
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Electrical and 
Computer Engineering Electrical and Computer Engineering 

2017 

CONSTANT FALSE ALARM RATE PERFORMANCE OF SOUND CONSTANT FALSE ALARM RATE PERFORMANCE OF SOUND 

SOURCE DETECTION WITH TIME DELAY OF ARRIVAL SOURCE DETECTION WITH TIME DELAY OF ARRIVAL 

ALGORITHM ALGORITHM 

Xipeng Wang 
University of Kentucky, zywxp0430@gmail.com 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.343 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Wang, Xipeng, "CONSTANT FALSE ALARM RATE PERFORMANCE OF SOUND SOURCE DETECTION WITH 
TIME DELAY OF ARRIVAL ALGORITHM" (2017). Theses and Dissertations--Electrical and Computer 
Engineering. 105. 
https://uknowledge.uky.edu/ece_etds/105 

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by 
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232578511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Xipeng Wang, Student 

Dr. Kevin D. Donohue, Major Professor 

Dr. Cai-Cheng Lu, Director of Graduate Studies 



CONSTANT FALSE ALARM RATE PERFORMANCE 
OF SOUND SOURCE DETECTION WITH 

TIME DELAY OF ARRIVAL ALGORITHM 
 

THESIS 

A thesis submitted in partial fulfillment of the 
requirements for the degree of Master of Science in 

Electrical Engineering in the College of Engineering 
at the University of Kentucky 

By 

Xipeng Wang 

Lexington, Kentucky 

Director: Dr. Kevin Donohue, Professor of University of Kentucky 

Lexington, Kentucky 

2017 

Copyright© Xipeng Wang 2017 



Abstract of thesis 

CONSTANT FALSE ALARM RATE PERFORMANCE 
OF SOUND SOURCE DETECTION WITH 

TIME DELAY OF ARRIVAL ALGORITHM 
 

Time Delay of Arrival (TDOA) based algorithms and Steered Response Power (SRP) 
based algorithms are two most commonly used methods for sound source detection and 
localization. SRP is more robust under high reverberation and multi-target conditions, while 
TDOA is less computationally intensive. This thesis introduces a modified TDOA algorithm, 
TDOA delay table search (TDOA-DTS), that has more stable performance than the original 
TDOA, and requires only 4% of the SRP computation load for a 3-dimensional space of a typical 
room. A 2-step adaptive thresholding procedure based on a Weibull noise peak distributions for 
the cross-correlations and a binomial distribution for combing potential peaks over all 
microphone pairs for the final detection. The first threshold limits the potential target peaks in 
the microphone pair cross-correlations with a user-defined false-alarm (FA) rates.  The initial 
false-positive peak rate can be set to a higher level than desired for the final FA target rate so 
that high accuracy is not required of the probability distribution model (where model errors do 
not impact FA rates as they work for threshold set deep into the tail of the curve).  The final FA 
rate can be lowered to the actual desired value using an M out of N (MON) rule on significant 
correlation peaks from different microphone pairs associated is a point in the space of interest. 
The algorithm is tested with simulated and real recorded data to verify resulting FA rates are 
consistent with the user-defined rates down to 10-6.  

KEYWORDS: Sound Source Localization, Multiple Targets Detection, Time Delay of 
Arrival, Constant False Alarm Rate, M out of N Rule 

Xipeng Wang 

07/29/2017 



By 

Xipeng Wang 

CONSTANT FALSE ALARM RATE PERFORMANCE 
OF SOUND SOURCE DETECTION WITH 

TIME DELAY OF ARRIVAL ALGORITHM 
 

Kevin D. Donohue 
Director of Thesis 

Cai-Cheng Lu 
Director of Graduate Studies 

07/29/2017 



III 
 
 

Table of Contents 

 

LIST OF TABLES ....................................................................................................................... IV 

LIST OF FIGURES ...................................................................................................................... V 

Chapter 1 Introduction and literature review ............................................................................. 1 

1.1 Introduction ............................................................................................................................ 1 

1.2 Literature review .................................................................................................................... 1 

Chapter 2 Sound source localization algorithms ........................................................................ 6 

2.1 Introduction ............................................................................................................................ 6 

2.2 TDOA-based sound source localization approaches .............................................................. 6 

2.3 SRP-based sound source localization approaches ................................................................ 10 

2.4 TDOA delay table search sound source localization ........................................................... 12 

Chapter 3 Thresholding process ................................................................................................. 15 

3.1 Introduction .......................................................................................................................... 15 

3.2 False alarm rate .................................................................................................................... 15 

3.3 CFAR ................................................................................................................................... 16 

3.4 M Out of N (MON) Rule Statistical Filtering ...................................................................... 20 

Chapter 4 Simulation ................................................................................................................... 21 

4.1 Introduction .......................................................................................................................... 21 

4.2 Room setup .......................................................................................................................... 21 

4.3 SRP vs TDOA-DTS ............................................................................................................. 23 

4.4 CFAR and MON threshold .................................................................................................. 27 

4.5 Time complexity comparison between SRP and TDOA-DTS algorithms .......................... 29 

4.6 Simulation verification ......................................................................................................... 30 

Chapter 5 Conclusion .................................................................................................................. 33 

Conclusion ................................................................................................................................. 33 

Bibliography ................................................................................................................................. 34 

Vita ................................................................................................................................................ 36 

 

 

 

 



IV 
 
 

LIST OF TABLES 
 

Table 2.1, Part of delay table based on the Figure 2.3. Columns are all grid points and rows are all 

possible microphone pairs. The unit of this table is second………………...…………......14 

Table 4.1, This table shows the test parameters and which detection rule is using……………...…22 

Table 4.2, Simulation results and equation estimated results comparison with two different number 

of pixels. The microphone number 𝑁𝑁 = 8, and signal length 𝑋𝑋 = 6000.....................…..29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 
 

LIST OF FIGURES 
 

Figure 1.1, Mismatch of temporal events between microphone signals 𝑧𝑧𝑢𝑢 and 𝑧𝑧𝑣𝑣. N denotes the 

time-frame size…...………………………………………………………………………..2 

Figure 2.1, A two-dimensional hyperbola curves detection with A1, A2 and A3 microphones, and 

the detected target position is at Event…………………...…………..…………………….9 

Figure 2.2, A delay-and-sum system structure with 𝐺𝐺𝑀𝑀(𝜔𝜔) (impulse response of filter in frequency 

domain) applied………………………………………………………………..…………10 

Figure 2.3, A sample room divided by grids. The red squares are the microphone positions….…14 

Figure 3.1, Blue line denotes the noise distribution probability density function (PDF) and red line 

is the PDF of target distribution.………………………………………………………….16 

Figure 3.2, An example for a guard band applied on a part of signal. Guard band is shown in orange 

line and signal is blue line……………………………………………………….………..18 

Figure 3.3, This figure shows empirical false alarm vs true false alarm applied with different shape 

parameters feeding into CFAR filter from 1.0 to 2.0…..……………………..………….19 

Figure 4.1, One example of the simulation room. Reflection coefficients for four walls are 0.5 and 

0.4 for floor and ceiling. System noise SNR is -30dB. No noise target presented…..….…22 

Figure 4.2, Two simulations with wall, floor and ceiling reflection coefficients set as 0.5, 0.4 and 

0.4. Actual positions of two targets are represented by black circles. One noise source at 

blue X. SRP: No false detection. TDOA-DTS: No false detection………………..……...24 

Figure 4.3, Two simulations with wall, floor and ceiling reflection coefficients set as 0.5, 0.4 and 

0.4. Actual positions of two targets are represented by black circles. Two noise sources at 

blue Xs. SRP: No false detection. TDOA-DTS: No false detection……………..………..24 

Figure 4.4, Two simulations with wall, floor and ceiling reflection coefficients set as 0.7, 0.5 and 

0.5.  Actual positions of two targets are represented by black circles. One noise source at 

blue X. SRP: 4 false detections. TDOA-DTS: 2 false detections…………………..……..25 

Figure 4.5, Two simulations with wall, floor and ceiling reflection coefficients set as 0.7, 0.5 and 

0.5. Actual positions of two targets are represented by black circles. Two noise sources at 

blue Xs. SRP: 3 false detections. TDOA-DTS: 2 false detections……………...…………25 

Figure 4.6, Two simulations with wall, floor and ceiling reflection coefficients set as 0.9, 0.7 and 

0.7.  Actual positions of two targets are represented by black circles. One noise source at 

blue X. SRP: 68 false detection. TDOA-DTS: 64 false detection…………......………….26 



VI 
 
 

Figure 4.7, Two simulations with wall, floor and ceiling reflection coefficients set as 0.9, 0.7 and 

0.7. Actual positions of two targets are represented by black circles. Two noise sources at 

blue Xs. SRP: 65 false detection. TDOA-DTS: 49 false detection…………………...…...26 

Figure 4.8, The results of CFAR filter with shape parameter “b” from 1.5 to 3.5 and step is 0.5. 

Total four different false alarm rates are tested. 5000 different test run with more than 20 

million peaks checked……………………………………………………………………27 

Figure 4.9, The results of CFAR-MON filter with CFAR false alarm rate 0.1 and MON false alarm 

from 10−1 to 10−6. The whiten parameter is 1 in all the simulations. Three different shape 

parameters are applied……………………………………………………………..……..28 

Figure 4.10, The lab environment where the experiment data collected. Red circles are microphones 

and blue circle is the speaker (sound source)…………………………………...………...30 

Figure 4.11, Microphones are represented by red squares, sound source is placed at the circle.......31 

Figure 4.12, The vertical lines are error bar with 95% confidence. x axis is the ideal false alarm 

rate, and y axis is the ratio that experiment and simulation results over ideal value. Closer 

to red dotted line means more accurate and black dotted line shows the area within tolerable 

difference………………………………………………………………………...………32 

Figure 4.13, Detection results. The blue Xs denote the right detections and red Xs are false 

detections. (a) Simulation results, (b) Experiment results………………………..……….32  



1 
 
 

Chapter 1 Introduction and literature review 
 

1.1 Introduction 
 

Near field sound source localization is a widely-studied project. It’s used in speech 

enhancement [1-2], intelligent interaction [3-6], and noise cancellation [7-9]. Two most common 

approaches are Time Delay of Arrival (TDOA) and Steered Response Power (SRP). SRP 

algorithm is proved to have a more robust performance in noise and reverberant environment. 

The performance analysis done by DiBiase in 2001 clearly demonstrated stable detection results 

in reverberant/noise environments [10]. However, in many applications the SRP system must 

scan through the whole room space with relative small spatial increments and compute the 

resulting power from the beamformed signal at each grid point in the space.  This can require 

significant amount of processing time or a massively parallel processing scheme [11] for most 

typical rom sizes. On the other hand, TDOA only requires cross-correlation peak results from 

several microphone pairs to find the targets delay of arrival (DOA), which are then used to 

determine intersection points corresponding to the lots of points implied by each microphone 

pair’s DOA. This procedure requires less computations than SRP over large spaces, but is less 

robust. Therefore, the purpose for this thesis is to develop and test a more efficient way to 

perform the sound source detection and localization with little performance loss compared to 

SRP. 

 

1.2 Literature review  
 

Many studies have been done to improve two detection algorithms recent years. Work has been 

done by Hoang in 2012 on SRP algorithm [12]. This article points out that when doing the phase 

generalization for all cross-correlations of unique microphone pair signals, the correlation value 

could be poor because the mismatch of two microphone signals. The Figure 1.1 shows a 

mismatch of temporal events. This mismatch, when repeated in many microphone pairs, will lead 

to a low value of the SRP algorithm [13]. A pre-alignment enhancement was proposed in the 

article. The enhancement algorithm pre-aligns the microphone signals to a hypothesized location 

by shifting the signals. The experimental results show the improved method has a better 

performance under the 10 talkers experiment compared to the normal SRP algorithm. The 

limitation of this improvement is that the high computation load of SRP algorithm still exist and 

the need for stable thresholding algorithms to detect significant peaks as actual targets.  
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Figure 1.1 Mismatch of temporal events between microphone signals 𝒛𝒛𝒖𝒖 and 𝒛𝒛𝒗𝒗. N denotes the time-

frame size.  

 

In 2013, Firoozabadi did some improvements on original TDOA algorithm [14]. Instead of 

using original signal received by microphone, this method first decomposes the signal into 

different frequency sub bands. For every sub band, the Generalized Cross-Correlation (GCC) is 

calculated. Then this algorithm find the 𝑀𝑀 highest peaks (DOA candidates) in each GCC result, 

where 𝑀𝑀 denotes the maximum possible targets. With all DOA candidates in each sub band, the 

histogram for the DOA value is computed. At last, applying an averaging method on the achieved 

histogram for all sub bands. Because locations with a target should have more power over a broad 

frequency range, than those without a target, the DOA values for target locations show more 

consistent DOA (peaks in the histogram) than the noise locations. Therefore, the 𝑀𝑀 highest peaks 

of averaged histograms are considered as the targets DOAs. The results in this paper shows that 

the sub-band processing increased the percentage of correction at about 11-17 percent. However, 

this method uses the M highest value as the targets, which means this algorithm will also give out 

detection results even with no target presented.  

Jamali-Rad and Leus also proposed improvements on the TDOA in 2013 [15]. In the TDOA 

algorithm, after finding possible targets DOA peaks, the DOA values will be used in a hyperbola 

formula. All the points on this hyperbola have the same DOA for a given microphone pair. With 

two or more hyperbolas crossing with each other, the targets locations will be settled. One major 

problem is that there may be two or more targets on the same hyperbola, which can result in 
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missing a detection. The method proposed in this article discretizes the space into a special grid. 

Points on this grid will not have similar DOA time for any of the microphone pairs. Then for each 

point on this grid the combination of DOA values for all microphone pairs will be unique and the 

targets can be detected by comparing the estimated DOA values with all grid points. The DOA 

values come from the maximum peaks locations in the cross-correlations results. The most closer 

points are the target locations. This article solves the problem that two target points may fall on 

the same hyperbola curves, but it still uses the K max peaks detection algorithm like 

Firoozabadi’s article talked above.  

To speed up the SRP algorithm, Yook proposed a space cluster method in 2016 [16]. The 

article points out that when two candidate locations are close enough, SRP value of these points 

will have indistinguishable power difference. Therefore, the space can be clustered into several 

subspaces, candidate locations in these spaces will have similar output power. Then the first stage 

of this method will only exam the representative locations in each subspace and the subspace 

containing a maximum power will be passed into the next step. The second level search will be 

performed to find the target location in the chosen subspace. This space clustering method 

reduces 61.8% computational cost comparing to the none clustering one. However, the method is 

proposed under the far field condition and using the maximum value as the result.  

In 2014, Donohue and Griffioen studied on a new computational strategy to accelerate the SRP 

procedure [11]. This new strategy divides the received signals into 0.26s subintervals, which are 

much larger than the typical analysis window (less than 50ms). Then for every subinterval, the 

first analysis window is tested over space points for active targets. The subinterval will only be 

tested throughout when the first analysis window finds at least one active sources. Apart from the 

time reduction, space reduction is also applied. After the algorithm detected a target, a spherical 

subspace will be defined while the radius being calculated based on the expected moving speed of 

the source. Then the detection procedure only runs through the spherical sub space for the next 

subinterval. To further accelerate the SRP algorithm, a parallelization is applied. The field of 

interest is divided into several regions and each region will be separately run. The experiment 

results show that the accelerated algorithm is about 45 times faster than the original one. 

Therefore, the new computational strategy shows a huge speed enhancement. However, one 

obvious problem for the acceleration is that when a target is not presented or detectable during the 

first analysis window, then the target will be lost for the entire 0.26s detection.  

Another approach for detecting multiple targets with the SRP algorithms by Donohue, et. al. in 

2011 [17] focuses on detecting significant peaks in the SRP image based on a constant false-
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alarm rate threshold. Many sound source detection algorithms, such as [14, 15], use the maximum 

value finding the target peaks, but the maximum value method must set the possible number of 

targets before detection. It is unknown for most real-world cases, therefore this article proposed a 

self-adjusted thresholding algorithm. In the SRP detection, the field of interest is divided into 

small spatial increments, where sound source locations will result in a higher power than the 

locations where no source is present. Therefore, the article points out that the threshold value for 

a considered peak can be estimated by the peak values around the tested peak. The surrounding 

region is assumed to contain only noise peaks, and by choosing an appropriate noise distribution 

and tolerable false alarm rate, a threshold can be estimated from the power computed from the 

surrounding noise peaks. Because this thresholding method is based on adjusting the power in the 

distribution to maintain the FA rate over all tested peaks, it is called Constant False Alarm Rate 

(CFAR) threshold. This method performs well during the experiments running in this article. 

However, the drawback is that the CFAR threshold become sensitive to the noise distribution 

modeling errors for very low false alarm rates.  

These articles presented above all have very interesting aspects and provide a general view of 

recent research done on the multiple sound source detection and localization problems. Hoang’s 

research optimizes the SRP algorithm on the accuracy. However, it doesn’t deal with the 

computation load problem for SRP.  Firoozabadi’s method focuses on solving the far field sound 

source localization and has a drawback that it must assume the exact number of targets 

beforehand (i.e. 𝑀𝑀 possible targets during the peaks finding progress). This assumption is applied 

even if no target is present, and thus, this algorithm will consistently result in a false-alarms when 

applied to dynamic acoustic scenes, such as those found in application like smart room or 

surveillance/monitoring. Jamali’s study provide a new way to applying TDOA method by using 

space grid points, but its solution still relies on the assumption of exact number of targets before 

the detection. The next two articles [11, 16] focused on the speed improvement for SRP 

algorithm. They both use subsections to reduce the computation load. Although their results show 

a huge acceleration, Yook’s method still has the maximum value problem when detecting targets 

and Dobohue’s algorithm may lose some targets. Sayed’s study proposed a new way to detect 

significant peaks with constant false alarm rate. This CFAR threshold will not cause the same 

problem as the maximum value method, but it will be unstable under low false alarm conditions 

due to modeling errors for the assumed noise distribution. 

The work in this thesis addresses the problem of multiple target detection using a significant 

peak detection approach on the microphone pair cross-correlations. It addresses the modeling 
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errors of the noise peak probability density function by setting a higher false-alarm rate threshold 

for the cross-correlation peaks, which keeps the threshold value out of the tail of the distribution 

where small modeling errors result in large variation in the threshold value.  Then using an M out 

of N rule on all significant cross-correlation peaks associated with each point in space. This new 

approach will also cost less computation load comparing to SRP without sacrificing performance. 

The algorithms are tested with simulated data in terms maintaining the desired false-alarm rate 

and compared to that of the SRP as lower FA rates are specified.  

The thesis describes two classic sound source localization algorithms in Chapter 2, and the 

novel method proposed in this thesis is also described. Chapter 3 presents details on the CFAR 

threshold process, analyzes its drawbacks, and proposes a new double threshold algorithm using 

M out of N rule. Chapter 4 shows the simulation results of the algorithms and the experiments 

with real recordings to verify the simulation results.  
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Chapter 2 Sound source localization algorithms 
 

2.1 Introduction 
 

    This chapter introduces two widely used sound source localization algorithms TDOA and SRP. 

Section 2.2 presents the equations for TDOA and analyzes the disadvantages that makes it not 

suitable for multiple targets detection. Then Section 2.3 presents SRP-based algorithms and 

points out the high computation load problem. At last, Section 2.4 proposed a new algorithm 

based on TDOA with less calculation cost and better multiple targets detection ability.  

 

2.2 TDOA-based sound source localization approaches 
 

  A time delay of arrival (TDOA) localization approach is a two-step procedure [18]. The first 

step is getting TDOA estimates from signals received by each possible microphone pairs. The 

second step generates hyperbolic curves corresponding to the sets of possible locations that 

resulted in the measured delay. Curves from multiple pairs corresponding to the same source 

intersect at the target location.  

    Let 𝑢𝑢𝑖𝑖(𝑡𝑡) denotes the 𝑖𝑖𝑡𝑡ℎ sound source located at 𝐬𝐬i and total 𝐾𝐾 microphones. Then the signal 

received by 𝑘𝑘𝑡𝑡ℎ microphone located at 𝒎𝒎𝒌𝒌 can be represented as 

𝑣𝑣𝑘𝑘(𝑡𝑡) = 𝑢𝑢𝑖𝑖(𝑡𝑡) ∗ ℎ𝑖𝑖𝑘𝑘(𝑡𝑡) + �𝑛𝑛𝑗𝑗(𝑡𝑡) ∗ ℎ𝑗𝑗𝑘𝑘(𝑡𝑡)
𝐽𝐽

𝑗𝑗=1

, 𝑘𝑘 = 1,2,3, … ,𝐾𝐾            (2.1) 

where 𝐽𝐽 represents the total number of noise sources (sources not located at 𝐬𝐬i), 𝑛𝑛𝑗𝑗(𝑡𝑡) is the 𝑗𝑗𝑡𝑡ℎ 

noise source and ℎ𝑖𝑖𝑘𝑘(𝑡𝑡) denotes the impulse responses for the propagation path between 𝑠𝑠𝑖𝑖 and 

𝑚𝑚𝑘𝑘, and can include the multipath effects. Similarly, ℎ𝑗𝑗𝑘𝑘(𝑡𝑡) is the impulse response for the 

acoustic path between 𝑛𝑛𝑗𝑗 and 𝑚𝑚𝑘𝑘. Also, “∗” stands for convolution operator.  

    In a real room or small space, the reverberation must be considered. Therefore, the impulse 

function ℎ(𝑡𝑡) should take both direct and reflected paths into consideration: 

ℎ𝑖𝑖𝑘𝑘(𝑡𝑡) = 𝑎𝑎𝑖𝑖𝑘𝑘,0�𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑘𝑘,0� + �𝑎𝑎𝑖𝑖𝑘𝑘,𝑛𝑛�𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑘𝑘,𝑛𝑛�
∞

𝑛𝑛=1

            (2.2) 

where 𝑎𝑎𝑖𝑖𝑘𝑘,0(𝑡𝑡) represents the direct path between the 𝑖𝑖𝑡𝑡ℎ source and 𝑘𝑘𝑡𝑡ℎ microphone, 𝑎𝑎𝑖𝑖𝑘𝑘,𝑛𝑛(𝑡𝑡) 

represents the 𝑛𝑛𝑡𝑡ℎ reflection, and 𝜏𝜏𝑖𝑖𝑘𝑘,𝑛𝑛 represents the delay time of this path. The larger 𝑛𝑛 means 

longer path, which also means the power of the signal is weaker. The simulation used in this 

study takes in to consideration all these effects for a rectangular room [19, 20] 
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To estimate TDOA, a most common used way is generalized cross-correlation (GCC) [18]. 

GCC is calculated based on two filtered microphone signals using the Fourier transform (fast 

Fourier transform in coding) to make the computation more effective. The signal received by 𝑘𝑘𝑡𝑡ℎ 

microphone can be represented using the equation 2.1. The received signal is denoted as 𝑦𝑦𝑘𝑘(𝑡𝑡), 

and its Fourier transform given by: 

𝑌𝑌𝑘𝑘(𝜔𝜔) =  ℱ�𝑦𝑦𝑘𝑘(𝑡𝑡)� = 𝐻𝐻𝑘𝑘(𝜔𝜔)𝑉𝑉𝑘𝑘(𝜔𝜔)                  (2.3) 

where 𝑉𝑉𝑘𝑘(𝜔𝜔) is the Fourier transform of the source signal 𝑣𝑣𝑘𝑘(𝑡𝑡) and 𝐻𝐻𝑘𝑘(𝜔𝜔) is the Fourier 

transform of the room impulse response (transfer function). The same process applied on the 

signal received by 𝑙𝑙𝑡𝑡ℎ microphone is denoted as: 

𝑌𝑌𝑙𝑙(𝜔𝜔) =  ℱ�𝑦𝑦𝑙𝑙(𝑡𝑡)� = 𝐻𝐻𝑙𝑙(𝜔𝜔)𝑉𝑉𝑙𝑙(𝜔𝜔)                    (2.4) 

The two signals are cross-correlated to result in: 

𝑐𝑐𝑘𝑘𝑙𝑙(𝜏𝜏) = ℱ−1{𝐶𝐶𝑘𝑘𝑙𝑙(𝜔𝜔)} =
1

2𝜋𝜋
� 𝐶𝐶𝑘𝑘𝑙𝑙(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 𝑑𝑑𝜔𝜔
∞

−∞
 

=
1

2𝜋𝜋
� 𝑌𝑌𝑘𝑘(𝜔𝜔)𝑌𝑌𝑙𝑙∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 𝑑𝑑𝜔𝜔
∞

−∞
                         (2.5) 

where superscript ′ ∗ ′ represents the complex conjugate operator. The cross-correlation result 

𝑐𝑐𝑘𝑘𝑙𝑙(𝜏𝜏) is a function of delay times, 𝜏𝜏, between the microphone pair. Substitute in equation 2.3 and 

2.4 to obtain: 

𝑐𝑐𝑘𝑘𝑙𝑙(𝜏𝜏) =
1

2𝜋𝜋
� 𝐻𝐻𝑘𝑘(𝜔𝜔)𝐻𝐻𝑙𝑙∗(𝜔𝜔)𝑉𝑉𝑘𝑘(𝜔𝜔)𝑉𝑉𝑙𝑙∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 𝑑𝑑𝜔𝜔
∞

−∞
             (2.6) 

    To enhance the peak detection in the cross-correlation function 𝑐𝑐𝑘𝑘𝑙𝑙(𝜏𝜏), many filters have been 

proposed. One is the generalized cross-correlation (GCC) filter. Ideally, the GCC requires 

knowledge of the room transfer function.  The filter in this case is given by: 

𝛹𝛹𝑘𝑘𝑙𝑙(𝜔𝜔) =
1

�𝐻𝐻𝑘𝑘(𝜔𝜔)𝐻𝐻𝑙𝑙∗(𝜔𝜔)�
                       (2.7) 

Since these are difficult to estimate and change for every point in the room, other approaches are 

typically used. One widely used filter is Phase Transform (PHAT) filter [18, 21]. The PHAT filter 

is designed to a special value to emphasize the local maximum peaks, and is implement by 

normalizing all spectral magnitudes. The PHAT weighting function is defined as:  

𝛹𝛹𝑘𝑘𝑙𝑙(𝜔𝜔) =
1

�𝑉𝑉𝑘𝑘(𝜔𝜔)𝑉𝑉𝑙𝑙∗(𝜔𝜔)�
                       (2.8) 

The filter is applied to cross-correlation as: 

𝑐𝑐𝑘𝑘𝑙𝑙(𝜏𝜏) =
1

2𝜋𝜋
� 𝛹𝛹𝑘𝑘𝑙𝑙(𝜔𝜔)𝐻𝐻𝑘𝑘(𝜔𝜔)𝐻𝐻𝑙𝑙∗(𝜔𝜔)𝑉𝑉𝑘𝑘(𝜔𝜔)𝑉𝑉𝑙𝑙∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 𝑑𝑑𝜔𝜔
∞

−∞
             (2.9) 
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 After applying the PHAT filter, the room transfer function will be eliminated in ideal case. This 

filter can also be applied in SRP algorithm and it will be stated in next chapter. 

Next step is finding the peaks generated by targets in GCC function 𝑐𝑐𝑘𝑘𝑙𝑙(𝜏𝜏). Assume a noise 

free and reverberation free condition, the 𝑣𝑣𝑘𝑘(𝑡𝑡) and 𝑣𝑣𝑙𝑙(𝑡𝑡) are just two time shifted results for the 

original signal 𝑢𝑢𝑖𝑖(𝑡𝑡). Therefore, the 𝑐𝑐𝑘𝑘𝑙𝑙(𝜏𝜏) function will have a significant peak at time 𝜏𝜏 related 

to TDOA of two microphones 𝑘𝑘 and 𝑙𝑙. In the single sound source case, the TDOA between 

microphone pairs can be detected by finding the maximum value of GCC function. However, 

with two or more sources present (or even no source present), the detection problem changes into 

finding local significant maxima of GCC function. A practical way is using a Constant False 

Alarm Rate (CFAR) approach [17], which will be described in detail later.  

    Each detected peak must be related to peaks from other microphone pair cross-correlations 

corresponding the same position in space to determine the likelihood that an actual target is 

presented. For each delay time, corresponding to the detected peak, a curve is drawn using the 

equation below. Assuming the position of the microphones are 𝐦𝐦𝟏𝟏(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) and 𝐦𝐦𝟐𝟐(𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2), 

the relationship between the delay time and source position is given by:  

�(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 + (𝑧𝑧 − 𝑧𝑧1)2 − �(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 + (𝑧𝑧 − 𝑧𝑧2)2 = 𝑑𝑑𝑡𝑡 ∗ 𝑐𝑐      (2.10)                           

where the 𝑑𝑑𝑡𝑡 represents delay time and 𝑐𝑐 is the speed of sound. These equations are non-

simplified hyperbola formulas. Since for the sound source target, only one side of the hyperbola 

curve should be taken. Therefore, the sign of �(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 + (𝑧𝑧 − 𝑧𝑧1)2 −

�(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 + (𝑧𝑧 − 𝑧𝑧2)2 is used to determine which side should be taken as valid. 

With two or more curves drawn, intersections indicate the possible locations of sound source 

target(s). A two-dimensional example has been shown in Figure 2.1. The delay time obtained by 

cross-correlation function of A1 and A2 generates the curve H12; delay time obtained by cross-

correlation function of A2 and A3 generates the curve H23. The two curves intersected at “Event”, 

where will be the detected target position.  
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Figure 2.1 A two-dimensional hyperbola curves detection with 𝐀𝐀𝟏𝟏, 𝐀𝐀𝟐𝟐 and 𝐀𝐀𝟑𝟑 microphones, and the 

detected target position is at Event. Adapted from [22] 

 

    In the real detections, a three-dimensional room is the common case. The detection become 

difficult in three-dimensional space, because the intersections for a single target are typically 

contained in small three-dimensional volumes. With three or more hyperboloids crossing each 

other, they won’t meet at the same point because the noise or measure error [23]. This also leads 

to another problem that the different intersections are false detections or actual targets. 

Consequently, the simple TDOA implementation is not suitable for the multi-targets detection 

and localization. 
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2.3 SRP-based sound source localization approaches 
 

Steered Response Power (SRP) algorithm relies on a delay and sum beamforming method to 

compute acoustic power over grid points in a spatial region of interest. For a certain sound 

sources located in the region of interest, the SRP algorithm uses the delay times corresponding to 

each grid point to shift the signals received by microphones and add time-shifted signals together 

to obtain a power estimate for a sound source emanating from that position. If the position 

corresponds to a real sound source, the sum of shifted signals obtained should have a significantly 

higher power value than positions corresponding to no source. Therefore, the places that have 

significant power peaks are treated as the sound sources in multiple targets SRP localization 

[11,24]. Figure 2.2 shows the structure of a delay-and-sum system.  

 
Figure 2.2 A delay-and-sum system structure with 𝑮𝑮𝑴𝑴(𝝎𝝎) (impulse response of filter in frequency 

domain) applied  

 

In last section, the Equation 2.1 shows that microphones signals are filtered versions of shifted 

source signal, which is to say that microphone signals are time aligned when properly shifted by 

propagation delays. The shift time are represented as ∆𝑚𝑚 for the 𝑚𝑚𝑡𝑡ℎ microphone. Let 𝑦𝑦(𝑡𝑡) 

represents the steered response, then: 
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𝑦𝑦(𝑡𝑡) = � 𝑔𝑔𝑚𝑚(𝑡𝑡) ∗ 𝑣𝑣𝑚𝑚(𝑡𝑡 − ∆𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

                      (2.11) 

where 𝑀𝑀 denotes the total number of microphones, 𝑔𝑔𝑚𝑚(𝑡𝑡) is the impulse response of the filter 

applied on 𝑚𝑚𝑡𝑡ℎ microphone signal and 𝑣𝑣𝑚𝑚(𝑡𝑡 − ∆𝑚𝑚) is the shifted signal. The ′ ∗ ′ represents the 

convolution operator. The filter applied here is a part of PHAT weighting function.  

Then take Fourier transform of the steered response: 

𝑌𝑌(𝜔𝜔) = � 𝐺𝐺𝑚𝑚(𝜔𝜔)𝑉𝑉𝑚𝑚(𝜔𝜔)𝑒𝑒−𝑗𝑗𝑗𝑗∆𝑚𝑚
𝑀𝑀

𝑚𝑚=1

                  (2.12) 

where 𝐺𝐺𝑚𝑚(𝜔𝜔) and 𝑉𝑉𝑚𝑚(𝜔𝜔) are Fourier transform of the filter applied and the 𝑚𝑚𝑡𝑡ℎ signal. With the 

frequency domain equation, the SRP can be written as: 

𝑃𝑃 = � 𝑌𝑌(𝜔𝜔)𝑌𝑌∗(𝜔𝜔)𝑑𝑑𝜔𝜔
+∞

−∞
 

= � ��𝐺𝐺𝑝𝑝(𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑒𝑒−𝑗𝑗𝑗𝑗∆𝑝𝑝
𝑀𝑀

𝑝𝑝=1

���𝐺𝐺𝑞𝑞∗(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗∆𝑞𝑞
𝑀𝑀

𝑞𝑞=1

�
+∞

−∞
                   (2.13) 

where 𝑃𝑃 denotes the steered response power. This equation can be rewritten as: 

𝑃𝑃 = ��� 𝐺𝐺𝑝𝑝(𝜔𝜔)𝐺𝐺𝑞𝑞∗(𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗(∆𝑞𝑞−∆𝑝𝑝)𝑑𝑑𝜔𝜔
+∞

−∞

𝑀𝑀

𝑞𝑞=1

𝑀𝑀

𝑝𝑝=1

                     (2.14) 

where, like equation 2.6, 𝐺𝐺𝑝𝑝(𝜔𝜔)𝐺𝐺𝑞𝑞∗(𝜔𝜔) is called weighting function and usually written as 

𝛹𝛹𝑝𝑝𝑞𝑞(𝜔𝜔). Much research has been done on the weighting function, and the SRP-PHAT has often 

been cited as demonstrating the most robust performance [25]. Further research on the PHAT 

weighting function shows that partial PHAT weighting (PHAT − β) will be superior to the 

original PHAT weighting [19, 21]. The partial PHAT weighting function is defined as: 

𝛹𝛹𝑝𝑝𝑞𝑞(𝜔𝜔) =
1

��𝑉𝑉𝑝𝑝(𝜔𝜔)��𝑉𝑉𝑞𝑞∗(𝜔𝜔)��𝛽𝛽
                         (2.15) 

where 𝛽𝛽 is the partial weighting parameter and it’s a real number between 0 and 1. The 

experiments indicate that a better target detection results can be obtained by setting partial 

weighting parameter close to 1 [19, 21]. The PHAT weighting function also can be applied in 

equation 2.2 to improve TDOA algorithm.  
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    Comparing to TDOA-based algorithm, SRP method spends a much longer time scanning the 

space and computing a power value for each grid point, but more than one target can be detected 

at the same time. The position where sound sources are located will show significant peaks. It’s 

worth mentioning that in the equation above, the autocorrelation pairs are included in the power 

computation. The autocorrelation pairs will have no effect on the results, except to keep the 

power values positive, so usually these pairs are subtraction out to improve detection performance 

[21].  

 

2.4 TDOA delay table search sound source localization 
 

The TDOA algorithm described above is complicated by the 3-D hyperbolic curves that need 

to be used to find intersection points. The false detections will have huge impact on performance 

if not properly controlled. Therefore, to reduce the complexity of looking for intersections and 

create a system for detecting targets based on a constant false alarm thresholding procedure, a 

new algorithm called TDOA Delay Table Search (TDOA-DTS) is developed. The new algorithm 

will have two steps. First step is the same as TDOA-based algorithm, except that peaks in the 

cross-correlation are selected based on a constant false alarm threshold. So, the result is a set of 

peaks detected over the set of all microphone pairs, which correspond to delay times from 

potential sound source. For the next step, instead of generating hyperbolic curves based on the 

delays, a delay time look-up table is used that relates spatial grid points to peak positions in the 

microphone pair cross-correlation functions. So, for each point in space a set of significant peaks 

(potentially empty) are used to determine if a target is present at that position.  The rules for 

doing this and maintaining a constant false alarm rate will be described later. 

    The method to compute TDOA has been stated in detail in the section 2.2, so let us start from 

the delay time look up table. Assume a sample point in the field of interest (FOI) 𝐩𝐩𝑘𝑘(𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘), 

then the distance between this sample point and 𝑖𝑖𝑡𝑡ℎ microphone 𝐦𝐦𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) can be represented 

as: 

𝑑𝑑𝑘𝑘𝑖𝑖 = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑘𝑘)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑘𝑘)2 + (𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑘𝑘)2                   (2.16) 

and for all 𝑁𝑁 microphones, a distance matrix for sample point 𝐩𝐩𝑘𝑘 is: 

𝐃𝐃𝑘𝑘 = [𝑑𝑑𝑘𝑘1,𝑑𝑑𝑘𝑘2, … ,𝑑𝑑𝑘𝑘𝑘𝑘]                                    (2.17) 

Furthermore, let ∆𝑘𝑘(𝑖𝑖,𝑗𝑗) denotes 𝑑𝑑𝑘𝑘𝑖𝑖 − 𝑑𝑑𝑘𝑘𝑗𝑗, distance difference of 𝑖𝑖𝑡𝑡ℎ mic and 𝑗𝑗𝑡𝑡ℎ mic to sample 

point 𝐩𝐩𝑘𝑘:  
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𝐭𝐭𝑘𝑘 =
∆𝑘𝑘
𝑐𝑐

=
�∆𝑘𝑘(1,2),∆𝑘𝑘(1,3), … ,∆𝑘𝑘(𝑖𝑖,𝑗𝑗), … ,∆𝑘𝑘(𝑘𝑘−1,𝑘𝑘)�

𝑐𝑐
                      (2.18) 

where 𝑖𝑖 ∈ [1,𝑁𝑁 − 1] and with a certain 𝑖𝑖 value 𝑗𝑗 ∈ [𝑖𝑖 + 1,𝑁𝑁]. 𝑐𝑐 is the sound speed. The 

numerical meaning of this 𝐭𝐭𝑘𝑘 matrix is that it represents the time difference of arrival between all 

possible pairs of microphones from a source to the sample point. Then for all the possible points 

in the FOI, a complete 𝐓𝐓 matrix can be generated: 

𝐓𝐓 = �
𝐭𝐭1
…
𝐭𝐭𝑀𝑀
�                         (2.19) 

where 𝑀𝑀 denotes the total number of possible points in FOI. This 𝐓𝐓 matrix is called the delay 

table where each row corresponds to a grid point in the scan space and each column is the 

corresponding time lag in the cross-correlation of microphone pairs.  

Therefore, for each grid point in the FOI the corresponding significant peak locations in cross-

correlations can be counted. If significant peaks are detected for a given point, a secondary 

threshold can be applied to determine if peaks are indicative of a target being present. This is 

explained in the next chapter.  

The Figure 2.3 shows a sample room. As the equations shown above, for each grid point in this 

sample room, the TDOA for all possible pairs of microphones are computed. The Table 2.1 

presents part of delay table for the room in Figure 2.3. Assume that the cross-correlation function 

of microphone 1 and 2 has one peak detected and the corresponding delay time of this peak is 

−0.0084 𝑠𝑠. By searching the delay table, the TDOA for grid point 3 has the closest value, so it 

will be marked as a possible target position.  
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Figure 2.3 A sample room divided by grids. The red squares are the microphone positions.  

 

 

Table 2.1 Part of delay table based on the Figure 2.3. Columns are all grid points and rows are all 

possible microphone pairs. The TDOA values are in second.  
 

Mic 1 and 2 Mic 1 and 3 … Mic 6 and 8 Mic 7 and 8 

Grid Point 1 -0.0083 -0.0152 … 0.0134 0.0080 

Grid Point 2 -0.0083 -0.0152 … 0.0133 0.0080 

Grid Point 3 -0.0084 -0.0153 … 0.0133 0.0079 

… … … … … … 

 

The next chapter explain how this table is used for a secondary threshold procedure to improve 

the consistency of the experimental FA rates. 
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Chapter 3 Thresholding process 
 

3.1 Introduction 
 

This chapter focuses on the thresholding process for peaks detection in localization algorithms. 

First in section 3.2, the concept of false alarm rate is introduced. It is an important parameter 

when computing the threshold. Then Section 3.3 presents the CFAR thresholding method and 

states the drawbacks caused by the low false alarm rate and noise distribution shape parameter. 

Last Section 3.4 talks about the M out of N rule which can be applied after the first CFAR 

threshold to robustly reduce the false-alarm rate to much lower value.  

 

3.2 False alarm rate 
 

Before stepping into the thresholding methods, an important term should be introduced: false 

alarm rate. For this application, a false alarm occurs when a noise peak is falsely detected as a 

true sound source. Figure 3.1 shows example probability distributions of expected noise peaks 

and true source peaks, the false alarms probability in this case for a given threshold is determined 

by the area indicated in green on the right side of threshold. The false alarm rate is the false alarm 

probability.  

CFAR detectors will use the false alarm rate given by the user to determine the threshold based 

on the noise peak distribution model. Therefore, the accuracy of false alarm rate for a given 

threshold depends on how well the distribution models the actual noise distribution.  



16 
 
 

 
Figure 3.1: Blue line denotes the noise distribution probability density function (PDF) and red line is 

the PDF of target distribution.  

 

From Figure 3.1, it is obvious that as the false alarm rate lowers, the threshold is closer to the 

tail of the curve. In this case, the shape parameter differences will have direct impact on the tail 

shape of the curve and the threshold. As the shape parameter is unknown in most conditions, it’s 

value will not be accurate [26]. Therefore, the empirical false alarm will be directly affected by 

mismatch in the assumed and actual shape parameter.  

 

3.3 CFAR 
 

    For the algorithm stated above, the accuracy of significant peak detection is critical to 

performance. The TDOA-based algorithm determines the sound source locations using the 

different delay times from the sound signals arriving at different microphones. The delay times 

are obtained from the significant peaks of cross-correlation of different microphones. If there is 

only one target source, the detection algorithm will be simply selecting a maximum peak. 

However, with two or more targets, the algorithm should be able to determine which peaks are 
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significant (i.e. likely targets) among all peaks. Similar problem happened in the SRP algorithm. 

The SRP algorithm will output a power image based on the SRP estimated. The targets are 

located at the significant peaks in the power image. For these two cases, it’s not effective using a 

constant threshold, because the variations in signal and noise powers impact the detectors. 

Therefore, a self-adjusted constant false-alarm rate (CFAR) threshold algorithm can be applied to 

deal with this problem.  

CFAR has been used so that multiple targets can be detected based on a specified false alarm 

rate. A CFAR threshold is estimated based on a probabilistic model of the noise-only distribution, 

and this threshold comes from the local data to maintain a fixed false alarm rate adapted to 

changing noise levels. In other words, a CFAR threshold is an adaptive threshold that follows 

changes of local noise power. The CFAR approaches are commonly used in the radar system and 

others where large amount of noise-only data is available [27, 28] (i.e. target samples are sparse 

in time/space relive to the noise samples). 

The purpose of CFAR detector is to detect the weakest true target signal, while maintaining an 

expected FA rate.  This means finding the lowest threshold that results in the desired/tolerable FA 

rate. Since the noise-only distribution can change, especially due to variations in power, and since 

the occurrence of a target in space and time is much rarer than the occurrence of noise, local 

sections of the cross-correlation peaks can be used to updated the probability model and compute 

thresholds using data local to the peak under test. In the TDOA-based algorithm, the CFAR 

detector is applied on the cross-correlation results. For each peak tested, a guard band is applied 

to ensure the energy from the true target does not dilate into the surrounding neighborhood used 

to estimate the noise peak distribution power. Figure 3.2 shows an example of a guard band. It 

ignores the small part near the test peak. This requirement affects the left cutoff of the guard 

band. Another assumption should be made is that the noise parts chosen by guard band have a 

symmetric distribution. This assumption influences the right cutoff of the guard band 
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Figure 3.2 An example for a guard band applied on a part of signal. Guard band is shown in orange 

line and signal is blue line.  

 

Apart from choosing a reasonable part using guard band, it’s also important to choose a 

suitable noise distribution since the threshold is estimated based on a parametric estimate of an 

assumed distribution. One useful distribution is the Weibull distribution [26]. The false alarm rate 

and it corresponding threshold can be related through the Weibull distribution to result in: 

𝑃𝑃𝑓𝑓𝑓𝑓 = exp �
𝑇𝑇
𝑎𝑎
�
𝑏𝑏

  ,𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑇𝑇 ≥ 0.              (3.1) 

where 𝑎𝑎 and 𝑏𝑏 are the scale and shape parameters. A critical advantage of the Weibull distribution 

is that with different shape parameters, the distribution can be parametrically adjusted between 

the exponential distribution and the Rayleigh distribution. Assuming a given shape parameter 𝑏𝑏, 

the scale parameter is computed from the peaks value obtained by guard band near the testing 

peak: 

𝑎𝑎 = �
1

‖𝑁𝑁‖
�|𝐻𝐻𝑖𝑖|𝑏𝑏
𝑘𝑘

𝑖𝑖=0

�

1
𝑏𝑏

               (3.2) 

where 𝐻𝐻𝑖𝑖 is the peak height of the 𝑖𝑖𝑡𝑡ℎ peak in guard band. 𝑁𝑁 is the total number of peaks in this 

area. This band area avoids the impact of large value close to a targeting peak on the mean 
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calculation. For a false alarm (FA) rate provided by user, the threshold is calculated from the 

inverse of Equation 3.1: 

𝑇𝑇 = 𝑎𝑎�−𝑙𝑙𝑛𝑛�𝑃𝑃𝑓𝑓𝑓𝑓��
1/𝑏𝑏              (3.3) 

where 𝑃𝑃𝑓𝑓𝑓𝑓 is the desired FA probability. The threshold established above is used to decide 

whether a peak is significant. The user can control the detection results using different FA rates, 

where lower rates lead to less detection sensitivity, but less peaks to process for each scan.  

The curves in Figure 3.3 where generates from simulations of noise detections different shape 

parameters, 𝑏𝑏, from 1.0 to 2.0. The x-axis is the desired false alarm rate set by the CFAR 

detectors using equation 3.3, and y-axis is the empirical detected false alarm rate from the 

simulator over the set false alarm rate. It’s obvious that the detection accuracy becomes less with 

lower set false alarm rates. The number of false alarms detected is around 102 times difference at 

a 10−4 false alarm rate for 2 of the shape parameters, while it’s only 10 times at a 10−1 false 

alarm rate for all shape parameters. Therefore, it shows that shape parameter inaccuracy will be a 

problem for CFAR algorithm at lower false alarm conditions, and, for this reason, the MON filter 

is applied to make a stable double-threshold detector. 

 
Figure 3.3 This figure shows empirical false alarm vs true false alarm applied with different shape 

parameters feeding into CFAR filter from 1.0 to 2.0. 
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3.4 M Out of N (MON) Rule Statistical Filtering  
 

M out of N detection was commonly used in radar system in 1950s and 60s [29]. Under the 

assumption of noise only case, let 𝑝𝑝𝑘𝑘 represent the probability of a peak value crossing the 

threshold, 𝑛𝑛 represent the number of cross-correlation pairs and 𝑚𝑚 represent the number of peaks 

associated with a given location crossing the threshold. This rule is modeled by the binomial 

distribution. So, the equation for relating the M out of N rule to a resulting FA rate is given by 

[29]: 

𝑃𝑃𝑓𝑓𝑓𝑓 =  ��𝑛𝑛𝑖𝑖 � 𝑝𝑝𝑘𝑘
𝑖𝑖 (1 − 𝑝𝑝𝑘𝑘)𝑛𝑛−𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑚𝑚

                (3.4) 

where the �𝑛𝑛𝑖𝑖 � part stands for the binomial coefficient, which means the number of combinations 

of 𝑛𝑛 things taken 𝑖𝑖 at a time. To use this in setting a desired FA rate, a low FA rate on the cross-

correlation peaks is selected first at a relatively high value to ensure a consistent FA rate robust to 

mismatches in the distribution model. Then the m value can be selected the lower the FA rate to a 

more reasonable value. Suppose that we have 𝑝𝑝𝑘𝑘 = 10−1 (the FA rate used in equation 3) and 

𝑛𝑛 = 28. The 𝑚𝑚 value ranges from 1 to 28, integer values only. The 𝑃𝑃𝑓𝑓𝑓𝑓 that closest to the 10−4 

(desired false alarm rate) will be chosen and then use the look up table based on equation 3.4 to 

find out the 𝑚𝑚 value. The 𝑚𝑚 value obtained here denotes the minimum number of detections for a 

given false alarm rate, in this case 10−4. 

    As we mentioned above, an appropriate false alarm rate (or threshold) will be able to detect 

most targets with few or no false detections. However, the CFAR detectors become less accurate 

with lower false alarm rates, so a MON filter will be applied as a secondary threshold. The 

CFAR-MON filter will not suffer from the shape parameter differences, as a high enough false 

alarm rate (10−1 or 10−2) is applied for the CFAR part and it shows a stable detection for 

different shape parameter in Figure 3.3. For the MON part, it’s only associated with microphone 

pairs and data size, so the results should be much more stable than CFAR filter under lower false 

alarm rate cases. The primary source of error in this test will be the assumed 𝑝𝑝𝑘𝑘 which is the FA 

rate on the first threshold test. 
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Chapter 4 Simulation 
 

4.1 Introduction 
 

    This chapter demonstrates the performance of TDOA-DTS algorithm compared to SRP 

algorithm and the stable detection performance of CFAR-MON double thresholding process. The 

Section 4.2 introduces the room setup for simulations. With the same room set up, it makes sure 

the room size, sound speed and noise power level are stay the same. Then the target sound 

sources, noise sources and their positions are same for a comparative study. The reflection rate of 

the wall and the number of noise sources are variable. Section 4.3 compares SRP and TDOA-

DTS results under same setups. Section 4.4 shows the CFAR-MON dual-threshold performance 

and Section 4.5 presents the computational load comparison between TDOA-DTS and SRP. Last 

section, Section 4.6, is experiment verification which uses the real data collected from lab.  

 

4.2 Room setup 
 

To test the algorithm and verify computational and CFAR performance, a simulation room has 

been set up. The room has a size of 7×8×3.5𝑚𝑚. Coordinates of two opposite corner points for 

this room are [−3.5,−4, 0] and [3.5, 4, 3.5]. As the Figure 4.1 shows a resulting SRP image plane 

with eight microphones placed around the area of interest. The color-bar denotes the SRP values. 

Two black circles are the position of two sound sources. The signal model includes reverberation 

as presented in chapter 1. The reverberation is simulated using the image method [23, 20]. To 

limit the computational load of the simulation, multiple room reflections were computed until the 

reflected energy dropped 60 dB from the first reflection. In some simulation, one or two coherent 

noise sources will be put outside the area of interest. The power of noise sources will be 

controlled by a given signal-noise-ratio (SNR). Typically, it is set to -30. The system noise is 

assumed as white noise and its SNR is set to -30 either.  
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Figure 4.1 One example of the simulation room. Reflection coefficients for four walls are 0.5 and 0.4 for 

floor and ceiling. System noise SNR is -30dB. No noise target presented. 

 

Table 4.1 This table shows the test parameters and which detection rule is using. 

Figure 

Number 

Reflection Coefficients 

(walls, floor and ceiling) 

Number of Noise 

Sources 

Detection Rule 

4.2 0.5, 0.4, 0.4 1 (a) SRP (b) TDOA-DTS 

4.3 0.5, 0.4, 0.4 2 (a) SRP (b) TDOA-DTS 

4.4 0.7, 0.5, 0.5 1 (a) SRP (b) TDOA-DTS 

4.5 0.7, 0.5, 0.5 2 (a) SRP (b) TDOA-DTS 

4.6 0.9, 0.7, 0.7 1 (a) SRP (b) TDOA-DTS 

4.7 0.9, 0.7, 0.7 2 (a) SRP (b) TDOA-DTS 

Other parameters: CFAR false alarm rate is 10−1, MON rule false alarm rate is 10−1, coherent 

noise sources SNR −30, signal positions are (−1.5, 0, 1.5) and (1.5, 1, 1.5), coherent noise 

sources for one is (−3.5, 2, 1.5), for two noise sources are (−3.5, 2, 1.5) and (2,−4, 1.5).  
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4.3 SRP vs TDOA-DTS 
 

The simulation is using the room setup described above, but with different number of noise 

sources and different reflection rate. Noise sources are simulating the noise coming from 

windows, vents and other sources outside the FOI. Therefore, they are put outside the FOI and 

won’t scanned by the SRP system. The simulation is using the parameters shown in Table 4.1. 

SRP algorithm uses CFAR threshold with Weibull distribution shape parameter equaling to 1.26 

[26]. Because the detection is operated on a 2D image, the guard band is all segments between 2 

segments away from tested segment to 5 segments. While the TDOA-DTS algorithm uses CFAR-

MON threshold with shape parameter equaling to 2.5 (Figure 4.8 in Section 4.4). The guard band 

is 5 to 55 sampling points away from the tested peak. The two sound sources are human voices 

and the noise sources are randomly generated white noise.  

In the simulations, the false alarm rate is set to an extremely low value, which will make no 

targets detected. Then the false alarm rate will be raised until two sound sources are detected. By 

comparing the number of false detections, the performance of both algorithms can be evaluated 

fairly.  

The results show that the SRP and TDOA-DTS have similar performance under the low and 

medium reverberation conditions. However, both algorithms detect much more false detections 

and make the actual target indistinguishable. Therefore, the TDOA-DTS algorithm shows a 

similar performance comparing to the SRP algorithm.  

 

 

 

 

 

 

 

 

 



24 
 
 

  
(a)                                                                    (b) 

Figure 4.2 Two simulations with wall, floor and ceiling reflection coefficients set as 0.5, 0.4 and 0.4. 

Actual positions of two targets are represented by black circles. One noise source at blue X. SRP: No 

false detection. TDOA-DTS: No false detection 

 

  
(a) (b) 

Figure 4.3 Two simulations with wall, floor and ceiling reflection coefficients set as 0.5, 0.4 and 0.4. 

Actual positions of two targets are represented by black circles. Two noise sources at blue Xs. SRP: No 

false detection. TDOA-DTS: No false detection 
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 (a) (b) 

Figure 4.4 Two simulations with wall, floor and ceiling reflection coefficients set as 0.7, 0.5 and 0.5.  

Actual positions of two targets are represented by black circles. One noise source at blue X. SRP: 4 

false detections. TDOA-DTS: 2 false detections 

 

  
 (a) (b) 

Figure 4.5 Two simulations with wall, floor and ceiling reflection coefficients set as 0.7, 0.5 and 0.5. 

Actual positions of two targets are represented by black circles. Two noise sources at blue Xs. SRP: 3 

false detections. TDOA-DTS: 2 false detections 
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 (a) (b) 

Figure 4.6 Two simulations with wall, floor and ceiling reflection coefficients set as 0.9, 0.7 and 0.7.  

Actual positions of two targets are represented by black circles. One noise source at blue X. SRP: 68 

false detection. TDOA-DTS: 64 false detection 

 

  
 (a) (b) 

Figure 4.7 Two simulations with wall, floor and ceiling reflection coefficients set as 0.9, 0.7 and 0.7. 

Actual positions of two targets are represented by black circles. Two noise sources at blue Xs. SRP: 65 

false detection. TDOA-DTS: 49 false detection 

 

 

 

 

 

 

 

-3 -2 -1 0 1 2 3

Meters

-4

-3

-2

-1

0

1

2

3

4

M
et

er
s

Mics at squares, Target in circle, Noise sources at Xs

1

2

3 4

5

6

78

-3 -2 -1 0 1 2 3

Meters

-4

-3

-2

-1

0

1

2

3

4

M
et

er
s

Mics at squares, Target in circle, Noise sources at Xs

1

2

3 4

5

6

78

-3 -2 -1 0 1 2 3

Meters

-4

-3

-2

-1

0

1

2

3

4

M
et

er
s

Mics at squares, Target in circle, Noise sources at Xs

1

2

3 4

5

6

78

-3 -2 -1 0 1 2 3

Meters

-4

-3

-2

-1

0

1

2

3

4
M

et
er

s
Mics at squares, Target in circle, Noise sources at Xs

1

2

3 4

5

6

78



27 
 
 

4.4 CFAR and MON threshold 
 

As mentioned in chapter 3, CFAR and MON are applied to detect significant peaks. To achieve 

a better filter, some simulations are performed on these filters. The CFAR filter assumes noise 

distribution model to estimated threshold. Therefore, the first simulation is running to find a best 

fit distribution model.  

The simulation room is the same used above. To set up a noise only condition, the sound 

sources are put outside the field of interest (and region in the cross-correlation were excluded 

from the test). Weibull distribution is a good choice, because it can be interpolated from 

exponential distribution to Rayleigh distribution by applying different shape parameter.  

 
Figure 4.8 The results of CFAR filter with shape parameter “b” from 1.5 to 3.5 and step is 0.5. Total 

four different false alarm rates are tested. 5000 different test run with more than 20 million peaks 

checked.  

 

The simulation is running with eight microphones and two sound sources outside the field of 

interest. The reflection coefficients are [0.5, 0.5 ,0.5 ,0.5 ,0.4 ,0.4] for four walls, floor and 

ceiling. The x axis represents the test false alarm rates and the y axis denotes the detected false 

alarm rate over test false alarm rate ratio, which means the 100 is the ideal results. From the plot, 



28 
 
 

2.0 and 2.5 would be better choice for the shape parameter. Furthermore, some extra information 

can be concluded. The CFAR detector is more stable at higher false alarm rates (10−1 and 10−2) 

conditions, so lower false alarm rate will make the detector much more sensitive to the 

distribution mismatch. The problem of high false alarm rate is the huge amount of detection 

peaks. It makes the direct use of CFAR results very difficult. Therefore, MON detector will do 

the second thresholding to achieve the final detection results.  

The results of CFAR-MON double threshold filter with the same set up as Figure 4.8. As 

shown in Figure 4.9, it’s obvious that the established false alarm rates are stable when different 

false alarm rates applied. The CFAR-MON filter will get more stable results under lower false 

alarm rate (lower than 10−4) comparing to CFAR filter. When the shape parameter equals to 1.5, 

the CFAR detections are much lower than the expected presented in Figure 4.6. Therefore, after 

applied the MON detection algorithm, there is no enough data for false alarm rate lower than 

10−3. 

 
Figure 4.9 The results of CFAR-MON filter with CFAR false alarm rate 0.1 and MON false alarm 

from 𝟏𝟏𝟏𝟏−𝟏𝟏 to 𝟏𝟏𝟏𝟏−𝟔𝟔. The whiten parameter is 1 in all the simulations. Three different shape 

parameters are applied.  
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4.5 Time complexity comparison between SRP and TDOA-DTS algorithms  
 

The purpose of this thesis is using TDOA algorithm to speed up the sound source localization 

procedure. This part will focus on the time complexity of these two different algorithms. Assume 

the number of microphones is 𝑁𝑁 and length the sampled microphone time segment is 𝑋𝑋. The field 

of interest is divided into small segments and total number of spatial points is represented as 𝑆𝑆. 

As the Section 2.3 presented, SRP algorithm will first scan through all 𝑆𝑆 grid points in the field of 

interest. For a single run of one segment, 𝑁𝑁 signals with length 𝑋𝑋 will be shifted and added 

together to compute the power. Therefore, the SRP will have total 𝑆𝑆 ∗ 𝑁𝑁 ∗ 𝑋𝑋 real multiplications. 

The TDOA-DTS algorithm will test cross-correlation results for all possible microphone pairs, so 

the number of microphone pairs is 𝑘𝑘(𝑘𝑘−1)
2

. For each pair of 𝑋𝑋 length microphone signals, cross-

correlation is computed, and the complexity of TDOA-DTS will be 𝑘𝑘(𝑘𝑘−1)
2

∗ 𝑋𝑋2. The ratio that 

TDOA-DTS over SRP is (𝑘𝑘−1)𝑋𝑋
2𝑆𝑆

. If the field of interest (FOI) is huge enough and makes that 𝑆𝑆 ≫

𝑁𝑁𝑋𝑋, the TDOA-DTS will have much more fast speed than the SRP.  

In the simulation, the field of interest is 5 × 5 × 1.5𝑚𝑚 with 0.04𝑚𝑚 steps, so 𝑆𝑆 =

126×126×76 ≈ 1.2×106. Assuming the 𝑁𝑁 = 8 and 𝑋𝑋 = 6000, the expected value should be: 

(𝑁𝑁 − 1)𝑋𝑋
2𝑆𝑆

=
7×6000

2×1.2×106
= 0.0175              (4.1) 

Another case, if the simulation just runs in two dimensional 5 × 5𝑚𝑚 with 0.04𝑚𝑚 steps then 𝑆𝑆 =

126×126 = 15876. Keep other parameters the same, the ratio will be: 

(𝑁𝑁 − 1)𝑋𝑋
2𝑆𝑆

=
7×6000

2×15876
≈ 1.3228                 (4.2) 

With same value plugged into the simulations, 500 different runs have been tested. The time is 

obtained by using tic and toc function in MATLAB. Table 4.2 shows the results. The third 

column, simulation average, is the average value of TDOA-DTS running time over SRP running 

time, and fourth column is the standard deviation of all results. It’s clear that the equation 

mentioned above can predict the results within an order of magnitude.  

Table 4.2 Simulation results and equation estimated results comparison with two different number of 

pixels. The microphone number 𝑵𝑵 = 𝟖𝟖, and signal length 𝑿𝑿 = 𝟔𝟔𝟏𝟏𝟏𝟏𝟏𝟏 

Number of Pixels 

(𝑆𝑆) 
Estimated Value ((𝑘𝑘−1)𝑋𝑋

2𝑆𝑆
) Simulation Average Simulation Standard 

Deviation 

1.2×106 0.0175 0.0383 0.0015 

15876 1.3228 1.1331 0.0377 
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4.6 Simulation verification 
 

Based on the simulations shown above, the CFAR-DTS algorithm performs as expected. So, 

experiments are set up in the lab and the actual data is being recorded to verify the simulation 

results. The real data is collected in the Distributed Audio Lab located in Davis Marksbury 

Building. The lab environment is shown in the Figure 4.10.  

  
Figure 4.10 The lab environment where the experiment data collected. Red circles are microphones 

and blue circle is the speaker (sound source).  

 

The frame in the center of the room is the experiment area and its size is 3.659m × 3.659m × 

2.29m (including the frame width). The eight microphones are settled on the “wall” of the frame 

distributed with 1.5m high from the ground. Speaker is also placed at the same height as the 

microphones. The top-down view of the microphones, speaker and the frame is shown in Figure 

4.11.  
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Figure 4.11 Microphones are represented by red squares, sound source is placed at the circle.  

 

A two second white noise signal is used as the sound source. To comparing the experiment and 

simulation results, the same setup is used in this simulation. Additionally, the reflection 

parameters of the simulation are 0.7 for the wall and 0.5 for the ceiling and floor and the SNR is 

−10 dB. The noise distribution uses Weibull distribution with shape parameter 1.5. The 

experiment and simulation test one second received signals with 50ms window nonoverlap. The 

detections that within 0.12m (three times grid pix width) from sound source will be considered as 

right detection, other detections will be counted as false detections. Figure 4.12 shows the 

experiment and simulation results. The difference between these two results are less than the 95% 

confidence limits, so the simulation follows the change of real data experiment with acceptable 

differences. The high error shown under low false alarm rate conditions is caused by not having 

enough test peaks. The simulation has more false alarms than experiment in Figure 4.12. The 

reason is that the target in simulation have same power for all directions, while the experiment is 

using a speaker focus a fixed direction. Therefore, as shown in Figure 4.13, the simulation has a 

larger size of target detection, which leads to more false alarms.  
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Figure 4.12 The vertical lines are error bar with 95% confidence. x axis is the ideal false alarm rate, 

and y axis is the ratio that experiment and simulation results over ideal value. Closer to red dotted line 

means more accurate and black dotted line shows the area within tolerable difference.  

    

 
 (a) (b) 

Figure 4.13 Detection results. The blue Xs denote the right detections and red Xs are false detections. 

(a) Simulation results, (b) Experiment results.  
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Chapter 5 Conclusion 
 

Conclusion 

     

    This thesis presents two classic solutions to sound source localization and proposes a new 

algorithm called TDOA-DTS algorithm. The new algorithm uses a Delay Search Table replacing 

the original hyperbola drawing method. It has similar detection performance and about 26 times 

faster speed comparing to SRP under the same simulation cases. A double thresholding process, 

named CFAR-MON, is also introduced to solve the problem caused by CFAR and maximum 

peaks finding detection. The CFAR-MON proves to be a more stable detection method than the 

CFAR under different false alarm rate. The simulation results are verified by the experiment with 

real data recorded in the lab.  
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