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ABSTRACT OF THESIS 

SPARSE DIRECT SOLUTION METHODS FOR CAPACITIVE EXTRACTION 

PROBLEMS ON CLOSELY-SPACED GEOMETRIES WITH HIGH ASPECT RATIOS 

 

The method of moment (MoM) [1] is a widely used method in electromagnetics to 

solve static and dynamic electromagnetic problems on varying geometries. However, in 

closely spaced geometries coupled with large aspect ratios, e.g. a large parallel plate capacitor 

with very small separation gap, the problem exhibits several challenges. Firstly, the close 

proximity of the field and source elements presents problems with convergence in numerical 

evaluations of the interactions between them. Secondly, the aspect ratio of the geometry gives 

an approximation whereby to far field points, the source contributions from locations that are 

far apart appear to cancel each other. This leads to high condition numbers in the system 

matrix. This thesis explores the potential solution to these problems as well as the application 

of modular fast and direct (MFD) [2] solver to expedite the solution of such problems. 

 

KEYWORDS: S-EFIE, GC Solver, Capacitance Extraction, MFD, AEFIEnH-S, 

Preconditioning 
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1 INTRODUCTION 

The method of moment (MoM) is a highly versatile method to solve static and dynamic 

electromagnetic problems due to its straightforward formulation. For example, in comparison 

with finite element method (FEM) [3], MoM does not require boundary truncation treatment like 

absorbing boundary condition [3] or perfectly matched layer [3] in open-boundary problems as 

the Green’s function treats this. Also, in 3-dimensional problems, MoM can be formulated on 

surface discretization whereas FEM requires volumetric discretization. It is also worth 

mentioning that MoM affords more flexibility in the choice of basis functions since the 

formulation is based on integral equations instead of differential equations, which limits the pool 

of basis functions to those that are differentiable in the domain. However, the fact that it relies on 

accounting for the effect of a source to field point through convolution with a Green’s function 

results in a matrix that is dense and therefore pose a problem on high memory usage to store the 

source to field interactions in the system matrix. A dense system matrix naturally implies that 

more computation time is spent on filling the matrix entries also. Thus, much research has been 

focused on mitigating these 2 problems. 

On the aspect of increasing memory savings, solutions to compress the system matrix has 

been introduced. Use of modular fast direct (MFD) analysis method to resolve the issue is an 

alternative. However, MFD only works well with well-conditioned system matrices. 

In this thesis, we focus on a 2 electrically isolated perfect electric conductor (PEC) 

capacitance computation problem where the geometry poses several challenges. Firstly, the 

conductors are very closely spaced and, secondly, the aspect ratio of the capacitor terminal largest 

edge to the terminal separation distance is high on the order of 5000 or more. 

The challenges that are immediately at hand are the evaluation of system matrix entries 

where the source and field locations are mutually adjacent or separated by a minuscule gap, and 

the poor matrix conditioning. The second challenge is a roadblock to the use of MFD to achieve 

the goals of compute time and memory savings. Whereas, the first problem was found to be too 

cost prohibitive in computation time that even with MFD, the solution is not practically usable. 

In this thesis, the first problem is handled with a of couple approaches; one extendable to 

allow quasi-static problem solution, and another which is strictly applicable to static problems 

only. In order to address the second problem, a preconditioning scheme is being attempted to 

address the poor conditioning of the system at high mesh density. 

  



2 

 

2 THEORY 

2.1 AEFIEnH-S Formulation 

AEFIEnH-S [4] is the augmented EFIE formulation [5]-[6] with a normal magnetic field 

constraint and a static charge subtraction from the formulation. 

2.1.1 EFIE 

This discussion shall begin with a simple derivation of the electric field integral equation 

approach using the equivalence surface current and extinction theories [7]. Given the following 

physical setup: 

 

 

Figure 1:Regions V1 and V2 have the same constitutive parameters. Surface S is an imaginary 

surface binding sources J2. 

Maxwell’s equations [1] in the frequency domain with a time dependence of 𝑒𝑖𝜔𝑡 are as 

follows: 

∇×𝐸⃗ (𝑟 )  =  −𝑀⃗⃗ (𝑟 ) − 𝑖𝜔𝜇𝐻⃗⃗ (𝑟 ) (1) 

∇×𝐻⃗⃗ (𝑟 )  =  𝐽 (𝑟 ) + 𝑖𝜔𝜀𝐸⃗ (𝑟 ) (2) 
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∇ ∙ 𝐸⃗ (𝑟 )  =
𝜌𝑒(𝑟 )

𝜀
 (3) 

∇ ∙ 𝐻⃗⃗ (𝑟 )  =
𝜌𝑚(𝑟 )

𝜇
 (4) 

and charge continuity equation, 

∇ ∙ 𝐽 (𝑟 ) = −𝑖𝜔𝜌𝑒(𝑟 ) (5) 

After the fact that magnetic current density and magnetic charge are not material, the terms 

𝑀⃗⃗ (𝑟 ) = 0 and 𝜌𝑚(𝑟 ) = 0. 

The Sommerfeld radiation condition [3] satisfied when electromagnetic waves propagate 

to great distances is as follows: 

lim
|𝑟 −𝑟 ′|→∞

|𝑟 − 𝑟 ′|(∇×𝐸⃗ (𝑟 ) +  𝑖𝑘𝑟̂×𝐸⃗ (𝑟 )) = 0 (6) 

This essentially relates that at great distances from the source of propagation the electric and 

magnetic fields relations approximate those of plane waves. 

The vector wave equation can be derived from Maxwell’s equations as follows: 

∇×(∇×𝐸⃗ (𝑟 )) = ∇×(−𝑀⃗⃗ (𝑟 ) − 𝑖𝜔𝜇𝐻⃗⃗ (𝑟 ))  

∇×∇×𝐸⃗ (𝑟 ) = −𝑖𝜔𝜇∇×𝐻⃗⃗ (𝑟 )  

∇×∇×𝐸⃗ (𝑟 ) = −𝑖𝜔𝜇(𝐽 (𝑟 ) + 𝑖𝜔𝜀𝐸⃗ (𝑟 ))  

∇×∇×𝐸⃗ (𝑟 ) − 𝑘2𝐸⃗ (𝑟 ) = −𝑖𝜔𝜇𝐽 (𝑟 ) (7) 

The Green’s function is a field response of a point source. 

𝐸⃗ (𝑟 ) =  −𝑖𝜔𝜇∭𝐽 (𝑟 ′) ∙ 𝐺̅(𝑟 , 𝑟 ′)𝑑𝑉′ (8) 

where 

𝐺̅(𝑟 , 𝑟 ′) = (𝐼⃡ +
∇∇

𝑘2
)
𝑒−𝑖𝑘|𝑟 −𝑟 ′|

4𝜋|𝑟 − 𝑟 ′|
 (9) 

is the dyadic Green’s function. It satisfies the Sommerfeld radiation condition and the expression 

is as follows [8]: 

lim
|𝑟 −𝑟 ′|→∞

|𝑟 − 𝑟 ′|(∇×𝐺̅(𝑟 , 𝑟 ′) +  𝑖𝑘𝑟̂×𝐺̅(𝑟 , 𝑟 ′)) = 0 (10) 

Given this notion, the Green’s function is expected to satisfy the vector wave equation as follows: 
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∇×∇×−𝑖𝜔𝜇∭𝐽 (𝑟 ′) ∙ 𝐺̅(𝑟 , 𝑟 ′)𝑑𝑉′ + 𝑘2𝑖𝜔𝜇∭𝐽 (𝑟 ′) ∙ 𝐺̅(𝑟 , 𝑟 ′)𝑑𝑉′

= −𝑖𝜔𝜇∭𝐽 (𝑟 ′) ∙ 𝐼 ̅ 𝛿(𝑟 − 𝑟 ′)𝑑𝑉′ 

 

∇×∇×𝐺̅(𝑟 , 𝑟 ′) − 𝑘2𝐺̅(𝑟 , 𝑟 ′) =  𝐼𝛿̅(𝑟 − 𝑟 ′) (11) 

If 𝐺̅(𝑟 , 𝑟 ′) is multiplied into (7), and 𝐸⃗ (𝑟 ) is multiplied into (11) and then (11) is subtracted from 

(7), the following expression results: 

∇×∇×𝐸⃗ (𝑟 ) ∙ 𝐺̅(𝑟 , 𝑟 ′) − ∇×∇×𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐸⃗ (𝑟 ) = −𝑖𝜔𝜇𝐽 (𝑟 )𝐺(𝑟 , 𝑟 ′) − 𝛿(𝑟 − 𝑟 ′)𝐸⃗ (𝑟 ) (12) 

When (12) is integrated over volume 𝑉1, the following expression is arrived at 

∭∇×∇×𝐸⃗ (𝑟 ) ∙ 𝐺̅(𝑟 , 𝑟 ′) − ∇×∇×𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐸⃗ (𝑟 )𝑑𝑉1

=∭−𝑖𝜔𝜇𝐽 (𝑟 )𝐺(𝑟 , 𝑟 ′) − 𝛿(𝑟 − 𝑟 ′)𝐸⃗ (𝑟 )𝑑𝑉1 

 

∭∇×∇×𝐸⃗ (𝑟 ) ∙ 𝐺̅(𝑟 , 𝑟 ′) − ∇×∇×𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐸⃗ (𝑟 )𝑑𝑉1 = 𝐸⃗ 1(𝑟 
′) − 𝐸⃗ (𝑟 ′) (13) 

where 

𝐸⃗ 1(𝑟 
′) =∭−𝑖𝜔𝜇𝐽 (𝑟 )𝐺(𝑟 , 𝑟 ′)𝑑𝑉1 (14) 

and 

𝐸⃗ (𝑟 ′) =∭𝛿(𝑟 − 𝑟 ′)𝐸⃗ (𝑟 )𝑑𝑉1 (15) 

In the above expression, 𝐸⃗ (𝑟 ′) is the total electric field in 𝑉1 and 𝐸⃗ 1(𝑟 
′) is the electric field in 𝑉1 

contributed by the source 𝐽 1(𝑟 ) in 𝑉1. The left-hand side of (13) may be changed using the 

following identity: 

∇ ∙ [𝐸⃗ (𝑟 )×∇×𝐺̅(𝑟 , 𝑟 ′) + ∇×𝐸⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′)]

= ∇×∇×𝐸⃗ (𝑟 ) ∙ 𝐺̅(𝑟 , 𝑟 ′) − ∇×∇×𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐸⃗ (𝑟 ) 
 

If the divergence theorem is then applied, the final left-hand side becomes the following: 

−∬[𝐸⃗ (𝑟 )×∇×𝐺̅(𝑟 , 𝑟 ′) + ∇×𝐸⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′)] ∙ 𝑛̂𝑑𝑆∞

−∬[𝐸⃗ (𝑟 )×∇×𝐺̅(𝑟 , 𝑟 ′) + ∇×𝐸⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′)] ∙ 𝑛̂𝑑𝑆 

 

Note that the normal vector 𝑛̂ points into the region 𝑉1, hence the above surface integral 

expressions are negated. The kernel of the first term integral in the left-hand side cancels out after 

substitution of the Sommerfeld radiation conditions into it as follows: 
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−∬[𝐸⃗ (𝑟 )×∇×𝐺̅(𝑟 , 𝑟 ′) + ∇×𝐸⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′)] ∙ 𝑛̂𝑑𝑆∞

= −∬[𝐸⃗ (𝑟 )×(−𝑖𝑘𝑟 ×𝐺̅(𝑟 , 𝑟 ′)) + (−𝑖𝑘𝑟 ×𝐸⃗ (𝑟 ))×𝐺̅(𝑟 , 𝑟 ′)] ∙ 𝑛̂𝑑𝑆∞ 

 

             = −∬[𝑖𝑘𝑟 ×𝐸⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′) − 𝑖𝑘𝑟 ×𝐸⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′)] ∙ 𝑛̂𝑑𝑆∞  

= 0                                                                                           

Thus, (13) can now be written as follows: 

−∬[𝐸⃗ (𝑟 )×∇×𝐺̅(𝑟 , 𝑟 ′) + ∇×𝐸⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′)] ∙ 𝑛̂𝑑𝑆 = 𝐸⃗ 1(𝑟 
′) − 𝐸⃗ (𝑟 ′)  

With vector identity manipulations, this expression can be changed to the following: 

∬𝑛̂ ∙ (𝐸⃗ (𝑟 )×(∇×𝐺̅(𝑟 , 𝑟 ′))) + 𝑛̂ ∙ ((∇×𝐸⃗ (𝑟 ))×𝐺̅(𝑟 , 𝑟 ′)) 𝑑𝑆 = −𝐸⃗ 1(𝑟 
′) + 𝐸⃗ (𝑟 ′)  

∬(∇×𝐺̅(𝑟 , 𝑟 ′)) ∙ (𝑛̂×𝐸⃗ (𝑟 )) + 𝑛̂ ∙ (−𝑖𝜔𝜇𝐻⃗⃗ (𝑟 )×𝐺̅(𝑟 , 𝑟 ′)) 𝑑𝑆 = −𝐸⃗ 1(𝑟 
′) + 𝐸⃗ (𝑟 ′)  

∬(∇×𝐺̅(𝑟 , 𝑟 ′)) ∙ (𝑛̂×𝐸⃗ (𝑟 )) + 𝐺̅(𝑟 , 𝑟 ′) ∙ (𝑛̂×−𝑖𝜔𝜇𝐻⃗⃗ (𝑟 )) 𝑑𝑆 = −𝐸⃗ 1(𝑟 
′) + 𝐸⃗ (𝑟 ′)  

It is recognized that 𝑛̂×𝐸⃗ (𝑟 ) is, by boundary condition, the surface magnetic current density 

−𝑀⃗⃗ 𝑠(𝑟 ), and 𝑛̂×−𝐻⃗⃗ (𝑟 ) is the surface electric current density −𝐽 𝑠(𝑟 ). Hence, the following 

expression is arrived at: 

∬(∇×𝐺̅(𝑟 , 𝑟 ′)) ∙ (−𝑀⃗⃗ 𝑠(𝑟 )) − 𝑖𝜔𝜇𝐺̅(𝑟 , 𝑟 
′) ∙ 𝐽 𝑠(𝑟 )𝑑𝑆 = −𝐸⃗ 1(𝑟 

′) + 𝐸⃗ (𝑟 ′)  

 −𝑖𝜔𝜇∬𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐽 𝑠(𝑟 ) 𝑑𝑆 + 𝐸⃗ 1(𝑟 
′) = 𝐸⃗ (𝑟 ′)  

It must be noted from the formulation thus far the vector 𝑟 ′ does not mean the coordinate vector 

of sources, but of an arbitrary field point in this case under study; i.e. any point in 𝑉1 or 𝑉2. The 

vector 𝑟  whilst also representing an arbitrary location vector in the setup is limited to be within 

the 𝑉1 region due to the volume limits of the integration. In the interest of minimizing confusion, 

the coordinate notations are exchanged. Therefore: 

−𝑖𝜔𝜇∬𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐽 𝑠(𝑟 
′)𝑑𝑆′ + 𝐸⃗ 1(𝑟 ) = 𝐸⃗ (𝑟 ) (16) 

Here, 𝐸⃗ 1(𝑟 ) is the electric field in 𝑉1 resulting from the sources in 𝑉1, 𝐽 𝑠(𝑟 ′) is the equivalent 

surface current density on the bounding surface 𝑆, where 𝑟 ′ indicates position vectors on the 

surface 𝑆. This equivalent surface current on the boundary 𝑆 satisfies the uniqueness of the field 
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generated by the sources in 𝑉2 on the boundary and outside it whilst extinguishing fields in 𝑉2. 

𝐸⃗ (𝑟 ) is the total field observed in 𝑉1. 

This concept can then be applied to a setup depicted in Figure 2. 

 

Figure 2:Surface S+ encloses volume V2 and surface S is the surface of the PEC. 

In this case, 𝐸⃗ 1(𝑟 ) is the electric field contributed by 𝑗 1 and is the incident electric field, 

𝐸⃗ 𝑖𝑛𝑐. When 𝐸⃗ 𝑖𝑛𝑐 impinges on the perfect electric conductor (PEC), a surface electric current 

density, 𝐽 𝑆, is induced on 𝑆. The effect of 𝐽 𝑆 in the 𝑉1 region can be generated by an equivalence 

surface current on 𝑆+ that is just large enough to bound surface 𝑆, which will be denoted 𝐽 𝑆𝑒𝑞, in 

place of 𝐽 𝑆. Expression (16) can be used in this context as follows: 

−𝑖𝜔𝜇∬𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐽 𝑆𝑒𝑞(𝑟 
′)𝑑𝑆+

′ + 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) = 𝐸⃗ (𝑟 )  

where 𝑟 ∈ 𝑆. 

In this case, the integral term is the scattered electric field, 𝐸⃗ 𝑠𝑐𝑎𝑡. The boundary condition 

on a PEC dictates that on 𝑆, 𝐸⃗ 𝑡(𝑟 ) = 0. Therefore, 𝐸⃗ 𝑠𝑐𝑎𝑡 𝑡(𝑟 ) = −𝐸⃗ 𝑖𝑛𝑐 𝑡(𝑟 ). Such an arrangement 

allows the PEC to be removed without affecting the field in 𝑉1. After the fact that 𝑆+ is very close 

to 𝑆, 𝐽 𝑆𝑒𝑞 is effectively 𝐽 𝑆. This is the EFIE formulation. Therefore, 

𝑖𝜔𝜇∬𝐺̅(𝑟 , 𝑟 ′) ∙ 𝐽 𝑆(𝑟 ′)𝑑𝑆′
𝑡

= 𝐸⃗ 𝑖𝑛𝑐 𝑡(𝑟 ) (17) 
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Note that this formulation is applicable to closed as well as open surfaces as long as no magnetic 

current density is present on the boundary; implying continuous tangential electric field across the 

boundary. 

The dynamic EFIE formulation in expanded form from (17) is as follows: 

𝑖𝜔𝜇∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′

𝑡

+
𝑖

𝜔𝜀
∬∇(∇′ ∙ 𝐽 𝑆(𝑟 

′)𝐺(𝑟 , 𝑟 ′)) 𝑑𝑆′
𝑡

= 𝐸⃗ 𝑖𝑛𝑐 𝑡(𝑟 ) (18) 

However, to express (18) in terms of the whole electric field instead of just its component that is 

tangential to the incident surface, it can be written as: 

𝑖𝜔𝜇𝑛̂×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′ +

𝑖

𝜔𝜀
𝑛̂×∬∇(∇′ ∙ 𝐽 𝑆(𝑟 

′)𝐺(𝑟 , 𝑟 ′)) 𝑑𝑆′ = 𝑛̂×𝐸⃗ 𝑖𝑛𝑐(𝑟 ) (19) 

where  

𝐺(𝑟 , 𝑟 ′) =  
𝑒−𝑖𝑘|𝑟 −𝑟 ′|

4𝜋|𝑟 − 𝑟 ′|
 (20) 

 

The charge continuity equation can be substituted into (19) and give: 

𝑖𝜔𝜇𝑛̂×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′ +

1

𝜀
𝑛̂×∬∇(𝜌𝑒(𝑟 

′)𝐺(𝑟 , 𝑟 ′))𝑑𝑆′ = 𝑛̂×𝐸⃗ 𝑖𝑛𝑐(𝑟 )  

𝑖𝑘𝑛̂×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′ + 𝑐𝑛̂×∬∇(𝜌𝑒(𝑟 ′)𝐺(𝑟 , 𝑟 

′))𝑑𝑆′ =
1

𝜂
𝑛̂×𝐸⃗ 𝑖𝑛𝑐(𝑟 )  

𝑖𝑘𝑛̂×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′ + 𝑐𝑛̂×∬𝜌𝑒(𝑟 ′)∇𝐺(𝑟 , 𝑟 

′)𝑑𝑆′ =
1

𝜂
𝑛̂×𝐸⃗ 𝑖𝑛𝑐(𝑟 ) (21) 

2.1.2 Charge Continuity 

In order to form the Augmented EFIE formulation, the charge continuity constraint (5) is 

also enforced in addition to (21). In the interest of improving the conditioning of the system 

matrix, constraint (5) is convolved with the Green’s function 𝐺(𝑟 , 𝑟 ′). Thus giving, 

∬𝐺(𝑟 , 𝑟 ′)∇ ∙ 𝐽 𝑆(𝑟 ′)𝑑𝑠′ + 𝑖𝜔∬𝐺(𝑟 , 𝑟 ′)𝜌𝑒(𝑟 ′)𝑑𝑠′ = 0 (22) 

2.1.3 𝒏̂ ∙ 𝑯⃗⃗⃗  Constraint 

The 𝑛̂ ∙ 𝐻⃗⃗  component of AEFIEnH-S is derived from (21) by taking its divergence: 

∇ ∙ (𝑖𝑘𝑛̂×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′) + ∇ ∙ (𝑐𝑛̂×∬∇(𝜌𝑒(𝑟 

′)𝐺(𝑟 , 𝑟 ′))𝑑𝑆′)

= ∇ ∙ (
1

𝜂
𝑛̂×𝐸⃗ 𝑖𝑛𝑐(𝑟 )) 
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−𝑖𝑘𝑛̂ ∙ (∇×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′) − 𝑐𝑛̂ ∙ (∇×∬∇(𝜌𝑒(𝑟 

′)𝐺(𝑟 , 𝑟 ′))𝑑𝑆′)

= −
1

𝜂
𝑛̂ ∙ (∇×𝐸⃗ 𝑖𝑛𝑐(𝑟 )) 

 

−𝑛̂ ∙ (∇×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′) = 𝑛̂ ∙ 𝐻⃗⃗ 𝑖𝑛𝑐(𝑟 )  

∬∇𝐺(𝑟 , 𝑟 ′) ∙ (𝑛̂×𝐽 𝑆(𝑟 
′))𝑑𝑆′ = 𝑛̂ ∙ 𝐻⃗⃗ 𝑖𝑛𝑐(𝑟 ) (23) 

Charge neutrality is also enforced on all electrically isolated surfaces. 

2.1.4 Static Extraction 

The -S component originated from a problem found where AEFIEnH yields high 

condition numbers at low frequencies for multiply connected geometries. As seen thus far, the 

AEFIE formulation used does not place a 𝑖𝑘 multiplier on the current density as in [5]-[6], but 

remains with the vector potential term of (21). The 𝑛̂ ∙ 𝐻⃗⃗  constraint is actually intended to counter 

the problem by constraining the current densities in the absence of the vector potential term of 

EFIE. However, it is also reported in [9] that the constraint has a null space on cases with 

multiply connected geometry. Therefore, uniqueness is not guaranteed and is manifested as high 

condition number. Close observation of the problem at frequencies approaching zero however 

indicates that the problem starts to resemble a static field problem. Therefore, to equalize the 

contribution from the charges on the scalar potential term with the current density on the vector 

potential term, the contribution from static charges are deducted from the system. 

As such, the incident electric field and charge density in the system are decomposed into 

dynamic and static components. The static incident electric field is denoted 𝐸⃗ 0
𝑖𝑛𝑐(𝑟 ) and is 

cancelled by a static scattered electric field 𝐸⃗ 0
𝑠𝑐𝑎𝑡(𝑟 ) at the PEC boundary that is generated by a 

static surface charge density on the PEC denoted as 𝜌0(𝑟 ′). Since this is a static field case, this 

phenomenon can be summarized by expression (21) with 𝑘 = 0, 𝜌𝑒(𝑟 
′) = 𝜌0(𝑟 ′), and 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) =

𝐸⃗ 0
𝑖𝑛𝑐(𝑟 ), thus giving: 

𝑐𝑛̂×∬𝜌0(𝑟 
′)∇𝐺0(𝑟 , 𝑟 

′)𝑑𝑆′ =
1

𝜂
𝑛̂×𝐸⃗ 0

𝑖𝑛𝑐(𝑟 ) (24) 

where 

𝐺0(𝑟 , 𝑟 
′) =

1

4𝜋|𝑟 − 𝑟 ′|
 (25) 

The ultimate intention is to have an expression that accounts for the current density that yields the 

dynamic scattered electric field to cancel the dynamic incident electric field 𝐸⃗ 𝑘
𝑖𝑛𝑐(𝑟 ) at the PEC 
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boundary as the excitation frequency diminishes. To this end, the total incident electric 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) 

field is expressed as: 

𝐸⃗ 𝑖𝑛𝑐(𝑟 ) = 𝑖𝑘𝐸⃗ 𝑘
𝑖𝑛𝑐(𝑟 ) + 𝐸⃗ 0

𝑖𝑛𝑐(𝑟 ) (26) 

In such an arrangement, as the excitation frequency diminishes (i.e., 𝑘 → 0) 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) ≈ 𝐸⃗ 0
𝑖𝑛𝑐(𝑟 ). 

The object is to have (21) solve for excitation 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) − 𝐸⃗ 0
𝑖𝑛𝑐(𝑟 ) on the right-hand side. Thus, 

(21) needs to have (24) deducted from it. Before this can be done, the charge density needs to be 

redefined as being constituted from static charge density, which yields the static scattered electric 

field to counter the static incident electric field on the PEC boundary, and dynamic charge density 

𝜌𝑘(𝑟 ′), which represent the moving charges that give rise to the charge continuity constraint in 

dynamic cases. Thus, 

𝜌𝑒(𝑟 
′) = 𝑖𝑘𝜌𝑘(𝑟 

′) + 𝜌0(𝑟 
′) (27) 

Much like the excitation, as frequency diminishes (i.e., 𝑘 → 0) 𝜌𝑒(𝑟 
′) ≈ 𝜌0(𝑟 

′). With these 

premises, (21) is rewritten as follows: 

𝑖𝑘𝑛̂×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′ + 𝑐𝑛̂×∬(𝑖𝑘𝜌𝑘(𝑟 

′) + 𝜌0(𝑟 
′))∇𝐺(𝑟 , 𝑟 ′)𝑑𝑆′

=
1

𝜂
𝑛̂×(𝑖𝑘𝐸⃗ 𝑘

𝑖𝑛𝑐(𝑟 ) + 𝐸⃗ 0
𝑖𝑛𝑐(𝑟 )) 

 

𝑛̂×∬𝐺(𝑟 , 𝑟 ′)𝐽 𝑆(𝑟 
′)𝑑𝑆′ + 𝑛̂×∬(𝑐𝜌𝑘(𝑟 

′))∇𝐺(𝑟 , 𝑟 ′)𝑑𝑆′

=
𝑛̂

𝑖𝑘𝜂
×𝐸⃗ 𝑖𝑛𝑐(𝑟 ) −

𝑛̂

𝑖𝑘
×∬𝑐𝜌0(𝑟 

′)∇𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 

(28) 

Note that the new representation of 𝜌𝑒(𝑟 ′) affects the charge continuity constraint (22) as follows: 

∬𝐺(𝑟 , 𝑟 ′)∇ ∙ 𝐽 𝑆(𝑟 
′)𝑑𝑠′ + 𝑖𝜔∬𝐺(𝑟 , 𝑟 ′)(𝑖𝑘𝜌𝑘(𝑟 ′) + 𝜌0(𝑟 

′))𝑑𝑠′ = 0  

∬𝐺(𝑟 , 𝑟 ′)∇ ∙ 𝐽 𝑆(𝑟 
′)𝑑𝑠′ +

𝑖𝜔

𝑐
∬𝐺(𝑟 , 𝑟 ′)(𝑖𝑘𝑐𝜌𝑘(𝑟 ′) + 𝑐𝜌0(𝑟 

′))𝑑𝑠′ = 0  

∬𝐺(𝑟 , 𝑟 ′)∇ ∙ 𝐽 𝑆(𝑟 ′)𝑑𝑠′ − 𝑘
2∬𝐺(𝑟 , 𝑟 ′)𝑐𝜌𝑘(𝑟 ′)𝑑𝑠′ = −𝑖𝑘∬𝑐𝜌0(𝑟 

′)𝐺(𝑟 , 𝑟 ′)𝑑𝑠′ (29) 

Thus, expressions (23), (28), (29) along with the charge neutrality constraints for each electrically 

isolated surface conclude the necessary constraints to construct the AEFIEnH-S system. 

2.1.5 Application of Method of Moment 

The method of moment is then used to solve for the current densities and dynamic 

charges. The subject geometry is first approximated with a mesh of 𝑁𝑡 triangles with each 

triangle denoted as 𝑇𝑛 where 𝑛 = 1,2,… , 𝑁𝑡. In this approximate geometry, 𝑁𝑒 internal edges are 
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defined. An internal edge is defined as an edge that is shared by a pair of triangles.  𝐽 𝑆(𝑟 ) is 

approximated by a summation of RWG [10] basis functions. RWG functions are defined for 

internal edges that are shared by a couple of triangles. One of the triangles in the triangle pair is 

designated as the positive triangle, 𝑇𝑛
+, and the other designated the negative triangle, 𝑇𝑛

−. There 

is 1 free vertex associated with each of the triangles in the pair and is the triangle vertex that is 

not shared with the other triangle in the pair; designated 𝑟 𝑛
+ and 𝑟 𝑛

− for the positive triangle free 

vertex and negative triangle free vertex respectively. The formal definition of a RWG function, 

𝑓 𝑛(𝑟 ), is as follows: 

𝑓 𝑛(𝑟 ) =

{
 
 

 
 
𝑒𝑛(𝑟 − 𝑟 𝑛

+)

2𝐴𝑛
+ , 𝑟 ∈ 𝑇𝑛

+

𝑒𝑛(𝑟 𝑛
− − 𝑟 )

2𝐴𝑛
− , 𝑟 ∈ 𝑇𝑛

−

0, elsewhere

 (30) 

𝐽 𝑆(𝑟 
′) ≈  ∑ 𝑗𝑛𝑓 𝑛(𝑟 ′)

𝑁𝑒

𝑛=1
 (31) 

where 𝑒𝑛 is the length of internal edge 𝑛 = 1,2, … ,𝑁𝑒. 𝜌𝑒(𝑟 ′) shall be approximated with a 

summation of subdomain pulse basis functions, ℎ𝑛(𝑟 ), defined as: 

ℎ𝑛(𝑟 ) = {
 
1

𝐴𝑛
, 𝑟 ∈ 𝑇𝑛

0, 𝑟 ∉ 𝑇𝑛

 (32) 

𝜌𝑒(𝑟 ′) ≈ ∑𝑞𝑛ℎ𝑛(𝑟 
′)

𝑁𝑡

𝑛=1

 (33) 

𝑞𝑛 is therefore the total charge in 𝑇𝑛. 

The constraints are then tested with a set of test functions to yield a set of linear algebraic 

equations. If 𝑊(𝑟 ) and 𝑋(𝑟 ) are scalar functions where 𝑊(𝑟 ) is the test or weighting function 

and 𝑋(𝑟 ) is the basis function, the testing procedure is defined as  

〈𝑊(𝑟 ), 𝑋(𝑟 )〉 =  ∬𝑊(𝑟 )𝑋(𝑟 )𝑑𝑆 (34) 

If the test and basis functions are vector functions, the procedure is as follows: 

〈𝑊⃗⃗⃗ (𝑟 ), 𝑋 (𝑟 )〉 =  ∬ 𝑊⃗⃗⃗ (𝑟 ) ∙ 𝑋 (𝑟 )𝑑𝑆 (35) 

The EFIE constraint is tested with 𝑁𝑒 RWG functions, the charge continuity constraint is tested 

with 𝑁𝑡 pulse basis functions, and the 𝑛̂ ∙ 𝐻⃗⃗  constraint is tested with 𝑁𝑒 divergence of the Buffa-

Christiansen(BC) [11] functions which is denoted as 𝑓 𝑚
𝑏(𝑟 ). The charge neutrality constraint is 
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not tested and is simply a function indicating that the sum of charges on an electrically isolated 

surface total to zero. Hence, the following expressions result: 

∬(𝑛̂×𝑓 𝑚(𝑟 )) ∙ (𝑛̂×∬𝐺(𝑟 , 𝑟 ′)∑ 𝑗𝑛𝑓 𝑛(𝑟 
′)

𝑁𝑒

𝑛=1

𝑑𝑆′)𝑑𝑆

+∬(𝑛̂×𝑓 𝑚(𝑟 )) ∙ (𝑛̂×∬𝑐∑𝑞𝑘𝑛ℎ𝑛(𝑟 
′)

𝑁𝑡

𝑛=1

∇𝐺(𝑟 , 𝑟 ′)𝑑𝑆′)𝑑𝑆

=
1

𝑖𝑘𝜂
∬(𝑛̂×𝑓 𝑚(𝑟 )) ∙ (𝑛̂×𝐸⃗ 

𝑖𝑛𝑐(𝑟 )) 𝑑𝑆

−
1

𝑖𝑘
∬(𝑛̂×𝑓 𝑚(𝑟 )) ∙ (𝑛̂×∬𝑐∑𝑞0𝑛ℎ𝑛(𝑟 

′)

𝑁𝑡

𝑛=1

∇𝐺(𝑟 , 𝑟 ′)𝑑𝑆′)𝑑𝑆 

 

∬𝑓 𝑚(𝑟 ) ∙∬𝐺(𝑟 , 𝑟 ′)∑ 𝑗𝑛𝑓 𝑛(𝑟 
′)

𝑁𝑒

𝑛=1

𝑑𝑆′ 𝑑𝑆

+∬𝑓 𝑚(𝑟 ) ∙ ∬𝑐∑𝑞𝑘𝑛ℎ𝑛(𝑟 
′)

𝑁𝑡

𝑛=1

∇𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆

=
1

𝑖𝑘𝜂
∬𝑓 𝑚(𝑟 ) ∙ 𝐸⃗ 

𝑖𝑛𝑐(𝑟 )𝑑𝑆

−
1

𝑖𝑘
∬𝑓 𝑚(𝑟 ) ∙∬𝑐∑𝑞0𝑛ℎ𝑛(𝑟 

′)

𝑁𝑡

𝑛=1

∇𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆 

 

∬𝑓 𝑚(𝑟 ) ∙∬𝐺(𝑟 , 𝑟 ′)∑ 𝑗𝑛𝑓 𝑛(𝑟 
′)

𝑁𝑒

𝑛=1

𝑑𝑆′ 𝑑𝑆

−∬∇ ∙ 𝑓 𝑚(𝑟 )∬𝑐∑𝑞𝑘𝑛ℎ𝑛(𝑟 
′)

𝑁𝑡

𝑛=1

𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆

=
1

𝑖𝑘𝜂
∬𝑓 𝑚(𝑟 ) ∙ 𝐸⃗ 

𝑖𝑛𝑐(𝑟 )𝑑𝑆

+
1

𝑖𝑘
∬∇ ∙ 𝑓 𝑚(𝑟 )∬𝑐∑𝑞0𝑛ℎ𝑛(𝑟 

′)

𝑁𝑡

𝑛=1

𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆 
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∑𝑗𝑛

𝑁𝑒

𝑛=1

∬𝑓 𝑚(𝑟 ) ∙∬𝐺(𝑟 , 𝑟 ′)𝑓 𝑛(𝑟 
′)𝑑𝑆′ 𝑑𝑆

−∑ 𝑐𝑞𝑘𝑛

𝑁𝑡

𝑛=1

∬∇ ∙ 𝑓 𝑚(𝑟 )∬ℎ𝑛(𝑟 
′)𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆

=
1

𝑖𝑘𝜂
∬𝑓 𝑚(𝑟 ) ∙ 𝐸⃗ 

𝑖𝑛𝑐(𝑟 )𝑑𝑆

+
1

𝑖𝑘
∑ 𝑐𝑞0𝑛

𝑁𝑡

𝑛=1

∬∇ ∙ 𝑓 𝑚(𝑟 )∬ℎ𝑛(𝑟 
′)𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆 

(36) 

∬ℎ𝑚(𝑟 )∬𝐺(𝑟 , 𝑟 ′)∇ ∙ ∑ 𝑗𝑛𝑓 𝑛(𝑟 
′)

𝑁𝑒

𝑛=1

𝑑𝑆′ 𝑑𝑆

− 𝑘2∬ℎ𝑚(𝑟 )∬𝐺(𝑟 , 𝑟 ′)𝑐∑ 𝑞𝑘𝑛ℎ𝑛(𝑟 
′)

𝑁𝑡

𝑛=1

𝑑𝑆′ 𝑑𝑆

= −𝑖𝑘∬ℎ𝑚(𝑟 )∬𝑐∑𝑞0𝑛ℎ𝑛(𝑟 
′)

𝑁𝑡

𝑛=1

𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆 

 

∑𝑗𝑛

𝑁𝑒

𝑛=1

∬ℎ𝑚(𝑟 )∬𝐺(𝑟 , 𝑟 ′)∇ ∙ 𝑓 𝑛(𝑟 
′)𝑑𝑆′ 𝑑𝑆

− 𝑘2∑𝑐𝑞𝑘𝑛

𝑁𝑡

𝑛=1

∬ℎ𝑚(𝑟 )∬𝐺(𝑟 , 𝑟 ′)ℎ𝑛(𝑟 
′)𝑑𝑆′ 𝑑𝑆

= −𝑖𝑘∑ 𝑐𝑞0𝑛

𝑁𝑡

𝑛=1

∬ℎ𝑚(𝑟 )∬ℎ𝑛(𝑟 
′)𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆 

(37) 

∬∇ ∙ 𝑓 𝑚
𝑏(𝑟 )∬∇𝐺(𝑟 , 𝑟 ′) ∙ (𝑛̂×∑ 𝑗𝑛𝑓 𝑛(𝑟 

′)

𝑁𝑒

𝑛=1

)𝑑𝑆′ 𝑑𝑆 =∬∇ ∙ 𝑓 𝑚
𝑏(𝑟 )𝑛̂ ∙ 𝐻⃗⃗ 𝑖𝑛𝑐(𝑟 )𝑑𝑆  

∑𝑗𝑛

𝑁𝑒

𝑛=1

∬∇ ∙ 𝑓 𝑚
𝑏(𝑟 )∬∇𝐺(𝑟 , 𝑟 ′) ∙ (𝑛̂×𝑓 𝑛(𝑟 

′))𝑑𝑆′ 𝑑𝑆 =∬∇ ∙ 𝑓 𝑚
𝑏(𝑟 )𝑛̂ ∙ 𝐻⃗⃗ 𝑖𝑛𝑐(𝑟 )𝑑𝑆 (38) 

These expressions form a system of equations that can be represented in matrix form as follows: 

[
 
 
 
 
𝐋𝐀 𝐋𝐪

𝐃𝐉 −𝑘2𝐃𝐪
𝐐 𝟎
𝟎 𝐍𝐪 ]

 
 
 
 

[
𝐣
𝑐𝐪𝐤

] =
1

𝑖𝑘
(
1

𝜂
[

𝐛𝐭𝐄
𝟎

𝑖𝑘𝜂𝐛𝐧𝐇
𝟎

] −

[
 
 
 
𝐋𝐪

−𝑘2𝐃𝐪
𝟎
𝟎 ]

 
 
 
[𝑐𝐪𝟎]) (39) 



13 

 

where 𝐋𝐀 and 𝐐 are 𝑁𝑒×𝑁𝑒 matrices, 𝐋𝐪 is a 𝑁𝑒×𝑁𝑡 matrix, 𝐃𝐉 is a 𝑁𝑡×𝑁𝑒 matrix, 𝐃𝐪 is a 

𝑁𝑡×𝑁𝑡 matrix, 𝐛𝐭𝐄 and 𝐛𝐧𝐇 are 𝑁𝑒×1 vectors, and 𝐪𝐤 and 𝐪𝟎 are 𝑁𝑡×1 vectors. 𝐍𝐪 is a 𝑁𝑜×𝑁𝑡 

matrix, where 𝑁𝑜 is the number of electrically isolated surfaces in the geometry. 

The definitions of the submatrices’ elements are as follows: 

[𝐋𝐀]𝑚𝑛 =∬𝑓 𝑚(𝑟 ) ∙∬𝐺(𝑟 , 𝑟 ′)𝑓 𝑛(𝑟 
′)𝑑𝑆′ 𝑑𝑆 (40) 

[𝐋𝐪]𝑚𝑛 = −∬∇ ∙ 𝑓 𝑚(𝑟 )∬ℎ𝑛(𝑟 
′)𝐺(𝑟 , 𝑟 ′)𝑑𝑆′ 𝑑𝑆 (41) 

[𝐃𝐉]𝑚𝑛 =∬ℎ𝑚(𝑟 )∬𝐺(𝑟 , 𝑟 ′)∇ ∙ 𝑓 𝑛(𝑟 
′)𝑑𝑆′ 𝑑𝑆 (42) 

[𝐃𝐪]𝑚𝑛 =∬ℎ𝑚(𝑟 )∬𝐺(𝑟 , 𝑟 ′)ℎ𝑛(𝑟 
′)𝑑𝑆′ 𝑑𝑆 (43) 

[𝐐]𝑚𝑛 =∬∇ ∙ 𝑓 𝑚
𝑏(𝑟 )∬∇𝐺(𝑟 , 𝑟 ′) ∙ (𝑛̂×𝑓 𝑛(𝑟 

′))𝑑𝑆′ 𝑑𝑆 (44) 

[𝐍𝐪]𝑚𝑛 = {
1, 𝑇𝑛  ∈  object 𝑚
0, elsewhere

 (45) 

[𝐛𝐭𝐄]𝑚 =∬𝑓 𝑚(𝑟 ) ∙ 𝐸⃗ 
𝑖𝑛𝑐(𝑟 )𝑑𝑆 (46) 

[𝐛𝐧𝐇]𝑚 =∬∇ ∙ 𝑓 𝑚
𝑏(𝑟 )𝑛̂ ∙ 𝐻⃗⃗ 𝑖𝑛𝑐(𝑟 )𝑑𝑆 (47) 

All constituent elements of the AEFIEnH-S have now been defined, except for 𝐪𝟎 which 

needs to be solved beforehand to complete the formulation. The solution of the static charges and, 

indirectly, solution of capacitance extraction problems using AEFIEnH-S’ static charge solution 

mechanism, which is henceforth termed static-EFIE(S-EFIE), is the focus of this thesis with an 

emphasis on closely-spaced geometries with high aspect ratios. S-EFIE is coupled with another 

formulation termed conductance and capacitance (GC) solver. 

2.2 S-EFIE Formulation 

The S-EFIE formulation has its physical premise on expression (24). In capacitive 

problems, there is no incident electric field stimulus. However, in the case of PEC, the boundary 

condition is such that the scattered and incident electric field cancel each other. Hence, the 

expression is rewritten as 

−𝑐𝑛̂×∬𝜌0(𝑟 
′)∇𝐺0(𝑟 , 𝑟 

′)𝑑𝑆′ =
1

𝜂
𝑛̂×𝐸⃗ 0

𝑠𝑐𝑎𝑡(𝑟 ) (48) 

This expression can be adapted to capacitive problems by adding a feed to the geometry and 

applying a delta gap source [12] at the feed. The scattered electric field shall equal the delta gap 
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source and when tested with a weighting function yield a voltage equivalent to the intended 

stimulus voltage for the capacitive problem. For the choice of testing function, star function [13], 

used in S-EFIE, we have 

𝐸⃗ 0
𝑠𝑐𝑎𝑡(𝑟 ) = −𝛿(𝑟 − 𝑟 𝛿)𝑉𝛿 (49) 

where 𝑉𝛿 is the intended input voltage at the feed and 𝑟 𝛿  is the position vector where the input 

voltage is intended to be enforced, this should be an internal edge in the context of S-EFIE. 

The method of moment is used and the subject geometry is approximated with a mesh of 

𝑁𝑡 triangles with each triangle denoted as 𝑇𝑛 where 𝑛 = 1,2,… ,𝑁𝑡. The static charge densities are 

approximated by a summation of subdomain pulse basis functions as in expressions (32) and (33). 

The choice of weighting function in this case, however, is chosen to be the star function which 

are based on RWG functions. 

The star test function is defined for every triangle and is the sum of the RWG functions 

that the subject triangle is associated with, but with the RWG functions divided by their 

corresponding edge length and their orientation changed so that the subject triangle is the positive 

triangle in the RWG triangle pair. By this definition, the star function, 𝐹 𝑛(𝑟 ), associated with 𝑇4 

in Figure 3 is as follows: 

𝐹 4(𝑟 ) = −
𝑓 1(𝑟 )

𝑒1
+
𝑓 2(𝑟 )

𝑒2
+
𝑓 3(𝑟 )

𝑒3
  

 

Figure 3:r1
+ and r1

- are the free vertices of f1(r) and T1
+ and T1

- are the positive and negative 

triangle cells of f1(r). The same naming convention is used for f2(r) and f3(r). 
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Using the testing procedure in expression (35), the following expression is arrived at 

−∬(𝑛̂×𝐹 𝑚(𝑟 )) ∙ 𝑛̂×∇∬𝐺0(𝑟 , 𝑟 
′)∑ 𝑐𝑞0𝑛ℎ𝑛(𝑟 ′)

𝑁𝑡

𝑛=1

𝑑𝑆′ 𝑑𝑆

=  𝜂−1∬(𝑛̂×𝐹 𝑚(𝑟 )) ∙ (𝑛̂×𝐸⃗ 𝛿(𝑟 ))𝑑𝑆 

 

−∬𝐹 𝑚(𝑟 ) ∙ ∇∬𝐺0(𝑟 , 𝑟 
′)∑ 𝑐𝑞0𝑛ℎ𝑛(𝑟 ′)

𝑁𝑡

𝑛=1

𝑑𝑆′ 𝑑𝑆 =  𝜂−1∬𝐹 𝑚(𝑟 ) ∙ 𝐸⃗ 𝛿(𝑟 )𝑑𝑆 (50) 

 

After using the vector identity ∇ ∙ (𝜓𝐀) = ∇𝜓 ∙ 𝐀 + 𝜓∇ ∙ 𝐀 on (50): 

∬∇ ∙ 𝐹 𝑚(𝑟 )∬𝐺0(𝑟 , 𝑟 
′)∑ 𝑐𝑞0𝑛ℎ𝑛(𝑟 ′)

𝑁𝑡

𝑛=1

𝑑𝑆′ 𝑑𝑆

−∬∬∇ ∙ (𝐹 𝑚(𝑟 )𝐺0(𝑟 , 𝑟 
′)∑ 𝑐𝑞0𝑛ℎ𝑛(𝑟 ′)

𝑁𝑡

𝑛=1

)𝑑𝑆′ 𝑑𝑆

=  𝜂−1∬𝐹 𝑚(𝑟 ) ∙ 𝐸⃗ 𝛿(𝑟 )𝑑𝑆 

 

The second term on the left-hand side evaluates to 0 by virtue of the nature of the divergence of 

RWGs (i.e. the divergence of a RWG is 0 for the triangle pair) which also applies to the star 

function. Thus, the formulation for the system matrix after testing is 

∬∇ ∙ 𝐹 𝑚(𝑟 )∬𝐺0(𝑟 , 𝑟 
′)∑ 𝑐𝑞0𝑛ℎ𝑛(𝑟 ′)

𝑁𝑡

𝑛=1

𝑑𝑆′ 𝑑𝑆 =  𝜂−1∬𝐹 𝑚(𝑟 ) ∙ 𝐸⃗ 𝛿(𝑟 )𝑑𝑆  

𝑐∑ 𝑞0𝑛

𝑁𝑡

𝑛=1

∬∇ ∙ 𝐹 𝑚(𝑟 )∬𝐺0(𝑟 , 𝑟 
′)ℎ𝑛(𝑟 ′)𝑑𝑆

′ 𝑑𝑆 =  𝜂−1∬𝐹 𝑚(𝑟 ) ∙ 𝐸⃗ 𝛿(𝑟 )𝑑𝑆 (51) 

However, this is not complete as the formulation when used, as it is, to construct a system matrix 

leaves a non-trivial nullspace yielding non-unique solutions to 𝑞𝑛. This has been explained for 

EFIE tested with RWG test functions [6]. The same applies in this context as well. After the fact 

that RWG function divergence is triangle-wise constant (i.e. it is constant on the positive and 

negative triangles), the fact that the basis functions are constant throughout the source triangle, 

and that each neighboring test triangle pairs have an RWG in their star test function that negate 

each other, one can see that the possibility for a non-trivial solution to the system matrix exists. If 

the same logic from Chew and Zhou [6] was applied in this case, then the incidence matrix, 𝐃, is 

square and will be defined as follows to conform with star functions: 
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[𝐃]𝑚𝑛 = {

−1, Triangle 𝑚 is negative part of star 𝑛′𝑠 contituent RWG

1,2,3, Triangle 𝑚 = 𝑛. Value is the number of 𝑛′s internal edges
0, Triangle 𝑚 is not part of star 𝑛

 (52) 

It can be seen that a vector of 1s is also in the nullspace of 𝐃T. In order to resolve the problem of 

the nullspace, a charge neutrality constraint is introduced into the system matrix for each 

electrically isolated surface and takes the same form as (45). The excitation vector also has the 

same number of 0s as charge neutrality constraints appended. Thus, the final system of equations 

in matrix form is 

[
𝑐𝐋𝐪𝟎
𝐍𝐪

] [𝐪𝟎] = 𝜂−1 [
𝐛𝐭𝐄𝟎
𝟎
] (53) 

where 𝐋𝐪𝟎 is a 𝑁𝑡×𝑁𝑡 matrix, and 𝐛𝐭𝐄𝟎 is a 𝑁𝑡×1 vector and the matrix elements have the 

following definitions 

[𝐋𝐪𝟎]𝑚𝑛
 =  ∬∇ ∙ 𝐹 𝑚(𝑟 )∬𝐺0(𝑟 , 𝑟 

′)ℎ𝑛(𝑟 ′)𝑑𝑆
′ 𝑑𝑆 (54) 

[𝐛𝐭𝐄𝟎]𝑚 =∬𝐹 𝑚(𝑟 ) ∙ 𝐸⃗ 𝛿(𝑟 )𝑑𝑆 (55) 

This defines the S-EFIE formulation. 

2.3 GC Solver Formulation 

Consider the potential difference that’s constructed by a point charge at the origin. By 

Coulomb’s Law, 

𝐹 (𝑟 ) =  
𝑞0 𝑡𝑒𝑠𝑡𝑞0
4𝜋𝜀𝑟2

𝑟̂ (56) 

𝐸⃗ (𝑟 ) =  
𝑞0

4𝜋𝜀𝑟2
𝑟̂ (57) 

where 𝑟 is the radial distance between point 𝑟  and 𝑞 at the origin. The potential difference at 𝑟 𝑎 

relative to point 𝑟 𝑏 in the presence of a point charge 𝑞 at the origin is defined as 

𝑉(𝑟 𝑎)𝑟 𝑏 = −∫ 𝐸⃗ (𝑟 ) ∙ 𝑑𝑟 
𝑟 𝑎

𝑟 𝑏

  

Note that because 𝐸⃗ (𝑟 ) is directed radially away from the positive point charge or radially 

inward, if the point charge is negative, only the radial component of the displacement between 𝑟 𝑎 

and 𝑟 𝑏 will contribute to the inner product. Therefore, 

𝑉(𝑟 𝑎)𝑟 𝑏 = −∫ 𝐸(𝑟 )𝑟̂ ∙ 𝑑𝑟𝑟̂
𝑟 𝑎

𝑟 𝑏
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            =  −∫
𝑞0

4𝜋𝜀𝑟2
𝑑𝑟

𝑟 𝑎

𝑟 𝑏

  

= 
𝑞0
4𝜋𝜀𝑟

|
𝑟 𝑏

𝑟 𝑎
  

              =  
𝑞0

4𝜋𝜀𝑟𝑎
 −  

𝑞0
4𝜋𝜀𝑟𝑏

  

If 𝑟𝑏 → ∞, i.e. potential difference, 𝑉(𝑟 𝑎)𝑟 𝑏, is now defined as the energy to move a unit charge 

from infinite distance to 𝑟 𝑎, then 

𝑉(𝑟 𝑎)𝑟 𝑏 =
𝑞0

4𝜋𝜀𝑟𝑎
  

which we henceforth generalize 𝑟 𝑎 to 𝑟  and denote as  

𝑉(𝑟 ) =  
𝑞0
4𝜋𝜀𝑟

  

When the point charge is removed from the origin, 𝑟 =  |𝑟 − 𝑟 ′| where 𝑟 ′ is the position vector of 

the point charge 𝑞0. 

𝑉(𝑟 ) =
𝑞0

4𝜋𝜀|𝑟 − 𝑟 ′|
 (58) 

If, rather than a point charge, a distribution of charges on a surface is present, then (58) 

can be modified to the following surface integral to account for the contribution of all the charges 

in the distribution on the potential difference at 𝑟  

𝑉(𝑟 ) =  ∬
𝜌0(𝑟 

′)

4𝜋𝜀|𝑟 − 𝑟 ′|
𝑑𝑆′  

                    =  
1

𝜀
∬𝜌0(𝑟 

′)𝐺0(𝑟 , 𝑟 
′)𝑑𝑆′ (59) 

where 𝜌0(𝑟 ′) is a surface charge density distribution function in (59). 

The object is to solve 𝜌0(𝑟 ′). The same discretization method is employed in this case in 

that the geometry is approximated by triangles and subdomain pulse basis functions as in 

expressions (32) and (33) are used to approximate 𝜌0(𝑟 ′). The system matrix is formed by 

substituting (33) into (59) and testing the resulting expression with 𝑁𝑡 linearly independent 

weighting functions to form a system of 𝑁𝑡 equations with 𝑁𝑡 unknowns or degrees of freedom 

(DOFs). In accordance with Galerkin’s method, the weighting functions shall be the same as the 

basis functions. The result is 

1

𝜀
∬ℎ𝑚(𝑟 )∬𝐺0(𝑟 , 𝑟 

′)∑ 𝑞0𝑛ℎ𝑛(𝑟 ′)

𝑁𝑡

𝑛=1

𝑑𝑆′ 𝑑𝑆 =  ∬ℎ𝑚(𝑟 )𝑉(𝑟 )𝑑𝑆  
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1

𝜀
∑𝑞0𝑛

𝑁𝑡

𝑛=1

∬ℎ𝑚(𝑟 )∬𝐺0(𝑟 , 𝑟 
′)ℎ𝑛(𝑟 ′)𝑑𝑆

′ 𝑑𝑆 =  ∬ℎ𝑚(𝑟 )𝑉(𝑟 )𝑑𝑆 (60) 

1

𝜀
[𝐙][𝐪𝟎] = 𝐕 (61) 

where 𝐙 is a 𝑁𝑡×𝑁𝑡 matrix and 𝐕 is a 𝑁𝑡×1 vector with the following definitions 

[𝐙]𝑚𝑛  =  ∬ℎ𝑚(𝑟 )∬𝐺0(𝑟 , 𝑟 
′)ℎ𝑛(𝑟 ′)𝑑𝑆

′ 𝑑𝑆 (62) 

[𝐕]𝑚 = ∬ℎ𝑚(𝑟 )𝑉(𝑟 )𝑑𝑆 (63) 

This constitutes the GC formulation. 

2.4 Numerical Evaluation Methods 

The choice of geometry for the study was chosen to be parallel square plate capacitors 

with very small spatial separation and high aspect ratios, which in this context is defined as the 

ratio of the largest plate dimension to the separation space between the plates. The aspect ratios 

that were studied were 5000 or greater. 

Generally, quadrature evaluations of surface area for triangles that do not overlap are 

performed using Gaussian quadrature for triangles and for self-interactions (i.e. the source and 

field triangles are the same) Duffy transforms [14] are used to evaluate the same. Immediately the 

challenge at hand was quadrature evaluation convergence. 

For example, it was found that in excess of 99.6% of adaptive quadrature evaluation 

computations for 1 field triangle in a 900-patch parallel plate capacitor with dimensions 

10m×10m×0.15m were directed at computing interactions with itself, source triangles that are 

neighbors sharing an edge or its translational image across the separation space and its image’s 

adjacent neighbors. 

This is largely attributable to the singularity in the Green’s function. As the distance 

between the field point and source triangle diminishes, successive adaptive quadrature 

evaluations tend to show large differences and hence force more quadrature evaluations.  
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Two methods were used to mitigate this problem. One uses potential integrals [15] for 

uniform and linear source distributions on polygonal and polyhedral domains. This method, 

however, is limited to static cases only. The second method is termed extended Duffy transform 

[16], which, in summary, extends the Duffy transform usage from only being applied to self-

interaction quadrature evaluations to include interactions between field triangle points and source 

triangles where the projected distance of the field point on the source triangle plane is within a 

given tolerance. 

2.4.1 Potential Integrals 

The expressions (54) and (62) have integrands that are of the form  

∬
1

𝑅
𝑑𝑆′ (64) 

 due to the static Green’s function. The potential integrals method makes use of the divergence 

theorem to reduce the surface integral into a contour integral that is analytical in the limit that the 

field point, in the case of self-interaction, is confined to an area that approaches zero. 

In this thesis’ context, the analytical formulation makes use of a 2-dimensional 

coordinate system that is local to each edge of the source triangle to enable its use in computation. 

The following parameters (magnitudes and vectors) are defined in Table 1 for each edge of the 

source triangle in relation to the field point: 
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Table 1:Definitions of parameters in the local coordinate system defined for each source triangle 

edge and the field point. 

Parameter Definition 

𝑃̂𝑖
0 

A unit vector in the source triangle plane that is perpendicular to edge 𝑖 or its 

extension that originates from the field point’s projected image on the source 

triangle plane and terminates at a point on edge 𝑖 or its extension. 

𝑢̂𝑖 
A unit vector in the source triangle plane that is perpendicular to edge 𝑖 and 

directed outside of the source triangle. 

𝑃𝑖
0 

The line in the source triangle plane that is perpendicular to edge 𝑖 or its 

extension and joins the field point’s projected image on the source triangle plane 

to a point on edge 𝑖 or its extension. This line forms an axis of edge 𝑖’s local 

coordinate system in relation to the field point. Edge 𝑖 and its extension is the 

other orthogonal axis in this local coordinate system. 𝑃𝑖
0 also denotes the 

magnitude of this line. 

𝑅𝑖
+ 

The distance between the field point and the terminal point of edge 𝑖, where the 

initial and terminal points are determined in a right-handed sense in relation to 

the source triangle plane’s normal vector. 

𝑅𝑖
− 

The distance between the field point and the initial point of edge 𝑖, where the 

initial and terminal points are determined in a right-handed sense in relation to 

the source triangle plane’s normal vector. 

𝑙𝑖
+ 

The position of the terminal point of edge 𝑖 on a coordinate axis with origin at 

the intersection of 𝑃𝑖
0 and edge 𝑖 or its extension. The positive direction of this 

axis points from the initial point to the terminal point of edge 𝑖. 

𝑙𝑖
− 

The position of the initial point of edge 𝑖 on a coordinate axis with origin at the 

intersection of 𝑃𝑖
0 and edge 𝑖 or its extension. The positive direction of this axis 

points from the initial point to the terminal point of edge 𝑖. 

𝑑 
The distance between the field point and its projected image on the source 

triangle plane. 

𝑅𝑖
0 

The distance between the field point and the origin of the local coordinate 

system. i.e. 𝑅𝑖
0 = √𝑃𝑖

02 + 𝑑2 
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Figure 4, Figure 5, and Figure 6 illustrate the local coordinate systems for the 3 edges of 

a source triangle from a 2-dimensional view with the normal of the source triangle plane in the 

positive 𝑧̂ direction. 

 

Figure 4:Local coordinate system of edge 1 in relation to the field point projection onto the source 

triangle plane, which normal is in the z direction. 
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Figure 5:Local coordinate system of edge 2 in relation to the field point projection onto the source 

triangle plane, which normal is in the z direction. 
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Figure 6:Local coordinate system of edge 3 in relation to the field point projection onto the source 

triangle plane, which normal is in the z direction. 

With these parameters defined, (64) can be analytically evaluated as follows: 

∬
1

𝑅
𝑑𝑆′ =∑𝑃̂𝑖

0 ∙ 𝑢̂𝑖(𝑃𝑖
0ln

𝑅𝑖
+ + 𝑙𝑖

+

𝑅𝑖
− + 𝑙𝑖

− − |𝑑|(tan
−1

𝑃𝑖
0𝑙𝑖
+

𝑅𝑖
02 + |𝑑|𝑅𝑖

+
− tan−1

𝑃𝑖
0𝑙𝑖
−

𝑅𝑖
02 + |𝑑|𝑅𝑖

−
))

3

𝑖=1

 (65) 

Note that if the Green’s function was dynamic, then potential integrals would not work. However, 

for capacitive extraction problems where it is static, this method is highly scalable and precludes 

the need to perform adaptive quadratures on the source triangle, thus, translating into 

computational savings. 

2.4.2 Extended Duffy Transform 

The Duffy transform seeks to eliminate the singularity in integrals of the following kind: 

∫∫
𝑓(𝑥′, 𝑦′)

√𝑥′2 + 𝑦′2
𝑑𝑦′𝑑𝑥′

𝑥′

0

1

0

 (66) 

The domain of integration is a right triangle in the 𝑥′-𝑦′ plane. By parametrization: 
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𝑠 = 𝑥′ (67) 

𝑡 =
𝑦′

𝑥′
 (68) 

Thus, (66) becomes: 

∫∫
𝑓(𝑠, 𝑠𝑡)

√𝑠2 + (𝑠𝑡)2
𝑠 𝑑𝑡𝑑𝑠

1

0

1

0

= ∫∫
𝑓(𝑠, 𝑠𝑡)

√1 + 𝑡2
𝑑𝑡𝑑𝑠

1

0

1

0

 (69) 

which is no longer singular. Hence, allowing faster convergence. (69) can be computed using 

Gaussian quadrature for quadrilaterals on a reference plane and then transformed back to the 

original plane by multiplication with Jacobians linking the plane coordinate systems. This 

transformation maps a trilateral into a quadrilateral. 

The process of using Duffy transforms in quadrature evaluation begins with mapping the 

source triangle from the global 3-dimensional coordinate system, to a local 2-dimensional 

coordinate system where the vertices of the source triangle are mapped into vertices with 

coordinates (0,0), (1,0), and (0,1) assuming a right-handed orientation and the normal of the 

surface pointing in the positive 𝑧̂ direction. The source triangle is now a right triangle in the local 

coordinate system. The Jacobian that maps from the local coordinate system to global coordinate 

system is twice the area of the source triangle in the global coordinate system. The global 

coordinates can be mapped into the local coordinates using normalized area coordinates [10] as 

follows with reference to Figure 7: 

𝑜𝜖 =
𝐴𝑂𝑁𝐿
𝐴𝐿𝑀𝑁

 (70) 

𝑜𝜂 =
𝐴𝑂𝐿𝑀
𝐴𝐿𝑀𝑁

 (71) 

𝑂⃗ = (1 − 𝑜𝜖 − 𝑜𝜂)𝐿⃗ + 𝑜𝜖𝑀⃗⃗ + 𝑜𝜂𝑁⃗⃗  (72) 
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Figure 7:Left is source triangle (LMN) in 3-dimensional global coordinate system and the right is 

source triangle (lmn) in 2-dimensional local coordinate system. O denotes the field point in global 

coordinates, o denotes the field point in local coordinates. 

Next, the trilateral in the local coordinate system needs to be broken into sub-trilaterals 

where each trilateral has the field point and 2 of the source trilateral vertices for its vertices. Note 

that if the field point is a vertex of the source trilateral, then there is only 1 sub-trilateral (the 

source triangle itself), and if the field point is located on a source trilateral edge, then there are 

only 2 sub-trilaterals that can be defined. Note that the field point is the point where the 

quadrature evaluation is singular. 

Next each sub-triangle is mapped into a Duffy plane quadrilateral, wherein Gaussian 

quadrature for quadrilaterals is evaluated. Note that the Jacobian mapping from the Duffy plane 

to local coordinate plane is dependent on which 2 adjacent vertices of the quadrilateral the field 

point is mapped to. Points on the Duffy plane can be mapped back to the local coordinate plane 

using nodal shape functions [17] for quadrilaterals. If the axes of the Duffy plane are labeled 𝑠 

and 𝑡 (henceforth also known as the 𝑠-𝑡 plane), then the nodal shape functions and their uses to 

map back to the local coordinate plane (the 𝜖-𝜂 plane) are: 
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𝑁1(𝑠, 𝑡) = (1 − 𝑠)(1 − 𝑡) (73) 

𝑁2(𝑠, 𝑡) = 𝑠(1 − 𝑡) (74) 

𝑁3(𝑠, 𝑡) = 𝑠𝑡 (75) 

𝑁4(𝑠, 𝑡) = (1 − 𝑠)𝑡 (76) 

Using Figure 8 for an example, the mapping will work as follows to define the relationship 

between an arbitrary point 𝑝 ′(𝑠, 𝑡) in the 𝑠-𝑡 plane to 𝑝 (𝜖, 𝜂) in the 𝜖-𝜂 plane: 

𝑝𝜖 = 𝑁1𝑜𝜖 +𝑁2𝑙𝜖 +𝑁3𝑚𝜖 +𝑁4𝑜𝜖            

= (1 − 𝑠)𝑜𝜖 + 𝑠(1 − 𝑡)𝑙𝜖 + 𝑠𝑡𝑚𝜖  

𝑝𝜂 = 𝑁1𝑜𝜂 +𝑁2𝑙𝜂 +𝑁3𝑚𝜂 +𝑁4𝑜𝜂           

= (1 − 𝑠)𝑜𝜂 + 𝑠(1 − 𝑡)𝑙𝜂 + 𝑠𝑡𝑚𝜂  

By definition, the Jacobian is defined as: 

𝐽𝑎𝑐 = |

𝑑𝜖

𝑑𝑠

𝑑𝜂

𝑑𝑠
𝑑𝜖

𝑑𝑡

𝑑𝜂

𝑑𝑡

| (77) 

Therefore, the Jacobian mapping from 𝑠-𝑡 plane to 𝜖-𝜂 plane in this case 

𝐽𝑎𝑐 = |(−𝑜𝜖 + (1 − 𝑡)𝑙𝜖 + 𝑡𝑚𝜖)(−𝑠𝑙𝜂 + 𝑠𝑚𝜂)

− (−𝑠𝑙𝜖 + 𝑠𝑚𝜖)(−𝑜𝜂 + (1 − 𝑡)𝑙𝜂 + 𝑡𝑚𝜂)| 
 

The final step is to perform the Gaussian quadrature for quadrilaterals in the Duffy plane 

and multiply the result by the Jacobians mapping from the Duffy plane to the global coordinates. 

This needs to be repeated for all the sub-trilaterals and then summed together to get the final 

result. 
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Figure 8:olm in local coordinate plane (left) maps to o'l'm'o' in the Duffy plane (right) 

 This is in general how the Duffy transform would be performed and used. The extended 

Duffy transform extends this capability by allowing the field point to lie outside the source 

triangle. The field point may also not be on the same plane as the source triangle. The vertices of 

the source triangle are mapped from 𝑥-𝑦-𝑧 to 𝜖-𝜂 the same way as the Duffy transform, but the 

sub-trilaterals cannot be formed if the field point is not on the same plane as the source triangle. 

Therefore, the field point must be projected onto the source triangle plane. It is for this reason that 

the ratio of the distance between the field point and its projected image on the source triangle 

plane to the largest dimension of the source triangle must be within a tolerance. This capability 

requires that the field point be projected onto the 𝜖-𝜂 plane accurately. Note that in extended 

Duffy transform, the field point may lie outside the right triangle in the 𝜖-𝜂 plane. Also, a scheme 

must be present to ensure that the summation of the quadrature results of the sub-trilaterals 

account for the effects of the source triangle only and not any part outside it on the field point. 

 After the fact that the field point may not be on the same plane as the source triangle, 

normalized area coordinates and its mapping expressions (70), (71), and (72) between the global 

and local coordinates are not valid. In this case, a mapping using Dupin coordinates [16] is 
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proposed. In this approach, the local coordinates are augmented from ℝ2 to ℝ3, where the 3rd 

coordinate is in the direction of the surface’s normal and is denoted by symbol 𝜉. 𝜉 = 0 means 

that the point lies on the plane of the source triangle. Unitary vectors need to be determined. 

These are essentially vectors that relate the change in the position vector in 𝑥-𝑦-z to changes of 

the same position vector in the 𝜖, 𝜂, and 𝜉 directions in the local coordinate system. Hence, as an 

example, the unitary vectors, with reference to Figure 7, are 

𝑎 1 =
𝑑𝑟 

𝑑𝜖
= 𝑟 𝑀 − 𝑟 𝐿  

𝑎 2 =
𝑑𝑟 

𝑑𝜂
= 𝑟 𝑁 − 𝑟 𝐿  

𝑎 3 =
𝑑𝑟 

𝑑𝜉
= 𝑎 1×𝑎 2  

If the field point in 𝜖-𝜂-𝜉 is denoted by column vector [𝑝 (𝜖, 𝜂, 𝜉)] and the corresponding field 

point in 𝑥-𝑦-𝑧 is denoted by column vector [𝑟 (𝑥, 𝑦, 𝑧)], and 𝑎 1, 𝑎 2, and 𝑎 3 are column vectors as 

well, then 

[𝑎 1 𝑎 2 𝑎 3]([𝑝 (𝜖 + 𝛿1, 𝜂 + 𝛿2, 𝜉 + 𝛿3)] − [𝑝 (𝜖, 𝜂, 𝜉)])

= [𝑟 (𝑥 + Δ1, 𝑦 + Δ2, 𝑧 + Δ3)] − [𝑟 (𝑥, 𝑦, 𝑧)] 
 

This suggests that Newton’s method may be used to iteratively solve for the field point’s mapping 

in 𝜖-𝜂-𝜉 by achieving the goal of finding the zero of the expression [𝑟 (𝑥, 𝑦, 𝑧)] −

[𝑟 (𝑥 + Δ1, 𝑦 + Δ2, 𝑧 + Δ3)]. Thus, the Newton’s method expression to use is 

[𝑝 (𝜖, 𝜂, 𝜉)] = [𝑝 (𝜖 + 𝛿1, 𝜂 + 𝛿2, 𝜉 + 𝛿3)]

− [𝑎 1 𝑎 2 𝑎 3]
−1([𝑟 (𝑥, 𝑦, 𝑧)] − [𝑟 (𝑥 + Δ1, 𝑦 + Δ2, 𝑧 + Δ3)]) 

(78) 

Once 𝑝 (𝜖, 𝜂, 𝜉) is found, its 𝜉 coordinate is set to 0. This effectively projects the field point onto 

the source triangle plane. 
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 The mapped field point in the 𝜖-𝜂 plane may resemble that in Figure 9. In such a 

scenario, the sub-trilaterals would be as depicted in Figure 10.

 

Figure 9:Field point (O) and source triangle (LMN) in global coordinates (left). Field point (o) 

and source triangle (lmn) in local coordinates (right). 
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Figure 10:Sub-trilaterals when field point is not in source triangle. 

Hence, care needs to be taken when the contributions from the sub-trilaterals are summed. In this 

example, the correct result comes from adding the contributions from the leftmost and rightmost 

sub-trilateral and subtracting the contribution from the center sub-trilateral. This complexity can 

be handled by not taking the absolute value of the Jacobian mapping from the 𝑠-𝑡 plane to the 𝜖-𝜂 

plane, and adopting a consistent order in mapping the vertices of the sub-trilaterals in a right-

handed sense relative to the normal of the source triangle in the 𝜖-𝜂 plane. 

2.5 Effects of Far Interactions 

In the course of the investigation, it was found that the geometry under study exhibited an 

interesting behavior in its system matrix singular value distribution that contributed to high 

condition numbers for both the S-EFIE and GC solver formulations. As an illustration, Figure 11, 

a 10m-by-10m parallel square plate capacitor with 0.002m separation with the following meshing 

where the top and bottom plates have matching cell arrangements. 



31 

 

 

Figure 11:Parallel plate capacitor with dimensions 10m-by-10m with 0.002m plate separation. 

There are 2028 triangles in the mesh; 1012 triangles on the top and bottom and 4 on the feed 

between the plates. The bottom and top plates have matching cell arrangements. 

The same geometry is used as input to the S-EFIE and GC solver formulations and the 

singular value distributions were observed. Figure 12 and Figure 13 exhibit the data and show a 

sudden drop in the middle of the descending order distribution of the singular values. 

The hypothesis for the root cause of this behavior is that as the separation between the 

plates decreases and the aspect ratio of the geometry increases interactions between a field 

triangle and distant source triangle pairs that are translational images of each other across the 

separation delta appear to cancel each other. This translates to the system matrix being rank 

deficient and exhibit high condition numbers. This is largely a problem caused by the physics of 

the geometry. Hence, to prove this hypothesis, the geometry in Figure 11 is varied by changing 

the separation delta from 0.002m to 0.02m and then to 0.2m and repeating the formulation 
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evaluation on each variation and then observing the distribution of the singular values. The results 

are detailed in Figure 12 and Figure 13 and appear to support this hypothesis. 

 

 

Figure 12:Effects of high aspect ratio and low separation delta between parallel capacitor plates 

on S-EFIE formulation. 

 

 

Figure 13:Effects of high aspect ratio and low separation delta between parallel capacitor plates 

on GC solver formulation. 



33 

 

This observation motivates a preconditioning method that seeks to amplify the 

differences in interaction between a field triangle and a source triangle and the interaction 

between the same field triangle and the translational pair of the source triangle across the 

separation delta. Thus, a simple preconditioning method is tested in a dense fill evaluation of the 

same geometry (i.e. 10m-by-10m with separation delta 0.002m). In order to facilitate the 

description of the preconditioning method, Figure 14 shall be used for illustration. 𝑇𝐹𝑙𝑑 denotes 

the field triangle, 𝑇𝑡𝑜𝑝
𝑆𝑟𝑐 and 𝑇𝑏𝑜𝑡

𝑆𝑟𝑐 denote the top and bottom source triangles respectively. The 

preconditioner adds the interaction of 𝑇𝑏𝑜𝑡
𝑆𝑟𝑐 with 𝑇𝐹𝑙𝑑 to the interaction of 𝑇𝑡𝑜𝑝

𝑆𝑟𝑐 with 𝑇𝐹𝑙𝑑 and 

subtracts the interaction of 𝑇𝑡𝑜𝑝
𝑆𝑟𝑐 with 𝑇𝐹𝑙𝑑 from the interaction of 𝑇𝑏𝑜𝑡

𝑆𝑟𝑐 with 𝑇𝐹𝑙𝑑. This 

effectively means adding the column vector associated with 𝑇𝑏𝑜𝑡
𝑆𝑟𝑐 to the column associated with 

𝑇𝑡𝑜𝑝
𝑆𝑟𝑐 and subtracting the column vector associated with 𝑇𝑡𝑜𝑝

𝑆𝑟𝑐 from the column vector associated 

with 𝑇𝑏𝑜𝑡
𝑆𝑟𝑐 in the system matrix. The preconditioned matrix is then iteratively scaled using the 

diagonal scaling algorithm in [4]. The results of the preconditioned system matrix are shown in 

Figure 15 and Figure 16. 

 

Figure 14:Joint effect of source triangles that are mutual images across the separation delta on a 

far field triangle. 
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Figure 15:Result of preconditioned S-EFIE system matrix compared to cases of lower aspect 

ratio. 

 

Figure 16:Result of preconditioned GC solver system matrix compared to cases of lower aspect 

ratio. 
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Table 2:Condition numbers of S-EFIE and GC solver for 10m-by-10m parallel plate capacitor 

with 0.002m separation delta and 2028 DOFs. 

 S-EFIE GC Solver 

Condition number without 

preconditioning 

1479018.695248549 5180.316405943132 

Condition number with 

preconditioning 

27237.43512851236 144.9657994147753 

2.6 MFD and LOGOS 

MFD makes use of local global solution (LOGOS) [18] modes to factor a system matrix 

recursively into a sparse matrix. The concept seeks to fit the physical geometry into several grid 

levels of cuboids in the 3-dimensional case (called an oct-tree), rectangles in the 2-dimensional 

case (called a quad-tree), or line segments in the 1-dimensional case. The mesh cells are grouped 

by the grid location that they belong in and their column and row vectors within the system 

matrix are re-arranged to reflect the same. Based on this re-arranged system matrix, localizing 

basis functions are found and, with them, projection matrices are found in order to project what 

remains to be non-localizing basis functions on the current level of the grid to the next level (a 

coarser grid), where the process is repeated. 

A 1-dimensional example shall be used to illustrate the concept. Suppose the subject 

geometry is a strip and 3 levels of grid is fitted onto the geometry as in Figure 17. At level-3, the 

triangles, which correspond to DOFs, are grouped into the 4 groups in the level-3 grid. The 

system matrix is re-arranged to reflect this and the basis functions, denoted by 𝚲𝐋, that would 

give rise to the excitation pattern in Figure 18 are found. 
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Figure 17:A strip fitted with 3-level grid in MFD LOGOS factorization. 

 

Figure 18:The system matrix rearranged to match the LOGOS grid grouping. Localizing basis 

functions multiplied with system matrix yield excitation that is localized, non-localizing basis 

functions when multiplied result in excitation that reach the entire domain. 

Starting from the finest level, i.e. level-3, once the localizing (𝚲𝟑
𝐋 ) and non-localizing 

(𝚲𝟑
𝐍) basis functions are found and letting 𝚲𝟑 = [𝚲𝟑

𝐋 𝚲𝟑
𝐍], a projection matrix, 𝐏𝟑 = [𝐏𝟑

𝐋 𝐏𝟑
𝐍], 

is found such that expressions (79) and (80) are true: 

𝐙 = 𝐙𝟑 = 𝐏𝟑𝐙̂𝟑𝚲𝟑
−𝟏 (79) 

𝐙̂𝟑 = 𝐏𝟑
𝐇𝐙𝟑𝚲𝟑 ≈ [

𝐈 (𝐏𝟑
𝐋)𝐇𝐙𝟑𝚲𝟑

𝐍

𝟎 (𝐏𝟑
𝐍)𝐇𝐙𝟑𝚲𝟑

𝐍] = [
𝐈 𝐙𝟑

𝐋𝐍

𝟎 𝐙𝟑
𝐍𝐍] (80) 

This requires that 𝐏𝟑
𝐋 and 𝐏𝟑

𝐍 be mutually orthogonal and that 𝐏𝟑
𝐋 be unitary with respect to 𝐙𝟑𝚲𝟑

𝐋 . 

Therefore, the convenient method to find 𝐏𝟑 is to take a QR factorization of 𝐙𝟑𝚲𝟑
𝐋  and thus 

resulting in a Q matrix that is constituted from mutually orthogonal column vectors and because 

of the structure of 𝐙𝟑𝚲𝟑
𝐋 , which is highly localized, the R upper triangular matrix becomes block 

diagonal instead. 𝐏𝟑
𝐋 will be the Q matrix column vectors that form the basis of the column space 
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of 𝐙𝟑𝚲𝟑
𝐋 , denote as 𝐐𝟏, whereas 𝐏𝟑

𝐍 will be the remaining Q matrix column vectors, denote as 𝐐𝟐. 

The purpose of the projection matrix is to project the resulting non-localized excitation to a 

coarser level of grid, level-2 in this discussion, to be factorized in (80) using the same procedure. 

Such an arrangement while not immediately evident in its usefulness at only 3 levels of grid will 

become crucial as the subject problem scales up in DOF count and require more grid levels. 

Figure 19 and Figure 20 illustrate the structure of the matrices. Note that at level-1, no further 

factorization is possible as the domain of the source and the excitation are in the same group. 

 

Figure 19:Level-3 factorization matrix structures. 
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Figure 20:Level-2 factorization matrix structures. 

With these constructs in place, the inverse of the system matrix can be found using the 

following expressions: 

𝐙−𝟏 = 𝚲𝟑 [
𝐈 −𝐙𝟑

𝐋𝐍

𝟎 𝐈
] [
𝐈 𝟎
𝟎 (𝐙𝟑

𝐍𝐍)−𝟏] 𝐏𝟑
𝐇 (81) 

where 

(𝐙𝟑
𝐍𝐍)−𝟏 = 𝐙𝟐

−𝟏 = 𝚲𝟐 [
𝐈 −𝐙𝟐

𝐋𝐍

𝟎 𝐈
] [
𝐈 𝟎
𝟎 (𝐙𝟐

𝐍𝐍)−𝟏] 𝐏𝟐
𝐇 (82) 

 The localizing and non-localizing basis functions can be found using the procedure 

outlined in [19] and is summarized here. The procedure starts with partitioning the re-arranged 

system matrix by the column groups. Using the level-3 example in this discussion, the re-

arranged system matrix would be partitioned into 4 sub-system matrices where each sub-system 

matrix has 4 row groups and 1 column group. Each sub-system matrix evaluation yields the 
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localized and non-localized basis functions associated with the column group denoted 𝚲𝑖(𝑙)
𝐋  and 

𝚲𝑖(𝑙)
𝐍  respectively, where 𝑖 is the group in grid level-𝑙 for both cases. A QR factorization is first 

performed on the sub-system matrices to yield the 𝐐𝑖 and 𝐑𝑖 matrices. The sub-matrix within 𝐐𝑖 

that corresponds in location and structure with the self-term in the sub-system matrix is then 

picked out for a singular value decomposition operation. Due to the fact that column vectors in 

the 𝐐𝑖 matrix are mutually orthogonal, the singular values in of the 𝐐𝑖 sub-matrix will be less 

than but approaching 1. A tolerance value, 𝜀, is set to shortlist the singular values from which 

their corresponding V singular vectors will be picked out to constitute a new matrix denoted 𝐯̂. 

The following inequality is used as the criteria to shortlist the singular values: 

𝑠𝑗 > 1 − 0.5𝜀2 (83) 

where 𝑠𝑗 denote the singular values sorted from maximum to minimum. Once 𝐯̂ is determined 

from the shortlisted singular values, 𝛌𝑖(𝑙)
𝐋  and 𝛌𝑖(𝑙)

𝐍  are found by the expressions (84) and (85): 

𝛌𝑖(𝑙)
𝐋 = 𝐑𝑖

−𝟏𝐯̂ (84) 

𝛌𝑖(𝑙)
𝐋 = 𝐪𝐫 = [𝐪𝟏 𝛌𝑖(𝑙)

𝐍 ] [
𝐫
𝟎
] (85) 

The basis function matrix 𝚲𝑖(𝑙)
𝐋  is built by constructing a matrix of zeros with row count equal the 

sub-system matrix row count and column count equal the column count of 𝛌𝑖(𝑙)
𝐋  and then 

substituting 𝛌𝑖(𝑙)
𝐋  into the rows of the structure that correspond with the self-term in the sub-
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system matrix. 𝚲𝑖(𝑙)
𝐍  is constructed from 𝛌𝑖(𝑙)

𝐍  in the same way. Figure 21 summarizes the 

procedure. 

 

 

Figure 21:Steps to build the localizing and non-localizing basis function matrices. 

While this procedure results in easier system matrix inversion and, thus, shortens solve 

time for the charge distribution of the problem at hand, the operation to find the localizing basis 



41 

 

functions is an expensive one since it requires seeking orthogonal column vectors spanning the 

sub-system matrices using QR decomposition. For this reason, MFD exploits a system matrix 

compression algorithm termed MLSSM [20] along with the ΘR factorization [21] scheme. The 

reader is referred to the bibliography for the details of the implementation of MLSSM. Briefly, 

MLSSM represents a re-arranged system matrix, where DOFs that are physically close are 

grouped together, with the following recursive expression: (assuming a 4-level grid is imposed) 

𝑍 = 𝑍̂4 + 𝑈4𝑍3𝑉4
𝐻                                 

= 𝑍̂4 +𝑈4(𝑍̂3 + 𝑈3𝑍2𝑉3
𝐻)𝑉4

𝐻    

= 𝑍̂4 + 𝑈4(𝑍̂3 + 𝑈3(𝑍̂2)𝑉3
𝐻)𝑉4

𝐻 (86) 

In (86), the 𝑍̂𝑖 terms refer to system matrix terms that represent near neighbor interactions in 

level-𝑖 groups. The 𝑍𝑖 terms represent compressed far group interactions in level-𝑖 + 1. The 𝑈𝑖 

and 𝑉𝑖
𝐻 terms are block diagonal matrices that expand the 𝑍𝑖−1 term to have the same row and 

column dimensions as 𝑍̂𝑖. The near interaction terms at the finest level groups are filled directly. 

The far interactions are filled using ACA [22] where an outer product is obtained. The outer 

product is manipulated to give a form that resembles a SVD form. The fact that ACA is used to 

perform far interaction fills imply that not all system matrix terms are necessarily present and 

avoids the need for a dense fill which would have resulted in 𝑂(𝑛2) complexity. The use of 

MLSSM for compression also translates into savings in memory to contain the system matrix. 

 Summarily, in order to compute 𝛌𝑖(𝑙)
𝐋  and then 𝚲𝑖(𝑙)

𝐋  requires a QR decomposition of the 

sub-system matrix to find the upper triangular matrix 𝐑𝑖 and the segment of 𝐐𝑖 that concerns 

𝚲𝑖(𝑙)
𝐋 . However, if 𝐑𝑖 is available, then the relevant segment of 𝐐𝑖 can be computed. For example, 

referring to Figure 21, if 𝐑𝟏 is known, then 𝐐𝟏𝟏 can be found as 𝒁𝟏𝟏𝐑𝟏
−1. The ΘR algorithm 

makes use of MLSSM’s representation of a sub-system matrix. For instance, the sub-system 

matrix associated with group 1 in level-4 is 𝑍1(4) = 𝑍̂1(4) + 𝑈4𝑍̂3𝑉1(4)
𝐻 + 𝑈4𝑈3𝑍̂2𝑉3

𝐻𝑉1(4)
𝐻  in 

MLSSM. 𝐑𝟏 can be found from QR decompositions of the 𝑍̂1(4), 𝑍̂3𝑉1(4)
𝐻 , and 𝑍̂2𝑉3

𝐻𝑉1(4)
𝐻  terms, 

where the second and third terms are a lot smaller than that in the expression for 𝑍1(4) and hence 

allow savings in the QR decomposition operations.  
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3 NUMERICAL RESULTS 

In this chapter, an observation of the effect of adding the S-EFIE and GC solver 

formulations on accuracy and condition numbers is first discussed. Next, the new combined 

formulation accuracy is compared to an industry software evaluation alongside S-EFIE and GC 

solver. The combined formulation accuracy is also examined across different separation delta. 

The effect of varying the separation delta on the condition numbers of the combined S-EFIE and 

GC solver formulation is then considered. Finally, the scalability of MFD in the solution of the 

geometries discussed in this thesis is considered. 

3.1 Effects of Combined S-EFIE and GC Solver Formulation on Conditioning 

The results in Table 2 show that the condition numbers of S-EFIE and GC solver could 

be significantly decreased using the precondition strategy in Effects of Far Interactions. 

Nonetheless, the condition number for S-EFIE is still very high to be of good use, whilst GC 

solver has a condition number that is relatively good. A combined formulation was explored to 

see if the conditioning could be enhanced. Thus, the S-EFIE and GC formulation system matrices 

were added term-by-term with the charge neutrality constraint for S-EFIE removed. Thus, the 

resulting combined system matrix is square. The combined system matrix is then preconditioned 

and scaled. 

The resulting system matrix is examined for its conditioning behavior in relation to mesh 

density compared to S-EFIE and GC solver formulations. The results are shown in Figure 22. The 

results indicate a conditioning that is superior to S-EFIE or GC solver alone. This suggest the 

combined S-EFIE and GC solver formulation as a better alternative pairing with MFD which 

benefits from a low condition number formulation to perform optimally. 
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Figure 22:Condition number comparison for S-EFIE, GC solver and combined S-EFIE and GC 

solver formulations. 

3.2 Accuracy across Formulations 

The industry software package Q3D Extractor is used as a benchmark to check the 

accuracy of the capacitance computation using S-EFIE, GC solver and the combined S-EFIE and 

GC solver formulation, which is henceforth referred to as S-EFIE+GC. The geometry considered 

is a 10m-by-10m parallel square plate capacitor with 0.002m separation delta. Therefore, the 

aspect ratio is 5000. Q3D Extractor was set to evaluate the capacitance of this geometry with 

19448 DOFs and the resulting capacitance is taken as benchmark to compare against the 

formulations for accuracy. The resulting capacitance was 443.25nF. 

In this investigation, it was found from dense fill experiments that both S-EFIE, GC 

solver, and S-EFIE+GC formulations yield results that are in very good agreement with that of 

the Q3D Extractor software package from ANSYS. Note also that S-EFIE, GC solver and S-EFIE 

+GC are in very good agreement. The differences are tabulated in  

Table 3. The observation is also that the error trends lower as the mesh density, i.e. DOF 

count, increases in all 3 formulations. 
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Table 3:Result comparison of Q3D Extractor with S-EFIE, GC solver and S-EFIE+GC. 

Geometry is a 10m-by-10m parallel square plate capacitor with 0.002m separation delta. 

DOF 

Count 

Q3D 

(nF) 

Result (nF) Error (%) 

S-EFIE GC S-EFIE+GC S-EFIE GC S-EFIE+GC 

494 443.25 443.02 443.02 443.02 0.05080 0.05080 0.05080 

1042 443.25 443.04 443.04 443.04 0.04688 0.04688 0.04688 

2022 443.25 443.06 443.06 443.06 0.04239 0.04239 0.04239 

4174 443.25 443.08 443.08 443.08 0.03746 0.03746 0.03746 

8046 443.25 443.10 443.10 443.10 0.03350 0.03350 0.03350 

 

3.3 S-EFIE+GC Accuracy in Relation to Separation Delta 

Q3D Extractor is again used as benchmark and 3 separation deltas were considered; 

0.002m, 0.001m and 0.0002m. The parallel square plate size remains at 10m-by-10m. Hence, the 

aspect ratios are 5000, 10000, and 50000. The DOF count for the geometries are respectively 

19448, 23340, and 19416. The capacitance, through Q3D Extractor, were 443.25nF, 885.91nF, 

and 4427.7nF respectively. 

The DOF count vs. percentage error is graphed for S-EFIE+GC for the 3 separation 

deltas and shown in Figure 23. The Q3D Extractor and S-EFIE+GC are seen to converge as DOF 

count increases also the results are better as the separation delta decreases. 
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Figure 23:S-EFIE+GC formulation error relative to Q3D across 3 separation deltas for the same 

parallel square plate capacitor. 

3.4 S-EFIE+GC Conditioning in Relation to Separation Delta 

The conditioning of S-EFIE+GC as the separation delta decreases is also explored. Figure 

24 shows the relation. 

 

Figure 24:S-EFIE+GC conditioning performance as separation delta decreases. 
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3.5 S-EFIE+GC Integrated with MFD Accuracy and Scalability Data 

The accuracy is first explored. Q3D Extractor values and methodology from S-EFIE+GC 

Accuracy in Relation to Separation Delta are replicated in this section. The results are shown in 

Figure 25. The trend from dense fill seems to carry to integration with MFD. It must be remarked 

that the results published here are the results of MFD integrated with S-EFIE+GC formulation 

without preconditioning. Therefore, the results may not be at the optimal. The preconditioning 

that has been proposed thus far is easily implemented on a dense fill execution. However, in 

integration with MFD, a separate mechanism that allows MFD to discern whether a pair of source 

and field interactions approximate that explained in “Effects of Far Interactions” remains to be 

implemented in MFD. This may be possible to integrate in the near fill step of MLSSM in MFD. 

Next, the fill operation count versus DOF count between a dense fill run of S-EFIE+GC 

and a S-EFIE+GC with MFD run is shown in Figure 26. The dense fill operation naturally scales 

as 𝑂(𝑛2). The S-EFIE+GC with MFD seems to suggest a 𝑂(𝑛) scalability. This is followed by 

the memory usage of MLSSM in Figure 27. 

The LOGOS factorization time follows a 𝑂(𝑛𝑥) trend where 𝑥 < 2. This is shown in 

linear scale in Figure 28. The LOGOS solve time is shown in Figure 29. 

 

Figure 25:S-EFIE+GC with MFD formulation error relative to Q3D across 3 separation deltas for 

the same parallel square plate capacitor. 
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Figure 26:DOF count versus fill operation scalability of S-EFIE+GC integrated with MFD 

compared to S-EFIE+GC dense fills. 

 

Figure 27:MLSSM memory usage across different separation delta and DOF count. 
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Figure 28:DOF count versus LOGOS factorization CPU time. 

 

Figure 29:DOF count versus LOGOS solve CPU time. 

3.6 AEFIEnH-S with MFD Solution Accuracy 

As an added consideration, AEFIEnH-S is also examined. The bistatic RCS for a PEC 

sphere of 1-meter radius due to an incident uniform plane wave electric field with incident 

direction −𝑧̂ and polarization in the 𝑥 direction at 2 incident wavelengths 1.5m and 125m 

computed analytically [23] were used as benchmark. The results of an AEFIEnH-S dense fill run 



49 

 

and AEFIEnH-S with MFD run were compared to the benchmark and shown in Figure 30 and 

Figure 31. 

 

 

Figure 30: AEFIEnH-S dense run and with MFD run against analytical result for 1-m radius PEC 

sphere at 1.5m wavelength. 

 

Figure 31: AEFIEnH-S dense run and with MFD run against analytical result for 1-m radius PEC 

sphere at 125m wavelength. 
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4 CONCLUSION 

The genesis for the work underlying this thesis was the problem encountered by the 

industry when dealing with geometries with high aspect ratios. In the investigation, 2 main 

problems were found that needed to be resolved to move forward. These were the slow 

convergence of the adaptive quadrature evaluations on interactions between triangle patches that 

are very closely located. The high conditioning of the system matrix for the formulations was 

another obstacle towards integration with MFD which thrives on formulations with low 

conditioning. 

The first problem was resolved by using potential integrals in the static case. The 

extended Duffy transform whilst slower in comparison to potential integrals allows the potential 

to apply the formulations to quasi-static cases where the excitation is non-static. 

The investigation also led to an understanding of the underlying physics that is causing 

the poor conditioning of the system matrices for such geometries. That is, as the field point is far 

removed from the source triangles that pair up and appear to cancel each other in charges, the 

system matrix will appear to look rank deficient and hence contribute to a singular matrix. The 

preconditioning strategy has seemed to prove the hypothesis in dense fill scenarios and motivate a 

preconditioning strategy in MFD as MLSSM fills are being done to alleviate the problem. 

Finally, the pairing of MFD with the S-EFIE+GC formulation seem to show significant 

savings in memory usage as well as fill operations which remains to be the main time-consuming 

operation. The solve and factorization time of LOGOS seem to scale in 𝑂(𝑛𝑥) where 𝑥 < 2. It 

must be noted that at the time of the posted results, the preconditioning strategy has not been 

implemented in MFD. Thus, this suggests that with preconditioning developed into MFD the 

results may exceed the performance reported to date. 
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