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ABSTRACT OF DISSERTATION

NEUTRON-ANTINEUTRON TRANSITIONS: EXPLORING B − L VIOLATION
WITH QUARKS

In the Standard Model (SM), the quantity baryon number (B) − lepton number
(L), B − L, is perfectly conserved. Therefore, the observation of B − L violation
would reveal the existence of physics beyond the SM. Traditionally, given the severe
experimental constraints on |∆B| = 1 processes, B − L violation with baryons is
probed via neutron-antineutron (n − n̄) oscillations, although this process suffers
from quenching in the presence of external fields or matter.

In this dissertation, we discuss another possibility, n − n̄ conversion, in which
the |∆B| = 2 process appears with an external source. We start with the Lorentz
invariant B − L violating operators of lowest mass dimension and show how the
appearance of constraints on the “arbitrary” phases in the discrete symmetry trans-
formations help restrict the possible low energy n − n̄ transformation operators. To
explain the appearance of CPT odd n−n̄ transition operators (although they eventu-
ally vanish due to the fermion anticommutation relations), we connect it to theories of
self-conjugate isofermions and show that the appearance of n− n̄ oscillations cannot
occur in pure Quantum Chromodynamics (QCD) in the chiral limit. We then show
how n − n̄ conversion can be free from quenching and demonstrate one way how it
can be connected to n− n̄ oscillations since the quarks carry electromagnetic charge.
Effective field theory is utilized to find the quark-level conversion operators and to
determine the coupling parameter associated with the nuclear-level conversion oper-
ators. Finally, we argue how n− n̄ conversion can provide a complementary probe to
oscillation experiments. We discuss possible n− n̄ conversion proposals and explicitly
show how n− n̄ conversion experiments can set limits on the scale of B−L violation.
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chapter 1

INTRODUCTION

Electrically neutral particle oscillations are no longer a surprising phenomenon in

particle physics and have been playing an important role in revealing the nature of

matter and forces participating in them. Neutral meson oscillations, such as K0−K̄0

and B0−B̄0, and neutrino oscillations are two excellent examples. The nature of CP1

violation in the Standard Model (SM) was first observed through the decay of the

CP-odd kaon (KL) into two charged pions[1]. Although it appears in a decay process,

later Wolfenstein pointed out that it actually arises from the K0−K̄0 mixing[2]. That

CP violation can arise with the help of neutral meson oscillations was later confirmed

by studies of the BB̄ system, which also help in realization of the first true test of

time reversal (T) violation in the SM [3]. Neutrinos have been treated as massless

particles in the SM, and experimental observation of neutrino oscillations is the first

clear evidence of existence of new physics, i.e., physics beyond the SM (BSM), because

this can only occur if the neutrinos have mass. Since the neutron and antineutron

are electrically neutral, the only thing forbidding a neutron from transforming into

an antineutron is the baryon number (B) conservation.

There are many compelling reasons to believe that fundamental particle interac-

tions should not respect baryon number symmetry. Possibly the most powerful one is

that to generate the observed matter-antimatter asymmetry (or baryon asymmetry)

in the universe (BAU) baryon number violation is necessary [4].

In fact, even the SM allows for baryon number violation. In the SM, the La-

grangian possesses an accidental2 global baryon number symmetry. Because of the

conserved baryon number current, ∂µj
µ
B = 0, it is impossible to violate baryon number

at the classical level. However, Hooft [5] pointed out that loop-level effects can cause

the violation of both B and L, but their cancellation leaves the combination B − L
intact. Although the probability of such processes occurring today is exponentially

suppressed, in special situations, such as the primordial universe at very high tem-

peratures [6, 7, 8, 9], B and L violations can play a significant role in baryogenesis.

1C and P denote charge conjugation and parity respectively.
2The most general renormalizable Lagrangian, which is invariant under the SM gauge groups and

contains only color singlet Higgs fields, is automatically invariant under global Abelian symmetries,
hence the name “accidental”.
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CHAPTER 1. INTRODUCTION 2

Nevertheless, neither B nor L is strictly conserved, and only B−L is truly conserved

in the SM. Therefore, any observation of B − L violation would reveal the existence

of new physics.

B − L violation can appear in theories of leptons only. The most intriguing pos-

sibility is that of Majorana neutrinos, i.e., neutrinos that are their own antiparticles.

Since the establishment of massive neutrinos, two theoretical descriptions of a mas-

sive neutrino become available: it can be either a Dirac or a Majorana particle, which

corresponds to its mass emerging from either Dirac or Majorana mass terms. In fact,

it can also emerge from mass of both types [10], though the mass eigenstates are still

Majorana [11, 12]. A nonzero signal in searches for neutrinoless double beta decay

(ββ0ν) [13, 14, 15] would establish the Majorana character of neutrino, because B−L
violation would always generate an effective Majorana mass term even if such a mass

term were not explicitly present [16]. However, observing the ββ0ν process is chal-

lenging. Refs.[17, 18, 19] point out that the contributions to the ββ0ν amplitude from

the various neutrino mass can interfere destructively and partially cancel each other.

Moreover, even a total cancellation is possible in a certain gauge model [20]. Conse-

quently, it is possible that we may never observe such a process. To date no definite

signal has been observed. Therefore, exploring B − L violation in other sectors is

necessary.

B − L violation can also appear in theories with quarks because quarks carry

a baryon number of 1/3. One example would be neutron - antineutron (n − n̄)

oscillation. There are several motivations to carry out n− n̄ oscillation searches.

First of all, n − n̄ oscillation searches may aid in the understanding of neutrino

oscillations. It has been noted that well motivated quark-lepton unified theories

which implement the seesaw mechanism3 for neutrino masses can lead to observable

amplitude of n− n̄ oscillation [24, 25, 26, 27, 28, 29, 30, 31, 32]. Moreover, recently

it has been shown that observing n− n̄ oscillations in addition to another B violating

mode (not necessarily breaking B − L), such as p → e+π0 or n → e−π+, can reveal

the Majorana nature of neutrino [33]. This discussion utilizes a model-independent

effective operator approach. It is showed that a Feynman diagram for ββ0ν can

always be constructed by combining the responsible diagrams for n − n̄ oscillations

and any other B violating mode. For example, the Feynman diagrams responsible

for p→ e+π0, n→ e−π+, and n− n̄ oscillations are shown in Fig. 1.1. Then one can

construct ββ0ν diagrams in Fig. 1.2 from the diagrams responsible for n−n̄ oscillation

3The seesaw mechanism consists of making one particle light at the expense of making another
heavy [21, 22, 23].
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and the other B violating modes, and thus demonstrates the Majorana character of

neutrino without an observation of ββ0ν .

Secondly, the interactions that generate n− n̄ oscillations may also be responsible

for the generation of the BAU [34]. It is argued in Ref. [34] that the primordial

baryon asymmetry induced by interactions causing such oscillations would survive

non-perturbative weak interaction effects, unlike the one responsible for the leading

proton decay modes, p → e+π0 and p → ν̄K+, which violate B and L, but preserve

B−L. Therefore, there may be an intimate connection between n− n̄ oscillation and

the observed BAU [24].

Finally, the lowest mass dimension operators that can mediate proton (or B vi-

olating neutron) decay with SM fields and symmetries has dimension 6. For exam-

ple, the p → e+π0 decay can be characterized by the dimension-six effective La-

grangian suppressed by two powers of a new physics cutoff Λp [35, 36]. The current

limit on its inverse decay rate from the SuperKamiokande (SuperK) experiment is

τ(p→ e+π0) > 1.4× 1034 yrs [37]. Applying the most recent lattice evaluation of the

nucleon matrix element leads to a lower limit of Λp > 4.9 × 1015 GeV. Since n − n̄
oscillations arise from the dimension-nine effective Lagrangian, they are suppressed

by five powers of a cutoff Λnn̄ [38]. The best limit on the n− n̄ oscillation time for free

neutrons is τ(n − n̄) > 0.86 × 108 s, which comes from an experiment performed at

the Institut Laue-Langevin (ILL) [39]. It yields a much lower limit Λnn̄ > 105 GeV.

A comparable limit is also obtained by the SuperK [40] for bound neutrons inside

nuclear matter. Consequently, an observation of n− n̄ oscillation near current levels

of sensitivity would suggest a relatively low scale of new physics.

B−L violation can appear in theories of both quarks and leptons. The n→ e−π+

decay is a typical example. It obeys ∆(B−L) = −2, and its effective Lagrangian has

dimension-seven [41, 42, 43, 44]. The current best limit on the lifetime of this decay

is τ(n→ e−π+) > 6.5× 1031 yrs from the IMB experiment [45], which yields a limit

Λn > 6.6× 1010 GeV. Compared with Λnn̄, Λn is still 5 orders of magnitude larger.

The possible mechanisms of generating n − n̄ oscillations have been explored in

various models. Some early works on the subject can be found in Refs. [46, 47, 48],

and some latest models can be found, e.g., in Refs. [49, 32]. An effective |∆B| = 2

operator arises from the diquark couplings to a particle “X” in Fig. 1.3. These X1,2

particles carry baryon number, and generally they obtain their masses through a

spontaneous breaking of a big symmetry in a grand unified theory (GUT) model to

a relatively smaller symmetry, e.g., from SU(5) to the SM symmetry. These masses

usually are very heavy. Note that they are not necessarily scalar particles, though in
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Figure 1.1: Diagrams responsible for (a) proton decay; (b) neutron decay; and (c) n−n̄
oscillations. Note that we have revised these diagrams from Ref. [33] to make them
more transparent. The blue circle denotes the vertex associated with the dimension 6
operator, and the red polygon is the vertex associated with the dimension 9 operator.
It is easy to check that processes (b) and (c) break the B − L, while (a) does not
though both B and L are violated.

Figure 1.2: Neutrinoless double β decay diagrams determined by (a) p→ e+π0 decay
and n− n̄ oscillations; and (b) n→ e−π+ decay and n− n̄ oscillations [33].
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Figure 1.3: Feynman diagram contributing to neutron-antineutron oscillations [32].

most of cases they are. For example, a super-heavy vector boson is used in Ref. [47].

Interestingly, Ref. [46] showed that the mechanism that produces Majorana neutrinos

also yields n−n̄ oscillations. The effective |∆B| = 2 operator is a six-fermion operator

and is suppressed by the masses of X particles. We will explicitly discuss the six-

fermion n− n̄ oscillation operators with certain symmetries in a later chapter.

Generally one can search for n− n̄ oscillations with free neutrons or bound neu-

trons in nuclei. However, it is well-known that n − n̄ oscillation is very sensitive to

the environment [50, 51]. In the presence of magnetic field or matter, its transition

probability suffers from quenching problems. Due to the atmospheric neutrino in-

duced background [51], the search for n− n̄ oscillations in nuclear decay experiments

becomes less efficient than the one with free neutrons. However, it has been pointed

out recently that n− n̄ oscillation search with free neutrons requires more stringent

experimental conditions [52], so that it would not have been possible to observe n− n̄
oscillations in existing searches. There is another |∆B| = 2 and |∆L| = 0 process,

dinucleon decay, which can also be related to n− n̄ oscillations. However, the dinu-

cleon decay rate depends on how close the nucleons in the nuclei can be found to be.

This, in turn, depends on the detailed structure of the nuclear state in way that it is

difficult to test. Moreover, the dinucleon decay experiments involve large detecting

setups, for which the atmospheric neutrino induced background can be a problem.

In this thesis, we seek alternative ways to explore B−L violations with |∆B| = 2

and |∆L| = 0 processes without such disadvantages. In particular, we discuss a new

possibility, n−n̄ conversion, with which can achieve our goal. This thesis incorporates
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two published papers: [53], [54], and one ongoing work, which constitutes Chapters 3

- 4, 8, and 5 - 7, respectively. The outline of the thesis is arranged as below.

In Chap. 2, the phenomenology of n − n̄ oscillations is discussed. The disad-

vantages we have mentioned are also explicitly discussed. In Chap. 3, we consider

the Lorentz invariant B − L violating operators with lowest mass dimension, and

check their CPT transformation properties to make sure they are CPT invariant.

We find that there exist intrinsic phase constraints associated with discrete symme-

try transformations of fermion fields. Moreover, one interesting operator we call a

n − n̄ conversion operator is proposed. Unlike n − n̄ oscillations that suffer from a

quenching problem due to the energy difference between the neutron and antineutron

in the presence of magnetic fields, n − n̄ conversions can flip the spin, so that the

neutron and antineutron have the same energy in the presence of magnetic fields and

the quenching problem is solved. In Chap. 4, the relation between B − L violation

and theories of self-conjugate fermions is discussed. We find that it is impossible

to study n − n̄ oscillations in QCD in the chiral limit 4. To serve the purpose of

later discussions, a brief but necessary discussion about the MIT bag model and the

matrix elements calculations of quark-level n − n̄ oscillations is given in Chap. 5.

The n− n̄ conversion operator is studied in Chap. 6. Noting the charged quarks in-

side neutrons, we manage to determine the associated coupling coefficient through an

electromagnetic connection between n− n̄ oscillation and conversion operators in the

MIT bag model. In Chap. 7, possible experimental realizations of n − n̄ conversion

are considered. Other possible theoretical processes with |∆B| = 2 and |∆L| = 0

are also discussed. Chapter 8 gives a brief summary of CP violation in the neutral B

meson oscillation (BB̄) system. A generalized “T” violating method proposed to give

a better determination of small effects, such as penguin contributions, is discussed.

We argue that it can greatly enable precision studies of CP violation in future exper-

iments. CP violation in n− n̄ oscillations is also discussed. There is no CP violating

observable associated with n − n̄ oscillation operators alone, hence observing n − n̄
oscillation cannot imply the existence of CP violation. One can probe CPV in n− n̄
oscillations through the failure of detailed balance, i.e., the probability for n → n̄ is

not equal to that for n̄ → n. We consider a particular model mechanism in which

such an effect can occur. Finally, a summary of the whole thesis is given in Chap. 9.

4The Lagrangian contains only the SU(3) color gauge fields and the quark fields, and in the
chiral limit quarks belonging to the same isospin doublet are indistinguishable.



chapter 2

PHENOMENOLOGY OF n− n̄ OSCILLATIONS

2.1 n− n̄ oscillations in the 2× 2 framework

Neutron-antineutron oscillations have been studied in the context of a 2 × 2 effective

Hamiltonian framework some time ago [55, 56]. Here I will give a brief summary of

the general formalism for the analysis of n−n̄ oscillations. A more detailed discussion

about n− n̄ oscillations both in theory and experiment can be found in Refs. [50, 51].

Given CPT symmetry is assumed a priori, the effective Hamiltonian (H) in the

basis (|n〉, |n̄〉) has the general form

M =

(
En δ

δ En̄

)
, (2.1)

where the off-diagonal elements δ are the matrix elements of |∆B| = 2 operators.

They are taken to be real and are denoted as

〈n|H|n̄〉 = 〈n̄|H|n〉 ≡ δ. (2.2)

The n− n̄ oscillation time is defined as

τnn̄ =
1

δ
. (2.3)

The diagonal matrix elements of H are labeled as

〈n|H|n〉 = En, 〈n̄|H|n̄〉 = En̄, (2.4)

with =(En) = =(En̄) = −iλ/2, where λ−1 = τn = 880s [57] is the mean lifetime of a

free neutron.

The diagonalization of M yields the mass eigenstates, namely,(
|n1〉
|n2〉

)
=

(
cos θ sin θ

− sin θ cos θ

)(
|n〉
|n̄〉

)
(2.5)

with tan(2θ) = 2δ/∆E, and the respective energy eigenvalues

E1,2 =
1

2

[
En + En̄ ±

√
(∆E)2 + 4δ2

]
, (2.6)

7
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where ∆E = En − En̄, which incorporates any interaction effects with the external

environment that are different for the neutron and the antineutron.

If we start with a pure neutron state |n〉 at t = 0, then the probability of finding

an antineutron after a finite time t is given by

Pn̄(t) = |〈n̄|n(t)〉|2 =
δ2

(∆E/2)2 + δ2
sin2[

√
(∆E/2)2 + δ2t]e−λt. (2.7)

Note that only the imaginary part of En and En̄ can contribute to the exponential.

Since t is usually much smaller than τn, the exponential term can also be dropped.

We see that when ∆E = 0, the transition probability Pn̄ = sin2(δt), which is the case

for n − n̄ oscillations in the absence of magnetic fields and matter. It appears that

the transition probability for n→ n̄ is always quenched by the energy difference ∆E.

This can be easily explained from the point of view of physics conservation laws. In

order to obtain n−n̄ oscillations, certain physics conservation laws must be respected.

The most crucial one is the energy-momentum conservation law, which demands that

initial and final particles must share the same total energy and momentum. In this

case, the initial and final particles are only a neutron (antineutron) and an antineutron

(neutron) respectively. If there exists an energy difference ∆E between them, it

would be very hard to perform n− n̄ oscillation without breaking energy-momentum

conservation law, and thus it is not surprising that such transition probability is

always smaller than sin2(δt).

There are various factors that can cause an energy difference between neutrons

and antineutrons. For example, since neutrons and antineutrons are spin 1/2 fermion

particles, an external magnetic field can result in an ∆E. Experiencing different

optical potentials inside nuclei, neutrons and antineutrons also have different energies.

All these effects result in a quenched transition probability of n− n̄, and they will be

explicitly discussed in later subsections.

It may be worthy having a general idea about the energy scale of δ from the begin-

ning. The existing upper bound on |δ| from existing experiments, e.g., in Refs. [39, 40],

is approximately less than 10−32 GeV, which is 32 orders of magnitude smaller than

the mass of the neutron. This constraint poses a challenge for any conceivable ex-

perimental environment since |∆E| is generally orders of magnitude larger than |δ|.
For example, consider the |∆E| generated by a magnetic field. Since the signs of

magnetic moments of the neutron (µn) and antineutron are opposite, in presence of

a magnetic field B, neutron and antineutron energies will be different by

|∆E| = 2|µn ·B| = (1.206× 10−22MeV)
( B

10−9T

)
, (2.8)
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where B = |B|. Note that the value of |∆E| ' 10−22 MeV, though resulting from a

very small magnetic field 1 nT, is still much larger than |δ|, in fact |∆E/δ| ' 107.

Apparently the transition probability of n−n̄ always suffers from a severe quench-

ing problem. Then one would wonder if we could really ever detect n− n̄ oscillations.

It turns out that one can work in the so-called “quasi-free” limit, i.e., |∆E|t � 1.

Note that in this limit, taking the argument of the sine function to be small results

in a unquenched transition probability

Pn̄(t) = (δt)2e−λt =
( t

τn−n̄

)2

e−λt, (2.9)

where τn−n̄ is the oscillation time defined as

τn−n̄ =
1

|δ|
. (2.10)

Now let us turn to explicit cases.

2.1.1 n− n̄ oscillations in vacuum

Neutron-antineutron oscillations in vacuum is the simplest case, in which a neutron

(antineutron) spontaneously transforms into an antineutron (neutron). Due to the

angular momentum conservation law the initial and final particles share the same

spin projections. Moreover, since nothing disturbs the energy and momentum of

initial neutrons (antineutrons), the energy-momentum conservation law ensures final

antineutrons (neutrons) have the same energy and momentum. If CPT symmetry is

not broken, which guarantees that particle and its antiparticle have the same mass,

then we can expect an unquenched transition probability.

Let us demonstrate that explicitly. In the rest frame of neutron (antineutron),

the diagonal matrix elements of H now can be simply written as

〈n|H|n〉 = 〈n̄|H|n̄〉 = mn −
iλ

2
, (2.11)

where mn is the mass of neutron and λ−1 = τn is the mean lifetime of a free neutron.

Then the matrix H in the basis (|n〉, |n̄〉) takes the form

M =

(
mn − iλ/2 δ

δ mn − iλ/2

)
. (2.12)

Diagonalizing M yields the mass eigenstates

|n±〉 =
1√
2

(|n〉 ± |n̄〉), (2.13)
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and the respective eigenvalues

m± = mn −
iλ

2
± δ. (2.14)

Now the transition probability is simply

Pn̄(t) = sin2(δt)e−λt = sin2(t/τn)e−λt, (2.15)

and it is indeed not quenched.

2.1.2 n− n̄ oscillations in a static magnetic field B

Now we turn to the discussion of n − n̄ oscillations in a static magnetic field. As

mentioned before, neutron and antineutron interact with the external magnetic field

B via their magnetic dipole moments, µµµn,n̄ = µn,n̄σσσ, where µn = −µn̄ and σσσ is the

Pauli matrix vector, which is related to spin by the relation SSS = h̄σσσ/2.

Now the matrix M takes the form

M =

(
mn − iλ/2− µµµn ·BBB δ

δ mn − iλ/2 + µµµn ·BBB

)
. (2.16)

The mass eigenstates |n1〉 and |n2〉 are given by Eq. 2.5 with

tan(2θ) = − δ

µµµn ·BBB
. (2.17)

The eigenvalues of M can also be easily obtained through Eq. 2.6

E1,2 = mn ±
√

(µµµn ·BBB)2 + δ2 − iλ

2
. (2.18)

As discussed before, the energy scale |µµµn · BBB| naturally dwarfs that of δ, we can

simplify the formula of the transition probability by taking√
(∆E/2)2 + δ2 ' |µµµn ·BBB|, (2.19)

and eventually obtain

Pn̄(t) =
( δ

µµµn ·BBB

)2

sin2(|µµµn ·BBB|t)e−λt. (2.20)

We see that unless we work in the “quasi-free” limit, the energy splitting of the

neutron and antineutron in a magnetic field always quenches the appearance of n− n̄
oscillations. Thus the strategy in past and proposed searches for n − n̄ oscillations

for free neutrons has been to minimize the magnetic field [39, 58].
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Note that such energy splitting results from two factors: one is the relation

µn = −µn̄ and the other one is the consideration of same spin projections for both

neutrons and antineutrons. There is nothing we can do about the first factor without

breaking CPT symmetry. However, one can alter the second condition by introduc-

ing an external current into the n − n̄ oscillation system. Because of the additional

angular momentum contribution from the current, the total angular momenta can be

still conserved while the spin projections of the neutrons and antineutrons become

opposite. Although it will no longer be a n− n̄ oscillation process, it does result in a

transition that would be free from a quenching problem. This motivates us to form

the n− n̄ conversion idea that will be discussed in later chapters.

2.1.3 n− n̄ oscillations in matter

The matrix M in matter takes the form [47]

M =

(
mn,eff δ

δ mn̄,eff

)
, (2.21)

with

mn,eff = mn + Un, mn̄,eff = mn + Un̄, (2.22)

where Un and Un̄ are nuclear potentials that neutron and antineutron experience

respectively inside matter (i.e., a nucleus). The nuclear potential Un is practically

real, Un = UnR, while because of the annihilation of an antineutron with another

nucleon, Un̄ has a large imaginary part,

Un̄ = Un̄R + iUn̄I . (2.23)

Moreover, UnR, Un̄R, and Un̄I are all in the order of 100 MeV [59, 60, 61, 62]. In fact

the difference mn,eff −mn̄,eff ∼ 100 MeV, therefore the n− n̄ transition probability

is severely suppressed in matter. The eigenvalues of M are

E1,2 =
1

2

[
mn,eff +mn̄,eff ±

√
(mn,eff −mn̄,eff )2 + 4δ2

]
. (2.24)

Expanding E1, we have

E1 ' mn + Un − i
δ2Un̄I

(UnR − Un̄R)2 + U2
n̄I

. (2.25)

The imaginary part leads to matter (nucleus) instability via the annihilation of the

n̄ with one of the other nucleons, producing mainly pions. The corresponding rate,
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or so-called nuclear disappearance width, is

Γd =
1

τd
=

2δ2|Un̄I |
(UnR − Un̄R)2 + U2

n̄I

. (2.26)

Thus, τd ∝ δ−2 and typically it is written as

τd = Rτ 2
nn̄, (2.27)

where the value of the reduced lifetime R depends on the nucleus and can be obtained

from nuclear structure calculations. Theoretical estimates for various R can be found

in Ref. [62]. The reduced lifetime R is calculated by solving the coupled n − n̄

radial wave equations, which involve the nuclear potentials both for neutrons and

antineutrons. A large uncertainty arises because of the uncertainty in the strength of

the absorptive (imaginary) n̄-nuclear potential [62]. Ref. [62] claims that the overall

theoretical uncertainty is about 10% - 15%, but this is difficult to validate.

Table 1.1 shows the effective limit on the n− n̄ oscillation time τnn̄ from experi-

mental limits on nuclear stability. The best limit comes from the Super-Kamiokande

(Super-K) nuclear decay experiment: τnn̄ > 2.7× 108 s.

Experiment (year) Type
Effective limit on

τnn̄(sec)

SNO (2017) nuclear decay in 2H > 1.23× 108 [63]

Super-K (2015) nuclear decay in 16O > 2.7× 108 [40]

Soudan (2002) nuclear decay in 56Fe > 1.2× 108 [64]

ILL (1994) free neutron > 0.86× 108 [39]

ESS (2023-2025) free neutron ≥ 1.0× 1011 [58]

Table 2.1: Best limits on the neutron-antineutron oscillation time from experiments
of different types. Note that ESS is a projection for a future experiment, therefore
its limit on τnn̄ is not a real limit.

As the experiments push the limits on τnn̄ to much higher precision, the nuclear

decay searches, such as SNO [63], Super-K [40], and Soudan [64], become less efficient

because of the background induced by atmospheric neutrinos. Therefore it appears a

good idea to focus on the free neutron oscillation experiment rather than a failure of

nuclear stability or a dinucleon decay search. The European Spallation Source (ESS)

experiment [58] is exactly such an experiment. By improving the removal of magnetic
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fields and matter, the ESS experiment expects to measure n − n̄ oscillations in free

neutron beams with a sensitivity of three orders of magnitude better than the ILL

experiment [39].

2.2 Quantum damping of n− n̄ oscillations

In the previous section, our discussion of n − n̄ oscillations, with or without the

presence of environmental effects, are based on the transition probability obtained by

solving the time-dependent Schrödinger equations. Recently a new approach based on

the density matrix formalism and Bloch equation has been proposed to the problems

of both neutron-antineutron and neutron-mirror-neutron oscillations [65, 52]. It takes

the advantage of the density matrix formalism in describing the quantum system in

contact with the environment.

The system these authors consider is still a two-state system, |n1〉 and |n2〉, in

which n1 and n2 can represent a neutron and an antineutron or a neutron and a

mirror-neutron. A state of a system in vacuum is a pure state and can be written as

|ψ〉 = φ1(t)|n1〉+ φ2(t)|n2〉, (2.28)

where φ1 and φ2 are complex coefficients. The density matrix of such system is given

by

ρ̂(t) =

φ1φ
∗
1 φ1φ

∗
2

φ2φ
∗
1 φ2φ

∗
2

 ≡
ρ11 ρ12

ρ21 ρ22

 . (2.29)

The Hamiltonian of this system has the same formula as the 2× 2 effective Hamilto-

nian, with ∆E representing the energy splitting caused by the environmental effects,

such as magnetic field or surrounding gas particles. Due to the interactions with the

environment, the time evolution of the effective density matrix is described by the

Lindblad [66, 67] equations,

˙̂ρ(t) =
dρ̂(t)

dt
= −i[H, ρ̂(t)] +

∑
n

[Lnρ̂(t)L†n −
1

2
L†nLnρ̂(t)− 1

2
ρ̂(t)L†nLn], (2.30)

where Li are Lindblad operators.

Theoretically Eq. 2.30 can be solved in a straightforward way. Refs. [66, 67] utilize

a different method. They introduce a real Bloch 3-vector R [68], so that the density

matrix can be expanded over Pauli matrices

ρ̂ =
1

2
(1 + Rσ), (2.31)
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where

R =


ρ12 + ρ21

−i(ρ21 − ρ12)

ρ11 − ρ22

 . (2.32)

Now Eq. 2.30 can be replaced by an equation of motion for the Bloch vector R.

Giving an initial condition, e.g., R(t=0)=(0, 0, 1) denoting the system is initially in

the |n1〉 state, one can find the solution of Rz. Then combining with the normalization

condition ρ11 + ρ22 = 1, yields ρ22, the probability of the system finally in the |n2〉
state.

Under certain simplifying assumptions, Ref. [52] finds that such a Bloch equation

is actually an equation for a damped oscillator and the damping parameter that in-

corporates the interaction information of the system with the environment controls

the rate at which coherence will be destroyed by the environment. An explicit appli-

cation of such an analysis to the n−n̄ oscillation experiment performed at the ILL[39]

with free neutrons is presented, and it is claimed that much higher vacuum than the

one used in the ILL experiment is required, otherwise there is no hope to realize

oscillations with free neutrons for the neutron free-flight time used in the experiment.

Therefore, it appears that even the efficient searches, n− n̄ oscillation searches with

free neutrons, are very challenging. Thus, exploring other possibilities is important.

2.3 Dinucleon decay

There is another experimentally accessible process for baryon number violation by

two units, dinucleon decay. The name “dinucleon decay” is because the quarks of the

two bound nucleons interact to produce a decay final state in which the nucleons are

absent. This process is usually mediated by the exchange of a non-standard model

particle, which can appear in various B violating models. An example of a dinucleon

decay tree diagram from one of the models is shown in Fig. 2.1.

Just as in the case of n − n̄ oscillation in matter, the dinucleon decay lifetimes

τNN can be related to the n− n̄ oscillation time τnn̄. Note that as the relevant energy

scale of such processes drop, the effects of scalar particles X1 and X2, because of

their heavy masses, do not explicitly appear in the operators, and thus the Feynman

diagram in Fig. 2.1 without the spectator quarks generates an effective six-quarks

operator, which, according to the crossing symmetry, should be able to mediate both
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Figure 2.1: Feynman diagram for dinucleon decay to pions from model [32]. Spectator
quarks q1 and q2 can be either u or d. The X1 and X2 are scalar particles belong to
(6̄, 1,−1/3) and (6̄, 1, 2/3) representations of the SM SU(3)

⊗
SU(2)

⊗
U(1) gauge

group.

n − n̄ oscillation and dinucleon decay. In Ref. [69], both n − n̄ and dinucleon decay

with the same operator is discussed. The operator takes the general form:

O∆B=2 =
1

Λ5
sup

O6q, (2.33)

where O6q denotes a six-quark operator, and Λsup is a supersymmetry (or, more

generally a new physics) energy scale. SinceO6q has mass dimension nine, dimensional

analysis show that a fifth power of Λsup is necessary. If all the participating quarks

come from the first generation, this operator can generate both n− n̄ oscillation and

dinucleon decay. The n− n̄ oscillation time for free neutrons is given by

τnn̄ ≈
Λ5
sup

Λ6
QCD

, (2.34)

where ΛQCD is the QCD scale. The dinucleon decay time τNN is given by [69, 70]

τNN ≈
πM2

N

8ρN

Λ10
sup

Λ10
QCD

, (2.35)

where ρN is the average nuclear density and MN denotes the nucleon mass. From

Eqs. 2.34 and 2.35, we obtain a relation

τNN ≈
πM2

N

8ρN
Λ2
QCDτ

2
nn̄ = Tnucτ

2
nn̄. (2.36)

Although this equation is very similar to the formula of Eq. 2.27, the relevant physics

is different. Taking ΛQCD = 200 MeV, MN = 1 GeV, ρN ≈ 0.25 fm−3, we have
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Tnuc ≈ 1.1× 1025 s−1. For n− n̄ oscillation, R is related to the difference in neutron

and antineutron nuclear potentials. It is calculated to be 0.517× 1023 s−1 [62], which

is 2 orders of magnitude smaller.

There have been at least three dinucleon decay searches performed previously [71,

72, 73]. The best limit on τNN is τ(16O(nn)→14 Oπ0π0) > 4.04×1032 years obtained

by Super-K [73]. However, translated into the limit on τnn̄, it is still two orders of

magnitude smaller than the limit from nuclear stability tests [40]. Moreover, the

neutron-antineutron oscillation time obtained in both cases is connected to a big

suppression factor TNN and R that are obtained through model calculations. We

discussed in the TNN case, theoretical uncertainties appear due to the various ap-

proximations used. In addition to theoretical uncertainties, dinucleon decay searches

are also sensitive to the background induced by atmospheric neutrinos, which conse-

quently makes these two methods less efficient than n − n̄ oscillation searches with

free neutrons.

2.4 Motivation for n− n̄ conversion

In this chapter, we have explicitly discussed the three known methods of B − L vi-

olation searches in the quark sector. We have seen that n − n̄ oscillations always

suffer from quenching problems. For a n − n̄ oscillation search with free neutrons,

the transition probability is very sensitive to the environment. The presence of ex-

ternal magnetic fields or matter can easily reduce the chance of observing a n − n̄

oscillation. Ref. [52] claims that there is little hope to observe oscillations with free

neutrons for the parameters of the ILL experiment, because the ILL limit on n − n̄
oscillation time would be at least four orders of magnitude worse if the constraints

in Ref.[52] are satisfied. Although n − n̄ oscillation is severely suppressed in nuclei,

the experiments can take advantage of the enormous size of underground detectors

for neutrino experiments and thus can potentially set sensitive limits. However, due

to the uncertainties coming from the n̄-nuclear potential and from the background

induced by atmospheric neutrinos, n− n̄ oscillation searches through nuclear stability

tests will be difficult to improve. Finally, a dinucleon decay method is also discussed.

However, just like the second case, a model dependent parameter is involved, which

also results in additional theoretical uncertainties.

When we discussed n−n̄ oscillations in a magnetic field, we argued that a spin-flip

between the neutron and antineutron could keep the energies of neutron and antineu-

tron the same and potentially evade quenching. This motivates us to seek alternative
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methods and eventually to propose a new mechanism called n− n̄ conversion.

Copyright c© Xinshuai Yan, 2017.



chapter 3

PHASE CONSTRAINTS ON DISCRETE-SYMMETRY

TRANSFORMATIONS OF FERMIONS IN B − L VIOLATING

THEORIES

“A thing is symmetrical if there is something that you can do to it so that after

you have finished doing it it looks the same as it did before.” —Hermann Weyl [74]

In nature there are two kinds of symmetries: continuous and discrete. A typical

example of a continuous symmetry is a rotation. Consider a perfect sphere painted

in one color (say blue). It always looks the same no matter which axes that we pick

to rotate it about and by what angles. Traditionally it is called the identity (I) or

doing nothing if the rotated angle is zero. It is also easy to notice that a rotation by

a large angle can be achieved by a consecutive set of rotations by small angles, no

matter how small. In other words, all rotations are continuous linked to the identity

I. This property applies for all continuously symmetries, whereas it does not work for

discrete symmetries.

There are three fundamental discrete symmetry transformations: parity (P),

charge-conjugation (C), and time-reversal (T). Classically under P, the direction of a

vector reverses its sign, e.g. x→ −x; under C, the charge flips sign; under T, the sign

of the time label flips, which is like playing a movie backward. More detailed intro-

duction of these discrete symmetry transformations in classical mechanics, quantum

mechanics, and quantum field theory can be found, e.g., in Bigi and Sanda [75]. Here

we want to focus on the discrete-symmetry transformation properties of a fermion

field.

Generally there is an unimodular phase factor associated with each discrete sym-

metry. These phase factors are considered to be arbitrary and have no physical

consequence. This is not surprising since the “normal” Lagrangian involving fermion

fields takes bilinear forms, e.g., ψ̄Γψ, in which Γ is some product of gamma matrices,

and under any discrete symmetry transformations, if ψ accrues a additional phase

factor λ, then ψ will accrue a λ∗, then consequently this phase factor does not con-

tribute to the bilinear form. However, this is no longer true when Majorana fields

are involved. Since the antiparticle of a Majorana particle is itself, and there is no

18
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Figure 3.1: Neutrinoless double-β decay. The νm are the various neutrino mass
eigenstates which couple to an electron, each with a factor Uem [19]

evidence indicating that electric charge conservation law is broken, possible Majorana

candidates should be electric neutral. Among all the fundamental particles in SM, the

neutrino certainly is a possible candidate. It is well known that observation of ββ0ν

would establish the Majorana character of neutrinos [14]. However, the inability to

detect such a reaction does not prove that they are not, because the contributions of

different νm to ββ0ν in Fig. 3.1 can interact destructively and cancel each other [19].

(Note that in Fig. 3.1, m runs over the neutrino mass eigenstates and U is the neu-

trino mixing matrix). Doi et al. claimed that the interference could be destructive

if CP is broken [17]. However, this claim was disproved by Wolfenstein who asserted

that even when CP was conserved, because of the opposite CP parities of the in-

terfering neutrinos, destructive interference could still occur [18]. This assertion was

later confirmed by Halprin, Petcov, and Rosen [76]. By studying the field-theoretic

treatment of Majorana particles, Kayser found the phase constraints associated with

discrete-symmetry transformations of Majorana fields [77, 19]. He pointed out that

when CP is conserved the amplitude for ββ0ν depends on a phase factor of the CP

transformation of Majorana neutrinos1 that must be imaginary. Therefore, neutrinos

with opposite CP parities do interfere destructively, just as Wolfenstein asserted.

It should be pointed out that the existence of phase constraints associated with

discrete symmetries was already noted by Feinberg and Weinberg [78], as well as by

Carruthers [79]. They determined the existence of phase restrictions in the P and

TC transformations. Haxton and Stephenson [80] found the phase constraint of C

1The phase factor of the CP transformation of a Majorana particle is different from the one of
a Majorana field, because there a “creation phase factor” associated with the Majorana creation
operator, but there is no such phase associated with the field [19].
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by using a similar method to ours. However, they did not find the phase constraints

associated with other discrete symmetries, nor fully recognize their consequences.

In this chapter, we will explicitly demonstrate the existence of phase restrictions

associated with the discrete-symmetry transformations of a Majorana field first and

then generalize them to those of a general fermion field. After obtaining these con-

straints, we will apply them to check the CPT transformation properties of the B−L
violating operators with lowest mass dimension.

3.1 Discrete-symmetry transformations of fermion fields

The discrete-symmetry transformations of a four-component fermion field ψ(x) are

given by [81]

Cψ(x)C−1 = ηcCγ
0ψ∗(x) ≡ ηciγ

2ψ∗(x) ≡ ηcψ
c(x) , (3.1)

Pψ(t,x)P−1 = ηpγ
0ψ(t,−x) , (3.2)

Tψ(t,x)T−1 = ηtγ
1γ3ψ(−t,x) , (3.3)

where ηc, ηp, and ηt are unimodular phase factors of the C, P, and T transformations,

respectively. Note that ψc(x) is the conjugate field and that C2ψ(x)C−2 = ψ(x) and

T2ψ(x)T−2 = −ψ(x), irrespective of arbitrary phases, but that P2ψ(x)P−2 = η2
pψ(x).

We have chosen the Dirac-Pauli representation in which the gamma matrices take

the form

γ0 =

I 0

0 −I

 , γi =

 0 σi

−σi 0

 , (3.4)

where I is the 2× 2 unit matrix and σi (i=1,2,3) refers to the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (3.5)

There are two other gamma matrices that are pertinent to our discussion, the charge

conjugation matrix C = iγ2γ0 and the matrix γ5 ≡ iγ0γ1γ2γ3.

The plane-wave expansion of a Dirac field ψ(x) is given by

ψ(x) =

∫
d3p

(2π)3/2
√

2E

∑
s=±

{
b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)eip·x

}
, (3.6)
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with spinors defined as

u(p, s) = N

 χ(s)

σ·p
E+M

χ(s)

 ; v(p, s) = N

 σ·p
E+M

χ′ (s)

χ′(s)

 , (3.7)

noting χ′ (s) = −iσ2χ(s), χ+ =
(

1
0

)
, χ− =

(
0
1

)
, N =

√
E +M , and b(d) annihilates

a particle (antiparticle). To study the transformation properties of b(d) and b†(d†)

under C, P, and T , the following relations are very helpful.

γ0u(p, s) = u(−p, s), (3.8)

γ0v(p, s) = −v(−p, s) , (3.9)

u(p, s) = iγ2v∗(p, s) , (3.10)

u∗(p, s) = sγ1γ3u(−p,−s), (3.11)

v∗(p, s) = sγ1γ3v(−p,−s) , (3.12)

γ5u(p, s) = −sv(p,−s) . (3.13)

After applying these relations to Eq. (3.1)-(3.3), we find the following transformation

properties:

Cb(p, s)C† = ηcd(p, s) ; Cd†(p, s)C† = ηcb
†(p, s) ,

Cb†(p, s)C† = η∗cd
†(p, s) ; Cd(p, s)C† = η∗c b(p, s) , (3.14)

Pb(p, s)P† = ηpb(−p, s) ; Pd†(p, s)P† = −ηpd†(−p, s) ,

Pb†(p, s)P† = η∗pb
†(−p, s) ; Pd(p, s)P† = −η∗pd(−p, s) , (3.15)

Tb(p, s)T−1 = sηtb(−p,−s) ; Td†(p, s)T−1 = sηtd
†(−p,−s) ,

Tb†(p, s)T−1 = sη∗t b
†(−p,−s) ; Td(p, s)T−1 = sη∗t d(−p,−s). (3.16)

3.2 Discrete-symmetry phase constraints on Majorana fields

The plane-wave expansion of a general Majorana field ψm is written as

ψm(x) =

∫
d3p

(2π)3/2
√

2E

∑
s

{
f(p, s)u(p, s)e−ip·x + λf †(p, s)v(p, s)eip·x

}
, (3.17)

where f † and f denote the creation and annihilation operators for the Majorana

particle. Unlike the Dirac field, there is a unimodular parameter λ called a creation

phase factor. It can be chosen arbitrarily.
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Under C transformation,

Cψm(x)C−1 = iηcγ
2ψ∗m(x) (3.18)

Since a Majorana particle is a fermion that is its own antiparticle, there exists a

Majorana relation

ψm(x) = λψcm(x), (3.19)

or

iγ2ψ∗m(x) = λ∗ψm(x). (3.20)

Eq. (3.18) and Eq. (3.20) yield

Cψm(x)C−1 = ηcλ
∗ψm(x). (3.21)

Now the left hand of the equation above can be explicitly written as

Cψm(x)C−1

=

∫
d̃3p

∑
s

{
Cf(p, s)C−1u(p, s)e−ip·x + λCf †(p, s)C−1v(p, s)eip·x

}
,(3.22)

where we define d̃3p ≡ d3p

(2π)3/2
√

2E
. In the mean time, the right hand of this equation

takes the form

ηcλ
∗ψm(x) = ηcλ

∗
∫
d̃3p

∑
s

{
f(p, s)u(p, s)e−ip·x + λf †(p, s)v(p, s)eip·x

}
. (3.23)

Comparing Eq. (3.22) with (3.23) give us the relations below

Cf(p, s)C−1 = ηcλ
∗f(p, s) , (3.24)

Cf †(p, s)C−1 = ηcλ
∗f †(p, s) . (3.25)

Since C is a unitary operator, taking the Hermitian conjugate of either relation reveals

that η∗cλ is real.

Note that under the CP transformation

CPψm(t,x)(CP)−1 = iηpηcγ
0γ2ψ∗m(t,−x). (3.26)

Then Eq. (3.20) yields

CPψm(t,x)(CP)−1 = ηpηcλ
∗γ0ψm(t,−x). (3.27)
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Following the same procedure as above, we can obtain another set of relations

CPf(p, s)(CP)−1 = ηcηpλ
∗f(−p, s) , (3.28)

CPf †(p, s)(CP)−1 = −ηcηpλ∗f †(−p, s) . (3.29)

Since CP is a unitary operator, taking the Hermitian conjugate of either relation

shows that η∗pη
∗
cλ must be imaginary. Note that we have already established that η∗cλ

is real, so that η∗p itself must be imaginary.

Now under T we have

Tψm(t,x)(T)−1 = ηtγ
1γ3ψm(−t,x), (3.30)

which yields

Tf(p, s)(T)−1 = sηtf(−p,−s), (3.31)

Tf †(p, s)(T)−1 = sηtλ
2f †(−p,−s). (3.32)

Since T is an antiunitary operator, we write T = KUt, where Ut is a unitarity

operator and K denotes conjugation. Then taking the Hermitian conjugate of either

relation shows that ηtλ must be real.

Finally we note the CPT transformation of ψm

CPTψm(x)(CPT)−1 = −ηcηpηtγ5ψ∗m(−x) , (3.33)

which yields

ξf(p, s)ξ−1 = sλ∗ηcηpηtf(p,−s) , (3.34)

ξf †(p, s)ξ−1 = −sληcηpηtf †(p,−s) , (3.35)

where we employ CPT ≡ ξ. Since ξ is also an antiunitary operator, we define

ξ = KUcpt, where Ucpt denotes a unitarity operator. As we have done before, taking

the Hermitian conjugate of either relation reveals that ηcηpηt is pure imaginary. Since

we have already established that ηp is imaginary, we find that ηcηt must also be real.

The same conclusion can be drawn through the analysis of the TC transformation as

well. In contrast to ηcηt, the combination ηcηp itself is unconstrained. In summary, we

have found all the restrictions on the phases that appear in C, P, T, and combinations

thereof.
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3.3 Discrete-symmetry phase constraints on Dirac fields in B−L violating

theories

In this section, we consider the discrete-symmetry transformation properties of a

Dirac field in a B − L violating theory and check if the same phase constraints also

hold. We start with a special Majorana field that is constructed from Dirac fields,

i.e., ψm = aψ + bCψC†, in which a and b are complex numbers to be determined.

Under C, ψm becomes

CψmC† =
b

a
(aψ +

a2

b
CψC†) .

Since ψm is a Majorana field, CψmC† ∝ ψm, yielding the condition a2 = b2, i.e.,

a = ±b. After imposing a normalization condition on ψm, we find

ψm±(x) =
1√
2

(ψ(x)±Cψ(x)C†). (3.36)

Its plane-wave expansion can be written as

ψm± =

∫
d̃3p

∑
s

{ 1√
2

[b(p, s)± ηcd(p, s)]u(p, s)e−ip·x

+
1√
2

[d†(p, s)± ηcb†(p, s)]v(p, s)eip·x}. (3.37)

Comparing with Eq. (3.17), we define

wm±(p, s) ≡ 1√
2

[b(p, s)± ηcd(p, s)]. (3.38)

Note that the second term of Eq. (3.37) can be written as

1√
2

(d†s(p)± ηcb†s(p)) = ±ηcw†m±(s,p). (3.39)

Therefore, we can rewrite ψm in a simple way:

ψm±(x) =

∫
d̃3p

∑
s

{
w±(p, s)u(p, s)e−ip·x ± ηcw†±(p, s)v(p, s)eip·x

}
. (3.40)

A comparison with Eq. (3.17) shows that the creation phase λ is no longer arbitrary;

rather, λ = ±ηc.
Since ψm± is a Majorana field, our original procedures, as well as our conclusions,

should still apply. For example, applying the C transformation to ψm± yields

Cψm±(x)C−1 =
1√
2

[(ηciγ
2)ψ∗(x)± ψ(x)] = ±ψm± , (3.41)
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which is automatically consistent with our earlier conclusion that η∗cλ is real, since

λ = ±ηc. Recall we found that η∗cη
∗
pλ must be imaginary in the last section. Now

substituting λ by ±ηc yields that ηp has to be imaginary. Applying the same trick to

the CPT transformation to ψ± results in the same conclusion for ηcηpηt.

Under T, ψm± becomes

Tψm±(t,x)T−1 =
1√
2
{ηtγ1γ3ψ(−t,x)± (ηcηt)

∗(iγ2)∗γ1γ3ψ∗(−t,x)} , (3.42)

but noting Eq. (3.3) this should be equivalent to

ηtγ
1γ3ψm±(−t,x) =

1√
2
{ηtγ1γ3ψ(−t,x)± iηtηcγ1γ3γ2ψ∗(−t,x)} ; (3.43)

and we conclude that ηcηt is real. Upon applying CT (or TC) to ψm± we find just

the same constraint: that ηcηt must be real.

In summary, we have found that in order to preserve the phase restrictions found in

the Majorana case, the phases in the discrete symmetry transformations of fermion

fields must themselves be restricted. Specifically we have found that ηp must be

imaginary and that the combination ηcηt must be real. As a result, we find that

P2ψ(x)P−2 = −ψ(x). Furthermore, we find that although ηcηpηt is pure imaginary

the combination ηcηp is unconstrained.

Although the phase restrictions we have found are worked out in a particular

gamma matrix representation, our conclusions do not depend on this choice. The

only key relation is (γµ)† = γ0γµγ0, which is satisfied in most of commonly used

representations, such as the Dirac, Weyl, and Majorana representations. In addi-

tion, unitary transformations exist that connect all the representations for which

Eq. (3.1) holds2. Therefore, we believe the phase restrictions we have found to be

an intrinsic property of the discrete symmetries. Moreover, our conclusions apply to

the transformations of two-component (Majorana) fields as well. For completeness,

we present the particular phase restrictions associated with the discrete-symmetry

transformations of two-component Majorana fields in Appendix A.

3.4 Lorentz invariant B − L violating operators and their CPT transfor-

mation properties

We work at energies far below the scale of B −L breaking. In fact, we work at suffi-

ciently low-energy scales that the Dirac field ψ can be regarded as elementary. Under

2A similar argument can also be found in Ref. [82].
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this assumption we can enumerate all the Lorentz invariant B − L violating oper-

ators with lowest mass dimension. Following the standard classification of fermion

bilinears, we consider the operators

O1 = ψTCψ + h.c., (3.44)

O2 = ψTCγ5ψ + h.c. , (3.45)

O3 = ψTCγµψ ∂νFµν + h.c. , (3.46)

O4 = ψTCγµγ5ψ ∂
νFµν + h.c. , (3.47)

O5 = ψTCσµνψ F
µν + h.c. , (3.48)

O6 = ψTCσµνγ5ψ F
µν + h.c. , (3.49)

where we have included the axial tensor operator O6 even though it is not necessary.

Note that we do not include operators with derivatives on the fermion field operators

because this generally results in an operator with a higher mass dimension. For

example, compared with operator O3, operator ψTC∂µψ∂νF
µν + h.c. has one more

mass dimension. We have also included the electromagnetic (EM) field strength tensor

F µν because we want to realize a B − L violating process through electromagnetic

interactions, although technically ∂νFµν is an EM current and can be replaced by any

other kinds of gauge-invariant current.

We should check that these operators are indeed Lorentz invariant. Under the

Lorentz transformation Λ, a fermion field ψ(x) transforms into ψ′(x) [83]

ψ′(x) = Λ 1
2
ψ(Λ−1x), (3.50)

where

Λ 1
2

= exp(− i
4
ωµνσ

µν) (3.51)

is the spinor representation of Λ, and ωµν , an antisymmetric tensor, gives the in-

finitesimal angles. Noting the relation between the tensor matrix, σµν = i[γµ, γν ]/2,

and the charge conjugation matrix C,

(σµν)TC = −Cσµν , (3.52)

one can obtain another relation

ΛT
1
2
C = CΛ−1

1
2

, (3.53)

so that under the Lorentz transformation,

ψT (x)C
LT

=⇒ ψT (Λ−1x)CΛ−1
1
2

. (3.54)
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Given the γ matrices transform just like a Lorentz vector, i.e.,

Λ−1
1
2

γµΛ 1
2

= Λµ
νγ

ν , (3.55)

We can see that these operators are indeed Lorentz invariant.

Before applying these operators to various physical problems, there is anther the-

orem we need to consider, namely, the CPT theorem. It says that any Lorentz

invariant local quantum field theory (QFT) with a Hermitian Hamiltonian must have

CPT symmetry 3. Therefore, we should check the CPT transformation properties of

these operators and list the results below

O1(x)
CPT
=⇒ −(ηcηpηt)

2O1(−x) , (3.56)

O2(x)
CPT
=⇒ −(ηcηpηt)

2 O2(−x) , (3.57)

O3(x)
CPT
=⇒ (ηcηpηt)

2 O3(−x) , (3.58)

O4(x)
CPT
=⇒ −(ηcηpηt)

2 O4(−x) , (3.59)

O5(x)
CPT
=⇒ (ηcηpηt)

2 O5(−x) , (3.60)

O6(x)
CPT
=⇒ (ηcηpηt)

2 O6(−x) . (3.61)

Remarkably, the set of operators Oi do not transform under CPT with a definite

sign, and the phase constraints we have derived before, that (ηcηpηt)
2 = −1, only

serves to flip the sign of each eigenvalue.

3.5 CPT -odd “problem”

The apparent existence of CPT -odd operators that are Lorentz scalar is inconsistent

with Greenberg’s CPT theorem4 [85], which asserts that for local theory, CPT break-

ing implies the Lorentz symmetry is also broken. We call it the CPT -odd “problem”,

but we will show that it is not a real problem. We will apply the correct phase factor

of CPT transformation, appreciate the fact that half of these operators vanish due

to fermion antisymmetry, and demonstrate that all the surviving operators are CPT

even so that the CPT -odd “problems” is solved automatically as well.

3.5.1 CPT -odd operators with Majorana fields

In the case of Majorana fields, for which Eq. (3.20) holds, we can immediately show

that the operators of Eqs. (3.46, 3.48, 3.49) — and only these of our list — vanish

3For a rigorous and general proof, we refer to Ref. [84].
4Note that this theorem is not the same CPT theorem discussed in Sec. 3.4.
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identically, and that this follows from the anticommuting nature of fermion fields.

Note that Eq. (3.20) can be rewritten as any of

ψTmC = λψ̄m , C
†ψ∗m = λ∗γ0ψm , ψ

†
mC

† = −λ∗ψTmγ0 , Cψm = −λγ0ψ∗m . (3.62)

Thus O1, e.g., can be rewritten as

O1 = ψTmCψm + h.c. = (λ+ λ∗)ψ̄mψm , (3.63)

also

O1 = ψTmCψm + h.c. = −(λ+ λ∗)ψTmψ̄
T
m . (3.64)

Since ψ̄mψm = −ψTmψ̄Tm, Eq. (3.63) and (3.64) are identical and hence O1 needs not

vanish.

Similarly for O2 we have (λ − λ∗)ψ̄mγ5ψm, or −(λ − λ∗)ψTmγ5ψ̄
T
m, and thus O2

also need not vanish. Noting that Cγµ = −γµTC we see, however, that O3 =

(λ + λ∗)ψ̄mγ
µψmjµ = (λ + λ∗)ψTmγ

µT ψ̄Tmjµ, with jµ ≡ ∂νFµν , and thus O3 vanishes.

In contrast, we have that O4 = (λ − λ∗)ψ̄mγ
µγ5ψmjµ = −(λ − λ∗)ψTmγ5γ

µT ψ̄Tmjµ,

and we conclude that O4 can be nonzero. Finally, since (σµν)TCγµ = −Cσµν , we

have that O5 = (λ + λ∗)ψ̄mσ
µνψmFµν = (λ + λ∗)ψTm(σµν)T ψ̄TmFµν , as well as O6 =

(λ − λ∗)ψ̄mσµνγ5ψmFµν = (λ − λ∗)ψTmγ5(σµν)T ψ̄TmFµν . We see that both O5 and O6

vanish as well.

3.5.2 CPT -odd operators with Dirac fields

In the case of Dirac fields, for which Eq. (3.20) does not hold, a similarly ready proof

that the operators of Eqs. (3.46, 3.48, 3.49) vanish is not available. In this case we

evaluate the operators explicitly by postulating that the field operators satisfy equal-

time anticommutation relations and expanding them in the free-particle, plane-wave

expansion of Eq. (3.6). We then immediately find that O5 and O6, as well as O3,

vanish due to the anticommuting nature of fermion fields. Since our demonstration

assumes that the fermion is both free and point-like, we now turn to ways in which we

can make it more general, considering the conditions under which we can extend it to

the case of bound particles, as well as to that of strongly bound composite particles.

We would like our conclusions to be pertinent to n− n̄ oscillations, for both free and

bound neutrons.

In the case that the particle is loosely bound, e.g., the effect of the “wrong CPT”

operators is still zero because the loosely bound state can be regarded as a linear



CHAPTER 3. PHASE CONSTRAINTS ON DISCRETE-SYMMETRY
TRANSFORMATIONS OF FERMIONS IN B − L VIOLATING THEORIES 29

superposition of free states of momentum k, weighted by its wave function [83]. Since

the wrong CPT operators vanish for free states, then the operators involving such

loosely bound particles will also. We note that since the binding energies of neutrons

in large nuclei are no more than ∼ 8 MeV per particle, our argument should be

sufficient to conclude that Eqs. (3.46, 3.48, 3.49) do not operate for bound neutrons.

An interesting question may be what happens if the fermion is actually a strongly

bound composite particle, such as the neutron itself. We have explored this in the

particular case of n− n̄ oscillations using the MIT bag model [86, 87], following the

analysis of Ref. [38]. A detailed description of the MIT bag model will be presented

in a later section.

In the MIT bag model, since the quarks within the bag are free, an expansion of

the quark fields in single-particle modes analogous to Eq. (3.6) exists [87], suggesting

that the results of our earlier analysis at the nucleon level should be pertinent here as

well. Indeed an explicit calculation of the transition matrix element 〈n̄|O1|n〉 using

the O1 operator of Ref. [38] with the substitution of uT αχ1 Cσ
µνuβχ1Fµν for uT αχ1 Cu

β
χ1

yields zero. In what follows we thus assume that the operators of Eqs. (3.46, 3.48,

3.49) do indeed vanish if Lorentz symmetry is not broken.

Therefore, we have established that half of the set of operators, specifically O3,

O5, and O6, always vanish identically regardless of whether Majorana or Dirac fields

are employed.

3.6 CPT -even n− n̄ transition operators

We work at sufficiently low-energy scales that neutrons can be regarded as elementary

particles. Due to the fact that half of the set of B − L violating operators vanish

identically, there are three CPT -even n−n̄ transition operators left. They are O1, O2,

and O4. As we have noted operator O1 is the familiar n−n̄ oscillation operator, whose

transition probability is suppressed in the presence of magnetic fields or matter. As

for operator O2, it turns out that it does not contribute to n−n̄ transition [88, 89, 90].

By a chiral rotation ψ → eiβγ
5
ψ, in which β is the rotation angle, one can show that

operator O2 can be rotated away and contributes to a mass term instead. Therefore,

O4 seems the last hope of realizing an unquenched n−n̄ transition. Note that because

of the vector current jµ in O4, a spin-flip between a neutron and an anitneutron

becomes possible. Moreover, since a scattering process is involved, their energies are

no longer required to be the same, and the quenching problem is completely solved.

We will explicitly discuss this possible solution in later chapters.
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chapter 4

B − L VIOLATION AND THEORIES OF SELF-CONJUGATE

FERMIONS

In the last chapter, while studying the CPT properties of B−L violating operators, we

found that it is possible to write down both CPT even and odd operators that are yet

also Lorentz invariant. Although the CPT-odd operators ultimately vanish identically

due to the anticommuting nature of fermion fields, it is still worth wondering about

why it is possible to write down these operators in the first place. To do this, we

recall theories of self-conjugate particles with half-integer isospin are non-local [91,

92, 93, 94] and have anomalous CPT properties [95, 96, 97, 98].

In nature, there exists a fact that the low-lying, light hadrons fall into two types

of isospin multiplets: self-conjugate multiplets, in which the antiparticles belong to

the same isospin multiplet; and pair-conjugate multiplets, in which the antiparticles

of the members of an isospin multiplet form a distinct isospin multiplet. For example,

pions from a self-conjugate isospin multiplet, (π+, π0, π−). Since the antiparticle of

π0 is itself and π+ is the antiparticle of π−, under charge conjugation transformation,

this isospin multiplet remains itself. The K mesons (K+, K0), (K̄0, K−) are the case

of pair-conjugate isospin multiplets, since the antiparticles of K+ and K0 are K− and

K̄0 respectively.

In attempting to understand these mesons’ pattern, Carruthers [91] discovered

that theories of self-conjugate bosons with half-integer (1
2
, 3

2
, 5

2
, · · · ) isospin would

lead to a violation of locality, namely, the commutator of two self-conjugate fields

with opposite isospin components do not vanish at space-like separations, which also

renders the theory non-causal and hence physically unacceptable. Since weak local

communitivity fails, CPT symmetry is no longer expected to hold [84], nor should

the Greenberg’s theorem [85] apply. This result was quickly generalized to theories

of arbitrary spin [92, 93, 94, 95, 96]. Although the failure of weak locality does not

really explain why the “wrong CPT” problem occurs, it does prompt us to find an

interesting fact.

We note that a Majorana neutrino is a self-conjugate particle of I = 0, whereas the

neutron and antineutron are members of pair-conjugate I = 1/2 multiplets. Since

p − p̄ oscillations are forbidden by electric charge conservation, a theory of n − n̄

31
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oscillations is not a theory of self-conjugate isofermions. We note, however, that the

very quark-level operators that generate n− n̄ oscillations [38] to be discussed in the

next chapter, would also produce p− p̄ oscillations under the isospin transformation

u↔ d. Since pure QCD is symmetric under u↔ d exchange in its chiral limit, n− n̄
oscillations are indistinguishable with p − p̄ oscillations. Then if n − n̄ oscillation

happens, neutron and proton would form a self-conjugate isofermion pair with a half-

integer isospin and break weak locality. Therefore, B−L violation is not compatible

with pure QCD in the chiral limit.

Copyright c© Xinshuai Yan, 2017.



chapter 5

n− n̄ OSCILLATIONS AND MATRIX ELEMENTS IN THE MIT

BAG MODEL

5.1 Quark-level n− n̄ oscillation operators

The effective Lagrangian for the n− n̄ oscillation at the hadronic scale, 1involves a set

of six-fermion operators, which thus have a coefficient of dimension (mass)−5. Here

we will briefly summarize a complete set of six-fermion n − n̄ oscillation operators

with leading-mass dimension under particular conditions.

The effective Lagrangian for n− n̄ oscillation can be written as

Lq =
∑
i,χ

ci,χ(Oi)χ + h.c. (5.1)

where q denotes that this Lagrangian is at the quark-level, i is an integer number

ranging from 1 to 3, χ is a compound chirality label, the c- number ci,χ is the coupling

coefficient of dimension (mass)−5, and Oi is the six-fermion operator that contains

two up (u) quarks and four down (d) quarks. Based on our earlier discussion of the

nucleon level operators, the quark-level “building blocks” for operator Oi must look

like

uTαCuβ , dTγCdδ, dTρCdσ, (5.2)

where C is the charge conjugation matrix, and u and d denote the respective quark

fields, and α, β, γ, δ, ρ and σ are color indices. Moreover, these terms always come

in chiral pairs, i.e.,

uTLCuL , uTRCuR , (5.3)

since the mixed chirality terms always vanish. Finally, these operators should be

invariant under color symmetry, SU(3)c. There are three ways of forming an SU(3)

singlet from a product of six fundamental representations of SU(3). However, in the

1An energy scale between the QCD scale (ΛQCD) and the BSM scale (ΛBSM ).
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single-generation case2, only two color tensors occur [99]

(Ts)αβγδρσ = εραγεσβδ + εσαγερβδ + ερβγεσαδ + εσβγεραδ , (5.4)

(Ta)αβγδρσ = εραβεσγδ + εσαβεργδ . (5.5)

These conditions eventually lead to three types of operators [38]:

(O1)χ1χ2χ3 = [u>αχ1
Cuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ, (5.6)

(O2)χ1χ2χ3 = [u>αχ1
Cdβχ1

][u>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ, (5.7)

(O3)χ1χ2χ3 = [u>αχ1
Cdβχ1

][u>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ta)αβγδρσ , (5.8)

where χi can be L or R and C is the charge conjugation matrix. Note that the 24

operators are not all independent: in fact, only 18 of them are independent due to

the flavor symmetry

(O1)χ1LR = (O1)χ1RL , (O2,3)LRχ3 = (O2,3)RLχ3 . (5.9)

If we expect that these operators should be also invariant under SU(2)L × U(1)Y ,

then there are 6 independent operators left, namely,

Pm = (Om)RRR, m = 1, 2, 3 (5.10)

P4 = [qT iαL CqjβL ][uTγR CdδR][dTρR CdσR]εij(Ts)αβγδρσ

= 2(O3)LRR , (5.11)

P5 = [qT iαL CqjβL ][qTkγL CqlδL ][dTρR CdσR]εijεkl(Ta)αβγδρσ

= 4(O3)LLR , (5.12)

P6 = [qT iαL CqjβL ][qTkγL CqlδL ][dTρR CdσR](εikεjl + εjkεil)(Ts)αβγδρσ

= 4[(O1)LLR − (O2)LLR] , (5.13)

where i, j, k, and l are SU(2) indices, and εij is the totally antisymmetric SU(2)-

tensor. The number of independent operators can be further reduced to 4 if an

additional symmetry that emerges from antisymmetrizing pairs of epsilon tensors

over four indices [100], i.e.,

(O2)mmn − (O1)mmn = 3(O3)mmn , (5.14)

with m = L,R and n = L,R, is also taken into consideration. In other words,

Eq. (5.14) provides us additional two relations

P6 = −3P5 , P2 −P1 = 3P3 . (5.15)
2Typically, (u, d) quark pair is referred as the first generation and (c, s) and (t, b) pairs are the

second and third generations respectively. The “single-generation” means the involved quarks come
from single pair.
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and thus only 4 independent operators are left.

The matrix elements of these operators have been evaluated both in the MIT bag

model by Rao and Shrock [38] and through lattice QCD (LQCD3) [102, 103]. Since

we will compute the matrix elements of n − n̄ conversion operators in the MIT bag

model, a brief summary of the MIT bag model and of the proper definition of the

bag model wave functions is necessary.

5.2 The MIT bag model

Due to the complexities of QCD, the wish for deducing hadron spectroscopy, struc-

ture, and interactions ultimately from first principles has so far been denied. Ap-

proximate models, such as the MIT bag model [86, 87], have been needed. Although

the Lattice QCD (LQCD) brings us closer to our wish, the need for large comput-

ing time, makes for continuing challenges. Nowadays the MIT bag model is still a

convenient tool. It incorporates several merits of QCD: (1) the QCD property of

short-distance asymptotic freedom; (2) quark confinement; and (3) relativistic treat-

ment of quarks; but it has limitations, e.g., the nucleons have to be at rest. Several

variants of the MIT bag model have tried to incorporate more ingredients to overcome

these limitations, e.g., models in Refs.[104, 105, 106]. In this section, we focus on the

simplest version [86, 87] and briefly summarize the ingredients that are pertinent to

our calculation.

5.2.1 Proper bag model wave functions

The MIT bag model we consider is static and possesses spherical symmetry. In the

MIT bag theory, quarks and antiquarks are confined in a spherical cavity of radius R

by a bag pressure B. Inside of this cavity, quarks and antiquarks obey the free-particle

Dirac equation

(i/∂ −mα)ψα = 0, (5.16)

where α labels the fermion and mα denotes its mass. On the boundary of this cavity,

there are two additional conditions given by

−i/nψα = ψα, (5.17)

3LQCD is a non-perturbative approach to solving the QCD, a theory of quarks and gluons. It
is a lattice gauge theory formulated on a grid or lattice of points in space and time. For a detailed
introduction of LQCD, we refer to Ref. [101].
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where nµ is the inward normal to the surface and

−
∑
α

∂

∂r
(ψ̄αψα) = 2B at r = R. (5.18)

This second condition restricts the surviving quark modes to only those with total

angular momentum j = 1
2
. Then the two such solutions with opposite parities are

given by

ψsα(k=−1)(r) =
Nα(k=−1)√

4π

 ij0(pαr)χs

−εαj1(pαr)σ · r̂χs

 , (5.19)

ψsα(k=1)(r) =
Nα(k=1)√

4π

ij1(pαr)σ · r̂χs

εαj0(pαr)χs

 , (5.20)

where

Nα(k=−1) =
( ξ2

αj
−2
0 (ξα)

R3[2EαR(EαR− 1) +mαR]

) 1
2
, (5.21)

Nα(k=1) =
( ξ2

αj
−2
1 (ξα)

R3[2EαR(EαR + 1) +mαR]

) 1
2
, (5.22)

with mα and s denoting the quark mass and spin respectively. Also j0 and j1 are

spherical Bessel functions, and

pα = ξα/R, E
2
α = p2

α +m2
α, εα =

√
Eα −mα

Eα +mα

. (5.23)

The first condition Eq. 5.17 determines the quantity ξα and eventually leads to the

energy Eα through

j1(ξα) = ∓εαj0(ξα) , (5.24)

for k = 1 and k = −1 respectively, which is equivalently written as

tan ξα =
kξα

k − kmαR + EαR
. (5.25)

In next section, we quantize the MIT bag model wave function [107], i.e.,

ψ̂α = bαuα + d†αvα , (5.26)

in which uα and vα are always chosen as uα ≡ ψα(k=−1) and vα ≡ ψα(k=1) [38, 107].

The definition of uα is transparent. However, the choice of vα is subtle and not clearly

stated in an early paper [107], which can lead to mistakes, as happened in Ref. [108].
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Here we want to clarify the issue through Fig. 5.1 and Fig. 5.2, in which the first

boundary condition with k = ∓1, respectively, are considered. The horizontal values

of the cross points of the two lines correspond to ξα, which determine the energy Eα.

Note that there exist two cross points, red and green, in each figure. For k = −1

case, it is transparent that the ground energy should be determined by the red dot in

Fig. 5.1. However, for k = 1 case, if we picked the green dot in Fig. 5.2 to calculate the

ground energy, then the energy of quark and antiquark in field ψ̂α would be different,

which is inconsistent with the CPT theorem. Therefore, we should also pick the red

dot to evaluate the ground energy of antiparticle and hence we have

ξ̄α;k=1 = −ξα;k=−1, (5.27)

Ēα,k=1 = −Eα,k=−1, (5.28)

where “-” above ξ and E denotes antiparticle.

Now the true vα for an antiquark should be

vα =
N̄α(k=1)√

4π

−ij1(pαr)σ · r̂ηs

ε̄αj0(pαr)ηs

 , (5.29)

where

N̄α(k=1) =
( ξ2

αj
−2
1 (ξα)

R3[−2EαR(−EαR + 1) +mαR]

) 1
2

=
( ξ2

αj
−2
1 (ξα)

R3[2EαR(EαR− 1) +mαR]

) 1
2

=
( ξ2

αj
−2
0 (ξα)

R3[2EαR(EαR− 1) +mαR]

) 1
2
ε̄−1, (5.30)

with

ε̄α =

√
−Eα −mα

−Eα +mα

= ε−1
α . (5.31)

Putting everything together we obtain

vsα =
Nα(k=−1)√

4π

−iεj1(pαr)σ · r̂ηs

j0(pαr)ηs

 . (5.32)

Shifting the phase factor −1 leads to the proper the antiquark bag model wave func-

tion, namely,

vsα =
Nα(k=−1)√

4π

iεj1(pαr)σ · r̂ηs

−j0(pαr)ηs

 . (5.33)
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Figure 5.1: The red and green dots represent the two solutions of Eq. 5.17 with
k = −1, which determine the corresponding two lowest energies Eα.

Figure 5.2: The red and green dots represent the two solutions of Eq. 5.17 with k = 1,
which determine the corresponding two lowest energies Eα.

5.2.2 Quark fields in the MIT bag model

Now with the proper bag model wave function,

usf (r) =
Nf√
4π

 ij0(pfr)χs

−εfj1(pfr)σ · r̂χs

 (5.34)

for quarks and

vsf (r) =
Nf√
4π

iεfj1(pfr)σ · r̂ηs

−j0(pfr)ηs

 (5.35)

for antiquarks, the quantized quark field is given by [38, 107]

ψif (r) =
∑
s

[bis,fu
s
f (r) + di†s,fv

s
f (r)], (5.36)
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where Nf = Nα(k=−1), i is the color index and bis,f and di†s,f denote quark annihilation

operator and antiquark creation operators, respectively, which obey the anticommu-

tation relations

{biα(p), bj†β (p′)} = δijδαβδ
3(p− p′) , (5.37)

{diα(p), dj†β (p′)} = δijδαβδ
3(p− p′) , (5.38)

with α and β denoting its other properties, such as flavor, spin, etc.

5.3 Matrix elements in the MIT bag model

To compute the matrix element of these n−n̄ oscillation operators, i.e., 〈n̄|(Om)χ1χ2χ3|n〉,
normalized spin-up neutron and antineutron wave functions are needed, which are

given by

|n ↑〉 = (1/
√

18)εijk(bi†u↑b
j†
d↓ − b

i†
u↓b

j†
d↑)b

k†
d↑|0〉 , (5.39)

|n̄ ↑〉 = (1/
√

18)εijk(di†u↑d
j†
d↓ − d

i†
u↓d

j†
d↑)d

k†
d↑|0〉 . (5.40)

Note that the matrix elements depend on three parameters, mu, md, and Rn. We

follow the argument in [38] and drop the subscripts f in Eq. (5.36) once mu = md is

assumed. We also define the general structure of the matrix elements of these n− n̄
oscillation operators in the bag model, namely,

〈Om〉χ1χ2χ3 ≡ 〈n̄|(Om)χ1χ2χ3|n〉 = [N6p−3/(4π)2](Im)χ1χ2χ3 , (5.41)

where (Im)χ1χ2χ3 are dimensionless integrals. To express the final result compactly,

we also define the following parameters:

ηi = 1(−1) , for χi = R(L) , (5.42)

and

Ja =

∫ ξ

0

dx x2 [j̃2
1(x)− j2

0(x)]3 , (5.43)

Jb = 4

∫ ξ

0

dx x2j̃2
1(x)j2

0(x) [j̃2
1(x)− j2

0(x)] , (5.44)

Jc =

∫ ξ

0

dx x2 [j̃2
1(x) + j2

0(x)]2[j̃2
1(x)− j2

0(x)] , (5.45)

with j̃1(x) = εj1(x). Now we compute the matrix elements 〈Om〉χ1χ2χ3 with m =

1, 2, 3 and find that (Im)χ1χ2χ3 are given by

(I1)χ1χ2χ3 = (−i)8{3Ja + [η2η3 − 2(η1η2 + η1η3)Jb]} , (5.46)

(I2)χ1χ2χ3 = (−i)2{−3Ja + [5η2η3 − (η1η3 + η2η3)Jb]} , (5.47)
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Table 5.1: Values of the J integrals in the two fits [109].

Fit A Fit B

Ja -0.233 -0.282

Jb 0.188 0.138

Ja -0.421 -0.420

and

(I3)χ1χ2χ3 = (−i)
{2

3

[
3Ja − [5η1η2 − (η1η3 + η2η3)Jb]

]
− 12η1η2Jc

}
. (5.48)

Note that our calculated matrix elements are the same as in Ref. [38] except for

a common phase factor −i, which comes from the definition of the antiquark spinors.

This phase factor is irrelevant to final physical quantities, since they are only related

to the moduli of matrix elements.

For the purpose of comparing of n−n̄ conversion with n−n̄ oscillation, we also give

a numerical estimation of these matrix elements. We use the same parameters as in

Ref. [109, 38], which are determined in two fits: (A) mu = md = 0, Rn = 5.00 GeV−1;

and (B) mu = md = 0.108 GeV, Rn = 5.59 GeV−1. Then the lowest positive solution

to Eq. 5.25 with k = -1 is ξ ' 2.043 for both fits A and B and the resulting values

of the three integrals are listed in Table 5.1. The factor N6p−3/(4π)2 in Eq. (5.41)

equals 0.650× 10−5GeV6 and 0.529× 10−5GeV6 in the A and B fits, respectively. We

factor out the common factor, 10−5GeV6, and list all the matrix elements 〈Om〉χ1χ2χ3

in both fits in Table 5.2.

5.4 n− n̄ oscillation matrix elements in lattice QCD

Matrix elements of n− n̄ oscillation operators have also been computed using LQCD.

The first LQCD calculation of these matrix elements was reported in Ref. [102]. It

uses a 323 × 256 clover-Wilson lattices with a pion mass of 390 MeV. The results

were preliminary and large uncertainty was involved. The pattern of n− n̄ oscillation

matrix elements from this bare, non-renormalized lattice calculation is quite different

from the MIT bag model results [38]. Recently, these matrix elements are recomputed

using LQCD with physical Nf = 2 + 1 domain wall quarks [103]. The preliminary

results are non-perturbatively renormalized and converted to the MS scheme.

The n − n̄ oscillation operators are classified according to SU(3)L,R flavor sym-

metry in Table 5.3. To further classify them, it is useful to convert them to a
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Table 5.2: Matrix elements of n− n̄ oscillations in the two fits [109]

Matrix element Fit A Fit B

〈O1〉RRR -6.56 -5.33

〈O1〉LLR -4.61 -4.17

〈O1〉RLL 1.26 -0.666

〈O2〉RRR 1.64 1.33

〈O2〉LLR 2.62 1.92

〈O2〉RLL -0.314 0.167

〈O3〉RRR 2.73 2.22

〈O3〉LRR -3.18 -2.72

〈O3〉LLR 2.41 2.03

Table 5.3: Classification of n− n̄ transition operators according to SU(3)L,R [103].

O6q IR ⊗ IL

[(RRR)3] O1
R(RR) + 4O2

(RR)R 3R ⊗ 0L

[(RRR)1] O2
(RR)R −O1

R(RR) ≡ 3O3
(RR)R 1R ⊗ 0L

[R1(LL)0] O2
(LL)R −O1

L(LR) ≡ 3O3
(LL)R 1R ⊗ 0L

[(RR)1L0] 3O3
(LR)R 1R ⊗ 0L

[(RR)2L1](1) O1
L(RR) 2R ⊗ 1L

[(RR)2L1](2) O2
(LR)R 2R ⊗ 1L

[(RR)2L1](3) O1
R(LR) + 2O2

(RR)L 2R ⊗ 1L
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SU(2)L × SU(2)R chiral isospin basis, in which the perturbative renormalization is

diagonal [100]. There are seven other operators that can be obtained by replacing

L ↔ R. The operators are built from left/right diquarks denoted as L, R, respec-

tively, in the first column. Notation (...)I denotes projection on representation with

total isospin I. The second column shows corresponding operators in terms of O1,O2,

and O3 in Ref. [38]. The SU(2)L,R representation is shown in the 3rd column and

the 1-loop anomalous dimension is given in the 4th column.

The lattice chosen has a lattice space a = 0.114 fm and volume 483 × 96. The

spatial size corresponds to mπL ≈ 3.9, and the gauge configurations with Nf = 2 + 1

domain wall quarks correspond to a physical pion mass mπ ≈ 140MeV.

The six-fermion operator matrix elements computed on a lattice are renormalized

to a scale of 2 GeV in the MS scheme. The match between the lattice and the

continuum is performed by using a one-loop perturbative calculation [100]. More

recently a perturbative renormalization treatment of n− n̄ operators can be found in

Ref. [110].

The preliminary results are summarized in Table 5.4, in which Bag “A” and “B”

correspond to the two fits in the MIT bag model respectively. Note that the pattern

of matrix elements in LQCD is very similar to the results from the MIT bag model

with bag “B”. The dominant three matrix elements are almost the same, except

the largest one differs in sign. However, since the physics quantities only depend

on moduli of the matrix elements and if we only consider one operator at a time,

then the sign difference is irrelevant. The last three matrix elements computed in

LQCD are larger than the bag model calculations. It is argued that this difference

can provide sharper constraints on BSM physics, and further discussion of this is still

in preparation [103]. Nevertheless, the consistency of matrix elements computed in

these two methods really gives us confidence in evaluating n− n̄ conversion using the

MIT bag model.

Copyright c© Xinshuai Yan, 2017.
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Table 5.4: Preliminary results for matrix elements of six-fermion operators and com-
parison to the MIT bag model results [38].

Bag “A” LQCD
Bag “A”

Bag “B” LQCD
Bag “B”

[(RRR)3] 0 — 0 —

[(RRR)1] 8.190 5.5 6.660 6.8

[R1(LL)0] 7.230 6.1 6.090 7.2

[(RR)1L0] -9.540 7.0 -8.160 8.1

[(RR)2L1](1) 1.260 -1.7 -0.666 3.2

[(RR)2L1](2) -0.314 -1.7 0.167 3.2

[(RR)2L1](3) 0.630 -1.7 -0.330 3.2



chapter 6

PHENOMENOLOGY OF nn̄ CONVERSION

6.1 Spin-flip and n− n̄ conversion

In Chap. 2, we showed that the transition probability of n− n̄ oscillation suffers from

quenching problems in the presence of magnetic fields or matter. This is generally

evaluated in a 2 × 2 effective Hamiltonian framework, in which the initial neutron

(antineutron) and its anti-particle have the same spin projection quantum number,

e.g., sz, the spin projection in the z direction, and four-momentum. Given Lorentz

and CPT invariance, since the neutron and antineutron have magnetic moments of

opposite sign, in the presence of external magnetic fields, their energies are different.

Therefore, one member of the particle-antiparticle pair cannot spontaneously trans-

form into the other without breaking energy-momentum conservation. To observe

n − n̄ oscillations, great efforts are needed to mitigate magnetic fields. The same

argument also holds for matter effects.

On the other hand, since the neutron and antineutron have opposite magnetic

moments due to the CPT symmetry, if the sign of sz of neutron (antineutron) can be

flipped during the oscillation process presumably by an external agent, such as matter

or magnetic fields, then the energy of initial and final particles will remain the same

even in the presence of magnetic fields, so that the transition probability is no longer

suppressed. Therefore, the spin degree of freedoms of the neutron and antineutron

can potentially play an important role in the study of n− n̄ oscillations [111].

6.1.1 nn̄ oscillation in 4× 4 framework

The first attempt to achieve a non-suppressed n − n̄ transition probability by con-

sidering spin-dependent SM effects was proposed in Ref. [111]. There it was shown

that the spin-dependent SM effects involving transverse magnetic fields could flip the

particle spin and eventually realize n − n̄ transitions without quenching problems.

However, this conclusion turns out to be incorrect because it is sensitive to the CPT

phase constraint discussed in Chap. 2. To illustrate, I will briefly discuss the example

analyzed in Ref. [111].

A neutron at rest that can oscillate to an antineutron is in a static magnetic field

B0. Then at t = 0, a static transverse field B1 is suddenly applied. Note that B0

44
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fixes the spin quantization axis, and we define ω0 ≡ −µnB0 and ω1 ≡ −µnB1, where

µn again is the neutron magnetic moment. Instead of working in the 2×2 framework,

the Hamiltonian matrix now is in the |n(+)〉, |n̄(+)〉, |n(−)〉, |n̄(−)〉 basis and is of

form

H =



M + ω0 δ ω1 0

δ M − ω0 0 −ω1

ω1 0 M − ω0 −δη2
cpt

0 −ω1 −δη2
cpt M + ω0


, (6.1)

where M is the neutron mass and δ, as shown in Chap. 2, denotes a n(+) → n̄(+)

transition matrix element. The other minus signs are fixed by Hermiticity and CPT

invariance. In Ref. [111], the phase ηcpt was set to unity, as per standard textbooks [83]

and noting |δ| � |ω0|, |ω1|, the unpolarized n− n̄ transition probability was found to

be

Pn→n̄(t) = δ2
[ ω2

1t
2

ω2
0 + ω2

1

+
ω2

0

(ω2
0 + ω2

1)2
sin2

(
t
√
ω2

0 + ω2
1

)
+

ω2
0ω

2
1t

(ω2
0 + ω2

1)5/2

(
1− sin

(
2t
√
ω2

0 + ω2
1

))]
+O(δ3), (6.2)

so that if |ω0| ∼ |ω1| the first term is ofO(1) in magnetic fields, and thus the quenching

no longer appears. However, the exact eigenvalues at t > 0 are

E1 = M −
√
ω2

0 + (δ − ω1)2,

E2 = M +
√
ω2

0 + (δ − ω1)2,

E3 = M −
√
ω2

0 + (δ + ω1)2,

E4 = M +
√
ω2

0 + (δ + ω1)2, (6.3)

in which one can distinguish the longitudinal and transverse fields in that the trans-

verse field is suddenly applied. However, once the field is “on” one should no longer

be able to distinguish longitudinal from transverse fields, and thus the eigenvalues

should depend on the magnitude of fields only. As pointed out in Refs. [88, 112]

and later confirmed in Ref. [90], this breaks rotational invariance, and hence the

Lorentz invariance. Now with the correct phase η2
cpt = −1, we find that the energy

eigenvalues at t > 0 do respect rotational symmetry, but there are only two different

eigenvalues left, so that they recover the form evaluated in the 2× 2 framework and
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that n(+) → n̄(−) and n(−) → n̄(+) transitions no longer occur. As a result, nn̄

transitions are quenched irrespective of the presence of transverse magnetic fields.

Moreover, employing time-dependent magnetic fields in the manner familiar from the

theory of magnetic resonance [113, 114], as discussed in Ref. [111], does not change

this conclusion. However, despite the failure of this specific method, spin-dependent

effects can still play a key role in n− n̄ transitions.

6.1.2 n− n̄ conversion operator

In Chap. 3, a n − n̄ conversion operator was introduced. We argued that because

of the vector current, the spin degree of freedom of neutron and antineutron must

be considered, and spin-flip between the neutron and antineutron became possible.

In this subsection, we will demonstrate explicitly that the n− n̄ conversion operator

does avoid the quenching problem in the presence of an external magnetic field.

For simplicity we make the initial neutron or antineutron stationary. Then work-

ing in the |n(+)〉, |n̄(+)〉, |n(−)〉, |n̄(−)〉 basis, and assuming that momentum transfer

is trivially small (so that the following framework still works), the Hamiltonian matrix

in presence of a magnetic field B0 is of form

H =



M + ω0 ωz 0 ωx − iωy

ωz M − ω0 ωz − iωy 0

0 ωx + iωy M − ω0 −ωz

ωx + iωy 0 −ωz M + ω0


. (6.4)

The details are given below. We set the direction of B0 as the quantization axis and

define ω0 ≡ −µnB0. The parameter M denotes the neutron mass, and the matrix

elements of O4 for various spin states of the neutron and antineutron are defined

as follows: ωx ≡ 2jx, ωy ≡ 2jy, and ωz ≡ 2jz. Note that we have incorporated a

B − L coefficient that is associated with the operator O4 into j. Therefore, |ω0| �
|ωx|, |ωy|, |ωz|. Assuming |ωx| ∼ |ωy| ∼ |ωz|, we compute the transition probabilities

of a neutron with spin s = + into an antineutron in spin s = ± states respectively

Pn+→n̄+ =
ω2
z

ω2
0

sin2(tω0) cos2(tωxy) +O(ω3
z) (6.5)

Pn+→n̄− = sin2(tωxy)−
tω2

zωxy
ω2

0

sin(tωxy) cos(tωxy)

−ω
2
z

ω2
0

cos2(tω0) sin2(tωxy) +O(ω3
z), (6.6)
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where ωxy =
√
ω2
x + ω2

y. It is easy to find that Pn+→n̄+ is still quenched by the

magnetic field, which is not surprising since the spin is not flipped. Although the last

two terms in Pn+→n̄− are also quenched, the first term is independent of the external

magnetic field, so that the n(+) → n̄(−) process is not suppressed. It should be

pointed out that although we demonstrated this in a particular case, our conclusion

holds more generally. Note that since a scattering process is involved, the initial

neutron and final antineutron do not have to share the same energy-momentum,

and the framework we used thus far ceases to be valid, because the particles are

not stationary. Therefore, we are no longer bound to the context of an oscillation

framework, and the quenching problem is completely solved. Moreover, following the

same analysis performed in the ILL experiment [39], one can also set a limit on η

directly by utilizing a nonuniform magnetic field so that it can generate a nonzero

ωxy in this framework.

6.2 Effective theories of nn̄ conversion

6.2.1 Dimensional analysis of n− n̄ conversion operators

Before moving on to possible applications of the n − n̄ conversion operator, we first

approach the problem from the viewpoint of simple dimensional analysis. There are

two kinds of fields involved: one fermion field ψ and one electromagnetic tensor Fµν

in operator O4. It is easy to check that the mass dimension of a fermion field with

spin 1/2 is 3/2, and it is usually denoted by [ψ] = 3/21. To be thorough, we also

write down the mass dimension of the other terms in operator O4.

[∂] = 1, [Fµν ] = 2, [C] = [γµ] = [γ5] = 0. (6.7)

Since the mass dimension of a Lagrangian density must be 4, i.e. [L] = 4, while

[ψTCγµγ5∂νFνµ] = 6, there must be a coupling coefficient η with mass dimension -2

associated with this operator. Therefore, the correct form that the n− n̄ conversion

operator takes must be

O4 = ηψTCγµγ5ψ∂νFµν + h.c. (6.8)

Following the same argument, one would wonder if there should also be a coupling

coefficient, say η′, with mass dimension one associated with the n − n̄ oscillation

operator — and the answer is positive. Now noting [η/η′] = −3, one cannot help

1Here the square brackets denote the mass dimension of the quantity in brackets.
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Figure 6.1: Tree diagram of a six-fermion n− n̄ oscillation vertex.

expecting that n − n̄ conversion will be suppressed by an additional factor of Λ3
NP ,

where ΛNP is the cutoff mass scale of new physics. This is not necessarily true

because other energy scales also exist. To illustrate this explicitly, we need to find

the quark-level n− n̄ conversion operators first.

6.2.2 Quark-level n− n̄ conversion operators

There is an inner connection between nn̄ oscillation and conversion operators. Let us

revisit the structures of these two operators, O1 and O4.

O1 = η′ψTCψ + h.c., O4 = ηψTCγµγ5ψjµ + h.c., (6.9)

with jµ = ∂νFµν . Note that the γµ structure in O4 can come from the interaction

between n− n̄ oscillation operator and a vector current Jµ generated by an external

source. Since a neutron or antineutron contains quarks2, we can connect the n − n̄
conversion operator with the oscillation operator through such an external source.

Moreover, this can be done via SM physics. Since quarks are explicitly involved, we

must work at an energy scale above ΛQCD. However, for the processes we want to

consider, we can still work at energies far below the ΛNP .

Although technically the current can be any vector current and it does not have to

be gauged, the easiest choice should be the electromagnetic current that we explicitly

showed in O4. We will start with the complete set of general six-fermion n − n̄

operators listed in Chap. 5, which can also be represented graphically by Fig. 6.1.

Recall there are three kinds of six-fermion n−n̄ operators, (O1)χ1χ2χ3 , (O2)χ1χ2χ3 , and

(O3)χ1χ2χ3 . Here we will take (O1)χ1χ2χ3 as an example to demonstrate the connection

between nn̄ conversion and oscillation.

It is useful to recall the explicit form of (O1)χ1χ2χ3 ,

(O1)χ1χ2χ3 = [u>αχ1
Cuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ, (6.10)

2Recall that the quarks of the SM carry both electric and color charge.
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Figure 6.2: A neutron-antineutron transition is realized through electron-neutron
scattering. The virtual photon emitted from the scattered electron interacts with a
general six-fermion n− n̄ oscillation vertex. 1©, 2©, and 3© correspond to two possible
ways of attaching a photon to the three blocks.

where Ts denotes one of the color tensors. Now we can apply electromagnetic interac-

tions to this operator. A virtual photon is generated by a scattered charged particle

(e.g., electron), which is an explicit realization of an electric current. Note that there

are three blocks, [...], in (O1)χ1χ2χ3 and in each block there are two charged particles

(quarks and antiquarks). When a virtual photon is attached to these blocks, there

are six possible ways that correspond to six different Feynman diagrams as showed in

Fig. 6.2. Note that we do not attach a photon line to the solid “blob” at the center

— this would yield an effect that would be suppressed by higher powers of the new

physics mass scale!

Let us consider the first block of this operator first. We assign the momentum p

and p′ for initial u quark and final uc respectively and k as the incoming momentum

of photon. Then the corresponding amplitude will be

M = εµ

[2e

3
u>χ1

C
i

/p+ /k −mu

iγµuχ1 +
2e

3
u>χ1

Ciγµ
i

−(/p′ − /k)−mu

uχ1

]
×[d>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ, (6.11)

where εµ denotes the polarization vector of the photon and u and d are the Dirac

spinors. If we assume that the momentum transfer is small, so that the momentum

of the initial u quark and final uc are close, i.e. p′ ' p and k ' 0, then the amplitude

becomes

M = εµ

[
− 4e

3
u>χ1

Cγµ
mu

p2 −m2
u

uχ1 −
2e

3
u>χ1

C
/pγµ − γµ/p
p2 −m2

u

uχ1

]
×[d>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ. (6.12)
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Figure 6.3: A neutron-antineutron transition is realized through electron-neutron
scattering. The virtual photon emitted from the scattered electron interacts with the
neutron through a six-fermion |∆B| = 2 vertex that is generated by a spontaneous
(B − L)-symmetry breaking of the “partial unification” group SU(2)L ⊗ SU(2)R ⊗
SU(4’)[46]. This is shown inside of the big blue circle. Since photon can couple to
any charged particle, i.e. to any of the lines in these three blocks, we only take the
first block as an example. The vertex is represented by a red and gold circular area.
There are three possible ways to couple the photon to this vertex. We explicitly show
them within three dashed red circles.

The second term inside of the first bracket above can be dropped. Since this is not

trivial, I will explicitly demonstrate it below. Note that uTC = v̄ in our spinor

convention. From v̄/p = −mv̄, it is easy to find that v̄χ1/p = −mv̄−χ1 . Therefore we

have

u>χ1
C(/pγ

µ − γµ/p)uχ1 = v̄χ1(/pγ
µ − γµ/p)uχ1

= −mu[v̄−χ1γ
µuχ1 + v̄χ1γ

µu−χ1 ]. (6.13)

Noting that (1± γ5)γµ(1∓ γ5) = 2γµ(1∓ γ5), Eq. 6.13 can be further simplified to

u>χ1
C(/pγ

µ − γµ/p)uχ1 = v̄γµu = uTCγµu. (6.14)

This corresponds to an operator with the structure ψTCγµψ, which we have showed

that its CPT transformation is CPT-odd and that it vanishes identically. Eventually

the amplitude can be written as

M = εµ

[
− 4e

3
u>−χ1

Cγµ
mu

p2 −m2
u

uχ1

]
[d>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ. (6.15)
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Now we can write down the associated effective operator as

λ
−4e

3

mu

p2 −m2
u

[u>α−χ1
Cγµuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ. (6.16)

Here u and d are no longer denoting Dirac spinors but the u quark and d quark fields

respectively. Note that because of the electromagnetic interaction, the chirality of the

initial particle and final particle in the first block has changed the sign, which fulfills

the spin-flip character of the nn̄ conversion operator O4. This also implies that if the

particles involved cannot be massless, since it is impossible to flip the chirality of a

massless particle.

Note that we have introduced a parameter λ that actually comes from the original

six-fermion O1 operator and can be related to the coupling coefficient η′ later. Simple

dimensional analysis shows the mass dimension of λ to be [λ] = −5.

Before moving on to other blocks or to other n− n̄ oscillation operators, we would

like to point out that our treatment is an effective field theory (EFT) treatment,

so that it should be model-independent. To demonstrate it, we will show that the

model-dependent aspects drop out in the low momentum limit. We can pick a popular

model in which n−n̄ oscillation is generated by a spontaneous breaking of local B−L
symmetry [46]. The tree graph that induces the six-fermion |∆B| = 2 vertex, e.g.,

O1, is shown in the big blue circle in Fig. 6.3. As we did above, we focus on the

first block of (O1)χ1χ2χ3 first. Now there will be three different Feynman diagrams

corresponding to the three different way of attaching a virtual photon to this block,

because there are three charged particles (u, ū, and charged scalar particle) involved.

The amplitude takes the form

M =
{
εµ

i

(p′ − p)2 −M2

[2e

3
u>χ1

C
i

/p+ /k −mu

iγµuχ1 +
2e

3
u>
χ
′
1
Ciγµ

i

−(/p′ − /k)−mu

uχ1

]
+u>χ1

Cuχ1

i

(p′ − p)2 −M2

i

(p′ − p+ k)2 −M2

4e

3
εµi(2p

µ + 2p′µ + kµ)
}

×[d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ, (6.17)

where M is the mass of the charged scalar field. We can simplify the equation above

by noting that both the nucleon momenta and the momentum transfer are much

smaller than the scalar mass M, and that the second term is quenched by another

1/M2. Therefore, this amplitude can be rewritten as

M =
−iεµ
M2

[2e

3
u>χ1

C
i

/p+ /k −mu

iγµuχ1 +
2e

3
u>
χ
′
1
Ciγµ

i

−(/p′ − /k)−mu

uχ1

]
×[d>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ. (6.18)
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We take the same assumption as before, then the amplitude becomes

M =
−iεµ
M2

[
− 4e

3
u>χ1

Cγµ
mu

p2 −m2
u

uχ1 −
2e

3
u>
χ
′
1
C
/pγµ − γµ/p
p2 −m2

u

uχ1

]
×[d>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ. (6.19)

Eventually the amplitude can be simplified to

M =
−iεµ
M2

[
− 4e

3
u>−χ1

Cγµ
mu

p2 −m2
u

uχ1

]
[d>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ. (6.20)

We can also write down the associated effective operator

−i
M2

[
− 4e

3

mu

p2 −m2
u

u>α−χ1
Cγµuβχ1

]
[d>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ. (6.21)

where u and d now denote u quark and d quark fields respectively. Now the whole

effective operator shall be

λ′
i

M6

−4e

3

mu

p2 −m2
u

[u>α−χ1
Cγµuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ, (6.22)

where λ′ is introduced to make sure the mass dimension of this operator is correct

— and actually it can also be related to the model [46]. Note that this operator is

identical to Eq. 6.16, after a parameter definition, i.e. λ ≡ iλ′/M6. Therefore, the

model we considered only serves as a mechanism to generate the coupling coefficient

η. Under the assumption that the conversion is mediated by electromagnetism, the

structure of nn̄ conversion operator will be the same as long as one starts with a

complete set of general six-fermion n − n̄ oscillation operators, irrespective of the

model from which they arise.

We ignore the coupling coefficient λ for the moment, though we will restore it

when we turn to the evaluation of the hadron matrix elements. Now we can simply

write down the effective nn̄ conversion operator as

(Oµ1 )Iχ1χ2χ3
= −4e

3

mu

p2 −m2
u

[u>α−χ1
Cγµuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ, (6.23)

where I denotes the first block. Following the same argument, we find the effective

operators associated with the second and third blocks respectively,

(Oµ1 )IIχ1χ2χ3
=

2e

3

md

p2 −m2
d

[u>αχ1
Cuβχ1

][d>γ−χ2
Cγµdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ, (6.24)

(Oµ1 )IIIχ1χ2χ3
=

2e

3

md

p2 −m2
d

[u>αχ1
Cuβχ1

][d>γχ2
Cdδχ2

][d>ρ−χ3
Cγµdσχ3

](Ts)αβγδρσ. (6.25)
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Combining Eqs. 6.23, 6.24, and 6.25 gives the effective operator generated from O1

(Õ1)µχ1χ2χ3
=

[−4e

3

mu

p2 −m2
u

[u>α−χ1
Cγµuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

]

+
2e

3

md

p2 −m2
d

[u>αχ1
Cuβχ1

][d>γ−χ2
Cγµdδχ2

][d>ρχ3
Cdσχ3

]

+
2e

3

md

p2 −m2
d

[u>αχ1
Cuβχ1

][d>γχ2
Cdδχ2

][d>ρ−χ3
Cγµdσχ3

]
]
(Ts)αβγδρσ. (6.26)

Putting back the current term gives the effective n− n̄ conversion operator

(Õ1)χ1χ2χ3 =
jµ
q2

(λ1)χ1χ2χ3(Õ1)µχ1χ2χ3
, (6.27)

where we have also put back the coupling coefficient λ with explicit labels to indicate

its relevant dependence, e.g., λ1 denotes that it is associated with operator O1. The

other two n− n̄ conversion operators generated from O2 and O3 respectively can also

be constructed by following the same procedure.

In particular, we note that although the block structure of (O2)χ1χ2χ3 is quite

different from (O1)χ1χ2χ3 , writing down the effective operators associated with each

block is straightforward. We only list the final results below.

(Oµ2 )Iχ1χ2χ3
=

[−2e

3
u>α−χ1

Cγµ
mu

p2 −m2
u

dβχ1
+
e

3
u>α−χ1

Cγµ
md

p2 −m2
d

dβχ1

]
×[u>γχ2

Cdδχ2
][d>ρχ3

Cdσχ3
](Ts)αβγδρσ, (6.28)

(Oµ2 )IIχ1χ2χ3
= [u>αχ1

Cdβχ1
]
[−2e

3
u>γ−χ2

Cγµ
mu

p2 −m2
u

dδχ2
+
e

3
u>γ−χ2

Cγµ
md

p2 −m2
d

dδχ2

]
×[d>ρχ3

Cdσχ3
](Ts)αβγδρσ, (6.29)

(Oµ2 )IIIχ1χ2χ3
= [u>αχ1

Cdβχ1
][u>γχ2

Cdδχ2
]
[2e

3

md

p2 −m2
d

d>ρ−χ3
Cγµdσχ3

]
(Ts)αβγδρσ. (6.30)

Since (O3)χ1χ2χ3 has the same block structure as (O2)χ1χ2χ3 , we can obtain its effective

operators easily by replacing (Ts)αβγδρσ by (Ta)αβγδρσ.

6.3 Matrix elements of nn̄ conversion operators in the MIT bag model

We have showed in Chap. 5 that the overall scale of the matrix elements of nn̄ oscil-

lation operators in the MIT bag model and LQCD is different, but it is encouraging

that the pattern is similar. Therefore, it is reasonable to continue using the bag model

to evaluate the six-fermion nn̄ conversion operators. We consider the matrix element,

e.g., 〈n̄ ↑ |(Oµi )jχ1χ2χ3
|n ↑〉, where i = 1, 2, 3, j = I, II, III, and µ is the Lorentz index

and χ is the chirality index. Note that in general, only the sum of the contributions
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from all three blocks, j, gives an operator that will be compatible with the Ward-

Takahashi identity of QED. The normalized spin-up neutron and antineutron wave

functions have been shown in Eqs. (5.39, 5.40).

To make the final results as simple as possible, just as we have done in the oscilla-

tion case, we also make some useful definitions. The general structure of the matrix

elements of six-fermion conversion operators are defined as

〈(Õi)〉µχ1χ2χ3
=

∑
j

〈Oµi 〉jχ1χ2χ3
=
∑
j

〈n̄ ↑ |
∫
d3r(Oµi )jχ1χ2χ3

|n ↑〉

=
∑
j

eN6p−3

(4π)2

mu/d

p2 −m2
u/d

(Iµi )jχ1χ2χ3
, (6.31)

where (Iµi )jχ1χ2χ3
are dimensionless integrals and (Oµi )jχ1χ2χ3

is the conversion operator

obtained above. Once we put the associated coefficient λ back, then the operator,

e.g., (Oµ1 )Iχ1χ2χ3
, takes the form

(Oµ1 )Iχ1χ2χ3

= (λ1)χ1χ2χ3

−4e

3

mu

p2 −m2
u

[u>α−χ1
Cγµuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ. (6.32)

To simplify the final expression for (Iµi )jχ1χ2χ3
, we also define j̃1(x) ≡ εj1(x) and six

integrals

Ia =

∫ ξ

0

x2[j2
0(x)− j̃2

1(x)]2
(
j2

0(x)− 1

3
j̃2

1(x)
)
dx, (6.33)

Ib =

∫ ξ

0

x2[j2
0(x)− j̃2

1(x)]j2
0(x)j̃2

1(x)dx, (6.34)

Ic =

∫ ξ

0

x2j2
0(x)j̃4

1(x)dx, (6.35)

Id =

∫ ξ

0

x2[j2
0(x) + j̃2

1(x)][j2
0(x)− j̃2

1(x)]
(
j2

0(x) +
1

3
j̃2

1(x)
)
dx, (6.36)

Ie =

∫ ξ

0

x2[j2
0(x) + j̃2

1(x)]j2
0(x)j̃2

1(x)dx, (6.37)

If =

∫ ξ

0

x2[j2
0(x) + j̃2

1(x)]2
(
j2

0(x)− 1

3
j̃2

1(x)
)
dx. (6.38)

For simplicity, we evaluate the matrix elements in the case of that the initial neutron

and final antineutron have the same spin. A spin-flip process can also occur. However,

recall that in the spin-flip case, the matrix element of the neutron level n−n̄ conversion

operator is ωx − iωy. Comparing it with the matrix element ωz in the non-spin-flip

case, we expect the calculations will be twice involved. Moreover, noting the same



CHAPTER 6. PHENOMENOLOGY OF nn̄ CONVERSION 55

structure of n−n̄ conversion operators in neutron level and quark level, we can expect

that final result in the spin-flip case will be just the same as in the non-spin-flip case.

Later we confirm it through explicit computations.

In the non-spin-flip case, only the z component of these operators have non-zero

matrix elements, i.e. µ = 3. Therefore, we have

(I3
1 )Iχ1χ2χ3

= −8i
[
Ia −

4

3
η2η3Ib − 8η2η3Ic

]
, (6.39)

(I3
1 )IIχ1χ2χ3

= −8i
[
− 2Ia −

28

3
η1η3Ib − 8η1η3Ic

]
, (6.40)

(I3
1 )IIIχ1χ2χ3

= −8i
[
− 2Ia −

28

3
η1η2Ib − 8η1η2Ic

]
, (6.41)

for the first effective operator and for the second one

(I3
2 )Iχ1χ2χ3

= −4i
[
− 1

2
Ia +

2

3
η2η3Ib + 4(η1η3 + η1η2)Ib + 4η2η3Ic

]
, (6.42)

(I3
2 )IIχ1χ2χ3

= −4i
[
− 1

2
Ia +

2

3
η1η3Ib + 4(η2η3 − η1η2)Ib + 4η1η3Ic

]
, (6.43)

(I3
2 )IIIχ1χ2χ3

= −4i
[5

2
Ia +

26

3
η1η2Ib + 4(η2η3 − η1η3)Ib + 4η1η2Ic

]
, (6.44)

where ηi = 1(−1) for χi = R(L). Because of the antisymmetic tensor (Ta)αβγδρσ that

appears in the third operator, its matrix elements are different from the other two,

(I3
3 )Iχ1χ2χ3

=
4

3
i
[
− 1

2
Ia +

2

3
η2η3Ib + 4(η1η3 + η1η2)Ib + 4η2η3Ic

]
−4i

[
− η1η2Id + 4η2η3Ie

]
, (6.45)

(I3
3 )IIχ1χ2χ3

=
4

3
i
[
− 1

2
Ia +

2

3
η1η3Ib + 4(η2η3 − η1η2)Ib + 4η1η3Ic

]
−4i

[
− η1η2Id + 4η1η3Ie

]
, (6.46)

(I3
3 )IIIχ1χ2χ3

=
4

3
i
[5

2
Ia +

26

3
η1η2Ib + 4(η2η3 − η1η3)Ib + 4η1η2Ic

]
−4i(3η1η2If ). (6.47)

Let us factor out another factor i/3 out of (I3
i )jχ1χ2χ3

, so that Eq. 6.31 can be rewritten

as

〈(Õi)〉µχ1χ2χ3
=
∑
j

N6p−3

(4π)2

ie

3

mu/d

p2 −m2
u/d

(Ĩµi )jχ1χ2χ3
. (6.48)

Recall the two fits [109] mentioned in Chap. 4: (A) mu = md = 0, Rn =

5.00 GeV−1; and (B) mu = md = 0.108 GeV, Rn = 5.59 GeV−1. Unsurprisingly,

the matrix elements vanish for fit (A). The resulting values of the six integrals in
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Table 6.1: Values of the I integrals in fit (B) [109, 38].

Ia Ib Ic Id Ie If

0.302 0.032 0.008 0.395 0.047 0.447

Table 6.2: Dimensionless matrix elements of n− n̄ conversion operators.

Matrix element Block I Block II Block III

(Ĩ3
1 )RRR -1.581 7.719 7.719

(Ĩ3
1 )LLR -3.243 1.930 7.719

(Ĩ3
1 )RLL -1.581 1.930 1.930

(Ĩ3
2 )RRR -0.637 0.395 -4.255

(Ĩ3
2 )LLR 0.811 1.843 -4.255

(Ĩ3
2 )RLL 1.427 -0.221 -2.807

(Ĩ3
3 )RRR 1.032 0.688 -5.960

(Ĩ3
3 )LRR -2.814 -0.746 4.294

(Ĩ3
3 )LLR 2.068 1.724 -5.960

Table 6.3: Matrix element of 〈(Õi)〉3χ without a common factor.

〈(Õ1)〉3RRR 〈(Õ1)〉3LLR 〈(Õ1)〉3RLL
37.2 32.27 14.04

〈(Õ2)〉3RRR 〈(Õ2)〉3LLR 〈(Õ2)〉3RLL
-5.17 -8.07 -11.76

〈(Õ3)〉3RRR 〈(Õ3)〉3LRR 〈(Õ3)〉3LLR
-14.67 18.35 -16.74

fit (B) are listed in Table 6.1, and the dimensionless matrix elements of the n − n̄
conversion operators are given in Table 6.2. After factoring out the common factor,

[iemN6p−3]/[48π2(p2 −m2)], we compute the 〈(Õi)〉µχ1χ2χ3
with i = 1, 2, 3. The final

results are listed in Table 6.3.
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6.4 n− n̄ conversion coupling parameter

To determine the coupling coefficient η, we have one last but not least ingredient to

discuss: how the observable is related to these matrix elements. We focus on n − n̄
oscillation first. The observable of an n−n̄ oscillation experiment is the nn̄ oscillation

time τnn̄ that comes from three inputs [102]

1

τnn̄
= δ = CBSMCQCD〈n̄|O|n〉, (6.49)

where CBSM is the running of the BSM theory to the weak interaction scale, CQCD is

the QCD running from weak to the nuclear scale, and 〈n̄|O|n〉 is the matrix element

of the six-fermion nn̄ oscillation operators. The coefficient CQCD can be calculated

because it is known at one-loop level in perturbative QCD [115, 116], and CBSM has

also been calculated in different models [117, 118, 49].

In Chap. 5, we have computed the matrix elements of nn̄ oscillation operators

and also found that oscillation operators with different labels, such as chiral indices

χ1, χ2, χ3, or with different tensor structure, Ta or Ts, contribute to the nn̄ matrix

elements differently. Technically, all these six-fermion nn̄ oscillation operators con-

tribute to the observable. However, in what follows, for simplicity, we focus on just

the biggest one, i.e., (O1)RRR. Therefore, we have

CBSMCQCD(λ1)RRR
iN6p−3

(4π)2
〈O1〉RRR ≈ δ, (6.50)

where λ1
RRR is the coupling coefficient associated with (O1)RRR. Similarly for nn̄

conversion, since 〈Oz1〉RRR in Table 6.3 is also the biggest one, we obtain the relation

2ηjz = C ′BSMC
′
QCD〈n̄|Õ|n〉

≈ jz

q2
C ′BSMC

′
QCD(λ1)RRR

iN6p−3

(4π)2

e

3

m

p2 −m2
〈(Õz1)〉RRR, (6.51)

where Õ denotes the six-fermion n− n̄ conversion operator, while the left side of this

equation is the matrix element of the neutron-level n− n̄ conversion operators in the

non-spin-flip case. Note that this relation would have a more complicated form, if we

did not assume q2 was small. Generally C ′BSM and C ′QCD will be different from CBSM

and CQCD, due to the electromagnetic interaction in the n− n̄ conversion operators.

However, since the ratios, C ′BSM/CBSM and C ′QCD/CQCD, should be one up to very

small electromagnetic corrections, we set them to unity in our calculations. Then the

n− n̄ conversion coupling coefficient can be determined as

η = δ
e

6q2

m

p2 −m2

〈(Õ1)〉zRRR
〈O1〉RRR

. (6.52)
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Note that compared with δ, η is definitely not suppressed by Λ3
NP as one might

naively expect. Let us check the parameters in Eq. 6.52. The parameters m and p

are fixed by fitting the masses and other parameters of the light hadron in the MIT

bag model [109]. Using the fit (B), we compute [m〈(Õ1)〉zRRR]/[(p2−m2)〈O1〉RRR], and

find that it is close to 1 GeV−1. The electric charge unit e is a dimensionless constant

and is about 1/3. The parameter δ is not a fundamental Lagrangian parameter, but

rather the effective n − n̄ oscillation matrix element. Therefore, η depends on q2 in

a sensitive way. By considering forward scattering, a small q2 can be obtained, so

that η can be greatly enhanced and consequently a strong limit on δ can also be set

through Eq. 6.52, though it does not have to hold if η is generated in a completely

independent way.

Copyright c© Xinshuai Yan, 2017.



chapter 7

APPLICATIONS OF n− n̄ CONVERSION

7.1 n − n̄ conversion cross section at low energies, mediated by electro-

magnetically charged particle scattering

At the neutron energy scale, the effective Lagrangian of n− n̄ conversion through an

electromagnetic current is given by

L = in̄/∂n−mnn̄n− η′(nTCn+ h.c.)− η(nTCγµγ5nψ̄γµψ + h.c.), (7.1)

where n denotes the neutron field with mass mn, ψ represents another spin 1/2

charged particle with charge Q, and η is given in Eq. 6.52.

We now turn to the computation of the unpolarized cross section for n+Q→ n̄+Q

to lowest order in η. The particles’ momenta and spin assignments are shown in

Fig. 7.1. The amplitude for this process is given by

iM = ηūs
′

Q(p′Q)(γµ)usQ(pQ)uTr
′

n (p′n)Cγµγ
5urn(pn)

= ηūs
′

Q(p′Q)(γµ)usQ(pQ)v̄r
′

n (p′n)γµγ
5urn(pn), (7.2)

where u and v are Dirac spinors and we have used the relation uTC = v̄. Then the

Figure 7.1: Feynman diagram for n+Q→ n̄+Q process at low energies. Here “Q”
denotes a spin 1/2 particle with electric charge Q.

59
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spin-averaged |M|2 becomes

|M|2 =
1

4

∑
s,s′,r,r′

|iM|2

=
1

4
η2 Tr[(/p

′
Q

+mQ)γµ(/pQ +mQ)γν ] Tr[(/p
′
n
−mn)γµγ

5(/pn +mn)γνγ
5]

=
8Q2e4|β|2δ2

q4

[
(p′Q · p′n)(pQ · pn) + (p′n · pQ)(p′Q · pn)

+2m2
Qm

2
n −m2

n(p′Q · pQ)−m2
Q(p′n · pn)

]
, (7.3)

where

β =
m

p2 −m2

(〈Õ1)〉zRRR
〈O1〉RRR

. (7.4)

The differential cross section is given by

dσ =
1

4EQEn|vQ − vn|
d3p′Q
(2π)3

1

2E ′Q

d3p′n
(2π)3

1

2E ′n
|M|2(2π)4δ4(pQ + pn − p′Q − p′n), (7.5)

where |vQ − vn| is the relative velocity of the beams as viewed from the laboratory

frame. To determine dσ in terms of basic kinematic variables, such as energies and

angles, we must pick a frame. However, the total cross section is a Lorentz scalar

and thus frame independent. In this thesis, we choose the fixed-target frame, which

is the laboratory frame. In this frame, two processes are possible. The first one is

charged particle scattering with a neutron target, and the other one is neutron beam

scattering with a charged particle target.

Let us consider the second possibility, in which a neutron (n) scattering with a

charged particle Q becomes an antineutron, n + Q → n̄ + Q, first. The initial and

final 4-momenta can be written as follows:

pn = (En,pn); p′n = (E ′n,p
′
n);

pQ = (mQ, 0); p′Q = (E ′Q,p
′
Q). (7.6)

Now the Lorentz invariant quantities in Eq. 7.3 can be written as

q2 = (p′n − pn)2 = 2m2
n − 2EnE

′
n + 2|pn||p′n| cos θ, (7.7)

(pn · p′n) = EnE
′
n − |pn||p′n| cos θ, (7.8)

(pQ · p′Q) = m2
Q −m2

n + EnE
′
n − |pn||p′n| cos θ, (7.9)

(pQ · p′n)(pn · p′Q) = m2
QE
′2
n , (7.10)

(p′Q · p′n)(pQ · pn) = m2
QE

2
n, (7.11)
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where θ is the scattering angle in the laboratory frame.

In deriving Eq. 6.52 in last chapter, we assumed that the energies of initial neutron

and final antineutron are comparable. This can occur in the target-rest frame, with

physical scattering, if we work in the limit of mn � mQ — just like a ping-pong ball

bouncing against a steel ball. The bounced ping-pong ball can have the same energy

but moves in a different direction and leaves the steel ball roughly at rest. Therefore,

we have En ≈ E ′n and |p′n| ≈ |pn|, and the Lorentz-invariant quantities of interest

can be simplified to

q2 = −4|pn|2 sin2
(θ

2

)
, (7.12)

(pn · p′n) = E2
n − |pn|2 cos θ, (7.13)

(pQ · p′Q) = 2|pn|2 sin2
(θ

2

)
+m2

Q; (7.14)

(pQ · p′n)(pn · p′Q) = (p′Q · p′n)(pQ · pn) = m2
QE

2
n. (7.15)

The total cross section then is given by

σ =
Q22πα2|β|2δ2

8|pn|4

∫
θ0

dθ sin θ
2m2

n + |pn|2(1 + cos θ)− 2m2
n

m2
Q
|pn|2 sin2(θ/2)

sin4(θ/2)
. (7.16)

Note that this cross section is divergent at θ = 0. This singularity also occurs in

case of scattering by purely Coulombic interactions. The standard procedure is to

introduce some phenomenological parameter θ0 for cutting off the cross section with

angles θ < θ0. This parameter can be determined by considering the experimental

set up.

Note that in the case mQ � mn the above arguments also apply to the first

possible process, in which a charged particle Q scatters with a neutron (n) target

and the neutron becomes an antineutron, Q + n → Q + n̄. Its cross section can be

obtained simply by exchanging pn ↔ pQ and mn ↔ mQ.

7.2 Some experimental proposals

The event rate for a fixed-target experiment is given by [119]

dR

dt
= Lσ = φρTLσ, (7.17)

where L denotes luminosity with units cm−2s−1, R is the number of events, φ is the

flux of incoming particles, i.e., the number of particles per second 1, ρT is the number

1We define the flux density as the number of particles per second and per area, whereas the flux
is the number of particles per second. We note that different usages appear in the literature.
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density of target, L is the length of target, and finally σ is the total cross section.

Therefore, to maximize R, high flux of incoming particles and high density of target

are essential.

Note that cross section is proportional to the squared charge Q2, naively one would

pick heavy nuclei as probes to flip the spin projection of quarks in neutrons, since

it contains many protons. However, if the neutrons are of sufficiently low energy,

they would see the heavy atoms as electrically neutral, so that we set this aside as a

possibility for now.

For the first possible process, possible “Q” beam we are considering is either a

proton or an electron beam. Electron beams with high flux have been constructed

for the DarkLight experiment at Jlab [120]. The goal of this experiment is to search

for the dark matter in 10-100 MeV range, so the energy of electron will be around

100 MeV. It may be possible to arrange a beam of the same flux with lower energy.

Therefore, when we perform a numerical estimation of the Q + n → Q + n̄ process

in a later section, this beam will be our primary choice. However, high-flux proton

beams at lower energies certainly work too. Since free neutron targets do not exist,

the possible effective neutron target we would like to consider is liquid deuterium,

because at certain temperatures, its density can be promisingly large.

In case of second possible process , one can use a free neutron beam. For example,

a free neutron beam of low energy (2×10−4eV) and very high flux was used in a n− n̄
oscillation search at the ILL [39]. The possible “Q” targets we want to consider are

an electron plasma and liquid deuterium. Electrons can be confined into a plasma

by a magnetic field. Although there exists a limiting density called the Brillouin

density [121], nB = ε0B
2/2me, in a high magnetic field B, an electron plasma with

high density is still possible. In the second case, we pick liquid deuterium, not only

because of its possible high particle density, but also because of its low neutron

absorption rate. To maximize the chance of observing n − n̄ conversion, the loss of

neutrons in the process must be minimized.

A little bit of summary seems necessary now. In this section, we have proposed

different ways of realizing n−n̄ conversion. The first one is an electron beam scattering

from a liquid deuterium target; the second one is a neutron beam scattering from

electron plasma confined by a large magnetic field; and the final one is neutron beam

scattering from a liquid deuterium target. We will explicitly estimate each case and

set limits on the n− n̄ oscillation parameter δ.
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7.3 n− n̄ conversion limits on δ

(1) n + e→ n̄ + e case:

The total cross section is

σ =
2πα2|β|2δ2

8|pn|4

∫
θ0

dθ sin θ
2m2

n + |pn|2(1 + cos θ)− 2m2
n

m2
e
|pn|2 sin2(θ/2)

sin4(θ/2)
, (7.18)

with

β ≡ 1

6

m

p2 −m2

(〈Õ1)〉zRRR
〈O1〉RRR

. (7.19)

Using the results obtained in the last chapter, we compute β ' 0.92 GeV−1. We

also use the mass of an electron me = 5.10 × 10−4 GeV, and, for simplicity, set

the masses of a neutron and a proton equal, mn = mp = 0.939 GeV. The angular

integration in Eq. 7.18 is divergent at θ = 0. Therefore, we will apply a cutoff

angle θ0, which is based on a setup for a T violation search in neutron transmission

experiment [122]. The concept for this experiment is different. However, there they

want to detect forward scattering with angles no larger than an angle of θ0 ≈ 0.003

in radians. Therefore it seems that we can also use this angle as an estimate of the

smallest possible experimental scattering angle. The angular integral in Eq. (7.18)

for forward scattering process is about 1.7×106 and that does not vary very much for

|pn| ∈ (10 eV, 10 MeV), since the small denominator dominates the total integration.

For the same reason, the cross section for n + d → n̄ + d is also close to that of

n + e → n̄ + e process. We want to use parameters as achieved by or anticipated

in a particular experiment in our numerical estimates. Due to their high luminosity,

the neutron beam we consider is from the ILL [39], and the relevant parameters are

listed below:

φ ' 1.7× 1011 ns−1 = 1.7× 1020 s−1, (7.20)

En ' 2× 10−3 eV⇒ vn ' 600 m/s, |pn| ' 2 keV. (7.21)

For a neutron beam of such energy, the cross section is found to be

σn+e ' 1.7× 1021
( δ

1 GeV

)2(2 keV

|pn|

)4

b. (7.22)

The Brillouin density [121] of electron plasma confined by a magnetic field B is given

by nB = ε0B
2/2me, where ε0 is the vacuum permittivity. Then for a 10 T magnetic
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field, nB = 0.5 × 1015 cm−3. If such a neutron beam scatters with a one meter long

electron plasma target for one year, and no signal is found, we can set a limit on δ:

δ < 1.6× 10−21
( |pn|

2 keV

)2
√

1 yr

t

√
1.7× 1011 ns−1

φ

√
1 m

L

10 T

B
GeV, (7.23)

or equally τnn̄ > 4 × 10−4s. Compared with the current limit δ < 2.46 × 10−33 GeV

from SuperK [40], this setup does not seem promising. Note that if we can manage to

keep the same neutron flux as at the ILL but with much lower momentum |pn| ' 10

eV from Ref. [122]2, σ will be 1.6 × 109 times bigger, and a better limit can be

obtained, δ < 0.4× 10−25 GeV.

(2) n + d→ n̄ + d case:

The target we prefer is liquid deuterium, because the neutron capture rate is low

and the neutron density can be high at very low temperatures. For example, at 19

K its density can be ρ = 0.17 g/cm3 [123], which corresponds to ρ = 5× 1022 cm−3.

As for the neutron capture rate, we note that the thermal neutron disappearing cross

section in liquid deuterium is σc ≈ 0.5 mb [124]. Its effect on neutron flux can be

characterized by

∆N = φρ∆T∆Lσc, (7.24)

where ∆N is the number of captured neutrons during time ∆T and in a ∆L long

deuterium target with density ρ. Since N = φ∆T , we have

∆N = Nρσc∆L , (7.25)

so that if N0 is the initial number of neutrons, we compute the number of neutrons

N remaining after traversing length L is

N = N0e
−σcLρ, (7.26)

and the corresponding flux is

φ = φ0e
−σcLρ. (7.27)

It turns out that for a one meter long target of such density, the thermal neutron

capture effects have very limited impact on the flux φ, φ/φ0 ' 0.998. We apply

2Note that given such a low kinetic energy, half of the neutrons will be repelled by the large
magnetic field applied to the electron plasma.
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the same parameters as for the neutron beams from ILL [39] and compute the cross

section

σn+d ' 3.4× 1021
( δ

1 GeV

)2(2 keV

|pn|

)4

b, (7.28)

which is twice that of σn+e because both the electron and proton are considered in

the process. Then running the experiment for 1 year without observing a single event

can set a limit on δ:

δ < 1.05× 10−25
( |pn|

2 keV

)2
√

1 yr

t

√
1.7× 1011 ns−1

φ

×
√

1 m

L

√
5× 1022 cm−3

ρ
GeV. (7.29)

In the future if a slow neutron (10 eV) beam with flux comparable to that at the ILL

can be generated, then it can set a more severe limit on δ, δ < 3.67× 10−30 GeV.

(3) e + n→ e + n̄ case:

From the high flux point of view, we consider the electron beam used in the

DarkLight experiment [120]. The luminosity of the electron beam scattering on H2

gas of density ρ = 1019/cm2 is L = 2×1036 cm−2s−1. Then the flux of electron beams

can be easily obtained

φ =
L
ρ

= 2× 1017s−1. (7.30)

Since DarkLight experiment aims to search for dark photon in the 10−100 MeV range,

the energy of the electrons is about 100 MeV. The angular cutoff θ0 for electron comes

from a quantum mechanical effect. To obtain a reasonable probability of scattering,

the incident trajectory must be localized to within ∆x ∼ ra. Here ra is the Thomas-

Fermi radius of atom

ra =
1

αmeZ1/3
, (7.31)

where Z is the atomic number of target nucleus. Then, according to the uncertainty

principle, the incident momentum is uncertain by an amount ∆p ∼ 1/ra. Because of

the Coulomb interaction, the incident particle receives a momentum ∆p perpendicular

to its original direction. It will therefore be deflected through a small angle [125]

θ =
∆p

p
. (7.32)
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In this case, the scattering angle is θ0 ∼ 1/pra = αZ1/3me/p, which for deuterium is

θ0 = 3× 10−5. We find the total cross section is

σe+d ' 2.9× 104
( δ

1 GeV

)2(100 MeV

|pn|

)4

b (7.33)

Compared with previous two cases, it is much smaller because of the high energy of

electrons. Let us also choose a liquid deuterium target at 19 K as source of neutrons,

then running the experiment for 1 year without observing one single event sets limits

on δ:

δ < 0.345× 10−7
( |pn|

100 MeV

)2
√

1 yr

t

√
2× 1017 s−1

φ

×
√

1 m

L

√
5× 1022 cm−3

ρ
GeV, (7.34)

which is the worst one among the three cases. This is not surprising, because although

the flux of electron beams is big enough, the high energy of electron really dwarfs the

total cross section.

7.4 n− n̄ conversion limits on η

In previous sections, we have explicitly showed that n − n̄ conversion can set limits

on n − n̄ oscillation time, due to the electromagnetic connection between these two

processes. In this section, we want to set a limit on η directly by using n−n̄ conversion.

Let us consider a general conversion process, in which a particle A scattering with

another particle B results in an antiparticle of B. We denote it as A+ B → A+ B̄.

The Feynman diagram for the process is the same as in Fig. 7.1 and its amplitude is

given by Eq. 7.2 but with different labels. The spin-averaged |M|2 takes the form of

|M|2 = 8|η|2[(p′A · p′B)(pA · pB) + (p′A · pB)(pA · p′B)−m2
A(pB · p′B)

−m2
B(pA · p′A) + 2m2

Am
2
B]. (7.35)

Since the total cross section is Lorentz invariant, we can evaluate it in any frames. In

this case, we chose the center-of-mass (CM) frame in which the computation is much

easier. The differential cross section is given by( dσ
dΩ

)
cm

=
1

4EAEB|vA − vB|
|pApApA|

(2π)24Ecm
|M|2,

=
1

64π2E2
cm

|M|2, (7.36)



CHAPTER 7. APPLICATIONS OF n− n̄ CONVERSION 67

by noting that

|vA − vB| =
∣∣∣ pApApA
EA
− pBpBpB
EB

∣∣∣ = pApApA

∣∣∣ 1

EA
+

1

EB

∣∣∣ =
pApApAEcm
EAEB

, (7.37)

where Ecm is the center-of-mass energy, pApApA is the spacial momentum, and v is the

velocity of the particles. In the CM frame, we have

pA = (EA, pApApA) , p′A = (E ′A, p
′
Ap
′
Ap
′
A) , (7.38)

pB = (EB,−pApApA) , p′B = (E ′B,−p′Ap
′
Ap
′
A) , (7.39)

and

(p′A · p′B) = (pA · pB) =
1

2
(E2

cm −m2
A −m2

B), (7.40)

(p′A · pB) = (pA · p′B) = E ′AEB + |pApApA||p′Ap
′
Ap
′
A| cos θ , (7.41)

(p′A · pA) = E ′AEA − |pApApA||p′Ap
′
Ap
′
A| cos θ , (7.42)

(p′B · pB) = (p′A · pA) +m2
B −m2

A , (7.43)

where parameters with the label ′ belong to the outgoing particles and θ is the scat-

tering angle between p′Ap
′
Ap
′
A and pApApA. We compute the total cross section

σ =
|η|2

4πE2
cm

[1

2
(E2

cm −m2
A −m2

B)2 + 2m4
A + 2m2

Am
2
B

−2EAE
′
A(m2

A +m2
B) + 2E ′2AE

2
B +

2

3
|pApApA|2|p′Ap

′
Ap
′
A|2
]
, (7.44)

where

|p′Ap
′
Ap
′
A|2 =

(E2
cm +m2

B −m2
A)2

4E2
cm

−m2
B, (7.45)

E ′A =
√
|p′Ap
′
Ap
′
A|2 +m2

A. (7.46)

Since we want to utilize the same experimental setups that were used in previous

sections to set limits on η, we shall rewrite the total cross section in the lab frame, in

which we assume the target particle B is at rest, i.e. pA = (EA, pppA) and pB = (mB, 0).

Now the total cross section is given by

σ =
|η|2γ2

4πE2
cm

[1

2
(
E2
cm

γ2
−m2

A −m2
B)2 + 2m4

A + 2m2
Am

2
B

−2(γEA − γβββ · pppA)Ẽ ′A(m2
A +m2

B) + 2Ẽ ′2A (γmB)2

+
2

3
(γ|β|mB)2|P ′AP

′
AP
′
A|2
]
, (7.47)
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where

|P ′AP
′
AP
′
A|2 =

(E2
cm + γ2m2

B − γ2m2
A)2

4γ2E2
cm

−m2
B, (7.48)

Ẽ ′2A =
(E2

cm + γ2m2
B − γ2m2

A)2

4γ2E2
cm

−m2
B +m2

A, (7.49)

with

βββ =
pApApA
Ecm

, γ =
1√

1− β2
. (7.50)

Note that all the parameters in Eq. 7.47 are in the lab frame.

Now we can check the limits on η set by the previous three proposals. In the

n+ e→ n̄+ e case, i.e., neutrons scattering with an electron plasma, we obtain

|β| =
|pnpnpn|

En +me

=' 2.13× 10−6, (7.51)

γ =
1√

1− β2
' 1, (7.52)

σ ' 8.30× 10−8|η|2 GeV2. (7.53)

Running the experiment for one year without observing one single event sets a limit

on η

|η| < 1.74× 10−5 2 keV

|pnpnpn|

√
1 yr

t

√
1.7× 1011 ns−1

φ

√
1 m

L

10 T

B
GeV−2. (7.54)

In the n + d → n̄ + d case, we consider that neutrons scatter with protons in a

deuterium target, so that the density of protons is determined by deuterium. We

compute the total cross section

|β| =
|pnpnpn|

En +mp

' 1.07× 10−6,

γ =
1√

1− β2
' 1 , (7.55)

σ ' 7.00× 10−2|η|2 GeV2 , (7.56)

and obtain the limit on η

|η| < 1.2× 10−12 2 keV

|pnpnpn|

√
1 yr

t

√
1.7× 1011 ns−1

φ√
1 m

L

√
5× 1022 cm−3

ρT
GeV−2. (7.57)
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In the e+n→ e+ n̄ case, electrons utilized in the Darklight experiment [120] scatter

with a neutron target, liquid deuterium. We compute the relevant parameters and

the total cross:

|β| =
|pepepe|

Ee +mn

' 0.096 , (7.58)

γ =
1√

1− β2
= 1.00466, (7.59)

σ ' 2.0× 10−3|η|2GeV2. (7.60)

We can set a limit on η

|η| < 2.07× 10−10 100 MeV

|pepepe|

√
1 yr

t

√
2× 1017 s−1

φ√
1 m

L

√
5× 1022 cm−3

ρT
GeV−2. (7.61)

Note that it appears that the second and third processes yield better limits on η.

7.5 Conclusion and discussion

In this chapter, we have considered n− n̄ conversion as it would be mediated by an

electromagnetic current. We worked out the total cross section in different cases: for

(1) charged particles scattering from a deuterium target and for (2) neutrons scat-

tering from charged particles or from particles with electrically charged constituents.

Due to various considerations, we narrow down three possible conversion processes:

electron beams scattering with a liquid deuterium target, neutrons scattering from

an electron plasma, and neutrons scattering from a liquid deuterium target. Given

currently available experimental setups, we perform preliminary estimations of vari-

ous limits on δ. It appears low energy neutrons scattering from a liquid deuterium

target is the most promising method. For the same experimental setups, we estimate

the limits on η directly also.

Copyright c© Xinshuai Yan, 2017.



chapter 8

CP VIOLATION AND NEUTRON-ANTINEUTRON

OSCILLATION

Recently, it was claimed that the observation of n−n̄ oscillation produced by the n−n̄
oscillation operator ψTCψ+h.c. would also imply the breaking of CP symmetry [88],

and this result has been called into question [89, 53, 90]. However, this does not

mean CP violation cannot appear in n− n̄ oscillations. A new mechanism of breaking

the detailed balance, and thus of breaking CP symmetry, through the inclusion of

exotic particles that couple to both n and n̄ has been proposed in Ref. [90]. Their

phenomenological analysis of CP violation in the n− n̄ system is the same as in the

neutral meson oscillation system. Therefore, in this chapter, we will briefly discuss

the phenomenology of CP violation for neutral flavored mesons, and in particular we

will focus on the B meson system. Since we have also done some works that is related

to CP violation in the BB̄ system, this will be briefly discussed, too.

8.1 Introduction of CP violation

In Chap. 3, we have discussed the discrete symmetries, C, P, and T, in Nature.

Also we have showed how fermion fields (Dirac or Majorana fields) transform under

CP, which is the product of two components: C and P. However, we have said little

about the physical consequences of this operation. We know that charge conjugation

transforms a particle into the corresponding anti-particle, e.g., if we apply C to an

electron, we will obtain a positron. Also parity is the transformation that inverts the

spatial coordinates, i.e. x→ −x. If we apply P to an moving electron with a velocity

v from left to right, the electron will flip direction and end up moving with a velocity

-v, from right to left. In other words, parity produces the “mirror” image of reality.

Therefore, when we apply a CP transformation to an electron moving with a

velocity v we will obtain a positron moving with a velocity -v. When we apply a CP

transformation to a composite system, such as e+ and e−, we find that it backs to

itself. This means that matter will transform to its anti-matter under CP. This can

be illustrated by a “CP-mirror” that returns the mirror image of matter (Fig. 8.1).

Naturally, we expect not only that our “anti-self” would wave back at us in the CP-

mirror but also that Nature would respect CP symmetry. However, our intuitive

70
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Figure 8.1: A CP mirror world[126]

expectation was vetoed in 1964 by the discovery of Christensen, Cronin, Fitch, and

Turlay [127], that the long-lived (CP-odd) kaon state did sometimes decay into the

CP-even two pion state. This result immediately shows that CP symmetry is violated.

Therefore, we need to examine how CP non-conservation manifests itself, and then

ask what theories will give such effects.

One of the ways in which CP non-conservation can appear is as a rate difference

between two processes that are the CP conjugates of each other. One may wonder

how such a rate difference can appear. Consider, for example, a particle decay for

which two different terms in the Lagrangian can contribute. The amplitude for such

a process can be written as

A(A→ B) = a1r1e
iφ1 + a2r2e

iφ2 , (8.1)

where a1 and a2 are two different, possibly complex, coupling constants in the theory.

The transition amplitudes associated with each coupling are given by reiφ that also

can have both a real part (magnitude) and a phase (absorptive part). The physical

source of this phase comes from the contribution of multiple real intermediate states

to the process via rescattering effects. The phases φ are usually called strong phases

because the rescattering effects among the various coupled channels are dominated
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by strong interactions. These phases are the same for a process and its CP conjugate,

since the strong interaction respects CP symmetry. The phase of the coupling con-

stants are often called weak phases because the relevant complex couplings are in the

weak interaction sector of the SM. Writing down the amplitude for the CP conjugate

process, we find

Ā(Ā→ B̄) = a∗1r1e
iφ1 + a∗2r2e

iφ2 . (8.2)

Note that the weak phases change sign between a process and its CP conjugate

process, while the strong phases do not. Computing the difference in rates for these

two processes, which breaks CP symmetry, we find

|A|2 − |Ā|2 = 2r1r2=(a1a
∗
2) sin(φ1 − φ2). (8.3)

This shows CP violation will vanish if the two coupling constants are real. In addition

it vanishes if the difference of the strong phases is zero. The CP-violating effect

associated with the comparison of two CP-related decay rates is often called direct

CP violation, and it is characterized by the condition |Ā/A| 6= 1. There are also

more types of CP violation that we will discuss later.

The phase of any single complex coupling in a Lagrangian is not a physically

meaningful quantity, because in general it can be redefined and even made to vanish

by redefining related fields. However, such a rephasing of fields can never change

the relative phase between two couplings that contribute to the same process. This

is because both terms involve the same set of fields, and hence both changes in the

same way under any rephasings of those fields. These rephasing-invariant quantities

are the physically meaningful phases in Lagrangian.

Note that the CP-violating rate difference in Eq. 8.3 also depends on a difference

of strong phases. Typically, they are very difficult to calculate, since strong phases are

associated with strong interaction physics effects that in general cannot be evaluated

in perturbation theory. One of the things that makes the study of the neutral but

flavored mesons interesting is that we can find other types of CP-violating effects, in

which the role played by strong phases can be replaced by other complex quantities

that are relevant to the process of meson mixing with its CP conjugate meson. In

such case, we can relate a CP-violating effect directly to the phase-difference in the

Lagrangian couplings without any calculation of strong-interaction quantities. We

will discuss these types of CP violation in later sections.
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8.2 CP violation for neutral flavored mesons mixing

The phenomenology of CP violation for neutral flavored mesons is particularly inter-

esting, since many of the observables can be cleanly interpreted. The phenomenology

is different for different mesons, such as K0, D0, B0, and B0
s , decays, since each of

these systems is governed by different decay rates, oscillations, and lifetime splittings.

However, the general considerations are identical for all flavored neutral mesons.

8.2.1 Charged- and neutral-hadron decays

We define decay amplitudes of M, which could be charged or neutral, and its CP

conjugate M to a final state f and its CP conjugate f̄ as

Af = 〈f |H|M〉, Af = 〈f |H|M〉,

Af̄ = 〈f̄ |H|M〉, Af̄ = 〈f̄ |H|M〉, (8.4)

where H is the effective Hamiltonian governing the weak interactions at the b quark

mass scale. Applying the CP transformation on these states introduces phases ξM

and ξf that depend on their flavor content. In general

CP |M〉 = eiξM |M̄〉, CP |f〉 = eiξf |f̄〉, (8.5)

then

CP |M̄〉 = e−iξM |M〉, CP |f̄〉 = e−iξf |f〉, (8.6)

so that (CP )2 = 1. The phases ξM and ξf are arbitrary and can be chosen by

convention, e.g., ξ = 0 or ξ = π: the physical results are convention independent.

Note that if CP is conserved by the dynamics, [CP,H]=0, then Af and Āf̄ have the

following relations

Āf̄ = ei(ξf−ξM )Af . (8.7)

8.2.2 Neutral meson mixing

A state that is a superposition of M0 and M
0

at t = 0,

|ψ(0)〉 = a(0)|M0〉+ b(0)|M0〉, (8.8)

will evolve in time and acquire components that describe all possible final states

{f1, f2, ...}, i.e.,

|ψ(t)〉 = a(t)|M0〉+ b(t)|M0〉+ c1(t)|f1〉+ c2(t)|f2〉+ .... (8.9)
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Here we only interested in the values of a(t) and b(t). Then the time evolution is

determined by a 2×2 effective Hamiltonian H that is not Hermitian, since the mesons

not only oscillate but also decay. This matrix is written in the basis of the two flavor

eigenstates and can also be written in terms of Hermitian matrices M and Γ as

H = M− i

2
Γ. (8.10)

M and Γ are associated with (M0,M
0
)↔ (M0,M

0
) via off-shell (dispersive) and on-

shell (absorptive) intermediate states, respectively. The diagonal elements of M and

Γ correspond to the flavor-conserving transitions M0 ↔ M0 and M
0 ↔ M

0
, while

the off-diagonal parts are associated with flavor-changing transitions M0 ↔M
0
.

The Hamiltonian H has two mass eigenstates MH and ML
1 where the H and L

stand for heavy and light, which really means heavier and less heavy, since the mass

difference may be tiny. We can write these two states in the basis of flavor eigenstates,

|ML〉 = p|M0〉+ q|M0〉,

|MH〉 = p|M0〉 − q|M0〉, (8.11)

with |q|2 + |p|2 = 12. The real and imaginary parts of the eigenvalues ωL,H corre-

sponding to |ML,H〉 represent their mass and decay widths, respectively.

Solving the eigenvalue problem of H M− i
2
Γ M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12 M− i

2
Γ

ψ = λψ, (8.12)

one can obtain

λ± = M− i

2
Γ±

√
(M12 −

i

2
Γ12)(M∗

12 −
i

2
Γ∗12), (8.13)

where λ± are the eigenvalues, M12 quantifies the contribution from weak box-diagrams,

and Γ12 is a measure of the contribution from the virtual, intermediate on-shell par-

ticle decay. Splitting λ± into the real and imaginary parts, we have

λ± = MH,L −
i

2
ΓH,L. (8.14)

1The labels H and L are meant to denote that we view the system in the weak eigenstates
(as opposed to the flavor) basis. In the B system the weak eigenstate differ significantly in mass
and hence the labels H an L, whereas for kaons, suitable labels are L and S because the lifetime
difference is more striking.

2Note in this framework we have assumed CPT symmetry intact. However, CPT violation in
mixing can be considered by introducing a papameter z. A relevant introduction can be found in
Ref.[128].
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Then it is fairly easy to obtain the relation below(q
p

)2

=
M∗

12 − (i/2)Γ∗12

M12 − (i/2)Γ12

, (8.15)

q

p
= −2(M∗

12 − (i/2)Γ∗12)

∆M − (i/2)∆Γ
, (8.16)

where

∆M = MH −ML, ∆Γ = ΓH − ΓL. (8.17)

Note if CP is a symmetry of H, then Γ12/M12 is real, which leads to |q/p| = 1.

8.2.3 Classification of CP violation

Three types of CP violation can be potentially observed in meson decay, and two of

them have already been discussed. We follow the discussion in Ref. [129].

I. CP violation in decay (Direct CP violation):

Its condition is given by

|Āf̄/Af | 6= 1. (8.18)

In charged meson decays, this is the only possible source of CP violation, since

mixing effects cannot appear. The CP asymmetries are defined by

A ≡ Γ(M− → f−)− Γ(M+ → f+)

Γ(M− → f−) + Γ(M+ → f+)
=
|Āf−/Af+|2 − 1

|Āf−/Af+|2 + 1
. (8.19)

II. CP violation in mixing:

This appears if |q/p| 6= 1. In charged-current semileptonic neutral meson decays

M,M → l±X, this is the only source of CP violation, and it can be measured

via the asymmetry of “wrong-sign” decays induced by oscillations:

A(t) ≡ Γ[M
0
(t)→ l+X]− Γ[M0(t)→ l−X]

Γ[M
0
(t)→ l+X] + Γ[M0(t)→ l−X]

=
1− |q/p|4

1 + |q/p|4
. (8.20)

Interestingly this asymmetry of time-dependent decay rates is actually time-

independent.
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Figure 8.2: Effect of the CP transformation on B0 decay to a CP eigenstate fCP .
The asymmetry is due to the interference between mixing, described by parameters
p and q, and the decay amplitudes Af and Āf .

III. CP violation in the interference of mixing and direct decay:

In this third type of CP violation there exist final states which may be reached

from either M0 or M
0
, and the CP violation results from the interference be-

tween the decays of mixed and of unmixed neutral mesons (see Fig. 8.2). The

asymmetry in this case is given by

A(t) ≡ Γ[M
0
(t)→ fCP ]− Γ[M0(t)→ fCP ]

Γ[M
0
(t)→ fCP ] + Γ[M0(t)→ fCP ]

, (8.21)

and the CP violation condition is given by

=(λf ) 6= 0, (8.22)

such that

λf ≡
q

p

Āf
Af

. (8.23)

A more detailed discussion of CP violation and its classification can be found in

the book by Bigi and Sanda [75].

8.3 CP violation in the B system

8.3.1 Time evolution of the B states and time-dependent observables

Now we focus on CP violation in the neutral B-meson system. As in the general

case, the BB̄ system can be described by a 2 × 2 effective Hamiltonian H = M −
(i/2)Γ, where M and Γ are Hermitian matrices. CP or CPT symmetry ensures that

M11 = M22 and Γ11 = Γ22. Writing H is in the flavor basis (|B0〉, |B0〉), we have two

eigenvalues ωL and ωH ,

ωH,L ≡ mH,L −
i

2
ΓH,L, (8.24)
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corresponding to the two eigenstates |BH〉 and |BL〉, respectively. Under CPT sym-

metry, the light and heavy mass eigenstates can be written as

|BL〉 = p|B0〉+ q|B0〉,

|BH〉 = p|B0〉 − q|B0〉. (8.25)

To evaluate the measurable quantities, we first need to understand the time evolution

of states which begin, e.g., as pure B0 meson states at t=0. That is,

|B0(t = 0)〉 = (|BH〉+ |BL〉)/2p. (8.26)

Since |BL〉 and |BH〉 are mass eigenstates, the time-evolution of |B(t = 0)〉 is trivial,

|B0(t)〉 = g+|B0〉+ (q/p)g−|B
0〉, (8.27)

where we have introduced

g± =
1

2

(
e−iωH t ± e−iωLt

)
. (8.28)

The time-dependent state that is a pure B
0

state at t = 0 can be obtained in a similar

way,

|B0
(t)〉 = (p/q)g−|B0〉+ g+|B

0〉. (8.29)

It is now straightforward to derive any time-dependent quantities necessary for CP

violating observables. For example, the time-dependent rate to reach a particular CP

eigenstate f with CP eigenvalue ξf can be written as

Γ[B0(t)→ f ] ∝ |A(B(t)→ f)|2

= Nf |A(B0 → f)|2
[
|g+|2 + |λfg−|2 + 2<[g∗+g−λf ]

]
, (8.30)

with

λf =
q

p

A(B
0 → f)

A(B0 → f)
= ξf

q

p

A(B
0 → f̄)

A(B0 → f)
. (8.31)

Note that Nf is a common, time-independent, normalization factor. With Eq. 8.30

and 8.31 in hand, other CP violating quantities (time-dependent or independent) can

also be easily constructed. With this it is straightforward to check the last equation

in Eq. 8.20 simply by substituting Eq. 8.30 into Eq. 8.20.

When neutral pseudoscalar mesons are produced coherently in pairs from the

decay of a vector resonance, V →M0M
0

, the time-dependent decay rate has a form
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similar to Eq. 8.30. For example, since the Υ(4S) state has definite flavor and CP,

at the Υ(4S) resonance, neutral-B mesons are produced in coherent p-wave pairs,

|i〉 =
1√
2

[B0(t1)B
0
(t2)−B0

(t1)B0(t2)]

=
1√
2

[B+(t1)B−(t2)−B−(t1)B+(t2)], (8.32)

where t1 or t2 represents the life-time of the state, and |B±〉 are normalized linear

combinations of B0 and B
0

such that CP |B±〉 = ±|B±〉.
If we subsequently observe one B-meson to decay to state f1 at time t0 = 0 and

the other decay to state f2 at a later time t, then if both B0 and B
0

can decay to f1

and f2, we cannot in general know from which B meson f1 or f2 came. To simplify

the final time-dependent decay rate, we introduce the helpful definitions

A1 ≡ A(B0 → f1), A2 ≡ A(B0 → f2),

Ā1 ≡ A(B
0 → f1), Ā2 ≡ A(B

0 → f2). (8.33)

Now the overall amplitude is given by

A = a+g+ + a−g−, (8.34)

where

a+ = Ā1A2 − A1Ā2

a− =
[p
q
A1A2 −

q

p
Ā1Ā2

]
. (8.35)

Note that Eq. 8.28 produces two relations below

|g±|2 =
1

2
eΓt[cosh(∆Γt/2)± cos(∆mBt)], (8.36)

and

g∗+g− = −1

2
e−Γt[sinh(∆Γt/2) + i sin(∆mBt)], (8.37)

where Γ = (Γ11 + Γ22)/2, ∆Γ = ΓM − ΓL, and ∆mB = MH −ML. We find the decay

rate

Γ(t) ∝ e−Γt
{1

2
c+ cosh(∆Γt/2) +

1

2
c− cos(∆mBt)

−<(s) sinh(∆Γt/2) + =(s) sin(∆mBt)
}
, (8.38)



CHAPTER 8. CP VIOLATION AND NEUTRON-ANTINEUTRON
OSCILLATION 79

where

c± = |a+|2 ± |a−|2, s = a∗+a−. (8.39)

Note that Eq. 8.38 will reduce to Eq. 8.30 with A1 = 0, Ā1 = 1. A final state f1 with

A1 = 0 or Ā1 = 0 is called a tagging state, because it identifies the decaying meson

as B̄0 or B0, respectively. Once one meson is tagged, it sets the clock for its time

evolution.

8.3.2 The golden modes

There are many possible CP eigenstate channels for b→ cc̄s, such as J/ψKS, J/ψKL,

ψ′KS, ηcKS, etc.). We would like to focus on the channel B → J/ψK. There are

two weak decay Feynman diagrams that can contribute to B decays to leading order

in the effective weak interaction coupling strength GF . They are called “tree” and

“penguin” diagrams as shown in Figs. 8.3 and 8.4. The d or s in these two figures

are called spectator quarks, because although they are present in the initial B meson,

they are not directly involved in the decay. Its amplitude is given by

AJ/ψK = (V ∗cbVcs)TJ/ψK + (V ∗ubVus)PJ/ψK , (8.40)

where TJ/ψK = tJ/ψK + pcJ/ψK − ptJ/ψK and P u
J/ψK = puJ/ψK − ptJ/ψK with tf and pqf

denoting the contributions from tree diagram as in Fig. 8.3 and penguin diagram in

Fig. 8.4, respectively. The complex parameters, “V”, are the matrix elements of the

Cabibbo-Kobayashi-Maskawa (CKM) [130, 131] matrix, which are written as follows:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (8.41)

It is a unitary matrix, and leads to the following relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (8.42)

which can be described by a unitary triangle as in Fig. 8.5. The three CKM unitary

angles, φ1, φ2, and φ3, are defined as

φ1 = π − arg
(V ∗tbVtd
V ∗cbVcd

)
, (8.43)

φ2 = arg
(
− V

∗
tbVtd

V ∗ubVud

)
, (8.44)

φ3 = arg
(
−V

∗
ubVud
V ∗cbVcd

)
. (8.45)
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Figure 8.3: Feynman diagram for tree amplitude contributing to B0 → f or Bs →
f [129].

Figure 8.4: Feynman diagram for the penguin amplitude contributing to B0 → f or
Bs → f [129], where qu = u, c, t is the quark in the loop.

Note another notation is often used in many papers, in which the three CKM angles

are labeled as α, β, and γ. The corresponding relations between the two sets of CKM

unitary angles are α = φ2, β = φ1, and γ = φ3. We see that TJ/ψK and PJ/ψK are

associated with different combinations of the CKM matrix elements. Generally the

names “tree” (T) and “penguin” (P) are associated with contributions that multiply

distinct combinations of CKM matrix elements. We note TJ/ψK is the dominant
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Figure 8.5: CKM triangle of Eq. 8.42 in the complex plane.

contribution, and P u
J/ψK is a smaller effect. The particular channels B → J/ψKS,L

are very interesting to physicists for analyzing CP violation in B decay. They are also

referred to as the golden modes. However, to study CP violation in these channels,

there is one subtlety that must be considered. That is, a B0 meson actually decays

into a final state J/ψK0, while a B̄0 decays into a different final state J/ψK̄0. The

common final state only results from K0 − K̄0 oscillation. Consequently, a phase

factor (V ∗cdVcs)/(VcdV
∗
cs) associated with the neutral K mixing also plays a role. Now

the λ for B → J/ψKS is given by

λJ/ψKS
=
(q
p

)
B0

(
ηJ/ψKS

ĀJ/ψKs

AJ/ψKs

)
× V ∗cdVcs
VcdV ∗cs

. (8.46)

For B → J/ψKS,L, its penguin contribution P u to Af in the SM can be neglected,

hence the name “golden modes,” and we have

λJ/ψKS
= −ei2β. (8.47)

8.3.3 Time reversal violation in B physics

CP violation has been observed using the K − K and B − B systems. Various

modes and methods to analyze CP violation in B physics have been reviewed, e.g.,

in Refs. [132, 133]. Since there is no evidence of CPT symmetry violation3, the exis-

tence of CP violation implies that time reversal symmetry is also violated. However,

it is still of great interest to observe T violation directly in a single experiment. Pre-

viously a direct observation of time-reversal violation in K − K had been reported

3The CPT violation limit from the mass difference between K0 and K
0

is found to be |m
K

0 −
mK0 |/mK0 ≤ 0.6× 10−18 at 90% CL [57].
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Figure 8.6: Basic concept of the time-reversal experiment in B physics [138].

by CPLEAR [134]. However, the interpretation of the experiment as a test of T has

been criticized [135, 136], because the time-reversal quantity they formed is not really

time dependent. In 2012, the BaBar Collaboration observed direct T violation [3] by

exploiting the coherent BB̄ system produced in Υ(4S) decays. This is because the

flavor- or CP-state of a B meson can be determined, or “tagged,” at a time t by

measuring the decay of the other B meson at that instant, since the Υ(4S) state has

definite flavor and CP. With this construction the asymmetry flips sign when the sign

of t, in effect, is reversed.

This idea was first proposed in a seminal paper by Bañuls and Bernabéu, in

which they shown that by selecting suitable combinations of flavor and CP tags of

the B−mesons in the entangled pair, CP, T, and CPT asymmetries [137] can all

be constructed. It is probably worth briefly sketching their idea to test T reversal

symmetry in a B factory experiment [3, 137]. There is a beautiful figure illustrating

the foundations of the time-reversal experiment, which is produced in Fig. 8.6 [138].

Electron-positron collisions at a B factory can produce Υ(4S) resonances. In the

top panel, the first B decays into a `+X final state at t1. This final state filters the

quantum-mechanical state of the other B as B̄0 at the same time. In other words, the

other B meson is “tagged” without measuring it specifically. The “tagged” meson is

observed later at t2 to decay into a final state J/ψKL indicating that the B meson is
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in a B+ state. Therefore, this time-ordered event class (`+X, J/ψKL) demonstrates a

transition B
0 → B+ in the elapsed time t = t2−t1. To test time-reversal, a T-mirrored

transition B+ → B
0

needs to be constructed. As shown in the bottom panel, one B+

state is tagged by observing the other B meson decaying into the J/ψKS final state

at t1. Then the observation of `−X at t2 projects the B
0

state and the event class

(J/ψKS, `
−X) indicates the wanted T-mirrored transition. By carefully selecting the

event classes, other possible comparisons to test T can be constructed. We show some

possibilities in Table 8.1. Similar ideas can also be applied to CP and CPT symmetry

tests and are illustrated in Tables 8.2 and 8.3, respectively.

Reference T- conjugate

Transition final state Transition final state

B
0 → B− (`+X, J/ψKS) B− → B

0
(J/ψKL, `

−X)

B
0 → B+ (`+X, J/ψKL) B+ → B

0
(J/ψKS, `

−X)

B+ → B0 (J/ψKS, `
+X) B0 → B+ (`−X, J/ψKL)

B− → B0 (J/ψKL, `
+X) B0 → B− (`−X, J/ψKS)

Table 8.1: Possible comparisons for T tests in the experimental B factory scheme [139].

Reference CP-conjugate

Transition final state Transition final state

B
0 → B− (`+X, J/ψKS) B0 → B− (`−X, J/ψK0

S,)

B
0 → B+ (`+X, J/ψKL) B0 → B+ (`−X, J/ψKL)

B+ → B0 (J/ψKS, `
+X) B+ → B

0
(J/ψKS, `

−X)

B− → B0 (J/ψKL, `
+X) B− → B

0
(J/ψKL, `

−X)

Table 8.2: Possible comparisons for CP tests in the experimental B factory
scheme [139].

The BaBar collaboration [3] uses the final states J/ψKL and J/ψKS as CP

tags and the sign of the charged lepton in `±X as a flavor tag, and they measure

time-dependent, T violating asymmetries, such as AT = (Γ(B0 → B+) − Γ(B+ →
B0))/(Γ(B0 → B+) + Γ(B+ → B0)). Their final reported T violation measurement
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Reference CPT-conjugate

Transition final state Transition final state

B
0 → B− (`+X, J/ψKS) B− → B0 (J/ψKL, `

+X)

B0 → B− (`−X, J/ψKS) B− → B
0

(J/ψKL, `
−X)

B+ → B0 (J/ψKS, `
+X) B

0 → B+ (`+X, J/ψKL)

B+ → B
0

(J/ψKS, `
−X) B0 → B+ (`−X, J/ψKL)

Table 8.3: Possible comparisons for CPT tests in the experimental B factory
scheme [139].

has an effective significance of 14σ [3]. There are possible subtleties in the inter-

pretation of the BaBar measurement, e.g., the presence of direct CP violation, CPT

violation, wrong strangeness decays, and wrong sign semileptonic decays that were all

ignored. These effects have been considered in Ref. [140], and found to be negligibly

small. We have also explicitly considered how the presence of direct CP violation in

kaon decay can affect the interpretation of AT [54]. Nevertheless, since these effects

are all known to be relatively very small, the BaBar’s collaboration’s measurement

can be considered a meaningful direct demonstration of the violation of T reversal

symmetry.

8.3.4 Generalized T violation method to trap penguin

Now we would like to generalize the analysis of AT to consider different choices of

CP tags for which the dominant amplitudes have the same weak phase; these would

represent alternates to those listed in Table 8.1. Before doing that, we first revisit

the decay rate of the coherent BB̄ meson system as considered in Eq. 8.38.

We neglect the refinements resulting from the possible presence of CPT violation,

wrong-sign semileptonic decays, and wrong strangeness decays. We also neglect CP

violation in BB̄ mixing and set the width difference of the B-meson weak eigenstates

to zero, i.e., ΓH − ΓL = 0. The time-dependent decay rate for BB̄ mesons produced

in Υ(4S) decay, in which one B decays to final state f1 at time t1 and the other

decays to final state f2 at a later time t2 is thus given by

Γ(f1)⊥,f2 = N1N2e
−Γ(t1+t2)[1 + C(1)⊥,2 cos(∆mB t)

+ S(1)⊥,2 sin(∆mB t)] , (8.48)
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with Γ ≡ (ΓH + ΓL)/2, ∆mB ≡ mH − mL, t = t2 − t1 ≥ 0, S(1)⊥,2 ≡ C1S2 −
C2S1, and C(1)⊥,2 ≡ −[C2C1 + S2S1]. Moreover, Cf ≡ (1− |λf |2)/(1 + |λf |2) and

Sf ≡ 2=(λf )/(1 + |λf |2), where λf ≡ (q/p)(Āf/Af ), noting Af ≡ A(B0 → f),

Āf ≡ A(B̄0 → f), and Nf ≡ A2
f + Ā2

f , and q and p are the usual BB̄ mixing

parameters. Since we neglect wrong-sign semileptonic decay, C`+X = −C`−X = 1.

Defining normalized rates as per Γ′(f1)⊥,f2
≡ Γ(f1)⊥,f2/(Nf1Nf2) we have, in the case

of the asymmetry illustrated in Fig. 8.6,

AT =
Γ′(`+X)⊥,J/ψKL

− Γ′(J/ψKS)⊥,`−X

Γ′(`+X)⊥,J/ψKL
+ Γ′(J/ψKS)⊥,`−X

. (8.49)

Note that normalizing each rate is important to a meaningful experimental asymmetry

because the J/ψKS (or, more generally, cc̄KS) and J/ψKL final states have different

reconstruction efficiencies [139]. BaBar constructs four different asymmetries, based

on four distinct subpopulations of events, namely, those for Γ(`+X)⊥,cc̄KS
(B̄0 → B−),

Γ(cc̄KS)⊥,`+X (B+ → B0), Γ(`+X)⊥,J/ψKL
(B̄0 → B+), Γ(J/ψKL)⊥,`+X (B− → B0), and

their T conjugates, respectively, and finds the measurements of the individual asym-

metries to be compatible [3]. We note that the normalization factors Nf for general

CP tags will differ; nevertheless, meaningful experimental asymmetries can be con-

structed through the use of normalized decay rates as already implemented in BaBar’s

AT analysis [3].

Now we generalize the choice of CP final states, so that J/ψKS → fo and

J/ψKL → fe, where “o” (“e”) denotes a CP-odd (even) final state. The possible

CP asymmetries list in Table 8.2 can be generalized to general CP final states and

be defined as

Ae+CP ≡
Γ′(`−X)⊥,fe

− Γ′(`+X)⊥,fe

Γ′(`−X)⊥,fe
+ Γ′(`+X)⊥,fe

= Ce cos(∆mB t)− Se sin(∆mB t) , (8.50)

Ae−CP ≡
Γ′(fe)⊥,`−X

− Γ′(fe)⊥,`+X

Γ′(fe)⊥,`−X
+ Γ′(fe)⊥,`+X

= Ce cos(∆mB t) + Se sin(∆mB t) , (8.51)

where Ae+CP → Ao+CP and Ae−CP → Ao−CP follow by replacing fe → fo. Note that Af+
CP
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and Af−CP employ distinct data samples. Moreover,

Ao+T ≡
Γ′(fo)⊥,`−X

− Γ′(`+X)⊥,fe

Γ′(fo)⊥,`−X
+ Γ′(`+X)⊥,fe

=
(Ce + Co) cos(∆mB t) + (So − Se) sin(∆mB t)

2 + (Co − Ce) cos(∆mB t) + (So + Se) sin(∆mB t)
, (8.52)

Ao−T ≡
Γ′(`−X)⊥,fo

− Γ′(fe)⊥,`+X

Γ′(`−X)⊥,fo
+ Γ′(fe)⊥,`+X

=
(Ce + Co) cos(∆mB t)− (So − Se) sin(∆mB t)

2 + (Co − Ce) cos(∆mB t)− (So + Se) sin(∆mB t)
, (8.53)

Ae+T ≡
Γ′(fe)⊥,`−X

− Γ′(`+X)⊥,fo

Γ′(fe)⊥,`−X
+ Γ′(`+X)⊥,fo

=
(Ce + Co) cos(∆mB t)− (So − Se) sin(∆mB t)

2− (Co − Ce) cos(∆mB t) + (So + Se) sin(∆mB t)
, (8.54)

Ae−T ≡
Γ′(`−X)⊥,fe

− Γ′(fo)⊥,`+X

Γ′(`−X)⊥,fe
+ Γ′(fo)⊥,`+X

=
(Ce + Co) cos(∆mB t) + (So − Se) sin(∆mB t)

2− (Co − Ce) cos(∆mB t)− (So + Se) sin(∆mB t)
, (8.55)

which correspond to possible T asymmetries in Table 8.1 with general CP final states.

Each time-dependent asymmetry has four parameters made distinguishable by the

various time-dependent functions, and they can be measured experimentally. Indeed

the individual asymmetries can be simultaneously fit for So + Se, So − Se, Co + Ce,

and Co − Ce.
The possible CP final states that share a dominant weak phase with each other

and with J/ψKS,L are fo′ = φKS, ηKL, η′KL, ρ0KS, ωKS, π0KL and fe′ = φKL,

ηKS, η′KS, ρ0KL, ωKL, π0KS, respectively. These are the two-body “sin(2β)” modes

commonly studied4 to test its universality [143, 144]. Not only can we use these modes

to form the AT asymmetries we have discussed thus far [145], such as the comparison

of B̄0 → Bo′ with Bo′ → B̄0, we can form two more for each one: e.g., we can compare

B̄0 → Bo′ to Bo → B̄0, as well as B̄0 → Bo to Bo′ → B̄0. Turning to Eq. (8.55), we

see that the parameters associated with the sin(∆mBt) terms in these comparisons

are, e.g., So′ − Se and So′ + Se. In So′ + Se the dominant weak phase contributions

(in the SM) cancel, and the small terms, namely, the penguin contributions, as well

as possible contributions from new physics, are determined directly.

4Three-body decays, such as KSKSKS or K+K−KS , have also been studied, though determin-
ing the CP content of the K+K−KS Dalitz plot requires an angular moment analysis [141, 142].



CHAPTER 8. CP VIOLATION AND NEUTRON-ANTINEUTRON
OSCILLATION 87

Here to demonstrate this, we first work out the parameter λ. As defined in

Ref. [146], we can also rewrite Eqs. 8.40 as

AB→f = (V ∗cbVcs)a
c
f + (V ∗ubVus)a

u
f ∝ 1 + e−iγdf , (8.56)

where

df =
∣∣∣VubV ∗us
VcbV ∗cs

∣∣∣auf
acf
, (8.57)

in which “acf” and “auf” contain the magnitudes of the amplitude associated with each

phase, including diagrammatic tree and penguin contributions and γ is another CKM

unitarity angle, γ ≡ arg[−(VubV
∗
us)/(VcbV

∗
cs)]. Moreover, the parameter λ becomes

λf = −ηfCP e
−2iβ 1 + dfe

−iγ

1 + dfeiγ
, (8.58)

where CP |f〉 = ηfCP |f〉. A simple calculation gives us: [146]

Sf = −ηfCP
sin(2β) + 2<(df ) sin(2β + γ) + |df |2 sin(2β + 2γ)

1 + |df |2 + 2<(df ) cos(γ)
,

Cf =
−2=(df ) sin(γ)

1 + |df |2 + 2<(df ) cos(γ)
. (8.59)

We remind the reader that we denote all wrong phase contributions as “penguin

contributions”. Note that setting the smaller, penguin contributions to zero, i.e.

auf = 0, we obtain a simplified expressions Cf = 0, Sf = −ηfCP sin(2β) for all f . It is

convenient to define ∆Sf such that Sf = −ηfCP (sin(2β) + ∆Sf ).

Several theoretical studies have been made of the deviations of Sf , measured

through Af+
CP , from sin(2β) in the SM [146, 147, 148]. Experimentally one can form

∆Sf = −ηfCPSf − sin(2β) (8.60)

using the determination of sin(2β) in B → cc̄KS and J/ΨKL final states [149, 3],

though the error in ∆Sf is dominantly that in Sf . We now compare this procedure

to our AT method with generalized CP tags. In this new case, assuming sin(2β)

universality, the sin(2β) term in Sf cancels, yielding

(Se + So) = ∆So −∆Se (8.61)

and providing a direct measurement of the difference of deviations from sin(2β) for the

chosen CP tags. If we use a “golden mode” for which ∆Se(o) ≈ 0, such as J/ΨKS,L,

to define sin(2β), then Se+So ≈ ± sin(2βo(e))∓sin(2β)±∆So(e), where the upper sign
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is associated with o. Thus we test the deviation of Sf from sin(2β) through a single

asymmetry measurement, whereas a “double” difference appears in Eq. (8.60). Of

course sin(2β) in B → cc̄KS, J/ΨKL decays is very well known (0.677±0.020 [133]),

so that it is more pertinent to note that the asymmetry AT can directly employ these

highly precise decay samples as well [149, 3].

An asymmetry AT generally requires the comparison of the rates ((`±X)⊥, fo(e))

and ((fe′(o′))⊥, `
±X), or of their time conjugates, while ACP only requires the compar-

ison of the ((`±X)⊥, fo′(e′)) rates. Thus in the case of η′KS, e.g., the determination of

Se′ via ACP employs two subsamples of limited statistics, whereas the determination

of Se′+So via AT is formed from the comparison of a limited statistics sample with the

plentiful statistics of cc̄KS. Consequently, we expect improved access to ∆Se′ , for any

of the CP-even modes that probe sin(2β), and analogous improvements to the deter-

mination of ∆So′ for any of the CP-odd modes. Current experimental results for Sf

have limited precision in many of the sin(2β) modes previously listed as CP-tag can-

didates (e.g., −ηfCPSπ0KS
= 0.57±0.17; −ηfCPSωKS

= 0.45±0.24 [133]). Our method

will be of greatest impact for these more poorly known modes. Comparing these re-

sults against predicted values of ∆So′(e′) in the SM should then yield sharper tests of

new physics; diverse sources of the latter have been proposed [150, 151, 152, 153, 148].

The method we have proposed can be generalized to other sorts of decay modes,

such as those that probe sin(2α). The basic idea is that the CP-tagging modes are

chosen so that their dominant decay amplitudes are identical. In the cases we have

considered above, the CP-even and odd tags are chosen with a common dominant

weak phase of sin(2β). In so doing, AT is no longer a true test of T, but we introduce

new observables that permit a direct measurement of small departures from weak-

phase universality. If the dominant weak phase is universal, then these observables

measure the penguin pollution in these decays.

8.4 CP violation in nn̄ oscillations

In this section, I will argue how the indeterminacy of the CP transformation property

of operatorO1 disproves this claim, how the indeterminacy is related to field rephasing

discussed in Ref. [89], and thus that the observation of n− n̄ oscillation itself cannot

also prove the existence of CP violation in this system. However, sufficient conditions

for CP violation to be manifest in n− n̄ oscillations have been discussed in Ref. [90],

and its brief summary will also be presented in this section.
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8.4.1 Indeterminate CP transformation phase

In Chap. 3, we found that only half of the B-L violating operators remain once the

correct phase constraint is applied. Now we turn to the analysis of the CP properties

of the surviving B-L violating operators:

O1 = ψTCψ + h.c.
CP
=⇒ −(ηcηp)

2 , (8.62)

O2 = ψTCγ5ψ + h.c.
CP
=⇒ −(ηcηp)

2 , (8.63)

O4 = ψTCγµγ5ψ ∂
νFµν + h.c.

CP
=⇒ −(ηcηp)

2 , (8.64)

where we have left the phase dependence explicit. Previously, we have determined

that η2
p = −1. However, the CP transformation properties of the operators are not

definite, since they are given by η2
c , and ηc is not determined.

Explicit examples of the indeterminate nature of the CP transformation, illus-

trated through the phase rotation ψ → ψ′ = eiθψ, can be found in Ref. [89]. The

noted phase rotation has the effect of changing ηc → e2iθηc, ηt → e−2iθηt, with ηp

unchanged, under ψ → ψ′ in the C, T, and P transformations, respectively. Note

that, in Ref. [89], the phase conventions ηc = ηp = 1 and ηt = i are chosen. Although

these choices are consistent with the phase constraint we found for the CPT trans-

formation, they are not consistent with the phase constraints for P and TC, though

this does not impact their conclusion. If η2
c were set to −1, then Eq. 8.62 gives the

result reported in Ref. [88].

In the absence of external fields, the possibility of a free n − n̄ oscillations is

controlled by |δ|2 [55]. Referring to Eqs. 8.62, 8.63, though only Eq. 8.62 can operate,

one finds that the probability transforms as |ηc|2 = 1. In other words, although δ

does not have definite CP, its associated observable is always CP even. Therefore, the

observation of free n− n̄ oscillations itself cannot imply the existence of CP violation.

8.4.2 CP violation in n− n̄ oscillations through on-shell decays

Recall the system of two neutral mesons that can mix can be described by a 2 × 2

effective Hamiltonian H. The same idea can also apply to any neutral spin-1/2 system

that can oscillate. In vacuum, the H for n− n̄ system is given by [90]

H =

 mn − i
2
Γn M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12 mn − i

2
Γn

 , (8.65)

with

mn = m∗n, Γn = Γ∗n. (8.66)
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Figure 8.7: The left-hand and right-hand Feynman diagrams as per the model of
Ref. [90] gives contributions to Γ12 and M12, respectively. The crosses represent χ
mass insertions, and the blobs are the high-dimension operators responsible for n−χ
and n̄ − χ transitions. Note that only the imaginary part of the left-hand diagram
contributes to Γ12.

It is argued that CP violation in interference between mixing and decays (the third

kind of CP violation) is possible in n− n̄ system, which leads to a difference between

the transition probability of n→ n̄ and n̄→ n [90],

P|n〉→|n̄〉
P|n̄〉→|n〉

− 1 =
2=(M12Γ∗12)

|M12|2 − |Γ12|2/4−=(M12Γ∗12)
. (8.67)

In order to observe a non-zero effect, both M12 and Γ12 cannot be zero. Now it

should be obvious that the failure of detailed balance though the operator O1 itself is

impossible, since Γ12 vanishes in this case. To break detailed balance, Eq. 8.67 also

shows that M12 and Γ12 cannot be real simultaneously. The authors of Ref. [90] show

that Γ12 can be realized through an intermediate on-shell χ and photon γ, while M12

is from an off-shell intermediate χ exchange. The Feynman diagrams responsible for

the two processes are shown in Fig. 8.7. It turns out that CP violation in n − n̄

oscillations cannot be a significant effect, and larger CP violation should be expected

in a neutral baryon oscillation system which is less directly constrained by nuclear

stability. Possible candidates are Λ− Λ̄ or Ξ0 − Ξ̄0 oscillations [90].

Copyright c© Xinshuai Yan, 2017.
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SUMMARY

In the SM, B − L symmetry is perfectly conserved, therefore any observation of

B − L violation demonstrates the existence of new physics. B − L violation in the

baryon sector can appear in two possible ways, through |∆B| = 1 or |∆B| = 2

processes. Using dimensional analysis with current experimental results shows that

the observation of |∆B| = 2 processes would suggest a relatively low scale of new

physics. The typical process is n − n̄ oscillations, which, if observed, can also help

determine the Majorana character of neutrinos. However, the ability to discover n−n̄
oscillations is very sensitive to the “environment”. In the presence of magnetic field

or matter effects, the energies of a neutron and antineutron become different, and

the n− n̄ transition probability becomes suppressed. Unless the magnetic fields and

matter effects are reduced to the extent that a “quasi-free” condition is realized, the

transition probability is always quenched.

In order to explore other possibilities for the discovery of B − L violation in the

quark sector, we studied the Lorentz invariant B −L violating operators with lowest

mass dimensions. After applying the CPT transformation to these operators, we

found that they did not possess a definite CPT transformation property. Moreover,

half of them vanish due to the anti-commuting nature of fermion fields. What is

worse is that due to arbitrary choices of phase convention, a “wrong CPT” problem

appears. We found, rather, that the arbitrary phases that appear in discrete symme-

try transformations are not arbitrary. We determined the restrictions on the phases

associated with the discrete symmetry transformations C, P , and T of fermion fields

that appears in theories of B−L violation by generalizing the earlier work of Ref. [19].

We found that the phase associated with the transformation of a fermon field under

CPT , ηcpt, must always be imaginary and that the phase associated with P , ηp, or

equally CT , ηct, must be imaginary for fermions for which a P transformation ex-

ists. However, phases associated with other discrete symmetries or combinations of

discrete symmetries, e.g., CP , remain indeterminate for B − L violating operators.

Nevertheless, with correct ηcpt applied, the “wrong” CPT problem is automatically

solved as we describe in Chap. 3.

We connected the ability to write down CPT odd operators, though they even-

91



CHAPTER 9. SUMMARY 92

tually vanish identically, to theories of self-conjugate isofermions, for which locality

fails [91, 92, 93, 94], and the CPT properties are anomalous. From the study of

self-conjugate isofermions, we found that it is impossible to study n − n̄ oscillations

in QCD in the chiral limit.

Although the phase constraint on ηcpt determined that magnetic fields do indeed

quench n− n̄ oscillations mediated by the operator ψTCψ+h.c., we argued that spin

dependence could still play a key role in n− n̄ transitions. In particular, we proposed

a n− n̄ conversion operator associated with an electromagnetic current. We studied

the n − n̄ transition probability in a 4 × 4 effective Hamiltonian framework in the

soft photon emission limit. We showed that the spin-flip effect does result in a non-

quenching transition probability that is no longer sensitive to the presence of magnetic

fields or matter.

We proposed a new mechanism, which we call n − n̄ conversion, in which the

change of a neutron into an antineutron is mediated by an external source, as can

occur in a scattering process. At the nuclear level, that is at low energy scales

smaller than ΛQCD, naive dimension analysis implies that n− n̄ conversion processes

will be suppressed by 3 powers of the new-physics scale, ΛBSM , compared with n −
n̄ oscillation processes. However, we found that this numerical comparison need

not hold, by studying an explicit example. That is, we related n − n̄ conversion

to n − n̄ oscillation by including electromagnetic interactions in the energy scale

between ΛQCD and ΛBSM . Starting with a complete set of n − n̄ operators at such

an intermediate energy scale, we dressed each electrically charged quark with a soft

photon to determine the effective six-fermion n−n̄ oscillation operators. The coupling

parameter of the conversion operators below energy scale ΛQCD can be connected to

the matrix elements of six-fermion conversion operators, which we evaluated in the

MIT bag model. Then, due to the inner connections between six-fermion oscillation

and conversion operators, a relation between the low energy coupling parameters

associated with oscillation and conversion operators was established. We found that

not only are n − n̄ conversion processes not suppressed, but rather that they can

be greatly enhanced. The possibility of n − n̄ conversions provides opportunities to

explore n − n̄ transitions through scattering experiments. Moreover, due to their

connection to n− n̄ oscillations, we can compare the sensitivity of such experiments,

under limited assumptions, to n − n̄ oscillation experiments. As a result of our

analysis, we focused on forward scattering processes, and we considered three possible

reactions: (1) electrons scattering with a neutron target transfer the neutrons into

antineutrons; (2) neutrons scattering with a electron plasma becomes antineutrons;
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and (3) neutrons scattering with deuterium target turn into antineutrons. Using

the experimentally established technical parameters, we found that slow neutrons

scattering with a liquid deuterium target appears to be the most promising proposal.

We also performed preliminary estimation of the limits on η for the same proposals

and found that proposals (1) and (3) appear to be good choices.

Finally, CP violation in particle-antiparticle systems has been discussed. We

generalized the analysis of the time dependent T -violating asymmetry in Ref. [3]

to consider different choices of CP tags for which the dominant amplitudes have

the same weak phase. We found that it is possible to measure departures from the

universality of sin(2β) directly. If sin(2β) is universal, as in the Standard Model, our

method permits the direct determination of penguin effects in these channels.

We have also considered the possibility of CP violation in n − n̄ oscillations.

We showed that due to the indefinite phase associated with CP transformation of

n − n̄ oscillation operators, the appearance of n − n̄ oscillations does not break CP

symmetry, in contrast to claims in the literature [88]. However, CP violation in

n− n̄ oscillations can occur by breaking the detailed balance. One mechanism, e.g.,

breaking the detailed balance through the appearance of an intermediate state that

couples to both n and n̄ [90], is briefly discussed.

Copyright c© Xinshuai Yan, 2017.
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appendix a

PHASE RESTRICTIONS FOR TWO-COMPONENT FIELDS

In this section we develop the phase restrictions associated with the discrete-symmetry

transformations of two-component Majorana fields. We develop these in two differ-

ent ways: the first by connecting Dirac fields, and our earlier phase constraints,

with two-component Majorana fields and the second by analyzing the transformation

properties of two-component Majorana fields directly.

In Weyl representation, a Dirac spinor can be written as

ψ =

ξα
ηβ̇

 . (A.1)

where α and β can be 1 or 2. Here we employ the undotted and dotted notation used

by Refs. [154, 155]. The undotted contravariant spinor ξα and the covariant spinor

ξα are in the (1
2
, 0) representation of the Lorentz group SO(3,1), whereas the dotted

covariant spinor ηβ̇ and the contravariant spinor ηβ̇ are in the (0, 1
2
) representation.

One can raise or lower the undotted indices using the metric of SL(2,C)

gαβ =

 0 1

−1 0

 = iσ2
αβ, (A.2)

gαβ =

0 −1

1 0

 = −iσ2
αβ , (A.3)

i.e.,

ξα = gαβξβ = −iσ2
αβξβ , (A.4)

and use the same metric for dotted indices.

Since the C and P transformations of Eqs. (3.1,3.2) connect the (1
2
, 0) and (0, 1

2
)

representations of the Lorentz group and thus the two two-component fields in Eq. (A.1),

a particular two-component field cannot transform into itself under P or C. However,

it can transform into itself under CP or CPT (or T) [154, 155], so that phase con-

straints may exist for these particular transformations. We will now determine them

in two different ways.
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In Chap. 3, we found the phase constraints associated with the discrete-symmetry

transformations of a Dirac field. Revisiting the CP and CPT transformations in Weyl

representation, we find

CP

ξα(x, t)

ηβ̇(x, t)

 (CP)−1 = ηcpiγ
0γ2

ξα†(−x, t)

η†
β̇
(−x, t)

 , (A.5)

CPT

ξα(x)

ηβ̇(x)

 (CPT)−1 = −ηcptγ5

ξα†(−x)

η†
β̇
(−x)

 . (A.6)

Since in Weyl representation

iγ0γ2 =

−iσ2 0

0 iσ2

 ; γ5 =

−1 0

0 1

 (A.7)

we use Eq. (A.4), e.g., to find

CPξα(x, t)(CP)−1 = −ηcpξ†α(−x, t) , (A.8)

CPηα̇(x, t)(CP)−1 = −ηcpηα̇†(−x, t) , (A.9)

CPTξα(x)(CPT)−1 = ηcptξ
α†(−x) , (A.10)

CPTηα̇(x)(CPT)−1 = −ηcptη†α̇(−x) , (A.11)

where we note, as per Chap. 3, that ηcpt ≡ ηcηpηt = ±i. Here we find no direct

constraint on the phase ηcp ≡ ηcηp, or ηt for that matter, because the analysis of

Chap. 3 determined that the combinations η∗cpλ and ηtλ were imaginary and real,

respectively. Since the phase λ has no meaning in the current context, no conclusions

on ηcp or ηt can follow.

An alternate path to these results comes from the analysis of the plane-wave

expansion of the two-component Majorana field ξa(x) [156, 157]:

ξα(x) =
∑
s

∫
d3p

(2π)3/2(2Ep)1/2
[xα(p, s)a(p, s)e−ipx + λyα(p, s)a†(p, s)eipx] , (A.12)

where xα and yα are two-component spinors, whose definition can be found in Ref. [157].

Note that we have included a phase factor λ in ξa(x), in analogy to the analysis of

Chap. 3. It is trivial to check that the phase λ included here functions in the same

way as in Eq. (3.40) and that it is forced to 1 when ξα(x) is used to constuct a Dirac



APPENDIX A. PHASE RESTRICTIONS FOR TWO-COMPONENT FIELDS 96

field 1. Using the CP transformation of ξα(x, t) [154, 155]

CPξα(x, t)(CP)−1 = ηcp(ξ
α)†(−x, t) (A.13)

and the relations [157]

(xα)†(p, s) = x†α̇(p, s) = −yα(−p, s) , (A.14)

(yα)†(p, s) = y†α̇(p, s) = xα(−p, s) (A.15)

yield

CPa(p, s)(CP)−1 = ηcpλ
∗a(−p, s) , (A.16)

CPa†(p, s)(CP)−1 = −ηcpλ∗a†(−p, s) . (A.17)

Since CP is a unitary operator, taking the Hermitian conjugate of either relation

proves that ηcpλ
∗ must be imaginary.

Under CPT, we have

CPTξα(x)(CPT)−1 = ηcpt(ξ
α)†(−x) . (A.18)

Using the relations [157]

x†α̇(p,−s) = 2sy†α̇(p, s) , (A.19)

y†α̇(p,−s) = − 1

2s
x†α̇(p, s) , (A.20)

we find

CPTa(p, s)(CPT)−1 = − 1

2s
λ∗ηcpta(p,−s) , (A.21)

CPTa†(p, s)(CPT)−1 = 2sληcpta
†(p,−s) . (A.22)

Noting that CPT is an antiunitary operator, as in Chap. 3, we can take the Hermitian

conjugate of either equation to show that ηcpt must be imaginary. Alternatively, after

Ref. [19], we define CPT|0〉 = |0〉 and note

1 = 〈0|a(p, s)a†(p, s)|0〉

= 〈0|CPTa(p, s)CPT−1CPTa†(p, s)CPT−1|0〉 . (A.23)

Then using Eqs. (A.21,A.22) shows that ηcpt = ±i.
In summary, we have used two methods to find the phase constraints on CP and

CPT for two-component fields, and have obtained the same results, which are that

ηcp itself is unconstrained, though ηcpλ
∗ must be imaginary, and ηcpt is always ±i.

1Although the notation for a Dirac field employed by Refs. [154, 155] and [157] differs, our results
are unchanged.
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