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Mammography is the most widely used method of screening for breast cancer. 

Traditional mammography produces two-dimensional X-ray images, while advanced 

tomosynthesis mammography produces reconstructed three-dimensional images. Due to 

high variability in tumor size and shape, and the low signal-to-noise ratio inherent to 

mammography, manual classification yields a significant number of false positives, 

thereby contributing to an unnecessarily large number of biopsies performed to reduce 

the risk of misdiagnosis. Achieving high diagnostic accuracy requires expertise acquired 

over many years of experience as a radiologist.  

The convolutional neural network (CNN) is a popular deep-learning construct 

used in image classification. The convolutional process involves simplifying an image 

containing millions of pixels to a set of small feature maps, thereby reducing the input 

dimension while retaining the features that distinguish different classes of images. This 

technique has achieved significant advancements in large-set image-classification 

challenges in recent years.  

In this study, high-quality original mammograms and tomosynthesis were 

obtained with approval from an institutional review board. Different classifiers based on 

convolutional neural networks were built to classify the 2-D mammograms and 3-D 

tomosynthesis, and each classifier was evaluated based on its performance relative to 

truth values generated by a board of expert radiologists. The results show that CNNs have 

great potential for automatic breast cancer detection using mammograms and 

tomosynthesis. 

KEYWORDS: Convolutional neural network, Mammogram, Tomosynthesis, 

Classification, Deep Learning, Transfer Learning 
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Chapter 1. Introduction 

 

1.1. Breast cancer status 

The term “breast cancer” encompasses all forms of cancer that develop from breast 

tissues, including skin, fibrous tissue, glands, and fat. The breast organ is not essential for 

human life, for which reason in situ breast cancer usually is not fatal. However, cancer 

cells may fall off of breast tissue and spread to other places in the human body through 

the blood or lymph fluid system. 

 

In the United States, 99% of breast cancer occurs in women. Roughly 12% of women in 

the U.S. develop breast cancer during their lifetime. Today, breast cancer is the first place 

of malignant cancer in women. The death rate of breast cancer has decreased during 

recent decades. However, because of the large number of patients, approximately 40,000 

breast cancer patients die each year in the U.S[1]. 

 

When cancer is detected early, the cancer cells are most likely found in an isolated part of 

the body, making it relatively easy to control with proper treatment. Cancer is much more 

difficult to cure when the cancer cells have spread to multiple parts of the body. To find 

breast cancer in early stages, before patients exhibit symptoms, women are recommended 

to undergo a screening test, commonly a mammogram. The results indicate whether a 

patient has, or is in high risk of getting, breast cancer. In such cases, further tests 

(Magnetic Resonance Imaging, Ultrasound imaging, biopsy, etc.) are required to 

determine the proper treatment[2, 3]. 



2 

 
 
 

 

1.2. Mammograms and tomosynthesis 

1.2.1. Mammograms 

Mammograms are two-dimensional X-ray images of breasts used to detect breast cancer 

when patients do not exhibit symptoms. Mammography entails exposing a patient’s 

breasts to low levels of X-ray radiation. Breast cancer cells are identifiable from 

mammograms thanks to the different X-ray absorption rates of normal and abnormal 

tissues. Tumors appear as masses, while micro-calcification manifests as white dots. 

However, some breasts have dense tissues that likewise appear in mammograms as 

masses. In such cases, the tumor mass may overlap with the dense tissue, contributing to 

false-positive diagnoses. Normally, mammograms capture images in two standard 

orientations: Craniocaudal (CC) and Medial-lateral-oblique (MLO) during screening. 

There still a lot of supplementary views used in diagnostic[4]. 

 

1.2.2. Tomosynthesis 

Breast tomosynthesis is an advanced breast imaging technique first approved by the FDA 

in 2011. It takes multiple X-ray images at different angles. The images are reconstructed 

to yield a video from which a radiologist can identify abnormalities. Compared to 

traditional mammograms, tomosynthesis provides more-accurate results because tumors 

can be more-easily distinguished from dense tissues using images taken from different 

angles. In addition, distortion in tissues surrounding the tumor is easier to detect by 

tomosynthesis, providing proof of tumor malignance[5]. 
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1.2.3 Drawbacks of manual classification of mammograms 

Approximately 10% of all women screened for breast cancer are called back for 

additional work-ups, but only 0.5% are diagnosed with breast cancer (that is, 5 women 

out of 1,000 screened, or 5 out of the 100 women called back). Thus, ensuring good 

sensitivity in manual classification of mammograms results in an approximate 95% rate 

of preliminary false positives. The use of tomosynthesis in conjunction with 

mammography will improve the accuracy of diagnoses, but manual classification still 

incurs a high false-positive rate and requires years of experience on the part of the 

radiologist. These false-positive diagnoses result in an abundance of unnecessary follow-

up tests, and thus contribute to increased health-care costs as well as unnecessary 

emotional turmoil for the patients themselves[2-5]. 

 

1.3. Convolutional neural networks 

1.3.1. Convolutional neural networks 

The convolutional neural network (CNN) is a feed-forward artificial neural network used 

in pattern classification. Hubel and Wiesel first defined CNNs in the 1960’s while 

studying the neurons of local sensitive and directional selection in the feline cortex. In 

contrast to the standard artificial neural network, the CNN incorporates a convolving 

process by which the input of each neuron is connected to the receptive field of the 

previous layer, and the local feature is extracted. By feeding the training data and 

adjusting the neuron parameters using back-propagation, a computation to decide the 

adjustment direction of the parameters in the neurons of each layer, CNN has a unique 

superiority in speech recognition and image processing with its special structure shared 
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by local weights.[6, 7] Its layout is closer to the actual biological neural network. Weight 

sharing reduces the complexity of the network, especially the multi-dimensional. The 

input vector of the image can be entered directly into the network. This feature avoids the 

complexity of data reconstruction during feature extraction and classification[6, 8]. 

 

1.3.2. Performance of CNNs in image classification 

Deep learning with CNNs has emerged as one of the most powerful machine-learning 

tools in image classification, surpassing the accuracy of almost all other traditional 

classification methods and even human ability. The convolutional process can simplify an 

image containing millions of pixels to a set of small feature maps, thereby reducing the 

dimension of input data while retaining the most-important differential features[6].  

 

The MNIST data set is a large database of handwritten digits containing 60,000 training 

images and 10,000 testing images. Acting on this database, CNNs have achieved an error 

rate of only 0.21%, which is close to the human performance of ~0.2% error[9]. Another 

image dataset, entitled Street View House Numbers (SVHN), contains 600,000 digital 

images. The best-performing CNN achieved an error rate of 1.69%[10], improving upon 

the estimated human performance of 2% error[11]. 
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1.3.3. CNNs used in mammogram classification 

The use of CNNs to classify mammograms is not entirely new. Daniel Lévy et al. used 

deep CNNs on small patches of mammograms, achieving a maximum accuracy of 

93%[12]. Henry Zhou et al. used CNNs on a dataset of whole mammograms, affording 

60.90% accuracy[13]. Neeraj Dhungel et al. built a method that automatically segments 

the area of a mass and then classifies the mammogram. Their best results were 0.76 in 

terms of AUROC for automatically segmented small patches, and 0.91 for manually 

segmented small patches[14]. In general, the classification of mammograms using small 

abnormality patches affords better performance but requires more pre-processing work. 

 

1.4. Motivation of the study 

Mammography is the only screening tool that has been proven to reduce breast cancer 

mortality. However, it is well known that the rate of call-backs by radiologists for 

mammogram patients is high, largely due to the low signal-to-noise ratio in 

mammograms and the wide variability in breast cancer imaging. CNNs exhibit superior 

performance on many image-classification tasks, and a few research projects have 

demonstrated that CNNs can perform decently well on the specific task of mammogram 

classification, albeit usually on partial mammograms.  

 

An effective classification model for whole mammograms would offer multiple benefits, 

including (a) saving the work of annotating partial mammograms, and (b) reducing the 

patient call-back rate, and thus the number of unnecessary tests conducted, without 

harming sensitivity. 



6 

 
 
 

 

The goal of this study is to build a good model for whole-mammogram classification 

using convolutional neural networks, and thus to reduce the false-positive rate of manual 

classification. The secondary aim is to explore integration of 3-D tomosynthesis to 

improve the overall accuracy of breast-cancer detection. 

  

  



7 

 
 
 

Chapter 2. Data and Methodology 

 

2.1. Study workflow 

The workflow for this study is shown in Figure 1: 

 

 

Figure 1: Workflow of this study 

2.1.1. Data collection  

High-quality mammogram data from the University of Kentucky Medical Center were 

obtained with institutional review board approval (IRB 17-0011-P3K). The dataset 

contains 3,018 negative and 272 positive mammogram exams. All positive exams were 

biopsy-proven malignant cancer samples, and negative exams were assessed by 

experienced radiologists. All exams in the dataset were taken in either CC or MLO view.  

 

Negative samples originated from 793 patients, for most of whom were collected four 

images: namely, CC and MLO views for each breast. Positive samples originated from 

125 patients. Most positive patients have two images collected: CC and MLO views of 

the breast site with tumor. For each exam, 2-D mammogram and 3-D tomosynthesis 

results were obtained. The 2-D mammograms were provided in 12-bit DICOM format at 
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3328*4096 resolution. The 3-D tomosynthesis images were provided in 8-bit AVI format 

with a resolution of 768*1024.  Table 1 summarizes the dataset used in this study. 

Table 1: Mammogram and tomosynthesis data used in this study 

View Negatives Positives 

RCC 758 77 

RMLO 759 73 

LCC 751 64 

LMLO 750 58 

Total 3018 272 

 

2.1.2. Data preparation 

All data were de-identified to protect the patients’ privacy. In order to save storage space 

and reduce the time of file I/O, the pixel array for each 2-D mammogram DICOM file 

was saved as a 16-bit JPEG image. For each 3-D tomosynthesis AVI file, all frames were 

processed to a set of 8-bit JPEG images for the same purpose. The total number of frames 

for each 3-D tomosynthesis exam varies from 21 to 120.  

 

2.1.3. Data augmentation 

Generally, deep neural networks require training on a large number of training samples to 

perform well. However, most real-life datasets contain a limited number of samples. Data 

augmentation is a method for increasing the size of input data by generating new input 

data based on the original input data. Many strategies exist for data augmentation[6, 15]. 

This study employed a combination of reflection; rotation by 90, 180, or 270 degrees. For 

the 2-D mammograms, each original image was flipped horizontally. The original and 

reflected images were then rotated by each of 90, 180, and 270 degrees. Each original 
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image was thus augmented to eight images. Figure 2 depicts the data augmentation 

process for 2-D mammograms. All augmented images were saved on the hard drive. 

Compared to executing data augmentation during the training phase, frontloading the 

augmentation process reduces the running time of the tests. However, for the 

tomosynthesis data, data augmentation was performed during the training phase due to 

storage limitations. The data matrix for each tomosynthesis sample was either 

horizontally flipped or not flipped, and then randomly rotated 0, 90, 180 or 270 degrees.  

 

Figure 2: Example of 2-D mammogram data augmentation 

2.1.4 Transfer learning 

Transfer learning is the re-use of information obtained during the training phase of a 

previous project. In the field of image classification using CNNs, the CNNs trained in the 

course of successful projects are sometimes published for use by other researchers. Two 

popular transfer-learning methods involve (a) fine-tuning the parameters in certain layers 

of the trained CNN, or (b) using the trained CNN to calculate the feature maps of new 

types of data.  
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No mammogram-trained CNN is publicly available, for which reason this study utilizes 

AlexNet, trained with ImageNet.  Figure 3 depicts the architecture of AlexNet[15].  

 

Figure 3: Architecture of AlexNet 

 

Considering the fact that mammograms differ dramatically from the images in the 

ImageNet dataset, the trained AlexNet was used only to obtain the feature maps. Each 

image in the augmented dataset was resized to 832*832, which resolution was chosen 

with the goal of retaining tumor pixel information.  The feature maps (pool5 layer in 

Figure 3) of resized images were calculated using the ImageNet-trained AlexNet. The 

output shape is 25*25*256. The feature maps were then used in the training and testing of 

some shallow CNNs. 

 

2.1.5. CNN models and some details 

Different architectures of convolutional neural networks were built to classify the 2-D 

mammograms, 3-D tomosynthesis images, and their feature maps. Sample CNN 

architecture is shown in Figure 4. Each convolution process includes convolution, batch 
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normalization[16], and leaky ReLU[17]. All CNNs used Max pooling with stride 2. The 

optimizer used is the Adam optimizer[18]. L2 regularization was introduced in the loss 

function to prevent overfitting[19]. Dropout was also included to improve the model 

performance[20]. Two classic CNN architectures, AlexNet[15] and ResNet50[21], were 

also employed to classify the 2-D whole mammograms.  Complete architecture details 

are provided in Table 2. 

 

 

Figure 4: Sample CNN architecture 
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Table 2: Detailed architectures of tested models for 2-D mammograms and 3-D 

tomosynthesis classification 

Architecture 

Name 

Input Shape conv1 conv2 conv3 fc1 

neurons 

fc2 

neurons 

output 

2D-A1 224*224*3 6@5*5 16@3*3 ** 1024 1024 2 

2D-A2 224*224*3 16@3*3 32@3*3 64@3*3 1024 1024 2 

AlexNet* 224*224*3      2 

ResNet50* 224*224*3      2 

2D-T1 25*25*256 256@1*1 ** ** 1024 ** 2 

2D-T2 25*25*256 256@1*1 ** ** 1024 1024 2 

2D-T3 25*25*256 256@1*1 ** ** 512 512 2 

3D-A1 128*128*16*3 16@3*3*3 32@3*3*3 64@3*3*3 1024 1024 2 

3D-T1 25*25*16*256 32@3*3*3 ** ** 256 256 2 

3D-T2 25*25*16*256 256@1*1*1 ** ** 256 256 2 

*Architectures of Classic CNNs are not shown in table 

**The layer was not applied 

 

Among the architectures employed, 2D-A1, 2D-A2, AlexNet, and ResNet50 were used to 

classify the 2-D whole mammograms. 2D-T1, 2D-T2, and 2D-T3 were used to classify 

feature maps of the 2-D mammograms calculated by ImageNet-trained AlexNet. 3D-A1 

was used to classify whole tomosynthesis samples. 3D-T1 and 3D-T2 were used to 

classify the 3-D tomosynthesis feature maps calculated by ImageNet-trained AlexNet.  

 

Imbalanced data represent a common problem in machine-learning projects. If 

imbalances in the training data are not considered, the resulting model generally performs 

well on the larger class but poorly on the smaller class. The target dataset for this study 

was classically imbalanced, with roughly 90% of samples representing negative 

diagnoses. To reduce the imbalance effect, the mini-batches selected during the training 
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phase were restricted to be balanced. During each training epoch, the training data were 

randomly split into m folds. 

𝑚 =
𝑁𝑝𝑜𝑠

𝑛/2
 

Where Npos denotes the number of positive samples (smaller class) in the training set, and 

n is the batch size. On each iteration, all positive samples (n/2 samples) and n/2 randomly 

selected negative samples of 1-fold training data were fed to train the CNN.  

 

For the data input, 2-D mammograms and their feature maps were read as 3-D matrices 

with shape defined as length*width*channels. 3-D tomosynthesis data and their feature 

maps were read as 4-D matrices with shape defined as length*width*depth*channels. 

Here, depth denotes the number of frames of 3-D tomosynthesis data, which may vary 

across tomosynthesis samples. To obtain a fixed input shape, an equal number of frames 

was selected for each sample. Figure 5 details the method for selecting frames from 3-D 

tomosynthesis data originally composed of 50 frames. 

 

 

Figure 5: Frame selection method for 3-D tomosynthesis data 
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2.2. Software and Hardware 

2.2.1 Software 

The Python programing language and Shell Script were used to build the prediction 

models and to write testing scripts. 

 

The following libraries were used to build the prediction model: 

Deep-learning library: 

• Tensorflow 0.10.0[22] 

• Tflearn 0.2.1[23] 

• Keras 2.0.5[24] 

 

Machine-learning library: 

• Scikit-learn 0.18rc2[25] 

 

Image-processing library: 

• Pillow 3.4.2[26] 

• Pydicom 0.9.9[27] 

• Scikit-image 0.12.3[28] 

 

Mathematic library: 

• Numpy 1.13.0[29] 

 

All figures were generated using either Gnuplot 5.0[30] or the ggplot2[31] package in R.  
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2.2.2 Hardware 

All deep-learning training and test experiments were run on the University of Kentucky’s 

IPOP Deep Learning server with two groups of four Nvidia GTX 1080 GPUs, each with 

8 GB RAM. 

 

2.4. Performance evaluation 

2.4.1. Holdout validation and cross-validation 

To evaluate the performance of each prediction model, the dataset was partitioned into 

training and testing datasets. For holdout validation, the training set was used to train the 

model; the results of predictions made on the testing set were used to evaluate the 

performance of the model. In this study, the results of holdout validation were used in the 

parameter-tuning phase and some of the performance-comparison tests. The training-

testing ratio used in all holdout validation tests was 4:1. 

 

Cross-validation is a method that provides more-reliable performance evaluation. In this 

study, 5-fold cross-validation was used to evaluate the performance of models optimized 

with pre-selected parameters for 2-D mammogram classification. To perform 5-fold 

cross-validation, the dataset was partitioned into five equally-sized subsets. In each of 

five tests, four folds were used as training data and the remaining fold was used as testing 

data. The average result of all five tests was used to gauge the overall performance of the 

model. 
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2.4.2. Area Under Receiver Operating Characteristic curve (AUROC) 

Receiver operating characteristic curve (ROC) is plotted as the true-positive rate versus 

the false-positive rate at various thresholds. The area under the ROC curve represents the 

performance of a binary classifier. Tradeoffs can be made based on ROC curves to select 

the most appropriate model to fit a specific research project. When testing the prediction 

models in this study, a set of likelihoods of all test samples in each class was calculated. 

Using each value in the likelihoods set in turn as the threshold, true-positive rates (TPRs) 

and false-positive rates (FPRs) were calculated. These TPR-FPR data were then used to 

plot the ROC curve and calculate the AUROC.  
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Chapter 3. Results and discussion 

 

3.1. 2-D mammogram classification 

This section contains the results of 2-D mammogram classification tests. 

 

3.1.1 Parameter-tuning for 2-D mammograms and their feature-map classification models 

The augmented 2-D mammogram dataset was used to train and test the CNNs. The 

results of architecture 2D-A1 using different parameter sets are given in Table 3. 
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Table 3: Parameter running results of tests of 2D-A1 on 2D mammograms 

 
Tests of 

2D-A1 

Learning 

Rate 

Dropout L2 

regularization 

beta 

Learning 

rate decay 

rate 

Holdout 

AUROC 

test1 0.1 0.50 0.001 0.985 0.5488 

test2 0.01 0.50 0.001 0.985 0.4737 

test3 0.001 0.50 0.001 0.985 0.5026 

test4 0.0001 0.50 0.001 0.985 0.4857 

test5 0.00001 0.50 0.001 0.985 0.5759 

test6 0.1 0.25 0.001 0.985 0.4825 

test7 0.1 0.75 0.001 0.985 0.6007 

test8 0.1 0.90 0.001 0.985 0.5481 

test9 0.1 1.00 0.001 0.985 0.5273 

test10 0.1 0.50 0.1 0.985 0.5522 

test11 0.1 0.50 0.01 0.985 0.4802 

test12 0.1 0.50 0.0001 0.985 0.5513 

test13 0.1 0.50 0.00001 0.985 0.5743 

test14 0.1 0.50 0.001 0.980 0.5731 

test15 0.1 0.50 0.001 0.990 0.5743 

test16 0.1 0.50 0.001 0.995 0.5013 

test17 0.1 0.50 0.001 1.000 0.5267 

 

These results demonstrate that for the 2-D mammogram dataset, the best parameter set 

for 2D-A1 is: learning rate = 0.1; dropout = 0.5; L2 regularization beta = 0.001; learning 

rate decay rate for Adam Optimizer = 0.985. 
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The results of architecture 2D-A2 using different parameter sets are shown in Table 4. 

Table 4: Parameter-tuning results of tests of 2D-A2 on 2-D mammograms 

Tests of 

2D-A2 

Learning 

Rate 

Dropout L2 

regularization 

beta 

Learning 

rate decay 

rate 

Holdout 

AUROC 

test1 0.1 0.50 0.001 0.985 0.5216 

test2 0.01 0.50 0.001 0.985 0.5448 

test3 0.001 0.50 0.001 0.985 0.4419 

test4 0.0001 0.50 0.001 0.985 0.5429 

test5 0.01 0.25 0.001 0.985 0.5382 

test6 0.01 0.75 0.001 0.985 0.5051 

test7 0.01 0.90 0.001 0.985 0.5015 

test8 0.01 1.00 0.001 0.985 0.5488 

test9 0.01 1.00 0.1 0.985 0.4782 

test10 0.01 1.00 0.01 0.985 0.4923 

test11 0.01 1.00 0.0001 0.985 0.5134 

test12 0.01 1.00 0.00001 0.985 0.5023 

test13 0.01 1.00 0.001 0.980 0.4916 

test14 0.01 1.00 0.001 0.990 0.5238 

test15 0.01 1.00 0.001 0.995 0.5072 

test16 0.01 1.00 0.001 1.000 0.4746 

 

These results suggest that for the 2-D mammogram dataset, the best parameter set for 2D-

A2 is: learning rate = 0.1; dropout = 1.0; L2 regularization beta = 0.001; learning rate 

decay rate for Adam Optimizer = 0.985. 
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The AlexNet and ResNet50 architectures were tested on the 2-D mammogram data. The 

results of AlexNet tests are provided in Table 5.  

Table 5: Parameter-tuning results of tests of AlexNet on 2-D mammograms 

Tests of 

AlexNet 

Learning 

Rate 

Dropout L2 

regularization 

beta 

Learning 

rate decay 

rate 

Holdout 

AUROC 

test1 0.1 0.50 0.001 0.985 0.5552 

test2 0.01 0.50 0.001 0.985 0.4990 

test3 0.001 0.50 0.001 0.985 0.5273 

test4 0.0001 0.50 0.001 0.985 0.6544 

test5 0.00001 0.50 0.001 0.985 0.6256 

test6 0.0001 0.25 0.001 0.985 0.6749 

test7 0.0001 0.75 0.001 0.985 0.6203 

test8 0.0001 0.90 0.001 0.985 0.6279 

test9 0.0001 1.00 0.001 0.985 0.6214 

test10 0.0001 0.25 0.1 0.985 0.6214 

test11 0.0001 0.25 0.01 0.985 0.4864 

test12 0.0001 0.25 0.0001 0.985 0.5374 

test13 0.0001 0.25 0.0001 0.985 0.6170 

test14 0.0001 0.25 0.001 0.970 0.5494 

test15 0.0001 0.25 0.001 0.975 0.6274 

test16 0.0001 0.25 0.001 0.980 0.6323 

test17 0.0001 0.25 0.001 0.990 0.6433 

test18 0.0001 0.25 0.001 0.995 0.5634 

test19 0.0001 0.25 0.001 1.000 0.5494 

 

These results demonstrate that for the 2-D mammogram dataset, the best parameter set of 

AlexNet is: learning rate = 0.0001; dropout = 0.25; L2 regularization beta = 0.001; 

learning rate decay rate for Adam Optimizer = 0.985. 
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The results for test of ResNet50 are shown in Table 6. 

Table 6: Parameter-tuning results of tests of ResNet50 on 2-D mammograms 

Tests of 

ResNet50 

Learning 

Rate 

Dropout L2 

regularization 

beta 

Learning 

rate decay 

rate 

Holdout 

AUROC 

test1 0.1 0.50 0.001 0.985 NA* 

test2 0.01 0.50 0.001 0.985 NA 

test3 0.001 0.50 0.001 0.985 0.6239 

test4 0.0001 0.50 0.001 0.985 0.6111 

test5 0.01 0.25 0.001 0.985 0.5948 

test6 0.01 0.75 0.001 0.985 0.5267 

test7 0.01 0.90 0.001 0.985 0.5387 

test8 0.01 1.00 0.001 0.985 0.5575 

test9 0.01 0.50 0.1 0.985 0.5262 

test10 0.01 0.50 0.01 0.985 0.5731 

test11 0.01 0.50 0.0001 0.985 0.5649 

test12 0.001 0.50 0.001 0.975 0.5746 

test13 0.001 0.50 0.001 0.980 0.4782 

test14 0.001 0.50 0.001 0.990 0.6094 

test15 0.001 0.50 0.001 1.000 0.5686 

*NA: Training loss did not converge 

 

The above results show that for the 2-D mammogram dataset, the best parameter set of 

ResNet50 is: learning rate = 0.001; dropout = 0.5; L2 regularization beta = 0.001; 

learning rate decay rate for Adam Optimizer = 0.985. 
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The original 2-D mammograms dataset was augmented using the method described in 

Chapter 2, section 2.1.3. The ImageNet-trained AlexNet pool-5 layer’s feature maps were 

calculated using the method described in Chapter 2, section 2.1.4. The shape of the 

feature map of a single input image is 25*25*256. The test results of architectures 2D-T1, 

2D-T2, and 2D-T3 are given in Table 7. 

Table 7: Results of tests of transfer learning architectures on 2-D mammogram 

feature maps calculated by ImageNet trained AlexNet 

Architectures Learning 

Rate 

Dropout L2 

regularization 

beta 

Learning 

rate decay 

rate 

Holdout 

AUROC 

2D-T1 0.01 0.50 0.0001 0.985 0.6529 

2D-T1 0.001 0.50 0.0001 0.985 0.7223 

2D-T1 0.0001 0.50 0.0001 0.985 0.6927 

2D-T1 0.01 0.50 0.01 0.985 0.7058 

2D-T1 0.0001 0.50 0.001 0.985 0.6897 

2D-T1 0.0001 0.50 0.00001 0.985 0.7234 

2D-T2 0.01 0.50 0.0001 0.985 0.6818 

2D-T2 0.001 0.50 0.0001 0.985 0.7274 

2D-T2 0.0001 0.50 0.0001 0.985 0.7123 

2D-T2 0.01 0.50 0.01 0.985 0.6821 

2D-T2 0.0001 0.50 0.001 0.985 0.6691 

2D-T2 0.0001 0.50 0.00001 0.985 0.6988 

2D-T3 0.01 0.50 0.0001 0.985 0.6737 

2D-T3 0.001 0.50 0.0001 0.985 0.7237 

2D-T3 0.0001 0.50 0.0001 0.985 0.7085 

2D-T3 0.01 0.50 0.01 0.985 0.6967 

2D-T3 0.0001 0.50 0.001 0.985 0.7091 

2D-T3 0.0001 0.50 0.00001 0.985 0.6827 

 

Based on the results above, the architecture 2D-T2 exhibits the best performance as 

gauged by holdout validation.  The associated AUROC is 0.7274. The best parameter set 

for 2D-T2 is: learning rate = 0.001; dropout = 0.5; L2 regularization beta = 0.0001; 

learning rate decay rate for Adam Optimizer = 0.985. 
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3.1.2 Effect of data augmentation 

Three different classification models were tested on the 2-D mammogram feature maps, 

both with and without data augmentation. The results of these tests are summarized in 

Table 8. 

Table 8: Result of tests using 2-D mammogram feature maps with and without data 

augmentation 

CNN Augmentation Best AUROC 

2D-T1 No 0.6160 

2D-T2 No 0.6162 

2D-T3 No 0. 6214 

2D-T1 Yes 0.7179 

2D-T2 Yes 0.7274 

2D-T3 Yes 0.7063 

 

 

With the help of data augmentation, the performance of each classifier was increased by 

roughly 0.1 AUROC units. Figure 6 depicts the training loss status of architecture 2D-T2 

using 2-D mammogram feature maps. Figure 7 shows the associated ROC curves. The 

training loss converged more smoothly with data augmentation than without. For this 

reason, all subsequent tests utilized the data augmentation strategy. 
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Figure 6: Loss of 2D-T2 on 2-D mammogram feature maps with and without 

augmentation 
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Figure 7: ROC curves of 2D-T2 tested on 2-D mammogram feature maps with and 

without data augmentation 

 
3.1.3 Summary of 2-D mammogram classification models 

The 5-fold cross-validation of the best shallow-CNN model, the best classic-CNN model, 

and the best transfer-learning model for 2-D mammograms are summarized in Table 9. 

Table 9: 5-fold cross-validation results of Shallow CNNs, Classic CNNs and 

Transfer-learning CNNs 

 AUROC 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

2D-A1 0.5488 0.5480 0.5290 0.5366 0.5431 0.5539 

2D-A2 0.5488 0.6030 0.6088 0.6295 0.5495 0.5879 

AlexNet 0.6749 0.7048 0.7007 0.6638 0.6294 0.6747 

ResNet50 0.6239 0.5299 0.6589 0.5938 0.5995 0.6012 

2D-T2 0.7274 0.6522 0. 6741 0.6829 0.6873 0.6848 
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The best performance was afforded by the transfer-learning architecture 2D-T2 using 

feature maps calculated by ImageNet-trained AlexNet. The best single-fold AUROC was 

0.7274, and the best average AUROC over all five folds was 0.6848. These results 

suggest that utilizing the transfer-learning strategy can improve the performance of 2-D 

mammogram classification models. 

 

Figure 8 depicts the training loss convergence status for the best fold tests for each of the 

five architectures in Table 9.  
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Figure 8: Train loss converge status of five 2-D mammogram classification models 

For the architectures 2D-A1, 2D-A2, and ResNet50, the loss status shows that the 

validation loss increased when the train loss started decreasing. Thus those three models 
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suffered from overfitting, which explains their low AUROCs. The AlexNet and 2D-T2 

architectures afford better loss-converge curves, in which the validation loss did not 

increase.  

 

3.2. 3-D tomosynthesis classification 

3.2.1 Summary of 3-D tomosynthesis classification models 

Holdout validation was used to test one model, 3D-A1, on 3-D tomosynthesis data, and 

two models on 3-D tomosynthesis feature maps. The AUROCs of the best tests for the 

three models are shown in Table 10, and Figure 9 depicts the associated ROC curves. 

 

Table 10: Holdout validation results of 3-D tomosynthesis classification models 

CNN AUROC 

3D_A1 0.6312 

3D_T1 0.6116 

3D_T2 0.6632 
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Figure 9: ROC curves of the 3-D tomosynthesis classification models 

Based on the tests, 3D-T2 exhibited the best performance on 3-D tomosynthesis feature 

maps; thus transfer learning using ImageNet-trained AlexNet was able to improve the 

performance of 3-D tomosynthesis classification models.  

Plots of the loss convergence status for tests of the 3-D models are shown in Figure 10. 

The loss fluctuation at convergence observed for all three models, but especially for the 

two transfer-learning models, arises due to the small batch sizes used in those tests.  

Batch size was limited by the memory of the machine used. 
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Figure 10: Train loss converge status of three 3-D tomosynthesis classification 

models 

  

3.3. Comparison of classification results of 2-D mammogram and 3-D tomosynthesis 

The best holdout-validation results of 2-D mammogram and 3-D tomosynthesis models 

were compared. Figure 11 shows their AUROCs, and Figure 12, their loss convergence 

status. 
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Figure 11: ROCs of best 2-D mammogram classification test and 3-D tomosynthesis 

classification tests 

 
 

Figure 12: Train loss converge status of best 2-D mammogram classification test and 

best 3-D tomosynthesis classification tests 
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classification accuracy on 3-D tomosynthesis data. One possible explanation for this 

phenomenon is that this study used only a subset of the 3-D tomosynthesis frames due to 

memory limitations. If the discarded frames contained information for diagnosing cancer 

that the selected frames lacked, then the frame sampling may have contributed to 

significant information loss. Another possible reason is that the 2-D mammograms have 

better resolution than the 3-D tomosynthesis data used in this study, such that the 2-D 

mammograms may benefit from a higher signal-to-noise ratio. 
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Chapter 4. Conclusions and future work 

 

4.1 Conclusions 

In this study, we explored classification models using convolutional neural networks on 

both 2D mammogram and 3D tomosynthesis classification. In the best cases, we achieved 

AUROC scores of 0.7274 for 2-D mammogram classification, and 0.6632 for 3-D 

tomosynthesis. The effects of data augmentation and transfer learning were also 

evaluated, both of which were found to boost the performance of classification models.  

  

4.2 Future work 

The current study shows that convolutional neural network models achieved promising 

results on both 2-D mammogram and 3-D tomosynthesis classification. However, the 

performance of these models can still be improved. 

 

Firstly, the size of the dataset used in this study is limited. For deep convolutional neural 

network classifiers, larger datasets usually contribute to better performance. We will first 

perform tests to determine how many images we should include to improve the 

performance. Based on the results, more mammography data will be collected. 

 

Secondly, the sampling method of 3-D tomosynthesis frames used in this study may 

cause information loss. This may be the primary reason that the 3-D tomosynthesis 

classification model was unable to outperform the 2-D mammogram classification model 

in this study. A tumor mass may only appear in a few, consecutive frames in the 3-D 
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tomosynthesis, with the effect that our sampling method might select only one or two 

frames containing tumor information in 16 frames selected. To address this problem, 

other sampling methods will be investigated with the aim of reducing information loss 

during 3-D tomosynthesis data sampling. One thought is to manually annotate the frames 

containing visible tumors. Another approach is to develop an automatic clustering tool to 

select out the important frames. Both ideas will be tested in future work. 

 

Finally, more annotation of density levels on the 2-D mammograms can be applied to 

provide more information for the CNN models. The reason is that tumors in not dense 

breasts are obvious, while they are not easy to find in dense breasts. With the dense 

information, the CNN may become more sensitive to distinguish the tumors and dense 

tissues in mammogram. 
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Appendix 

 

Abbreviations 

AUROC Area under Receiver Operating Characteristic curve 

CNN  Convolutional neural network 

CC  Craniocaudal  

MLO   Medial-lateral-oblique 

ROC  Receiver Operating Characteristic 
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