to the Gothic 'wiljan,' which is a modal verb, but its stems and inflectional patterns do not follow the preterite-present pattern (Birkmann 1987, 117); however, in Old High German, the verb has taken on deponency of the preterite-presents, likely because it is a modal and the class of preterite-presents has at this point become associated with modal verbs (Birkmann 1987, 157). Old English does not adopt ‘willa’ as a preterite-present, and Middle English 'willen' does not follow the preterite-present pattern either; but modern English 'will/would' mimics the vestigial pattern of the other preterite-present modals in English, such as shall/should.

This means it is possible to add to the preterite-present group - though it is just the one root, it ended up adopting the preterite-present pattern in multiple languages. However, it happened because it was one of the only modals that was not a part of the group - that path probably won't be open again without semantic innovation on the part of the preterite-present class or the language. Additionally, the preterite-present verbs are becoming weaker and more scarce, not stronger, so that makes new members less likely.

Preterite-presents in modern English are not included in the DATR theory and are no longer true preterite-presents because they lack the criteria mentioned previously (ablaut, suffixes, and content-form mismatch/deponency), but their

[^3]history in this class is the reason for the atypical inflection pattern that is in Modern English today. The modals that we have are: can/could, may/might, must/-, shall/should, and will/would. We also have a subset of verbs sometimes called "quasi-models," which have some characteristics of of model verbs but not all of them -- ought, need, and dare are some examples of this and they have roots in preterite-presents as well (see table 7).

Old English sculan ‘shall/should’

	present	past
1SG	sceal	scolde
2SG	scealt	scoldest
3SG	sceal	scolde
PLURAL	sculon	scoldon

Table 8 - Old English skulan
For example, the Old English verb sculan. Modern English gets shall and should from $1 / 3$ sg present and $1 / 3$ sg past, respectively. With shall/should, the ablaut in the stem shows a small indication of the old preterite-present pattern. Obviously, they do not inflect anymore, and English modals have deviated semantically so they are not always merely present and past tense of each other, but that is how they started out.
2.2 - Deponency

The word deponency stems from the Latin deponere which means to 'lay aside' - a word has laid aside one function in favor of another (Stump 2016, 197). Latin deponent verbs are often used as the example in these cases.

	NORMAL VERB, 'RULE'	
active	passive	
PRS IND	regit	regitur
PRS INF	regere	regī
PRF InD	rēxit	rēctus est
PTCP PRF	--	rēctus
SUPINE	rēctum	--
PTCP PRS	regēns	--

Table 9 - Latin verb regere with a normal inflectional pattern

	DEPONENT VERB 'FOLLOW'	
	active	passive
PRS IND	sequitur	--
PRS INF	sequī	--
PRF IND	secūtus est	--
PTCP PRF	secūtus	--
SUPINE	secūtum	--
PTCP PRS	sequēns	--
Table 10 - Latin verb sequī with a deponent inflectional pattern, seen		

Table 10 - Latin verb sequī with a deponent inflectional pattern, seen by the empty passive cells
Essentially, the passives are being adopted and used in the active category, and "the normal function is no longer available" (Baerman 2007, 2). Because the passive forms are being used elsewhere, the passive cells in the paradigm are empty.

Deponency does not only occur in Latin however, we just borrow the name from it, and it does not just apply to active and passive mismatch, as can be seen with preterite-present verbs. Fundamentally, deponency is when there is contentform mismatch within the morphology based on inflectional categories (Stump 2016, 197). This leads to many types of deponency - in the case of preterite- present
verbs, the inflectional categories that are experiencing a mismatch are the preterite and the present, and the strong and the weak classes.

With preterite-present verbs, there is an additional interesting wrinkle. Verbs like Icelandic skulu 'shall, will' and icelandic munu 'shall, will, may' exhibit the expected deponent behavior, with the preterite of the strong verb taking the place of the present tense and the past cells in the paradigm remain empty:

MUNU 'SHALL, WILL, MAY' - PRET-PRES		
	pres	past
1SG	Mun	--
2SG	Munt	--
3SG	Mun	--
1PL	Munum	--
2PL	Munið	--
3PL	Munu	--
Table 11 - munu, Modern Icelandic. (Einarsson 1979)		

This is typical of deponency; as was seen in table 10, the passive was defunct; the same happens with the past in munu. However, most of the preterite-present verbs are not like this; they combine the strong and the weak classes into one paradigm in order to complete it. This is called heteroclisis ${ }^{5}$ and is sometimes paired with deponency to create a fully-productive paradigm. Baerman and Stump both address preterite-present verbs specifically in their discussions on this topic (Baerman 2007, 16-17; Stump 2016, 224-227).

[^4]
2.3 - Brief DATR Introduction

DATR is a programming language that was created by Gerald Gazdar and Roger Evans in the mid-80s - in 1991, it was introduced to Greville Corbett who began applying it to morphology and building the framework of Network Morphology around it. (Brown and Hippisley, 2012, xv-xvi) The language has changed very little since its birth. The 1996 paper by Evans and Gazdar, titled "A Language for Lexical Knowledge Representation," essentially serves as the formal documentation (the online version of the documentation has some supplementation from two other publications by Bill Keller 1995 and 1996 -http://www.datr.org.uk/). It is clear throughout the documentation that the primary users are linguists - however, it isn't purely used for morphology.

Network Morphology and DATR are linked, and DATR was the inspiration for Network Morphology - but there are still differences and conscious differentiation between the theory and the formalism, and this was not an accident: "First, we wish to focus on the linguistic insights, which are primary, rather than the formalism, which is second... Second, one of the criticisms levelled against some approaches to morphology (such as Word and Paradigm) is that they are too powerful...A key aim of Network Morphology is to identify a set of universal constraining principles of morphology." (Corbett and Fraser, 1993, 116).

I will not be focusing on Network Morphology, but only using DATR. This allows accessibility to multiple frameworks.

Paradigms can be generated more efficiently in other programming languages commonly used with languages, such as Perl or Python, but the code
would not have the same significance or yield linguistic insight. DATR represents the lexical items as an inheritance hierarchy - the commonalities are pushed to the top, and nodes can be borrowed from to eliminate redundancies and illustrate relationships between different categories that will be morphological in this theory.

Corbett and Fraser's 1993 work, Network Morphology: a DATR account of Russian nominal inflection, is a seminal work in the field. It deals largely with syncretism among Russian nouns - canonical deviations such as syncretism are something that are hard to reconcile in morpheme-based approaches and easily dealt with in DATR because of its inheritance structure. Syncretism is another type of content-form mismatch, like deponency.

There is an adaptation of DATR recently developed called KATR, which stands for Kentucky DATR, since it was developed at University of Kentucky - Finkel \& Stump explore this through Hebrew morphology, and detail what they view as usability improvements, as the theory is largely the same. Some of these innovations are allowing regular expressions, allows adjustment to Panini precedence when rules are of the same length so that one rule can be given precedence, allowing special characters, allowing nonsubtractive rules, and allowing the set notation of the paradigm signature to be shuffled $(2007,133)$. The ability to shuffle the set notation was the biggest innovation; in essence it brings the formalism closer to Paradigm Function Morphology which does not order set notation like Network Morphology does.

There has been work done already in the field on multilingual theories - they are not always specifically about DATR, but often about inheritance hierarchies. (Bateman and Sharoff, 1998; Tiberius 2002; Tiberius and Cahill 2000). There are five ways laid out by Tiberius to approach creating a multilingual hierarchy: nonparameterized, parameterized, micro-features, meta-features, and infinitesimal features models. The first two are most relevant to the data in this thesis (Tiberius 2002).

Non-parameterized models are made by taking all your individual languages and "creating a parallel hierarchy containing what the monolingual lexicons have in common." (Tiberius 2002, 702)

Table 12 - Non-paramaterized hierarchy (Tiberius 2002, 702)

Many large-scale and widely-distributed projects have used a non-parameterized model; for example, the PolyLex project (Cahill and Gazdar 1999) among others (Kameyma 1988; Kilgarriff et al. 1999).

In a parameterized model, on the other hand, "all the languages represented in the lexicon are integrated into a single hierarchy and language is used as a parameter to indicate which parts of the lexicon are valid for which languages" (Tiberius 2002, 703).

In some ways I mixed both of these models; language is a parameter in my code, but largely my model is non-parameterized based simply on practicality.

The PolyLex project was programmed using DATR and it was also used by Hippisley and Gazdar in a hierarchy project with Slavonic color terms (1999).

Chapter 3 - Languages, verbs, and their general properties

3.1 - Old Norse

Old Norse is a North Germanic language. Norse began to be distinct from the language spoken by other Germanic people around 100 CE. Old Norse was divided into three time periods: Primitive Norse, Viking Norse, and Literary Old Norse, Starting with the Viking Norse period, two major subregions are distinguished West and East Norse, subsuming Old Norwegian and Old Icelandic in the West and Old Swedish and Old Danish in the East. Old Icelandic texts are much more common than other subdialects and serve as the basis for Gordon's grammar (Gordon 1927: 245).

3.1.2 - Strong and Weak verbs

Formally, Old Norse is described as having seven strong verb classes and four weak verb classes. The variation between strong verb classes is within the stems, and often classified by the ablaut pattern; weak verbs are divided by stem, but not by ablaut. Both strong and weak verbs have the same suffixes across classes.

The ablaut pattern in Old Norse strong verbs occurs between the past singular and the past plural; the present tense has a different vowel as well. An example is líta 'look', a member of class I:

LíTA 'LOOK' - STRONG CLASS I		
	pres	past
1 SG	lít	leit
2 SG	lítr	leizt
3 SG	lítr	leit
1 PL	lítum	litum
2 PL	lítuす	lituす

Only class VI does not have this ablaut pattern in the past, but instead has it in the present

FARA 'GO, TRAVEL' - STRONG CLASS VI		
	pres	past
1SG	fer	fór
2SG	ferr	fórt
3sG	ferr	fór
1PL	förum	fórum
2PL	farið	fóruð
3PL	fara	fóru
Table 14-fara, old Norse (Byock 2013)		

The vowel change in the present 1 plural above is an automatic phonological change; such changes are not addressed in the DATR theory. Ablauts also occur in the present tense in class II, but the alternation remains in the past as well. With most of the classes, ablauts alone suffice to distinguish between them. However, class VII is a mixed bag and the verbs do not match. IV and V have identical ablaut alternations, however, so the difference between them is deeper -- Class IV usually has $<1, r, m, n>$ after the root vowel and class V usually has a single consonant following the root vowel (Byock 2013).

The strong verb suffixes are as follows:
infinitive < 3sg present, 3sg past, 3pl past, past participle> 'gloss'
I líta <lítr, leit, litu, litinn> 'look'
II bjóða <býðr, bauð, buðu, boðinn> 'offer, invite'

```
III verða <verðr, varð, urðu, orðinn>
IV bera <berr, bar, báru, borinn> 'carry'
V gefa <gefr, gaf, gáfu, gefinn> 'give'
VI fara<ferr, fór, fóru, farinn> 'go, travel'
VII ráða <ræðr, réð, réðu, ráðinn> 'advise, counsel; rule, govern; decide
Table 15 - Strong verb suffixes in Old Norse (Byock 2013).
```

 strong
 pres past
 | 1SG | - | - |
| :--- | :--- | :--- |
| 2SG | r | t |
| 3SG | r | - |
| 1PL | um | um |
| 2PL | ið | uð |
| 3PL | a | u |

Table 16 - Old Norse strong verb suffixes (Byock, 2013)
The weak classes do not divide based on stem ablaut or vowels in the stem; because of this, the DATR theory treats them as one class. Weak verbs add a dental suffix to indicate the past tense: $-d-$, $-t-$, or $-\bar{\sigma}$-. These are likely phonological derivations of the same underlying $-d$-.

The suffixes are as follows:

	Weak verbs:	
	pres	past
1SG	-	a
2SG	r	ir
3SG	r	i
1PL	um	um
2PL	ið	u
3PL	a	u
Table 17- Old Norse weak verb suffixes		

3.1.3 - Preterite-present

In Old Norse, the preterite-present verbs are: vita, eiga, unna, kunna, purfa, muna, munu, skulu, mega, and knega. All of these follow the canonical preterite-
present model and have standard deponency; however, there are a few irregularities. The first is not an irregularity with the model, but with the historical data - knega only appears in Old Norse, and does not have a complete paradigm. Because of this, I did not include it in the DATR theory.

Eiga and mega are irregular in that they do not mimic a specific strong class with their ablaut behavior. They still reflect the general strong pattern.

3.2 - Modern Icelandic

Old Norse is a direct ancestor of Icelandic, and because many of the Old Norse texts we have are written in the Old Icelandic dialect, they are very similar. The strong and weak verbs are remarkably similar in stem shape, with a few differences in suffixes; the preterite-presents show a few interesting deviations from Old Norse and the general preterite-present canonicity.

3.2.1 - Verbs

The strong verbs in Icelandic have identical ablaut variation in the stem to Old Norse and thus do not need to be discussed again. The suffixes vary slightly, and so are shown below.

	strong	weak	pret-pres
PRES 1SG	-	-	-
PRES 2SG	ur	ur	st/t
PRES 3SG	ur	ur	-
PRES 1PL	um	um	um
PRES 2PL	ið	ið	ið
PRES 3PL	a	a	a/u
PAST 1SG	-	i	i
PAST 2SG	st (-zt, -t, -)	ir	ir
PAST 3SG	-	i	i
PAST 1PL	um	um	um
PAST 2PL	uð	uð	uð
PAST 3PL	u	u	u

The suffixes in the present tense are identical between the strong and the weak verbs, and the plurals are the same everywhere.

An interesting thing is happening here with the preterite-present plural suffixes - with deponency, we expect the strong preterite to be in the present cells, but the present 2 plural and present 3 plural are reverting back to the non-deponent identity, the strong present suffixes, as opposed to the strong past. This discrepancy is highlighted in Table 18 above.

BÍTA ‘BITE' - STRONG CLASS 1		
	pres	past
1SG	bít	beit
2SG	bítur	beist
3SG	bítur	beit
1PL	bítum	bitum
2PL	bítið	bituð
3PL	bíta	bitu
Table 19	bita, Modern Icelandic (Einarsson 1987)	

VITA 'KNOW’ - PRET-PRES

	pres	past
1SG	veit	vissi
2SG	veist	vissir
3SG	veit	vissi
1PL	vitum	vissum
2PL	vitið	vissuð
3PL	vita	vissu
Table 20	vita,	Modern Icelandic (Einarsson 1987)

Table 20

The preterite-present verb vita aligns with strong class 1, getting both stems and suffixes from it, but reverts back to strong-present endings in past 2 plural and past 3 plural. However, this is only with the suffix; the stem remains borrowed from the strong-past, as we can see by the presence of the ablaut.

As mentioned in section 2.2, Icelandic verbs munu and skulu drop the heteroclisis, so there is no past tense at all. These are the only two verbs dealt with here that do this, and since both verbs were attested in Old Norse as having a fully productive paradigm, the past tense was dropped, not added.

3.3 - Modern German

Modern German is a West Germanic language, and so has followed a different language path than Old Norse and Icelandic. The preterite-present verbs found in modern German are: dürfen 'to be allow, be permitted'; bedürfen 'to need, require'; können 'can'; mögen 'may' 'to like'; vermögen 'to be able to, may'; müssen 'have to, must'; sollen 'should'; wissen 'to know, to be aware'; and wollen 'want.'

	strong	weak	pret-pres
pres 1sg	e	-	-
pres 2sg	st	st	st
pres 3sg	t	-	-
pres 1pl	en	en	en
pres 2pl	t	t	t
pres 3pl	en	en	en
past 1sg	-	-	-
past 2sg	st	st	st

past 3 sg	-	-	-
past 1 pl	en	n	n
past 2 pl	t	t	t
past 3 pl	en	n	n
Table 21 - German verb suffixes (Harris 1914)			

In modern German, the suffixes are evening out between the groups. The number and grouping of strong verbs varies within the literature and because the ablauts vary much more within the language, the strong verb classes are not nearly as helpful - they can group the most common patterns, but each class would only include a few dozen completely regular verbs at best, possibly less, depending on how finely the classes are divided up. Additionally, when different grammars each included a slightly different inflectional class system -- I chose to still use a class system for symmetry with the other languages. Most strong verbs fall into ten ablaut classes, if vowel length is not taken into account. ${ }^{6}$ If past participles are not taken into account either (and they are not relevant in this theory), it can be narrowed down to eight classes. This is what I base my classes off of in the DATR theory (Fagan 2009, 80)(Durrell 2002, 234).

Whether classes should be used in the German portion of the DATR is hard to say - it needs vowel overrides in most cases with the preterite-presents so it could be eliminated in the DATR without much difficulty and simultaneously reduce the size of the code. However, there is the other argument that keeping the classes does automatically generate some strong verbs, even if it is a small group of them it is better than none of them.

[^5]The weak verb forms the past tense with a -te- suffix, placed before the final suffix. I chose to include the <e> as part of the derivational past-tense suffix, despite what other German grammars have done, because the -te- shows up in Old Norse and Modern Icelandic as well, so this creates symmetry and the opportunity for borrowing in the DATR.

In modern German, the preterite-present verbs mirror the strong/weak suffixes consistently and as expected. The stems, however, are behaving a little differently.

BIEGEN 'BEND' - STRONG CLASS 2				
pres				past
1SG	biege	bog		
2SG	biegst	bogst		
3SG	biegt	bog		
1PL	biegen	bogen		
2PL	biegt	bogt		
3PL	biegen	bogen		
Table 22-biegen, German strong				

MÖGEN 'MAY' 'TO LIKE' - PRET-PRES		
	pres	past
1SG	mag	mochte
2SG	magst	mochtest
3SG	mag	mochte
1PL	mögen	mochten
2PL	mögt	mochtet
3PL \quad mögen	mochten	
Table 23- mögen, German pret-pres		

The strong verbs do not have the ablaut within the past tense between sg and pl , though it occasionally shows up in the present. This pattern is the same as it was in Old High German (Birkmann 1987, 131).

Chapter 4 - Methodology

Paradigms were collected from various sources, different grammars and linguistic textbooks and grammar websites and verified by speakers of the language when possible. Dr. Kristín M. Jóhannsdóttir consulted on the modern Icelandic and Dr. Mark Richard Lauersdorf consulted on the modern German paradigms.

The DATR theory is validated through a website called "Cats Claw," which was created by Dr. Raphael Finkel.

Understanding Basic DATR

There is some basic terminology to be aware of. A node is an individual segment of code, introduced in the following way:

Node_name:
Text text == text
Nodes are always capitalized. A leaf node is at the bottom where the lexemes are introduced and any final, lexical specific information added.

A path is in brackets <...> and tells the computer where to put and find information,

The inheritance structure of DATR is based around three major ideas: default inheritance, default inference, default orthogonal multiple inheritance.

	1	II	III	IV
Singular				
nominative	zakon	kart-a	tukop' is'	bolot-o
accusative	zakon	kart-u	rukop is'	bolot-o
gentitive	zakon-a	kast-i	rukop is '-i	bolot-a
dative	zakon-u	kart-c	rukop 'is'-i	bolot-u
instrumental	zakon-om	kart-oj	rukop' is'.ju	bolot-om
PREPOSITIONAL ${ }^{6}$	zakon-e	kart-e	rukop ' is'-i	bolot-e
Plural				
nominative	zakon-i	kart-i	rukop ' is 'i	bolot-a
accusative	zakon-i	kart-i	rukop 'is'-i	bolot-a
gentitive	zakon-ov	kart	rukop 'is'-ej	bolot
dative	zakon-am	kart-am	rukop 'is'-am	bolot-am
instrumental.	zakon-am'i	kart-am'i	rukop 'is'-am i	bolot-am'i
PrEPOSTIIONAL	zakoa-ax	kart-ax	rukop 'is'-ax	bolot-ax

Figure 2 - Russian nouns (Hippisley 2012, 30)
Default inheritance starts with the idea that there are generalizations that can be made at the very top of the hierarchy and applies to all nodes. As can be seen above, certain exponents can be applied across all noun classes, such as the plural dative, instrumental, and prepositional. The plural dative has an -am suffix, the instrumental has the -am`i suffix, and the prepositional carries the -ax suffix. DATR would place a generalization at the top node stating that prepositional plural datives == "stem" am, and likely, this would be made to be inherited by default by all other nodes. This is done with the syntax <> == node - this means that node inherits all the properties of the referenced node.

Default inheritance can be set up at any node, and can be used to express horizontal and vertical relationships within a paradigm (Hippisley 2012, 30-31).

Vertical similarities exist above in class I, between the nominative and the accusative. This could be easily dealt with in the following way

Node_I:

$$
\begin{aligned}
& \text { <nom sg> == "<stem>" } \\
& \text { <acc sg> == "<nom sg>" }
\end{aligned}
$$

It's also possible to reference something like this outside of the node - sort of a piecemeal inheritance. Looking at the class IV plural genitive, bolot, it has the same lack of a suffix. It might look something like this:

Node_IV:
<gen pl> == Node_I: "<nom sg>".

This has the same effect as <acc sg> == "<nom sg>" - they both reference the same point in the code and cell in the paradigm, but from different locations.

While the plural dative, instrumental, and prepositional nouns have the same inflection in all classes, there is some regularity that is not completely across the board. For example, look at the nominative plural. Three out of four of the noun classes share this exponent. Because default rather than mandatory inheritance is used, this can still be set-up as an inherited property that is overridden at class IV. Overrides are permitted and relied upon in this hierarchy, allowing it to easily capture semi-regularity (Hippisley 2012, 33).

In DATR, a node can inherit multiple other nodes:

Node3:

$$
\begin{aligned}
& <>==\text { Node } 1 \\
& <>==\text { Node } 2 .
\end{aligned}
$$

(Evans and Gazdar, 1996, 203)

This feature, orthogonal multiple inheritance or OMI, is an important feature in languages that model lexicons - for example, a transitive verb is a verb but another important aspect is that it requires an NP complement. So, it needs to inherit from nodes reflecting both of those things. (Evans and Gazdar 1996, 203)

This leads to the question, what to do with conflicts? DATR builds in a system to deal with this. The first is the idea that the longest path wins or overrules a shorter path. The next lies with nature of orthogonal relationships; you tend to only inherit a node if all the paths are disjoint, so this falls under the category of "logical consistency" (Evans and Gazdar, 1996, 203-4).

If overlapping must still occur, this is referred to as Prioritized Multiple Inheritance (PMI). It is not encouraged by Evans and Gazdar, who state that there is no linguistic descriptive or analytical advantage for this strategy, and that DATR was designed with orthogonal approaches in mind, not prioritized ones. (Evans and Gazdar 1996, 204)

The following is a statement regarding how to deal with conflicting paths:
"Precedence is given to nodes that come earlier in the ordering, so that the inherited
value for a property comes from the first parent node in the ordering that defines that property, regardless of whether other later nodes also define it (possibly differently)" (Evans and Gazdar 1996).

Multiple inheritance is something that I take advantage of at multiple crucial points in my DATR theory. I will go into more detail about this in my analysis.

Sometimes, to generalize it is as simple as leaving off attributes. For example, in the DATR code for the preterite-presents, the chosen order of attributes is <tense number person> -- this means I could generalize something like:
<present pl> == "<stem>" um
This would indicate that $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ person all have this same pattern, but in one line of code. However, what if I want to generalize this across the present and past tense (which I often do)? I can't simply leave it off, and I can't reorder the attributes in DATR. This is where variables come into play. They are indicated with a \$ symbol and need to be declared at the beginning of the document, along with all the possible options that can occur in that variable. So if I put:
<\$tense pl 1> == "<stem>" um, both present and past tense have this path. It should also be noted that paths can be labelled - sometimes it is as broad as beginning the path with <mor> vs <stem> or sometimes it is more specific like <suffix> or <stem>. I make extensive use of path labelling. This means you can have two nearly identical paths that yield different results.
<stem present pl 2> == "<root>"
<suffix present pl 2> == ið

Chapter 5 - Results

\#vars \$tense: present past.
\#vars \$pastmarker: t d ð.
Verb:

```
<> == <"<verbtype>">
<normal> == "<stem>" "<suffix>"
<pretpres present> == "<stem past>" "<suffix past>"
<pretpres past> == "<stem past>" "<suffix past>".
```

ON_Verb:

```
<> == Verb
<suffix $tense pl 1> == um
<suffix present pl 2> == ið
<suffix present pl 3> == a
<suffix past pl 2> == uð
<suffix past pl 3> == u.
```

German_verb:

```
<> == Verb
<suffix present sg 3> == t
<suffix past sg> ==
<suffix past sg 2> == st
<suffix present sg 2> == st
<suffix $tense pl 1> == en
<suffix $tense pl 2> == t
<suffix $tense pl 3> == en.
```

Icelandic_strong:
<> == ON_Verb $\%$ inherits directly from Old Norse,
with one override

```
<stem> == "<onset>" "<vowel>" "<coda>"
<suffix present pl 3> == a
<suffix present sg> == ur
<suffix $tense sg 1> ==
<suffix past sg 2> == st
<suffix past sg 3> == .
```

Icelandic_Weak:
<> == ON_Verb
<stem> == "<root>"
<stem past> == "<root>" d
\% <stem past> == "<root>" б
<suffix past sg> == i
<suffix past sg 2> == ir
<suffix present sg> == ur
<suffix present sg 1> ==.
Old_Norse_strong:
<> == ON_Verb
<stem> == "<onset>" "<vowel>" "<coda>"
<suffix present sg 1> ==
<suffix present sg> == r
<suffix past sg> ==
<suffix past sg 2> == t.
Old_Norse_weak:
<> == ON_Verb
<stem> == "<root>"
<stem past> == "<root>" d
<suffix present sg 1> == i
<suffix \$tense sg> == i r
<suffix past sg 1> == a
<suffix past sg 3> == i.
German_strong:
<> == German_verb
<suffix present sg 1> == e
<stem> == "<onset>" "<vowel>" "<coda>".
German_weak:
<> == German_verb
<stem> == "<root>"
<stem past> == "<root>" te
<suffix present sg 1>==e
<suffix past pl 1> == n
<suffix past pl 3>==n.
\%\%\%\%\%\%\%\%\%\%\%\%
Old_Norse_strong1:
<> == Old_Norse_strong
<vowel present> == í
<vowel past sg> == ei
<vowel past pl> == i.
Old_Norse_strong2:
<> == Old_Norse_strong
<vowel present sg> == ý
<vowel present pl> == jó
<vowel past sg> == au
<vowel past pl>==u.
Old_Norse_strong3:
<> == Old_Norse_strong
<vowel present> == e
<vowel past sg> == a
<vowel past pl> == u.
Old_Norse_strong4:
<> == Old_Norse_strong
<vowel present> == e
<vowel past sg> == a
<vowel past pl> == á.
Old_Norse_strong5:
<> == Old_Norse_strong
<vowel present> == e
<vowel past sg>==a
<vowel past pl> == á.
Old_Norse_strong6:
<> == Old_Norse_strong <vowel present sg> == e <vowel present pl> == a <vowel past> == ó.

Old_Norse_strong7:
<> == Old_Norse_strong.
Icelandic_strong1:
<> == Icelandic_strong
<vowel> == "Old_Norse_strong1".
$\% \%$ keeping these classes here for clarity
Icelandic_strong2:
<> == Icelandic_strong <vowel> == "Old_Norse_strong2".

Icelandic_strong3:
<> == Icelandic_strong <vowel> == "Old_Norse_strong3".

Icelandic_strong4: <> == Icelandic_strong

> <vowel> == "Old_Norse_strong4".

Icelandic_strong5:
<> == Icelandic_strong
<vowel> == "Old_Norse_strong5".
Icelandic_strong6:
<> == Icelandic_strong
<vowel> == "Old_Norse_strong6".
Icelandic_strong7:
<> == Icelandic_strong.
German_strong1:
<> == German_strong
<vowel present> == ei
<vowel past> == ie.
German_strong2:
<> == German_strong
<vowel present> == ie
<vowel past> == 0 .
German_strong3:
<> == German_strong <vowel present> == e <vowel past> == a.

German_strong4:
<> == German_strong
<vowel present> == i
<vowel past> == a.
German_strong5:
<> == German_strong <vowel present> == ei <vowel past> == i.

German_strong6:
<> == German_strong
<vowel present> == a <vowel past> == u.

German_strong7:
<> == German_strong
<vowel present> == e <vowel past> == o.

German_strong8:
<> == German_strong <vowel present> == a <vowel past> == ie.
\% $\%$ \% Preterite Present verbs -- Old Norse
Eiga:

$$
\begin{aligned}
& \text { <> == Old_Norse_strong } \\
& \text { <past> == "Eiga_weak" } \\
& \text { <verbtype> == pretpres } \\
& \text { <infinitive> == eiga } \\
& \text { <language> == old norse } \\
& \text { <gloss> == have, must } \\
& \text { <onset> == } \\
& \text { <coda> == g } \\
& \text { <coda past sg> == } \\
& \text { <vowel past sg> == á } \\
& \text { <vowel past pl> == ei } \\
& \text { <suffix past sg } 2>==\text { tt. }
\end{aligned}
$$

Eiga_weak:

$$
\begin{aligned}
& \text { <> == Old_Norse_weak } \\
& \text { <verbtype> == pretpres } \\
& \text { <gloss> == have, must } \\
& \text { <stem> == átt. }
\end{aligned}
$$

Mega:

$$
\begin{aligned}
& \text { <> == Old_Norse_strong } \\
& \text { <past> == "Mega_weak" } \\
& \text { <verbtype> == pretpres } \\
& \text { <infinitive> == mega } \\
& \text { <language> == old norse } \\
& \text { <gloss> == can, be able to } \\
& \text { <onset> == m } \\
& \text { <coda> == g } \\
& \text { <coda past sg> == } \\
& \text { <vowel past sg> == á } \\
& \text { <vowel past pl> == e } \\
& \text { <suffix past sg } 2>==\text { tt. }
\end{aligned}
$$

Mega_weak:
<> == Old_Norse_weak
<verbtype> == pretpres
<gloss> == can, be able to
<stem> $=$ mát t.

Skulu:
<> == Old_Norse_strong3
<past> == "Skulu_weak"
<verbtype> == pretpres
<infinitive> == skulu
<gloss> == shall
<language> == old norse
<onset> == s k
<coda> == l.
Skulu_weak:
<> == Old_Norse_weak
<verbtype> == pretpres
<gloss> == shall
<root> == s k y l.
Vita:

$$
\begin{aligned}
& \text { <> == Old_Norse_strong1 } \\
& \text { <past> == "Vita_weak" } \\
& \text { <verbtype> == pretpres } \\
& \text { <infinitive> == vita } \\
& \text { <gloss> == know } \\
& \text { <language> == old norse } \\
& \text { <onset> == v } \\
& \text { <coda> == t } \\
& \text { <stem pres sg 2> == v e i z. }
\end{aligned}
$$

Vita_weak:

```
<> == Old_Norse_weak
<verbtype> == pretpres
<gloss> == know
<root> == vi i s.
```

Kunna:
<> == Old_Norse_strong3
<past> == "Kunna_weak"
<verbtype> == pretpres
<infinitive> == kunna
<gloss> == be able to
<language> == old norse
<onset> == k
<coda> == n n.
Kunna_weak:
<> == Old_Norse_weak
<verbtype> == pretpres <gloss> == be able to <root> == k unn.

Muna:
<> == Old_Norse_strong3
<verbtype> == pretpres
<language> == old norse
<infinitive> == muna
<past> == "Muna_weak"
<gloss> == remember
<onset> == m
<coda> == n.
Muna_weak:
<> == Old_Norse_weak
<verbtype> == pretpres
<gloss> == remember
<root> == m u n.
Munu:
<> == Muna
<verbtype> == pretpres
<infinitive> == munu
<gloss> == will (probability)
<vowel past sg> ==u.
Thurfa:
<> == Old_Norse_strong3
<verbtype> == pretpres
<gloss> == need
<language> == old norse
<infinitive> == Purfa
<past> == "Thurfa_weak"
<onset> == P
<coda> = r f.

Thurfa_weak:
<> == Old_Norse_weak
<verbtype> == pretpres
<gloss> == need
<root> == burf.
\% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%
$\% \% \%$ Strong verbs -- Old Norse
Líta:

$$
\begin{aligned}
& \text { <> == Old_Norse_strong1 } \\
& \text { <verbtype> == normal } \\
& \text { <gloss> == look } \\
& \text { <infinitive> == líta } \\
& \text { <language> == old norse } \\
& \text { <onset> == l } \\
& \text { <coda> = t. }
\end{aligned}
$$

Bjóða:
<> == Old_Norse_strong2
<verbtype> == normal
<gloss> == offer, invite
<infinitive> == bjóða
<language> == old norse
<onset> == b
<coda> == ð
<stem past sg 2> == baut.
Verða:

$$
\begin{aligned}
& \text { <> == Old_Norse_strong3 } \\
& \text { <verbtype> == normal } \\
& \text { <gloss> == become } \\
& \text { <infinitive> == verða } \\
& \text { <language> == old norse } \\
& \text { <onset> == v } \\
& \text { <coda> == r ð } \\
& \text { <stem past pl> == u r ð. }
\end{aligned}
$$

Brenna:
<> == Old_Norse_strong3
<verbtype> == normal
<gloss> == burn
<infinitive> == brenna
<language> == old norse
<onset> == b r
<coda> == n n.

Bera:
<> == Old_Norse_strong4
<verbtype> == normal

```
<gloss> == carry
<infinitive> == bera
<language> == old norse
<onset> == b
<coda> == r.
```

Gefa:
<> == Old_Norse_strong5
<verbtype> == normal
<gloss> == give
<infinitive> == gefa
<language> == old norse
<onset> == g
<coda> = f .

Fara:
<> == Old_Norse_strong6
<verbtype> == normal
<gloss> == go, travel
<infinitive> == fara
<language> == old norse
<onset> == f
<coda> == r.

Fella:
<> == Old_Norse_weak
<verbtype> == normal
<gloss> == fell
<infinitive> == fella
<language> == old norse
<root> == fell.
\%\%\%\%\%\%\%\%\% \%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
\%\% preterite present verbs -- Icelandic
Eiga2:
<> == Icelandic_strong
<past> == "Eiga_weak2"
<verbtype> == pretpres
<infinitive> == eiga
<language> == icelandic
<gloss> == have, possess
<onset> ==
<coda> == g
<coda past sg> ==
<vowel past sg> == á
<vowel past pl> == ei
<suffix past sg 2> == tt
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
Eiga_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<gloss> == have, must
<stem> == átt.
Mega2:
<> == Icelandic_strong
<past> == "Mega_weak2"
<verbtype> == pretpres
<infinitive> == mega
<language> == icelandic
<gloss> == can, be able to, may
<onset> == m
<coda> == g
<coda past sg> ==
<vowel past sg> == á
<vowel past pl> == e
<suffix past sg 2> == tt
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
Mega_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<gloss> == can, be able to
<stem> $==\mathrm{m}$ á t .
Kunna2:

```
<> == Icelandic_strong3
<verbtype> == pretpres
<gloss> == may
<past> == "Kunna_weak2"
<language> == icelandic
<infinitive> == kunna
<onset> == k
<coda> == n n
<suffix past sg 2> == t
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
```


Kunna_weak2:

<> == Icelandic_Weak
<verbtype> == pretpres
<gloss> == may
<stem> == k u n n.

Muna2:
<> == Icelandic_strong3
<past> == "Muna_weak2"
<verbtype> == pretpres
<gloss> == may
<infinitive> == muna
<language> == icelandic
<onset> == m
<coda> == n
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
$\% \%$ it is reverting back to the present tense
Muna_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<gloss> == may
<root> == m u n.
Munu2:
<> == Icelandic_strong3
<verbtype> == pretpres
<gloss> == shall, will, may
<language> == icelandic
<infinitive> == muna
<vowel present sg> == u
<onset> == m
<coda> == n
<suffix past pl 2> == "<suffix present pl 2>"
<past> == "Munu_weak2".
Munu_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<stem> ==
<suffix> == .
\%no heteroclisis here to fill in the gaps in the past tense.
Skulu2:

```
<> == Icelandic_strong3
<verbtype> == pretpres
<past> == "Skulu_weak2"
<gloss> == shall, will
<language> == icelandic
<infinitive> == skulu
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past sg 2> == t
<onset> == s k
<coda> == l.
```

Skulu_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<stem> ==
<suffix> == .
Unna2:
<> == Icelandic_strong3
<verbtype> == pretpres
<past> == "Unna_weak2"
<gloss> == love
<language> == icelandic
<infinitive> == unna
<onset> ==
<coda> == n n
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
Unna_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<gloss> == love
<root> == unn.

Vita2:

```
<> == Icelandic_strong1
<verbtype> == pretpres
<past> == "Vita_weak2"
<gloss> == know
<language> == icelandic
<infinitive> == vita
<onset> == v
<coda> == t
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
```

Vita_weak2:

> <> == Icelandic_Weak
> <verbtype> == pretpres
> <gloss> == know
> <root> == vi i s.

Thurfa2:
<> == Icelandic_strong3
<verbtype> == pretpres
<past> == "Thurfa_weak2"
<gloss> == need, have to
<language> == icelandic
<infinitive> == Purfa
<onset> == P
<coda> = rf
<suffix past sg 2> == t
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
Thurfa_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<gloss> == need, have to
<root> == purf.
\%
\%\%\%\% Strong Icelandic

Bíta:
<> == Icelandic_strong1
<verbtype> == normal
<gloss> == bite
<infinitive> == bíta
<language> == icelandic
<onset> == b
$<$ coda> $=$ t.

Bjóða:
<> == Icelandic_strong2
<verbtype> == normal
<gloss> == offer, invite
<infinitive> == bjóða
<language> == icelandic
<onset> == b
<coda> == ð.

Bresta:

<> == Icelandic_strong3
<verbtype> == normal
<gloss> == break
<infinitive> == bresta
<language> == icelandic
<onset> == b r
<coda> == st
<suffix past sg 2> ==.

Bera2:
<> == Icelandic_strong4
<verbtype> == normal
<gloss> == bear, carry
<infinitive> == bera
<language> == icelandic
<onset> == b
<coda> == r.
Gefa2:

$$
\begin{aligned}
& \text { <> == Icelandic_strong5 } \\
& \text { <verbtype> == normal } \\
& \text { <gloss> == give } \\
& \text { <infinitive> == gefa } \\
& \text { <language> == icelandic } \\
& \text { <onset> == g } \\
& \text { <coda> == f. }
\end{aligned}
$$

Fara2:
<> == Icelandic_strong6
<verbtype> == normal
<gloss> == go, travel
<infinitive> == fara
<language> == icelandic
<onset> == f
<coda> == r.
Lifa:

$$
\begin{aligned}
& \text { <> == Icelandic_Weak } \\
& \text { <verbtype> == normal } \\
& \text { <gloss> == live } \\
& \text { <infinitive> == lifa } \\
& \text { <language> == icelandic } \\
& \text { <root> == l i f. }
\end{aligned}
$$

\%\%\%\%\%\%\%\%\%\%
\%\% pret-pres verbs -- German
Sollen:

```
<> == German_strong2
<past> == "Sollen_weak"
<verbtype> == pretpres
<infinitive> == sollen
<gloss> == should
<language> == modern german
<onset> == s
<coda> == l l.
```

Sollen_weak:

$$
\begin{aligned}
& \text { <> == German_weak } \\
& \text { <verbtype> == pretpres } \\
& \text { <gloss> == should } \\
& \text { <root> == s o ll. }
\end{aligned}
$$

Wollen:

$$
\begin{aligned}
& \text { <> == German_strong2 } \\
& \text { <past> == "Wollen_weak" } \\
& \text { <verbtype> == pretpres } \\
& \text { <infinitive> == wollen } \\
& \text { <gloss> == want } \\
& \text { <language> == modern german } \\
& \text { <onset> == w } \\
& \text { <coda> == ll } \\
& \text { <vowel pres sg> == i. }
\end{aligned}
$$

Wollen_weak:
<> == German_weak
<verbtype> == pretpres
<gloss> == want
<root> == w oll.
\%this one is similar to sollen
Konnen:

$$
\begin{aligned}
& \text { <> == German_strong3 } \\
& \text { <past> == "Konnen_weak" } \\
& \text { <verbtype> == pretpres } \\
& \text { <infinitive> == können } \\
& \text { <gloss> == can } \\
& \text { <language> == modern german } \\
& \text { <onset> = } \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { <coda> == n n } \\
& \text { <vowel pres pl> == ö. }
\end{aligned}
$$

Konnen_weak:

$$
\begin{aligned}
& \text { <> == German_weak } \\
& \text { <verbtype> == pretpres } \\
& \text { <gloss> == can } \\
& \text { <root> == k o n n. }
\end{aligned}
$$

Bedurfen:

$$
\begin{aligned}
& \text { <> == German_strong3 } \\
& \text { <past> == "Bedurfen_weak" } \\
& \text { <verbtype> == pretpres } \\
& \text { <gloss> == need } \\
& \text { <infinitive> == bedürfen } \\
& \text { <language> == modern german } \\
& \text { <onset> == b e d } \\
& \text { <coda> == r f } \\
& \text { <vowel present pl> == ü. }
\end{aligned}
$$

Bedurfen_weak:

```
<> == German_weak
<verbtype> == pretpres
<gloss> == need
<root> == b e d ürf.
```

Durfen:

```
<> == German_strong3
<past> == "Durfen_weak"
<verbtype> == pretpres
<gloss> == be allowed, permitted
<infinitive> == dürfen
<language> == modern german
<onset> == d
<coda> == rf
<vowel present pl> == ü.
```

Durfen_weak:

```
<> == German_weak
<verbtype> == pretpres
<gloss> == be allowed, permitted
<root> == d u r f.
```

Mogen:
<> == German_strong2
<past> == "Mogen_weak"
<verbtype> == pretpres
<infinitive> == mögen
<gloss> == may, to like
<language> == modern german
<onset> == m
<coda> == g
<vowel present pl> == ö.
Mogen_weak:
<> == German_weak
<verbtype> == pretpres
<gloss> == may, to like
<root> == m och.

Vermogen:

<> == German_strong2
<past> == "Vermogen_weak"
<verbtype> == pretpres
<infinitive> == vermögen
<gloss> == may, be able to
<language> == modern german
<onset> == verm
<coda> == g
<vowel present pl> == ö.
Vermogen_weak:
<> == German_weak
<verbtype> == pretpres
<gloss> == may, be able to <root> == vermoch.

Mussen:
<> == German_strong6
<past> == "Mussen_weak"
<verbtype> == pretpres
<infinitive> == müssen
<gloss> == have to, must
<language> == modern german
<onset> == m
<coda> == s s
<vowel present pl> == ü.
Mussen_weak:
<> == German_weak
<verbtype> == pretpres
<gloss> == have to, must <root> == m u s s.
\% \%
\%\%\%\%\% strong verbs
Treiben:

```
<> == German_strong1
<verbtype> == normal
<gloss> == drive
<infinitive> == treiben
<language> == modern german
<onset> == t r
<coda> == b.
```


Biegen:

```
<> == German_strong2
<verbtype> == normal
<gloss> == bend
<infinitive> == biegen
<language> == modern german
<onset> == b
<coda> == g.
```

Binden:

```
<> == German_strong3
<verbtype> == normal
<gloss> == bind, tie
<infinitive> == binden
<language> == modern german
<onset> == b
<coda> == n d.
```

Trinken:

```
<> == German_strong4
<verbtype> == normal
<gloss> == drink
<infinitive> == trinken
<language> == modern german
<onset> == t r
<coda> == n k.
```

Beiben:

$$
\begin{aligned}
& \text { <> == German_strong5 } \\
& \text { <verbtype> == normal } \\
& \text { <gloss> == give } \\
& \text { <infinitive> == beißen } \\
& \text { <language> == modern german } \\
& \text { <onset> == b } \\
& \text { <coda> == } 3 \\
& \text { <stem past> == biss. }
\end{aligned}
$$

Fahren:
<> == German_strong6
<verbtype> == normal
<gloss> == go
<vowel present sg 2> == ä
<vowel present sg 3> == ä
<infinitive> == fahren
<language> == modern german
<onset> = f
<coda> == h r .

Heben:
<> == German_strong7
<verbtype> == normal
<gloss> == lift
<infinitive> == heben
<language> == modern german
<onset> == h
<coda> == b.
Fallen:
<> == German_strong8
<verbtype> == normal
<gloss> == fall
<infinitive> == fallen
<language> == modern german
<onset> == f
<coda> == ll
<stem past> == fiel.
\%
\%\%\%\% weak verb
Folgen:
<> == German_weak
<verbtype> == normal
<gloss> == follow

```
<infinitive> == folgen
<language> == modern german
<root> == f olg.
```

\#show:
<infinitive>
<language>
<gloss>
<present sg 1>
<present sg 2>
<present sg 3>
<present pl 1>
<present pl 2>
<present pl 3>
<past sg 1>
<past sg 2>
<past sg 3>
<past pl 1>
<past pl 2>
<past pl 3>.
\#hide: Verb ON_Verb Icelandic_strong Icelandic_strong1 Icelandic_strong2 Icelandic_strong3 Icelandic_strong4 Icelandic_strong5 Icelandic_strong6 Icelandic_strong7 Icelandic_Weak Old_Norse_strong Old_Norse_strong1 Old_Norse_strong2 Old_Norse_strong3 Old_Norse_strong4 Old_Norse_strong5 Old_Norse_strong6 Old_Norse_strong7 Old_Norse_weak Skulu_weak Vita_weak Kunna_weak Muna_weak Thurfa_weak German_verb German_strong German_strong1 German_strong2 German_strong3 German_strong4 German_strong5 German_strong6 German_strong7 German_strong8 German_weak Sollen_weak Wollen_weak Konnen_weak Bedurfen_weak Mogen_weak Durfen_weak Vermogen_weak Mussen_weak Wissen_weak Muna_weak2 Munu_weak2 Skulu_weak2 Unna_weak2 Vita_weak2 Thurfa_weak2 Eiga_weak Mega_weak Eiga_weak2 Mega_weak2 Kunna_weak2.

Output:

```
Eiga <infinitive> eiga
Eiga <language> oldnorse
Eiga <gloss> have must
Eiga <present,sg,1> á
Eiga <present,sg,2> átt
Eiga <present,sg,3> á
```

```
Eiga <present,pl,1> eigum
Eiga <present,pl,2> eiguð
Eiga <present,pl,3> eigu
Eiga <past,sg,1> átta
Eiga <past,sg,2> áttir
Eiga < past,sg,3> átti
Eiga < past,pl,1> áttum
Eiga <past,pl,2> áttuð
Eiga <past,pl,3> áttu
Mega <infinitive> mega
Mega <language> oldnorse
Mega <gloss> can beableto
Mega <present,sg,1> má
Mega <present,sg,2> mátt
Mega <present,sg,3> má
Mega <present,pl,1> megum
Mega <present,pl,2> meguð
Mega <present,pl,3> megu
Mega <past,sg,1> mátta
Mega <past,sg,2> máttir
Mega <past,sg,3> mátti
Mega <past,pl,1> máttum
Mega <past,pl,2> máttuð
Mega <past,pl,3> máttu
Skulu <infinitive> skulu
Skulu <language> oldnorse
Skulu <gloss> shall
Skulu <present,sg,1> skal
Skulu <present,sg,2> skalt
Skulu <present,sg,3> skal
Skulu < present,pl,1> skulum
Skulu <present,pl,2> skuluð
Skulu <present,pl,3> skulu
Skulu <past,sg,1> skylda
Skulu <past,sg,2> skyldir
Skulu <past,sg,3> skyldi
Skulu <past,pl,1> skyldum
Skulu <past,pl,2> skylduð
Skulu <past,pl,3> skyldu
Vita <infinitive> vita
Vita <language> oldnorse
Vita <gloss> know
Vita < present,sg,1> veit
Vita <present,sg,2> veitt
Vita < present,sg,3> veit
Vita <present,pl,1> vitum
```

```
Vita <present,pl,2> vituð
Vita < present,pl,3> vitu
Vita < past,sg,1> vissda
Vita <past,sg,2> vissdir
Vita <past,sg,3> vissdi
Vita <past,pl,1> vissdum
Vita < past,pl,2> vissduð
Vita <past,pl,3> vissdu
Kunna <infinitive> kunna
Kunna <language> oldnorse
Kunna <gloss> beableto
Kunna <present,sg,1> kann
Kunna <present,sg,2> kannt
Kunna <present,sg,3> kann
Kunna <present,pl,1> kunnum
Kunna <present,pl,2> kunnuð
Kunna <present,pl,3> kunnu
Kunna <past,sg,1> kunnda
Kunna <past,sg,2> kunndir
Kunna <past,sg,3> kunndi
Kunna <past,pl,1> kunndum
Kunna <past,pl,2> kunnduð
Kunna <past,pl,3> kunndu
Muna <infinitive> muna
Muna <language> oldnorse
Muna <gloss> remember
Muna <present,sg,1> man
Muna <present,sg,2> mant
Muna <present,sg,3> man
Muna <present,pl,1> munum
Muna <present,pl,2> munuð
Muna <present,pl,3> munu
Muna <past,sg,1> munda
Muna <past,sg,2> mundir
Muna <past,sg,3> mundi
Muna <past,pl,1> mundum
Muna <past,pl,2> munduð
Muna <past,pl,3> mundu
Munu <infinitive> munu
Munu <language> oldnorse
Munu <gloss> will(probability)
Munu <present,sg,1> mun
Munu <present,sg,2> munt
Munu <present,sg,3> mun
Munu <present,pl,1> munum
Munu <present,pl,2> munuð
```

```
Munu <present,pl,3> munu
Munu <past,sg,1> munda
Munu <past,sg,2> mundir
Munu <past,sg,3> mundi
Munu <past,pl,1> mundum
Munu <past,pl,2> munduð
Munu <past,pl,3> mundu
Thurfa <infinitive> Purfa
Thurfa <language> oldnorse
Thurfa <gloss> need
Thurfa < present,sg,1> parf
Thurfa <present,sg,2> Parft
Thurfa <present,sg,3> Parf
Thurfa <present,pl,1> Purfum
Thurfa <present,pl,2> purfuð
Thurfa <present,pl,3> purfu
Thurfa <past,sg,1> purfda
Thurfa <past,sg,2> Purfdir
Thurfa <past,sg,3> Purfdi
Thurfa <past,pl,1> purfdum
Thurfa <past,pl,2> Purfduð
Thurfa <past,pl,3> Purfdu
Luedta <infinitive> líta
Luedta <language> oldnorse
Luedta <gloss> look
Luedta <present,sg,1> lít
Luedta <present,sg,2> lítr
Luedta <present,sg,3> lítr
Luedta <present,pl,1> lítum
Luedta < present,pl,2> lítið
Luedta <present,pl,3> líta
Luedta <past,sg,1> leit
Luedta <past,sg,2> leitt
Luedta <past,sg,3> leit
Luedta < past,pl,1> litum
Luedta <past,pl,2> lituð
Luedta <past,pl,3> litu
Bjuf3uf0a <infinitive> bjóða
Bjuf3uf0a <language> oldnorse
Bjuf3uf0a <gloss> offer invite
Bjuf3uf0a <present,sg,1> býð
Bjuf3uf0a <present,sg,2> býðr
Bjuf3uf0a <present,sg,3> býðr
Bjuf3uf0a <present,pl,1> bjóðum
Bjuf3uf0a <present,pl,2> bjóðið
Bjuf3uf0a <present,pl,3> bjóða
```

```
Bjuf3uf0a <past,sg,1> bauð
Bjuf3uf0a <past,sg,2> bautt
Bjuf3uf0a <past,sg,3> bauð
Bjuf3uf0a <past,pl,1> buðum
Bjuf3uf0a <past,pl,2> buðuð
Bjuf3uf0a < past,pl,3> buðu
Veruf0a <infinitive> verðа
Veruf0a <language> oldnorse
Veruf0a <gloss> become
Veruf0a <present,sg,1> verð
Veruf0a <present,sg,2> verðr
Veruf0a <present,sg,3> verðr
Veruf0a <present,pl,1> verðum
Veruf0a <present,pl,2> verðið
Veruf0a < present,pl,3> verða
Veruf0a <past,sg,1> varð
Veruf0a < past,sg,2> varðt
Veruf0a <past,sg,3> varð
Veruf0a <past,pl,1> urðum
Veruf0a <past,pl,2> urðuð
Veruf0a <past,pl,3> urðu
Brenna <infinitive> brenna
Brenna <language> oldnorse
Brenna <gloss> burn
Brenna <present,sg,1> brenn
Brenna <present,sg,2> brennr
Brenna < present,sg,3> brennr
Brenna <present,pl,1> brennum
Brenna <present,pl,2> brennið
Brenna <present,pl,3> brenna
Brenna <past,sg,1> brann
Brenna <past,sg,2> brannt
Brenna <past,sg,3> brann
Brenna <past,pl,1> brunnum
Brenna <past,pl,2> brunnuð
Brenna <past,pl,3> brunnu
Bera <infinitive> bera
Bera <language> oldnorse
Bera <gloss> carry
Bera <present,sg,1> ber
Bera <present,sg,2> berr
Bera < present,sg,3> berr
Bera <present,pl,1> berum
Bera <present,pl,2> berið
Bera <present,pl,3> bera
Bera <past,sg,1> bar
```

```
Bera <past,sg,2> bart
Bera <past,sg,3> bar
Bera <past,pl,1> bárum
Bera <past,pl,2> báruð
Bera <past,pl,3> báru
Gefa <infinitive> gefa
Gefa <language> oldnorse
Gefa <gloss> give
Gefa <present,sg,1> gef
Gefa <present,sg,2> gefr
Gefa <present,sg,3> gefr
Gefa <present,pl,1> gefum
Gefa <present,pl,2> gefið
Gefa <present,pl,3> gefa
Gefa <past,sg,1> gaf
Gefa <past,sg,2> gaft
Gefa <past,sg,3> gaf
Gefa <past,pl,1> gáfum
Gefa <past,pl,2> gáfuð
Gefa <past,pl,3> gáfu
Fara <infinitive> fara
Fara <language> oldnorse
Fara <gloss> go travel
Fara <present,sg,1> fer
Fara <present,sg,2> ferr
Fara < present,sg,3> ferr
Fara < present,pl,1> farum
Fara <present,pl,2> farið
Fara <present,pl,3> fara
Fara <past,sg,1> fór
Fara <past,sg,2> fórt
Fara < past,sg,3> fór
Fara <past,pl,1> fórum
Fara <past,pl,2> fóruð
Fara <past,pl,3> fóru
Fella <infinitive> fella
Fella <language> oldnorse
Fella <gloss> fell
Fella <present,sg,1> felli
Fella <present,sg,2> fellir
Fella <present,sg,3> fellir
Fella <present,pl,1> fellum
Fella <present,pl,2> fellið
Fella <present,pl,3> fella
Fella <past,sg,1> fellda
Fella <past,sg,2> felldir
```

```
Fella <past,sg,3> felldi
Fella <past,pl,1> felldum
Fella <past,pl,2> fellduð
Fella <past,pl,3> felldu
Eiga2 <infinitive> eiga
Eiga2 <language> icelandic
Eiga2 <gloss> have possess
Eiga2 <present,sg,1> á
Eiga2 <present,sg,2> átt
Eiga2 <present,sg,3> á
Eiga2 <present,pl,1> eigum
Eiga2 <present,pl,2> eigið
Eiga2 <present,pl,3> eiga
Eiga2 <past,sg,1> átti
Eiga2 <past,sg,2> áttir
Eiga2 <past,sg,3> átti
Eiga2 <past,pl,1> áttum
Eiga2 <past,pl,2> áttuð
Eiga2 <past,pl,3> áttu
Mega2 <infinitive> mega
Mega2 <language> icelandic
Mega2 <gloss> can beableto may
Mega2 <present,sg,1> má
Mega2 <present,sg,2> mátt
Mega2 <present,sg,3> má
Mega2 <present,pl,1> megum
Mega2 <present,pl,2> megið
Mega2 <present,pl,3> mega
Mega2 <past,sg,1> mátti
Mega2 <past,sg,2> máttir
Mega2 <past,sg,3> mátti
Mega2 <past,pl,1> máttum
Mega2 <past,pl,2> máttuð
Mega2 <past,pl,3> máttu
Kunna2 <infinitive> kunna
Kunna2 <language> icelandic
Kunna2 <gloss> may
Kunna2 <present,sg,1> kann
Kunna2 <present,sg,2> kannt
Kunna2 <present,sg,3> kann
Kunna2 <present,pl,1> kunnum
Kunna2 <present,pl,2> kunnið
Kunna2 <present,pl,3> kunna
Kunna2 <past,sg,1> kunni
Kunna2 <past,sg,2> kunnir
Kunna2 <past,sg,3> kunni
```

```
Kunna2 <past,pl,1> kunnum
Kunna2 <past,pl,2> kunnuð
Kunna2 <past,pl,3> kunnu
Muna2 <infinitive> muna
Muna2 <language> icelandic
Muna2 <gloss> may
Muna2 <present,sg,1> man
Muna2 <present,sg,2> manst
Muna2 <present,sg,3> man
Muna2 <present,pl,1> munum
Muna2 <present,pl,2> munið
Muna2 <present,pl,3> muna
Muna2 <past,sg,1> mundi
Muna2 <past,sg,2> mundir
Muna2 <past,sg,3> mundi
Muna2 <past,pl,1> mundum
Muna2 <past,pl,2> munduð
Muna2 <past,pl,3> mundu
Munu2 <infinitive> muna
Munu2 <language> icelandic
Munu2 <gloss> shall will may
Munu2 <present,sg,1> man
Munu2 <present,sg,2> manst
Munu2 <present,sg,3> man
Munu2 <present,pl,1> munum
Munu2 <present,pl,2> munið
Munu2 <present,pl,3> munu
Munu2 <past,sg,1>\emptyset
Munu2 <past,sg,2> \emptyset
Munu2 <past,sg,3> \emptyset
Munu2 <past,pl,1>\emptyset
Munu2 <past,pl,2>\emptyset
Munu2 <past,pl,3> \emptyset
Skulu2 <infinitive> skulu
Skulu2 <language> icelandic
Skulu2 <gloss> shall will
Skulu2 <present,sg,1> skal
Skulu2 <present,sg,2> skalt
Skulu2 <present,sg,3> skal
Skulu2 <present,pl,1> skulum
Skulu2 <present,pl,2> skulið
Skulu2 <present,pl,3> skulu
Skulu2 <past,sg,1>\emptyset
Skulu2 <past,sg,2> \emptyset
Skulu2 <past,sg,3>\emptyset
Skulu2 <past,pl,1>\emptyset
```

```
Skulu2 <past,pl,2> \emptyset
Skulu2 <past,pl,3> \emptyset
Unna2 <infinitive> unna
Unna2 <language> icelandic
Unna2 <gloss> love
Unna2 <present,sg,1> ann
Unna2 <present,sg,2> annst
Unna2 <present,sg,3> ann
Unna2 <present,pl,1> unnum
Unna2 <present,pl,2> unnið
Unna2 <present,pl,3> unna
Unna2 <past,sg,1> unndi
Unna2 <past,sg,2> unndir
Unna2 <past,sg,3> unndi
Unna2 <past,pl,1> unndum
Unna2 <past,pl,2> unnduð
Unna2 <past,pl,3> unndu
Vita2 <infinitive> vita
Vita2 <language> icelandic
Vita2 <gloss> know
Vita2 <present,sg,1> veit
Vita2 <present,sg,2> veitst
Vita2 <present,sg,3> veit
Vita2 <present,pl,1> vitum
Vita2 <present,pl,2> vitið
Vita2 <present,pl,3> vita
Vita2 <past,sg,1> vissdi
Vita2 <past,sg,2> vissdir
Vita2 <past,sg,3> vissdi
Vita2 <past,pl,1> vissdum
Vita2 <past,pl,2> vissduð
Vita2 <past,pl,3> vissdu
Thurfa2 <infinitive> Purfa
Thurfa2 <language> icelandic
Thurfa2 <gloss> need haveto
Thurfa2 <present,sg,1> Parf
Thurfa2 <present,sg,2> Parft
Thurfa2 <present,sg,3> Parf
Thurfa2 <present,pl,1> Purfum
Thurfa2 <present,pl,2> Purfið
Thurfa2 <present,pl,3> Purfa
Thurfa2 <past,sg,1> purfdi
Thurfa2 <past,sg,2> purfdir
Thurfa2 <past,sg,3> purfdi
Thurfa2 <past,pl,1> purfdum
Thurfa2 <past,pl,2> purfduð
```

```
Thurfa2 <past,pl,3> purfdu
Buedta <infinitive> bíta
Buedta <language> icelandic
Buedta <gloss> bite
Buedta <present,sg,1> bít
Buedta <present,sg,2> bítur
Buedta <present,sg,3> bítur
Buedta <present,pl,1> bítum
Buedta <present,pl,2> bítið
Buedta <present,pl,3> bíta
Buedta <past,sg,1> beit
Buedta <past,sg,2> beitst
Buedta <past,sg,3> beit
Buedta <past,pl,1> bitum
Buedta <past,pl,2> bituð
Buedta <past,pl, 3> bitu
Bresta <infinitive> bresta
Bresta <language> icelandic
Bresta <gloss> break
Bresta <present,sg,1> brest
Bresta <present,sg,2> brestur
Bresta <present,sg,3> brestur
Bresta <present,pl,1> brestum
Bresta <present,pl,2> brestið
Bresta <present,pl,3> bresta
Bresta <past,sg,1> brast
Bresta <past,sg,2> brast
Bresta <past,sg,3> brast
Bresta <past,pl,1> brustum
Bresta <past,pl,2> brustuð
Bresta <past,pl,3> brustu
Bera2 <infinitive> bera
Bera2 <language> icelandic
Bera2 <gloss> bear carry
Bera2 <present,sg,1> ber
Bera2 <present,sg,2> berur
Bera2 <present,sg,3> berur
Bera2 <present,pl,1> berum
Bera2 <present,pl,2> berið
Bera2 <present,pl,3> bera
Bera2 <past,sg,1> bar
Bera2 <past,sg,2> barst
Bera2 <past,sg,3> bar
Bera2 <past,pl,1> bárum
Bera2 <past,pl,2> báruð
Bera2 <past,pl,3> báru
```

```
Gefa2 <infinitive> gefa
Gefa2 <language> icelandic
Gefa2 <gloss> give
Gefa2 <present,sg,1> gef
Gefa2 <present,sg,2> gefur
Gefa2 <present,sg,3> gefur
Gefa2 <present,pl,1> gefum
Gefa2 <present,pl,2> gefið
Gefa2 <present, pl,3> gefa
Gefa2 <past,sg,1> gaf
Gefa2 <past,sg,2> gafst
Gefa2 < past,sg,3> gaf
Gefa2 <past,pl,1> gáfum
Gefa2 <past,pl,2> gáfuð
Gefa2 <past,pl,3> gáfu
Fara2 <infinitive> fara
Fara2 <language> icelandic
Fara2 <gloss> go travel
Fara2 <present,sg,1> fer
Fara2 <present,sg,2> ferur
Fara2 <present,sg,3> ferur
Fara2 <present,pl,1> farum
Fara2 <present,pl,2> farið
Fara2 <present,pl,3> fara
Fara2 <past,sg,1> fór
Fara2 <past,sg,2> fórst
Fara2 <past,sg,3> fór
Fara2 <past,pl,1> fórum
Fara2 <past,pl,2> fóruð
Fara2 <past,pl,3> fóru
Lifa <infinitive> lifa
Lifa <language> icelandic
Lifa <gloss> live
Lifa < present,sg,1> lif
Lifa <present,sg, 2> lifur
Lifa <present,sg,3> lifur
Lifa <present,pl,1> lifum
Lifa < present,pl, \(2>\) lifið
Lifa <present, pl,3> lifa
Lifa <past,sg,1> lifdi
Lifa <past,sg,2> lifdir
Lifa <past,sg,3> lifdi
Lifa <past,pl,1> lifdum
Lifa < past,pl, 2> lifduð
Lifa <past,pl,3> lifdu
Sollen <infinitive> sollen
```

```
Sollen <language> moderngerman
Sollen <gloss> should
Sollen <present,sg,1> soll
Sollen <present,sg,2> sollst
Sollen <present,sg,3> soll
Sollen <present,pl,1> sollen
Sollen <present,pl, 2> sollt
Sollen <present,pl,3> sollen
Sollen <past,sg,1> sollte
Sollen <past,sg,2> solltest
Sollen <past,sg,3> sollte
Sollen <past,pl,1> sollten
Sollen <past,pl,2> solltet
Sollen <past,pl,3> sollten
Wollen <infinitive> wollen
Wollen <language> moderngerman
Wollen <gloss> want
Wollen <present,sg,1> woll
Wollen <present,sg,2> wollst
Wollen <present,sg,3> woll
Wollen <present,pl,1> wollen
Wollen < present,pl,2> wollt
Wollen <present,pl,3> wollen
Wollen <past,sg,1> wollte
Wollen <past,sg,2> wolltest
Wollen <past,sg,3> wollte
Wollen <past,pl,1> wollten
Wollen <past,pl,2> wolltet
Wollen <past,pl,3> wollten
Konnen <infinitive> können
Konnen <language> moderngerman
Konnen <gloss> can
Konnen <present,sg,1> kann
Konnen <present,sg,2> kannst
Konnen <present,sg,3> kann
Konnen <present,pl,1> kannen
Konnen <present,pl,2> kannt
Konnen <present,pl,3> kannen
Konnen <past,sg,1> konnte
Konnen <past,sg,2> konntest
Konnen <past,sg,3> konnte
Konnen <past,pl,1> konnten
Konnen <past,pl,2> konntet
Konnen <past,pl,3> konnten
Bedurfen <infinitive> bedürfen
Bedurfen <language> moderngerman
```

```
Bedurfen <gloss> need
Bedurfen <present,sg,1> bedarf
Bedurfen <present,sg,2> bedarfst
Bedurfen <present,sg,3> bedarf
Bedurfen <present,pl,1> bedarfen
Bedurfen <present,pl,2> bedarft
Bedurfen <present,pl,3> bedarfen
Bedurfen <past,sg,1> bedürfte
Bedurfen <past,sg,2> bedürftest
Bedurfen <past,sg,3> bedürfte
Bedurfen <past,pl,1> bedürften
Bedurfen <past,pl,2> bedürftet
Bedurfen <past,pl,3> bedürften
Durfen <infinitive> dürfen
Durfen <language> moderngerman
Durfen <gloss> beallowed permitted
Durfen < present,sg,1> darf
Durfen <present,sg,2> darfst
Durfen < present,sg,3> darf
Durfen <present,pl,1> darfen
Durfen < present,pl,2> darft
Durfen <present,pl,3> darfen
Durfen <past,sg,1> durfte
Durfen <past,sg,2> durftest
Durfen <past,sg,3> durfte
Durfen < past,pl,1> durften
Durfen <past,pl,2> durftet
Durfen <past,pl,3> durften
Mogen <infinitive> mögen
Mogen <language> moderngerman
Mogen <gloss> may tolike
Mogen <present,sg,1> mog
Mogen <present,sg,2> mogst
Mogen <present,sg,3> mog
Mogen <present,pl,1> mogen
Mogen <present,pl,2> mogt
Mogen <present,pl,3> mogen
Mogen <past,sg,1> mochte
Mogen <past,sg,2> mochtest
Mogen <past,sg,3> mochte
Mogen <past,pl,1> mochten
Mogen <past,pl,2> mochtet
Mogen <past,pl,3> mochten
Vermogen <infinitive> vermögen
Vermogen <language> moderngerman
Vermogen <gloss> may beableto
```

```
Vermogen <present,sg,1> vermog
Vermogen <present,sg,2> vermogst
Vermogen < present,sg,3> vermog
Vermogen < present,pl,1> vermogen
Vermogen <present,pl,2> vermogt
Vermogen < present,pl,3> vermogen
Vermogen <past,sg,1> vermochte
Vermogen <past,sg,2> vermochtest
Vermogen <past,sg,3> vermochte
Vermogen <past,pl,1> vermochten
Vermogen <past,pl,2> vermochtet
Vermogen <past,pl,3> vermochten
Mussen <infinitive> müssen
Mussen <language> moderngerman
Mussen <gloss> haveto must
Mussen <present,sg,1> muss
Mussen <present,sg,2> mussst
Mussen <present,sg,3> muss
Mussen < present,pl,1> mussen
Mussen <present,pl,2> musst
Mussen <present,pl,3> mussen
Mussen <past,sg,1> musste
Mussen <past,sg,2> musstest
Mussen <past,sg,3> musste
Mussen <past,pl,1> mussten
Mussen <past,pl,2> musstet
Mussen < past,pl,3> mussten
Treiben <infinitive> treiben
Treiben <language> moderngerman
Treiben <gloss> drive
Treiben <present,sg,1> treibe
Treiben <present,sg,2> treibst
Treiben <present,sg,3> treibt
Treiben <present,pl,1> treiben
Treiben <present,pl,2> treibt
Treiben <present,pl,3> treiben
Treiben <past,sg,1> trieb
Treiben <past,sg,2> triebst
Treiben <past,sg,3> trieb
Treiben <past,pl,1> trieben
Treiben <past,pl,2> triebt
Treiben <past,pl,3> trieben
Biegen <infinitive> biegen
Biegen <language> moderngerman
Biegen <gloss> bend
Biegen < present,sg,1> biege
```

```
Biegen <present,sg,2> biegst
Biegen <present,sg, \(3>\) biegt
Biegen <present,pl,1> biegen
Biegen <present,pl,2> biegt
Biegen <present,pl,3> biegen
Biegen <past,sg,1> bog
Biegen <past,sg,2> bogst
Biegen <past,sg,3> bog
Biegen <past,pl,1> bogen
Biegen <past,pl,2> bogt
Biegen <past,pl,3> bogen
Binden <infinitive> binden
Binden <language> moderngerman
Binden <gloss> bind tie
Binden <present,sg, \(1>\) bende
Binden <present,sg,2> bendst
Binden < present,sg,3> bendt
Binden < present,pl,1> benden
Binden <present,pl,2> bendt
Binden < present,pl,3> benden
Binden <past,sg, \(1>\) band
Binden <past,sg,2> bandst
Binden <past,sg,3> band
Binden <past,pl,1> banden
Binden <past,pl,2> bandt
Binden <past, pl, \(3>\) banden
Trinken <infinitive> trinken
Trinken <language> moderngerman
Trinken <gloss> drink
Trinken <present,sg, \(1>\) trinke
Trinken <present,sg,2> trinkst
Trinken <present,sg,3> trinkt
Trinken <present, pl,1> trinken
Trinken <present, pl, \(2>\) trinkt
Trinken <present, pl,3> trinken
Trinken <past,sg,1> trank
Trinken <past,sg,2> trankst
Trinken <past,sg,3> trank
Trinken <past, pl,1> tranken
Trinken <past, pl,2> trankt
Trinken <past,pl,3> tranken
Beiben <infinitive> beißen
Beiben <language> moderngerman
Beiben <gloss> give
Beiben <present,sg,1> beiße
Beiben <present,sg,2> beißst
```

Beiben < present,sg,3> beißt
Beiben < present,pl,1> beißen
Beiben <present,pl, $2>$ beißt
Beiben <present,pl,3> beißen
Beiben <past,sg,1> biss
Beiben <past,sg,2> bissst
Beiben <past,sg, $3>$ biss
Beiben <past,pl,1> bissen
Beiben <past,pl,2> bisst
Beiben <past,pl,3> bissen
Fahren <infinitive> fahren
Fahren <language> moderngerman
Fahren <gloss> go
Fahren <present,sg,1> fahre
Fahren <present,sg, $2>$ fährst
Fahren <present,sg,3> fährt
Fahren <present,pl,1> fahren
Fahren <present,pl,2> fahrt
Fahren <present, pl,3> fahren
Fahren <past,sg,1> fuhr
Fahren <past,sg,2> fuhrst
Fahren <past,sg,3> fuhr
Fahren <past, pl,1> fuhren
Fahren <past, pl,2> fuhrt
Fahren <past,pl,3> fuhren
Heben <infinitive> heben
Heben <language> moderngerman
Heben <gloss> lift
Heben <present,sg,1> hebe
Heben <present,sg,2> hebst
Heben <present,sg,3> hebt
Heben <present,pl,1> heben
Heben <present, pl,2> hebt
Heben <present, pl,3> heben
Heben <past,sg,1> hob
Heben <past,sg, 2> hobst
Heben <past,sg,3> hob
Heben <past, pl,1> hoben
Heben <past, pl,2> hobt
Heben <past,pl,3> hoben
Fallen <infinitive> fallen
Fallen <language> moderngerman
Fallen <gloss> fall
Fallen <present,sg,1> falle
Fallen <present,sg, $2>$ fallst
Fallen <present,sg,3> fallt

Fallen <present,pl,1> fallen
Fallen < present,pl, $2>$ fallt
Fallen <present,pl,3> fallen
Fallen <past,sg,1> fiel
Fallen <past,sg, $2>$ fielst
Fallen <past,sg, \gg fiel
Fallen <past,pl,1> fielen
Fallen <past,pl,2> fielt
Fallen <past,pl,3> fielen
Folgen <infinitive> folgen
Folgen <language> moderngerman
Folgen < gloss> follow
Folgen <present,sg,1> folge
Folgen <present,sg,2> folgst
Folgen <present,sg, $3>$ folgt
Folgen <present,pl,1> folgen
Folgen <present,pl,2> folgt
Folgen <present,pl,3> folgen
Folgen <past,sg, $1>$ folgte
Folgen <past,sg,2> folgtest
Folgen <past,sg,3> folgte
Folgen <past,pl,1> folgten
Folgen <past, pl,2> folgtet
Folgen <past,pl,3> folgten

The code is divided into two categories: strong and weak verbs. The top nodes are generalizations about both, and in sections beneath it, there are nodes labeled as either 'strong,' or 'weak.' For example, at the top, there is the following node that everything inherits from:

Verb:
<> == <"<verbtype>">
<normal> == "<stem>" "<suffix>"

Below, there are language specific verb nodes:
ON_Verb:
<> == Verb
...
German_Verb:
<> == Verb
...
Icelandic is identical to Old Norse on this level so lower levels inherit directly from the Old Norse node. From here, it divides into:

Old_Norse_strong:
<> == ON_Verb
...

Old_Norse_strong1:
<> == Old_Norse_strong
...
Old_Norse_weak:
<> == ON_Verb
...

And so on with all the classes and other languages. Then, at the preterite-present leaf nodes, they can inherit from the strong and the weak, making it unnecessary to formally create a new category for the preterite-presents, since they are essentially just made up of preexisting parts.

Inside the nodes, the paths are labelled by stem, suffix, or vowel - this allows greater control. In some cases the stem is irregular but the suffix is not, or vice versa. Sometimes only the stem vowel needs to be different. If it was simply <stem> with none of this granularity, then there would be greater redundancy. The vowel path is to address the ablauts, and morphosyntactic property sets can be appended to it.

Strong verb stems were created with <onset><vowel><coda> and weak verb stems were created with <root>. The reason for this was twofold; one, if a language has the preterite-present style ablaut alternation, it is in the strong verbs. Not all languages have it; German, as discussed, does not - it has ablaut alternation between past and present but not within strong past, contrasting the sg and pl. However, both Old Norse and Icelandic strong verbs do have this pattern while the weak verbs do not. In this case, breaking the strong verb into three parts is helpful to allow for small modifications, though the primary reason is to deal with the ablauts. The <root> is important instead of a <stem> because the root can be defined and then the past tense stem defined as:

```
<stem past> == "<root>" d
```

Or something similar to this. The root can be generalized and the past suffix doesn't need to be repeated multiple times.

The second reason is it is helpful to have a different way of stem creation between weak and strong so there is no confusion about which stem is which at the preterite-present lexical leaf nodes.

However, there is a downside to this method - because the ablauts and stems are so specific and granular, this makes it harder to make generalizations higher up in the hierarchy.

One further point about strong and weak verbs: all of the strong verbs have formal classes in the code, but though weak verbs do have classes, they are not present. This is because the classifications for weak verbs are not particularly based on the stems like the strong verbs, so the classes were not useful in this context.

6.1 - Innovations in DATR and insights from this DATR theory

Deponency has been modeled in DATR before (Brown \& Hippisley, 2012:
186-219) but not on a multilingual basis and not with preterite-present verbs specifically. The heteroclisis adds an additional complication because we are not just swapping the past and the present, we are combining the strong and weak inflectional classes. While this didn't push DATR to its limits, it is a new analysis.

The DATR theory provides an interesting look at the deponent verbs, including how overrides are dealt with. For example, in Icelandic:

Muna2:
<> == Icelandic_strong3
<past> == "Muna_weak2"

```
<verbtype> == pretpres
<gloss> == may
<infinitive> == muna
<language> == icelandic
<onset> == m
<coda> == n
<suffix past pl 2> == "<suffix present pl 2>"
<suffix past pl 3> == "<suffix present pl 3>".
```

Muna_weak2:
<> == Icelandic_Weak
<verbtype> == pretpres
<gloss> == may
<root> == m u n.

The bolded lines are where the paradigm is reverting back to the regular present, not preterite-present form.

Old Norse eiga is another interesting atypical example.

Eiga:

$$
\begin{aligned}
& \text { <> == Old_Norse_strong } \\
& \text { <past> == "Eiga_weak" } \\
& \text { <verbtype> == pretpres } \\
& \text { <infinitive> == eiga } \\
& \text { <language> == old norse } \\
& \text { <gloss> == have, must } \\
& \text { <onset> == } \\
& \text { <coda> == g } \\
& \text { <coda past sg> == } \\
& \text { <vowel past sg> == á } \\
& \text { <vowel past pl> == ei } \\
& \text { <suffix past sg } 2>==\text { tt. }
\end{aligned}
$$

Eiga_weak:

$$
\begin{aligned}
& \text { <> == Old_Norse_weak } \\
& \text { <verbtype> == pretpres } \\
& \text { <gloss> == have, must } \\
& \text { <stem> == átt. }
\end{aligned}
$$

Eiga has an alternate <coda> for the singular present, though it is coded as the past because it is drawing from the strong past. There is no matching class of eiga so all the vowels are defined at the leaf node, and a suffix override is present as well. In the present tense/weak class, instead of a root, it jumps to a stem to override the past tense marker that is stated in Old_Norse_weak because it isn't present in eiga:
<stem past> == "<root>" d

All German verbs but sollen require an additional line in their leaf node to create the ablaut:

Konnen:

> <> == German_strong3
> <past> == "Konnen_weak"
> <verbtype> == pretpres
> <infinitive> == können
> <gloss> == can
> <language> == modern german
> <onset> == k
> <coda> == n n
> <vowel pres pl> == ö.

At a higher level, the orthogonal multiple inheritance made Icelandic exceptionally easy to model, because of its similarity to Old Norse:

Icelandic_strong4:
<> == Icelandic_strong
<vowel> == "Old_Norse_strong4".
The vowel patterns are the same, but some of the suffixes are different
between the languages. Because I was able to inherit from Icelandic_strong and the vowels from the Old Norse strong class IV, no new code needed to be added for any of the strong verb classes, only at Icelandic_strong.

Deponency

The deponency was successfully defined at the topmost node, and some overrides were made further down where the deponency was not perfect. This supports my claim that these verbs are not irregular and that the deponency was successfully modeled without excessive overrides and extra code. Very little code needed to be added to model the preterite-present verb. Besides the code at the top, there did need to be an extra leaf node at the bottom for every preterite-present.

Things the model did not do well

Some generalizations which are obvious by simply glancing at the paradigms were not easily captured in this theory. For example, it is difficult to show the relationship between suffixes: for example, -ur and -r. While I broke my stems down quite a bit, this was still more than I was able to do so the code sees them as completely distinct and unrelated.

This three language DATR theory is proof that this could be expanded to more Germanic languages. In the future, I'd like to unify the model more and get at all the underlying forms so that small variations caused by phonological processes would not throw off larger generalizations. Additionally, the model is efficient, but there is still far more redundancy than I would like. Further testing would yield better practices. The fact that the set notation of DATR could not be shuffled was also very limiting and forced me into some awkward maneuvers - I do not believe the paradigm signatures of the verbs in these languages required a static order or that having a set order contributed to the formalism. In this vein, I will consider KATR for future work in this topic since it allows shuffling of the set notations.

Additionally, I'd like to delve deeper into the historical side of things, possibly including PIE verbs and having Proto-Germanic stems play a larger role. I think that allowing for more diachronic data could help reflect in reflecting a historical model; or it could be that when other languages are added the picture becomes clearer as well. Regardless, while I was able to create an efficient model of a modern synchronic inflectional system, it does not reflect the historical development which is something I will strive for in future work.

Abbreviations

PGmc - Proto-Germanic
PIE - Proto-Indo-European
OHG - Old High German
Got - Gothic
Prs - present
Ind - indicative

Inf - infinitive
Prf - perfect
Ptcp - participle

Bibliography:

Baerman, M., Corbett, G. G., Hippisley, A., \& Brown, D. (2007). Deponency and morphological mismatch. Oxford: Published for the British Academy by Oxford University Press.
Bammesberger, A. (1995). The Paradigm of Germanic *aih/aig-u- and Notes on Some Preterite-Present Verbs. NOWELE, 26(Aug), 57-.
Bateman, J., \& Sharoff, S. (1998). Multilingual Grammars and Multilingual Lexicons for Multilingual Text Generation. Paper presented at the In Multilinguality in the lexicon II, ECAI'98 Workshop 13.
http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.27.2431\&type=ab
Beygingarlýsing íslensks nútímamáls. (n.d.). Retrieved from http://bin.arnastofnun.is/
Birkmann, T. (1987). Präteritopräsentia: morphologische Entwicklungen einer Sonderklasse in den altgermanischen Sprachen.
Brown, D., \& Hippisley, A. (2012). Network morphology: A defaults-based theory of word structure. Cambridge: Cambridge University Press.
Byock, J. L. (2013). Viking language: learn Old Norse, runes, and Icelandic sagas/ Jesse L. Byock. Los Angeles: Jules William Press.
Conjugate German Verbs. (n.d.). Retrieved from https://deutsch.lingolia.com/en/grammar/conjugator
Corbett, G. G., \& Fraser, N. M. (1993). A DATR Account of Russian Nominal Inflection. Journal of Linguistics, 29(1), 113-142.
Durrell, M. (2002). Hammer's German grammar and usage (4th ed.). Chicago: Mcgraw-Hill.
Einarsson, S. (1979). Icelandic: Grammar, Texts, Glossary (8 ed.): The Johns Hopkins University Press.
Evans, R., \& Gazdar, G. (1996). DATR: A Language for Lexical Knowledge Representation. Paper presented at the Association for Compuational Linguistics.
Fagan, S. M. (2009). German: a linguistic introduction. Cambridge: Cambridge University Press.
Finkel, R. (n.d.). Cats Claw. Retrieved April 18, 2017, from https://www.cs.uky.edu/~raphael/linguistics/claw.html
Finkel, R., \& Stump, G. (2007). A Default Inheritance Hierarchy for Computing Hebrew Verb Morphology. Literary and Linguistic Computing, 22(2), 117-135.
Gordon, E. V., \& Taylor, A. R. (1957). An introduction to Old Norse. Oxford: Clarendon Press. Grimm, J. (1848) Geschichte der deutschen Sprache, Leipzig: Hirzel.
Harbert, W. (2007). The Germanic languages. Cambridge: Cambridge University Press.
Harris, C. (1914). A German Grammar. American Book Company.
Haugen, E. (1982). Scandinavian language structures: a comparative historical survey. Minneapolis: University of Minnesota Press.
Https://en.langenscheidt.com. (n.d.). Retrieved from https://en.langenscheidt.com
Keller, B. (1996) An evaluation semantics for DATR theories. COLING-96, 646-651.

Keller, B. (1995) DATR theories and DATR models. 33rd Annual Meeting of the Association for Computational Linguistics, 55-62.
Meid, W. (1971) Das germanische Praeteritum, Innsbruck: Institut f $€ u r$ Sprachwissenschaft der Universitat Innsbruck.
Randall, W., \& Jones, H. (2015). On the Early Origin of Germanic Preterite-Presents. Transactions of the Philological Society, 113(2), 137-176. doi:10.1111/1467968X. 12045
Ringe, D. (2006) From Proto-Indo-European to Proto-Germanic, Oxford: Oxford University Press.
Robinson, O. W. (2003). Old English and its closest relatives a survey of the earliest Germanic languages. Stanford, CA: Stanford Univ. Pr.
Stump, G. T. (2016). Inflectional paradigms: content and form at the syntax-morphology interface. Cambridge: Cambridge University Press.
Tanaka, T. (2011) A Morphological Conflation Approach to the Historical Development of the Germanic Preterite
Present Verbs: Old English, Proto-Germanic, and Proto-Indo-European, Fukuoka: HanaShoin.
Tiberius, C. (2002). How to build a multilingual inheritance-based lexicon. Paper presented at the The International Conference on Language Resources and Evaluation, Las Palmas, Spain.
Tiberius, C., \& Cahill, L. (2000). Incorporating metaphonemes in a multilingual lexicon. Paper presented at the Proceedings of the 18th conference on Computational linguistics Volume 2, Saarbr\&\#252;cken, Germany.
Wright, J. (1949). Grammar of the Gothic Language: Oxford University Press.

Vita

Education

B.A. in English Language and Linguistics at Brigham Young University

Professional Positions

Primary Instructor in the Linguistics Department University of Kentucky, 2016-2017

Teaching Assistant in the Linguistics Department University of Kentucky, 2015-2017

[^0]: ${ }^{1}$ This thesis addresses the indicative only because preterite-present verbs behave regularly in other categories.

[^1]: ${ }^{2}$ Some languages were eliminated based solely on the lack of data and complete paradigms. This was the case with Gothic, which is the best documented West Germanic language and has a lot of interesting patterns, but it has an extremely limited surviving data set.

[^2]: Table 2- PGmc Preterite-present verbs (Birkmann 1987; Bammesberger 1995)

[^3]: ${ }^{4}$ *knega is a preterite-present verb that only is attested in Old Norse, but there is little information about it; it could have been an innovation just in that region or it could have been present in Proto-Germanic (Birkmann 1987, 249)

[^4]: ${ }^{5}$ Heteroclisis is another morphological content-form mismatch that is defined by multiple inflectional classes occurring within one paradigm and acting upon one lexeme (Stump 2016: 184-185).

[^5]: ${ }^{6}$ Duden sorts them by frequency phonetically, then orthographically, but this causes a lot of overlap and I am interested in the orthography at this stage $(1984,127)$

