
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Pharmacy College of Pharmacy 

2017 

EFFECTS OF EFFECTS OF IN UTERO  NICOTINE EXPOSURE ON IMMUNE CELL NICOTINE EXPOSURE ON IMMUNE CELL 

DISPOSITION AFTER DISPOSITION AFTER P. AERUGINOSA  LUNG INFECTION LUNG INFECTION 

Nayon Kang 
University of Kentucky, nykang2@uky.edu 
Author ORCID Identifier: 

https://orcid.org/0000-0002-2619-4240 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.351 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Kang, Nayon, "EFFECTS OF IN UTERO NICOTINE EXPOSURE ON IMMUNE CELL DISPOSITION AFTER P. 
AERUGINOSA LUNG INFECTION" (2017). Theses and Dissertations--Pharmacy. 79. 
https://uknowledge.uky.edu/pharmacy_etds/79 

This Master's Thesis is brought to you for free and open access by the College of Pharmacy at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Pharmacy by an authorized administrator of UKnowledge. 
For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/pharmacy_etds
https://uknowledge.uky.edu/pharmacy
https://orcid.org/0000-0002-2619-4240
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Nayon Kang, Student 

Dr. David J. Feola, Major Professor 

Dr. David J. Feola, Director of Graduate Studies 



	
	

EFFECTS OF IN UTERO NICOTINE EXPOSURE ON IMMUNE CELL DISPOSITION 

AFTER P. AERUGINOSA LUNG INFECTION 

 
 
 
 

____________________________________ 
 

THESIS 

____________________________________ 
 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science in the College of Pharmacy at the University of Kentucky 

 

 

 

By 

 

Nayon Kang 

 

Lexington, Kentucky 

 

Director: Dr. David Feola, Professor of Pharmacy Practice and Science 

 

Lexington, Kentucky 

 

2017 

 

Copyright© Nayon Kang 2017



	
	

ABSTRACT OF THESIS 

 

 

 

EFFECTS OF IN UTERO NICOTINE EXPOSURE ON IMMUNE CELL DISPOSITION 

AFTER P. AERUGINOSA LUNG INFECTION 

Current smoking cessation guidelines recommend nicotine replacement therapy 

(NRT) to assist pregnant smokers to quit, but this is without strong evidence for 

effectiveness and safety. Nicotine, the main addictive component of tobacco, is known to 

exert physiological effects by binding to its receptor, the nicotinic acetylcholine receptor 

(nAChR). Recent studies have identified the presence of nAChRs in non-neuronal cells, 

and in macrophages, functional alteration upon stimulation with nicotine has been 

documented.  

To understand the impact of in utero nicotine exposure on various immune cell 

disposition and function, we designed preliminary studies using an in vivo model of P. 
aeruginosa infection. In this model, pregnant mice were exposed to nicotine and after 

weaning, offspring were infected intra-tracheally and humanely killed 5 days later.  

Nicotine-exposed mice had a greater weight reduction post-infection. This was 

accompanied by a decreased number of neutrophil, resident macrophages, and B 

lymphocytes in the lungs, while the number of B lymphocytes in the lymph nodes were 

greater than that of the control group. In the lung lavage fluids, IL-6, MCP-1, and TNFα 

concentrations were elevated in nicotine-exposed mice. In an in vitro system using bone 

marrow-derived macrophages, a significantly reduced production of IFNγ was observed 

in nicotine-exposed mice when cells were stimulated with LPS.  

To characterize and compare gene expression in macrophages isolated from 

neonates developmentally exposed to nicotine, we designed a clinical study to recruit 

pregnant mothers who 1) did not smoke during pregnancy, 2) smoked throughout 

pregnancy, or 3) used NRT during pregnancy. We found that successful RNA isolation 

can be achieved from neonatal tracheal aspirate samples and cell number and reagent 

volumes were important determinants of acceptable RNA quality and quantity.  

Together, these preliminary findings demonstrate a possible alteration in immune 

response as a result of in utero nicotine exposure and sets a groundwork for future 

studies in identifying mechanisms underlying the impact of developmental nicotine 

exposure. 

 

KEYWORDS: Pregnancy, cigarette smoke, nicotine, non-neuronal cholinergic system, 

macrophage, Pseudomonas aeruginosa 
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Chapter 1. Introduction 
 
 
A. Smoking and Pregnancy 
 

a. Overview 
 
 

Smoking is a significant contributor to several pathologies that lead to major 

public health problems, such as cancer, cardiovascular disease, pulmonary disease, and 

perinatal morbidity. It is the leading preventable cause of disease and death in the U.S. 

across all age groups and genders (1, 2). Various methodologies, including nicotine 

replacement therapy (NRT), have been studied and developed to aid smoking cessation 

and minimize nicotine withdrawal. 

Current practice guidelines recommend the use of NRT during pregnancy if 

smoking cessation is not achieved with non-pharmacologic intervention alone (3). There 

is general consensus that NRTs are safer than cigarette smoking during pregnancy due 

to reduced exposure to the numerous toxins contained in cigarette smoke. Adverse 

effects observed during pregnancy from smoking are also observed with nicotine 

administration alone, signifying that NRT use in pregnancy should be extensively 

examined. Their use is without sufficient data to support safety and effectiveness in 

pregnant smokers, and importantly safety to the newborn has not been adequately 

evaluated.  

Nicotine, the main addictive component of tobacco, is known to exert 

physiological effects by binding to its receptor, the nicotinic acetylcholine receptor 

(nAChR). Recently, studies have identified the presence of nAChRs on non-neuronal 

cells and have explored their role in normal cellular activities. The term non-neuronal 

cholinergic system (NNCS) distinguishes these alternate functions from traditional 

neuronal effects (4). The wide distribution of nAChR outside of the nervous system 

expands the potential impact of nicotine, much of which is yet to be fully understood. 

This contributes to another level of uncertainty regarding the safety and efficacy of NRT. 

Moreover, exposure to nicotine during the critical period of fetal development could 

induce abnormalities with regard to multiple aspects of cellular functions. This warrants 

the pursuit of definitive answers to proper use of NRT during pregnancy.  

The Barker Hypothesis, which was proposed based on the observed association 

between birthweight and adult mortality outcomes, provides insight to the developmental 
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plasticity of the fetus and the importance of intrauterine conditions in shaping the proper 

tone of fetal health, structurally and functionally, which subsequently affects 

susceptibility to various diseases in adulthood (5). This concept highlights the critical role 

of maternal cigarette use and its impact on observed perinatal outcomes.  

In this section, the epidemiology of smoking will be discussed to understand the 

prevalence of smoking, particularly in women during pregnancy, along with a review of 

smoking cessation options to understand their place in use and to describe concerns 

associated with current recommendations.  

 

 

b. Epidemiology of tobacco use and smoking cessation guideline for 
general population 

 
 
Epidemiology of tobacco use 

It is estimated that 37 million of the U.S. adults aged 18 years and older actively 

smoke, and this behavior leads to the death of 480,000 people annually due to smoking 

related illnesses. When translated into overall healthcare cost, including direct medical 

cost and productivity loss, this equates to more than $300 billion per year (2). 

Association between cigarette smoking and negative health consequences is well 

established and highlighted by many in vitro, in vivo, and epidemiologic studies. The 

majority of patients suffering from chronic diseases, including pulmonary disease, 

cardiovascular disease, and cancer, have a strong link to a history of active and/or 

passive smoking (Reviewed in 6). This data is not surprising since the inverse 

relationship between cigarette smoking and positive health outcomes has been well-

defined, and organizations encourage smoking cessation as the major preventative 

measure for improving life expectancy (6, 7). However, complete cessation is difficult to 

achieve due to various biological and physiological factors. For example, nicotine is 

almost 100% bioavailable from an average cigarette and easily passes the blood-brain 

barrier within 10-20 seconds due to its lipophilicity. Individuals with a long history of 

smoking are accustomed to repetitive behavior of cigarette smoking and continuous 

stimulation of the dependence-development pathway. Physiological effects mediated by 

cigarette smoke are favorable towards inducing a reward response, which ultimately 

lures the users to continue seeking this behavior. (8-10).  

A concerning aspect of cigarette smoking is that ex-smokers and passive 

smokers also have increased risk for similar diseases that may be irreversible. Ex-
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smokers account for 50% of patients with lung disease diagnoses, and the rate of 

diagnosis still exceeds that of never-smokers and persists even after 20 years of 

abstinence (11). Progression of atherosclerosis plaque formation was associated more 

with pack-years of smoking rather than current smoking status, suggesting cumulative 

and permanent changes induced by smoking (12). A range of health problems observed 

in passive smokers, such as lung and cardiovascular disease, are found in a similar 

incidence to that of smokers, and the risk of certain diseases, such as female breast 

cancer, allergic rhinitis, allergic dermatitis, and food allergy, may even be equally 

elevated in active and passive smokers (13, 14). Passive smoking also impacts the 

unborn fetus, as demonstrated by the detrimental effects observed in newborns exposed 

to cigarette smoke in utero. Prematurity, low birth weight, and sudden infant death 

syndrome are a few examples consistently reported to be linked to maternal smoking 

(15). The topic of in utero exposure to tobacco will be discussed more in depth in the 

following sections. 

 

Smoking cessation guidelines 

Various methodologies have been studied to reduce smoking prevalence, 

promote smoking cessation, improve life expectancy, and reduce smoking-related 

diseases (16). The United States Public Health Service (USPHS) established a clinical 

practice guideline to help health professionals identify tobacco dependence and assist 

patients with treatment strategies (3). The guideline emphasizes the importance of 

behavioral counseling to understand patient’s readiness to quit, but also addresses the 

use of pharmacotherapeutic intervention to assist with cessation. It strongly 

recommends consistent intervention by clinicians and the use of a combination of 

behavioral counseling and pharmacotherapy, which is more effective than either alone. 

However, any intervention is more effective than no intervention and will significantly 

lower healthcare cost, as treatment strategies for tobacco dependence are cost-effective 

compared to other chronic diseases (3).  

Currently, there are nicotine-based and non-nicotine based products approved by 

the FDA as smoking cessation aids (8, 17). The most commonly used category is 

nicotine containing products, known collectively as nicotine replacement therapy (NRT). 

NRT is one of the first-line pharmacologic agents and is regarded as safe and effective 

in the general population as it increases the quit rate by 50-70% (18-20). There are 

multiple dosage forms available over the counter (gum, lozenge, and patch) and by 
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prescription (inhaler and nasal spray), which provides additional benefit of a tailored 

approach based on patients’ need and willingness to adhere to therapy. NRT is 

designed to slowly taper nicotine exposure and facilitate the transition from smoking to 

cessation without experiencing withdrawal and craving. Depending on the history and 

intensity of cigarette use, one can choose short-acting oral formulations or long-acting 

transdermal formulation of NRT, or a combination of both, to mimic smoking behavior 

(8). Although NRT use is associated with a variety of adverse events, those directly 

associated to these products are limited to local reactions, such as skin irritation with 

transdermal patch and mouth/throat soreness with oral administration. Systemic adverse 

events, such as insomnia and sleep disturbances, may be related to smoking cessation 

itself and not NRT use (21) (Table 1.1). The most serious adverse events reported were 

cardiovascular symptoms, such as heart palpitations and chest pain, but a systematic 

review and meta-analysis did not observe differences in the clinical incidence of 

myocardial infarction or death in the NRT users. Also, the guideline concluded that NRT 

is safe for patients with cardiovascular diseases (6, 21).  

Other non-nicotine pharmacologic therapies include bupropion sustained release 

(SR) and varenicline (3). Bupropion is an atypical antidepressant that inhibits reuptake of 

dopamine and norepinephrine, ameliorating symptoms of reward, craving, and 

withdrawal (23, 24). Smokers frequently suffer from or have a history of major 

depression and they are less likely to achieve successful abstinence (25). Therefore, 

bupropion may be an appealing option for smokers with major depression or who may 

be at risk for developing depression upon quitting. It is also considered safe and 

tolerable in selected “difficult-to-treat” populations, such as patients with COPD, 

cardiovascular disease, or patients concerned for post-cessation weight gain. In one 

study comparing the efficacy of bupropion SR for 12 weeks in 411 heavy smokers (≥ 15 

cigarettes per day) with mild or moderate COPD, significantly increased cessation rates 

were observed in those receiving bupropion SR compared to placebo. A significantly 

higher number of patients in this group remained abstinent at the 6 month follow-up (26). 

Another study validating the efficacy and safety of bupropion SR in 629 patients with 

cardiovascular disease observed significantly increased cessation rates in the treatment 

group after 12 months compared to placebo group. No clinically significant changes 

were noted in blood pressure all throughout the study period (27). Combination of NRT 

and bupropion led to a significant reduction in weight gain at 7 week post-cessation in a 

study comparing bupropion SR, a nicotine patch, combination of bupropion SR and a 
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nicotine patch, and placebo in 893 patients (28). Adverse events associated with 

bupropion use for depression are well reported, and similar events are expected when 

used for smoking cessation, including dry mouth and insomnia. Special caution should 

be utilized, however, in patients with risk factors for seizure, such as alcohol abuse and 

concomitant use of antipsychotics and antidepressants known to lower seizure 

threshold. Smokers with active seizure disorder or a history of seizures should not be 

challenged with bupropion therapy (24).  

Varenicline is a partial agonist of the α4β2 subtype of nAChR with a higher 

affinity for the receptor than nicotine. With such properties, varenicline inhibits binding of 

nicotine to the receptor while its binding only partially stimulates the receptor with 

reduced effects. As a result, varenicline attentuates symptoms of withdrawal and 

reduces craving (29). A pooled analysis evaluating the efficacy of varenicline versus 

bupropion SR and placebo concluded greater continuous abstinence rates with 

varenicline use (44.0% vs. 29.7% vs. 17.7% for varenicline, bupropion SR and placebo, 

respectively) during weeks 9 to 12 of treatment, suggesting that varenicline may be more 

effective than bupropion (30). Post-marketing surveillance data raised concerns for 

possible neuropsychiatric adverse events, such as changes in behavior, depressed 

mood, and suicidal ideation, leading to a boxed warning mandated by the FDA in 2009. 

Subsequent analyses and large clinical trials found no difference in neuropsychiatric 

events between varenicline and placebo groups, and the boxed warning was removed 

by the FDA in December, 2016 (31). However, it is recommended that potential 

neuropsychiatric adverse events are communicated with the patients and their 

families/caregivers in detail, and to seek immediate assistance from a healthcare 

provider if any of the described events occur while on therapy (29, 32, 33). Therefore, 

although both NRT and non-NRT treatments are efficacious, the availability of NRT 

products without a prescription and mild systemic adverse events reported provide 

substantial advantages over the non-NRT products.  

In summary, a large pool of evidence exists for smoking cessation aids, both 

pharmacologic and non-pharmacologic, and various strategies can be adopted based on 

patient-specific requirements and concerns as well as underlying medical conditions. It is 

clear that any mode of cigarette smoke exposure, direct or indirect, results in increased 

risks for acute and chronic diseases, and continuous encouragement and motivation are 

the keys to successful and complete abstinence. However, the use of these therapies 

during pregnancy requires additional consideration, as the complexity of the potential 
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impact on fetal development must be taken into account. The next section will begin to 

address the use of NRT in this vulnerable population. 

 

 

Medication Available Dose Duration Side Effects 

Nicotine gum 2mg, 4mg 12 weeks Jaw ache, hiccups, dyspepsia 

Nicotine lozenge 2mg, 4mg 12 weeks Nausea, hiccups, heartburn 

Nicotine transdermal 

patch 

7mg, 14mg, 21mg over 24 hrs 

10mg, 15mg, 25mg over 16 hrs 

10-12 weeks Skin irritation, insomnia 

Nicotine nasal spray 10mg/ml 3 months Nasal irritation 

Nicotine inhaler 10mg 6-12 weeks Mouth and throat irritation, 

cough 

Bupropion SR 150mg 7-12 weeks Insomnia, dry mouth 

Varenicline 0.5mg, 1mg 12-24 weeks Nausea, abnormal dreams 

 

Table 1.1. First-line pharmacotherapy for smoking cessation.
22
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c. Smoking during pregnancy 
 
 

It is well demonstrated that smoking during pregnancy is associated with 

negative perinatal consequences, including miscarriage, prematurity, low birth weight, 

increased fetal respiratory symptoms, and sudden infant death syndrome (SIDS) (34-

36). Although smoking is the leading preventable cause of perinatal morbidity and 

mortality, the National Vital Statistics Reports found that greater than 10% of U.S. 

pregnant women smoke during pregnancy (7). This percentage is likely to be 

underestimated by approximately 25% due to biases in self-reporting (37). Kentucky has 

more than double the national rate of pregnant women who smoke (Figure 1.2), with 

some regions reporting rates approaching 50%. Clearly, this is a significant public health 

concern that particularly affects women and neonates in Kentucky.   

 

 

 

 
Figure 1.2. Prevalence of maternal smoking at any time during pregnancy: 46 states 

and District of Columbia, 2014.
7 
Used with permission. 
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Multiple studies suggest that 20-30% of female smokers attempt to quit while 

pregnant, but success is often temporary. A large clinical study evaluating the efficacy 

and safety of NRT in pregnant smokers identified that the smoking rate declined from 

21.3% to 9.4% at the time of delivery in the NRT group compared to a decline from 

11.7% to 7.6% in the placebo group (38). In a small self-report study of 134 women, 

25% of participants reported a relapse by 1 month postpartum, while another large study 

with 1550 women surveyed via telephone interview reported that the majority of 

participants relapsed by one year postpartum (39, 40). Factors affecting smoking relapse 

are similar to those that cause active smoking during pregnancy, with a stronger 

association with lack of motivation and exposure to cigarette smoke (41). This signifies 

the importance of support from family members and the society in achieving a 

successful smoking cessation. Pregnant women are likely to achieve short-term 

abstinence if their primary concern is the health of the fetus while those who are 

concerned about the health of both fetus and self are likely to achieve long-term 

abstinence (41). Pregnant smokers should be educated that postpartum abstinence is 

also important in protecting the mother and the newborn since nicotine accumulates in 

breastmilk, which can continue to affect neonatal development (42). 

The intrauterine condition is critical for the proper growth and development of 

fetal organs, and the fetus is vulnerable to any subtle changes in this environment. In the 

early 1990s, a series of epidemiological studies reviewing birth and death records 

revealed the association between poor intrauterine nutrition and adult cardiac/metabolic 

diseases, suggesting the impact of “fetal programming” on adult health outcomes. This 

has become known as the Barker Hypothesis and has stimulated active research that 

expands beyond nutritional status during gestation to include the link between various in 

utero environmental exposures and negative health consequences, such as pregnancy 

smoking and fetal health (43, 44). Many studies and meta-analyses report intrauterine 

growth retardation in both genders, as measured by birth weights, compared to 

newborns of non-smoking mothers, accounting for 20-30% of low birthweight cases, in 

these infants. Other measures of growth retardation are suggested by data showing an 

impact on birth length as well as head circumference (45, 46). Dose-response 

relationships between maternal smoking and the risk of stillbirth, neonatal death, and 

perinatal death are also observed (47, 48). Other serious adverse outcomes include 

sudden infant death syndrome (SIDS), fetal congenital heart defects, decreased 

pulmonary function, obesity, neurobehavioral alterations such as decreased cognitive 
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function and attention deficit hyperactivity disorder (ADHD), and many more. These 

characteristics can be presented during neonatal/infant periods as well as during 

childhood (45, 49). 

Consequences of developmental cigarette smoke exposure appear to be the 

greatest during the third trimester, and the rate of health complications in infants born to 

mothers who smoked only late in pregnancy is comparable to newborns whose mothers 

smoked throughout pregnancy (50, 51). For example, a study evaluating benefit of 

reducing the number of cigarettes smoked as opposed to a complete abstinence found 

that the association between the level of cigarette smoke exposure and birthweight was 

strongest during the third trimester. Interestingly, the association was only true when the 

number of cigarettes used daily was less than eight cigarettes (52). Additionally, early 

smoking cessation was associated with preterm birth rates comparable to nonsmokers 

(28.9% vs. 29.3%), while smoking during the third trimester or throughout pregnancy 

resulted in a significantly increased rate of preterm birth (43.9%) (53). This demonstrates 

that smoking cessation should be encouraged as soon as possible, prior to reaching the 

third trimester, and the use of less than eight cigarettes per day, and not any arbitrary 

reduction in cigarette use, may result in observable changes in the birth outcome. 

Although results vary based on an individual’s tobacco dependence and lifestyle, 

interventions to support continued abstinence throughout pregnancy will certainly reduce 

perinatal morbidity and mortality.   

Gene expression and cellular changes induced by developmental cigarette 

smoke exposure can cause damage that is amplified after birth. For example, a study of 

2295 non-smoking patients who were exposed to parental cigarette smoke 

developmentally showed a decline in pulmonary function test in adulthood, measured by 

forced expiratory volume in 1 second (FEV1). This decline was associated with maternal 

smoking, but not paternal smoking, and there was 3 to 5 years’ loss of function if 

mothers smoked more than 25 cigarettes per day. This suggests that damage induced 

prenatally can become permanent (54). In a study that investigated the association 

between epigenetic modifications and in utero smoking exposure in cord blood of 1062 

newborns identified differential DNA methylation patterns in several genes. These genes 

include CYP1A1, AHRR, and GF11, which are known to participate in detoxification and 

clearance of toxic tobacco components (55). Influence of maternal cigarette smoking on 

epigenetic changes of newborns is a growing area of study, and although limited in 

number, studies are starting to identify associations between altered gene methylation 
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from placenta, umbilical cord blood, and maternal blood with later offspring health 

outcomes or predispositions for adult health risks, such as mental and behavioral 

disorders (43, 45, 49).  

The U.S. Preventive Services Task Force published clinical guideline for 

behavioral and pharmacotherapy interventions for smoking cessation in adults in 2015 

and recommends all currently marketed pharmacotherapeutic agents to pregnant 

women for smoking cessation. However, the guideline states that there is limited 

evidence for a clear benefit of all NRTs as well as bupropion SR and varenicline (56). 

The FDA has assigned nicotine and nicotine containing products to Pregnancy Category 

D, which describes that the potential benefits may warrant product use despite potential 

risks found from investigational or marketing studies in humans (57). There are 

thousands of active compounds known to be fetal toxins in cigarette smoke, such as 

carbon monoxide, hydrogen cyanide, and nicotine. It is difficult to identify a causative 

agent responsible for the adverse effects of maternal smoking on fetal health (15). 

However, the main component of cigarette smoke, nicotine, easily crosses the placental 

barrier and can be detected in the fetal circulation at levels exceeding maternal 

concentrations by 15%, while amniotic fluid concentrations of nicotine are 88% higher 

than maternal plasma (58). Nicotine also accumulates in breast milk, which can be 

problematic due to subsequent ingestion by the infant (58). Therefore it is important to 

consider the potential effects of nicotine itself upon the development of those exposed 

prior to birth. 

Teratogenic effects of nicotine on cognitive and neurobehavioral functions of 

newborns are very well studied in animal models at various doses, and alterations in 

motor, sensory, and cognitive functions are suggested to continue into childhood in 

humans (Reviewed in 59). In one study, rats exposed to nicotine prenatally displayed a 

significant delay in reflex to orientation and gravity, as measured by righting reflex and 

geotaxis tasks, and a decreased exploratory activity compared to saline exposed rats. 

Cognitive learning and memory functions were assessed by avoidance of stimulus, and 

it was observed that a greater percentage of rats exposed to nicotine in utero were poor 

learners. This was observed in rats both at 60 days and 6 months after birth, suggesting 

chronic adverse effects of gestational nicotine exposure (59).  

Studies have not definitively stated whether NRT use achieves successful 

abstinence rates and is without adverse effects to mothers or newborns. For example, 

one clinical study comparing the efficacy and safety of NRT patches (15mg per 16 
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hours) to placebo during pregnancy concluded no significant benefit in increasing the 

rate of abstinence until delivery (38). While this study did not find differences in the rate 

of adverse pregnancy or birth outcomes, interpretation of findings are limited by a low 

adherence rate (7.2%), which is consistent with findings from other trial (60). One 

plausible explanation for ineffectiveness is the enhanced clearance of nicotine and its 

metabolite cotinine during pregnancy (60% and 140%, respectively) as well as a shorter 

half-life of cotinine (8.8 vs. 16.6 h) (61). However, dose adjustment of NRT patches to 

saliva cotinine levels still resulted in a comparable rate of relapse to placebo (62).  

Despite several concerns and uncertainty regarding efficacy and safety of NRT, 

many international guidelines generally advocate its use during pregnancy for those who 

may benefit from therapy, such as individuals who failed to achieve successful cessation 

with behavioral therapy alone. The US Public Health Service Clinical Practice Guideline, 

the Society of Obstetricians and Gynecologists of Canada, and the US Preventive 

Services Task Force together address this topic and make a statement that while NRT 

reduces the number of cigarettes smoked in general population, studies have not 

demonstrated the same results during pregnancy (3, 56, 63). In this regard, it is 

suggested that physicians clearly communicate pros and cons of NRT use to their 

patients and make clinical judgement when recommending such therapy.  

Increased risk of respiratory anomalies has been suggested from a large study 

investigating the association between pregnancy NRT use with major congenital 

anomalies (MCA) in offspring (35). This study included nearly 200,000 children born in 

the UK over a 10 year period based on the availability of mother-child primary care 

records for diagnoses of MCA and for the prescription of NRT. By designating the NRT 

group as those who had a prescription during the first trimester or 1 month prior to 

conception, the study investigated the effects of in utero nicotine exposure during the 

early stages of fetal development. The absolute risk of MCAs was comparable between 

the NRT group and the smoking group, both of which were higher than the control group. 

No statistically significant changes were observed in the risk of all MCA combined in the 

NRT group compared to the smokers or the control group, but the risk of respiratory 

anomalies was significantly higher than the control group as well as the smoking group 

(OR: 4.65, 99% CI 1.76-12.25; p<0.001 and OR: 3.49, 99% CI 1.05-11.62; p<0.007, 

respectively). This study highlights that the use of NRT in pregnancy is not without 

serious health consequences, some of which may be comparable to the effects caused 

by smoking (35).  
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Moreover, studies assessing maternal smokeless tobacco use demonstrate a 

negative association with perinatal outcomes, including preterm birth, stillbirth, and 

neonatal apnea, that are comparable to those observed with cigarette smoking (64-66). 

These studies were conducted using birth records of approximately 600,000 Swedish 

citizens, and the pregnant women were divided into smokeless tobacco users, light 

smokers (1-9 cigarettes/day), heavy smokers (≥ 10 cigarettes/day), and non-smokers 

based on the information collected before the 15
th
 week of gestation. Compared to non-

smokers, risk of preterm birth and stillbirth was increased in both smokeless tobacco 

users and smokers, although heavy smokers were associated with a greater increase 

than smokeless tobacco users or light smokers (64, 65). Results of neonatal apnea 

demonstrated approximately a twofold increase in the smokeless tobacco users that 

remained unchanged when adjusted for gestational age, fetal growth, and gender, while 

cigarette smokers were associated with a 50% increase only before the adjustment but 

not after (66). This is surprising as this data suggests that smokeless tobacco has a 

greater negative impact on neonatal apnea. The authors proposed differences in PK 

parameters of nicotine from smokeless tobacco, which is similar to those of NRT but not 

cigarette smoking, as a possible explanation.  

 It is impossible to identify a single agent responsible for the negative perinatal 

outcomes as various factors, including the timing and the level of tobacco exposure, 

influence the outcomes collectively. Furthermore, physiological effects mediated by 

smoking may differ from one organ system to another. Nonetheless, these studies 

strongly suggest that nicotine is a critical toxin in cigarette smoke whose effects should 

not be underestimated nor be considered a safer alternative to smoking during 

pregnancy.  
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B. Smoking/nicotine and Immunity 
 

a. Overview 
 
 

Cigarette smoke contains thousands of compounds with immunotoxic properties, 

including nicotine and polycyclic aromatic hydrocarbons (15). In addition to commonly 

known perinatal adverse health effects, cigarette smoke affects both the innate and 

adaptive immune responses in a number of ways, including an impact on macrophage 

function. Decreased levels of pro-inflammatory cytokines and impaired bactericidal 

properties have been observed in pulmonary macrophages exposed to cigarette smoke 

(67). Maternal smoking both before and after birth is a major threat to respiratory health 

of newborns, and the timing and the level of exposure appear to have a significant 

impact on the proper development of immune function and its capacity, as the 

development of the immune system continues after birth (68).  

Despite advances in the development of anti-infectives and other public health 

measures, infectious diseases remain a major contributor of widespread morbidity and 

mortality in the United States as well as worldwide. Rates of hospitalization from 

infectious diseases fluctuate due to outbreaks of antibiotic-resistant organisms (69). In a 

2009 report, the leading cause of infectious disease hospitalization was attributed to 

respiratory tract infection, and the burden was highest among young children (aged < 5 

years) (69). Similar observations were reported from retrospective case-control analyses 

evaluating infectious diseases hospitalization and mortality outcomes in infants 

developmentally exposed to maternal cigarette smoke (70). There was a dose-

dependent association between maternal smoking and morbidity outcome due to 

infectious disease, and infection was a significant contributor of infant mortality, 

particularly within the first two days of hospitalization (32.4%). Among several types of 

infections, respiratory infection had the strongest association with infant hospitalization. 

Additionally, this observation was independent of birthweight and gestational-age, 

suggesting other potential mechanisms that adversely affect immune function in infants 

exposed to cigarette smoke in utero (70). 

Cigarette smoke is reported to have both pro-inflammatory and anti-inflammatory 

effects that are mediated by different toxic components. The overall impact of cigarette 

smoke on the function of immune cells and health of an individual depends on the 

chronicity of the tobacco use as well as the sum of the effects caused by the toxins, and 
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the extrapolation of this data should be cautiously considered when used in making 

therapeutic recommendations, especially to a pregnant smoker (71).  

In this section, the effects of cigarette smoke, and those specifically attributed to 

nicotine, on the respiratory immune cell properties and functions, particularly the alveolar 

macrophages, will be reviewed. Additionally, data describing the impact of cigarette 

smoke on immunity will be compared to what is known of the impact of nicotine alone, 

because the distinction between the two is important when considering the degree to 

which NRT should be recommended during pregnancy. Finally, the impact of 

developmental nicotine exposure on fetal immunity will be discussed, as this will set the 

groundwork for establishing safety of NRT during pregnancy and highlight whether NRT 

can be considered less harmful than smoking in pregnancy. 

 
 

b. Respiratory Immune Defense 
 
 

The risk of respiratory infection is greatly increased with both active and passive 

cigarette smoke exposure and alterations of host defense are responsible for increased 

susceptibility to infections in smokers. Normal flora of the respiratory tract are disrupted, 

allowing colonization of pathogenic bacteria, such as H. influenza, S. pneumoniae, and 

M. catarrhalis (72). Pseudomonas aeruginosa, which is an opportunistic gram-negative 

nosocomial pathogen, rarely causes lung infection in healthy population, but the risk is 

increased in patients with underlying medical conditions, such as chronic obstructive 

pulmonary disease (COPD) and malignancy (73, 74). Two possible mechanisms 

describe how cigarette smoke contributes to the altered respiratory immune defense and 

therefore increased risk of infection by pathogenic or opportunistic bacteria: 1) 

physiological and structural changes in the host and 2) disruption of normal immune 

function. These changes occur simultaneously and all modulations mediated by cigarette 

smoke collectively alter the overall balance of the immune system (72).  

Lungs physiologically can be divided into two compartments: the conducting 

airways, comprised of airway epithelial cells and secretory cells that act as the first line 

of defense, and the lung parenchyma comprised of alveoli where gas exchange occurs 

(75). The respiratory tract is constantly exposed to the external environment and 

homeostasis is maintained by distinct groups of immune cells that mediate inflammatory 

and anti-inflammatory responses to antigens in a coordinated manner (Figure 2.1). In the 

conducting airways, the epithelial cells form physical barriers to exclude incoming 



15	
	

antigens and particles that have gained access. These particles are removed from the 

lungs by the ciliated pseudostratified columnar epithelial cells. Additionally, a highly 

developed network of immune cells, including dendritic cells and macrophages, populate 

the airways and the alveolar spaces to properly respond to a wide range of pathogens 

and to initiate inflammation (76). The lung parenchyma is populated mainly by the 

alveolar macrophages (AM) that make up 90% of the total immune cells, with the 

remainder composed of dendritic cells, T cells, and B cells. Upon exposure to 

pathogenic environmental antigens, airway epithelial cells detect conserved structural 

motifs of microorganisms and allergens via surface receptors, such as toll-like receptors 

(TLR), to signal both the innate and adaptive immune responses. They also secrete a 

large array of antimicrobial substances and effector molecules to kill infectious agents, 

recruit other immune cells, and support their function and survival during infection. For 

example, nitric oxide (NO) released from epithelial cells is a free radical with potent 

antimicrobial effects and tissue damaging effects, augmenting the inflammatory 

response at the site of infection. Chemokines and cytokines, such as neutrophil 

attractant IL-8 and granulocyte/macrophage colony-stimulating factors (GM-CSF) aid the 

survival and recruitment of inflammatory cells (75, 77). 

Dendritic cells (DCs) are known as professional antigen presenting cells that 

develop from bone marrow-derived precursor cells and migrate to various tissues, 

including the airways. They have the ability to recognize a variety of stimuli through the 

expression of pathogen-associated molecular pattern (PAMP) receptors (78). During 

active infection, DCs take up antigens and migrate to the draining lymph nodes, where 

they interact with naïve T lymphocytes that recognize these molecules and undergo 

proliferation and differentiation into subtypes of T cells, including helper, cytotoxic, and 

regulatory T cells. Subsequently, T cells migrate back to the inflamed tissue via the 

lymphatics and circulation and remove specific pathogens (78). Similarly, antibody 

producing B lymphocytes are activated by antigens presented by DCs, which cause B 

cells to migrate to the T lymphocyte zone in the lymph nodes, allowing for T and B 

lymphocyte interactions required for optimal response (79).  

Macrophage interaction with DCs is also important in maintaining homeostasis at 

steady-state and inducing robust inflammatory responses during active infection. 

Macrophages initially limit antigen acquisition by DCs by phagocytosing various antigens 

inhaled from the air. This mechanism prevents unnecessary stimulation of the immune 

response and lung damage from inflammation. However, macrophages become 
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saturated with actively replicating microbial antigens upon infection, which causes 

spillover of antigens into DCs and induces a robust immune response (80). Smoking, 

and specifically nicotine, exposure alters the ability of macrophages to perform these 

functions. 

 

 

 

Figure 2.1 Antigen acquisition and transport in the lungs.
75

 Used with permission. 
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Smokers are known to have increased risk of respiratory infection and other 

pulmonary diseases, in part due to epithelial cell modifications induced by toxic 

substances in tobacco that alter the integrity of epithelial defense mechanisms. 

Exposure of human bronchial epithelial cells to 2.5% and 5% cigarette smoke extract 

(CSE) for 28 days was shown to significantly increase the number of secretory Clara 

cells and goblet cells while the number of ciliated cells was significantly reduced (81). 

Similarly, mice exposed to cigarette smoke inhalation exhibited hypertrophy of the Clara 

cell as well as hyperplasia of the basal and squamous cells when exposed to the 

combination of cigarette smoke and the carcinogen N-nitroso-N-methylurethane (NMUT) 

via nebulization. These mice were kept in a chamber for 192 days (6 hours/day, 5 

times/week), thus demonstrating chronic effects of cigarette smoke exposure (82). 

Additionally, alterations in epithelial and alveolar permeability are also associated with 

cigarette smoke exposure, and this was linked to the damage and reduction in the 

number of gap junctions (83). In this study, human bronchial epithelial cells (16HBE14o-) 

were exposed to 10% cigarette smoke extract (CSE) for 72 hours, and proteins 

associated with tight junctions, such as occludin (OCLN) and Zonula occludens (ZO-1, 

ZO-2, ZO-3), were visualized via immunofluorescence staining. Compared to untreated 

cells, those exposed to 10% CSE demonstrated discontinuous, fragmented tight 

junctions, suggesting the negative effects of CSE on cell integrity (83). While it is certain 

that these toxic cellular effects influence infection directly, these changes in the airway 

epithelium likely also impact the function of immune cells in the airways.  

The ability of immune cells to respond to and clear bacteria are compromised 

upon cigarette smoke exposure (84, 85). Cigarette smoke leads to an influx of innate 

immune cells, including neutrophils, macrophages, and dendritic cells, but their ability to 

phagocytose microbes, generate respiratory burst, and present antigens are impaired. 

Downregulation of surface receptors involved in pathogen recognition has also been 

reported, signifying a defect in the initial sensing of pathogens (86, 87). These aspects 

will be discussed in Section d of this chapter. Dendritic cells, critical in bridging the 

innate and adaptive immune responses, have reduced expression of the co-stimulatory 

molecules CD80 and CD86 as well as antigen presenting MHC Class II molecules. 

Additionally T-cell activation, proliferation, and production of cytokines are suppressed 

by cigarette smoke exposure (72, 86). While multiple cell types are impacted, this thesis 

will focus mainly on macrophage function and characteristics in response to nicotine 

exposure, which will be discussed in the next section.  
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c. Macrophages 

 

Macrophages are a subset of innate immune cells derived from circulating 

peripheral blood mononuclear cells (PBMC) that differentiate into tissue-resident cell 

phenotypes, such as microglia in the brain, Langerhans cells in the skin, Kupffer cells in 

the liver, and alveolar macrophages in the lungs. Alveolar macrophages reside at the 

interphase between the external environment and lung tissue and function in part to 

remove innocuous substances as well as cell debris generated during normal cellular 

processes in a healthy host. All macrophages have similar function as the primary 

phagocytes of the innate immune system. Upon contact with a pathogen, alveolar 

macrophages secrete various pro-inflammatory mediators, such as IL-1, IL-8, and TNFα, 

to recruit neutrophils to the site of infection and generate subsequent inflammatory 

responses for rapid clearance of the bacteria. After the initial surge of inflammatory 

response and resolution of infectious challenge, macrophages remove apoptotic 

neutrophils and other debris and secrete anti-inflammatory cytokines, such as TGFβ and 

IL-10, to prevent lung injury from prolonged inflammation and to maintain tissue 

homeostasis (88).  

In order to function accordingly to a dynamically changing microenvironment, 

macrophages take on different phenotypes defined by gene expression patterns that 

induce various functions. Two such subsets are classically activated macrophages (M1) 

and alternatively activated macrophages (M2). This classification is derived from the 

Th1/Th2 paradigm of the CD4+ T helper cells, which also take on two different 

phenotypes. Differentiation into Th1 and Th2 cells depend on the cytokine milieu of the 

environment, with IL-12 and IL-4 inducing Th1 and Th2 responses, respectively. 

Subsequently, Th1 cells produce its signature cytokine IFNγ that mediates a strong pro-

inflammatory response. IFNγ generates antimicrobial effector molecules, such as NO, 

and pro-inflammatory cytokines and induces M1 macrophage polarization. M1 

macrophages also produce IL-12, which further promotes Th1 polarization, thus 

perpetuating the pro-inflammatory cycle. Conversely, Th2 polarized cells produce IL-4, 

IL-5, and IL-13 that induce M2 polarization and also amplify proliferation and 

differentiation. Late in response to bacterial pathogens, M2 macrophages mediate anti-

inflammatory response by producing low levels of IL-12, shifting the balance away from 

Th1 cells, and generating mediators involved in tissue remodeling, such as TGFβ1 (89, 

90).  
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One main distinction between M1 and M2 macrophages is highlighted by a shift 

of L-arginine metabolism into urea and ornithine by upregulating arginase expression in 

M2 macrophages, which results in cell repair through enhanced collagen synthesis and 

cell growth. M1 macrophages, on the other hand, produce inducible nitric oxide synthase 

(iNOS) that competes with arginase for the same substrate, L-arginine, but produces 

citrulline and NO, which have potent antimicrobial activities (Figure 2.2) (90, 91). M1 

macrophages also secrete high levels of the pro-inflammatory cytokines IL-6 and TNFα 

as well as reactive oxygen species (ROS). In addition to arginase production, M2 

macrophages are characterized by the expression of surface molecules Ym1, Fizz1, 

CD36, and CD206 and by production of high levels of IL-10 and low levels of IL-12 (90). 

In the absence of iNOS, M2 macrophages display more effective phagocytic activity than 

bactericidal activity. These two opposing functions of M1 and M2 macrophages maintain 

balance between homeostasis and inflammation, and dysregulation of this balance may 

explain why certain populations, such as smokers, are more prone to immunologic 

diseases.  

   

 

Figure 2.2 Catabolism of L-arginine in M1 and M2 macrophages.
90 

Reprinted with 

permission. 
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d. Effects of cigarette smoke and nicotine exposure on macrophage 
functional characteristics  

 
 
Effects of cigarette smoke 

Numerous in vitro and in vivo studies suggest functional and phenotypic 

alterations of macrophages upon exposure to cigarette smoke. Mice exposed to 

cigarette smoke (CS) for 6-8 weeks showed a worsened clinical status after P. 

aeruginosa infection as measured by weight loss (74). Several observations from the 

mice in this study provide possible explanations for the effects of CS on outcomes. First, 

CS-exposed mice were associated with increased bacterial burden in the lungs and an 

increased inflammatory response, suggested by higher numbers of neutrophils and 

mononuclear cells in the lungs. These mice also had increased levels of pro-

inflammatory cytokines, including TNFα, IL-1β and IL-6, and monocyte chemo-attractant 

protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) chemokines in the 

lungs post-infection. Investigators then studied the impact of CS exposure on alveolar 

macrophage responsiveness to an infection as a possible explanation for these 

observations. Interestingly, alveolar macrophages isolated from CS-exposed mice 

produced significantly lower levels of TNFα and IL-6 than sham-exposed mice, as 

opposed to the observed increase of these cytokines in the lungs. This may be a result 

of a feedback response to a dampened production of inflammatory mediators by alveolar 

macrophages (74). Similarly, intratracheal lung infection with Streptococcus pneumoniae 

in mice exposed to CS for 5 weeks resulted in a worsened clinical outcome, measured 

by clinical appearance score and core body temperature. Post-infection bacterial burden 

was significantly higher in the lungs of mice exposed to CS, and this group was 

associated with higher levels of IL-1β, IL-6, IL-10, MIP-2, and TNFα in their lungs 48 h 

post-infection. Furthermore, phagocytic capacity of macrophages isolated from CS-

exposed mice was decreased by 40%, suggesting reduced bacterial clearance and 

prolonged infection that led to increased inflammatory cytokine production (92).  

The impacts of CS on human alveolar macrophages appear to parallel those 

observed in animal studies. Alveolar macrophages isolated from lung lavage fluids of 

smokers and non-smokers exhibited a similar phagocytic ability against Listeria 

monocytogenes infection but the mean phagocytic index was decreased in smokers. 

Moreover, they were inefficient at killing ingested bacteria compared to those of non-

smokers, as measured by bactericidal activity (93).  
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Other important aspects of macrophage function involve recognition of and 

interaction with pathogenic molecules through surface receptors. CD14 and TLR4 are 

macrophage surface receptors that recognize and bind to bacterial endotoxin (LPS). 

Activation of these receptors induces downstream signaling pathways that initiate the 

production of pro-inflammatory cytokines, such as TNFα, IL-1β, IL-6, and IL-8 (94). Pre-

treatment of alveolar macrophages isolated from murine lung lavage fluids with CS 

resulted in a significant reduction of receptors expressed compared to non-CS treated 

macrophages (95). This observation may explain the decreased production of pro-

inflammatory cytokines, as a result of reduced recognition, by CS-exposed 

macrophages, as discussed earlier. Another important surface receptor, CD11b, is 

highly expressed by monocytes/macrophages and has an important role in phagocytosis 

of apoptotic cell debris. The percentage of macrophages expressing CD11b was 

reduced when mice were exposed to CS for 10 days (95). This can lead to a critical 

functional deficit in regulation and resolution of inflammation. In fact, alveolar 

macrophages isolated from smokers displayed insufficient phagocytosis of apoptotic 

cells when compared to those of non-smokers (87). In this study, alveolar macrophages 

were purified from the lung lavage fluid of patients with COPD who were smokers or ex-

smokers, healthy smokers without COPD, and non-smokers. Compared to non-smokers, 

healthy smokers and both COPD groups were associated with macrophages that had 

decreased ability to phagocytose apoptotic epithelial cells (87). Similarly, phagocytosis 

of apoptotic neutrophils was depressed when murine alveolar macrophages were pre-

treated with CS (96). Apoptosis is programmed cell death that is tightly regulated to 

maintain an intact cell membrane during the process and to prevent release of toxic 

substances to neighboring cells. Inefficient ability to phagocytose apoptotic cell debris by 

macrophages upon CS exposure is concerning, as this can lead to tissue damage by 

inappropriately releasing noxious cytoplasmic contents into the environment (86, 88).  

Macrophage phenotypic changes triggered by cigarette smoke are also 

noteworthy as this leads to restricted functional capacity during a host’s response to 

infection. Alveolar macrophages recovered from bronchoalveolar lavage (BAL) of 

healthy smokers revealed gene profiles and protein production characteristics that were 

associated with a macrophage shift toward an M2 phenotype, both at steady-state and 

after LPS stimulation, when compared to that of healthy non-smokers. This was 

characterized by decreased expression and secretion of TNFα, IL-1β, IL-6, and IL-8 and 
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elevated expression of genes related to IL-4 and a minimal to modest elevation of IL-10 

expression and secretion (97, 98).  

In summary, findings from animal and human studies suggest that smoke 

exposure causes a defect in alveolar macrophages to recognize and respond to 

pathogens, which result in exaggerated and prolonged inflammation as well as worse 

clinical outcomes. Macrophages display distinct features upon exposure to CS that are 

different from those not exposed to CS. 

  

Effects of nicotine 

There are thousands of chemical compounds in cigarette smoke capable of 

mediating various biochemical effects in exposed tissues. It is difficult to isolate a single 

agent responsible for the observed immunosuppressive effects on macrophages, and 

little is known about the effects of cigarette components separately. However, many 

studies suggest that nicotine may be driving the biochemical changes. Furthermore, 

because smoking cessation products contain nicotine as the main component to help 

with withdrawal symptoms and craving, its impact on immune function should be closely 

evaluated, as recommendation of such product use during pregnancy introduces two 

major issues: 1) effects of nicotine directly on immune cells and 2) effects of in utero 

nicotine exposure on development of the immune network and response.  

 Several studies report nicotine-induced changes in macrophage characteristics 

both at steady state and after stimulation that display a decrease in pro-inflammatory 

protein production. In one study, murine alveolar macrophage cell lines were infected 

with Legionella pneumophila and treated with various concentrations of nicotine to 

determine its immunosuppressive properties as well as the mechanism. Results were 

similar to the changes observed after the exposure to cigarette smoke, highlighted by 

enhanced bacterial growth, downregulated secretion of IL-6, IL-12, and TNFα and 

minimal effect on IL-10 concentrations. Additionally, the same modulations were 

observed when dimethylphenylpiperazinium (DMPP), a nonselective nicotinic receptor 

agonist, was administered (99), suggesting that different types of nAChR may be 

involved in mediating these changes. Another study observed a nicotine-induced shift 

from M1 to M2 phenotypes, characterized by expression of surface markers, cytokine 

profile upon LPS stimulation, and T cell proliferation (100). In this study, human 

peripheral blood monocytes (PBMCs) were differentiated into M1 or M2 macrophages 

with granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage 
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colony-stimulating factor (M-CSF), respectively, and also in the presence of nicotine to 

generate nicotine-exposed M1 (Ni-M1) and nicotine-exposed M2 (Ni-M2) cells. Although 

Ni-M1 retained M1 characteristics, increased expression of CD14 and CD163 and 

decreased expression of CD206 and CD11b suggest possible skewing of Ni-M1 into an 

M2-like phenotype. Upon stimulation with LPS, cytokines produced by Ni-M1 were 

different from M1 polarized macrophages, suggested by a significantly lower IL-12 

production and high MCP-1 production. Macrophage/T-cell co-culture experiments 

further suggested that Ni-M1 macrophages resemble M2 macrophages rather than M1 

macrophages, as demonstrated by a reduced production of IFNγ and elevated IL-10 

production (100).  

 Overall, data suggest strong similarities between the changes driven by cigarette 

smoke and nicotine alone in various host defense mechanisms. This signifies that 

harmful effects can be caused by nicotine administration. Nicotine replacement products 

could modulate immune responses and increase the risk of infection, especially in 

vulnerable populations, such as pregnant women and their developing fetuses and 

newborns. 

 

e. Impact of in utero nicotine exposure 

 

NRT use during pregnancy should be cautiously recommended due to the ability 

of nicotine to cross placental barrier easily, given its lipophilicity. Cigarette contains 

immunomodulatory molecules and infants exposed in utero have a greater risk for 

several developmental impairments, such as intrauterine growth retardation, premature 

birth, compromised lung function, and altered immune defense. It is likely that these 

impairments result from an accumulation of physiological changes mediated in utero (48, 

101). However, little is known about the contribution of nicotine alone to observed 

impairments and the extent of its contribution during development, thus raising the 

question as to whether nicotine can be considered less threatening than smoking during 

pregnancy.  

 Epidemiologic and animal data raise concern for the role of developmental 

nicotine exposure in inducing changes that result in negative health outcomes. 

Increased risk of childhood allergic airway disease, such as asthma, is one example that 

has a strong association with exposure to cigarette smoke during fetal development 

(102). Animal study data supplements the general notion that nicotine may be 



24	
	

responsible for inducing parameters associated with increased risk of asthma (103). 

When pups were exposed to nicotine during gestational periods, they had increased 

total airway resistance, decreased total airway compliance, and increased tracheal 

constriction after birth. In another study, baseline cytokine profiles of neonatal lung from 

in utero nicotine exposed mice displayed increased IL-13 and decreased IL-1β mRNA 

expression as well as increased TGFβ1 protein in the epithelial lining fluid at postnatal 

day 7 (104). This demonstrates a shift towards an anti-inflammatory set point. 

Furthermore, in utero nicotine exposure resulted in elevated mRNA expressions of M2 

specific markers at baseline, including arginase-1, Ym-1, and fibronectin. A profound 

reduction in phagocytic ability of neonatal alveolar macrophages was also observed after 

in utero nicotine exposure (104). Importantly, most of the observations mirror the 

changes demonstrated with post-natal nicotine exposure. 

 T lymphocytes have also been shown to be affected by developmental nicotine 

exposure. Lymphoid cell precursors are generated in the bone marrow and migrate to 

the thymus, where they undergo stages of positive and negative selections and 

differentiate into subsets of T cells. Therefore, it is crucial that proper development of the 

fetal thymus is maintained during the gestational period to establish fully functioning and 

well-balanced T cell lineages. Th1 and Th2 cells, as discussed earlier, are two subsets 

of Th cells whose balance is important in regulating the immune response and 

maintaining homeostasis. However, daily injection of nicotine in pregnant mice 

generated offspring with a shift towards a Th2 bias (105). In this study, immunoglobulin 

(IgG2a and IgG1) levels were used as a marker of Th1 and Th2 responses, respectively. 

Upon immunization with an antigen, serum IgG2a levels were reduced while IgG1 levels 

were increased significantly in the pups. Additionally, IL-4 concentrations were higher in 

the serum of pups developmentally exposed to nicotine. Abnormal development of 

thymus tissue through exposure to nicotine was suggested by increased apoptosis of T 

cells and lower thymus weights in fetal thymus harvested at gestational day 18. 

Moreover, changes in T cell phenotypes, including cells that were double negative for 

CD4 and CD8 expression and single positive CD4 or CD8 expression, were observed in 

this group. Improper generation of T cell subsets as well as reduced output of T cells as 

a result of increased apoptosis can lead to dysfunctional effector T cells in the periphery 

(105).  

Prenatal nicotine also affects lung development and function postnatally. Animal 

studies demonstrated a reduction in pulmonary function parameters due to altered 
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airway structure as well as alveolarization of the lungs induced by prenatal nicotine 

exposure (106). This provides a possible explanation for the increased susceptibility to 

respiratory infections in neonates and children exposed to nicotine developmentally. 
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C. Non-neuronal cholinergic system and immunity 
 

a. Overview 
 

 

Acetylcholine (ACh) is a molecule known to scientists for more than 150 years. It 

has been extensively studied and understood for its function as a neurotransmitter. Both 

unicellular and multicellular organisms appear to have the capability to synthesize ACh 

and possess components of the cholinergic system to various extents. This 

demonstrates that ACh is a phylogenetically ancient molecule whose function in non-

neuronal cells precedes that in neuronal cells (107). Recent interest in the role of ACh 

apart from the nervous system has led to a better understanding of the wide distribution 

of its synthesis and expression of its receptors in non-neuronal cells as well as its critical 

function in human health and disease beyond the brain.  

There are two types of ACh receptors, nicotinic and muscarinic receptors, and 

both types are expressed in non-neuronal cells (4). As the name implies, nicotinic ACh 

receptors (nAChR) can be stimulated by endogenous ACh as well as exogenous 

nicotine, whereas muscarinic ACh receptors (mAChR) are stimulated by endogenous 

ACh as well as muscarine, a molecule derived from a poisonous mushroom. Although all 

nAChRs share this feature, affinity and specificity of ligands to the receptor may vary 

based on the composition of receptor subunits, which can ultimately lead to various 

degrees of physiological effects (108). This is of particular interest and concern for 

pregnant women and developing fetuses prone to direct and indirect exposure to 

environmental toxins capable of stimulating nAChRs, such as nicotine. As mentioned 

earlier, children born to smoking mothers are at a higher risk of respiratory infection, and 

cigarette smoke and nicotine are known to have immunomodulatory effects. Prevalence 

of ACh and its components in non-neuronal cells early in the embryonic stage suggests 

a possible role in normal development of fetal lymphoid organs and establishing the 

underlying immune tone (109). Hyperstimulation of nAChR through exposure to cigarette 

smoke and nicotine-containing products can lead to undesirable cellular and organ 

development set at birth (110).    

In this section the non-neuronal cholinergic system will be discussed with regard 

to its expression, function, and role in human health with particular emphasis on 

macrophages and the potential developmental effects of in utero nicotine exposure.  
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b. Non-neuronal cholinergic system and human diseases 

 
 

The term “cholinergic system” refers to the neurotransmitter ACh and the 

components of its synthesis, transport, receptor binding, and degradation. ACh was the 

first neurotransmitter identified in the 1920s and since then, its role in the neurons of the 

central and peripheral nervous systems has been extensively studied. Choline 

acetyltransferase (ChAT) is an enzyme responsible for catalyzing ACh from coenzyme A 

(CoA) and choline in the cytoplasm of cholinergic neurons. Once synthesized, ACh is 

stored in the synaptic vesicle and released upon depolarization of the neuron into the 

synapse by exocytosis. Ligand bound ACh receptors (AChR) cause changes in 

intracellular calcium concentration via ion-gated channel opening or by regulating 

downstream signaling effector molecules. Unbound ACh is quickly hydrolyzed by 

acetylcholinesterases (AChE) and the degraded components are recycled (4). There are 

two different classes of ACh receptors, ionotropic nicotinic and metabotropic muscarinic 

receptors, as their stimulation is induced by nicotine and muscarine, respectively (111). 

Both types can be activated by endogenous ACh, and they are widely distributed 

through the neuronal and non-neuronal cells. nAChR will be the main focus and 

therefore will be discussed more in depth. 

The nAChR is a member of the ligand-gated ion channel receptor family that 

produces structures from combinations of five polypeptide subunits forming a functional 

core (other members include GABAA receptors, 5HT3 receptors, and glycine receptors) 

(112). Types of nAChR subunits include muscle subunits (α1, β1 γ, δ, ε) and neuronal 

subunits (α2-7, α9-10, and β2-4), which can be further classified into α-bungarotoxin 

sensitive α7-9 homopentamers and α-bungarotoxin insensitive heteropentamers (113). 

Once endogenous ACh or exogenous nicotine binds to a receptor, it is stabilized in the 

open conformation and causes depolarization of the membrane via cation influx. Various 

combinations of these subunits contribute to the diversity of nAChR properties and 

functions that are tissue specific. For example, receptors that contain α4 and β2 

subunits, which are mainly found in the brain, have the highest affinity for nicotine. 

Depending on the stoichiometry of the subunits, receptors may be more or less sensitive 

for upregulation when a ligand is bound (113, 114). α7 nAChRs have the highest 

permeability to calcium, which can lead to calcium-dependent downstream signaling and 



28	
	

result in physiological responses, such as proliferation, angiogenesis, and apoptosis 

(115).  

Despite the vast majority of study dedicated to understanding the neuronal 

cholinergic system, the complex and intricate network connecting nAChR to cellular 

functions beyond the nervous system have only recently garnished attention. ACh has 

been found to play a role in various non-neuronal cells, including epithelial, endothelial, 

mesothelial, and immune cells. (108). In fact, ACh is ubiquitously expressed in 

prokaryotic and non-neuronal eukaryotic cells, such as protozoa, fungi, and plants, and 

components of the cholinergic system are also detected in these cells, demonstrating 

the role of cholinergic communication in non-neuronal systems (111). Evolutionarily, this 

indicates that the non-neuronal cholinergic system existed before the neuronal 

cholinergic system. Therefore, the term “non-neuronal cholinergic system” has been 

introduced to distinguish the newly discovered role of ACh and its components acting as 

a local signaling “cytotransmitter” molecule, whereas the conventional “neuronal 

cholinergic system” describes the role of ACh as a neurotransmitter, mediating rapid 

communication between neurons and effector cells (116). The importance of the non-

neuronal cholinergic system in human health is highlighted in many studies and nAChRs 

have become a potential target for pharmacotherapy in a variety of disease states.  

The role of the non-neuronal cholinergic system in pathogenesis is supported by 

in vivo and in vitro studies of cancer, immune-related diseases, respiratory diseases, 

and many more. Patients suffering from cystic fibrosis (CF) and COPD have impaired 

mucociliary clearance, mucus hyperviscosity, increased risk for lung infection and 

pulmonary function decline. It was observed that nAChRs are expressed at the apical 

membrane of the ciliated lung epithelium and its co-localization with the cystic fibrosis 

conductance regulator (CFTR) may be responsible for its regulatory role in CFTR 

function. Absence of α7 nAChR led to lower mucus transport as well as higher 

electrolyte concentrations in the mucus, similar to what is observed in CF patients. As 

mentioned earlier, α7 nAChR has the highest permeability to calcium, which is an 

important mediator in activating signaling cascade that ultimately activates CFTR-

mediated ion transportation. Coupling of α7 nAChR and CFTR function was further 

validated by α7 nAChR agonist-induced calcium influx and activation of effector 

molecules involved in CFTR activation as well as delocalization of CFTR in α7 nAChR-

deficient mice. (117). In a human breast cancer cell line, elevated α9 nAChR mRNA and 

protein expression levels were observed after 6 h of nicotine treatment (118). 
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Proliferative properties induced by nicotine treatment were also demonstrated in other 

cancer cell lines, including those from the lung, pancreas, stomach, and colon, mediated 

via other nAChR subunits. One important component of cancer cells is the ability to 

migrate and metastasize to a new region. Chronic nicotine treatment to lung and breast 

cancer cell lines resulted in an altered regulation of adhesion molecules, including E-

cadherin and β-catenin, and mesenchymal proteins, including fibronectin and vimentin. 

As a result, nicotine-exposed cells demonstrated the ability to undergo an epithelial-

mesenchymal transition and gain a migratory phenotype (119, 120). 

In non-neuronal cells, ACh acts in both an autocrine and a paracrine manner. For 

example, ACh secreted from airway epithelial cells targets neighboring epithelial cells, 

monocytes and resident macrophages that express AChRs (Figure 2.3). Stimulation of 

nAChR expressed on circulating monocytes or macrophages leads to inflammatory or 

anti-inflammatory effects (121). Reciprocally, nAChR expression levels can be regulated 

by effector molecules of the immune cells, demonstrated by upregulation of α4β2 

nAChR levels by TNFα released from macrophages. ACh released from airway epithelial 

cells regulates their ciliary activity and proliferation, and this is supported by the fact that 

small cell lung cancer cell growth is promoted by ACh released as an autocrine growth 

factor (121).  

 

 

Figure 2.3 Auto/paracrine role of epithelial ACh.
121 

Used with permission. 
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c. Non-neuronal cholinergic system in immune cells and nicotine 
 
 

Although ACh was first reported in the 1930s to be present in mammalian blood, 

it was not until the 1980s that a sensitive and specific radioimmunoassay (RIA) for 

detecting ACh was available to confirm its presence in mammalian plasma. The origin of 

ACh in the bloodstream was found to be immune cells, particularly mononuclear 

leukocytes (MNL). Nicotine administration in rabbits led to an increase in plasma ACh 

concentration with a reduction in blood ACh levels in the presence of an AChE inhibitor. 

Further analysis of blood components detected ACh contained in the MNL fraction only 

and not in polymorphonuclear leukocytes (PMN) or the red blood cells. Subsequently, 

the expression of choline acetyltransferase (ChAT) mRNA from a human leukemic T cell 

line and mammalian blood and the expression of both mAChR and nAChR on most 

immune cells led to the conclusion that ACh is synthesized by the immune cells 

independent of that released from neurons (Reviewed in 122, 123). 

 The presence of cholinergic components in immune cells suggests that ACh 

must have a role in regulating the immune response. In fact, stimulation of mAChRs or 

nAChRs results in downstream signaling process and cellular response, such as 

differentiation of CD8+ T cells, changes in the pattern of cytokine release, and 

proliferation (124-127). Depending on the levels of expression and types of mAChR 

and/or nAChR present on individual cell types, the overall biological changes induced by 

stimulation of these receptors may vary. For example, M1 mAChRs appear to participate 

in the differentiation of CD8+ T cells into cytolytic T cells while deletion of M3 or M5 or 

combination of M2 and M4 mAChRs has no effect (124). Also, M1/M5 mAChR-deficient 

mice showed reduced level of the pro-inflammatory cytokines IL-6 and IFNγ, whereas α7 

nAChR-deficient mice were associated with increased level of the pro-inflammatory 

cytokine TNFα (125, 127).  

Although details concerning each type of AChR and the composition of its 

subunits and their expression on immune cells are still being actively investigated, the 

role of the cholinergic system in immune related diseases is apparent and has been 

demonstrated in several disease models, including sepsis, colitis, and arthritis (128). 

Particular attention was given to the role of the anti-inflammatory effects of α7-nAChR 

stimulation on macrophages as a part of the ‘cholinergic anti-inflammatory pathway.’ 
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ACh treated human macrophages that were exposed to LPS displayed inhibition of 

TNFα release through a post-transcriptional mechanism (129). Comparable inhibition 

was observed with nicotine administration. Using the α7 nAChR antagonist, α-

bungarotoxin, the study concluded that α-bungarotoxin-sensitive nAChRs are 

responsible for mediating the observed effects (129). Additionally, release of other pro-

inflammatory cytokines, including IL-1β, IL-6, and IL-18, were also inhibited by ACh 

treatment while no changes were observed in anti-inflammatory cytokine IL-10 release. 

Subsequent studies identified that the α7 subunit is necessary for cholinergic-induced 

anti-inflammatory responses, and this was further validated in vivo using α7 subunit-

deficient mice. This study showed that cells release significantly higher amount of TNFα 

after administration of endotoxin compared to wild-type mice (127). Later, it was 

identified that T cells are responsible for producing ACh and regulating macrophage 

cytokine release patterns as well (130). 

 It was discussed earlier that cigarette smoke and nicotine can suppress 

inflammatory response partially by shifting macrophages towards an M2 phenotype. 

Different compositions of nAChR subunits are capable of mediating this change with the 

most studies performed to investigate the α7 subunit. Nicotine-induced suppression of 

pro-inflammatory cytokines as well as antimicrobial activities to Legionella pneumophila 

were observed in alveolar macrophages that express only α4β2 nAChR subunits, and 

these effects were reversed with d-tubocurarine, a non-selective nAChR antagonist (99). 

In a sepsis-induced acute lung injury (ALI) model with Escherichia coli, reduction in MIP-

2 production in bronchoalveolar lavage fluid and neutrophil migration into the lungs were 

observed upon administration of α7 nAChR agonists, including nicotine. Pre-treatment 

with nicotine led to a reduction in LPS-induced MIP-2 and TNFα cytokine production by 

alveolar macrophages, which was reversed with α7 nAChR specific antagonist 

methyllycaconitine (MLA). Similar results were seen with wild-type neutrophils and α7 

nAChR-deficient neutrophils treated with nicotine, suggesting the expression of α7 

nAChR on neutrophils and the functional regulation by α7 nAChR. Overall outcomes in 

mice indicate that nicotine treatment aids in survival after intratracheal E. coli infection 

and α7 nAChR plays an important role (131).  

 There is insufficient data regarding the role of non-neuronal cholinergic system in 

immune cell development. However, it was observed that the non-neuronal cholinergic 

system is developed and expressed early in life, during fetal hematopoiesis. This is 

particularly important because, unlike in adults, hematopoietic stem cells (HSC) are 
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generated initially in the yolk sac and then migrate to the fetal liver. Homing of HSC from 

fetal liver to the bone marrow occurs towards the end of the gestational period. The 

intrauterine developmental period is, therefore, crucial in the process of lymphopoiesis 

and any disturbance in this process can lead to imbalanced immune cell populations that 

can be amplified as a defect in the overall regulation of the immune system (132). 

In fact, nicotine treatment was shown to change environments regulating 

hematopoietic stem cells in the fetal bone marrow. The presence of ChAT, AChE, and 

nAChRs was confirmed by gene expression profiling from embryonic stem cells, and 

nicotine treatment led to impaired colonization of hematopoietic stem cells in the fetal 

bone marrow. Furthermore, the cytokine production profile from bone marrow cells was 

changed upon nicotine treatment such that hematopoiesis-supportive cytokines, such as 

G-CSF and GM-CSF, were suppressed and Th2 T lymphocyte produced cytokine IL-4 

was upregulated (109). Another study demonstrated that alveolar macrophages isolated 

from mice exposed to nicotine developmentally had suppressed inflammatory response 

mediated by α7 nAChR (104). Expression of α7 nAChR was increased in mice exposed 

to nicotine in utero and its role in regulating macrophage function was demonstrated. 

One such example is the increased expression of TGFβ1 by alveolar macrophages 

harvested from the pups on post-natal day 7. However, this increase was attenuated in 

α7 nAChR knock-out mice that were exposed to nicotine developmentally, suggesting 

that α7 nAChR and other nAChR may be involved in mediating these changes. 

Additionally, cells expressing markers of alternative activation, including arginase-1, 

Ym1, and fibronectin, were increased in pups exposed to nicotine prenatally. This 

observation was reversed in α7 nAChR knock-out mice. Reduction in phagocytic activity 

against Staphylococcus aureus was displayed only in the macrophages expressing α7 

nAChR, which is another noteworthy impact of in utero nicotine exposure and the role of 

non-neuronal cholinergic system in mediating these effects. These findings raise 

concern regarding the effects of in utero nicotine exposure on programming of 

macrophage function and its tone set at birth, which can predispose neonates to various 

immune-related diseases (104). 
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D. Project Overview 

 

 

The use of NRT during pregnancy is still without strong efficacy and safety evidence. 

It should not be neglected or underestimated that nicotine itself poses harmful effects to 

human health and potentially to proper development of fetal immunity. In order to state 

that NRT is less harmful than smoking during pregnancy and recommend its use to 

pregnant smokers, it is crucial to understand how in utero nicotine exposure affects 

offspring and the extent of its effects. In this study, we administered nicotine to pregnant 

mice via their drinking water to generate offspring that were exposed to nicotine in utero. 

The immune response was then observed following P. aeruginosa lung infection. 

Additionally, bone marrow cells were obtained from offspring mice and differentiated into 

macrophages, which were then stimulated with LPS and various cytokines to observe 

cellular responses ex vivo. Finally, a clinical study has been developed to examine the 

impact of NRT on macrophage gene expression in neonates. Tracheal aspirate samples 

from neonates will be collected and gene expression signatures will be compared to 

correlate findings to different modes  of in utero nicotine exposure. This step will aid in 

identifying impacted genes and targeting future studies in this area. The central 

hypothesis of this project is that in utero nicotine exposure will alter immune cell 

disposition and function in response to P. aeruginosa lung infection. This will be 

investigated through in vivo infection as well as ex vivo macrophage stimulation with 

LPS.  
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Chapter 2. Methods 
 

A. Animal Work 
 
 

a. Mice 
 

C57BL/6 mice with a GFP tag on α4 nicotinic receptors were provided from the 

Stitzel lab (University of Colorado at Boulder) and bred in-house for the experiments. 

Mice were fed with either saccharin dissolved in water or nicotine dissolved in water (200 

µg/L) ad libitum before and throughout pregnancy. This is a well-established model for 

chronically administering nicotine to experimental animals and achieves plasma cotinine 

levels within the range reported in human smokers (133). All animal studies and 

procedures were approved by the University of Kentucky Institutional Animal Care and 

Use Committee. 

 

b. Intratracheal Infection 

 

After weaning, 4-6 week old offspring were infected intratracheally with the 

clinically derived mucoid strain P. aeruginosa M57-15. Bacteria were thawed from the 

stock vial and grown in Trypticase soy broth (TSB) to late log phase at 37°C, which were 

then incorporated into agarose beads by adjusting temperature of mineral oil and TSB 

and swiftly mixing them. Once the beads had formed, they were washed multiple times 

with phosphate buffered saline (PBS) to retrieve beads of various sizes ranging in 10-

100 µm. Visualization of beads was performed using an inverted microscope to confirm 

the sizes and numbers of beads (134). The number of CFU was determined by 

homogenizing the beads and growing the bacteria on Trypticase soy agar (TSA) plates 

in multiple dilutions. The P. aeruginosa-laden agarose beads were diluted to the target 

CFU for each infection. Beads were kept at 4°C and used within 1 week of preparation to 

assure their quality and integrity. On the day of infection, mice were lightly anesthetized 

with isoflurane aerosolized and 100uL of beads were instilled intratracheally using a 

curved 24-gauage needle. The same volume was plated on Pseudomonas isolation agar 
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(PSA) plates to ensure that mice were infected with desired inoculum. Daily weights 

were recorded as a measure of morbidity.  

 

c. Tissue Harvest 
 

On post-infection day 5, mice were humanely euthanized by injecting 0.1mL of 
SOMNASOL Euthanasia-III

 
Solution (Henry Schein Animal Health, Dublin, OH) 

intraperitoneally. Bronchoalveolar lavage fluid was collected by instilling 5 mL of buffered 

solution containing 0.3 µM EDTA in 1 mL aliquots. This is representative of immune cells 

located in the airway compartment and will be referred to as lung lavage (LL). The first 1 

mL was collected and centrifuged to separate out cells and measure cytokine 

concentration in the supernatant. Pelleted cells from this collection was combined with 

the remainder 4 mL of lavage fluid samples. Lungs were then collected in RPMI medium 

(Mediatech, Manassas, VA), minced with scissors, and incubated with 1mg/mL 

collagenase A and 50 U/mL DNase for 1 h at 37°C. Digested lung tissue was then 

pushed through a 70 µm mesh screen to create a single cell suspension and washed 

with red blood cell lysis buffer (Quality Biological, Inc., Gaithersburg, MD) and PBS. This 

is representative of immune cells located in the lung interstitium and will be addressed 

as lung digest (LD). An aliquot of LD from each mouse sample was plated on PSA plates 

in multiple dilutions to determine bacterial burden. Lastly, tracheobronchial lymph nodes 

(LN) were collected and pushed through 70 µm mesh screens to create a single cell 

suspension. Cells were then washed with red blood cell lysis buffer and PBS. 

 

d. Flow Cytometry 

 

Cells from LD, LL, and LN were incubated with panels of fluorescently labeled 

antibodies (CD11b, CD11c, Ly6G, CD4, CD8, CD19, and CD44) to determine their 

characteristics by surface marker expression. In excess of 50,000 events per sample 

were acquired by the Attune Acoustic Focusing Cytometer (Life Technologies, Carlsbad, 

CA), and data were analyzed by FlowJo software (Tree Star, Ashland, OR). Acquired 

cells were gated for leukocytes and the percentage of each subset was multiplied by the 

total number of cells.  
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e. Cytometric Bead Array 

 

Cytokine concentration from the first lung lavage wash as well as from the 

supernatants collected from the human tracheal aspirate samples were measured using 

cytometric bead array (BD Biosciences). The following cytokines were measured: IL-6, 

IL-10, MCP-1, IFNᵧ, IL-12p70, and TNF-α. Briefly, detection beads are conjugated with 

antibodies specific for each cytokine in the sample. Sample was mixed with the beads 

and the mixture was added to phycoerythrin-conjugated detection antibody for 2 hours. 

Fluorescence intensity for each analyte was then assessed via flow cytometry, with each 

distinguished by gating on specific bead size, and compared to a standard curve of 

known concentrations.   

 

f. Isolation and ex vivo stimulation of bone marrow-derived macrophages 
(BMDM) 
 

 Primary macrophage cells derived from bone marrow were isolated and cultured 

ex vivo to determine their responses upon stimulation and polarization. C57BL/6 mice 

with GFP tag on nicotinic receptors described previously were used. Briefly, 4-6 week 

old offspring from mice fed with either nicotine or saccharin dissolved in water during 

gestation were humanely euthanized. Femurs and tibias from both legs were dislocated 

by cutting off the patellar tendon and the foot, and the bones were isolated by removing 

tissues and muscles. Bones were then flushed with 5 mL RPMI media by inserting 25-

gauge 5/8 inch needle into the bone cavity. This was repeated until all bone marrow cells 

were removed and the bone appeared clear. Collected cells were centrifuged at 1200 

rpm for 5 minutes and red blood cells were lysed using the lysis buffer. Bone marrow 

cells were then washed and resuspended in complete RPMI (supplemented with 10% 

fetal bovine serum, 2x10
-5

M 2-mercaptoethanol, 1% penicillin/streptomycin, 1% 

glutamine) as well as L929 supernatant, which contains macrophage colony-stimulating 

factors (M-CSF) to allow differentiation of hematopoietic bone marrow stem cells into 

macrophages (135). Cells were initially cultured in petri dishes with media changed 

every 2 days. On day 7, cells were replated in 24-well plates at 2x10
5
 cells per well in 
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complete RPMI media (without L929 supernatant) and treated with IFNγ (20 ng/mL), 

IL4/13 (10 ng/mL), and LPS (50 ng/mL) for determination of arginase activity or cytokine 

levels. Cells were incubated at 37°C and 5% CO2 for 24 hours. 

g. Arginase Activity 
 

 Arginase activity was assessed by measuring urea concentration produced in the 

arginase reaction. Arginase converts arginine into urea and ornithine, and the activity is 

measured by the intensity of urea-chromogen complex, which produces a color change. 

Prior to the assay, cell lysates were prepared using 0.4% Triton X-100 in 10 mM Tris-

HCl buffer with protease inhibitor cocktail (Pierce Biotechnology, Rockford, IL). Arginine 

buffer was preheated to 37°C for 10 minutes and then combined with Mn solution to form 

a substrate buffer. 10 µL of the substrate buffer was added to 40 µL of each sample on a 

96 well plate and incubated at 37°C for 2 hours. The arginase reaction was terminated 

by adding 200 µL of urea reagent and incubating the plate for 1 hour at room 

temperature. Optical density (OD) of each sample was read using a 430 nm filter, and 

the readings were normalized using OD of blank sample and water. One unit of arginase 

is responsible for conversion of 1 µmole of L-arginine to ornithine and urea per minute, 

and the values were additionally normalized to total protein concentration, using the 

bicinchroninic acid protein assay (BCA) (Pierce Biotechnology, Rockford, IL).  
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B. Human Study 

 

a. Study Design 
 

 Pregnant women at the University of Kentucky Medical Center who gave birth to 

pre-term (>24 weeks) and term infants were screened for inclusion. Initially, a 

collaborating neonatologist identified potential participants based on general health of 

the mothers and the newborns. After obtaining a consent from the mothers, a detailed 

smoking history and medical history were obtained through a series of questionnaires 

(Appendix I) and used to include or exclude patients from the study. Use of ≥ 5 

cigarettes daily during pregnancy was required to be enrolled in the smoking group. 

Women who used nicotine replacement products during pregnancy were stratified into 

the replacement group. The control group was defined by no direct exposure to nicotine 

during pregnancy. Informed consent and parental permission forms to include the 

neonates in the study were provided at recruitment and signed informed consent was 

required prior to participant enrollment (Appendix II). Patients were excluded if there 

were known major fetal abnormalities, chemical/alcohol dependence, contraindication to 

NRT, use of any forms of tobacco other than cigarettes or e-cigarettes, and any active 

infection for either the mother or newborn at the time of delivery, before sample 

collection. Premature infants requiring mechanical ventilation for reasons other than 

assisting “physiologic normalcy” were excluded from the study. Chronic use of 

medications known to pose immunomodulation, such as steroids, or have potential for 

causing immunomodulation also met exclusion criteria. 

  
 

b. Sample Collection and RNA isolation 

 
 
 Baseline data (date of birth, hospital number, ethnicity, medical history, daily 

number of cigarettes smoked during pregnancy, time from last cigarette smoked/nicotine 

replacement product use, partner’s smoking status, gestational age, signed consent 

form, a list of acute/chronic medications, medications administered during current 
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hospitalization, and indication of participant’s contact details) were collected through a 

series of questionnaires as well as from the subject’s medical record (Appendix III). 

 Within the first week of birth, 0.5 to 1 mL of tracheal aspiration samples were 

collected for a total of 2-3 samples per baby (up to 5 samples). Samples were 

centrifuged at 4°C for 7 min at 300g to pellet the cells, and supernatants were saved and 

frozen at -80°C for cytokine measurement. Cells were then washed 3 times with RPMI 

and 1-2x10
6
 cells were aliquoted and kept frozen in TRizol at -80°C for RNA isolation. 

The remainder of cells were seeded at 2x10
5
 cells per well in 24-well plates and 

incubated at 37°C and 5% CO2 for 2 hr to isolate alveolar macrophages. After removing 

non-adherent cells, macrophages were stimulated with 10 ng/mL of LPS from 

Escherichia coli O55:B5 from EMD Millipore and 20 ng/mL of human interferon-γ 

(eBioscience) (IFNγ) for 6 hours. Supernatants were saved for post-stimulation cytokine 

measurement. Cells were placed in TRizol and frozen at -80°C for RNA isolation. RNA 

isolation was performed using the Qiagen RNeasy Kit (Qiagen Sciences, Germantown, 

MD) and quantified using a Nanodrop 2000 (Thermo Scientific, Wilmington, DE). 

 Once patients are recruited for the study, 3 groups (cigarette smoke vs. NRT vs. 

no exposure) will be compared for 1) baseline RNA expression immediately upon 

collection of the specimen and 2) after stimulation with LPS and IFNγ. Upon isolation of 

RNA, microarray will be performed, using the TaqMan® Gene Expression Array Plates 

(Applied Biosystems, Foster City, CA). TaqMan® arrays are flexible, affordable, and 

convenient for gene expression analysis screening for specific biological pathways, 

processes, diseases, or can be customized. These arrays each consist of 48 genes of 

interest, such as TNFa, IL-1, IL-10, and CD86. A list of genes that will be assessed is 

provided in Appendix I. RNA samples (0.1-10ug) will be converted into cDNA, and using 

10-100 ng of cDNA per plate, Applied Biosystems real-time quantitative PCR instrument 

will allow amplification of target genes. Gene expression can be measured by the 

quantitation of cDNA relative to a calibrator sample, which serves as a physiological 

reference. All quantitations will be also normalized to an endogenous control to account 

for variability in the initial concentration and quality of the total RNA and in the 

conversion efficiency of the reverse transcription reaction. 

 

c. Statistics 
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Data are reported as mean ± SD and compared using GraphPad Prism 

(GraphPad Software, La Jolla, CA, USA). Data were compared via two-way ANOVA, 

followed by Bonferroni’s post-test individual comparisons, or t-test where appropriate. 

Differences were deemed statistically significant at a p value < 0.05. 
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Chapter 3. Results 

 

In utero nicotine exposure negatively affects morbidity outcome 

 Mice exposed to either saccharin (Control) or nicotine in utero were infected with 

P. aeruginosa to assess the impact of developmental exposure on complete immune 

response. Daily weights were measured and mice that had weight reduction greater than 

20% prior to the harvest were humanely killed. Pre-infection weights were comparable 

between the two groups with the average weight of 21.37 g and 22.15 g for control and 

nicotine group, respectively (Figure 3.1a). Infected mice lost weight initially but 

recovered by the end of study period. While the pattern of weight loss was similar 

between two groups, mice exposed to in utero nicotine displayed a greater weight 

reduction, particularly on Days 2 and 3 (Figure 3.1b). This experiment was repeated 

three times and, although no statistically significant differences were observed between 

the groups in pooled data, similar weight loss pattern was observed with more 

pronounced reduction in the nicotine group (Figure 3.1c).  
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b)  
 

c) 	

 

Figure 3.1 Baseline weight and post-infection weight reduction as a measure of morbidity. In 
utero nicotine exposed mice were generated from pregnant mice fed with saccharin- or nicotine-

dissolved water throughout pregnancy. 4-6 weeks post-birth, mice were infected with agarose 

beads containing bacteria. a) Baseline weight pre-infection. b) Post-infection weight changes from 

a single experiment. c) Post-infection weight reduction from pooled data. Data represents the 

mean ± SD of b) 7 or c) 16 mice per group. Significance is indicated for p values < 0.05 (*) and < 

0.01 (**). Data was analyzed by two-way ANOVA. 
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Pre- and post-infection cellular characteristics 

A group of mice born to those fed with saccharin- or nicotine-dissolved water was 

sacrificed without an infection to assess baseline characteristics (pre-infection, Day 0) 

while another group underwent intratracheal infection with P. aeruginosa and were 

sacrificed to compare cellular characteristics on Day 5 post-infection. Cells were 

enumerated by Trypan blue staining using an automated cell counter and the 

percentage of immune cell subsets in the lung digest, lung lavage, and lymph nodes 

were determined by the surface receptor expression. The absolute number of each 

subset was obtained by multiplying the percentage by the total cell numbers.  

First, we compared the total cell numbers in the airway compartments and the 

lymph node between the groups pre- and post-infection (Figure 3.2). There was no 

difference in the number of cells between the groups in any of the three compartments 

pre-infection, suggesting that in utero nicotine exposure is not associated with changes 

in cell numbers at baseline (Figure 3.2a, c, e). However, post-infection cell numbers 

increased significantly from the baseline only in the lung digest of the control group 

(p=0.0411), and this number was significantly higher than that of the nicotine group 

(Figure 3.2a, b). In the lung lavage samples and the lymph nodes, comparable cell 

numbers were observed between the groups as well as pre- and post-infection (Figure 

3.2c-f).  

We then analyzed cells for markers of neutrophils (Ly6G+), resident alveolar 

macrophages (CD11b-CD11c+), infiltrating monocytes (CD11b+Ly6G-), and 

lymphocytes in different compartments to characterize subsets of total cells. Through 

cytometric analysis, total cells were gated for granulocyte/monocyte population to 

separate out lymphocytes and apoptotic cells, based on forward/side scatter 

characteristics. Respective surface marker designations were used to obtain percent 

values for neutrophils, resident alveolar macrophages, and infiltrating monocytes within 

the gates. CD4, CD8, and CD19 cell populations were enumerated by gating for 

lymphocyte population from the total cells. A representative flow cytometry plot is shown 

in Figure 3.3, which depicts the gating scheme for neutrophils, resident macrophages, 

and infiltrating monocytes in the lung digest from control (Top) and nicotine (Bottom) 

groups. 

Resident alveolar macrophages are the first-line defense against pathogens in 

the airways, and they are characterized by a high expression of CD11c and low 

expression of CD11b. When they fail to sufficiently control and maintain homeostasis 
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against pathogens, circulating monocytes and neutrophils are recruited to the site of 

infection, following cytokine/chemokine gradients, to supplement the initial burst of 

inflammatory response (136). Infiltrating monocytes express a high level of CD11b, and 

after they migrate to the lungs, their phenotype gradually begins to resemble that of the 

resident macrophages (137). Neutrophils, another infiltrating cell type during an 

infection, have a short lifespan but their survival is prolonged during an infection (136). 

Release of neutrophils from the bone marrow pool further supplements their 

accumulation in the lungs. This influx is critical for clearing bacteria and inducing 

adaptive immune response (136). We defined neutrophil subset as a positive expression 

of Ly6G on the cellular surface.  

Both groups exhibited a significant increase in the number of neutrophils from 

baseline in the post-infection lung digest (control: p<0.0001, nicotine: p=0.0184) (Figure 

3.4a, b). However, post-infection neutrophil numbers were significantly higher in the 

control group compared to nicotine group (p=0.0266, denoted) (Figure 3.4b). Similarly, 

while baseline resident macrophage numbers were comparable, post-infection numbers 

were significantly higher in the lung digest of the control group (p=0.0170, denoted) 

(Figure 3.4c, d). Post-infection infiltration of monocytes was observed in the lung digest 

of both groups, but unlike neutrophils, this influx was comparable between the treatment 

groups (Figure 3.4e, f). Interestingly, these differences were not observed in the lung 

lavage fluids (Figure 3.5a-f). Pre- and post-infection cell numbers remained similar for 

neutrophils, resident macrophages, and infiltrating monocytes in both control and 

nicotine groups, although there was a trend towards increased post-infection influx of 

neutrophils in the nicotine group (p=0.056) (Figure 3.5a, b). No significant differences in 

the number of cells were observed between the groups.  

Next, we analyzed cells of the adaptive immunity, CD4+ and CD8+ T lymphocyte 

and B lymphocyte characteristics in each compartment. B lymphocytes were 

characterized by the expression of CD19. T and B lymphocytes have a delayed 

response compared to innate immune cells and become effective 5-7 days post-infection 

(138). This is because dendritic cells are needed to first transport antigens into draining 

lymph nodes and activate naïve T cells that are specific to a particular antigen. 

Subsequently, antigen-specific T cells are selected, differentiated, proliferated, and 

travel back to the inflamed tissue to remove pathogens or remain in the lymph nodes to 

activate B cells. Therefore, we compared subsets of lymphocytes in the lung tissue and 

lymph nodes on post-infection day 5.     
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Nicotine groups displayed a significant increase in the number of CD4+ and 

CD8+ T cells in the lung digest post-infection (p=0.0004 and p=0.0273 for CD4+ and 

CD8+ T lymphocytes, respectively) compared to baseline (Figure 3.6a-d). However, both 

pre- and post-infection CD4+ and CD8 T cell numbers were similar to those of control 

group. Interestingly, the control group had comparable pre- and post-infection CD4+ and 

CD8+ T cell numbers. On the contrary, the nicotine group had a significantly lower 

number of B lymphocytes post-infection (p=0.0482) from baseline, and this number was 

significantly lower than that of the control group (p=0.0109, denoted) (Figure 3.6e, f). 

Neither group nor time after infection had an impact on CD4+ T lymphocyte counts in the 

lymph nodes (Figure 3.7a, b). However, a significant increase in the CD8+ T 

lymphocytes was noted in the lymph node of control group, compared to baseline 

(p=0.0235) (Figure 3.7c, d). Unlike in the lung digest, post-infection B lymphocytes of the 

nicotine group increased significantly compared to the baseline (p=0.0247) as well as 

compared to control in the lymph nodes (p=0.0386, denoted) (Figure 3.7e, f).  

Overall, this data shows that the baseline cell numbers were not affected by in 

utero nicotine exposure in any of the three compartments analyzed. However, some key 

differences in the immune response were observed upon Pseudomonal lung infection. 

Although robust neutrophil influx was observed post-infection in both groups, this was 

less pronounced in the nicotine group. Additionally, a significant reduction in the number 

of B cells in the lung interstitium but a significant elevation in the lymph nodes in the 

nicotine group suggests a potential defect in migration and/or proliferation of B 

lymphocytes, due to in utero nicotine exposure.  
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Characteristics of cell composition and disposition 

a) b)	  

c) d)	  

e) 		 f)	  

Figure 3.2 Pre- and post-infection cell counts in the lung digest, lung lavage, and lymph nodes. 

In utero nicotine exposed mice were generated from pregnant mice fed with saccharin- or 

nicotine-dissolved water throughout pregnancy and humanely killed at 4-6 weeks of age before 

and after intratracheal infection with P. aeruginosa. Immune cells were quantified by flow 

cytometry in (a-b) lung digest, (c-d) lung lavage fluid, and (e-f) lymph node. Data represents the 

mean ± SD, and statistical significance is indicated for p value < 0.05 (*) between the groups. (*) 

denotes significance between groups. Data was analyzed by two-way ANOVA for comparison of 

the groups and t-test for comparison of pre- and post-infection
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Figure 3.3 Lung parenchyma cell analysis by flow cytometry. On post-infection day 5, lungs were harvested from mice exposed to saccharin (Top) 
or nicotine (Bottom) developmentally. Single cell suspension was created by incubating lung tissue with collagenase and DNase. Cells were 
stained with fluorescently labeled antibodies to determine surface marker expression. Initially, cells were gated to isolate granulocyte/monocyte 
population. Subsequently, neutrophil (Ly6G+), resident macrophage (CD11b-CD11c+), and infiltrating monocyte (CD11b+Ly6G-) populations were 
analyzed by their respective surface marker expressions. SSC, side scatter; FSC, forward scatter. 
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a) b)	 	

c) d)	 	

e) f)	 	

Figure 3.4 Pre- and post-infection neutrophil, resident macrophages, and infiltrating monocytes 
in lung digest. In utero nicotine exposed mice were generated from pregnant mice fed with 
saccharin- or nicotine-dissolved water throughout pregnancy and humanely killed before and after 
intratracheal infection with P. aeruginosa. Immune cells were quantified by flow cytometry in the 
lung digest for markers of (a-b) neutrophils (Ly6G+), (c-d) resident macrophages (CD11b-
CD11c+), and (e-f) infiltrating monocytes (CD11b+Ly6G-). Data represents the mean ± SD, and 
statistical significance is indicated for p value < 0.05 (*). (*) denotes significance between groups. 
Data was analyzed by two-way ANOVA for comparison of the groups and t-test for comparison of 
pre- and post-infection. 
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a) b)	 	

c) d)	  

e) 				f)	 	

Figure 3.5 Pre- and post-infection neutrophil, resident macrophages, and infiltrating monocytes 
in lung lavage. In utero nicotine exposed mice were generated from pregnant mice fed with 
saccharin- or nicotine-dissolved water throughout pregnancy and humanely killed before and after 
intratracheal infection with P. aeruginosa. Immune cells were quantified by flow cytometry in the 
lung lavage samples for markers of (a-b) neutrophils (Ly6G+), (c-d) resident macrophages 
(CD11b-CD11c+), and (e-f) infiltrating monocytes (CD11b+Ly6G-). Data represents the mean ± 
SD. Data was analyzed by two-way ANOVA for comparison of the groups and t-test for 
comparison of pre- and post-infection. Differences were not statistically significant. 
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a) 	b)	 	

c) 	d)	 	

e) f)		
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Figure 3.6 Pre- and post-infection T lymphocytes and B lymphocytes in lung digest. In utero 
nicotine exposed mice were generated from pregnant mice fed with saccharin- or nicotine-
dissolved water throughout pregnancy and humanely killed before and after intratracheal infection 
with P. aeruginosa. Immune cells were quantified by flow cytometry in the lung digest for markers 
of (a-b) CD4+ T lymphocytes, (c-d) CD8+ T lymphocytes, and (e-f) B lymphocytes (CD19+). Data 
represents the mean ± SD, and statistical significance is indicated for p value < 0.05 (*). (*) 
denotes significance between groups. Data was analyzed by two-way ANOVA for comparison of 
the groups and t-test for comparison of pre- and post-infection. 
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a) b)	 	

c) d)	 	

e) f)	 	

Figure 3.7 Pre- and post-infection T lymphocytes and B lymphocytes in lymph node. In utero 
nicotine exposed mice were generated from pregnant mice fed with saccharin- or nicotine-
dissolved water throughout pregnancy and humanely killed before and after intratracheal infection 
with P. aeruginosa. Immune cells were quantified by flow cytometry in the lymph nodes for 
markers of (a-b) CD4+ T lymphocytes, (c-d) CD8+ T lymphocytes, and (e-f) B lymphocytes 
(CD19+). Data represents the mean ± SD, and statistical significance is indicated for p value < 
0.05 (*). (*) denotes significance between groups. Data was analyzed by two-way ANOVA for 
comparison of the groups and t-test for comparison of pre- and post-infection. 
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Cytokine production in the lung lavage fluid of P. aeruginosa infected mice 

 Various pro- and anti-inflammatory cytokines are produced in response to an 

infection, and the balance of these mediators is crucial in amplifying or suppressing the 

immune response at a proper timing. IL-6, IFNγ, TNFα, and IL-12 are secreted from M1 

polarized macrophages in response to an infection and IL-12 also promotes 

differentiation of T cells into the Th1 subset, potentiating the pro-inflammatory response. 

On the contrary, IL-10 is secreted by Th2 cells to regulate exaggerated inflammatory 

responses and to reduce tissue damage. Therefore, we assessed levels of IL-6, IL-10, 

MCP-1, IFNγ, TNFα, and IL-12p70 in the lung lavage fluids of mice 5 days post-infection 

to compare cytokine milieu in response to an infection.   

The most prominent difference was observed in MCP-1 level, which is a 

chemoattractant protein for monocytes. MCP-1 is produced in high levels during 

infection by both immune and non-immune cells. As the name implies, it promotes 

recruitment of monocytes to the inflamed tissue and also attract neutrophils during 

severe infection (139). We observed higher concentrations of MCP-1 in the lung lavage 

fluid of the nicotine group in a single experiment and it remained elevated when results 

are pooled from 3 separate cohorts. The pro-inflammatory cytokines IL-6 and TNFα were 

additionally found to be increased from pooled data while IL-10, IFNγ, and IL-12 levels 

were not different between groups (Figure 3.8a, b).  
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b)  

 

Figure 3.8 Cytokine concentrations in the lung lavage fluid of mice after P. aeruginosa infection. 
In utero nicotine exposed mice were generated from pregnant mice fed with saccharin- or 
nicotine-dissolved water throughout pregnancy and humanely killed before and after intratracheal 
infection with P. aeruginosa. On post-infection Day 5, lung lavage samples were collected and 
cytokine levels were measured by CBA. Figure a) describes one cohort and figure b) is pooled 
data from 3 separate experiments. Data represents the mean ± SD, and statistical significance is 
indicated for p value < 0.05 (*) and < 0.0001 (****). Data was analyzed by multiple t-test. 
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Cytokine production from macrophage cell culture  

 In order to assess macrophage cytokine profile at baseline and upon M1 or M2 

polarized states, we harvested murine bone marrow cells and stimulated them ex vivo. 

Bone marrow cells were obtained from mice exposed to saccharin (control) or nicotine 

developmentally and differentiated into macrophages for 7 days ex vivo, as described in 

Methods. When fully differentiated, bone marrow-derived macrophages were stimulated 

with LPS and IFNγ or IL-4/13 to polarize them into M1 or M2 macrophages, respectively. 

Cytokine concentrations in the supernatants were measured to assess cellular response 

to stimulation and polarization. Cytokine levels were comparable between the two 

groups without any stimulation (media only). However, several differences were noted 

between control and nicotine groups upon stimulation and polarization. First, production 

of all cytokines were elevated upon polarization to M1, except for IL-10, which is an anti-

inflammatory cytokine produced mainly by M2 macrophages (Figure 3.9a, b). This was 

true for both control and nicotine groups, and the nicotine group was associated with 

higher production of IL-10 compared to both media treatment and the M1 polarized 

control group. IL-10 levels were elevated upon M2 polarization for both groups and the 

levels were comparable between the two groups (Figure 3.9a, c). The most prominent 

finding was the production of IFNγ, which was significantly increased upon M1 

polarization, but not upon M2 polarization, in both groups (Figure 3.9a-c). One caveat is 

that IFNγ was added to the culture in M1 polarized cells but not M2 polarized cells. 

However, significantly elevated production of IFNγ in the control group compared to the 

nicotine group is noteworthy (Figure 3.9b). Similarly, increased TNFα levels were 

observed upon M1 polarization for both groups (Figure 3.9b), but interestingly this was 

comparable to M2 polarized macrophages (Figure 3.9c). The nicotine group was 

associated with significant reduction in production of IL-6 and MCP-1 compared to 

control group for both M1 and M2 polarizations (Figure 3.9b, c). This is reverse of what 

was observed from lung lavage fluids of mice infected with P. aeruginosa (Figure 3.8b). 
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a) 	

b) 	

c)  

Figure 3.9 Cytokine production in the supernatants of ex vivo BMDM. In utero nicotine exposed 
mice were generated from pregnant mice fed with saccharin- or nicotine-dissolved water 
throughout pregnancy. Bone marrow-derived macrophages (BMDM) were stimulated with LPS 
and treated with IFNγ or IL-4/13 for M1 or M2 polarization, respectively. After overnight 
incubation, supernatants were collected to determine cytokine concentrations by CBA. Figures 
describe a) baseline cytokine levels, b) cytokine levels when polarized to M1, and c) cytokine 
levels when polarized to M2. Data represents the mean ± SD, and statistical significance is 
indicated for p value < 0.05 (*), < 0.01 (**), < 0.001 (***), and < 0.0001 (****). Data was analyzed 
by two-way ANOVA. 
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Arginase activity 

 A previous study reported that in utero nicotine exposure shifts the resting state 

AM into an alternative phenotype (104). We utilized BMDM from control and nicotine 

mice to measure arginase activity as a marker of alternative activation when stimulated 

with LPS ex vivo. Cells were treated with media only, IFNγ+LPS to induce M1 

polarization, or IL-4/13+LPS to induce M2 polarization. Cell lysates were obtained to 

assess arginase activity. First, we assessed cell viability with and without stimulation to 

determine whether developmental nicotine exposure affects this parameter. There was 

no difference in cell viability between control and nicotine groups when polarized into M1 

or M2 (Figure 3.10a). Additionally, protein concentrations were comparable between the 

groups as well as across the cytokine treatments (Figure 3.10b). We found significantly 

increased arginase activity in cells polarized to the M2 phenotype in both control and 

nicotine groups, and this increase was more pronounced in the nicotine group 

(p=0.0588, denoted) (Figure 3.10c). Low levels of arginase activity were detected in cells 

treated with media only as well as M1 polarized cells, and this was similar between 

control and nicotine groups (Figure 3.10c). When normalized to protein concentration, 

increased arginase activity in M2 polarized cells of nicotine group was less pronounced, 

resulting in a similar arginase activity between M2 polarized cells of control and nicotine 

groups (Figure 3.10d). Similarly, the two groups were comparable when arginase activity 

was normalized to cell counts (Figure 3.10e). 
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d) 	
	
	

e) 	

	

Figure 3.10 Arginase activity at baseline and upon M1 and M2 polarization. In utero nicotine 
exposed mice were generated from pregnant mice fed with saccharin- or nicotine-dissolved water 
throughout pregnancy. Bone marrow-derived macrophages (BMDM) were stimulated with LPS 
and treated with IFNγ or IL-4/13 for M1 or M2 polarization, respectively. After overnight 
incubation, cell lysates were collected to measure arginase activity. Figures describe a) cell 
viability as measured using Trypan blue staining, b) protein concentration, c) raw arginase 
activity, d) arginase activity normalized to protein concentration, and e) arginase activity 
normalized to cell numbers. Data represents the mean ± SD, and statistical significance is 
indicated for p value < 0.05 (*). Data was analyzed by multiple t-test. 
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Human Tracheal Aspirate Sample Processing 

 In our murine model, animals were allowed to age for 4-6 weeks prior to 

performing various experiments described above. This is equivalent to approximately 

young adult age in humans, at which nicotine effects mediated during the critical periods 

of fetal development are likely to be less pronounced due to post-birth factors (140). To 

better understand the impact of in utero nicotine exposure when it is most pronounced 

and to investigate its impact in humans, we designed a clinical study, recruiting neonates 

from the University of Kentucky Medical Center born to mothers who 1) did not smoke 

during pregnancy, 2) smoked throughout pregnancy, or 3) used NRT during pregnancy. 

The study was designed to characterize and compare alveolar macrophage gene 

expression obtained from neonates who are placed on a ventilator in the NICU. As a 

standard care measure, tracheal aspirate samples are suctioned to maintain patency of 

the ventilation tubes and discarded immediately. For this study, we attempted to collect 

these samples and transfer them to the laboratory to purify alveolar macrophages and 

isolate RNA 1) immediately upon purification and 2) after stimulating with LPS to 

determine macrophage response. 

 Prior to enrolling patients, we performed preliminary work to establish successful 

RNA isolation techniques with human samples. Approximately 1 mL volume was 

recovered from tracheal aspirate samples obtained from each patient in the NICU, and 

samples were processed according to the protocol described in the Methods section. 

Quality and quantity of isolated RNA were determined using the UV spectrophotometer, 

and the A260/A280 ratio of 1.8-2.1 was used as a target of quality. First, the entire sample 

was purified, immediately upon receiving, to isolate RNA, using 350 µL or 1 mL of 

TRizol® reagent. When low volume of TRizol® was used, A260/A280 ratio did not fall in the 

desired range, suggesting impurities and unreliable results. Higher volume of TRizol® led 

to successful isolation, and this was true only with 2x106 cells/mL (Table 2a). Next, we 

cultured purified alveolar macrophages and stimulated them with LPS 10 ng/mL prior to 

isolating RNA. After 6 h incubation, cells were collected and RNA was isolated, following 

the same procedure and using 1 mL TRizol®. We observed that A260/A280 ratio fell within 

the desired range from these samples (Table 2b). Overall, the results suggest that 

successful RNA isolation can be achieved by using the described methods and using 

neonatal tracheal aspirate samples, and cell number and reagent volumes are important 

determinants of acceptable RNA quality and quantity. This preliminary data sets the 
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groundwork for our proposed clinical study of investigating the alveolar macrophage 

gene expression profile in neonates exposed to in utero nicotine via various methods.  

 

a)                                                                                          b) 

 

Table 2.1 RNA isolation results from clinical tracheal aspirate samples. Samples were collected 
from neonates placed on a ventilator and processed to purify alveolar macrophages. A) RNA 
isolated immediately after obtaining samples from patients. Samples 1 and 2 were saved in 350 
µL TRizol and samples 3 and 4 were saved in 1 mL TRizol. B) RNA isolated from cells cultured in 
the presence or absence of LPS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample number Cell counts A260/A280 ratio 

1 1.5x106 cells/mL 1.16 

2 1x106 cells/mL 1.32 

3 2x106 cells/mL 1.82 

4 1x104 cells/mL 1.49 

Treatment A260/A280 ratio 

Media 1.8 

Media 1.47 

LPS 10 ng/mL 1.71 

LPS 10 ng/mL 1.86 
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Chapter 4. Conclusion 

 

Despite known perinatal health risks of smoking during pregnancy, many 

pregnant smokers fail to achieve complete cessation (7). Although NRTs are considered 

first-line treatment options during pregnancy, there is paucity of data to suggest NRT is 

safe and effective during pregnancy (3). Furthermore, many recent studies observed that 

the physiological effects of nicotine are not only limited to the nervous system but can 

modulate functions of non-neuronal cells, (4, 107). This is mediated through the nicotinic 

acetylcholine receptors (nAChR) present in non-neuronal cells, including the immune 

cells. Investigation of the role of nAChR is an active area of research, and so far it has 

been observed that stimulation of nAChR can dampen inflammatory responses from 

macrophages and stimulate proliferation of T cells. Most of what is known regarding the 

effect of nicotine on the immune system suggests that nicotine is an anti-inflammatory 

molecule, as suggested by suppressed secretion of inflammatory mediators (99, 100, 

109). This is an important area of research particularly for smokers who use NRT under 

the notion that there is no harm to their health and regard NRT as a safer option. 

Moreover, this introduces concerns for pregnant smokers whose fetuses are exposed to 

nicotine through the placental barrier with the potential to modulate cells directly as well 

as indirectly through developmental alterations. Therefore, we sought to investigate the 

effect of in utero nicotine exposure on the immune response to P. aeruginosa lung 

infection as well as ex vivo LPS stimulation.  

The infection model we have employed in this study is an excellent method in 

assessing chronic lung infection commonly seen in smokers. As discussed in this thesis, 

smokers have an increased susceptibility to infection, and many of them suffer from 

chronic inflammation of the lungs and repetitive respiratory infections as a result of 

damages induced by cigarette smoke (73). By administering P. aeruginosa-laden 

agarose beads intratracheally, we can assess the immune response against bacteria in 

orchestrating the balance between pro- and anti-inflammatory responses and monitor 

the overall clinical status, such as animal weight, over time. Any alterations of the 

immune cell functions, due to developmental nicotine exposure, that result in an 

inadequate control of the infection is manifested by poor clinical status, as this 

parameter is commonly used to determine the response to an infection (74, 92, 134). 

This model is extensively used in other investigations associated with chronic lung 

infection, such as in cystic fibrosis (134).   
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In this study, we hypothesized that in utero nicotine exposure would alter immune 

cell disposition and function in response to P. aeruginosa lung infection. We found that 

the nicotine group had a worsened clinical outcome, as measured by weight-loss over 

time post-infection. Additionally several differences were observed with regard to 

immune cell disposition and cytokine profile in the lung tissue, lung lavage fluid, and 

lymph nodes post-infection. However, these results are not conclusive but rather 

preliminary. The work accomplished to this point sets the groundwork for addressing our 

hypothesis but does not answer it. Importantly, findings from our study appear to 

contradict some of what is known in the current literature. For example, maternal 

smoking or nicotine exposure is generally known to cause low birthweight, which was 

not observed in our study. We had a total of 62 offspring mice (31 mice in each group) 

generated from mice fed with saccharin- or nicotine-dissolved water, and their baseline 

weights prior to infection were not different. This may be explained by the time elapsed 

between birth and the day of infection, which was approximately 4-6 weeks. It is possible 

that weight differences, if any, may have been minimized during postnatal development. 

Due to the cannibalistic behavior of the mothers, neonatal mice could not be 

manipulated from the cages prior to weaning. However, post-infection weight changes 

suggest that in utero nicotine exposure may impact the overall clinical outcome.  

Our study did not find any baseline differences in the number of cell 

subpopulations. Cell numbers were comparable to those of control group for all subsets 

analyzed, and differences were observed only in post-infection numbers, including 

pronounced dampened neutrophil influx, increased CD4 and CD8 cell numbers in lung 

tissue, and increased B cells in the lymph nodes. This is similar to the results of other 

studies investigating the effects of prenatal nicotine exposure on neonatal and adult 

animal immune cell populations (141, 142). Despite similar baseline numbers, one study 

observed that CD8+ T-lymphocyte activity was significantly reduced when exposed to 

cigarette smoke developmentally, which suggests that there is an impact of prenatal 

cigarette smoke exposure on functional capacity of CD8+ T cells (141). We did not 

assess this parameter for CD8+ T cells, but the impact observed on the cytokine profile 

from in vivo and ex vivo studies may support the notion of altered function. In our study, 

in utero nicotine exposure was associated with significantly increased production of the 

inflammatory cytokines IL-6, MCP-1, and TNFα on day 5 post-infection in the lung 

lavage fluid. Interestingly, the opposite occurred during our ex vivo experiments. IL-6 

and MCP-1 levels were higher in the control group, and additionally IFNγ concentrations 
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were significantly elevated in the control group. One possible explanation for this 

observation is the difference in time when the cytokine levels were measured. M2 

polarization induced by developmental nicotine exposure suppresses inflammatory 

response 6 hours after stimulation with LPS, as observed with our ex vivo data. This 

initial response perhaps leads to delayed resolution and prolonged inflammation, which 

results in increased production of pro-inflammatory cytokines 5 days after P. aeruginosa 

infection, as demonstrated in vivo.  

Fetal and neonatal T cell immunity is known to be unbalanced, with a bias 

towards Th2 cells, which increases neonatal susceptibility to infectious diseases 

compared to adults (143). This does not necessarily indicate that neonates are born with 

immunodeficiency, as they are able to generate effective immune responses, such as 

induction of Th1 cells upon stimulation with antigen. Th1 cell apoptosis was observed, 

however, when cells were re-challenged with the antigen while Th2 cells mediated a 

secondary response. Subsequent research to understand specific mechanisms 

underlying this phenomenon suggests that IL-4 produced by Th2 cells mediates Th1 cell 

apoptosis (143). Development of the immune system continues to occur postnatally, and 

the fetal and neonatal period is considered a critical timeframe that requires sequential 

stimulation to induce differentiation, proliferation, and degeneration (143). Unbalanced 

Th1/Th2 stimulation in fetuses and neonates is, therefore, in its transitory period and will 

ultimately adapt to the environment and establish functional capacities during postnatal 

developmental periods when stimulated appropriately.  

Our study and previous studies report that in utero nicotine exposure is 

associated with a shift towards a Th2 response, and towards an M2 macrophage 

response which mediates regulation of inflammation (100, 104). We observed increased 

activity of arginase in M2 polarized cells in mice developmentally exposed to nicotine 

compared to the control group, although no differences were observed at baseline. 

Wongtrakool et al. reported an increased number of macrophages expressing arginase-

1, as well as Ym1 and fibronectin, when exposed to nicotine in utero (104). Furthermore, 

cytokine profiles in the lung were associated with Th2 responses, as suggested by 

increased TGFβ1 and IL-13 mRNA expression. Currently available literature generally 

suggests biased Th2 cell responses in part due to Th1 cell apoptosis. It could be 

speculated that developmental stimulation of nAChR affects apoptosis/survival signal 

specific to Th cell phenotypes and potentiate a Th2 response, which ultimately interferes 

with establishing a well-balance Th1/Th2 system. One such example is demonstrated 
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through α7 nAChR, whose pro-survival role was demonstrated in M2 macrophages and 

not in M1 macrophages (144). In this study, activation of the STAT3 signaling pathway 

was observed upon α7 nAChR stimulation, which is known to be involved in the 

regulation of cell growth and survival. This observation, however, was specific to M2 

polarized bone marrow-derived macrophages only (144). Therefore, it is plausible that 

stimulation of α7 nAChR, and perhaps other nAChRs, during development via maternal 

use of nicotine containing products can modify survival of immune cells and render the 

immune tone set at birth. 

Epigenetic regulation of immune cell development is another possible 

mechanism through which in utero nicotine modulates immune cell disposition and 

function. Epigenetic modifications involve post-transcriptional acetylation and 

methylation of histone proteins that can result in different cell phenotypes without 

affecting DNA sequence (145). Studies report altered histone modification and 

methylation in the brain and lungs of mice exposed to nicotine developmentally, and 

these patterns were similar to those in individuals with behavioral alterations, including 

drug addiction (145). Intrauterine exposure to cigarette smoke was also shown to affect 

the DNA methylation pattern which is negatively associated with neuronal content in the 

fetal brain (146). Epigenetic control of immune cell differentiation is best characterized in 

T cells. For example, demethylation of the IFNγ gene promoter occurs in the Th1 cell 

lineage while demethylation of the IL-4 gene occurs in the Th2 cell lineage. 

Concomitantly in Th2 cells, DNA methylation of the IFNγ gene occurs, which ultimately 

silences the expression of Th1-associated genes when Th2-associated genes are 

expressed (147). Prenatal cigarette smoke exposure is known to be associated with 

increased methylation of peripheral blood genes (148). Patil et al. analyzed the 

association between prenatal cigarette smoke exposure and DNA methylation pattern 

and observed that there is an interaction between the pattern of methylation and 

maternal smoking as well as a gene variant for IL-13 that, together, affect lung function 

(149). Although limited at this time, the influence of maternal cigarette smoking on 

epigenetic changes in newborns is a growing area of study, and associations between 

altered epigenetic patterns and health outcomes can lead to a better understanding of 

predisposition for health risks. 

The result of developmental nicotine exposure on the overall immune network of 

an individual is complex and multi-layered. First, the effects of nicotine directly on 

immune cells introduce a potential effect. Second, the effects of in utero nicotine 
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exposure on development of the immune cells and response is another major issue that 

is yet to be fully understood. One other aspect of in utero nicotine exposure influencing 

the immune network is the cholinergic regulation of the immune system. There is 

evidence that vagus nerve stimulation results in an inhibition of peripheral inflammatory 

cytokine production by splenocytes, and that this is mediated through α7 nAChR. One 

such example is the exaggerated inflammatory response, manifested by greater tissue 

damage, in the models of colitis, septic shock, and pancreatitis in α7 nAChR knock-out 

mice. This has become known as the ‘cholinergic anti-inflammatory pathway’ (Reviewed 

in 128). Although the study of prenatal cigarette smoke and nicotine exposure on brain 

development and neurobehavioral outcomes in the offspring have been active areas of 

research for many years, how this impacts the network of immune regulation is rather 

novel, especially when referring to the interconnected function between neuronal and 

non-neuronal cholinergic systems. This study targets the issue from one direction, from 

the perspective of the immune cells. Consistent with other studies, findings from our 

preliminary results suggest that in utero nicotine exposure leads to an unbalanced 

macrophage tone, with a shift in macrophage function towards an anti-inflammatory M2 

phenotype. This could potentially affect the development of the reflex network of 

neuronal regulation of inflammation by changing the milieu of the cytokine profile in the 

local environment. Furthermore, hyperstimulation of the nAChR, out of sequence, may 

generate under- or over-expressed cholinergic anti-inflammatory pathways. Future 

studies addressing the impact of developmental nicotine exposure on the neuronal 

stimulation of the immune network, and whether this results in an aberrant immune 

reflex, will additionally address the overall impact in an individual’s baseline immune 

tone and response. 

There are several limitations in this study. First, our animal model had 

considerable variation in regard to the level of infection between and within the cohorts. 

We utilized intratracheal infection with P. aeruginosa embedded in agarose beads to 

ensure a chronic, stable infection. This model had been previously established and 

widely utilized by other investigators for the assessment of P. aeruginosa lung infection 

(134, 150, 151). Although we confirmed the amount of bacteria for inoculation prior to 

infection, it is difficult to know if all mice received the same amount of bacteria. This may 

explain the intra-experiment variability we observed with post-infection weight loss as 

well as other data. If mice died early prior to analysis, this resulted in unbalanced sample 

sizes, which may be skewing some of the data. Additionally, preparation of P. 
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aeruginosa embedded beads requires adequate bacterial growth and production of 

beads in various sizes. This is a difficult task and requires timely coordination of two 

separate procedures. Moreover, reproduction of same sized beads is unlikely between 

experiments, increasing inter-experiment variability. In order to reduce these variabilities, 

we modified our infection model by separately preparing bacterial culture and sterile 

agarose beads and mixing them prior to infection. This would allow us to keep a stock of 

beads that could be used for several experiments, reducing the inter-experiment 

variability. We ensured that bacteria were grown to late log phase and determined 

dilutions of stock beads and the amount of bacteria sufficient to induce a stable infection 

when mixed together. However, alternate method resulted in a similar level of intra- and 

inter-experiment variability and required higher number of bacteria to induce similar level 

of post-infection weight loss we had observed with our initial experiments.   

The amount of maternal nicotine ingestion may affect the extent of 

developmental alterations in the fetus, and classification or sub-analysis of offspring by 

the amount of in utero exposure may provide a greater understanding of dose-

dependent effects. We utilized C57BL/6 mice with a GFP tag on nicotinic receptors that 

were bred in-house. Mice were fed with either saccharin dissolved or nicotine dissolved 

water ad libitum before and throughout pregnancy to generate in utero nicotine exposed 

offspring. This is a well-established model for experimental administration of nicotine. 

Other methodologies include parenteral nicotine injection several times a day or 

installing an osmotic minipump (152). However, these alternative methods have several 

disadvantages, such as stress of daily injections over a long-time period as well as the 

expense for installing and replacing the pumps, depending on the timeframe needed for 

the study. In study by Rowell et al, mice weighing 18-22g were fed ad libitum with either 

plain water or nicotine solutions (20-100 µg/mL) for up to 4 weeks to address the validity 

of such a methodology as an investigational model for chronic nicotine administration. 

Although reduction in drinking behavior was observed when nicotine concentrations 

were greater than 20 µg/mL, this behavior was comparable to the control group even at 

nicotine concentrations of 100 µg/mL when saccharin was added to the solution. 

Gradual increase in nicotine amount also led to a normal fluid intake behavior. Other 

studies have utilized 200 µg/mL and have seen biochemical efficacy as well as 

neurodevelopmental alterations without significant effects on perinatal outcomes, such 

as maternal and offspring weights or fluid intake (153, 154). In our study, we were 

unable to assess nicotine, or practically cotinine, levels in mothers or the offspring after 
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delivery due to cannibalistic behaviors in nurturing mothers upon manipulation of animal 

cages or the offspring. In order to accurately measure and control the amount of nicotine 

administered, other modes of administration could be considered, such as daily injection 

or implantation of pumps. However, these methods are invasive and require several 

manipulations of pregnant mice, which would be a stressful event during the critical 

periods. For future studies, sacrifice of neonatal mice for determination of cotinine levels 

by ELISA can be considered to maintain the sample size for post-infection analyses.  

We attempted to compare gene expression in neonates born to non-smoking 

mothers, to mothers either using NRT or who continued to smoke throughout pregnancy 

and correlate changes in gene expression patterns to the mode of nicotine exposure. 

Despite IRB approval and initiation of the clinical study, we were unable to recruit 

patients, resulting in obtaining samples for practice trials only. However, validation of the 

experimental methods has been successfully accomplished, and continued recruitment 

of study candidates is ongoing. Once a sufficient number of patients is recruited to 

statistically analyze the results, we can make a correlation between in utero nicotine 

exposure and changes in macrophage gene expression that can guide future study 

directions. For example, any abnormal expression can be targeted and explored for 

underlying mechanisms involved in its expression and the consequences from observed 

changes.  

This study provides preliminary data to understand potential research areas and 

several preliminary findings noted from the study highlight that in utero nicotine exposure 

leads to changes in immune response against P. aeruginosa lung infection. Any robust 

observation in the future will positively impact current smoking cessation guidelines for 

pregnant women by providing safety data that is currently lacking. Moreover, the clinical 

study in neonates will enable correlation of macrophage gene expression changes 

mediated by different modes of nicotine exposure and provide a better understanding of 

individual’s predisposition for infection.  
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Appendices 

 
A. Appendix I: List of genes for gene expression analysis 

Well	 Gene	 Fisher	#	
A1	 CD86	 Hs01567026_m1	

A2	 CD64/CD64	 Hs00417598_m1	

A3	 ITGAM	 Hs00167304_m1	

A4	 CD14	 Hs02621496_s1	

A5	 CD68	 Hs02836816_g1	

A6	 CD23/FCER2	 Hs00233627_m1	

A7	 CD40	 Hs01002915_g1	

A8	 STAT1	 Hs01013996_m1	

A9	 SOCS3	 Hs02330328_s1	

A10	 SLAMF1	 Hs00234149_m1	

A11	 RNA18S5	 manufacturing	control	(housekeeping	gene)	
A12	 TNF	 Hs00174128_m1	

A13	 IL6	 Hs00174131_m1	

A14	 IL12B	 Hs01011518_m1	

A15	 IL1B	 Hs01555410_m1	

A16	 IL10	 Hs00961622_m1	

A17	 TGFB1	 Hs00998133_m1	

A18	 IL12A	 Hs01073447_m1	

A19	 IL8/CXCL8	 Hs00174103_m1	

A20	 IL23A	 Hs00372324_m1	

A21	 IL4RA	 Hs00965056_m1	

A22	 IL27RA	 Hs00945029_m1	

A23	 HLA-DRA	 Hs00219575_m1	

A24	 MARCO	 Hs00198937_m1	

B1	 CCL17	 Hs00171074_m1	

B2	 CCR2	 Hs00704702_s1	

B3	 TREM2	 Hs00219132_m1	

B4	 CCL22	 Hs01574247_m1	

B5	 CCL18	 Hs00268113_m1	

B6	 NOS2	 Hs01075529_m1	

B7	 RETNLB	 Hs00395669_m1	

B8	 ARG1	 Hs00163660_m1	

B9	 PPARG	 Hs01115513_m1	

B10	 IKBKB	 Hs01559460_m1	
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B11	 ARG2	 Hs00982833_m1	

B12	 IDO1	 Hs00984148_m1	

B13	 IRF1	 Hs00971965_m1	

B14	 MRC1/CD206	 Hs00267207_m1	

B15	 NLRP1	 Hs00248187_m1	

B16	 CASP1	 Hs00354836_m1	

B17	 MAP1LC3B	 Hs00797944_s1	

B18	 AKT1	 Hs00178289_m1	

B19	 PCNA	 Hs00427214_g1	

B20	 ATG5	 Hs00169468_m1	

B21	 MTOR	 Hs00234508_m1	

B22	 GCN2/EIF2AK4	 Hs01010957_m1	

B23	 GAPDH	 Hs02786624_g1	

B24	
CCND1/cyclin	
D1	 Hs00765553_m1	
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B. Appendix II: Survey Questionnaire and Data Collection Form 
 

Impact	of	in	utero	nicotine	exposure	on	neonatal	ex	vivo	macrophage	responses	study	

Survey	Questionnaire	

1. Are	you	a	present/former	smoker?	
¨ Yes	
¨ Yes,	e-cigarette	use	
¨ No	

2. If	answered	Yes	in	#1,	how	often	do	you	usually	smoke	cigarettes	(Before	you	became	
pregnant)?	

¨ Every	day	
¨ On	most	days	
¨ Less	than	most	days	

3. What	was	your	smoking	status	during	pregnancy?	Check	all	that	apply	(Please	provide	in	
detail	on	Page	2)	

¨ Every	day/on	most	days	
¨ Smoking	cessation	aids:	Nicotine	replacement	therapy	(NRT)		
¨ Did	not	smoke	at	all/Smoked	occasionally	
¨ Never	smoked	
¨ Other:	Please	specify__________________	

4. If	you	smoked	during	pregnancy,	daily	number	of	cigarettes	smoked:	______________	
Please	indicate	“0”	if	you	did	not	smoke	during	pregnancy	(Please	fill	out	Page	2	for	
details)	

5. If	you	smoked/used	nicotine	replacement	therapy	(NRT)	during	pregnancy,	which	of	the	
following	best	describes	you?	

¨ Smoked	cigarettes	only	
¨ Tried	using	nicotine	replacement	therapy	(NRT)	but	mostly	smoked	cigarettes	
¨ Smoked	cigarettes	and	used	nicotine	replacement	therapy	(NRT)	equally	
¨ Used	nicotine	replacement	therapy	(NRT)	more	often/consistently	than	smoking		
¨ Used	nicotine	replacement	therapy	(NRT)	only	
¨ Not	sure	
¨ N/A	

6. Approximately	how	many	cigarettes	have	you	smoked	in	the	last	week?	
_____________________________	

7. If	you	used	nicotine	replacement	therapy	(NRT)	during	pregnancy	at	any	point,	what	
type	of	aid(s)	did	you	use?	Check	all	that	apply.	

¨ Nicotine	patch	
¨ Nicotine	gum	
¨ Nicotine	inhaler	
¨ Nicotine	lozenge	
¨ Nicotine	spray	
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8. When	was	the	last	time	you	smoked/used	nicotine	replacement	therapy	(NRT)?	Please	
indicated	“N/A”	if	you	never	smoked	during	pregnancy	

¨ 1-2	days	ago	
¨ 3-4	days	ago	
¨ 5-6	days	ago	
¨ More	than	1	week	ago	
¨ N/A	

Trimester/Month	 Approximate	#	of	Cigarettes/day	 Nicotine	Replacement	Therapy	
(NRT)	

1st	Trimester	(1)	 	 	

1st	Trimester	(2)	 	 	

1st	Trimester	(3)	 	 	

2nd	Trimester	(4)	 	 	

2nd	Trimester	(5)	 	 	

2nd	Trimester	(6)	 	 	

3rd	Trimester	(7)	 	 	
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• Please	indicate	the	type	of	nicotine	exposure	in	detail	(smoking,	e-cigarette,	form	of	
NRT)	and	describe	as	appropriate	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3rd	Trimester	(8)	 	 	

3rd	Trimester	(9)	 	 	
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Nicotine	Study	Data	Collection	Form	

	

Date:	_______________________________	

Patient	ID	(Mother/Baby’s	MR#)	:	___________________________	

Mother’s	Age/DOB:	____________________	

Gestational	Age	at	Birth:	______________________	

Gender	of	infant:								M																F	

Race:	_______________________________	

Study	ID:	______________________	

	

Samples	Collected:	

Date	Collected																					Age	(Days)																										Time	Collected																											Time	Processed																											Notes	

____________																				____________																			____________																											_____________																											__________________________	

____________																				____________																			____________																											_____________																											__________________________	

____________																				____________																			____________																											_____________																											__________________________	

____________																				____________																			____________																											_____________																											__________________________	

____________																				____________																			____________																											_____________																											__________________________	
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Mode	of	nicotine	exposure	(circle	one):						Smoking												NRT													BOTH/OTHER	

	 If	BOTH/OTHER,	specify:		_________________________________	

	

Comorbidities:	___________________________________________________________________	

	

Procedures	

Type	of	Procedure																																											Date	

________________________																							__________________________	

________________________																							__________________________	

________________________																							__________________________	

	

Any	active	infection	(circle	one):						YES										NO	

Immune	altering	underlying	condition	(circle	one):							YES										NO	

Immune	altering	medication	(circle	one):										YES										NO	

	

Medications	

Drug																																												Start	Date																																											Stop	Date																																											Notes	

_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	
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_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	

_________________															________________																										________________																										______________________________________	

	

	

	

	

	

	

	

	

	

	

NOTES:	_______________________________________________________________________________________________________________
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C. Appendix III: Consent Forms 

 

 

 

Combined Consent and Authorization to Participate in a Research Study 

PLEASE NOTE:  When “YOU” is referenced in the consent, it include “YOU and 
YOUR BABY” 

	

IMPACT OF IN UTERO NICOTINE EXPOSURE ON NEONATAL EX VIVO 
MACROPHAGE RESPONSES 

 

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 
 
You are being invited to take part in this research study about effects of nicotine exposure 
during fetal development. You are being invited to take part in this study because you are 
having a baby being delivered prematurely and we are interested in the effects of nicotine on 
the formation of cells in the lungs. 
 

WHO IS DOING THE STUDY? 
 
The persons in charge of this study are Drs. Hubert Ballard and David Feola of the University of 
Kentucky, Department of Pediatrics – Division of Neonatology and Department of Pharmacy 
Practice and Science. There may be other people on the research team assisting at different 
times during the study. 

 

WHAT IS THE PURPOSE OF THIS STUDY? 
 
By doing this study, we hope to learn how nicotine exposure during pregnancy, either from 
smoking tobacco or using nicotine replacement products, will affect the development of your 
baby’s ability to fight infection. 

 

ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS STUDY? 
 
Study personnel will make sure that you are eligible for this study. You should not participate if 
you know or have been informed that you and your baby have any conditions that can affect 
the immune system. Also if you take any medications chronically that can affect you and your 
baby’s immune system, you may not be eligible to participate in the study. 

Please leave enough 

space at the top of your 

consent form to 

accommodate a box this 

size. 

DO NOT INCLUDE THIS 

BOX 
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WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT LAST? 
 
The research procedures will be conducted at UK Medical Center, and tracheal aspirate 
samples will be transferred to the laboratory of Dr. Feola for further analyses. There will be no 
additional clinic visits or hospital stay due to participation in the study. Cells will be obtained 
during the first 2 weeks after delivery. 
 

WHAT WILL YOU BE ASKED TO DO? 
 
If you wish to take part in the study, you will be provided with detailed information regarding the 
study before signing the consent and permission forms. You will also be given a series of 
questions to assess your smoking history. Your smoking history will be used to put you into one 
of three group, which are 1) smoking group, 2) nicotine replacement group, 3) control group, or 
non-smoking group. No blood sample will be collected for the sole purpose of this study. You will 
receive usual hospital care as necessary and there will be no additional testing or hospital visits 
after discharge. Upon delivery, your baby will also receive usual hospital care in the intensive 
care unit. In order to make sure breathing tubes are not clogged, nurses usually clear out the 
tube by suctioning out the secretions (which are mostly mucous and some cells) and discard 
them. For this study, we will collect these samples and keep for research purposes. No 
additional procedures will be done to you or your baby at any time. 
 
We will take suctioned secretions to the laboratory and test to see their responses and any 
changes in their genes. This genetic testing will not be a part of your permanent medical 
record and will not involve testing your genetic makeup, only the level at which certain genes 
are turned on/off. You will not be given the results of these genetic tests. 
 
We will also look at your medical records for information regarding your general health, 
smoking history, and recent labs you have had. 
 

WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 
 
You and your baby will not undergo any interventions that are not part of the usual care during 
hospitalization. Therefore, there will be minimum risk to participating in the study and this will 
be no more than what may be posed by the usual perinatal care at the hospital. 
 

WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY? 
 
You will get no direct benefit for being in the study. Your willingness to take part, however, may, 
in the future, help doctors better understand about nicotine exposure during pregnancy and 
make proper recommendation to pregnant smokers for the health of themselves and their 
babies. 
 

DO YOU HAVE TO TAKE PART IN THE STUDY? 
 
If you decide to take part in the study, it should be because you really want to volunteer. You will 
not lose any benefits or rights you would normally have if you choose not to volunteer. You can 
stop at any time during the study and still keep the benefits and rights you had before 
volunteering. If you decide not to take part in this study, your decision will have no effect on the 
quality of medical care you receive. 
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IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER CHOICES? 
 
If you do not want to be in the study, there are no other choices except not to take part in the study. 
 

WHAT WILL IT COST YOU TO PARTICIPATE? 
 
There will be no additional cost to participating in the study. Investigators will pay for laboratory 
measures performed outside of what is normally reported but they will not be paying for your 
hospitalization and other medical cares as these will be part of usual cares provided. 
 

WHO WILL SEE THE INFORMATION THAT YOU GIVE? 
 
We will make every effort to keep confidential all research records that identify you to the extent 
allowed by law. 
 
Your information will be combined with information from other people taking part in the study. 
When we write about the study to share it with other researchers, we will write about the 
combined information we have gathered. You will not be personally identified in these written 
materials. We may publish the results of this study; however, we will keep your name and other 
identifying information private. 
 
We will make every effort to prevent anyone who is not on the research team from knowing that 
you gave us information, or what that information is. Information will be secured in a locked 
cabinet in a private office that has limited access. Electronic records can only be accessed 
using passwords. 
 
CAN YOUR TAKING PART IN THE STUDY END EARLY? 
 
If you decide to take part in the study you still have the right to decide at any time that you no 
longer want to continue. You will not be treated differently if you decide to stop taking part in 
the study. 
 

ARE YOU PARTICIPATING OR CAN YOU PARTICIPATE IN ANOTHER RESEARCH 
STUDY AT THE SAME TIME AS PARTICIPATING IN THIS ONE? 
 
You may not take part in this study if you are currently involved in another research study that 
requires administration of certain medications chronically. It is important to let the 
investigator/your doctor know if you are in another research study. You should also discuss 
with the investigator before you agree to participate in another research study while you are 
enrolled in this study. 
 

WHAT HAPPENS IF YOU GET HURT OR SICK DURING THE STUDY? 
 
If you believe you are hurt or if you get sick because of something that is due to the study, you 
should call Dr. Feola at 859-323-8751 or Dr. Ballard at 859-323-5481 immediately. 
 
It is important for you to understand that the University of Kentucky does not have funds set 
aside to pay for the cost of any care or treatment that might be necessary because you get 
hurt or sick while taking part in this study. Also, the University of Kentucky will not pay for any 
wages you may lose if you are harmed by this study. 
 
The medical costs related to your care and treatment because of research related harm will be 
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paid by the investigators for medical expenses incurred by treating injuries that directly result 
from participating in the study, with some exceptions. The exceptions are instances such as 
your failure to follow the sponsor’s directions or the investigator’s failure to follow the 
sponsor’s directions; 
 
WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY? 
 
You will not receive any rewards or payment for taking part in the study. 

 

WHAT IF YOU HAVE QUESTIONS, SUGGESTIONS, CONCERNS, OR COMPLAINTS? 
 
Before you decide whether to accept this invitation to take part in the study, please ask any 
questions that might come to mind now. Later, if you have questions, suggestions, concerns, 
or complaints about the study, you can contact the investigator, Dr. Dave Feola at 859-323-
8751. If you have any questions about your rights as a volunteer in this research, contact the 
staff in the Office of Research Integrity at the University of Kentucky between the business 
hours of 8am and 5pm EST, Mon-Fri at 859-257-9428 or toll free at 1-866-400-9428. We will 
give you a signed copy of this consent form to take with you. 

 

WHAT IF NEW INFORMATION IS LEARNED DURING THE STUDY THAT MIGHT AFFECT 
YOUR DECISION TO PARTICIPATE? 
 
If the researcher learns of new information in regards to this study, and it might change your 
willingness to stay in this study, the information will be provided to you. You may be asked to 
sign a new informed consent form if the information is provided to you after you have joined 
the study. 
 

WHAT ELSE DO YOU NEED TO KNOW? 
 
There is a possibility that the data/tissue/specimens/blood collected from you may be shared 
with other investigators in the future. If that is the case the data/tissue/specimen/blood will not 
contain information that can identify you unless you give your consent/authorization or the UK 
Institutional Review Board (IRB) approves the research. The IRB is a committee that reviews 
ethical issues, according to federal, state and local regulations on research with human 
subjects, to make sure the study complies with these before approval of a research study is 
issued. 

 

AUTHORIZATION TO USE OR DISCLOSE YOUR IDENTIFIABLE HEALTH INFORMATION 
 
The privacy law, HIPAA (Health Insurance Portability and Accountability Act), requires 
researchers to protect your health information. The following sections of the form describe how 
researchers may use your health information. 

 

Your health information that may be accessed, used and/or released includes: 
 

• Age, medical history, smoking history, family history, and your babies gestational age 

The Researchers may use and share your health information with: 
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• The University of Kentucky’s Institutional Review Board/Office of Research Integrity. 

• Law enforcement agencies when required by law. 

• University of Kentucky representatives. 

 

The researchers agree to only share your health information with the people listed in this 
document. 

Should your health information be released to anyone that is not regulated by the privacy law, 
your health information may be shared with others without your permission; however, the use of 
your health information would still be regulated by applicable federal and state laws. 
 
You may not be allowed to participate in the research study.  If you decide not to sign the form, 
it will not affect your: 
 

• Current or future healthcare at the University of Kentucky 
• Current or future payments to the University of Kentucky 

• Ability to enroll in any health plans (if applicable) 
• Eligibility for benefits (if applicable) 

 

After signing the form, you can change your mind and NOT let the researcher(s) collect 
or release your health information (revoke the Authorization). If you revoke the 
authorization: 

 

• You will send a written letter to: Dave Feola to inform him of your decision. 

• Researchers may use and release your health information already collected for this 

research study. 

• Your protected health information may still be used and released should you 
have a bad reaction (adverse event). 

 
The use and sharing of your information has no time limit. 

 

If you have not already received a copy of the Privacy Notice, you may request one. If 
you have any questions about your privacy rights, you should contact the University of 
Kentucky’s Privacy Officer between the business hours of 8am and 5pm EST, Mon-Fri 
at: (859) 323-1184. 
 

You are the subject or are authorized to act on behalf of the subject. You have read this 
information, and you will receive a copy of this form after it is signed. 
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  _ 

Signature of research subject (if applicable:)                          Date  

or *research subject’s legal representative
 
_______________________ 

 

 

Printed name of research subject (if applicable:)                   Relation to          
or*research subject’s legal representative                            research subject 

 

*(If, applicable) Please explain Representative’s relationship to subject and include a 
description of Representative’s authority to act on behalf of subject: 

 

  _ _ _ 

  _ _ _ 
 

 

  _ _  _______ 
Name of [authorized] person obtaining informed consent/HIPAA authorization Date 

 

 

 
 _
 _  
Signature of Principal Investigator or 
Sub/Co-Investigator 
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D. Appendix IV: Impact of In utero Nicotine Exposure on Neonatal Ex vivo 
Macrophage Responses Study IRB Research Description 

 

1. Background: 
Smoking during pregnancy is associated with adverse perinatal outcomes, 

including miscarriage, prematurity, low birth weight, and neonatal or sudden 

infant death. Numbers of studies show an increase in respiratory symptoms 

and altered immune defense in infants and children exposed to maternal 

smoking during pregnancy (1-3). Although smoking is a preventable risk 

factor of pregnancy related morbidity and mortality, >10% of pregnant women 

in high-income countries smoke during pregnancy and the rates are 

increasing in low- and middle-income countries (3, 4). Medications, including 

nicotine replacement therapy (NRT), have been developed and approved by 

the FDA to assist smoking cessation but there is a paucity of data regarding 

the safety and effectiveness of therapy during pregnancy and its effects on 

fetal development. Yet there is a general consensus internationally that 

recommends the use of NRT during pregnancy, assuming that nicotine 

replacement will reduce the symptoms of craving and withdrawal while 

reducing the exposure of toxins from cigarette smoke (3, 4). A recent study on 

the use of NRT patches during pregnancy until delivery found that there is no 

difference in the rate of abstinence from smoking or the risk of adverse 

perinatal outcomes compared to placebo, although the rate of abstinence was 

higher at 1 month of therapy in the NRT group (4). There are various factors 

that could lead to the observed outcomes, and conclusions from the study 

should be derived with careful interpretation since compliance rate in both 

groups were very low (< 10%). 

Nicotine, one of the main components of tobacco and a pharmacologically 

active compound in NRT, is an agonist for nicotinic acetylcholine receptor 

(nAChR). nAChR are mainly found in the central and peripheral nervous 

systems. The expression of these receptors are also found in non-neuronal 

cells, modulating various cellular functions such as proliferation, 

differentiation, and migration via paracrine/autocrine fashion (6, 7). In immune 

cells, functional alteration of macrophages upon stimulation with nicotine or 

modulation of nAChR are well documented. Previous studies show that 

nicotine exposure drives macrophages into an alternative M2 phenotype, 

suggested by the characteristics of surface markers and cytokine production 

profile (8, 9). Macrophages that were polarized into classical M1 phenotype 

and alternative M2 phenotype in the presence and absence of nicotine 

showed that nicotine exposed M1 polarized macrophages (Ni-M1) 

demonstrated surface marker expressions similar to those seen in M2 

polarized macrophages. Upon stimulation with LPS, cytokines produced by 



83		

Ni-M1 were different from M1 polarized macrophages, suggested by a 

significantly lower IL-12 production. Although cytokine profile of Ni-M1 did not 

result in the same profile seen in M2 polarized macrophages, the 

investigators reported skewed macrophage differentiation towards M2 

phenotype with nicotine exposure (9).   

While it is meaningful to understand the alteration of immune cells upon 
nicotine exposure, it is significant to understand the impact of this alteration 
as a defense mechanism. In vitro model of alveolar macrophages (AM) 
infected with Legionella pneumophila shows changes in antimicrobial activity 
and cytokine production of AM upon treatment with nicotine (10). This effect 
was reversed by nAChR antagonist treatment. In this study, enhanced growth 
of L. pneumophila in nicotine treated macrophages was observed, which was 
associated with reduction in production of cytokines IL-6, IL-12, and TNF-α by 
AM. Nicotine did not contribute to direct antimicrobial activity, suggesting that 
nicotine probably decreases phagocytic activities of AM.  

Recently, the effects of in utero nicotine exposure on neonatal mice AM 
were evaluated. Both in vitro and in vivo studies demonstrated markers of AM 
shifted into M2 phenotype, characterized by increases in arginase-1, YM1, 
and FN. These alterations contribute to the baseline profile of neonatal lung 
characterization into Th2 immune response, which is further supported by an 
increased IL-13 and TGFβ1 expression. This study also demonstrated 
impaired phagocytic activity by in utero nicotine exposed AM upon 
Staphylococcus aureus infection. Using α7 nAChR knockout model, the 
involvement of such receptor subunit in immunomodulatory effects of nicotine 
was observed, which is consistent with previous studies (8). This model 
demonstrates possible effects of NRT on the development of fetal immune 
system and the inflammatory “tone” of neonatal AM set at birth.  

Our preliminary findings with mice exposed to nicotine developmentally 

suggested that these mice have greater morbidity and increased inflammatory 
cytokine production upon Pseudomonas aeruginosa lung infection compared to 
those not exposed to nicotine developmentally. Taken all together, the effect of 
nicotine from NRT on fetal immune development and thus neonatal immune 
response signifies the importance of investigating the immune function of pulmonary 
macrophages during the neonatal period, especially without strong evidence of the 
effectiveness and safety of in utero nicotine exposure via NRT use in pregnant 

mothers  

   
2. Objectives: This study is designed to observe the effects of developmental 

nicotine exposure, either from tobacco smoking or from nicotine replacement 
therapy, on neonatal alveolar macrophage characteristics obtained from 
tracheal aspirate (TA) samples.  

 

3. Study Design: This study will be a prospective, single-center, observational 
investigation. There will be no study medications administered by the 
investigators. Participants will be grouped into three different arms, Smoking 
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group vs. Replacement group vs. Control, based on their smoking status 
during pregnancy.  
 

4. Study Population:  Mothers aged 18-50 years old whose newborns are 
placed on a ventilator in the Neonatal Intensive Care Unit (NICU) will be 
contacted for potential enrollment of their babies in the study. There will be 
three different groups with 10 participants in each group: 1) smoking group 
vs. 2) nicotine replacement group vs. 3) control group. Use of 5 or more 
cigarettes daily during pregnancy will be required to be enrolled in the 
smoking group while use of nicotine replacement products (patch, gum, 
inhaler, nasal spray, lozenges) during pregnancy and continued abstinence 
will be required for their infants to be enrolled in the replacement group. 
Control group will be defined by no exposure to nicotine during pregnancy. 
Although best efforts will be made to include participants whose mothers have 
smoked consistently throughout pregnancy, it is reasonable that some 
pregnant smokers may only smoke periodically. As long as there was no 
record of using NRT at any point during pregnancy, these participants will be 
enrolled in the smoking group. Similarly, smokers using NRT will often-times 
relapse. Based on smoking history obtained, investigators will make a 
decision whether to include their infants in the replacement group and such 
data will be handled statistically. Participants will be excluded if there is 
known major fetal abnormalities, chemical/alcohol dependence, 
contraindication to NRT, use of any forms of tobacco other than cigarettes 
and e-cigarettes, and any active infection, both mother and the newborn, at 
the time of delivery, before sample collection. Premature infants requiring 
mechanical ventilation for reasons other than assisting “physiologic normalcy” 
will be excluded from the study as well. Mothers taking any chronic 
medications known to pose immunomodulation, such as steroid, or have 
potential for causing immunomodulation will also be excluded from the study. 
Since this study is designed to observe the effects of developmental nicotine 
exposure on alveolar macrophage characteristics of neonates, inclusion of 
newborns are crucial.  

 
5. Subject Recruitment Methods and Privacy: Participants will be identified by 

hospital number and date of birth. Initial contact with potential participants will 
be made after the delivery and they will be inquired about their interest in 
participating in the study. Detailed information about the study and its 
objectives will be provided by the study investigator, and signed informed 
consents and parental permission form will be obtained before enrollment. A 
series of questions will be asked to accurately determine the number of 
cigarettes smokes, time of the last cigarette smoked or the time of initiation of 
nicotine replacement therapy and the last NRT product used to enroll 
participants to corresponding study group.  

 
6. Informed Consent Process: Informed consent and parental permission form 

to include babies in the study will be provided at recruitment and signed 
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informed consent will be required prior to participant enrollment. This will be 
collected by the study investigators to make sure participants fully understand 
the purpose and procedures involved in the study and to answer any 
questions. Upon the receipt of the signed consent form, record of such action 
will immediately be documented electronically and maintained throughout 
study period.  
 

7. Research Procedures: All participants will undergo initial screening process 
for inclusion/exclusion criteria on the day of recruitment. Signed informed 
consent and parental permission form by the potential participant will be 
required to be enrolled in the study. Baseline data (date of birth, hospital 
number, ethnicity, medical history, daily number of cigarettes smoked during 
pregnancy, time from last cigarette smoked/nicotine replacement product use, 
partner’s smoking status, gestational age, signed consent form, a list of 
acute/chronic medications, medications administered during current 
hospitalization, and indication of participant’s contact details) will be collected 
through a series of questionnaires as well as from the subject’s medical 
record (see attached data collection tools). For TA collection: TA suctioning 
is performed as part of routine care in the neonatal intensive care unit and 
these specimens are discarded thereafter. For the purpose of this study, 0.5 
to 1 mL of suctioned specimens will be collected within the first week of birth 
for 2-3 samples per baby (up to 5 samples) or less if extubated earlier. 
Specimens will be collected in pre-labeled tubes on ice and immediately 
transported to the laboratory of Dr. Feola.  

For TA samples: specimen will be centrifuged to pellet the cells, then cells 
will be washed 3 times with RPMI media and counted using a 
hemocytometer. Cells will be seeded at 1-2x105 cells per well in 24-well 
plates, removing non-adherent cells after 1-2 hours, leaving macrophages 
intact. Lipopolyssacharide (LPS) from Escherichia coli O55:B5 from EMD 
Millipore will be used to stimulate inflammatory responses. mRNA from cells 
will be isolated and purified using the Qiagen RNeasy Kit (Qiagen Sciences, 
Germantown, MD). mRNA concentration and sample purity will be calculated 
by measuring ultraviolet absorbance at 230, 260, and 280 nm using a 

spectrophotometer. Samples will be frozen at -80̊C for microarray analysis.  
Microarrays will be performed on mRNA samples using the TaqMan® 

Gene Expression Array Plates (Applied Biosystems, Foster City, CA). 
TaqMan® arrays are flexible, affordable, and convenient for gene expression 
analysis screening for specific biological pathways, processes, diseases, or 
can be customized. These arrays each consist of 48 genes of interest, such 
as TNFa, IL-1, IL-10, and CD86. RNA samples (0.1-10ug) will be converted 
into cDNA, and using 10-100 ng of cDNA per plate, Applied Biosystems real-
time quantitative PCR instrument will allow amplification of target genes. 
Gene expression can be measured by the quantitation of cDNA relative to a 
calibrator sample, which serves as a physiological reference. All quantitations 
will be also normalized to an endogenous control to account for variability in 
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the initial concentration and quality of the total RNA and in the conversion 
efficiency of the reverse transcription reaction. 

Additionally, cytokine concentrations from cell culture supernatant will be 
quantified using BDTM Cytometric Bead Array (CBA Kits (BD Biosciences, 
San Jose, CA). Bead populations distinct fluorescence intensities are coated 
with capture antibodies specific for each cytokine to be measured. These 
beads will be incubated with fluorochrome-conjugated detection antibodies, 
and then incubated with 50uL of each sample for 3 hours at room 
temperature. Sandwich complexes are then formed, after which the beads are 
washed, and the fluorescence intensity is assayed by flow cytometry. These 
intensities are then compared to a standard curve generated for each 
cytokine to determine the concentration in each sample.  

Gene and protein expression levels in TA will be statistically analyzed 
through principal component analyses. These expression levels will then be 
compared among groups and correlated to clinical outcomes (demographic 
information, smoking status, gestational age, etc.) acquired through 
retrospective review of the chart. 

 
8. Resources:  This will be a single center study, performed at the University of 

Kentucky Medical Center. In addition to the investigators listed, nurses who 
routinely work in the neonatal intensive care unit under the medical direction 
of neonatologist Dr. Hubert Ballard will assist in collection of TA sample. Upon 
sample collection, this will be transported to the laboratory of David Feola at 
the Department of Pharmacy Practice and Science at University of Kentucky 
for further analysis.  

Dr. Feola’s research laboratory space at the College of Pharmacy will be 
utilized.  The PI operates wet-lab functions in approximately 1000 ft2 of space.  
The lab employs the use of Class II biosafety cabinets and is approved for 
biosafety level 2 works through the Institutional Biosafety Committee.  This 
lab also contains all needed equipment to conduct this research, including 
refrigerators, freezers, incubators, centrifuges, and microscopes. 
 

9. Potential Risks: Potential risks to the patient from this study are minimal and 
include unanticipated breaches of confidentiality, in which case the IRB will be 
notified immediately. No invasive procedure will be performed on patients 
enrolled in this study for the sole purpose of the study, and TA specimens, 
which will be suctioned out and discarded as a routine care, will be collected 
for the study. There will be no study drug administered to participants in this 
study. Strict adherence to confidentiality requirements will ensure the patients’ 
data and demographic information is protected. 
 

10. Safety Precautions: In order to minimize the risks of breaching 
confidentiality or invasion of privacy, paper documents that contain patient 
information will be stored in a locked cabinet in room 231 of BioPharm 
Complex and any electronic data will be made accessible with password. All 
standard perinatal care will be provided to participants, and their enrollment in 
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the study will not prevent them from receiving any additional interventions 
necessary for unanticipated problems during hospitalization. If mothers raise 
any concerns or questions about the procedures for themselves as well as 
the newborns, they are able to withdraw from the study at any point after 
enrollment.  

 
11. Benefit vs. Risk: Samples collected from this study will be obtained as a part 

of routine standard measures and there is minimum risk to participants. No 
blood will be drawn for the sole purpose of this study. TA suctioning is 
performed as part of routine care in the neonatal intensive care unit, and 
these specimens will be stored and transferred to Dr. Feola’s laboratory for 
analysis.  
 

12. Available Alternative Treatment(s): There will be no study drug 
administered/provided by the investigators and the sources of samples 
obtained during the study will be part of standard care. 

  
13. Research Materials, Records, and Privacy: Baseline data (please refer to 

#7) from mothers and newborns, and TA samples from newborns will be 
collected. They will be individually labeled with corresponding participant’s 
hospital number followed by the type of sample and the date of collection. TA 
samples will be collected as described above and processed immediately. All 
data outline above, including chart information, smoking status, immune 
system genetic profile, cytokine concentration will be recorded electronically 
and will be made accessible with password and secured in a locked office 
(231 College of Pharmacy).  
 

14. Confidentiality: Baseline data collected from the participants will be saved in 
a locked cabinet in room 231 of BioPharm Complex, accessible to only the 
research investigators. Any information obtained electronically will require 
password-protected access. Upon collection of specimen, they will be initially 
stored in a limited access environment and will be transported immediately to 
the laboratory of Dr. Feola for storage/analysis, at which de-identification will 
occur by re-assigning sample number to a unique identifier code consisting of 
a number to designate each participant followed by letters to designate 
sequence of samples collected from that individual. This will be recorded 
electronically and access will require password. Patient data and specimens 
will be stored for perpetual maintenance for the accuracy of results 
interpretation.  

 
15. Payment:  Not applicable. There are no incentives or payments for 

participation in this study. 
 

16. Costs to Subjects: There will be no costs that are the participant’s 
responsibility as a consequence of participating in the research. All costs 
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associated with the procedure beyond the usual standard of care procedures 
will be directed to the research investigators.  

  
17. Data and Safety Monitoring:  This study has a minimal risk to the 

participants as all the procedures involved in obtaining patient information and 
samples are part of usual standard of care measures and will be under the 
medical direction of Dr. Ballard. Therefore, no monitoring is required. 
 

18. Subject Complaints:  Participants will be able to raise any concerns or 
questions regarding the study and study procedures at any point, and study 
investigators will make best efforts to meet with them face-to-face to clarify 
and address their concerns. Additionally, they will be able to withdraw from 
the study at any point, and the use of collected data for analysis will be 
discussed.  
 

19. Research Involving Non-English Speaking Subjects or Subjects from a 
Foreign Culture:  Mothers who cannot speak and understand English will not 
be enrolled in the study. Very few Hispanic mothers smoke, therefore it will 
not significantly decrease potential pool of subjects 

 
20. HIV/AIDS Research:  Not applicable  

 

21. PI-Sponsored FDA-Regulated Research:  Not applicable 
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