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ABSTRACT OF DISSERTATION

INVESTIGATION OF THE MECHANISM OF ACTION FOR MITHRAMYCIN AND 
THE BIOSYNTHESIS OF L-REDNOSE IN SAQUAYAMYCINS 

Natural products continue to be a major chemical lead matter for drug discovery 
due to their diverse chemical structures and bioactivities. Clinically significant natural 
products include anti-cancer and anti-infective compounds and while many more of these 
compounds show promising bioactivity, their clinical relevance is often limited by 
toxicity or poor solubility. Combinatorial biosynthesis can be employed to modify 
existing chemical scaffolds towards reducing these limitations. To fully take advantage of 
these biochemical tools, it is important to understand the biosynthesis and mechanism of 
action of the molecules.  

Saccharides in glycosylated natural products provide specific interactions with 
cellular targets and are often crucial for a compound’s bioactivity. Genetic engineering of 
sugar pathways can modify glycosylation patterns leading to the diversification of natural 
products. Saquayamycins (SQN) H and I are cytotoxic angucycline antibiotics containing 
five deoxyhexoses including the rare amino sugar rednose. Elucidating the biosynthetic 
pathway of rednose could add to the arsenal of combinatorial biosynthesis tools for drug 
development. Our research goal of investigating the rednose biosynthetic pathway was 
pursued through two specific aims: the identification of the Streptomyces sp. KY 40-1 
gene cluster involved in the biosynthesis of SQN H and I (sqn) (specific aim 1), and the 
validation of the proposed L-rednose biosynthetic pathway up to the glycosyl transfer 
through enzymatic synthesis of NDP-3,6-dideoxy-L-idosamine (specific aim 2).  The sqn 
gene cluster revealed deoxysugar biosynthetic genes that could be used to alter 
glycosylation patterns to generate novel compounds while the enzymatic synthesis 
afforded novel genetic engineering tools to generate novel TDP-deoxysugars that could 
be used to diversify compounds such as aminoglycosides to circumvent resistance 
mechanisms. The first step to generate TDP-glucosamine enzymatically was 
accomplished, however later steps were unsuccessful. 

The aureolic acid mithramycin (MTM) was recently tested in clinical trials for 
Ewing sarcoma following the discovery of MTM as a potent inhibitor of the oncogenic 
transcription factor EWS-FLI1 present only in Ewing sarcoma cells It is understood that 
MTM binds the minor groove of G/C rich DNA as an Mg2+-coordinated dimer disrupting 



transcription of proto-oncogenes; however, the DNA recognition rules were not 
completely understood, making further interrogation of MTM’s DNA binding 
preferences necessary. This research goal of further understanding the mechanism of 
action for MTM was approached through two specific aims: the investigation of the 
dimerization of MTM (specific aim 3), and the investigation of MTM’s DNA binding 
preferences (specific aim 4). This work established that MTM and its biosynthetic 
precursor premithramycin B (PreMTM B), and several MTM analogues with modified 3-
side chains: mithramycin SDK (MTM SDK), mithramycin SA tryptophan (MTM SA-
Trp), and mithramycin SA alanine (MTM SA-Ala) dimerize even in the absence of DNA 
under physiologically relevant conditions. The study also demonstrated that modification 
of the 3-side chain modulates DNA binding affinity of MTM analogues, established a 
minimum MTM binding site on DNA, and revealed MTM DNA recognition is driven by 
direct (sequence) and not indirect (conformation) readout laying the foundation for 
subsequent research based on the interaction between MTM, DNA, and the oncogenic 
transcription factor EWS-FLI1 in the rational design of new MTM analogues for the 
treatment of Ewing sarcoma. 

KEYWORDS: Deoxysugar Biosynthesis, Enzymatic Synthesis, Gene Cluster, Divalent 
Metal Ion Coordination, DNA Binding 
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1. INTRODUCTION TO POLYKETIDES AND DEOXYSUGAR BIOSYNTHESIS 

Secondary metabolites are small molecules that are not directly involved in 

reproduction, development, or growth of the organism under normal conditions, but 

provide an evolutionary advantage for the producing organism such as antibiotics for 

defense, attractants like flower scent to attract pollinators, pigments to attract or warn 

other species, and siderophores for iron scavenging during low-iron conditions. Natural 

products produced by plants, insects, and microorganisms are derived from secondary 

metabolic pathways and are of interest to humans for pesticides, flavorings, dyes and 

most importantly pharmaceuticals. The diverse chemical scaffolds and various 

bioactivities of natural products have long since rendered them significant sources for 

drug discovery. Natural products are categorized into 6 groups based on their building 

blocks and method of biosynthesis (figure 1): specialized carbohydrates (1), terpenoids 

and steroids (2), alkaloids (3), peptides (4), aromatic amino acids and phenylpropanoids 

(5), and fatty acids and polyketides (6). 
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Figure 1. Representative compounds from the classes of natural products 

Of particular interest are the polyketide natural products due to their structural 

diversity and pharmacological impact including anticancer, antibiotic, antifungal, 

antiparasitic, and immunosuppressive activities. Polyketides are produced primarily by 

microorganisms through a series of decarboxylative Claisen condensations of acyl CoA 

esters catalyzed by polyketide synthases (PKS) to build a linear polyketide chain. 
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Polyketides are classified based on the type of PKS (Type I, Type II, or Type III) 

responsible for their biosynthesis. Type I PKS are large multifunctional, modular 

enzymes that function non-iteratively in an assembly line fashion with multiple acyl 

carrier proteins (ACP) to pass along the growing polyketide chain (figure 2). Typical 

products for Type I PKS include macrolides, polyethers, and macrolactones. Clinically 

relevant erythromycin A (7) and amphotericin B are both type I PKS derived molecules 

(figure 3). Type II PKS are made up of a complex of multiple enzymes with specific 

functions including two ketosynthase/acyl transferases (KSαand KSβ) and an ACP that 

catalyze the extension, and initial cyclization reactions iteratively (figure 2). Type II PKS 

molecules are polycyclic aromatics such as angucyclines and anthracyclines and include 

such heavy hitters as doxorubicin (6) and mithramycin (8) (figure 3). Type III PKS act 

iteratively with only one homodimer forming ketosynthase/acyltransferase (KS) enzyme 

and no ACP (figure 2). Stilbene-type phytoalexins and flavonoids (9) are typical products 

of type III PKS (figure 3). Following construction of the polyketide core scaffolds by 

PKS, post-PKS modifying enzymes diversify the polyketide backbones catalyzing 

cyclizations, aromatizations, reductions, epimerizations, alkylations, glycosylations, and 

other tailoring reactions providing much of the structural diversity within the polyketide 

group.  
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Figure 2. Polyketide synthases (type I, type II, type III) and post-PKS modifications 

 

Figure 3. Representative polyketides from PKS (type I, type II, type III) 

Natural products, including polyketides, are often glycosylated, and 

pharmacological properties of these compounds are greatly impacted by their 

carbohydrate components of which provide specific interactions with cellular targets and 

are often critical for bioactivity.1 A recent review of close to 16,000 natural products 

revealed that of them, 21.5% were glycosylated.2 Doxorubicin (6), erythromycin (7), 

amphotericin B, and avermectin all contain sugar residues, removal of which renders the 
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compounds inactive.1 Furthermore, sugars are highly soluble and increase the overall 

solubility of the glycosylated compounds. 

 Glycosylation requires glycosyl donors, mainly nucleotide diphosphate (NDP)-

bound sugars, and an aglycone or other suitable glycosyl acceptor and employs specific 

enzymes known as glycosyltransferases evolved to carry out the attachment of the 

activated sugar donor to the acceptor. Glycosidic bonds can be S-, O-, N-, or C-, although 

linkage through oxygen is the most common. According to Klyne’s rule, linkages in 

glycoside natural products are typically β-configuration for D-sugars and α-configuration 

for L-sugars.3 Additionally, specific deoxysugar tailoring enzymes have evolved to 

modify sugar donors by further deoxygenation, oxidation, reduction, rearrangement, 

group transfer, isomerization, and epimerization to generate a wide array of unusual 

sugars. Genes that code for biosynthetic enzymes in the same pathway are generally 

“clustered” in the chromosomes of bacteria. This allows for horizontal gene transfer in 

bacteria and inconsequently provides researchers with easy access to this biosynthetic 

machinery. Deoxysugar biosynthetic pathways can be genetically modified to alter 

glycosylation patterns to optimize desirable drug properties of existing compounds. 

 Deoxysugar biosynthetic pathways begin with the glycolytic intermediate D-

glucose-6-phosphate (10) which undergoes isomerization carried out by 

phosphoglucomutase to yield D-glucose-1-phosphate (11). This D-glucose-1-phosphate 

(10) is considered the precursor of the typical deoxysugar biosynthetic pathway. 

Secondary metabolism begins with a phosphoanhydride exchange reaction catalyzed by 

NDP-D-glucose synthase from NTP (CTP, UTP, or TTP (12) in bacteria) and D-glucose-
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1-phosphate (12) to yield pyrophosphate and NDP-D-glucose (13). The pyrophosphate is 

hydrolyzed by a ubiquitous cytosolic enzyme, inorganic pyrophosphatase which provides 

energy for the otherwise endergonic reaction.4 The sugar is thus activated for downstream 

reactions (figure 4).  

 

Figure 4. Activation of sugar substrate by glucose synthase 

1.1 Deoxygenation 

Carbon-oxygen bond cleavage is among the most ubiquitous reactions in 

biological systems and introduces great structural diversity in compounds in which it is 

carried out. Deoxysugars are common constituents of both lipopolysaccharides in gram 

negative bacterial cell walls, and secondary metabolites, and require C-O bond cleavage 

for their formation. Four types of deoxygenation reactions have been identified: C-6, C-2, 

C-3, and C-4 deoxygenation.  

1.1.1 C-6 Deoxygenation 

 The majority of unusual deoxysugars are 6-deoxysugars. In this case, an NAD 

dependent 6-deoxygenation reaction is carried out by an NDP-D-glucose oxidoreductase 

known as 4,6-dehydratase, whereby NAD+ oxidizes C-4 OH activating the C-5 proton to 
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form the enolate (16) which facilitates the elimination of C-6 OH (17). Finally, a hydride 

transfer from NADH saturates the double bond to form NDP-4-keto-6-deoxy-D-glucose 

(18) (figure 5).5-9 This 4-keto-6-deoxy-D-glucose is a universal intermediate that 

undergoes a series of downstream tailoring reactions to generate a wide array of sugar 

donors that are used by glycosyltransferases to decorate acceptors. Chemically interesting 

tailoring reactions that pertain to 6-deoxy hexoses are discussed in the following sections. 

 

Figure 5. Mechanism of C-6 deoxygenation by 4,6-dehydratase 

1.1.2 C-2 Deoxygenation  

  2-deoxygenation is the 2nd most common hexose deoxygenation event after 6-

deoxygenation and the resulting 2-deoxysugars are common structural components of 

natural products primarily found in aminoglycoside and macrolide antibiotics. C-2 

deoxygenation is similar to C-6 deoxygenation employing the 4-ketogroup to activate 

the C-3 proton for abstraction followed by dehydration across C-2-3 which is then 

reduced to form NDP-4-keto-2,6-dideoxy-D-glucose. However, unlike C-6 

deoxygenation, C-2 requires two enzymes that work in a concerted fashion, a 
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dehydrase and a reductase. The 2,3-dehydratase carries out the dehydration across C2-

C3 to form an unstable 3,4-diketo intermediate (22). A second enzyme, an NAD(P)H-

dependent 3-ketoreductase helps stabilize the intermediate and reduces the C-3 ketone 

to form the final product (23) (figure 6).10, 11 In the case of tylosin biosynthesis, a 3-

methylation,4-ketoreduction and 5-epimerization follow 2-deoxygenation to convert 

TDP-4-keto-2,6-dideoxy-D-glucose (23) to TDP-L-mycarose.11 

 

Figure 6. Mechanism of C-2 deoxygenation by 2,3-dehydratase and 3-ketoreductase 

1.1.3 C-3 Deoxygenation 

3,6-dideoxysugars are common components of gram negative bacterial cell wall 

lipopolysaccharides and are epitopes responsible for virulence and pathogenicity. In 

contrast to C-2 or C-6 deoxygenation, C-3 deoxygenation cannot be promoted by an 

initial α-H abstraction which requires activation by a 4-keto. Instead, C-3 deoxygenation 

is an elimination of the hydroxyl group from the α-C directly next to the 4-keto and 

requires two cooperating enzymes, a pyridoxamine 5’-phosphate (PMP)-dependent 

dehydratase/reductase and a reductase [2S·2Fe] flavoprotein. The dehydratase/reductase 

(E1) active site contains one noncovalently-bound equivalent of PMP and one [2S·2Fe] 

center per subunit.12 The reductase (E3) active site contains a ferredoxin [2S·2Fe] center 

and flavin adenine dinucleotide (FAD).13, 14 The first half-reaction, a PMP-dependent 
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reversible dehydration is carried out by E1 and triggered by the formation of a Schiff base 

between the amino group of PMP and C-4 keto of the substrate (25).15 Next, an 

abstraction of the pro-S hydrogen of C-4’ of the PMP-ketimine complex by His220 in E1 

leads to an expulsion of 3-OH in the substrate to generate a Δ3,4-glucoseen intermediate 

(27).16 The second half-reaction is a pyridoxal-based radical reduction in which E1 and E3 

act as an electron transport chain where a hydride from NADH reduces FAD in E3, which 

reduces the E3 iron sulfur cluster, which reduces the iron sulfur cluster in E1, which in 

turn reduces the Δ3,4-glucoseen intermediate (27) to form the NDP-4-keto-3,6-dideoxy-D-

glucose (37)13, 17-19 (figure 9).11 

E1 has evolved to have a specific reductase (E3) as is encoded in the asc gene 

cluster responsible for ascarylose biosynthesis in Yersinia pseudotuberculosis Serogroup 

VA.20 However, there are examples where E1 has evolved without a specific reductase to 

regenerate its [2S·2Fe] center and can function with a general cellular reductase; in this 

case only E1 is coded for in the gene cluster as in spinosyn spn responsible for forosamine 

biosynthesis.21 Forosamine biosynthesis first requires 6-deoxygenation (38), 2-

deoxygenation (40), then 3-deoxygenation (41) followed by 4-transamination (42), and 4-

dimethylation to yield TDP-D-forosamine (43) (figure 7).22 Ascarylose biosynthesis 

requires 6-deoxygenation (45), then 3-deoxygenation (46) followed by epimerization (47) 

and 4-ketoreduction the yield the final product (48) (figure 8).20, 23 
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Figure 7. Forosamine biosynthesis 

 

Figure 8. Ascarylose biosynthesis 

 

 



11 

 

 

Figure 9. Mechanism of C-3 deoxygenation by 3,4-dehydratase and reductase 

1.1.4 C-4 Deoxygenation 

  C-4 deoxygenation is quite rare, most notably seen in desosamine 

biosynthesis, a carbohydrate constituent of several macrolides including 

erythromycin. Two enzymes are required to catalyze C-4 deoxygenation and due to 

the difficulty in studying these particular enzymes, the mechanistic details are 

unclear. The first step is carried out by a pyridoxal 5’phosphate (PLP)-dependent 

aminotransferase to generate a 4-aminosugar intermediate.24 The details regarding the 
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mechanism are discussed in the next section, see Transamination. The second step is 

a deamination by a radical S-adenosyl-L-methionine (SAM)-dependent enzyme.25 

Radical SAM-dependent enzymes contain a [4Fe-4S]+ center that must be 

continuously reduced in order to function, making them particularly difficult to study. 

Catalysis begins with one electron transferred from the [4Fe-4S]+ to SAM triggering 

homolytic cleavage of the C-5’-S bond of SAM yielding methionine and a 5’-

deoxyadenosyl radical.26 Next, the 5’-deoxyadenosyl radical abstracts a hydrogen 

atom from C-3 generating a C-3 α-hydroxyalkyl radical (50). Mechanistic details of 

the following steps are unclear but two mechanisms have been proposed. In the first 

(figure 10, red), a radical-induced 1,2-amino shift forms an aminol radical (58). A 

hydrogen is reclaimed from 5’deoxyadenosine (59) and an ammonium ion is 

eliminated to yield the final product (60). In the second (figure 10, blue), the C-3 

hydroxyl group is deprotonated to form a ketyl radical anion (52) followed by β-

elimination of the 4-amino group driven by the resonance of the ketyl radical anion 

(53).26, 27  
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Figure 10. Two proposed mechanisms of C-4 deoxygenation by DesI, a pyridoxal-5′-

phosphate (PLP)-dependent aminotransferase, and DesII, a radical S-adenosyl-L-

methionine (SAM)-dependent enzyme 

1.2 Transamination 

  Amino-sugars are found in natural products such as aminoglycosides, polyene 

antifungals, glycopeptides, anthracyclines, and macrolides as well as bacterial cell 

walls, flagellar glycolipids, and bacterial toxins. Clinically relevant antibiotics such 

erythromycin (7) and kanamycin (1) as well as the chemotherapeutic agent 

doxorubicin (6) contain amino-sugars which are critical for their bioactivity.1 In 

addition to mediating cell-target interaction, amino-sugars also serve to increase a 

molecule’s solubility. Aminotransferases introduce an amino group from an amino 
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acid donor, to an NDP-ketosugar acceptor. The enzyme and the location of the keto 

group, primarily C-3 or C-4 generated in a previous dehydrogenation or isomerization 

biosynthetic step dictate the substitution position.28, 29 

  Transamination is PLP dependent with a PLP cofactor covalently bound to a 

lysine residue in the active site of the aminotransferase forming an internal aldimine 

(61) at the start of the catalytic cycle. The first half reaction (figure 11) proceeds with 

the exchange of another amino acid donor, usually L-glutamine or L-glutamate for the 

conserved lysine resulting in the formation of an external aldimine (64). Hydrogen 

bonding now holds PLP in place as it is no longer covalently bound to the enzyme. 

Next, an abstraction of the α-proton from the PLP-amino acid adduct leads to a 

quininoid (66) and is immediately followed by a reprotonation of the 4’-C of PLP to 

generate a ketamine (67). The ketamine (67) is hydrolyzed to form PMP, and an α-

ketoacid is released (70). The second half reaction (figure 12) begins with ketamine 

formation (74) between the ketosugar substrate and PMP. The 4’-C of PMP is 

deprotonated to form a quininoid (75), which is followed by reprotonation of α-C to 

form an external aldimine (77) which is then hydrolyzed to release the amino-sugar 

and reform the internal aldimine.30-33 
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Figure 11. 1st half-reaction of PLP-dependent transamination 
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Figure 12. 2nd half-reaction of PLP-dependent transamination 
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1.3 Epimerization 

Epimerization is the inversion of configurational stereochemistry at one or 

more chiral centers and provides a convenient method to generate a wide array of 

sugars with structural diversity from just a few common sugar precursors. 

Carbohydrate epimerization reactions are carried out by epimerases on C-2, C-3, C-4, 

and C-5 usually through the addition and removal of hydrogen. For C-2 and C-4, the 

mechanism is similar; an oxidation/reduction cycle requiring NAD+ to deprotonate the 

C-2/C-4 hydroxy group to form a carbonyl, followed by reprotonation on the opposite 

face to invert configuration at C-2 as in CDP-D-tyvelose in O-antigen biosynthesis of 

Yersinia pseudotuberculosis IVA (figure 13) 34, 35 or C-4 as in the conversion of 

galactose to glucose for glycolysis (figure 14). 36, 37 C-3 and C-5 epimerization 

involves keto-enol tautomerization and requires a C-4 keto to activate the α-H for 

abstraction followed by reprotonation at C-3 or C-5 on the opposite face. Following 

C-5 epimerization, steric hindrance is minimized by maintaining the hydroxymethyl 

group (C-6) in the equatorial position which flips the ring from 4C1 to 1C4 and 

converts the sugar from D to L configuration.38, 39 An example of C-5 epimerization 

can be seen in colitose biosynthesis (figure 15).38 
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Figure 13. Mechanism of C-2 epimerization 

 

Figure 14. Mechanism of C-4 epimerization 

 

Figure 15. Mechanism of C-5 epimerization 

1.4 Branched-Sugar Formation 

Branched-sugars can be derived one of two ways. Either through the 

attachment of a methyl or a two-carbon side chain from an exogenous donor such as 

SAM or pyruvate to a pyranose ring or through the intramolecular rearrangement of a 

pyranose precursor to form a furanose with a formyl or hydroxymethyl side chain. 

Methyl or two-carbon side chain containing sugars are classified as Group I while 

formyl or hydroxymethyl side chain containing sugars belong to Group II. It is 

extremely rare for a sugar to bear a branch chain longer than two carbons. Branched 

sugar biosynthesis has not been well studied. However, two examples, namely the 

methyl-side chain containing L-mycarose from the antibiotic tylosin produced by 

Streptomyces fradiae, and yersiniose A, a two-carbon side chain carbohydrate 
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component of the O-antigen in the lipopolysaccharide of Yersinia pseudotuberculosis 

have been investigated. L-mycarose biosynthesis requires a SAM-dependent C-

methyltransferase. Catalysis is initiated by C-3 proton abstraction to form an 

enediolate intermediate (93) followed by nucleophilic attack on the electrophilic 

methyl group in SAM to yield TDP-4-keto-D-mycarose (94) (figure 16).40 A  5-

epimerization and 4-ketoreduction complete the biosynthesis to generate L-

mycarose.41 Yersiniose A biosynthesis requires a TPP-dependent coupling enzyme 

which facilitates a de facto umpolung (charge reversal) reaction. First, the TPP 

cofactor binds pyruvate followed by decarboxylation to generate a carbanionic adduct 

(99). Next, the TPP-bound carbanion attacks the 4-keto group and TPP is cleaved to 

yield the 2-carbon side chain branched-sugar yersiniose A (101) (figure 17).42 

 

 

Figure 16. Mechanism of C-methylation in D-mycarose biosynthesis 
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Figure 17. Mechanism of branched-sugar formation, D-yersiniose biosynthesis 

1.5 Reduction 

 The most prevalent reaction in deoxysugar biosynthesis is ketoreduction. 

Ketoreductases are NAD(P)H-dependent and catalyze hydride reduction of C-3 and C-4-

ketosugars to form corresponding secondary alcohols. Both axial and equatorial C-3 and 

C-4 hydroxyl groups can be generated. Ketoreductases are widespread due to the 

requirement of ketosugar intermediates which activate α-H for abstraction in many 

tailoring reactions including epimerization, alkylation (figure 16-17), and both 2 and 3-

dehydration and for reactions that occur directly at the ketone as in 4-epimerization 

(figure 14) or 4-transamination (figure 11-12). C-2 dehydration also requires a 3-

ketoreductase to stabilize and reduce the labile NDP-3,4-diketosugar intermediate (figure 

6). 

1.6 Conclusions 

 Deoxysugar components are key to the activity of glycosylated natural products 

including polyketides such as doxorubicin, mithramycin, avermectin, amphotericin B, 
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and others. The following guidelines for deoxysugar biosynthetic pathways have been 

derived from bioinformatic, biochemical, and genetic studies. Prior to derivatization, 

sugars are first activated through nucleotidyl transfer to yield NDP-sugars (figure 4). 

Second, 4,6-dehydration (figure 5) occurs prior to any other tailoring reactions for all 6-

deoxyhexoses. Many reactions rely on the 4-keto group to activate C-3 and C-5 protons 

including C-3 or C-5 epimerization (figure 15), alkylation (figure 16-17), C-2 and C-3 

dehydration (figure 7-8), as well as reactions requiring the 4-keto site directly as in 4-

transamination (figure 11-12) or 4-ketoreduction. Next, C-6 deoxygenation precedes C-2, 

C-3, and C-4 deoxygenation. C-3-ketoreduction or 3-transamination of the unstable NDP-

3,4-diketosugar intermediate immediately follows C-2 deoxygenation (figure 6). C-4 

deoxygenation proceeds through 4-transamination (figure 10). Epimerization, 

ketoreduction, and group transfer reactions (except 4-transamination) follow 

deoxygenation steps. 

 Bacterial biosynthetic enzymes are typically encoded in gene clusters which allow 

horizontal gene transfer between organisms and provide genetic engineering tools for 

researchers interested in altering glycosylation patterns of existing scaffolds to improve 

their pharmacological properties. Together, understanding the mechanism of action of a 

compound, along with the comprehension of unusual sugar biosynthetic pathways and 

access to their biosynthetic machinery expands the drug development toolbox for 

derivatization of natural products to increase drug-target interaction and solubility.  
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1.7 Specific Aims  

Organisms have evolved to produce natural products that are optimized for 

interaction with biological targets but that are not necessarily developed for druglikeness. 

While potent, MTM’s clinical use as an anticancer agent has been limited by its toxicity. 

Combinatorial biosynthesis is one method for addressing these limitations and to increase 

drug-target interaction. Modification of glycosylation patterns is a popular strategy to 

diversify compounds since it has been shown that carbohydrate constituents of 

glycosylated natural products are often crucial for bioactivity. L-rednose is an extremely 

rare amino sugar and access to its biosynthetic pathway would provide an excellent 

building block to derivatize aminoglycoside antibiotics to circumvent resistance 

mechanisms or mithramycin towards more specific activity to decrease side effects. To 

effectively develop drugs for particular targets, complete understanding of the 

mechanism of action is key. Identification of the L-rednose biosynthetic pathway and 

investigation of mechanism of action of MTM was pursued through four specific aims. 

1.7.1 Specific Aim 1: Identification of the Streptomyces sp. KY 40-1 Gene Cluster 

Involved in the Biosynthesis of Saquayamycins H and I (sqn) 

Whole genome sequencing of Streptomyces sp. KY 40-1 along with primer 

walking to fill sequence gaps provided contigs and a comparative genomic approach was 

taken to identify the contigs containing the sqn gene cluster. The gene cluster provides 

the DNA sequences necessary to express the L-rednose (109 A) deoxysugar biosynthetic 

enzymes as well as those for L-aculose (103 A), D-olivose (121), L-rhodinose (124), and 
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L-cinerulose (123) all of which are attractive for future combinatorial biosynthetic 

manipulations of saccharide chain containing drugs. 

1.7.2 Specific aim 2: Validation of the Proposed L-rednose Biosynthetic Pathway Up 

to the Glycosyl Transfer Through Enzymatic Synthesis of TDP-3,6-dideoxy-L-

idosamine 

Genes for proposed L-rednose biosynthetic enzymes were cloned and 

heterologously expressed in E. coli. Following expression and purification, enzymes were 

combined in a one pot reaction. Enzymatic synthesis of TDP-3,6-dideoxy-L-idosamine 

(132) would provide confirmation of the L-rednose biosynthetic pathway. Additionally, 

each step would generate TDP-amino sugars that could be used to alter glycosylation 

patterns in mithramycin and other compounds to increase drug-target interaction or in 

aminoglycosides to circumvent resistance mechanisms. Enzymatic synthesis of TDP-

glucosamine (128), the first step in the proposed pathway was achieved, however later 

steps were unsuccessful. 

1.8.3 Specific Aim 3: The Investigation of the Dimerization of MTM 

Previous studies involving dimerization of MTM (138) were not carried out in 

physiologically relevant salt conditions and MTM analogues had not been investigated. 

Therefore, it was necessary to further investigate dimerization of MTM (138) and its 

analogues. MTM (138) and analogues were titrated into buffer containing divalent metals 

and physiologically relevant salt concentrations and change in fluorescence was 

monitored to determine dimerization. Although it was understood that DNA binding by 
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MTM (138) was dependent upon dimer formation, this study investigated if the MTM 

dimer formed upon binding, or in the absence of DNA and provided a better 

understanding of the mechanism of action of MTM (138) which is key in development of 

the drug as a chemotherapeutic. 

1.8.4 Specific Aim 4: The Investigation of MTM’s DNA Binding Preferences 

Interest in MTM (138) has been renewed following a discovery of MTM (138) as 

a potent inhibitor of the driver of Ewing sarcoma, the oncogenic transcription factor 

EWS-FLI1. It is unclear how MTM (138) inhibits EWS-FLI1 since MTM (138) binds 

G/C rich DNA while EWS-FLI1 prefers GGAA microsatellites. Thus, it was necessary to 

further probe MTM’s DNA binding preferences. MTM (138) and MTM analogues with 

3-chain modifications were titrated into buffer containing physiologically relevant 

divalent metal and salt concentrations with DNA oligos of various sequence and 

confirmation and the change in fluorescence was monitored. This work identified 

whether modification of the MTM 3-side chain impacts DNA binding affinity, 

established a minimum MTM binding site on DNA, and determined if MTM (138) 

recognized DNA based on sequence or confirmation. These findings laid the foundation 

for future research based on the interaction between MTM (138), DNA, and EWS-FLI1 

toward development of MTM analogues for the treatment of Ewing sarcoma. 

2. IDENTIFICATION OF THE L-REDNOSE BIOSYNTHETIC PATHWAY IN 

SAQUAYAMYCINS H AND I  

2.1 Introduction  
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Saquayamycins (SQN) are type II polyketide-derived angucycline antibiotics first 

discovered in 1985.43 Fifteen SQN have been reported thus far including SQN A-K (102-

112)43, 44 and Z (113)45 and three analogues (SQN A1 (114), SQN B1 (115), SQN C1 

(116)) generated by partial acid hydrolysis of SQN A-C (102-104) 43 (figure 18). SQN 

contain the same aquayamycin aglycone and two saccharide chains (except for SQN A1-

C1 (114-116) whose second saccharide chain is hydrolyzed) with C-glycosidic D-olivose 

attached at C-9 and O-glycosidic L-rhodinose attached at C-3 of the chromophore. 

Glycosylation patterns vary from there containing combinations of L-cinerulose, L-

aculose, L-rhodinose, L-rednose, L-olivose, and in the case of SQN Z, L-oliose and 4-

keto-L-aculose. SQN Z (113) is the largest with both a pentasaccharide and 

tetrasaccharide chain. Excluding SQN A1-C1, SQN G (108) is the smallest with one 

disaccharide and one monosaccharide chain. The remaining SQN all bear two 

disaccharide chains. In addition to antibiotic activity, SQN are also anti-cancer agents. 

SQN A-D (102-105) , isolated from Streptomyces nodosus MHI90-16F3 exhibited a 

cytostatic effect against P388 leukemia cells.43 SQN E (106) and F (107) produced by 

Actinomyces strain MK290-AF1 are farnesyltransferase inhibitors,46 which impede 

function of the cell signaling protein Ras whose overactive pathway is typical of cancer.47 

Saquayamycin Z (113) was isolated from Micromonospora sp.strain Tü6368 and 

displayed cytostatic effects against gastric epithelial HM02 and liver hepatocellular 

carcinoma HepG2 cells.45 SQN G-K (108-112) produced by Streptomyces KY40-1 are 

cytotoxic, active against human prostate cancer PC3 cells and non-small cell lung cancer 

H460 cell lines.44 SQN B (103) is the major product of S. KY40-1 and exhibited among 

the highest activity in both cell lines.44 This is typical of the major product since 
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organisms evolve to produce the most potent compounds in the largest scale. The 

organism’s goal is to produce efficacious antibiotics to outcompete other bacteria in the 

same microbiota. It is not evolutionarily advantageous to spend resources to make large 

quantities of ineffective metabolites. Interestingly, SQN H (109) showed slightly higher 

activity than SQN B (103) against H460 cells.44 SQN H (109) and B (108) differ only in 

the second sugar of the C-3 disaccharide chain, L-rednose vs. L-aculose respectively, 

indicating the amino group located at β-position of the L-aculose moiety impacts 

activity.44  

 

Figure 18. Chemical structures of the saquayamycins 

Of particular interest are SQN H (109) and I (110) due to their extremely rare 

amino sugar moiety rednose, which was previously only reported once, in an 
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anthracycline rudolfomycin.43 SQN H (109) and I (110) differ in the second sugar in both 

disaccharides where saquayamycin H (109) has L-rednose O-glycosidically linked to L-

rhodinose and L-cinerulose O-glycosidically linked to D-olivose and saquayamycin I 

(110) contains O-glycosidic L-aculose attached to L-rhodinose and O-glycosidic L-

rednose attached to D-olivose. 

Glycodiversification through the incorporation of amino sugars is one important 

strategy to modulate bioactivity and solubility of glycosylated natural products. Many 

natural products rely on amino sugars for their bioactivity. Primarily, the broad-spectrum 

aminoglycoside antibiotics which inhibit protein synthesis by binding to the bacterial 30S 

ribosomal subunit causing misreading of t-RNA. Aminoglycosides rely on the 

biosynthesis of diverse amino sugars and specialized glycosyltransferases for their 

attachment. An important resistance mechanism for bacteria is the use of modifying 

enzymes, which acetylate, adenylate, or phosphorylate aminoglycosides preventing 

ribosomal binding. Incorporation of L-rednose (109 A), which lacks the 3-OH or 3-NH2 

handle typically recognized by modifying enzymes, would potentially circumvent 

aminoglycoside inactivation. Amino sugars are also key components of macrolides such 

as erythromycin which rely on D-desosamine to bind the bacterial 50S ribosomal subunit 

to block tRNA and inhibit protein translation.48, 49 Widely used anthracycline anticancer 

agents doxorubicin and daunorubicin both contain the amino sugar L-daunosamine which 

plays a role in DNA binding.50, 51 These compounds intercalate DNA inhibiting 

topoisomerase II function disrupting DNA and RNA synthesis.52, 53 The incorporation of 

L-rednose (109 A) into aminoglycosides or polyketides such as mithramycin for example, 

may modulate bioactivity and increase the interaction between the drug and its target. 
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Access to the gene cluster encoding biosynthetic enzymes for L-rednose (109 A) and 

understanding of the biosynthetic pathway will add to the toolbox for 

glycodiversification. Enzymatic synthesis of key intermediates will not only validate the 

L-rednose pathway but generate novel TDP-amino sugars to be used in artificial pathways 

to generate novel compounds. 

2.2 Results and Discussion 

2.2.1 Identification of the Saquayamycin Biosynthetic Gene Cluster 

This section was reproduced in part with permission from ACS Chemical 

Biology, submitted for publication. Unpublished work copyright 2017 American 

Chemical Society. 

To identify which contig the sqn cluster was located on, all reads were initially 

mapped to the Streptomyces sp. SCC 2136 Sch 47554/ Sch 47555 (sch) gene cluster.54 

Sch 47554 (119) and Sch 47555 (120) share the same chromophore as SQN produced by 

Streptomyces sp. KY40-1 and BLAST analysis revealed high similarity between sqn and 

sch minimal PKS genes (79-90%). However, the carbohydrate residues differ from SQN 

which have C-glycosidic D-olivose attached to C-9 and O-glycosidic L-rhodinose 

attached to C-3 while Sch bear O-glycosidic L-aculose attached to C-9 and C-glycosidic 

D-amicetose attached to C-3 (figure 19). Following the publication of the Streptomyces 

lusitanus SCSIOLR32 grincamycin (gcn) gene cluster,55 sqn contigs were mapped to the 

gcn cluster. Grincamycin (117) and SQN share the same aquayamycin aglycone and O-

glycosidic L-rhodinose attached to C-3 exhibiting a stronger structural similarity than 

between SQN and Sch (figure 19). Heterologous expression of the gcn gene cluster in 
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Streptomyces coelicolor M512 yielded P-1894B (118), containing L-aculose in place of 

L-cinerulose as the last sugar in the trisaccharide chain as well as the disaccharide 

chain.55 It was shown that GcnQ, a FAD/FMN containing dehydrogenase in the gcn 

cluster can convert L-rhodinose to L-aculose.55 Taking both grincamycin (117) and P-

1894B (118), all of the sugars in SQN A-B (102-103), and G-K (108-112) are found (D-

olivose, L-rhodinose, L-cinerulose, and L-aculose) except for L-rednose (figure 19). It was 

expected that comparison of the deoxysugar genes in both clusters would reveal the 

unique genes in S. KY40-1 that could be responsible for biosynthesis of rednose. The N-

terminal border region of the sqn gene cluster was determined by the location of a 

primary metabolism gene (lactate transporter) upstream of sqnZ indicating sqnZ as the 

beginning of the sqn cluster. Downstream of sqnY lies a 1.5 kb non-coding region of 

DNA, indicative of  the C-terminal border region of the sqn cluster, followed by an 

unknown protein and an ABC transporter. To confirm this as a non-coding region and not 

a sequencing error, this region was PCR amplified and sequenced again which resulted in 

a 100% sequence identity to the genomic sequencing data.  
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Figure 19. Chemical structures of saquayamycins A, B and G-K, grincamycin, P-
1894B, Sch 42554, and Sch 47555. 

The Streptomyces sp. KY40-1 sqn biosynthetic gene cluster spans 44.7 kb and 

consists of 40 open reading frames (figure 20). The gene cluster encodes the minimal 

PKS (SqnHIJ), 2 cyclases (SqnBBL), a ketoreductase (SqnK), and a 4'-

phosphopantetheinyl transferase (SqnCC) responsible for polyketide biosynthesis. Also 

found in the cluster were seven oxidoreductases (SqnACFMTUW) and a decarboxylase 

(SqnP) for post modifications, eight proteins involved in deoxysugar biosynthesis 

(SqnS1-S8), three glycosyltransferases for sugar attachment (SqnG1-G3), a 

dehydrogenase (SqnQ) for post-sugar modification, three regulatory proteins (SqnDRV), 

four transporters (SqnZBNX), and six proteins with unknown functions 
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(SqnAAEODDEEY). Interestingly, the sqn gene cluster lacks an aminotransferase that 

we would expect to see for the biosynthesis of the amino sugar rednose. 

 

Figure 20. Saquayamycin biosynthetic gene cluster 

Table 1. Proposed functions for ORFs in sqn gene cluster 

ORF Putative Function Protein Homologue, Strain 
% 

Identity 
Accession # 

SqnZ major facilitator superfamily 

transporter, efflux 

Streptomyces olivochromogenes 88 KUN37937.1 

SqnAA hypothetical protein Streptomyces sp. LaPpAH-108 70 WP_018546489.1 

SqnA putative oxidoreductase GcnA, Streptomyces lusitanus 86 AGO50604.1 

SqnB major facilitator superfamily 

transporter, efflux 

GcnB, Streptomyces lusitanus 84 AGO50605.1 

SqnC NADPH-dependent FMN 

reductase 

UrdO, Streptomyces fradiae 62 WP_059130309.1 

SqnD TetR family transcriptional 

regulator 

GcnD, Streptomyces lusitanus 85 AGO50607.1 

SqnE hypothetical protein SaqP Micromonospora sp. Tu 6368 46 ACP19350.1 
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SqnF oxidoreductase UrdE, Streptomyces fradiae 90 CAA60567.1 

SqnBB cyclase UrdF, Streptomyces fradiae 86 CAA60568.1 

SqnH ketoacylsynthase alpha 

subunit 

UrdA, Streptomyces fradiae 94 CAA60569.1 

SqnI ketoacyl synthase CLF UrdB, Streptomyces fradiae 87 CAA60570.1 

SqnJ acyl carrier protein UrdC, Streptomyces fradiae 92 CAA60571.1 

SqnK ketoreductase UrdD, Streptomyces fradiae 91 CAA60572.1 

SqnL cyclase UrdL, Streptomyces fradiae 88 AAF00205.1 

SqnM oxygenase-reductase UrdM, Streptomyces fradiae 80 AFU51427.1 

SqnN major facilitator superfamily 

transporter, efflux 

UrdJ2, Streptomyces fradiae 65 AAF00207.1 

SqnG1 glycosyltransferase SaqGT2, Micromonospora sp. Tu 6368 55 ACP19363.1 

SqnG2 glycosyltransferase SaqGT4, Micromonospora sp. Tu 6368 57 ACP19365.1 

SqnS1 NDP-hexose 3,5-epimerase UrdZ1, Streptomyces fradiae 68 AAF00208.1 

SqnG3 glycosyltransferase UrdGT2, Streptomyces fradiae 75 AAF00209.1 

SqnS2 glucose-1-phosphate 

thymidylyltransferase 

UrdG, Streptomyces fradiae 80 AAF00210.1 

 

SqnS3 NDP-glucose 4, 6-

dehydratase 

UrdH, Streptomyces fradiae 87 AAF00211.1 

SqnS4 NDP-hexose 4-ketoreductase UrdZ3, Streptomyces fradiae 67 AAF72549.1 

SqnS5 NDP-hexose 3,4-dehydratase UrdQ, Streptomyces fradiae 91 AAF72550.1 
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SqnS6 NDP-hexose 4-ketoreductase UrdR, Streptomyces fradiae 82 AAF72551.1 

SqnO hypothetical protein GcnO, Streptomyces lusitanus 72 AGO50626.1 

SqnS7 NDP-hexose 2,3-dehydratase UrdS, Streptomyces fradiae 81 AAF72552.1 

SqnS8 NDP-hexose 3-ketoreductase SaqT Micromonospora sp. Tu 6368 67 ACP19378.1 

SqnCC 4'-phosphopantetheinyl 

transferase 

SprT, Streptomyces sp. TK08046 79 BAV17018.1 

SqnP methylmalonyl-CoA 

decarboxylase 

Streptomyces nodosus 95 WP_043444110.1 

SqnDD hypothetical Protein Micromonospora sp. Tu 6368 65 ACP19381.1 

SqnQ FAD/FMN-containing 

dehydrogenase  

AknOx, Streptomyces galilaeus ATCC 

31615 

56 BAB72054.1 

SqnEE hypothetical Protein  Streptomyces nodosus 78 WP_043449810.1 

SqnR OmpR family transcriptional 

regulator  

GcnR, Streptomyces lusitanus 88 AGO50631.1 

SqnT 2-oxoacid: ferredoxin 

oxidoreductase subunit alpha 

GcnT, Streptomyces lusitanus 90 AGO50632.1 

SqnU 2-oxoacid: ferredoxin 

oxidoreductase subunit beta 

GcnU, Streptomyces lusitanus 84 AGO50633.1 

 

SqnV HxlR family transcriptional 

regulator 

Streptomyces sp. TP-A0356 86 WP_055493122.1 

SqnW NAD(P)-dependent 

oxidoreductase 

Streptomyces sp. TP-A0356 99 WP_055493121.1 
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SqnX transporter RarD, Streptomyces sp. 142MFCol3.1 88 WP_051371622.1 

SqnY hypothetical protein Streptomyces avermitilis 72 WP_030379785.1 

 

  Database comparison of the deduced deoxysugar biosynthetic proteins are 

shown in table 1. All but one (SqnS8), of the deduced deoxysugar biosynthetic proteins 

showed highest similarity with homologs from the urdamycin producer Streptomyces 

fradiae.56 SqnS1, a 164-amino acid (aa) protein, revealed highest similarity to UrdZ1 

(accession number AAF00208.1), a NDP-hexose 3,5-epimerase homolog (67% identical 

aa)57. The deduced 355 amino acid sequence of SqnS2 should yield a 37.192 Da MW 

protein with highest homology (80% identical aa) to UrdG (accession number 

AAF00210.1), a glucose synthetase homolog. SqnS3, a 327-aa protein with 36.369 kDa 

MW shows highest similarity to UrdH (accession number AAF00211.1), a NDP-hexose-

4,6-dehydratase homolog (87% identical aa). SqnS4, a 317-amino acid (aa) protein 

(32525.16 kDa MW), has closest similarity to UrdZ3 (accession number: AAF72549.1), 

a NDP-hexose 4-ketoreductase homolog (67% identical aa). The deduced protein of 

SqnS5 has 434 aa (molecular weight 48.104 kDa) and shows highest similarity to UrdQ 

(accession number AAF72550.1), a NDP-hexose 3,4-dehydratase homolog (91% 

identical aa). SqnS6 encodes a 254-aa protein with 27.296 kDa molecular weight most 

resembling UrdR (accession number AAF72551.1), a NDP-hexose 4-ketoreductase 

homolog (82% identical aa). The SqnS7 reading frame should yield a 466-aa protein of 

51.995 kDa molecular weight and shows highest homology (81% identical aa) to UrdS, a 

NDP-hexose 2,3dehydratase homolog.  The deduced protein of 318 aa and 33.820 kDa 

molecular weight, SqnS8, exhibits highest homology to SaqT (accession number 
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ACP19378.1), a NDP-hexose 3-ketoreductase homolog from the saquayamycin Z 

producer Micromonospora sp. Tu 6368 (67% identical aa).58 Downstream from SqnS8 

lies an open reading frame that should yield a 542-aa protein with a molecular weight of 

58.745 kDa with highest homology (56% identical aa) to AknOx (accession number 

BAB72054.1), a FAD/FMN-containing dehydrogenase homolog from the aclacinomycin 

producer Streptomyces galilaeus.59 

2.2.2 Derivation of Hypothetic L-rednose Biosynthetic Pathway 

Comparison of putative proteins encoded by the sqn cluster involved in 

biosynthesis of deoxysugar moieties other than L-rednose (109 A) should reveal any 

unique enzymes that could be responsible for L-rednose biosynthesis. Based on the 

sequencing data, the biosynthetic pathways from glucose 1-phosphate (11) to NDP-D-

olivose (121), NDP-L-cinerulose (123), NDP-L-rhodinose (124) and NDP-L-aculose (103 

A) together should comprise nine steps including NDP-D-glucose synthesis60 (SqnS2), a 

4,6-dehydratation61 (SqnS3), a 2,3-dehydratation (SqnS7) and a 3-ketoreduction 

(SqnS8)10 to generate NDP-4-keto-2,6-dideoxy-D-glucose (23). The remaining steps 

diverge with a 4-ketoreduction (SqnS6) to yield NDP-D-olivose (121), or a 3-

deoxygenation (SqnS5), and 5-epimerization (SqnS1) to generate NDP-L-cinerulose 

(123). A subsequent 4-ketoreduction (SqnS4) of NDP-L-cinerulose (123) generates NDP-

L-rhodinose (124) followed by an oxidation (SqnQ) to prepare L-aculose (103 A). Based 

on the reaction catalyzed by the SqnQ homolog, AknOx from the aclacinomycin gene 

cluster where the final sugar oxidation from rhodinose to aculose is carried out after 

rhodinose is transferred to the acceptor,59 we propose that NDP-L-rhodinose (124) is 
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transferred by a glycosyltransferase preceding the C-4 oxidation and subsequent 

introduction of a double bond between C-2 and C-3 to yield the final L-aculose (103 A) 

(figure 21). Together, these biosynthetic pathways require all the deoxysugar biosynthetic 

proteins encoded by the sqn gene cluster and do not reveal any enzymes unique to L-

rednose biosynthesis. Additionally, the sqn gene cluster lacks an aminotransferase that 

we would expect to see for the biosynthesis of the amino sugar rednose. These findings 

led to the proposal of a unique biosynthetic pathway beginning with glucosamine 6-

phosphate (126) in contrast with the typical glucose 6-phosphate (10) and suggests that 

the Sqn deoxysugar biosynthetic enzymes are permissive enough to accept both glucose 

and glucosamine derived substrates. 
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Figure 21. Biosynthetic pathway to NDP-D-olivose, NDP-L-cinerulose, NDP-L-

rhodinose, and NDP-L-aculose in S. KY 40-1. 

The proposed L-rednose biosynthetic pathway comprises seven steps from 

glucosamine 1-phosphate (127) to L-rednose (109 A) (figure 22). Generation of the 

precursor is based on the N-acetyl-D-glucosamine biosynthetic pathway required for 

peptidoglycan and lipopolysaccharides in bacterial cell wall biosynthesis where 

glutamine-fructose-6-phosphate transaminase carries out both an isomerization and 

transamination to generate D-glucosamine 6-phosphate (126)62 followed by an 

isomerization by phosphoglucosamine mutase to yield D-glucosamine 1-phosphate 

(127).63 It is also possible that the precursor is derived from N-acetyl-D-glucosamine 1-
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phosphate but would require a deacetylation step en route to L-rednose (109 A). Since 

there is not a deacetylase in the sqn cluster, it would require a general deacetylase 

encoded elsewhere in the chromosome. Another possibility is that the amine comes from 

a transaminase outside of the gene cluster, but this would require a C-2 oxidation to 

generate the ketone necessary for the transamination. The gene cluster lacks a 2-

oxidoreductase as well, so this hypothesis seems less likely.  

Based on sequencing data, the first five secondary metabolism steps are analogous 

to rhodinose biosynthesis in the urdamycin (urd)56 biosynthetic pathway albeit replacing 

the glucose substrate with its glucosamine counterpart. First, D-glucosamine 1-phosphate 

(127) is activated by glucosamine/glucose synthase (SqnS2) to become NDP-D-

glucosamine (128). Second, an NAD-dependent 4,6-dehydratase (SqnS3) catalyzes C-6 

deoxygenation and C-4 oxidation to yield NDP-4-keto-6-deoxy-D-glucosamine (129) 

analogous to the common intermediate NDP-4-keto-6-deoxy-D-glucose (18) in typical 

deoxyhexose biosynthesis. Subsequently, a 3-deoxygenation is carried out by 3,6-

dehydratase (SqnS5) to yield NDP-4-keto-3,6-dideoxy-D-glucosamine (130). An 

epimerization by a 5-epimerase (SqnS1) follows, resulting in NDP-4-keto-3,6-dideoxy-L-

mannosamine (131). Due to the high homology between SqnS5 and UrdQ (91% identical 

aa), and between SqnS1 and UrdZ3 (68% identical aa) it is likely that the 3-

deoxygenation precedes epimerization as in the urdamycin biosynthetic pathway.56 The 

production of urdamycin M (134) containing both D-rhodinose and L-rhodinose moieties 

by a urdR (4-ketoreductase) mutant, clearly demonstrates that the epimerization follows 

the 3-deoxygenation (Figure 5).56 If the epimerization occurred prior to 3-deoxygenation, 
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only L-rhodinose would be generated.56 Next, a reduction of the C-4 ketone is catalyzed 

by a ketoreductase (SqnS4) to generate NDP-3,6-dideoxy-L-idosamine (132). Finally, we 

propose that NDP-3,6-dideoxy-L-idosamine (132) is transferred by a glycosyltransferase 

prior to the oxidation of C-4 and subsequent introduction of a double bond between C-2 

and C-3 by the dehydrogenase SqnQ to yield the final L-rednose (109 A) (figure 22).  

 

 

Figure 22. Proposed L-rednose biosynthetic pathway 
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Figure 23. Chemical structures of urdamycins M and A 

2.2.3 Enzymatic Synthesis of NDP-3,6-dideoxy-L-idosamine 

To validate the proposed L-rednose (109 A) biosynthetic pathway up to the 

glycosyl transfer, the generation of NDP-3,6-dideoxy-L-idosamine (132), a mix-and-

match method was employed. Previous constructs included those for rfbA encoding a 

thymidyltransferase SqnS2 homolog (30% identical aa) and rmlB, encoding a TDP-D-

glucose-4,6 dehydratase SqnS3 homolog (42.4% identical aa) from Salmonella 

typhimurium.64 Additional deoxysugar enzymes including SqnS1, and SqnS4-8 were 

heterologously expressed in E. coli, and purified through immobilized metal affinity 

chromatography (IMAC) (figure 24). All except for SqnS4 and SqnS6 resulted in soluble 

protein after expression in E. coli using a N-terminal 6x polyhistidine (His6) tag and 

subsequent purification, and the sizes observed on the sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) were in good agreement with calculated 

values (figure 24). SqnS4 expression was negligible and SqnS6 was largely insoluble. 

While expression of all the Sqn deoxysugar enzymes would provide valuable tools for 

genetic engineering, the priority was the expression of those predicted in L-rednose 

biosynthesis. So, it was critical to have SqnS4 in the arsenal. To increase expression of 
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SqnS4, isopropyl-β-D-thiogalactoside (IPTG) concentration and induction temperature 

were varied as well as expression with a C-terminal His6 tag attempted. However, the 

expression level did not improve. Following the rationale that the RNA polymerase in E. 

coli may have difficulty reading codons from Streptomyces, SqnS4 was then codon 

optimized for expression in E. coli. This greatly improved expression of SqnS4, however 

it was completely insoluble (figure 24). This is likely due to improper protein folding. 

The next step would be to try heterologous expression in S. lividans to increase solubility 

of SqnS4. As it is expected that the 4-ketoreduction is the final step before glycosyl 

transfer, it was possible to continue forward with the earlier steps in L-rednose (109 A) 

biosynthesis. 
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Figure 24. SDS PAGE analyses of the purified proteins. A: Lanes 1-3, MT FprA 

(49.3 kDa); Lanes 5-6 MT FdX (11.8), B: Lane 1 RfbA (32.7 kDa), Lane 3 RmlB 

(40.7 kDa); C: Lane 1 ACK (43.3 kDa), Lane 3 TMK (23.8 kDa), D: Lanes 1,3 

SqnS1 (18.6 kDa), Lanes 5,6 SqnS7 (53 kDa), E: SqnS4 (33.5 kDa), F: SqnS5 (49.1 

kDa), G: Lanes 1-4 SqnS6 (28.3 kDa), Lanes 6-9 SqnS8 (34.8 kDa). Abbreviations: 

Non-induced (NI), Soluble portion (SP), Cell Pellet (CP). 
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All but one (SqnS4) of the biosynthetic enzymes were in hand including SqnS2 

homolog RfbA and SqnS3 homolog RmlB. These homologs represent well studied 

enzymes thymidyltransferases and 4,6-dehydratases and it was expected that together 

they should generate TDP-4-keto-6-deoxy-D-glucosamine (18). TDP (137) is the most 

common NDP used to activate deoxysugars, and high homology of Sqn enzymes to Urd, 

deoxysugar enzymes that recognize TDP (137), is an indication that Sqn enzymes likely 

use TDP (137). In order to be cost effective, thymidine-triphosphate (TTP) (138) was 

generated in situ using a system previously devised where thymidine monophosphate 

kinase (TMK) converts ATP to ADP to phosphorylate TMP (136) and generate TDP 

(137). Acetate kinase (ACK) further phosphorylates TDP (137) to TTP (138) and 

regenerates ATP using a phosphate from the conversion of acetyl phosphate to acetic acid 

(Figure 25). 64 RmlB, Rfba, TMK, and ACK were expressed in E. coli and purified as 

previously reported64 (Figure 24) .Considering that TDP (137) can serve as an inhibitor 

for the downstream pathway enzymes, overall TDP-3,6-dideoxy-L-idosamine 

biosynthesis (132) was divided into two stages in the same pot. In the first stage, TMP 

(136), glucosamine 1-phosphate (127), and ATP were incubated with ACK, TMK, RfbA 

and RmlB. For the second stage, ACK, TMK, RfbA, and RmlB were removed and SqnS5 

and SqnS1 along with NADPH and PMP were added. SqnS5 is a PMP dependent 3,4-

dehydratase with a [2S·2Fe] center that must be continually regenerated in order to 

reduce the Δ3,4-glucoseen intermediate (27) to generate TDP-4-keto-3,6-dideoxy-D-

glucosamine (130). This requires a second enzyme, either a reductase that has evolved to 

be specific for the dehydratase or a general cellular reductase. There is not a designated 

reductase for 3-deoxygenation in the sqn gene cluster akin to urdamycin56, landomycin65, 
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and spinosyn.21 A pair of enzymes from Mycobacterium tuberculosis flavodoxin (Mt 

Fdx) and flavodoxin reductase (Mt FprA) were added to generate an electron transport 

chain. Mt Fdx oxidizes NADPH to reduce FAD, to reduce the [2S·2Fe] center in Mt 

FprA, which in turn reduces the [2S·2Fe] center in the dehydratase SqnS5. MtFdx and Mt 

FprA were heterologously expressed in E. coli and purified using TALON-IMAC (figure 

24). The SqnS5 reaction was also carried out in anaerobic conditions in a glovebox using 

reducing agents in place of Mt Fdx/Mt FprA. After the one-pot enzymatic synthesis, MS 

data verified the production of only TDP-glucosamine (128) (figure 27). Further 

conversion of TDP-glucosamine (128) was unsuccessful. To rule out N-

acetylglucosamine as the precursor, the first two steps of the reaction were also carried 

out using N-acetyl-D-glucosamine 1-phosphate in place of glucosamine 1-phosphate 

(127). MS data verified the production of only TDP-N-acetyl-D-glucosamine (figure 28). 

The dehydration to TDP-4-keto-6-deoxy-N-acetyl-D-glucosamine was unsuccessful 

(figure 26). Since the biosynthesis did not proceed past the activation of either TDP-

glucosamine (128) or TDP-N-acetyl-D-glucosamine, it is likely that RmlB, the SqnS3 

homolog, is not flexible enough to accept the glucosamine derived substrate. It may be 

very substrate-specific for TDP-glucose (12). To rule this out, SqnS3 needs to be 

overexpressed, purified, and used in place of RmlB, however due to funding and time 

constraints, this was not possible within the scope of this dissertation.  
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Figure 25. Enzymatic synthesis of TTP 

 

 

 

Figure 26. Representative HPLC traces. Panel A. glucosamine-1-phosphate (127), 

TMP (136), PMP, ATP, NAD+ and NADPH incubated with ACK, TMK, RfbA, 

RmlB, SqnS5, Mt Fdx, Mt FprA and SqnS1 under aerobic conditions. Panel B. 

Reaction mixture from panel A with reducing agents replacing Mt Fdx/Mt FprA for 

SqnS5 catalysis in anaerobic conditions. Panel C. N-acetylglucosamine-1-phosphate, 

TMP (136), ATP, and NAD+ incubated with ACK, TMK, RfbA, RmlB 
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Figure 27. Representative HR-MS spectrum (negative mode). TDP-D-glucosamine 

(128), calculated molecular weight 563.09. 
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Figure 28. Representative HR-MS spectrum (negative mode). TDP-N-acetyl-D-

glucosamine, calculated molecular weight 605.10. 

2.3 Methods  

2.3.1 DNA Sequencing and Analysis: 

A sequence was obtained from a pure culture containing only Streptomyces sp. 

KY40-1. This organism was originally isolated from a soil sample collected near Cave 

Run Lake, Kentucky, USA at the foothills of the Appalachian Mountains58. From a 

glycerol stock, Streptomyces sp. KY40-1was cultivated on M2-agar plates at 28 °C for 7 

days. From the plate, a piece of agar was excised and added to a 250 mL Erlenmeyer 

flask containing 100 mL of SG medium and was grown at 28 °C (250 rpm) for 48 hours. 

The mycelium was pelleted and Streptomyces sp. KY40-1 genomic DNA was isolated 

using MOBIO Ultraclean microbial DNA isolation kit (bioMérieux, France). The genome 
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was sequenced by Advanced Genetic Technologies Center (Lexington, KY, USA; 

Illumina Miseq platform) and the processed reads were assembled using Newbler (GS De 

Novo Assembler v 2.8, Roche 454 Life Sciences). Sequence gaps were filled using 

Universal GenomeWalker 2.0 kit (Clontech/Takara Bio, Mountain View, CA) and 

subsequent sequencing by ACGT, Inc (Wheeling, IL, USA). Geneious v.6.1.5 

(Biomatters)66 was used for pairwise alignment, assembly of contigs, and gene 

annotation. Assembly was achieved through a series of de novo assembly of contigs until 

a single, final contig resulted. Open reading frames were assigned with the aid of protein 

prediction features in Geneious and the location of ribosomal binding sites. The open 

reading frames were translated into amino acid sequences, and using the bioinformatic 

tool BLASTp, putative gene functions were assigned. The sequence of the saquayamycin 

(sqn) cluster has been deposited in GenBank (accession: KX356541).  

 

Preparation of Streptomyces fradiae Genomic DNA 

From a glycerol stock, Streptomyces fradiae was cultivated on M2-agar plates at 

28 °C for 7 days. From the plate, a piece of agar was excised and added to a 250 mL 

Erlenmeyer flask containing 100 mL of SG medium and was grown at 28 °C (250 rpm) 

for 48 hours. The mycelium was pelleted and Streptomyces fradiae genomic DNA was 

isolated using MOBIO Ultraclean microbial DNA isolation kit (bioMérieux, France).  
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2.3.2 Cloning of SqnS1, SqnS4-8, and UrdR  

sqnS1, sqnS4-S8 were PCR amplified from Streptomyces sp. KY40-1. genomic 

DNA and urdZ3 from Streptomyces fradiae genomic DNA using primers listed in table 2 

and Q5 Hot Start High-Fidelity DNA Polymerase (New England BioLabs). Thermal 

cycle conditions consisted of 1 denaturation cycle at 98 °C for 30 s; 30 amplification 

cycles of incubation at 98 °C for 10 s and 72 °C for 30 s/500 bp and then 1 extension 

cycle at 72 °C for 2 min and finally a hold at 4 °C after the cycles completed. PCR 

products were purified using GeneJET Gel Extraction and DNA Cleanup Micro Kit 

(Thermo Scientific). Each gene and vector were individually dually digested with 

restriction enzymes for 1 hour at 37 °C and dephosphorylated by Shrimp Alkaline 

Phosphatase (New England BioLabs) for 30 minutes at 37 °C. All but SqnS1, S4, and 

UrdZ3 were cloned into and pET28a(+) vector with NdeI and HindIII. SqnS1 was cloned 

into and pET28a(+) vector using NdeI and XhoI. SqnS4 was cloned into pET28a(+) 

vector with EcoRI and Hind III and into pET22b(+) with EcoRI and XhoI. UrdZ3 was 

cloned into pET28a(+) vector with EcoRI and Hind III and subcloned into pET22b(+) in 

the same sites. Each gene fragment and vector was purified using Thermo Scientific 

GeneJET Gel Extraction and DNA Cleanup Micro Kit. Concentrations of each gene 

insert and linearized vector were determined using a Thermo Scientific NanoDrop 2000. 

Gene inserts and corresponding linearized vector were ligated in an insert:vector ratio of 

5:1 using T4 DNA ligase (New England BioLabs) and incubated overnight at 16 °C. 

Each ligation reaction was then transformed into NEB 5-α chemically competent cells by 

heat shocking the cells combined with 1 μL from the ligation reaction for 30 seconds at 

42 °C. The cells were incubated at 37 °C for 1 hour in 200 μL LB (Lysogeny Broth) to 
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allow the cells to recover from heat shock, and then plated on LB agar plates 

supplemented with appropriate antibiotic for resistance selection. For pET28a(+) 

constructs, 50 µg/mL kanamycin was used, and for pET28a(+) constructs, 100 µg/mL 

ampicillin was used. Each plate was incubated overnight at 37 °C and several of the 

resulting colonies were selected and grown overnight in a 10 mL culture tube with 3 mL 

LB liquid media supplemented with appropriate antibiotic. Plasmid was recovered from 

each of the 3 mL overnight cultures using Thermo Scientific GeneJET Plasmid Miniprep 

Kit. Each gene was PCR amplified from the plasmid to confirm the insert. The plasmids 

were sequenced (to ensure fidelity) by ACGT, Inc (Wheeling, IL, USA) using their stock 

T7 promoter and T7 terminator sequencing primers and high GC content DNA 

sequencing protocol.  

Table 2. Primers used to PCR amplify sqnS1, S4-S8, urdZ3 

 Primer Sequence (5’- 3’) Restriction 

Enzyme 

sqnS1 F: GGGAAACATATGCGCAGTGACGCGCTGGA 

R: GGGAAACTCGAGTCACGAGGTGCCTGCCTTGTCG 

NdeI 

XhoI 

sqnS4  F: TTTGGGGAATTCGTGCACCTGATCGCCCGCACTG 

R: GGGTTTAAGCTTTCATGGTCGTACCCCTTCCTCGGC 

EcoRI 

HindIII 

sqnS41  F: AAAGGGGAATTCGTGCACCTGATCGCCCGCA 

R: GGGAAACTCGAGTGGTCGTACCCCTTCCTCGGC 

EcoRI 

XhoI 
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sqnS5 F: 

GGGAAACATATGAGCGACCGCAAGGACCGGATCCTG 

R: AAAGGGAAGCTTTCAGCCGCGCGCGGCCAC 

NdeI 

HindIII 

sqnS6 F: 

GGGAAACATATGGACATTGTGGGAAACGGTTTCCTGGC 

R: AAAGGGAAGCTTTCAGGCGTGCGCGGACGTG 

NdeI 

HindIII 

sqnS7 F: GGGAAACATATGCCGTCTTCGCTCCTTCAAGC 

R: AAAGGGAAGCTTTCATCGCGCGCCCGC 

NdeI 

HindIII 

sqnS8 F: GGGAAACATATGATCACGCCGGTAC 

R: AAAGGGAAGCTTTCATGCGGACAGACGG 

NdeI 

HindIII 

urdZ3 F: GGGAAAGAATTCATGGTCGTCCTGGGAAGCGG 

R: TTTCCCAAGCTTTCACTTCCTTTCGTCAACCGGCGC 

EcoRI 

HindIII 

urdZ31 F: GGGAAAGAATTCATGGTCGTCCTGGGAAGCGG 

R: TTTCCCAAGCTTCTTCCTTTCGTCAACCGGCGC 

EcoRI 

HindIII 

1 for cloning into pET22b(+), restriction sites in bold 

2.3.3 Expression and Purification of Enzymes 

sqnS1, S4-S8, urdZ3, rfba, rmlB, mt fdx, mt fdR genes were expressed using pET 

expression constructs in E. coli BL21 (DE3) cells with a His6 tag. Constructs for Mt Fdx 
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and Mt FdR were gifted from Dr. Steven Van Lanen, University of Kentucky. From LB 

plates with appropriate antibiotic (50 µg/mL kanamycin for pET28a(+)/100 µg/mL 

ampicillin for pET22b(+) single colonies were transferred to a 10 mL culture tube with 3 

mL LB liquid supplemented with appropriate antibiotic and grown at 37 °C and 250 rpm 

for 8 h. Subsequently, 2 L borosilicate glass baffled flasks with 500 mL terrific broth 

(TB) liquid supplemented with 50 µg/mL kanamycin/100 µg/mL ampicillin was 

inoculated with 1 mL of the culture and was grown at 18 °C until OD600 reached to 0.5. 

Gene expression was induced with isopropyl-β-D-1-thiogalactopyranoside (IPTG, 0.2 

mM final concentration) and the culture was incubated at 18 °C for an additional 16 h. 

The cell pellets were collected by centrifugation (4000 × g, 15 min) and resuspended in 

lysis buffer (50 mM Tris buffer pH 8.0 with 25 mg lysozyme/ 50 mL lysis buffer, 10 % 

glycerol, and 300 mM NaCl) in a 1 g/ 5 mL pellet weight:lysis buffer volume ratio. The 

cells were sonicated and the crude soluble enzyme fractions were collected through 

centrifugation (16000 × g, 1h). The supernatant was then passed through a 0.45 μm 

syringe driven multigrade glass fiber filter (Millipore) and incubated with Talon metal 

affinity resin (Clontech) in 50 mL falcon tubes on a platform shaker at 4 °C for 30 

minutes. The protein bound resin was then centrifuged (4000 × g, 5 min) and washed 

with equilibration buffer (50 mM Tris buffer pH 8.0, 10 % glycerol, and 300 mM NaCl). 

The resin was then transferred to a 2 mL gravity-flow column and washed with wash 

buffer (50 mM Tris buffer pH 8.0, 10 % glycerol, and 300 mM NaCl, 30 mM imidazole). 

The enzymes were then eluted with elution buffer (50 mM Tris buffer pH 8.0, 10 % 

glycerol, and 300 mM NaCl, 250 mM imidazole). The purified proteins were 

concentrated using an Amicon Ultra centrifugal filter (Millipore Corp.) and stored as 
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20% glycerol stocks at -20 °C. The concentration of protein was determined by using a 

Thermo Scientific NanoDrop 2000.  

 

Figure 29. Diagram of SqnS1, S4-S8, and UrdZ3 protein expression and 

purification. 

2.3.4 Enzymatic Reactions 

2.3.4.1 Two-Stage One-Pot Enzymatic Synthesis of TDP-4-keto-3,6-dideoxy-L-

idosamine in Aerobic Conditions  

Overall enzymatic synthesis of TDP-4-keto-3,6-dideoxy-L-idosamine (132) was 

divided into two stages. For the first stage, a typical assay mixture containing 

glucosamine 1-phosphate (127) (5.1 mM), TMP (136) (5.0 mM), ATP (5 μM), acetyl 

phosphate (20 mM), NAD+ (5 μM) (ACK (4 μM), TMK (6 μM), RfbA (5 μM), RmlB (10 
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μM), phosphate buffer (50 mM, pH 7.5) and MgCl2 (20 mM) was incubated at 37◦C for 

up to 8 hours while monitoring the reaction hourly by HPLC at 254 nm λ using a Waters 

HPLC system equipped with a photodiode array detector. For each sample injection (50 

μL), the enzymes were removed by heating the solution to 100 ◦C for 5 min, followed by 

centrifugation (13,000 x G, 5 min), and filtration (Amicon, MW cut-off 3000Da). The 

enzyme-free solution was analyzed using a Dionex CarboPack PA1 (4 x 250 mm) 

column. A linear gradient of 5-20% 500 mM ammonium acetate, pH 7.0 (solvent B) in 

water (solvent A) over 15 min, 20 to 60% B in A over 20 min, 60-100% B in A over 2 

min, 100 % B for 3 min, 100-5% B in A over 5 min, and 5% B in A for 15 minutes was 

employed to separate the assay products. In the second stage, Rfba, RmlB, ACK, and 

TMK were removed by heating, centrifugation, and filtration. PMP (250 μM), NADPH 

(4 Mm), SqnS5 (30 μM), SqnS1 (30 μM), Mt Fdx (30 μM) and Mt FprA (30 μM) were 

then added to the assay mixture and incubation at 28 °C was continued monitoring the 

reaction hourly up to 5 hours, and then overnight by HPLC. The peaks were collected and 

analyzed by HR-MS.  
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Figure 30. Diagram of two-stage one-pot enzymatic synthesis of TDP-4-keto-3,6-

dideoxy-L-idosamine, aerobic conditions 

2.3.4.2 Three-Stage One-Pot Enzymatic Synthesis of TDP-4-keto-3,6-dideoxy-L-

idosamine in Partial Anaerobic Conditions 

The reaction from section 2.3.4.1 was also carried out in partial anaerobic 

conditions at room temperature. All reagents, buffers, and enzymes were degassed 

immediately prior to transferring to the glovebox. SqnS5 was reconstituted in the 

glovebox using dithiothreitol (DTT) to a final concentration of 10 mM and incubation for 

20 min. Next, 5 molar equivalents (SqnS5 is 1 equivalent) of PMP (250 μM), 

Fe(NH4)2(SO4)2, and Na2S were added and allowed to incubate for 15 min. Addition and 

15 min incubation of Fe(NH4)2(SO4)2, and Na2S were repeated 3 times for a total of 4 

cycles. Excess reagents were removed using an Econ-Pac 10 DG column (Bio-Rad) 

according to the manufacturer’s directions; the sample was diluted to 3 mL using protein 

storage solution (50 mM Tris buffer pH 8.0, 20 % glycerol, and 300 mM NaCl) and was 

added the column preequilibrated with protein storage solution. The column was washed 
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with 4 mL of protein storage solution, collecting the first 3 mL that eluted. The protein 

was then concentrated to about 10 μL using an Amicon protein filter (MW cutoff of 3 

Da) and microcentrifuge in the glovebox. Finally, 20 equivalents of 0.6 mM sodium 

dithionite were added and incubated for 40 min. To begin the 3-deoxygenation (SqnS5) 

reaction, reconstituted SqnS5 was added to 100 μL of the assay mixture from stage 1 

(Reaction A) with enzymes (Rfba, RmlB, ACK, TMK) removed and incubated in the 

glovebox for 3 hours. The SqnS5 reaction mixture was removed from the glovebox and 

SqnS1 and NADPH (4 mM) were added and incubated at 37 ◦C for three hours followed 

by HPLC/HR-MS analysis. 

 

Figure 31. Diagram of three-stage one-pot enzymatic synthesis of TDP-4-keto-3,6-

dideoxy-L-idosamine, partial anaerobic conditions 

2.4 Conclusions 
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DNA analysis of the Streptomyces sp. KY40-1 genome revealed a 44.7 kb gene 

cluster with 40 open reading frames involved in production of SQN A, B, G-K. Six 

deoxysugar genes were putatively assigned to L-rednose (109 A) biosynthesis including a 

nucleotidyltransferase (SqnS2), a 4,6-dehydratase (SqnS3), a 3,4-dehydratase (SqnS5), a 

5-epimerase (SqnS1), a 4-ketoreductase (SqnS4), and a dehydrogenase (SqnQ). A 

biosynthetic pathway was proposed with glucosamine 6-phosphate (128) as the starter 

unit. The hypothetical pathway proceeds with activation of the sugar by thymidyltransfer 

followed by C-6 deoxygenation, C-3 deoxygenation, 5-epimerization to convert the sugar 

from D to L conformation, and a 4-ketoreduction to yield TDP-3,6-dideoxy-L-idosamine 

(132). It is proposed that TDP-3,6-dideoxy-L-idosamine (132) is transferred to the 

acceptor and a final oxidation generates L-rednose (109 A). Four of the SQN deoxysugar 

biosynthetic enzymes (SqnS1, S5, S7-S8) were successfully cloned from S. sp. KY40-1 

genomic DNA and were heterologously expressed in E. coli and purified resulting in 

soluble protein. SqnS4 and SqnS6 remained insoluble. Enzymatic synthesis of TDP-4-

keto-3,6-dideoxy-L-idosamine was attempted using a mix-and-match method with SqnS2 

homolog RfbA and SqnS3 homolog RmlB, SqnS5, Mt FdX, Mt FprA and SqnS1 in a two 

stage one-pot reaction aerobically and a three-stage one-pot reaction with reducing agents 

in place of Mt FdX/Mt FprA for SqnS5 catalysis in anaerobic conditions. Only the first 

step, thymidyltransfer was successful and generated both TDP-glucosamine (128) and 

TDP-N-acetylglucosamine. The future directions should include cloning and expression 

of SqnS3 in E. coli and since codon optimization for expression in E. coli was 

unsuccessful, subcloning SqnS4 into PXY200 and expression in S. lividans TK24. With 

both SqnS3 and S4 in hand, enzymatic synthesis of TDP-3,6-dideoxy-L-idosamine (132) 
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can be attempted. Together this study revealed valuable deoxysugar biosynthetic tools 

which can be used to modify artificial pathways, and generated TDP-glucosamine (128) 

and TDP-N-acetylglucosamine building blocks to engineer new glycosylated natural 

products.  

3. INVESTIGATION OF THE MECHANISM OF ACTION FOR 

MITHRAMYCIN 

This chapter has been reproduced with permission from the following publication: 

copyright Elsevier publications 

Weidenbach, S., Hou, C., Chen, J.M., Tsodikov, O.V., Rohr, J. Dimerization and DNA 

recognition rules of mithramycin and its analogues. J. Inorg. Biochem. 2016, 156, 40-47. 

3.1 Introduction 

After its discovery in 1960, an aureolic acid natural product mithramycin (MTM 

(138); figure 33) was initially used in the treatment of Paget’s disease67-69 and 

disseminated testicular carcinoma.69 Due to toxicity of MTM (138), its more recent 

clinical use has been limited to treatment of hypercalcemia associated with cancers. 

Interest in MTM (138) was renewed after it was identified by high-throughput screening 

of 50,000 compounds and then validated as a potent antagonist of the oncogenic 

transcription factor EWS-FLI1 (Ewing Sarcoma- Friend Leukemia Integration 1).70 

EWS-FLI1 is a principal driver of Ewing sarcoma,71 a rare devastating bone cancer 

affecting primarily children and young adults. MTM (138) displayed potent cytotoxic and 

anti-tumor activities in xenograft models of Ewing sarcoma in mice,70 owing to its action 
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as an EWS-FLI1 inhibitor. On the basis of these findings, MTM (138) entered clinical 

trials as a novel Ewing sarcoma chemotherapeutic (National Cancer Institute, clinical trial 

NCT01610570) however the study was terminated due to off-target toxicity.  

 

 

Figure 32. Chemical structures of MTM, its analogues MTM SDK, MTM SA-Trp, 

MTM SA-Ala and PreMTM B. 

Aureolic acid natural products bind in the minor groove of GC-rich DNA, thereby 

disrupting transcription of protooncogenes.72-80 MTM (138) binding was shown to lead to 

structural changes in DNA that were consistent with the widening of the minor groove.81, 

82 MTM (138) and other known aureolic acid compounds, except chromocylomycin, 

consist of a tricyclic polyketide-derived aglycone with two oligosaccharide chains at C-2 

and C-6 positions of the aglycone and two aliphatic side chains, branching off at C-3 and 

C-7 (figure 33). Combinatorial biosynthetic and semisynthetic approaches yielded several 
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MTM analogues including MTM SDK (139) (for Short side chain, DiKeto)83, MTM SK 

(for Short side chain, Keto), MTM SA (for Short side chain, Acid)84, and MTM SA-

amino acid residue derivatives (figure 33).85 Genetic engineering of the MTM-producing 

bacterium Streptomyces argillaceus to inactivate the gene mtmW encoding the enzyme 

catalyzing the final step of the MTM biosynthetic pathway, the ketoreductase MtmW, 

yielded derivatives MTM SA, MTM SK84, and MTM SDK (139).83 These MTM 

analogues all contained shortened 3-side chains, which had been shown by previous 

NMR studies of MTM (138)86, 87 to interact with the sugar-phosphate backbone of DNA. 

Both MTM SK84 and MTM SDK (139)83 displayed higher potency against several human 

cancer cell lines and lower toxicity than those of MTM (138), demonstrating that 3-side 

chain modifications can modulate activity of MTM analogues. MTM SA had a decreased 

cytotoxicity84 but the carboxylic moiety provided a chemical handle that could be readily 

and selectively modified to further diversify this analogue towards derivatives with 

increased activity. The amino acid residue derivatives of MTM SA contained glycine, 

valine, cysteine, and alanine residues, of which MTM SA-Ala (141) was the most 

promising, although still not as potent as MTM SK or MTM SDK (139) against a human 

non-small cell lung cancer cell line A549.85 Consequently, additional MTM SA amino 

acid derivatives have been generated including the most promising MTM SA-Trp (140). 

MTM (138) binds DNA as a dimer, in which the O-1 carbonyl and the O-9 

enolate anion of the aglycone of each monomer are coordinated via a divalent metal ion 

(Me2+).88, 89 DNase I footprinting studies of MTM (138) bound to DNA showed that 

MTM (138) protects three base pair sites, with a preference to sites containing GG 

dinucleotide steps.90 Pioneering solution NMR studies revealed that the MTM2-Me2+ 
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binds a palindromic DNA oligomer containing the sequence GGCC, where the 2-fold 

rotational symmetry of the MTM dimer coincides with the symmetry of the palindromic 

DNA.86, 87 These structures indicated that the C-8 hydroxyl groups on the chromophores 

of each MTM monomer form hydrogen bonds with the NH2 group of the central guanine 

bases on the complementary strands, while the flexible saccharide chains of the two 

MTM monomers are extended along the minor groove of the DNA in a symmetric 

antiparallel fashion. A crystal structure of chromomycin A3 (CHR), a related natural 

product containing the same aglycone core as MTM (138), in complex with a GGCC-

containing DNA was consistent with the solution structure of MTM-DNA complex, 

showing additionally the octahedral coordination of the divalent metal ion and the 

widened minor groove of the DNA.91 These structural studies, in agreement with DNA 

binding studies in solution, demonstrated that the DNA binding sites for MTM (138) and 

CHR were four base pairs long. 

The rules for DNA sequence recognition of MTM are still not fully understood. 

For example, whether MTM (138) recognizes a specific DNA sequence (direct readout), 

DNA conformation (indirect readout) or both, is not clear. 92 MTM (138) preferentially 

binds G/C-rich sequences.90, 93-95 Binding to a GC sequence is strengthened by flanking 

TA steps, and a GC site is preferred over a CG site.90, 94, 96 DNase I footprinting using 

DNA fragments containing all 64 symmetrical hexanucleotide sequences demonstrated 

that MTM (138) binds best to AGCGCT and GGGCCC.95 However, this study also 

showed that MTM (138) also bound well at non-GC sites, such as ACCGGT. While these 

studies systematically investigated sequences at which MTM (138) is footprintable, other 

sequences that form thermodynamically stable, but relatively short-lived complexes with 
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MTM (138) may have eluded detection, leaving open the question of the minimum DNA 

recognition sequence of MTM (138). 

In this study, we performed equilibrium titrations at a physiologically relevant salt 

concentration, to investigate the propensity of MTM (138) and its novel analogues to 

dimerize and recognize DNA of different sequences and conformations. 

3.2 Results and Discussion 

3.2.1 Dimerization of MTM and its Analogues  

Whether MTM (138) is a monomer or a dimer when free in solution at 

physiological salt concentrations is an open question, since previous dimerization studies 

of MTM (138) dimerization, although rigorous, have been performed at non-

physiologically relevant salt concentrations.97-99 We investigated the effect of Mg2+ 

concentration on the dimer stability of MTM (138) and its analogues at 100 mM NaCl, 

i.e. at a physiologically relevant concentration of monovalent cations, by monitoring the 

change of intrinsic fluorescence of MTM (138) (figure 34) and its analogues (figure 35), 

including a novel analogue MTM SA-Trp (140), upon their dimerization. The 

fluorescence of MTM (138) and all analogues, except PreMTM B (142) (figure 35), was 

quenched upon dimerization with increasing concentration of Mg2+. The chromophore of 

PreMTM B (142) is tetracyclic; therefore, the observed increase of its fluorescence may 

arise from a different orientation of the two chromophores in a PreMTM B dimer from 

that in MTM (138). These data were in good agreement with the cooperative 

2MTM:Me2+ binding model, which yielded best-fit values of the equilibrium 

dimerization constants Kd (table 3). MTM (138) and MTM SA-Trp (140) exhibited a 
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similar propensity to dimerize, stronger than that of MTM SDK (139) and PreMTM B 

(142). PreMTM B (142) was by far the most defective in dimer formation, with a 40-fold 

higher Kd than that of MTM (138). For MTM (138) and MTM SDK (139) at 5 mM Mg2+ 

these Kd values correspond to the values of the apparent dimerization equilibrium 

constant (for the process 2M ⇌ M2) of 0.7 mM and 2.8 mM, respectively. These values 

indicate that at 5 mM or higher concentrations, MTM (138) and MTM SDK (139) are 

dimeric at these conditions at 5 mM Mg2+ and 100 mM NaCl, i.e. in the physiological 

range of salt concentrations. In contrast, PreMTM B (142) is mostly dimeric only at ~30 

mM and higher concentrations. Indeed, the fluorescence intensity reaches a plateau by 5 

mM Mg2+ for MTM (138) and MTM SDK (139), but not for PreMTM B (142) (figure 

35). In addition, we also tested the effect of Fe2+ on MTM dimerization. In agreement 

with a previous report,98 Fe2+ is a more potent MTM dimerizer, with Kd at least 100-fold 

smaller than in Mg2+ (table 3). MTM SA-Ala (141) was prone to aggregation in the 

absence of divalent metal ions yielding an unstable signal. Nevertheless, MTM SA-Ala 

(141) formed dimers as well, as described in section 3.2.  
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Figure 33. Divalent metal ion-dependent dimerization of MTM observed through 

quenching of intrinsic MTM fluorescence. A. Mg2+-dependent dimerization of 

MTM. B. Fe2+-dependent dimerization of MTM. The curves correspond to the 

cooperative dimerization model given by eq. (1) with the best-fit parameter values in 

Table 1. The concentrations of MTM in each titration are indicated. 
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Figure 34. Mg2+-dependent dimerization of MTM analogues: MTM SA-Trp (panel 

A), MTM SDK (panel B) and Pre MTM B (panel C) at specified concentrations. 

Table 3 Equilibrium dimerization constants for MTM and its analogues. 

MTM analogue Metal ion Kd, (µM)2 

MTM Mg2+ (3.6 ± 1.7)×103  

MTM 

MTM SA-Trp 

Fe2+ 

Mg2+ 

< 40a  

(1.8 ± 0.9)×103 

MTM SDK Mg2+ (13.9 ± 4.0)×103 

PreMTM B Mg2+ (120 ± 70)×103  

aOnly an upper bound could be determined from the data.  
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3.2.2 DNA Binding by MTM and its Analogues 

In order to define DNA sequence and conformational specificity determinants for 

binding MTM (138), we chose 13 palindromic 8-mer DNA sequences (table 4). Crystal 

structures of respective double-stranded DNA oligonucleotides covering the entire 

sequence or a relevant part of it were previously determined. These sequences comprised 

B- and A-form DNA and included a sequence containing a well-established MTM 

binding motif GGCC that was used in the solution NMR studies of MTM-DNA 

complex.83,84 Among B-form DNA, we included G/C-rich oligomers as well as oligomers 

with a widened minor groove. The length of 8 base pairs was chosen to minimize the 

potential of binding of multiple MTM dimers to a single DNA oligomer; shorter DNA 

would have a compromised duplex stability. Binding of MTM (138) and its analogues to 

these DNA oligonucleotides was studied at salt concentrations close to physiological, 

where the dominant species are dimers, as established by the studies described in the 

previous section. Furthermore, at these salt concentrations and assay temperature (21 °C), 

the DNA oligomers are predominantly in the double-stranded form. The calculated DNA 

melting temperatures at these conditions at 6 mM of each oligomer, or 3 mM of double-

stranded oligomer, which is approximately the lowest DNA concentration used in the 

titrations, range from 28 °C for CTCTAGAG to 59 °C for CGGCGCCG. 100 Even though 

the melting temperatures calculated by this method were shown to be accurate for 8-mer 

and larger oligomers,100 we carried out a DNA melting experiment with oligomer 

GGTTAACC (at 3 mM in terms of duplexes) with one of the lowest calculated melting 

temperatures of 32.2 °C. In this experiment, we monitored the hyperchromic effect by 

measuring absorbance at 260 nm as a function of gradually increasing temperature. The 
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observed melting curve (figure 36) yielded the melting temperature of ~32 °C, in 

excellent agreement with the calculation. These data also demonstrate that at the assay 

temperature of 21 °C this DNA oligomer is in the double-stranded state. 

Table 4. Structural and MTM analogue binding characteristics of the DNA 

oligomers. 

DNA Analogue 

DNA 

form PDB IDa 

Average Zpb 

(Å) 

Minor groove 

width (Å) 

Major groove 

width (Å) Kd (µM) 

CGGCGCCG  MTM  B 1CGC -0.1 12.8 16.5 < 1c  

CCCCGGGG  MTM  A 187D 2.5 15.4 15.1 < 1  

GGGATCCC  MTM  A 3ANA 2.4 16.1 16.0 < 1  

GGGTACCC  MTM  A  1VT9 2.5 16.4 15.3 < 1 

AGGTACCT MTM B 1SS7 0.03 12.8 16.1 < 1 

GTAGCTAC MTM B 141D 0.0 13.2 21.2 < 1 

GATCGATC  MTM  B 1D23 -0.1 12.2 17.3 < 1 

GAGGCCTC  MTM B 1BD1 --0.6 11.7 17.3 2.0 ± 0.5 

GTACGTAC  MTM  A 28DN 2.4 15.2 16.4 7.8 ± 0.3 

GTGTACAC  MTM  A 1D78 1.9 17.0 13.4 13 ± 1 

GGAATTCC  MTM  B 1SGS -0.7 12.2 18.0 59 ± 2 

GTCTAGAC  MTM  A 1D82 2.1 15.5 16.2 25 ± 1 

CTCTAGAG  MTM  A 1D93 2.1 15.4 15.6 82 ± 9 

CGGCGCCG  MTM SA-Trp 

see above 

 

 

 

1.2 ± 0.2 

GAGGCCTC  MTM SA-Trp 2.1 ± 0.3 

CCCCGGGG  MTM SA-Trp 2.1 ± 0.6 

GGGTACCC  MTM SA-Trp 3.7 ± 1.5 

GGGATCCC  MTM SA-Trp 4.3 ± 1.5 

GAGGCCTC  MTM SDK < 1 

GAGGCCTC  MTM SA-Ala 19.6 ± 3.8 

GAGGCCTC PreMTM B > 300 
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a The crystal structures were previously published as follows: 1CGC,101 187D,102 3ANA, 

103 1VT9,104 1SS7,105 141D,106 1D23,107 1BD1,108 28DN,109 1D78,109 1SGS,110 1D82,111 

1D93.112 

b Zp, a difference between coordinates of projections of the two phosphorus atoms of a 

base pair onto the DNA helical axis, was averaged ether among all base pairs or for those 

that constituted a binding site (a stretch of two or more (G/C) base pairs), where such 

stretch was present. 

c The upper bound on Kd of ~1 mM was defined by the detection limit of the 

assay. 

 

Figure 35. The DNA melting curve for oligomer GGTTAACC (at 6 mM in single 

strands) in the DNA binding buffer. The lines at low and high temperatures show 

the approximate baselines corresponding to the double- and the single-stranded 

states, respectively. 
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Strong MTM-DNA binding resulted in an ~8-fold increase of fluorescence 

intensity at the fluorescence maximum (figure 37), apparently due to unquenching of the 

chromophore rings. Such unquenching may occur upon reorientation of the MTM 

molecules in the dimer upon DNA binding. Fluorescence enhancement upon MTM 

binding to DNA was observed previously. 113 These and the other DNA titration data fit 

well to a 1:1 binding isotherm. The best-fit Kd values for all titrations and the DNA 

structural parameters are given in Table 4. Affinities stronger than 1 mM could not be 

measured and were indicated as bounds in Table 4, because of the low fluorescence 

signal at concentrations of MTM (138) and analogues required for such measurements. 

 

Figure 36. Fluorescence emission spectra of MTM (10 μM) in the absence of 

divalent metal and DNA (the dashed line), with 5 mM MgCl2 and no DNA (the thin 

solid line), and with 5 mM MgCl2 and 10 μM GAGGCCTC DNA (the thick solid 

line). The excitation wavelength was 470 nm. 
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Binding of MTM (138) to DNA was tested most extensively, with all 13 DNA 

oligomers; binding of the novel analogue, MTM SA-Trp (140) was tested with 5 

oligomers and binding of MTM SDK (139) and PreMTM B (142) was tested with one 

oligomer, GAGGCCTC, which was tested with all the compounds. Representative 

titration data for MTM (138) with high-affinity and low-affinity oligomers are shown in 

figures 38A and 38B, respectively. The strongest MTM-DNA binding affinity was 

observed for 8 DNA oligomers, with Kd values of 2 mM or smaller. All of these 

sequences contain at least one GG, GC, CG or CC site (note that a CC sequence is 

automatically present if a GG sequence is present due to complementarity). Notably, 

sequence GGAATTCC containing a terminal GG site did not bind MTM (138) well (Kd = 

59 mM). On the other hand, sequence AGGTACCT was a high-affinity sequence. These 

results indicate that a binding site needs to contain at least one flanking base pair on each 

side. MTM (138) displayed low affinity for all sequences that did not contain an internal 

GG, GC or CG site. Therefore, 2-base pair sequences GG (CC), GC and CG that are 

flanked by at least one base pair on each side are preferred sequences for binding MTM 

(138), whereas the other 2-base pair sequences are non-preferred. In other words, the 

minimum DNA recognition sequence for MTM (138)) is a 4-base pair sequence 

X(G/C)(G/C)X, where either G or C in any order, and X is any base. 
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Figure 37. Binding of MTM (10 µM) to double-stranded DNA oligomers of different 

sequences. A. Representative titrations of MTM with high-affinity DNA oligomers. 

A. Representative titrations of MTM with low-affinity DNA oligomers. The curves 

are the best fit to the 1:1 binding model with the values given in Table 4. The DNA 

sequences are specified in the inset. 

Binding affinity to the high-affinity sequences was modulated by the base pairs 

flanking the GG/GC/CG site. Sequence GATCGATC bound MTM (138) with at least a 

7-fold higher affinity than did GTACGTAC. This effect of flanking sequences is 

consistent with previous observations.114 Sequence GTAGCTAC, containing a GC in 

place of the CG in the same context, was a high affinity sequence, reversing the effect of 

the flanking DNA, in agreement with a previous study showing a preference of MTM for 

an isolated GC over an isolated CG site.114 These results suggest that the conformation or 

position of an MTM dimer bound to a GC site differ somewhat from that bound to a CG 

site, resulting in different interactions with flanking DNA. Structural investigation of this 

adaptability of MTM binding different sequences is in progress. 
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Next, we examined whether DNA affinity of MTM (138) was additionally 

defined by or correlated with DNA structural parameters (table 4). Because aureolic acid 

natural products were shown to bind in the minor groove, we focused on the geometric 

parameters of the minor and major grooves of the DNA oligomers of interest, as 

calculated by 3DNA software. 115 Binding of MTM (138) did not appear to be correlated 

with any of the structural parameters: the conformation of the DNA backbone (B- vs. A 

form), the Zp values, or the widths of the minor and the major grooves. These 

observations are consistent with a previous study demonstrating strong binding to two 

G/C rich sequences, one B- and the other A-form.116 Nevertheless, because the best MTM 

binding sequences were somewhat enriched in G/C stretches, which are known to have a 

widened minor groove,108, 117 this effect of intrinsic sequence-dependent minor groove 

widening on MTM binding cannot be further uncoupled from the (G/C)(G/C) sequence 

recognition, at least with naturally occurring nucleotides. 

We next tested whether modifications at position 3 had an effect on DNA binding. 

DNA binding of the novel analogue, MTM SA-Trp (140), was measured with 5 

oligomers that displayed high affinity towards MTM (138) (table 4, figure 39). MTM 

SA-Trp (140) exhibited Kd values in the range 1-4 µM. Thus, the DNA affinities of MTM 

SA-Trp (140) were either similar or somewhat weaker than those of MTM. Sequence 

GAGGCCTC bound with a similar affinity (Kd = 2 µM) to MTM (138) and MTM SA-

Trp (140) (table 4, figure 40A). Additionally, binding of the other analogues, MTM SDK 

(139), MTM SA-Ala ((141) and PreMTM B (142), to a strong binding sequence 

GAGGCCTC was measured (table 4, figures 40A and 40B). MTM SDK (139) bound the 

DNA at least 2-fold more tightly than did MTM (138), possibly due to reduced steric 
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hindrance by the shorter side chain of MTM SDK (139). To check whether MTM SDK 

(139) binding to DNA was still Mg2+-mediated and was not due to a new binding mode 

that became possible because of its specific side chain, we performed the same titration in 

the absence of Mg2+ with this analogue (figure 40B). No binding was observed, 

indicating that the binding mode was unchanged by the side chain modification. 

Interestingly MTM SA-Ala (141) bound ~10-fold weaker than MTM (138) did, 

apparently due to the unfavorable environment of the Ala methyl group. PreMTM B 

(142) did not display any observable binding, indicating that this tetracyclic scaffold 

cannot adapt the same way to the features of the minor groove. 

 

Figure 38. Binding of MTM SA-Trp (1 M) to double-stranded DNA oligomers of 

different high-affinity sequences, as indicated in the inset. 
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Figure 39. Binding of MTM and its analogues to GAGGCCTC DNA. A. Binding of 

MTM, MTM SA-Trp, MTM SA-Ala and PreMTM B, each at 10 μM. B. Binding of 

MTM SDK (4 μM) in the presence (open circles) and in the absence (filled circles) of 

Mg2+. 

3.3 Methods 

3.3.1 Dimerization Assays 

Concentrations of MTM (138), its analogues and Pre MTM B (142) were 

determined by measurements based on the dry material mass. The concentrations of 

MTM (138) and its analogues were consistent with the measurements of absorbance at 

400 nm using a Thermo Scientific Biomate 3S spectrophotometer assuming the molar 

extinction coefficient of 10,000 M-1cm-1. The dimerization assays were carried out in 40 

mM Hepes pH 7.0, 100 mM NaCl, by titrating MgCl2 into a solution of MTM (138) or 

analogue at constant concentration at 21 °C. The concentrations of MTM (138), MTM 

SDK (139), Pre MTM B (142), MTM SA-Trp (140), and MTM SA-Ala (141) were 1 

µM, 5 µM or 10 µM, as specified in the text. The dimers were more stable in Fe2+ than in 
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Mg2+; therefore, lower concentrations of the divalent metal ion were used, as specified. 

Fluorescence of MTM (138) and its analogues, generated for the excitation wavelength of 

470 nm and emission wavelength of 540 nm, was measured on a SpectraMax M5 

microplate reader. All experiments were carried out in triplicate.  

3.3.2 Analysis of the Dimerization Assay Data 

MTM dimerization is mediated by one divalent metal ion cooperatively.99 

2M + Me2+ ⇌ M2•Me2+,   (1) 

where M designates a monomer of MTM, and Me2+ is the divalent metal ion. The 

equilibrium constant for this process in the direction of dissociation is 

Kd = [M]2[Me2+]/[M2•Me2+]        (2) 

Conservation of material for mithramycin is given by the following expression: 

[M]tot = [M] + 2[M2•Me2+],        (3) 

where [M]tot is the total concentration of mithramycin in the mixture. 

Solving the system of equations (2) and (3) for [M] and [M2•Me2+] yields: 

     (4) 

   (5) 

Finally, the observed fluorescence is a sum of contributions from M and M2•Me2+ 

species: 

I = C1[M] + C2 [M2•Me2+] + C3,       (6) 
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where C1 and C2 are molar fluorescence yield of M and M2•Me2+, respectively, and C3 is 

the signal in the absence of MTM. Nonlinear regression using SigmaPlot (SysStat) was 

employed to obtain best-fit values of Kd by fitting eq. (6) to the data for MTM and its 

analogues. 

3.3.3 DNA Binding Assays 

DNA oligomers of the palindromic sequences reported in the text were dissolved 

in 10 mM Na cacodylate buffer pH 6.0 to a final concentration of 2 mM. DNA was self-

annealed in the annealing buffer (10 mM Na cacodylate, pH 6.0, 50 mM NaCl) by 

heating to 95 ºC for 5 min and cooling for 30 min to 4 ºC. The DNA concentrations were 

then calculated based on the respective extinction coefficients for double-stranded DNA 

by the IDT online concentration calculation tool.118 The same tool was used to calculate 

the DNA melting temperatures.100  

The DNA binding assays were carried out in 40 mM Hepes pH 7.0, 100 mM 

NaCl and 5 mM MgCl2 at 21 °C, where the majority of MTM or its analogue is in the 

dimeric form. DNA was titrated into MTM (138) or its analogues, where all compounds 

were used at the concentrations specified in the text. Fluorescence was measured as it 

was in the dimerization assays. All experiments were carried out in triplicate.  

The DNA melting experiment for oligomer GGTTAACC (at 6 mM in single 

strands) was carried out by measuring absorbance at 260 nm at temperatures increasing 

from 8 °C to 50 °C over 1 hour in the binding buffer. These data were collected on a 

Shimadzu spectrophotometer TCC-240A UV-1800 equipped with a temperature-

controlled cell holder. 
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3.3.4 Analysis of the DNA Binding Assay Data 

Binding of an MTM dimer to a short DNA oligomer is described by the following 

1:1 binding equilibrium: 

M2•Me2 + D ⇌M2•Me2•D,   (7) 

where D and M2•Me2•D denote free DNA and MTM-DNA complex, respectively. The 

equilibrium constant KDNA in the direction of dissociation is 

KDNA = [M2•Me2][D]/[M2•Me2•D]       (8) 

The equations describing conservation of D and M are: 

[M]tot = 2[M2•Me2+] + 2[M2•Me2•D],      (9) 

[D]tot = [D] + [M2•Me2•D],        (10) 

Eqs. (8)-(10) yield [M2•Me2] and [M2•Me2•D]: 

,      (11) 

where b = [M]tot – 2[D]tot – 2KDNA       (12) 

and 

[M2•Me2•D] = 1/2 ([M]tot – [M2•Me2])      (13) 

As in the dimerization assay, the fluorescence signal is a sum of contributions from 

M2•Me2+ and M2•Me2•D: 

I = C2 [M2•Me2+] + C4 [M2•Me2•D] + C3,      (14) 
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where C2 and C3 were defined previously and C4 is the molar fluorescence of MTM-DNA 

complex. Nonlinear regression curve fitting to the titration data with SigmaPlot was used 

to obtain the values of Kd. 

The structural parameters of DNA were calculated from the crystal structure 

coordinates by using 3DNA software.115 

3.4 Conclusions 

In summary, this study exploited the intrinsic MTM fluorescence to interrogate 

the dimerization and DNA binding properties of MTM (138) and its analogues. We 

obtained the minimum DNA binding requirements for MTM (138) and established that it 

is the direct (sequence) and not indirect (conformation) read-out that guides DNA 

recognition by MTM (138). The 3-side chain derivatization led to modulation of DNA 

binding affinity of the analogues. Future studies will characterize structural details of 

binding of MTM (138) and its analogues to different DNA sequences and use the DNA 

recognition rules established here to map MTM binding sites in oncogenic promoters and 

other regulatory sites in the genome. 

4 SUMMARY  

Deoxysugar biosynthetic enzymes provide valuable glycodiversification tools that 

can be used to engineer molecules for pharmaceutical use. To exploit the full potential of 

these tools for drug development, the role of these enzymes in the biosynthetic pathway 

must be determined, and the mechanism of action of the compound to be derivatized 

should be completely understood. The work in this dissertation provides a better 
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understanding of the mechanism of action of MTM (138), new biosynthetic tools, and 

TDP-sugar building blocks that can be used to further develop MTM (138) or other 

compounds for improved druggability. 

  The identification of the sqn gene cluster, responsible for production of SQN A 

(102), B (103), G-K (104-108) in Streptomyces sp. KY40-1 provides eight deoxysugar 

biosynthetic genes including six that are putatively involved in L-rednose biosynthesis. 

The proposed pathway is interesting for several reasons. It proposes a glucosamine 

derived starter unit in place of glucose and suggests that the biosynthetic enzymes are 

flexible enough to accept both substrates. Four of the cloned SQN deoxysugar 

biosynthetic enzymes (SqnS1, S5, S7-S8) provided soluble protein. Enzymatic synthesis 

of TDP-4-keto-3,6-dideoxy-L-idosamine (132) was attempted and while largely 

unsuccessful, generated TDP-glucosamine (128) and TDP-N-acetylglucosamine. 

Successful enzymatic synthesis of L-rednose (109 A) would validate the proposed 

biosynthetic pathway, and provide additional novel TDP-amino sugar building blocks to 

derivatize amino glycosides, MTM (138) or other polyketides.  

Dimerization and DNA binding studies of MTM (138) and analogues provided a 

better understanding of the mechanism of action of MTM (138). It was determined that 

dimerization of MTM (138) and analogues prior to binding DNA, direct (sequence) read-

out guides MTM (138) and a minimum DNA binding requirement for MTM (138) was 

established. It was also revealed that 3-side chain derivatization of MTM (138) effects 

DNA binding affinity. This information lays initial groundwork necessary to develop 

MTM (138) as a clinically relevant chemotherapeutic.  
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5 APPENDIX 

5.1 pET28a(+) Plasmid Map 
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5.2 pET22b(+) Plasmid Map 

 

  



83 

 

5.3 SqnS1  

5.3.1 Plasmid Map of pET28a- SqnS1_N His6x 
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5.3.2 sqnS1 DNA Sequence 

ATGCGCAGTGACGCGCTGGAGGACGCCACCGGCGTCTCCTTCGGTCCGCGGC

AGATCAACTACTCCGTGTCGAAGCGCCATACGCTGCGCGGGATCCACAGCGT

GCGCATTCCGCCGGGGCAGGCAAAGTACGTCACCTGTGTACGCGGCTCGCTG

CGCGACATCGTCGTGGACCTGAGGATCGGCTCCCCGACCTTCGGCGAGCACC

GGGTCAATGTGCTGGACGCGGACTCCGGAAGGTCCGTCTACGTGCCCGAGGG

CGTCGGCCACGGCTTCCTCGCACTCAGCGACGACGCCTGCATCTGCTACGTCG

TCTCCACCACGTACGTGCCAGGCACGCAGATCGACGTCAATCCTCTGGACCC

GGATCTCGATCTGCCCTGGGACTGCCCGCAGCCCCCTCTCATCTCGGACAAG

GACGCCAAGGCGCCCACCGTGGCCGAGGCCGTACGGGCAGGCATGCTGCCCC

GATTCGACAAGGCAGGCACCTCGTGA 
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5.4 SqnS4 

5.4.1 Plasmid Map of pET28a-SqnS4- N His6x 
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5.4.2 Plasmid Map of pET22b- SqnS4-C His6x 

 

5.4.3 sqnS4 DNA Sequence 

GTGCACCTGATCGCCCGCACTGCGGCAACCGAGTCGGTGCCGCCCAGCACCT

CCGGAGTGACGACGACGCGGCTGGACCTGCTCACGACGGCACCCGAGGCACT

CACGGAGGTCCTCGCCACAATCGGCGCCGACGTGGTGGTCAACGCGGCGGGC

CGGGCCTGGCGGGCCGACGGGACGGAGATGGCAGCGGGCAACGTCGAACTG
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GTCGAACGGGTCGTGACGGCGCTCGCCGCCGCTCCCGGCCCTCCAGTACGGC

TGGTTCAGCTCGGCAGCGTCCACGAGTACGGGGCCGGCGCCCCGGACGGCGC

CACCGGCGAGGACCATGCGCCCACCCCGGTGACGCCGTACGGCCGTACCAAA

CTCCGGGGCACGCAAGCCGTCCTGCGCGGCACACGGGAGCGGGGCGTCGAC

GGGGTGGTGCTCCGGCTCGCCAACGTGATCGGTGCCGGGGTACCGGAGGGCA

GCCTCTTCGGCCGGGTCGCCGGCCACCTCGGCACCTCTGCCCGGGCCGACGC

GCGGGGTGAGAAGCCCGCCGCACTGCATCTGCCGCCCCTGCGTGCGGCCCGC

GACCTGGTGGACACCGGTGACGTCGCCGCGGCGGTCCTGGCCGCGGCCACGG

CACCGGCACGGATCGTCACCGGCCAGGTGATCAATGTGGGCCGCGGCGAGGC

GGTCCCCATGCGCGGGCTGGTCGACCGGATGATCACGCTCAGCGGCCTGGAG

ATCCCGGTGGTCGAGGCGACCGAGGCACCCGCCTCGCGCACCGATGTCGCCC

GGCAGTGCCTGGACGTCTCCCGTGCCCGGCGCCTGCTCGGCTGGCGCCCGCT

GCGCAGCGTCGACGACTCCCTGCGCGACCTTCTCGCATCCGTACTGCCGCCG

GAGCGACCGCCGCTCGGCACACCACTGGGCATCACGGCCGGCGCACCGGCCG

AGGAAGGGGTACGACCATGA 

5.4.4 sqnS4 DNA Sequence Codon Optimized for E. coli  

GTGCATTTGATCGCGCGCACAGCGGCAACAGAATCGGTGCCACCTAGTACCT

CAGGAGTAACCACAACCAGACTGGACCTGCTTACGACAGCGCCAGAGGCGCT

GACAGAAGTTTTGGCCACTATCGGGGCAGACGTGGTCGTAAACGCAGCCGGG

AGAGCGTGGCGGGCTGACGGTACCGAAATGGCGGCTGGGAACGTTGAGCTTG

TTGAGCGTGTGGTTACCGCGCTTGCTGCCGCGCCCGGTCCACCAGTAAGATTG

GTTCAACTTGGCAGCGTACACGAATACGGGGCTGGCGCTCCGGACGGCGCTA
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CTGGCGAAGACCATGCACCGACGCCAGTCACCCCGTATGGGCGTACGAAGCT

GAGAGGGACGCAAGCAGTCCTGCGTGGAACTCGGGAGCGGGGGGTAGACGG

TGTGGTGCTGAGATTGGCGAATGTCATTGGAGCTGGGGTACCCGAAGGTAGC

CTGTTTGGGCGTGTTGCTGGACATTTAGGAACATCGGCTCGCGCCGATGCTCG

GGGAGAGAAACCCGCCGCGTTGCACTTGCCGCCGCTTCGGGCAGCGCGCGAC

TTAGTTGACACAGGCGACGTGGCGGCAGCTGTCTTAGCCGCCGCTACCGCAC

CAGCCAGAATTGTTACAGGTCAGGTTATCAATGTCGGGCGTGGTGAAGCCGT

ACCGATGCGCGGCTTGGTCGATCGCATGATTACTTTATCCGGTCTTGAAATCC

CGGTCGTAGAAGCGACTGAGGCACCGGCCTCGCGTACGGATGTAGCTCGCCA

ATGTTTGGATGTGTCTCGGGCGAGAAGATTGTTGGGGTGGCGTCCTCTTAGAT

CGGTCGACGATTCTTTACGTGACTTATTAGCATCCGTACTTCCTCCGGAACGC

CCACCTTTGGGCACACCACTTGGGATTACAGCCGGCGCTCCCGCAGAAGAGG

GCGTACGCCCGTGA 
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5.5 SqnS5 

5.5.1 Plasmid Map of pET28a-SqnS5 -N His6x 

 

5.5.2 sqnS5 DNA Sequence 

ATGAGCGACCGCAAGGACCGGATCCTGGAAGAGGTCCGCACATACCACCAG

GAGGTCTCCCCGGAGCGTGAGTTCGTGCCGGGCACGACGGAGATCTGGCCGT

CCGGCGCGGTCCTGGAGGAGGCCGACCGGATGGCCCTGGTGGAGGCGGCGC
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TGGATATGCGCATCGCCGCCGGGACCAGCTCCCGCAAGTTCGAGTCGGCCTT

CGCCCGCCGCCTGAAGCGCCGCAAGGCACATCTGACGAACTCCGGTTCGTCG

GCCAATCTGCTGGCGGTGTCGGCACTGACGTCGCACACGCTGGAGGACCGGC

GGCTGCGGCCGGGCGACGAGGTCATCACGGTGGCGGCGGGTTTCCCGACCAC

CGTGAACCCCATCCTGCAGAACGGCCTGATCCCGGTCTTCGTGGACGTGGAC

CTCACCACCTACAACGCGACCGCCGACCGGGTGGCCGCGGCGATCGGTCCCA

AGACCCGAGCCATCATCGTCGCGCACGCCCTGGGCAACCCCTTCGAGGTCGC

GGAGATAGCCCAACTCGCCCAGGAGCACGATCTGTTTTTGATCGAGGACAAC

TGCGACGCGGTCGGCTCGCTCTACGACGGCAAACTCACCGGCACCTTCGGCG

ACATGACCACCGTCAGCTTCTACCCGGCGCACCACCTCACCATGGGCGAGGG

CGGGTGTGTGCTGACCTCCAACCTGGCGCTGGCCAGGATCGTGGAGTCGCTG

CGGGACTGGGGGCGGGACTGCTGGTGCGAGCCGGGCGAGAACGACCGTTGC

ATGAAGCGGTTCAAGTACCAGATGGGCACGCTGCCCGCCGGATACGACCACA

AGTACATCTTCTCGCACGTCGGGTACAACCTGAAGGCCACGGACATCCAGGC

CGCACTCGGTCTGGCGCAGCTGGCCAAGCTGGACTCCTTCATCGAGGCCCGG

CAGCGCAACTGGCGGAGGCTGCGGGAGGGCCTGGACGGGGTTCCCGGGCTG

CTGCTGCCCGAGGCCACGCCGCGTTCCGAGCCGAGCTGGTTCGGGTTCGTGA

TCACCGTCGACCCCGAGGCGCCCTTCGGCCGCGCCGAGTTGGTCGACTTCCTG

GAGTCCCGAAGGATCGGCACCCGCCGCCTGTTCGCCGGCAACCTCACCCGGC

ACCCGGCCTACATCGACCAGCCGCACCGGATCGTGGGCGAACTGACCAACAG

CGACGTCATCACCGAGCACACCTTCTGGATCGGGGTCTACCCGGCGCTCACC

GACGAGATGCTGGACTACGTCACCGCCTCGATCAAGGAGTTCGTGGCCGCGC

GCGGCTGA 
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5.6 SqnS6 

5.6.1 Plasmid Map of pET28a-SqnS6-N His6x  

 

5.6.2 sqnS6 DNA Sequence 

ATGGACATTGTGGGAAACGGTTTCCTGGCGCGAAACCTTCGTTCGCTGGCCG

GCCGGCATCCGGACACCGTGGCCCTGGCAGCGGGTGTGTCCTGGGCGAGCGG

CACCTCCGACGAGGACTTCGCCCGTGAGGCGGCGCTGCTGCACGAGGTCGTC
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GAGCGGTGCCAGGACACCGGTCGGCGACTGCTCTTCTTCTCCACGGCGGCGA

CCGGCATGTACGGACTCGCCGAGGGGCCCGGCCGGGAGGACACGCCGGTGA

CGCCCTGCACCCCCTACGGCGCGCACAAACTCGCCCTCGAGCAGCTGCTGCG

CGACTCCGGCGCCGCCCACGTGATCCTTCGGCTCGGCCATCTGGTCGGACCC

GATCAGCCCGAGCACCAGTTACTGCCCACTCTGGTGCGCCAGTTGCGCGAAG

GAGTGGTCCGCGTGCACCGGGAAGCGGCCCGCGACCTGATCGACGTCGGCGA

CGTCATCACGGTCATCGACCGTCTGCTCGCCATGGATCTGCGGGCCGAGACG

GTCAATGTCGCCTCCGGTTTCGCCGTCCCGGTGGGGGACGTCGTCGACCACCT

CGCGCGGGCCCTGGGTTTGGAGGCGCGCCGTGAGTTCGTCGACGCGGGCGTC

CGTCAGCACGTCATCTCGACCGAGAAGCTGCGCGCCCTGGTGCCGCAGGTCG

CGGAGATGGGCTTCGGCCCCGGCTACTACCGGCGGATCCTCGGCGACTTCAC

TGCCTCGGTGTCGTCCGGCACGTCCGCGCACGCCTGA 
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5.7 SqnS7 

 

5.7.1 Plasmid Map of pET28a-SqnS7- N His6x 

5.7.2 sqnS7 DNA Sequence 

ATGCCGTCTTCGCTCCTTCAAGCACGCGACAGTGCACGGCAGTTCGCCGACC

GGATCGCCCGGTCGACCGCCACCGCCCGGGGCGTGCACCTGCCGACCGCCGA
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CTTCCCGGAATGGCTCGCCGAACGGGGCAGCGTCAACGCCTTCCGCGTGGAC

CGGATCCCCTTCGCGCAACTGGACGGCTGGTCGTTCCAGGAGACCACCGGGA

ACCTGGTGCACCGCAGTGGCCGGTTCTTCACGATCGAGGGCCTGCACGTCAC

CGAGCGGGACGGCCCCTATGGCGACGGCCCGTACGCGGACTGGCACCAACCC

GTCATCAAGCAGCCCGAGGTCGGCATCCTGGGCATCCTGGTCAAGGAGTTCG

ACGGGGTCCTGCACTTCCTGATGCAGGCGAAGATGGAGCCCGGCAACCCGAA

TCTGCTCCAGCTCTCCCCCACCGTGCAGGCGACCCGCAGCAACTACACCAAG

GCCCACCGGGGCGCGGACGTGAAGTACATCGAGCACTTCGTGGGGCCGGGG

CGCGGGCGGATCGTCGCCGACGTCCTGCAGTCCGAACACGGTTCGTGGTTCT

ACCGCAAGTCCAACCGCAACATGATCGTGGAAGCGGTCGGCGACGTGCCCCT

CCTCGACGACTTCTGCTGGCTCACCCTGGGGCAGATCGCCGAGCTCCTGCACC

GCGACAATGTCGTCAACATGGACTCGCGAACGGTGCTGTCATGCCTGCCCGT

CGCACCGAAGGCGAGCAACGCCCTGCACTGCGACGCCGACCTGCTGTCCTGG

ATCACCGGTGAGCGCGCCCGCCACGATGTGCACGCCGAGCGCGTTCCGCTGG

CCGGGCTGCCCGGCTGGCGGCGCCACGACATGGCCATCGAGCACGAGGACG

GACGCTACTTCACGGTGGTGGCGGTGGCCGTCCAGGCCGGCAACCGCGAGGT

CACCAGCTGGACCCAGCCGTTGTTCGAGCCGGTGGGCCTCGGCGTCACCGCC

TTCCTCACCCGGACGTTCGACGGCATACCCCATGTGCTGGTGCACGCCCGGGT

CGAAGGCGGGTTCCTGGACACCGTCGAACTGGGCCCCACGGTCCAGTACACG

CCCGGCAACTACGCCCATCTCCCGGACAAGGAGCGCCCGTTGTTCCTCGACA

CCGTGCTCGAGGTGCCGCCGGACCGGATCCGGTACGAGGCAGTGCACTCGGA

GGAGGGCGGCCGGTTCCTCAACGCGGAGAGCCGGTATCTCGTCGTCGAGGCC

GACGAGCGGGAGGCCCCACTCGATCCGCCGCCCGGCTACGCCTGGGTCACCC
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CCGACCAGCTCACCTGGCTGGTCCGCCACGGTCACTACCTCAACGTCCAGGC

CCGCACACTGCTGGCCTGCCTCAACGCCACCTTGGCGGGCGCGCGATGA 

5.8 SqnS8 

5.8.1 Plasmid Map of pET28a-SqnS8- N His6x 
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5.8.2 sqnS8 DNA Sequence 

ATGATCACGCCGGTACGCATCGGGGTGCTCGGCTGCGCGGACATCGCGGTAC

GGCGGATGCTGCCGGCGTTCGCCGCATCCCGCGACGTGGAGGTCGCCGCCGT

CGCCAGCCGCGATCCGGCCAGGGCCGAGGAGGTGGCCGCACGCTTCGGCTGC

CGTCCGGTGCGGGGATACGCCGAACTGCTCGACGCCGACGACGTGCAGGCGG

TGTACGTCCCCCTGCCGGCCGCACTGCACGCCCCCTGGGTGGAGGCCGCTCT

GAACGCGGGCAAACACGTGCTGGCCGAGAAGCCCCTGACGACGGACCCGGA

GAGCACCGAGCGTCTCCTCGACCTCGCCGCGAAGCAGGGTGCGGCCCTGATG

GAGAACGTGATGTTCGTCCACCATCCGCGGCACGAGGCGGTGCGGCGCCTCG

TCTCCGCGGGACGGATCGGTGAACTCCGCTCCCTCCACGCGGCGTTCACCATC

CCCCCGCTCCCCGACGGTGACATCCGCTACGCGCCCGAGCTCGGCGGTGGCG

CCCTGTCGGACGTCGGCCTCTACCCGCTGCGCGCCGCCCTGCACTTCCTGGGT

CCCGCTCTCGAGGTCGTCGGCGCCAGGCTCACCCGAGGCGGCGGGCGACAGG

TGGAGACGTCCGGGGCCGCGCTGCTGGGCACACCCGAAGGCGTCACCGCACA

CCTCACGTTCGGGATGGAGCACGCCTACCTCTCGCGGTACGAACTTTGGGGC

AGCGAGGGCCGGATCACGGTGGACCGGGCGTTCACGCCGCCGGCCGACTTCG

TGCCCGTGATCGCCGTGCACGGGCACACCACGGAGGAGATCCGGCTGGAGCC

CGCCGACCAGGTCGCGGCCACCGTCGCCGCCTTCGTCACCGCGGTCCGCGCC

GGGTCCGCGGTGCGTGGGGACACCCTGCGGCAGGCCGAGCTGCTGGACGAC

GTACGCCGTCTGTCCGCATGA 
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5.9 UrdZ3 

5.9.1 Plasmid Map of pET28a-UrdZ3- N His6x 
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5.9.2 Plasmid Map of pET22b-UrdZ3- N His6x 

 

5.9.3 urdZ3 DNA Sequence 

ATGGTCGTCCTGGGAAGCGGCGGTTTTCTGGGGCGCCACATCGGCGACGCCT

TCGCCGCGCAGGGAGCGCGGGTGCACGCCGTGACCCGGAACAGCTCGGACC

GTACTCCCCACGGCGCCGCGACCGGGTCCCGCACGACACCCATCGACCTGCT

GACGACCCCACCGCAGGAGGTCGCCGAGTTCCTCGGCTCGGTCGGCGCCGAT
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GTCGTCGTCAACGCCGCCGGCCGGGCCTGGCGGGCCGACGAGGCCCAGATGA

CCGCGGGCAACGCCGAACTGGTCCTGCGCCTCGTCACCGCCCTCGAGCAAGT

GCCCGGCCCGCCGATCCGGCTGGTGCAGCTCGGCAGCGTCCACGAGTACGGG

GCGGGCGCGCCGAACACCGGCACCGGTGAGGAGCACGAGCCCACCCCGGTG

ACCGCCTACGGACGCACCAAGCTCCTCGGGACGCAGACCGTCCTGCGCGCCG

CGCAGGACCGCACTGTCGAGGGCGTCGTGCTCCGGCTCGCCAACGTCATCGG

TGCGGGCGTTCCGGAGGGCAGCCTGTTCGGCAGGGTCGCCGCGCACCTCGCG

GCGGCCGCGCGCGCCGAGTCCCGGGGGGAGAAGGCCGCCGAGCTGCGCCTT

CCGCCACTGGCCGCGGCGCGCGACGTCGTCGACGCGCGTGACGCCGCCGACG

CGGTGGTGGCCGCCGCCACCACGGTCGGTGTCGCCGGACGGGTGATCAACGT

GGGGCGCGGCGAGGCGGTCGGGACACGCGAGCTGATCGACCGGATGGTCCG

GCTCAGCGGCCTGGCCGTCCCGGTCGTGGAAGAGACCGCCGCGGCGATGTCA

CGCACGGACGTGGACTGGCAGCGGCTGGATGTGTCCCGCGCGCGTCGGCTGC

TGGGCTGGCGGCCGCGCCGCAGCCTCGATGCCTCGCTGCGCGACCTTCTCGC

GGCGGCCCTGCCGTCATCCTCGACACGCCTCGGCGGCGTCCCGGACGTCGCA

TCCCGCCGCGCACCACTCGACGCTCCGACCACCGCGCCGGTTGACGAAAGGA

AGATAG 
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