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ABSTRACT OF DISSERTATION

A MEASUREMENT OF THE PARITY VIOLATING
ASYMMETRY IN THE NEUTRON CAPTURE ON 3He AT SNS

Weak nucleon nucleon couplings are largely unknown because of the involved the-
oretical and experimental challenges. Theoretically the topic is difficult due to the
non-perturbative nature of the strong interaction, which makes calculations of the
couplings challenging. Experimentally, the topic is difficult given that 1) the observ-
ables are determined by ratios between strong couplings and weak couplings which
differ in size by seven orders of magnitude, and 2) theoretically clean and predictable
measurements are almost always restricted to simple systems that do not allow for
effects that enhance the size of the asymmetry. However parity violation (PV) can
be used to separate out the weak part and thus studies of PV in hadronic systems
could offer a unique probe of nucleon structure. The n-3He experiment at the Spal-
lation Neutron Source was performed to measure the parity violating asymmetry of
the recoil proton momentum ~kp with respect to the neutron spin ~σn in the reaction
~n+3He→ p+T+764 keV. This asymmetry is sensitive to the isospin-conserving and
isospin-changing (∆I = 0, 1, 2) parts of the Hadronic Weak Interaction (HWI), and
is expected to be small (∼ 10−7). The goal of this experiment was to determine this
PV asymmetry with a statistical sensitivity of 2× 10−8. We also measured the parity
even nuclear asymmetry proportional to ~kp · ~σn × ~kn for the first time for verification
of nuclear theory in both observables and for confirmation of the sensitivity of our
experiment to the parity violating asymmetry.

KEYWORDS: Parity violation, Hadronic Weak Interaction, Spallation Neutron, Asym-
metry, 3He Ion Chamber
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Chapter 1

Motivation, theoretical framework
& observables

There are a number of unsolved experimental and theoretical puzzles involving the
Hadronic Weak Interaction (HWI) of baryons. In particular, we have not found a
way to simultaneously account for both the parity conserving P-wave and parity vi-
olating (PV) S-wave decay amplitudes in the case of hyperon non-leptonic decays.
The PV asymmetries associated with the radiative decays of hyperons are surpris-
ingly large. SU(3) flavor symmetry indicates that, in the limit of degenerate u, d
and s-quarks, these asymmetries are expected to be zero. Using the mass splitting
between the strange and two light quarks, we expect the asymmetries to be on the
order of ms/MB ∼ 0.15, where MB ∼ 1 GeV is the typical hyperon mass. But the
measured asymmetries, from the available experiments, turned out to be four to five
times larger in magnitude. Also, the well-known ∆I = 1/2 rule that summarizes the
observed dominance of the I = 1/2 channel over the I = 3/2 channel in strangeness
changing nonleptonic decays remains unclear, mostly because the existing symmetry
does not favor either channel. Thus, the QCD symmetries and the relevant physical
scales do not provide a satisfactory explanation for the observed properties of the
∆S = 1 HWI [10]. In this sense, consideration of the ∆S = 0 HWI, which has not
been fully explored and for which the strange quark plays a relatively minor role, is
important. The goal of studying the ∆S = 0 HWI with hadronic and nuclear PV
is to help determine the degree to which the symmetries of QCD characterize the
HWI and to shed light on the long standing puzzles in the ∆S = 1 sector. Thus, in
the theoretical formulation of this problem, one tries to make the contact with the
underlying SM as transparent as possible keeping the hadronic model and nuclear
structure unchanged.

In various models or formulations, the HWI is characterized by 6 different couplings.
In the DDH (meson exchange) model[7], the couplings are h1

π, h
0
ρ, h

1
ρ, h

2
ρ, h

0
ω, and h1

ω,
labeled according to the meson exchanged and change in isospin ∆I at the vertex.
In effective field theories, the couplings are replaced by contact interactions with
appropriate operators. However, under certain approximations, one can relate these

1



couplings to each other [21]. The determination of the weak NN interaction coupling
constants through measurement of various hadronic PV observables is an essential
test of the underlying model and our understanding of the interaction. Ideally we
would like to test self-consistency of the underlying framework by over constraining
the extraction of couplings with more measurements of observables than needed for
a simple extraction of couplings.

The n-3He experiment is part of a series of experiments needed to provide a self-
consistent description of the HWI by extracting the nucleon-nucleon coupling con-
stants in combination with other two-body and few-body experiments.

1.1 Parity violation as the probe of HWI

Parity refers to the behavior of a system under spatial inversion, i.e. behavior under
the mathematical transformation ~r → −~r. Momentum, being proportional to veloc-
ity, also changes sign under parity: ~p→ −~p, but angular momentum, being an axial
vector, does not: ~L = ~r × ~p → −~r × −~p = +~L. Likewise, spin is invariant under
parity.

Prior to 1956 it was taken for granted that the laws of physics are parity invariant. But
in 1956, the “tau-theta puzzle” led Lee and Yang to wonder whether there had been
any experimental test of this assumption [1]. They concluded that in the case of the
weak interaction, experimental data neither confirmed nor refuted parity invariance.
They proposed a test which was carried out independently later that year by Wu [2]
and Lederman [3] to settle the issue. In the famous Wu experiment she observed
parity violation in the beta decay of 60Co nuclei [2]

60Co −→60 Ni + e− + ν̄e.

The search for parity violation in nuclear systems started just after the revolutionary
discovery of parity violation in the above beta decay in 1957. The first search was
carried out by by Tanner [4]. However the first persuasive result was obtained by
Lobashov and others in 1967 [5] who were able to find a −6±1×10−6 signal among the
much larger parity-conserving strong background in radiative neutron capture from
181Ta. At that time this was consistent with the prediction by Feynman and Gell-
Mann [6] that there should an intermediate vector particle in the weak interaction as
it is right now in the standard model (opposed to what Fermi proposed in the original
paper of beta decay).

Even though PV has been discovered and is consistent with a left-handed W exchange
boson, hadronic parity violation experiments are still relevant. From a theoretical
point of view, for example at the quark and lepton level, it defines the structure
of the weak interaction. Similarly, we can get the structure of the nucleon-nucleon
interaction by studying parity violation in the nuclear system.
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Figure 1.1: a. Fermi’s 4-point interaction. b. Weak interaction in SM

Figure 1.2: The structure of weak interaction is defined by parity violation.

H = Hstrong +Hweak

From the experimental point of view, it is a very powerful tool because of the fact
that strong interaction is even under parity while weak interaction is odd. So while
the strong interaction dominates the weak interaction by several order of magnitude
( e2

M2
W
/ g2

m2
π
≈ 10−7), we can use parity violation to isolate out the weak contribution

from the strong one.

The hadronic weak interaction manifests itself in parity-violating phenomena both in
the two-nucleon system and in nuclei.

Experimentally, we look for a parity violating signal by examining a scalar correlation
which is odd under parity, such as correlation between spin and momentum: ~σ·~p.
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1.2 Existing theoretical framework

In Standard Model (SM), the structure of low-energy ∆S = 0 HWI is described by
the Hamiltonian [10]

H∆S=0
HWI =

GF√
2

(
JCC†λ JλCC +

1

2
JNC†λ JλNC

)
, (1.1)

where GF is the Fermi constant and JCCλ and JNCλ are the weak charged and neutral
currents, respectively. The main challenge here is finding the correct effective inter-
action H∆S=0 eff

HWI (N, π,∆) that best describes the hadronic manifestation of H∆S=0
HWI .

This is because JCCλ transforms as a doublet under strong isospin while JNCλ has I =
0 and I = 1 components, and the current-current products in H∆S=0

HWI contain terms
that transform as isoscalars, isovectors and isotensors. As a result, H∆S=0 eff

HWI must
contain the most general set of operators having the same isospin properties.

There are several approaches to modeling or formulating the hadronic weak interac-
tion by introducing effective coupling unlike the coupling used in elementary particles,
where the interactions are through mediators like vector bosons in weak interac-
tions.

Figure 1.3: Exchange particles for different interactions.

Among all the theoretical frameworks, the most classical one is the meson exchange
model, also known as the DDH model, named after B. Desplanques, J. F. Donoghue
and B. R. Holstein [7, 9]. In this meson exchange model, the strength of the HWI
is specified by coupling constants at the vertex where an exchange meson is emitted
or absorbed. The strong Hamiltonian related to the DDH potential is given by [21]

Hst = igπNNN̄γ5~τ · ~πN + gρN̄
(
γµ + i

χV
2M

σµνk
ν
)
~τ · ~ρµN

+ gωN̄
(
γµ + i

χS
2M

σµνk
ν
)
ωµN,

(1.2)
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Figure 1.4: Meson exchange model

where ~σ and ~τ are Pauli matrices for spin and isospin, ~π, ~ρ and ~ω are the pseudo and
vector meson quantized fields. The weak vertices are written in terms of the seven
phenomenological couplings mentioned earlier [21]

Hwk =
h1
π√
2
N̄(~τ × ~π)zN

+ N̄

(
h0
ρ~τ · ~ρµ + h1

ρρ
µ
z +

h2
ρ

2
√

6
(3τzρ

µ
z − ~τ · ~ρµ)

)
γµγ5N

+ N̄(h0
ωω

µ + h1
ωτzω

µ)γµγ5N − h1′
ρ N̄(~τ × ~ρµ)z

σµνk
ν

2mN

γ5N.

(1.3)

The potential V PV
DDH , is generated by the meson exchange diagram of Fig. 1.4, where

one meson-nucleon vertex is parity conserving and the other is parity violating. A
fourier transform of the Eqs. 1.2 and 1.3 gives the coordinate-space DDH potential
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[10, 21]

V PV
DDH(~r) = i

h1
πgAmN√

2Fπ

(
~τ1 × ~τ2

2

)
3

( ~σ1 + ~σ2) ·
[
~p1 − ~p2

2mN

, wπ(r)

]
− gρ

(
h0
ρτ1 · τ2 + h1

ρ

(
~τ1 + ~τ2

2

)
3

+ h2
ρ

(3τ 3
1 τ

3
2 − τ1 · τ2)

2
√

6

)
(

(~σ1 − ~σ2) ·
{
~p1 − ~p2

2mN

, wρ(r)

}
+ i(1 + χρ)~σ1 × ~σ2 ·

[
~p1 − ~p2

2mN

, wρ(r)

])
− gω

(
h0
ω + h1

ω

(
~τ1 + ~τ2

2

)
3

)
(

(~σ1 − ~σ2) ·
{
~p1 − ~p2

2mN

, wω(r)

}
+ i(1 + χω)~σ1 × ~σ2 ·

[
~p1 − ~p2

2mN

, wρ(r)

])
− (gωh

1
ω − gρh1

ρ)

(
~τ1 − ~τ2

2

)
3

( ~σ1 + ~σ2) ·
{
~p1 − ~p2

2mN

, wρ(r)

}
− gρh′1ρ i

(
~τ1 × ~τ2

2

)
3

( ~σ1 + ~σ2) ·
[
~p1 − ~p2

2mN

, wρ(r)

]
,

(1.4)

where ~pi = −i~∇i, and ~∇i is the gradient with respect to the coordinate ~xi of the i-th
nucleon, r = |~x1 − ~x2| is the separation between the two nucleons,

wi(r) =
e−mir

4πr
(1.5)

is the standard Yukawa potential. Various observables are sensitive to distinct linear
combinations of hiM

VPV =
∑

M=π,ρ,ω

∑
∆I=0,1,2

h∆I
M V ∆I

M . (1.6)

The DDH reasonable ranges and best values are given in Table 1.1.

PV coupling DDH range DDH best value

h1
π 0→ 30 +12
h0
ρ 30→ −81 -30
h1
ρ −1→ 0 -0.5
h2
ρ −20→ −29 -25
h0
ω 15→ −27 -5
h1
ω −5→ −2 -3

Table 1.1: Theoretical reasonable ranges and best values for the PV meson-nucleon
couplings hiM from DDH[7, 10, 69]. All values are quoted in units of gπ = 3.8× 10−8.

For the HWI, the relatively newer and modern approach is to use effective field theory.
The EFTs are written in the language of nucleons, since matching to quark-level QCD
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calculation is not possible at present. Various versions of this approach are: pionless
EFT (EFT /π), chiral EFT (χPT), heavy baryon chiral perturbation theory (HBχPT),
etc. [12]. Here, we consider the pionless EFT developed by Holstein, Ramsey-Musolf,
van Kolck, Zhu and Maekawa [11]. In this model independent effective field theory,
nucleon nucleon potentials are expressed in terms of 12 parameters, whose linear
combinations give us 5 low energy coupling constants (LEC) [10]

λt, λ
I=0,1,2
s , ρt. (1.7)

It is possible to obtain the expressions for ρt, λt and λ0,1,2
s expressed in terms of DDH

coupling constants and then to employ the DDH best values and reasonable ranges
for the PV meson-nucleon couplings to obtain the predictions for the PV LECs listed
in Table 1.2. In this sense, the meson exchange model and effective field theory are
actually equivalent to each other.

PV LEC DDH best DDH range

mNρt 0.05 0.07→ 0.03
mNλt 0.84 -1.00 → 2.48
mnλ

0
s 3.82 -4.86 → 11.7

mNλ
1
s 0.37 0.64 → 0.21

mNλ
2
s 2.72 2.17 → 3.15

Table 1.2: Prediction for the five PV low energy constants (LECs) characterizing
hadronic PV in the pionless EFT [10]. All values are quoted in units of gπ = 3.8×10−8.

Another promising approach is the lattice QCD. The first lattice calculation of hadronic
parity violation, was performed by J. Wasem [17], who determined the PV πN cou-
pling

h
(1),con
πNN = (1.099± 0.505+0.058

−0.064)× 10−7. (1.8)

The first uncertainty is statistical and the second one systematics, and the superscript
“con” indicates contribution from connected diagrams only. This value is consistent
with the DDH range for h

(1)
πNN and the values determined in other calculations, as well

as the current experimental bounds [17]. The application of lattice QCD to nuclear
physics problems is relatively new and continues to be a very active area of research.
It has the potential to predict the relevant couplings at the level of Standard Model
degrees of freedom, establishing a direct link to the well-tested weak quark-quark
interactions. More on lattice QCD approach for hadronic parity violation can be
found in Refs. [15, 16, 17].
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1.3 Relating coupling constants to observables

In general, the parity violating asymmetry in a measurement can be expressed as a
linear combination of the coupling constants

A = C1
πhπ + C0

ρh
0
ρ + C1

ρh
1
ρ + C2

ρh
2
ρ + C0

ωh
0
ω + C1

ωh
1
ω, (1.9)

where the coefficients C are estimated for each observable using nuclear wave functions
and operators for the observables.

In simple systems, for example two-body reactions ~n + p → d + γ, the calculation
involves considering the initial state |i〉, the final state |f〉 and then calculating the
matrix elements of the amplitude 〈i|VPV |f〉, where the potential is chosen from the
DDH model or EFT under consideration. For the ~n + p → d + γ reaction, the
sensitivity coefficients are [27, 46]

Aγ = −0.107h1
π − 0.001h1

ρ − 0.004h1
ω. (1.10)

In few-body systems, calculations are done with quasi-exact nonperturbative strong
interaction methods. Faddeev-Yakubovsky methods and variational methods in hy-
perspherical harmonic bases have been applied to the A = 4 system. For ~n + 3He→
p + T, M. Viviani et al. reported the sensitivities [30]

Ap = −0.1853h1
π − 0.0380h0

ρ + 0.0230h1
ρ− 0.0011h2

ρ− 0.0231h0
ω + 0.0500h1

ω. (1.11)

Hyperspherical harmonics and quantum Monte Carlo methods are used for A = 5
systems, such as the spin rotation of polarized neutrons in helium [30, 31]. Table 1.3
shows the sensitivity of observables from different processes to the DDH coupling
constants, together with the experimental asymmetry, if available. Details of these
experimental results are discussed in the next section.

Process Observable Expt(×10−7) h1
π h0

ρ h1
ρ h2

ρ h0
ω h1

ω

~n + p→ d + γ Aγ ≡ ~σn · ~kγ -1.2 ± 2.1 -0.11 -0.001 -0.004

~n + d→ t + γ Aγ ≡ ~σn · ~kγ 42 ± 38 0.69 -0.33 0.99 0.05 -0.22 -0.05

~n + 3He→ p + T Ap ≡ ~σn · ~kp – -0.185 -0.038 0.023 -0.0011 -0.023 0.050

~n + 4He→ n + 4He φPV 1.7 ± 9.2 -0.97 -0.32 0.11 -0.22 0.22

~p + p→ p + p (13.6 MeV) AL ≡ ~σp · ~kp -0.93 ± 0.21 0.042 0.042 0.017 0.046 0.046

~p + p→ p + p (45 MeV) AL ≡ ~σp · ~kp -1.57 ± 0.23 0.074 0.074 0.032 0.067 0.067

~p + p→ p + p (221 MeV) AL ≡ ~σp · ~kp 0.84 ± 0.34 -0.03 -0.03 -0.012

~p + 4He→ p + 4He AL -3.34 ± 0.93 -0.34 0.14 0.047 0.059 0.059
18F decay Pγ 1200 ± 3680 4385 -492 -833
19F decay Aγ -740 ± 190 -94.2 34.1 -10.2 19.4 -16.9

Table 1.3: Expressing observables in terms of DDH coupling constants [47]. Details
of the reactions and experimental results are explained in the next section.
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1.4 Existing data

To understand the current situation in this field, we take a look of the existing data.
Following is the summary of existing results [21].

Two-body results: The proton-proton scattering [25] was measured at different en-

ergies. The correlation AL ≡ ~σp · ~kp was measured in each case for the longitu-
dinally polarized proton from unpolarized proton target. At 13.6 MeV, AL was
measured to be (−0.93 ± 0.20 ± 0.05) × 10−7 [22] and at 15 MeV it was found
to be (−1.7 ± 0.8) × 10−7 [23] by groups from Bonn and Los Alamos. The PSI
group measured AL = (−1.57± 0.23)× 10−7 at 45 MeV [24]. TRIUMF measured it
(+0.84± 0.34)× 10−7 at a medium energy of 221 MeV [25]. The investigation of the
polarized neutron capture on the para hydrogen target (n+p→ d+γ) has completed
several generations. In this case the correlation between the neutron spin and photon
direction Aγ(~np) was measured. In 1977 it was measured to be (0.6± 2.1)× 10−7 at
Grenoble. [26]. The NPDGamma experiment at LANL measured [27]

Aγ(~np)|LANL = (−1.2± 1.9± 0.2)× 10−7. (1.12)

The second generation of the LANL measurement, relocated at the SNS with the goal
of higher precision, is now preparing the publication of the result. At the Leningrad
reactor, the circular polarization of photons, emitted by the protons captured on
the unpolarized thermal neutrons, was measured to be Pγ(np) = (1.8 ± 1.8) × 10−7

[28, 29].

Few-body results: The asymmetry from the scattering of longitudinally polarized
protons from 4He target was measured to be AL(~pα; 46 MeV) = (−3.3± 0.9)× 10−7

by the PSI experiment [32]. A spin rotation of transversely polarized neutrons was
at NIST with 4He as the target. The measurement found dφnα

dz
= (1.7± 9.1± 1.4)×

10−7rad/m [33]. Longitudinally polarized protons scattering on deuterium target
was reported to produce an asymmetry of AL(~pd; 15 MeV ) = (−0.35± 0.85)× 10−7

[34].

Measurements with many-body enhancement: Measurements with many-body sys-
tems provided larger PV signal because of the many-body enhancement. Groups
from CalTech/Seattle, Florence, Mainz, Queens independently reported the mea-
surements from the circular polarization of photons emitted in the decay of the
JP , I = 0−, 1.081 MeV excited state of 18F to the JP , I = 0+, 0 ground state to
be −7±20, 3±6,−10±18 and 2±6 (all in units of 10−4) respectively [35, 36, 37, 38].
Similar photon asymmetries from 19F were measured to be Aγ = (−8.5± 2.6)× 10−5

(Seattle group) and Aγ = (−6.8 ± 1.8) × 10−5 (Mainz group) [39, 40]. Limits
on the anapole moment of 205Tl came from the measurements [43, 44] with values
κtot(

205Tl) = 0.29 ± 0.40 (Seattle) and κtot(
205Tl) = −0.08 ± 0.40 (Oxford). Similar

measurement for 133Cs [45] reported a value of κtot(
133Cs) = 0.112± 0.016.

Fig. 1.5 shows the constraints imposed on the coupling constants by different reactions
or experiments. The red * shows the best value as predicted by the DDH model.
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Figure 1.5: Constraints for the coupling constants (in units of 10−7) from different
experiments. Also shown DDH best value. Blue vertical band indicates the recent
lattice QCD estimate. The gray shaded area is consistant with all experiments. This
plot is from Ref.[21].

1.5 Outlook for the current experiment

In any of the hadronic theories, the coupling constants have to be determined exper-
imentally. On one side we have complicated systems like 18F, 181Ta, 41K, which give
larger PV asymmetries because of many body enhancement. However the nuclear
structure for these many-body systems is not well understood. On the other side,
theoretically clean and predictable measurements are restricted to simple systems—
two body or few body systems. But these simple systems are limited in number and
do not allow for effects that enhance the size of the asymmetry. In these systems
we embrace the challenge of measuring very small PV asymmetry, overcoming this
challenge by employing better experimental design and technological developments.
This motivated a program of HWI experiments in few-nucleon systems: p-p, n-p, p-α,
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Figure 1.6: PV in nuclear and few-body systems

n-3He, n-α etc. For such few-body systems the parity-violating observables can be
reliably calculated in terms of low-energy hadronic weak coupling constants which
are accessible from effective field theory or lattice QCD. Different hadronic nuclear
reactions have varying sensitivity to each coupling. The goal of HWI program is to
measure enough different reactions to resolve each of the coupling constants.

The NPDGamma and n-3He experiments are an important part of this active program
to measure the hadronic weak interaction coupling constants, relying on hadronic
parity violation to isolate the weak component of the hadronic interaction.
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1.6 The n-3He Experiment

The n-3He experiment is a high precision measurement of the parity violating proton
asymmetry in the reaction

~n + 3He→ p + t + 764 keV,

where the incident polarized neutron reacts with the 3He target nucleus to produce
a back-to-back proton and triton. We are interested in the asymmetry of the recoil
proton with respect to the spin of the neutron.

The n-3He Experiment 

3 

σ = σ0 ( 1 + σn.kp Apv + knxσn.kp Apc) 
Figure 1.7: The n-3He reaction: Polarized neutron hitting helium produces proton
and triton. The daughter products carry the energy as the kinetic energy. To conserve
momentum, the proton and triton follow opposite directions.

1.6.1 Experimental observable

The PV asymmetry involves the correlation between the spin of the neutron, shown
in red in Fig. 1.7 and Eq. 1.13, and the momentum of the outgoing proton, shown in
blue.

σ = σ0

[
1 + ~σn · ~kpApv + (~kn × ~σn) · ~kpApc

]
(1.13)

Eq. 1.13 has a parity conserving part Apc and a parity violating part Apv. The
spin of the neutron follows the magnetic field, in the vertical direction (ŷ), and the
neutron momentum is downstream in the (ẑ) direction. We orient our detector in
two different orientations for sensitivity to one of the asymmetries at a time: (a)
up-down (UD) mode with wires in individual planes aligned in a vertical row, along
(ŷ) for sensitivity to the PV asymmetry, or (b) left-right (LR) mode with the wires
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aligned in a horizontal row, along (x̂) for sensitivity to the PC asymmetry. The
PV asymmetry is the main physics result of this measurement, but we also measure
the parity conserving asymmetry to confirm the nuclear wave calculations, verify the
sensitivity of our experiment, and estimate PC mixing into the much smaller PV
asymmetry. The PV asymmetry is expected to be extremely small, on the order of
10−7. Our goal is to measure this asymmetry to a precision of 2× 10−8.

1.6.2 Experimental Setup

Fig. 1.8 shows the experimental setup for the n-3He experiment at the Fundamental
Neutron Physics Beam (FnPB), beamline 13 (BL13) [61] of the Spallation Neutron
Source (SNS) at Oak Ridge National Laboratory (ORNL). From the left to right
in Fig. 1.8, there is the 60 Hz pulsed neutron beam in the neutron guide and a
neutron beam intensity monitor (M1). The neutrons then pass through a super mirror
polarizer[60] and then through a radio frequency spin flipper (RFSF) which rotates
the neutron spin axis by 180◦ when the RFSF is turned on. Finally, after passing
through the collimator, the neutrons impinge on the helium ion chamber, which acts
as both the target and detector. A 10 Gauss holding field preserves the neutron spin.
We measure the spin asymmetry between the “spin-up” (RFSF off) and “spin-down”
(RFSF on) states to extract Apv or Apc in mode (a) or (b), respectively.
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Figure 1.8: The experimental setup for the n-3He experiment. The signal wire orien-
tation inside the ion chamber depends on the mode of operation, which is depicted
in the next section.

Fig. 1.10 shows a CAD model of the FnpB/BL13 where the experiment was performed.
Fig. 1.10 shows a CAD model of the experimental setup [54].
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Experimental Setup

Figure 1.9: CAD model for the beamline 13 (FnPB) where the experiment was per-
formed.

Details of Experiment  (II) 

16 

Figure 1.10: CAD model for the experimental setup. Figure courtesy of Eric Plemons
[54].
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1.6.3 Modes of operation

Parity violating mode (UD mode)

As we explained above, Fig. 1.11 shows orientation of the detector with the sense wire
planes horizontally aligned, in up-down mode for sensitivity to Apv.
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(a) UD mode with down spin neutrons
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(b) UD mode with up spin neutrons

Figure 1.11: The experimental setup for the parity violating UD mode

Parity conserving mode (LR mode)
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(a) LR mode with down spin neutrons
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(b) LR mode with up spin neutrons

Figure 1.12: The experimental setup for the parity conserving LR mode.

Fig. 1.12 shows the experimental set-up for the parity conserving (left-right) mode.
In this orientation of the detector, the sense wires are vertically aligned. In the
two modes we measure the asymmetry in the signal of individual sense wires for the
neutron spin up versus spin down. 95% of the total data were collected for the UD
asymmetry, while the other 5% were for the LR asymmetry. The LR data were taken
early in the experiment and then again at the end.
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Chapter 2

Neutron beam and the time of
flight choppers

The experiment uses pulsed thermal (cold) neutrons as the incident beam. Much
of the experimental design and analysis methods depend on the characteristics of
neutron beam. So, here we focus on the spallation neutron source, neutron beam
temporal and spatial profile and the time of flight choppers.

2.1 Spallation neutron source

The n-3He experiment was carried out at the Spallation Neutron Source (SNS) facility
at Oak Ridge National Laboratory (ORNL) using the 60 Hz pulsed neutron beam
from the SNS.

Fig. 2.1 shows different components of the SNS. An ion source at the front end of the
accelerator produces negatively charged hydrogen ions (H−, one proton orbited by
two electrons). The SNS uses a cesium-enhanced, RF-driven multi-cusp ion source to
provide a 65 keV H− beam at 60 Hz with a pulse length of up to 1 ms. The normal
conducting linac consists of six drift tube linac tanks,which bring the H− beam up
to 86.8 MeV, and four coupled cavity linac structures, which supply additional ac-
celeration to bring the energy to 185.6 MeV. This is followed by a superconducting
linac consisting of 11 medium-beta (β = 0.61) cryomodules each contain 3 cavities
and provide 10.1 MV/m, bringing H− ions up to an energy of 379 MeV. The high-
beta cryomodules (consisting of 4 cavities) are designed to provide up to 15.9 MV/m
resulting in a maximum proton energy of 1.3 GeV [61]. The ions pass through a thin
foil of carbon or diamond, which strips both electrons off each ion, converting it to
a proton [61]. The protons pass into a ring-shaped structure, a proton accumula-
tor ring, where proton pulses from the accelerator are accumulated and shaped to
short “bunches” of 700 ns long in base. The 1 GeV proton pulse strikes the liquid
mercury spallation target. The MeV neutrons from the spallation process are mod-
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Figure 2.1: Different components of the spallation neutron source at ORNL. The lab
name in the parenthesis indicates the facility contributing in the construction of the
component.

erated by liquid hydrogen and then guided through 18 beamlines to a wide variety
of neutron scattering instruments. Details of the SNS and the BL13 can be found in
Ref. [61].

There are compelling reasons for carrying out the n-3He experiment at pulsed neutron
source over conventional CW reactor neutron source. The pulsed nature of the beam
provides an accurate neutron time of flight information, allowing determination of the
neutron energy. Systematic effects can be studied by their energy dependence. Also,
the pulsed beam allows an effective use of a resonant RF spin flipper, eliminating the
~µ·∇B force on the neutrons, which would accelerate the neutrons in a spin-dependent
manner, inducing a false asymmetry [64].

2.1.1 Neutron flux from the SNS

Fig. 2.2 shows the SNS neutron spectrum taken in special operating mode at 1 Hz
(before modification to the DAQ timings) to record the low energy tail of the pulse.
In the normal 60 Hz operating mode, individual pulses overlap on top of the previous
tail, increasing the average neutron flux. Fig. 2.3 depicts the pulse train, also before
modification of the chopper and DAQ timing.
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Figure 2.2: Unchopped 1Hz spectrum from the SNS. The TOF does not include the
delay. Data taken during the commissioning period of the NPDGamma experiment
has been used to make the plot.

Figure 2.3: Neutron spectrum from the SNS as a function of wavelength. The red
one is calculated using McStas and blue line is the measured one. The first vertical
lines indicate optimal TOF window. Here 2.5Å < λ < 6.0Å is the naive SNS TOF
window. Figure courtesy of Elise Tang.
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2.2 Time of flight choppers

The experiment uses two time of flight frame definition choppers along the beamline
to allow optimal neutron time of flight (TOF) window. The choppers are needed for
the experiment to maximize the spin flipper efficiency and minimize the mixing of
neutrons of different energies as explained below.

2.2.1 Maximizing the RFSF efficiency

The 60 Hz pulsed cold neutrons can be characterized either by wavelength, velocity,
energy or time of flight. Two step spin sequence ↑↓ is used to form the asymmetry.
Moreover runs are separated in groups based on the spin states on dropped pulses
to reduce the instrumental systematics. A radio frequency spin flipper is used to flip
spin pulse by pulse using NMR technique. We have to tune the amplitude of the
RFSF to the specific velocity of the neutrons, which can be done for only one frame
of neutron wavelengths at any time. Thus it is necessary to chop out neutrons in all
other frames.

2.2.2 Neutrons mixing

A single neutron pulse has neutrons of different velocities. Fast neutrons will reach
the target first while slower neutrons will have longer time of flight as shown in
Fig. 2.4(a). Slower neutrons from any pulse mix with neutrons of subsequent pulses
as shown in Fig. 2.4(b). This mixing of neutrons from different frames makes neutron
energy information ambiguous.

(a) A single neutron pulse with neu-
trons of different velocities.

(b) Neutrons mixing from different
frames

Figure 2.4: a)A single neutron pulse and b) Neutrons mixing from different frames.
Figure courtesy of Elise Tang.

The use of one chopper can prevent neutron mixing of two adjacent pulses. But still
there will be mixing because of “wraparound”: neutrons so slow the chopper closes

19



(a) The use of one chopper can prevent
neutron mixing of two adjacent pulses.

(b) The use of two choppers can solve
the wraparound issue

Figure 2.5: The effect of the use of a)single chopper and b)two choppers in removing
neutron mixing. Figure courtesy of Elise Tang.

and opens again before they reach the chopper. The use of another chopper can
block the wraparound neutrons. Thus the use of two choppers along the neutron
beam guide solves any neutron mixing issue.

2.3 Chopper optimization

It is a challenge to come up with appropriate chopper settings that give the most
optimal TOF window. The optimal TOF window should ensure high neutron flux
but fulfill other requirements. To address the issue we do the chopper optimization
analysis, where we use a model spectrum and an analytical chopper. This enables
us to optimize the choppers by varying chopper location, opening angle and opening
phases to get desired neutron flux. For analytical chopper we use the work of Rob
Mahurib et al. in Ref [48], but we take a different approach for the model spec-
trum and optimization. This analysis uses NPDGamma data to model the neutron
spectrum.

2.3.1 The model

We at first rephrase the problem and define the figure of merit. We need to use
two choppers to allow neutrons of the desired velocity (wavelength/energy) range,
remove wraparound neutrons, maximize SF efficiency and minimize depolarization.
But to achieve the desired high precision measurement it is also necessary to get high
neutron flux in addition to perfect polarization. This is because the precision in the
asymmetry can be related as

δA =
σd

P
√
N
, (2.1)

where N is the number of neutrons, P is the polarization on capture, σd= the detector
efficiency.
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Since these (chopping out neutrons and maximizing the flux) requirements are con-
tradictory, we need to find an optimal condition. Considering the effect of the number
of neutrons and the polarization in the precision of the measurement we can define
our figure of merit (FOM) as follows:

FOM = NP 2. (2.2)

To find the most optimal operating conditions for the choppers, we construct a model
spectrum using an analytical chopper which enables us to optimize the choppers by
varying chopper location (x), opening angle (θ) and opening phase (f0) to get the
maximum FOM.

Chopper geometry

For the n-3He experiment, the chopper is a rotating aluminum disk coated everywhere
with a gadolinium (Gd) paint except for a slice with opening angle, θ = 2πω. Thus
the chopper can absorb a part of the neutron pulse. The disk rotates with the same
frequency as the accelerator repetition rate.

h

d

r

chopper

guide

ϴ=2πω

Figure 2.6: Chopper geometry

Analysis

For the sake of our analysis we consider a chopper with a position x, an open fraction
ω, a frequency ν=60 Hz, time period T , an opening time f0, closing time fc, inner
crossing time t1, outer crossing time t2, cross-sectional area of the guide h × d. The
distance from the bottom of the guide to the center of the chopper disk is r.
The angle at which the opening edge of the chopper window is at the lower corner of
the guide is φ1. The angle at which the opening edge of the chopper window is at the
upper corner of the guide is φ2 as shown in Fig. 2.7.
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ϕ1
ϕ2

Figure 2.7: The angles between the opening edge of the chopper and the lower and
upper corner of the guide

Expressing φ1 and φ2 in terms of r, d and h:

tanφ1 =
d

2r
,

tanφ2 =
d/2

r − h
.

ϕ

ϕ0

x

y

Figure 2.8: A triangular opening part of the guide.

From Fig. 2.8, expression for the area of the triangular part of the guide is

Atri(φ) =
xy

2
=

tan |φ|
2

(
d/2

tan |φ|
− (r − h))2. (2.3)

We can easily check that Atri(φ2) = 0 as desired and

Atri(φ1) =
h2d

4r
. (2.4)

From Fig. 2.9, the area of a trapezoid between φ0 = 0 and φ is

Atrap(φ) = h(r − h/2) tanφ
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Figure 2.9: A trapezoidal part of the guide

We note that the triangular part Atri(φ) is nearly quadratic and for trapezoidal part
Atrap(φ) is nearly linear in φ .
For the n-3He experiment, h = 12 cm, d = 10 cm, r = 29.5 cm, thus

tanφ1 =
d

2r
gives φ1 = 0.1679 rad,

tanφ2 =
d/2

r − h
gives φ2 = 0.2783 rad.

Also

t1 =
φ1

2πν
= 0.445 ms,

t2 =
φ2

2πν
= 0.738 ms.

For any angle φ of the open/closed boundary, the open area of the guide becomes
[48]:

A(φ) =


0 when φ < −φ2

Atri(φ) when − φ2 < φ < −φ1

hd/2 + Atrap(φ) when − φ1 < φ < φ1

hd− Atri(φ) when φ1 < φ < φ2

hd when φ2 < φ

(2.5)

where Atri(φ) and Atrap(φ) are given by the previous expressions.

Now if we plot A(φ) we get the open area of the guide as a function of φ that looks
as shown in Fig. 2.10.
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Figure 2.10: The open area of the guide as a function of φ. The triangular part
Atri(φ) which is quadratic in φ is indicated by the red color. The slant linear part is
for the trapezoidal part. The horizontal linear part is for when the guide is completely
blocked or open

In the plot, the triangular part Atri(φ) which is quadratic in φ is indicated by the red
color. The slant linear part is for the trapezoidal part. The horizontal linear part is
for when the guide is completely blocked or open.

Thus we have constructed the ramping-up part of a periodic chopper function. Next
we want to complete the ramping down part and express it in term of the beam
monitor time since our experimental spectrum is in beam monitor time.

To express in term of beam monitor time and introduce the phase, we define τx ≡
τ ·x/L−f0 to be the time between the chopper’s most recent opening and the neutron’s
arrival at it, then the chopper’s transmission can be written as [48]

T (τ) =


A(2πν · τx)/hd, 0 ≤ τx ≤ Tω − t2

A(2πν · (ωT − τx))/hd, Tω − t2 ≤ τx ≤ T − t2
A(2πν · (τx − T ))/hd, T − t2 ≤ τx ≤ T

(2.6)

In the expression for T (τ), the first condition just replaces our previous function A(φ)
expressed in beam monitor time. The second and third conditions just complete
the full cycle by utilizing the fact that the function is periodic and symmetric (i.e.
the chopper edges can be interchanged) so the ramping-down can be constructed by
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Figure 2.11: Plot for the transmission as a function of the time of flight.

shifting the time appropriately in our first expression. Fig. 2.11 show the transmission
as a function of τ .

We use the expression for transmission T (τ) as our chopper function. In our chopper
function the three adjustable parameters are:

– The chopper location (x)

– Chopper opening angle(θ = 2πω) and

– Opening phase (f0)

Now if we keep repeating our chopper function over periods we get the plot in Fig. 2.12
for the chopper function for any arbitrary beam monitor time. For two choppers the
resultant transmission is given by just the product of the two transmissions. This is
illustrated in Fig. 2.13.

We note that the plot for the transmission as a function of time of flight has some
features. It has a different periodicity than the chopper itself, i.e. period is stretched
by a factor of L/x. The chopper closer to the moderator (here chopper 1) has a
larger time period. Again chopper 2 has sharper ramping up and down compared to
chopper 1. This means that the opening or closing time is larger for chopper 1 which
is closer to the moderator but further from target.

We can now apply the chopper function to 1 Hz spectrum. In Fig. 2.14 we applied
the chopper transmission function (resultant of two choppers) to 1 Hz spectrum. The
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Figure 2.12: Plot for the transmission as a function of the time of flight
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Figure 2.13: The upper one is a simultaneous plot for the transmission of chopper-1
(closer to the moderator) and chopper-2 (further from the moderator). The lower one
is the resultant transmission of the two choppers.

top plot is the unchopped 1 Hz spectrum and the bottom one is the result of the
application of two choppers. We note that, while the top plot has normal scale for
vertical axis, the bottom plot is shown with log scale.

So we have a setup which allows adjusting chopper parameters to get any desired
window of the spectrum.
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Figure 2.14: Unchopped (top) and chopped (bottom) 1 Hz spectrum

2.3.2 Producing 60 Hz spectrum

The experiment uses 60 Hz spectrum. We can use our chopped 1 Hz spectrum to
produce 60 Hz spectrum. To do that we split 1 Hz chopped spectrum at each 40 time
of flight bins (16.66 ms) . Then we add all the pieces to get folded spectrum which is
equivalent to 60 Hz spectrum.

 

Int
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ity

Time

Figure 2.15: A cartoon to illustrate the recipe of producing 60 Hz spectrum from 1
Hz.
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The recipe is illustrated in Fig. 2.15 and the spectrum obtained following the recipe
is shown in Fig. 2.16.
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Figure 2.16: 1 Hz spectrum can be folded to produce 60 Hz spectrum. Lower right
plot is folded 60 Hz and lower left plot is the experimental 60 Hz spectrum.

2.3.3 Test for the model

We are now in a position to compare our model spectrum with experimental one.
Out of the three monitors in the experiment we use monitor-1 data for the fitting and
comparison. For the n-3He experiment, for chopper-1 the open fraction is ω=0.3664
and for chopper-2 it is 0.4639 ; for chopper-1, x/L = 0.363036 and for chopper-2 x/L
= 0.495049. In our fitting we look for the phase that minimizes the chi square.
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Figure 2.17: Fit for the folded 60 Hz model spectrum with the experimental spectrum.
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At first we fit for chopper-1 running and chopper-2 parked open. Then we fit for
chopper-2 running and chopper-1 parked open. This process gives us a constant
off-set for our model choppers. In Fig. 2.17: (a) is a fit for unchopped folded model
spectrum with unchopped experimental one. Fig. 2.17:(b)-(d) are the fitting of model
spectrum with experiment for different phases of chopper-1 where chopper-2 is parked
open. Fig. 2.17:(e)-(f) are the fitting of model spectrum with experimental for differ-
ent phases of chopper-2 when chopper-1 is parked open. Next, we do fitting with
both choppers running and check the consistency of the constant off-set for the
phases.
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Figure 2.18: Fit for the folded 60 Hz model spectrum with the experimental spectrum.

In Fig. 2.18: (a)-(d) are the fitting of model spectrum with experimental when both
of the two choppers are running. In (a) chopper-1 phase = 14.5 ms, chopper-2 phase
= 3 ms; (b) chopper-1 phase = 13 ms, chopper-2 phase = 1 ms; (c) chopper-1 phase
= 15.3112 ms, chopper-2 phase = 0.1333 ms; (d) chopper-1 phase = 17.47 ms ∼
0.81 ms, chopper-2 phase = 20.5 ms ∼ 3.84 ms.

We see that, with the constant phase off-set between the model chopper and the real
chopper, the model spectrum fairly agrees with the experimental spectrum.
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2.3.4 Optimization outcome

The fitting process shows that-
the constant offset of model chopper-1 phase from real chopper-1 = 5.6 ms,
the constant offset of model chopper-2 phase from real chopper-2 = (4.2± 0.5) ms.

Fig. 2.19 shows a 2-d contour plot with FOM as a function of chopper-1 phase and
chopper-2 phase. Here the color represents FOM along third axis.
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Figure 2.19: Three parameters contour plot with chopper-1 phase, chopper-2 phase
and FOM. Here the color represents FOM along the third axis.

The maximum FOM is achieved around the region of model chopper-1 phase = 4 ms
chopper-2 phase = 4.5 ms. Converting these setting to real chopper phases, we find
that the following chopper phases (in terms of real chopper phases) are the most
optimal solutions –

Chopper-1 phase: (4 - 5.6) ms ∼ 15.06 ms.
Chopper-2 phase: (4.5 - 4.2) ms = 0.3 ms.

Zooming the optimum FOM portion of Fig. 2.19, we find two distinct regions with
maximum FOM as shown in Fig(2.20). The two distinct regions can be understood
by the fact that the two choppers can be interchanged for ramping up and ramping
down to give nearly two similar windows. To check this we go back to our chopper
function and plot the transmission for two different points chosen from the two distinct
regions. We chose one point from the lower region where chopper-1 phase = 4.1224 ms,
chopper-2 phase = 4.31559 ms and another point from upper region where chopper-1
phase = 2.86128 ms, chopper-2 phase = 5.73136 ms. Fig. 2.21 shows the transmission
for both of the choppers for these settings.
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Figure 2.20: High resolution plot zooming the optimum FOM region.
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Figure 2.21: Chopper window for chopper-1 phase = 4.1224 ms, chopper-2 phase =
4.31559 ms. The values are in terms of model choppers phases.

Fig. 2.22 is the transmission plot with chopper-1 phase = 2.86128 ms, chopper-2 phase
= 5.73136 ms. We see that the the ramping up and ramping down part of the two
choppers are indeed interchanged giving nearly similar window.
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Figure 2.22: Chopper window for chopper-1 phase = 2.86128 ms, chopper-2 phase =
5.73136 ms. Values are in model chopper phases.
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To identify the spin flipper window we show on a single plot the chopped spectrum
and the spectrum with perfect polarization (NP spectrum). We do this for model
chopper-1 = 4.1224 ms, chopper-2 = 4.31559 ms phases. This shows that the spin
flipper start-up time is 12 ms.
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Figure 2.23: Chopped and NP spectrum for chopper-1 phase = 4.122 ms, chopper-
2 phase = 4.31559 ms setting. NP indicates spectrum with perfect polarization.
Optimal RFSF window is indicated.

In summarizing our analysis on the chopper optimization, we have a model with
adjustable parameters – chopper location(x), opening angle(θ) and opening phase(f0).
The model can successfully predict neutron spectrum and FOM. The model can be
used for tuning the chopper phases of the experiment to get the most optimal TOF
window.
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2.4 Chopped beam profile

Fig. 2.24 shows the neutron beam TOF spectrum with the n-3He chopper setting. In
this section we discuss the chopped beam characteristics.
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Figure 2.24: The M1 signal as a function of the TOF showing the chopped beam
profile. Along x-axis is the TOF with the T0 delay included.

2.4.1 Dropped pulses

The accelerator intentionally drops one pulse in every 600 pulses for diagnostic pur-
poses. In section 6.1.3 we show that these dropped pulses are advantageous to get
the background. However from the analysis perspective this means that we need to
understand all the consequences of the dropped pulses in our data.

The other uses of dropped pulse, we will encounter, are – construction of image pulse
(explained in the next section), forming pulse sequence with 600 pulses per sequence
and separating the dataset based on the RFSF state during the regularly dropped
pulse (used in data analysis).

Fig. 2.25 shows the monitor-1 (M1) signal with the dropped pulse. In Fig. 2.25 on
the dropped pulse we see the bump of wrap around neutrons from the earlier pulse.
And the missing wrap around from the dropped pulse shows up in the 3rd pulse from
dropped pulse. In addition to regularly dropped pulses we also have irregular dropped
pulses in the data.
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Figure 2.25: Dropped pulse in the pulse train

2.4.2 Construction of the image pulse

The signal that we get from M1 (for example in Fig. 2.24 or 2.25) or the detector,
represents the convoluted signal, i.e. the resultant of neutrons from main pulse and
wraparound neutrons. But the detector interacts with the neutrons individually. To
fully understand the constituents of the convoluted signal, we use dropped pulse to get
unconvoluted signals. We call this unconvoluted signals the image pulse or surrogate
pulse.

To construct the image pulse, we consider a sequence of 600 pulses with the first pulse
being the regular dropped pulse which is the only dropped pulse in that sequence.
Now at first we construct average pulse signal out of those 600 pulses. We take sum
over all the 600 pulses in the sequence and we divide by 599 to get the average pulse
signal Iave. Next we subtract this average pulse from each of the pulses of the 600
sequence. To get a positive value, we can also subtract the other way i.e. Iave − Ii.
After subtracting, we are left with the image pulse. For this analysis we used the
processed data file (DST) explained in section 4.4. Fig. 2.26 shows the image pulse.
We see the first wrap around shows up in the third window.
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Figure 2.26: The image (surrogate/unconvoluted) pulse generated using the dropped
pulse

In Fig. 2.27, we show the image pulse with y-axis set to log scale. Here we find every
detail of the image pulse. To show the injection flash we start from window number
-1, which is basically the pulse before the dropped pulse. The injection flash, main
pulse and up to three wrap around signals are shown in the plot.
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Figure 2.27: The wrap around in the image pulse

35



Figure 2.28: In various colors (other than black) are the image (surrogate) pulses.
The black one is the resultant pulse.

The convoluted neutron spectrum consists of these image pulses. Fig. 2.28 and
Fig. 2.29 shows the convoluted signals made out of the image pulses. The situa-
tion is better illustrated with y-axis on log scale as shown in Fig. 2.29. Here looking
at any particular pulse, we can identify each component in the convolution. Any
pulse has non-trivial contributions from — i) the main pulse ii) chopper closing leak-
age (overlap) from previous pulse iii) chopper opening leakage from next pulse iv) the
injection flash from next pulse, very fast unmoderated neutrons and gammas imme-
diately after the proton pulse hits the Hg target v) three wrap around bumps from
earlier pulses. What we see from any ordinary M1 signal is the result of all of these
components as shown in black in Fig. 2.29.
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Figure 2.29: (In various colors other than black) The image (surrogate) pulses with
contribution from wrap around and injection flash. (In black) The pulses when all
the contributions are integrated.

2.4.3 Neutron beam spatial profile

We investigated the spacial distribution of the beam before entering the target and
also far back from the target. We wanted to know how it would change from the
upstream to the downstream position because of the small beam divergence. We did
a spatial beam scan to know that. This beam scan was also necessary to know the
beam centroid in order to align the collimator and the target precisely.

We used an xy robot (stepper motor driven Velmex linear stages) that held the
beam monitor behind a 1 cm aperture, then moved it along the xy plane with small
increments. For upstream we did a 17 × 19 scan and for downstream we did a 17 ×
22 scan with varying step size. The xy robot was programmed to automate the scan
and to give the user the ability to control it remotely.

Fig. 2.30 shows the spatial beam profile in the upstream position (i.e. before the beam
enters the target). Fig. 2.31 shows the same thing but for the downstream position
(i.e. far back from the target). We note that going from the upstream to downstream
the beam spreads out. This is expected because of the small beam divergence once
the beam comes out of the guide. The divergence is defined by the guide reflectivity
parameter, in our case guide has m = 3, this defines the glancing angle of the neutron
on guide surface. This means low energy neutrons have larger divergence.
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Figure 2.30: Upstream beam profile from the scan. The measured intensity is nor-
malized by the M1 signal.

Figure 2.31: Downstream beam profile from the scan. The intensity is normalized by
the integrated M1 signal.

From the data of these plots, we calculated the beam centroid both for the upstream
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and downstream position using

x̄ =

∑
i xiIi∑
i Ii

, (2.7)

ȳ =

∑
i yiIi∑
i Ii

, (2.8)

where Ii is the average normalized beam intensity at position (xi, yi) on the xy plane.
The calculated beam centroid is shown in Fig. 2.32. Then we used a laser beam
to pass through both of these centroids and used the connecting straight line as a
reference to align the target and collimator to the beam center.

2.4.4 Beam collimation

The beam is collimated in the experiment to fit it to the full width of the chamber
in a way to let the daughter products of the reaction range out inside the chamber.
A collimator made with Cd and Li-6 is used in the experiment. Fig. 2.32 shows a
CAD model of the collimator with all the dimensions and labels. In normal operating
condition, we used a collimating opening of horizontal × vertical = 10 cm × 8.2 cm
in the UD mode and 8.2 cm × 10 cm for the LR mode.
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Figure 2.32: Beam collimator located in the front of the target chamber. The beam
centroid shown was calculated using the two beam scan measurements and relative
to the ruler attached to the collimator. The signal wire alignment shown is for the
UD mode. The CAD model part of the diagram is courtesy of Chris Hayes [59].
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The beam centroid label on the figure was calculated using the beam scan explained
in the previous section. The coordinate system shown in the figure represents the con-
ventions used in the experiment for the directions. The signal wire alignment shown
here is for the UD mode. The wire labeling was established using the collimation
scan and same labeling convention is used everywhere including for the data analysis.
For the LR mode, the chamber is rotated beam left 900 counter clockwise looking
downstream. In the LR mode, signal wire #9 is in the beam left side (towards the
+x axis in this diagram). In UD mode #9 is on the top.
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Chapter 3

Spin flipper & Detector

In this chapter we briefly discuss about the principles, functionalities and the roles
of two of the most important components of the experiment – radio frequency spin
flipper (RFSF) and the ion chamber. The ion chamber acts both as target and
detector. The RFSF is the subject of the Ph.D. thesis of Chris Hayes [59] and the
n-3He ion chamber is the subject of the Ph.D. thesis of Mark McCrea [56]. The details
outside this chapter can be found in their theses.

3.1 Radio frequency spin flipper (RFSF)

Pictures of Outer Coils 

22 

(a) Wire windings on the inner and
outer shell.

Spin Flipper for the n3He Experiment 

21 

(b) The spin flipper inside the alu-
minum housing

Figure 3.1: The spin flipper interior and housing [59]

The experiment uses a radio frequency spin flipper (RFSF) to flip the neutron spin.
The spin flipper is a double cosine theta coil and has the working principle analogous
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to that of NMR (explained in the next section). It allows for both longitudinal and
transverse spin rotation. The spin flipper is composed of wire windings over two semi-
circular outer shells and one cylindrical inner shell as shown in Fig. 3.1. These shells
were 3D printed. The design of the spin flipper was aimed to minimize the interference
of the RFSF field with the ion chamber or readout electronics. The double cosine
theta coil was chosen over a cosine theta coil to achieve uniform magnetic field in the
interior region but no magnetic field in the outside as shown in Fig. 3.2. An additional
layer of shielding is imposed by placing the spin flipper inside a thick aluminum shell
(as shown in Fig. 3.1 b) to ensure that the RF field does not leak outside.

(a) Field lines for cosine theta coil

wire windings
field lines

x

y

(b) Field lines for double cosine theta coil

Figure 3.2: Field lines for cosine theta coil and double cosine theta coil. In the case
of double cosine theta coil, the inner and outer shell and the associated windings are
used to cancel out any residual field and finally giving uniform magnetic field inside
the spin flipper but zero field outside.

3.1.1 RFSF working principle

Two standard techniques for rapid reversal of the neutron polarization are a) “adi-
abatic fast passage” (AFP) and b) resonant spin flipper (RSF). Both of them use
radio-frequency field. But AFP requires a substantial magnetic field gradient which,
upon spin reversal in the geometry of the experiment, will create a substantial change
in the neutron beam transverse momentum; the resulting change in the incident neu-
tron spatial distribution at the target can easily give a systematic effect at the sought
level of experimental sensitivity [63], [64]. So in order to eliminate the magnetic field
gradient deflection the experiment uses a resonant spin flipper, which is also based
on the application of a RF field, in this case, in the presence of a homogeneous static
magnetic field.
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Now the spin flip principle can be discussed either using a semi-classical formulation
(using rotating frame) or using a quantum mechanical formulation (Rabi formula) as
presented in the original Rabi, Ramsey and Schwinger paper[65]. Here we consider
the first formulation.

Consider a classical magnetic moment ~µ in a field ~B0 = B0k̂. It will precess around
~B0 at a frequency

~ω0 = −γ ~B0, (3.1)

where γ is called gyromagnetic ratio. Now suppose we view this process in a frame
that is rotating at a frequency ~ω parallel to ~B0. In this rotating frame, the precession
frequency will be

~ωr = ~ω0 − ~ω = −γ ~B0 − ~ω = −γ( ~B0 +
~ω

γ
). (3.2)

Thus the effective field in this rotating frame will be

~Br = ~B0 +
~ω

γ
. (3.3)

This result is valid even if ~ω and ~B0 are not parallel. We now consider the problem
of our interest, where in a non-rotating frame the B-field is

~B = B cos(ωt) î−B sin(ωt) ĵ +B0 k̂, (3.4)

where B � B0

At t = 0
~µ(0) = µ k̂. (3.5)

Now we would like to find out the evolution of ~µ(t). Since ~B depends on time, it
proves advantageous to first consider the problem in a frame that rotates at the same
frequency ~ω = −ω k̂ as the small clockwise rotating field B. In this frame, the rotating
component of ~B gets frozen (say along the x-axis) and the constant component B0 k̂
gets reduced according to Eq. 3.3 so that the effective time independent field is

~Br = B îr + (B0 −
ω

γ
)k̂ , (3.6)

where îr is the unit vector in the x-direction in the rotating frame and k̂ = k̂r. In
this frame ~µ will precess around ~Br at a frequency

~ωr = −γ ~Br , (3.7)

where

|~ωr| = ωr = γ

[
B2 + (B0 −

ω

γ
)2

] 1
2

. (3.8)
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To get the time evolution of µz(t), we consider the situation in the rotating frame

illustrated in Fig. 3.3. In this case, the effective magnetic field is ~Br. The magnetic
moment starts out along the z axis and precesses around ~Br. The z-component of
the moment oscillates with amplitude µ sin2 α, where α is the opening angle of the
cone. At resonance, ~Br lies along the x axis and ~µ precesses in the plane normal to
it. The amplitude of the µz oscillation is then at its maximum value of µ.
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Figure 3.3: The situation in the rotating frame

From Fig. 3.3, we can write the time evolution for µz as

µz(t) = µ cos2 α + µ sin2 α cosωrt. (3.9)

It is easy to show (see appendix B.1) from the Fig. 3.3 that, by expressing cos2 α and
sin2 α in terms of ω, ω0, γ and B, the time evolution can be written as,

µz(t) = µz(0)

[
(ω0 − ω)2

(ω0 − ω)2 + γ2B2
+

γ2B2 cosωrt

(ω0 − ω)2 + γ2B2

]
. (3.10)

This formula for µz(t) applies in the lab frame as well, since µz is invariant under

z-rotations. As ω increases from 0, the z-component of ~Br steadily decreases; α, the
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opening angle of the cone, increases and the amplitude of oscillation, µ sin2 α, grows.
At magnetic resonance, ω = ω0, ~Br = Bîr, α = π/2 and the cone becomes a circle
in the y-z plane, and µz oscillates with the largest amplitude µ at a frequency γB.
The behavior for ω > ω0 is obvious. Now if we apply the rotating field at resonance
frequency, but for a time t = τ such that

ωt = γBτ =
π

2
. (3.11)

then Eq. 3.10 gives µz = 0. Such a pulse called 900 pulse, will swing the magnetic
moment into the x− y plane (in either frame). There after ~µ will precess around B0

~k
at the frequency ω0 in the lab frame.
Now, if we apply a 1800 pulse, i.e. choose t = τ such that

ωt = γBτ = π, (3.12)

τ =
π

γB
. (3.13)

Then, from Eq. 3.10
µz(t) = −µz(0), (3.14)

i.e. the pulse will reverse the sign of ~µ and leave it pointing down the z-axis where it
will stay (in either frame).

3.1.2 1/t ramp for the RF field amplitude

In the experimental set-up a RF field is confined to a limited space along the neutron
beam, in the presence of a homogeneous guide field, with the neutron momentum
direction along ẑ, the direction of the RF field. For fixed RF and guide field values
the time/amplitude relation for the spin reversal can be satisfied for only a single
velocity component of a continuous beam. However, for a spallation source, B can be
varied as a function of time of flight, satisfying the spin reversal condition for all the
neutrons in a pulse. If we assume an RF field confined to a length Lc along the beam
and the spin flip coil located at L0 from the spallation source, the RF amplitude have
to be varied with the time as

τ =
Lc
v(t)

. (3.15)

Invoking Eq. 3.13 we can write

π

γB
=

Lc
L0/t

, (3.16)

B(t) =
πL0

γLct
, (3.17)
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Figure 3.4: The RFSF current vs neutron time of flight

which shows that the RF amplitude needs to be tuned as 1/t . Here, t is the neutron
time of flight. Fig. 3.4 shows the RFSF current vs neutron time of flight plot, in this
plot we see the 1/t envelop used for the magnitude of the RF field.

Fig. 3.5 shows the spin flip ratio for different guide field values from a measurement
to tune the vertical guide field at fixed ω0.
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Figure 3.5: Spin flip ratio for different guide field values at fixed ω0.
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3.1.3 3He transmission polarimetry

During the n-3He data taking process polarimetry was performed on a monthly basis
to measure the consistency of the RFSF performance and keep a history of neutron
polarization. The n-3He polarimetry utilized 3He cell as analyzer and filter to mea-
sure the beam polarization and the RFSF efficiency. The method relies on the fact
that, the neutron absorption in 3He is strongly spin-dependent, i.e. spin-polarized
3He volume transmits neutrons with one spin component while absorbing the other.
Unpolarized 3He volume shows no neutron spin dependence preference. The 3He cell
used for the polarimetry is initially polarized using the technique of Spin Exchange
Optical Pumping (SEOP), and the polarization of the cell is reversed using Adiabatic
Fast Passage (AFP) [59]. Fig. 3.6 shows average neutron beam polarization from 8
polarimetry measurements. Fig. 3.7 shows average spin flipper efficiency from the
polarimetry measurements.
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Figure 3.6: Average neutron beam polarization. The small slope is attributed to the
super mirror polarizer. Note, the plot is zero supressed. The data is taken from the
appendix of Ref. [59].

Averaging over all wavelengths the average values for beam polarization and spin
flipper efficiency were reported [59] to be

〈Pn〉 = 0.936± 0.002 and 〈εsf〉 = 0.998± 0.001. (3.18)

These values in Eq. 3.18 are used to correct the polarization in the extracted physics
asymmetry according to the relation[59]

Ap =
A′p

〈Pn〉〈εsf〉
, (3.19)

where A′p is the physics asymmetry without correction for effective polarization. It
was found that the small dependence of beam polarization and spin flipper efficiency
on neutron time of flight (or wavelength) do not affect our physics asymmetry signif-
icantly. So, only their average values are used in Eq. 3.19.
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Figure 3.7: Average spin flipper efficiency from the polarimetry measurements. Data
from table A.3 of Ref. [59]

3.2 Ion Chamber / Detector

Figure 3.8: The n-3He ion chamber [56]. The ion chamber acts both as target and
detector.

The detector for the n-3He experiment is a multi-wire proportional chamber [62],[56]
filled with pure 3He gas at 0.47 atmosphere. As a multi-wire ionization chamber, it
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has multiple wires as the electrodes — high voltage (HV) wires to provide bias for
the charges and signal wires for charge collection.

The use of pure fill 3He gas enables us to use the ion chamber as 3He target for the ex-
periment and also ionization detector for measuring the ionization distribution.

The use of gas mixture could improve the HV characteristics, but that would com-
plicate extraction of neutron capture signals due to 3He from others. To minimize
the signal variation from individual capture, we use wires as the electrodes instead
of plates inside the chamber, so that most of the protons and tritons can range out
inside the chamber. Also, the length of the chamber and pressure are determined in
a way that the full neutron beam is absorbed within the chamber to maximize the
statistics.

3.2.1 Target chamber interior structure

The ion chamber has 17 high voltage frames with 8 wires each and 16 signal frames
with 9 wires each. So, in total we have 144 signal wires and each of the signal wires
is used to extract the asymmetry. Fig. 3.9 (a) shows an isolated signal wire plane
and Fig. 3.9 (b) shows all the high voltage and signal planes stacked on top of each
other.

(a) One signal wire plane (b) Planes stacked on top of each other

Figure 3.9: The signal and high voltage planes (layers) used inside the ion chamber

Fig. 3.10 shows a 2D side view for the orientation of high voltage wires and signal
wires in the chamber. In red are 17 high voltage (HV) planes with 8 wires each
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Figure 0.1: Schematic of the wire layout in the n3He chamber, shown in cross section

through the chamber’s central axis. Each colored point represents one wire. During

operation the wires were aligned parallel to either the x̂ (horizontal) or ŷ (vertical)

beam-line axis to measure either PV or PC asymmetries. Linear dimensions are in

centimeters.

Figure 3.10: Signal and high voltage wires inside the ion chamber (2D side view).
During the operation the wires were aligned parallel to either x̂ (horizontal) or ŷ
(vertical) beam-line axis for PV and PC asymmetry measurements respectively. Di-
mensions are mentioned in cm. Diagram courtesy of M. McCrea [56].

and in blue are 16 signal wire planes with 9 wires each. The applied high voltage
was chosen to be -353 V for normal data taking operation. Two adjacent wires are
separated by 1.9 cm and the length of the chamber is 33.8 cm. As a result each
signal wire is surrounded captured ions in an equipotential volume of dimension 16
cm × 1.9 cm × 1.9 cm. This volume is less for the top and bottom wires. Moreover,
there is a 1.29 cm separation between first HV plane and the first window of the ion
chamber. As mentioned in the experimental setup, the wires are horizontally aligned
with respective to the beam axis for the parity violating asymmetry measurement.
For the parity conserving asymmetry measurement, the ion chamber is rotated 900

counter clockwise (with respect to the beam axis), so that in this case the wires inside
the chamber are vertical.
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3.2.2 Signal from the ion chamber

Once a thermal neutron reaches 3He inside the ion chamber, two interactions take
place – i) Interaction of the neutron with nuclei ii) Interaction of charged reaction
products with atomic electrons.

In the first case, the neutron is absorbed according to the reaction:

~n + 3He→ 4He? → p + t + 764 keV.

The energy is carried away as the kinetic energy of the daughter products and they
move in the opposite directions to conserve momentum. Since triton is three times
more massive than proton, an outgoing proton carries 573 keV and triton carries 191
keV of the total kinetic energy.

Next follows the electromagnetic interaction with atomic electrons when proton and
triton travel through the 3He gas:

p + 3He→ p + 3He+ + e−,

t + 3He→ t + 3He+ + e−.

Here proton and triton lose energy due to this ionization process. As a result ion
pairs are created. These charge pairs are then collected by the nearest electrodes as
shown in Fig. 3.11 because of the equipotential wall created around the wire.

2

neutron
proton
Triton
Electron Collection
Ion Collection

Figure 0.2: Charge collection diagram. Wire spacing and proton and triton distances

are to scale. There are thousands more ion-electron pairs created than illustrated

here in a real event.

(a) PCB with even numbered wire frames.(b) PCB with odd numbered wire frames.

Figure 0.3: Signal Read out PCBs. Each PCB did carried one half of the frames.

Figure 3.11: Creation and collection of ion pairs along the proton and triton tracks
[56]
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The energy loss by proton and triton during the ionization process can be used to
estimate numbers of ion pairs created. For heavy charged particles (mincident � me),
the rate of energy loss due to collisions with electrons, is given by the Bethe-Bloch
formula [51],[52]

−dE
dx

=
4πnz2Z2e4

mev2

[
ln

2mev
2

I[1− (v/c)2]
− (

v

c
)2
]
. (3.20)

Here, −dE is the energy lost in a distance dx, n the number of electrons per cm3 in
the stopping substance and Z its atomic number; me the electron mass; ze the charge
and v the speed of the particle and I is the mean excitation potential of the atoms
in the stopping substance.

Fig. 3.12, generated using the Geant4 simulation discussed in chapter 5, shows the rate
of energy loss by the proton and triton as a function of distance from the vertex.

The rate of energy loss is also known as stopping power. Since the production of an
ion pair requires a fixed amount of energy, the density of ionization is proportional
to the stopping power.

The density of ions created

nion ∝ −
dE

dx
. (3.21)

Thus, Fig. 3.12 is also referred to as the ionization curve.
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Figure 3.12: The ionization curve for ptoton and triton inside 3He. The stopping
power (- dE

dx
) is proportional to the density of ions produced along the tracks.
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The mean range of proton or triton can be calculated by integrating the reciprocal
stopping power over the energy, i.e. the range

R =

∫ E0

0

[
− dE

dx

]−1

dE. (3.22)

As we can see from Fig. 3.12, at 0.47 atmosphere the proton range is 12.1 cm and
triton range is 4.3 cm. Details of the stopping power and range are discussed in
chapter 5. For each capture event, the energy deposition happens in multiple wires
making the wire signals correlated.

The ion chamber, as a detector, works in current mode instead of counting mode
(pulse mode). This is because of the large neutron flux from the SNS and the large
number of capture events occurring in a short period of time. In counting mode,
for each capture event the signal and time are recorded. But this approach has the
limitation that if a large number of captures happen in a short time, the individual
events can not be separated. The pile-up of the events reduces the efficiency of the
detector. But in current mode, a continuous output current is measured from each
signal wire, which is proportional to the energy deposited around the signal wire

E ∝ Qs =

∫
is(t)dt. (3.23)

In current mode, the measured signal consists charge from ionization and electronic
noise. High event rates does not affect the detector efficiency in current mode. The
design of readout electronics is different for counting mode versus current mode op-
eration. In the next chapter, the details of readout electronics are discussed.
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Chapter 4

Readout electronics

The signals from the ion chamber signal wires are converted to voltages using a current
to voltage preamplifier. Then, the voltages are digitized using a 24-bit ADC to store
the data. So, the n-3He readout electronics consists of two major components: current
to voltage preamplifier (preamp) and data acquisition system.

4.1 Preamplifier

The experiment uses a current to voltage preamplifier to convert current from the
detector running in current mode to voltage. These preamps were designed at the
Oak Ridge National Laboratory. Fig. 4.1 shows one of the four preamp boards used in
the experiment. There are 36 channels per board. Fig. 4.2 shows the circuit diagram
for the preamp.

Figure 4.1: The preamplifier attached to the ion chamber
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Appendix D: n3He Target Chamber 249
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Figure D.18: Preamp Circuit Diagram. There are 36 preamps per board.Figure 4.2: The preamp circuit diagram. There are total 4 boards with 36 channels
per board.
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4.2 Data acquisition system

It is evident that a suitable data acquisition system (DAQ) is vital in achieving the
goal of our precision. A detailed list of expected requirements were worked out which
would fit the nature of our data collection.

To achieve our goal, following are our expectations for the DAQ in general:

– The DAQs are expected to be capable of dealing with large amount of data at
high sample rate but maintain very low ADC noise.

– We expect them to have high channel density with simultaneous input.

– We expect maximum sampling rate but the file size manageable.

– Triggering on the accelerator T0 with jitter < 50 ns.

– The DAQ is expected to be capable to take data only in our region of interest.

– Time bin and the number of entries per run can be adjusted.

– It should be possible to synchronize all the ADC modules with T0

– We expect to have checksum algorithm to detect corrupt data .

– We expect to have built in event header.

Now for the systematics we have more challenging expectations. The 1st plane of the
detector can be set to as high as 10 V (full scale). The back plane of the detector is as
small as ∼ 0.1% of full scale. The size of the asymmetry is, A ∼ 10−7. Our expected
uncertainty in the asymmetry is, ∆A = 2×10−8 (statistical). The expected maximum
contribution from systematics is ∆Asys = 10% of ∆A. This gives the constraint
∆Asys < 10−9. Thus the biggest challenge is limiting ∆Asys due to electronic pickup
of the spin flipper in the experiment, which turns on and off at 30 Hz.

4.2.1 The DAQ modules

To fulfill all these expectations we use the DAQ (model ACQ1002R – 2×ACQ435ELF-
24) from D-tAcq solutions. We requested D-tAcq solutions to include some custom
features to fit out requirements. The requested features were: Capability to operate in
repeating gate mode, user trigger, programmable transient length, resynchronization
of sample clock on the trigger, sum and decimation and an embedded event signature
with sample count and checksum. In addition to our requested features it has the
following standard features:

– The ACQ1002R motherboard contains Xilinx Z7020 (Zynq) hybrid FPGA with
2 ARM CPU cores and 2 FMC slots.

– The modules have delta-sigma ADCs (TI ADS1278 chip).
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– They are 24 bit ADC per channel with true simultaneous analog input.

– The maximum sampling rate is 128 kSPS (hi res) or 50 kSPS (low res) and
minimum is 8 kSPS per channel.

– They have 2x24 channels per module.

– The signal to noise ratio is 104 dB (high speed) or 108 dB(high resolution).

– They have 1GB DDR memory on board.

– They have external clock, trigger and an internal clock.

– They run embedded Linux.

– The firmware is in flash memory and can be updated easily.

– The DAQ can be accessed through ssh or a serial console port.

– It has several separate sites (TCP/IP) for capture and configuration.

– The data is transferred and saved to the control computer using a TCP/IP
connection (e.g. using netcat).

– It supports EPICS CSS for controlling the DAQ.

– The Data and run time parameters can be viewed in real time using CSS.

(a) The ADC modules (b) Single ADC card

Figure 4.3: The ADCs used for the n-3He experiments

Each DAQ module uses three Texas Instrument ADS1278 ADCs[55]. They allow
simultaneous sampling of 8 channels. Traditionally, industrial delta-sigma ADCs
offer good drift performance using digital filters with large passband droop. As a
result they have limited signal bandwidth and are mostly suited for DC measure-
ment. High-resolution ADCs in audio applications offer larger usable bandwidth, but
the offset and drift specifications are significantly weaker than the respective indus-
trial counterpart. The ADS1278 combines both features of these types of converters,
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allowing high-precision measurement with excellent DC and AC specifications. To al-
low trade-offs between speed, resolution and power, it supports four operating modes
(hi-speed, high-resolution, low-power, low-speed), which the user can select based on
requirements.

The high-order, chopper-stabilized modulator achieves very low drift with low in-band
noise. The on-board decimation filter suppresses modulator and signal out-of-band
noise. These ADCs provide a usable signal bandwidth up to 90% of the Nyquist rate
with less than 0.005dB of ripple.
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OVERVIEW

High-Speed, High-Resolution, Low-Power, and
The ADS1274 (quad) and ADS1278 (octal) are 24-bit, Low-Speed. Table 2 summarizes the performance of
delta-sigma ADCs based on the single-channel each mode.
ADS1271. They offer the combination of outstanding
dc accuracy and superior ac performance. Figure 57 In High-Speed mode, the maximum data rate is
shows the block diagram. Note that both devices are 144kSPS. In High-Resolution mode, the SNR =
functionally the same, except that the ADS1274 has 111dB (VREF = 3.0V); in Low-Power mode, the power
four ADCs and the ADS1278 has eight ADCs. The dissipation is 31mW/channel; and in Low-Speed
packages are identical, and the ADS1274 pinout is mode, the power dissipation is only 7mW/channel at
compatible with the ADS1278, permitting true drop-in 10.5kSPS. The digital filters can be bypassed,
expandability. The converters are comprised of four enabling direct access to the modulator output.
(ADS1274) or eight (ADS1278) advanced, 6th-order,

The ADS1274/78 is configured by simply setting thechopper-stabilized, delta-sigma modulators followed
appropriate I/O pins—there are no registers toby low-ripple, linear phase FIR filters. The modulators
program. Data are retrieved over a serial interfacemeasure the differential input signal, VIN = (AINP –
that supports both SPI and Frame-Sync formats. TheAINN), against the differential reference, VREF =
ADS1274/78 has a daisy-chainable output and the(VREFP – VREFN). The digital filters receive the
ability to synchronize externally, so it can be usedmodulator signal and provide a low-noise digital
conveniently in systems requiring more than eightoutput. To allow tradeoffs among speed, resolution,
channels.and power, four operating modes are supported:

(1) The ADS1274 has four channels; the ADS1278 has eight channels.

Figure 57. ADS1274/ADS1278 Block Diagram

Table 2. Operating Mode Performance Summary

MODE MAX DATA RATE (SPS) PASSBAND (kHz) SNR (dB) NOISE (μVRMS) POWER/CHANNEL (mW)

High-Speed 144,531 65,472 106 8.5 70 (1)

High-Resolution 52,734 23,889 110 5.5 64

Low-Power 52,734 23,889 106 8.5 31

Low-Speed 10,547 4,798 107 8.0 7

(1) Specified at 105kSPS.

20 Submit Documentation Feedback © 2007–2011, Texas Instruments Incorporated

Product Folder Link(s): ADS1274 ADS1278

Figure 4.4: ADS1278 block diagram[55]. Each n-3He DAQ contains 6 of these IC’s, 3
in each of two modules

In the experiment five such DAQ modules are used. Four of them (clean DAQs, named
as DAQ21-24) are used for the detector signals and the fifth one (dirty DAQ, named
as DAQ30) is used for the RFSF and M1 signal. Each module has 2×24 channels. For
the clean DAQ, 18 of the 24 channels of each of the two DAQ modules are connected
to the preamp signals and for dirty DAQ only 2 channels are used.
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Figure 4.5: Analog input front-end circuit of the DAQ

4.2.2 ADC characteristics

Extensive tests and various measurements were performed to characterize the DAQ
performance and to make sure it would fulfill our requirements. Bare ADC noise was
measured to be 27 µV at 50 kHz sample rate as shown in Fig. 4.6.
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Figure 4.6: Distribution of the bare ADC signal. The DAQ was running at 50 kHz
sample rate.
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To decide which sample rate would be most appropriate for the experiment, we mea-
sured the bare ADC noise by running it at different sample rates. Performance of the
ADC against different sample rates shows that the noise jumps after a cutoff (around
52 kHz) as shown in Fig. 4.7, because the ADC shifts from high-resolution mode to
high-speed mode.
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Figure 4.7: ADC noise at different sampling rate

In the experiment, averaging of 16 samples was performed on the detector signals.
This way we kept all the information but reduced the file size to a manageable level.
The DAQ does the averaging in real time while taking the data. We decided to run
the experiment with 50 kHz sample rate and to average 16 samples per output sample
for the detector signals. For the dirty DAQ, we decided to run at 100 kHz sample
rate with no averaging, since the RFSF signal had at a very high frequency (∼ 30
kHz) and for the M1 signal we wanted to keep the resolution as high as possible for
each time bin.

To verify the randomness of the noise, we computed autocorrelations for the noise
data values at varying time lag. Fig. 4.8 shows the autocorrelation plot up to 100
time bins. Here the data were taken with the DAQ running at a 10 kHz sample rate.
In the plot the vertical axis is the autocorrelation coefficient Rh = Ch/C0, where Ch
is the autocovariance function

Ch =
1

N

N−h∑
t=1

(Yt − Ȳ )(Yt+h − Ȳ ), (4.1)

and C0 is the variance

C0 =
1

N

N∑
t=1

(Yt − Ȳ )2, (4.2)
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and the horizontal axis is the time lag h (h = 1,2,3, ... ...). In this plot 1 lag = 100µs.
By definition Rh is between -1 and +1.
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Figure 4.8: Autocorrelation plot for the ADC noise data. The DAQ was running at
10 kHz.

To validate the sampling at the maximum sampling rate, we took a signal having
a rise time comparable to the maximum sample rate (128 kHz) and then took data
for the rise time with the DAQ running at 128 kHz. Fig. 4.9 shows the rise time
measurement.

0.0146 0.0148 0.015 0.0152 0.0154 0.0156
-0.5

0

0.5

1

1.5

2

2.5
0.014883 s

0.0149071 s

Rise time ~24 micro sec

DAQ running at 128KHz

Time [sec]

Input voltage: -4V
Resistance in series: 3.84MOhm

Si
gn

al
 s

tr
en

gt
h 

 [V
]

Figure 4.9: Rise time measurement with DAQ running at 128 kHz
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The DAQ can average samples (n = 2, 4, 8, 16, ... ... 128) during the data taking
process. Fig. 4.10 shows a test to confirm this feature of the DAQ. In this test
we recorded a pulse with rising and falling edges and the data is recorded at 50
kHz sampling rate in resynchronization mode (explained in the next section) first
without any averaging and then averaging four samples. Since they were recorded in
resynchronized mode, we expect the samples from both dataset to be consistent up
to the jitter. In the plot we compare the signal from three datasets: non-averaging
mode, averaging four samples and data obtained by interpolating (averaging) four
samples from the first dataset.

Time bin

AD
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t

without averaging
with averaging
interpolated

...

Figure 4.10: The test for the averaging feature of the DAQ. For blue points, a small
offset of 0.4 time bin has been added to distinguish them from the red points. The
maximum height of the signal is 4 V. (1 ADC count = 4.6566×10−9 V and 1 time
bin = 20 µs.)

4.2.3 Resynchronization and jitter

The ADC has a 30 MHz internal clock which is used as the reference for the sample
clock (rate). Jitter in ADC ( Jitter in time × slope) must be less than the counting
statistics. Furthermore, systematic spin-dependent jitter would cause a false asym-
metry. For this reason, the ADC was customized to resynchronize to the nearest clock
cycle after each event to reduce jitter to less than 35 ns. The following test confirmed
the desired jitter of the ADC:

A 60 Hz pulse with ramp of width 320 µs, a leading edge of 100 µs, and a trailing
edge of 100 µs was fed to the ADC in repeating gate mode with a trigger on the rising
edge. Then each rising edge of the pulse (5 points in the middle of rising edge) was
fitted to the linear equation y = ax+ b using the least square method. This gives the
x-intercept and the slope of the rising edge. For each fit, the x-value of the header
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Figure 4.11: Test signal for testing resynchronization of the ADC

is subtracted from the x-intercept of the rising edge. This gave ∆t = ti-t0, where ti
= the intercept from the fit, t0 = the x-value for header. This was done for all the
pulses. Finally ∆t vs the pulse number was plotted as in Fig. 4.12. Also a histogram
for all the ∆t was drawn. The histogram in Fig. 4.13 shows that the jitter is 36
ns. Thus the jitter was found to be as expected (1/30 MHz), with a small deviation
because of slow drifts, the convolution with the bit noise and the jitter in the signal
generator.
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Figure 4.12: Jitter from the intercepts.
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Figure 4.13: Jitter from the intercepts. Projection of Fig. 4.12 on y-axis. FWHM
was found to be 36 ns.

4.2.4 Event length, dead time and file size

The DAQ allows setting the number of samples to be recorded per trigger or T0 (one
event). For the DAQs of the detector signals (called clean DAQs), the sample rate
was set to 50 kHz. Thus, the maximum achievable number of samples is 50 kHz ×
16.667 ms = 833 samples per T0. We decided to set the event length for clean DAQs
to 830 to allow time for triggering. The DAQ (called dirty DAQ) of the RFSF and
M1 signals, was set to take data at 100 kHz. The maximum achievable number of
samples per event is 100 kHz × 16.6666 ms = 1667. We set the event length for dirty
DAQ to 1660. The clean DAQs were set to average 16 samples, but no averaging was
performed for dirty DAQ. Moreover the DAQs have fixed dead time (readout time)
of 35 samples (with no averaging) at the end of any event. This amount of time was
missed for every event.

Thus, the recorded number of samples per event was:
Clean DAQ: (830-35)/16 ∼ 50 (1 header + 49 samples)
Dirty DAQ: (1660-35) = 1625 (1 header + 1624 samples)

The dead time in the DAQ is calculated to be:
Clean DAQ: (52.06 - 49) × 320 µs = 0.98 ms
Dirty DAQ: (1667-1624) × 10 µs = 0.430 ms

To allow for long enough duration for uninterrupted data taking, but still separated
into runs, we recorded 25000 T0 pulses (events) per run. With 25000 T0‘s per run, the
clean DAQ file size was 25000 T0 × 50 samples × 4 bytes per sample × 48 Channels
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= 240× 106 bytes. We process the recorded data file of the dirty DAQ to keep only
the signal 2 channels and discard the remaining.

The dirty DAQ file size (before processing) was 25000 T0 × 1625 samples× 4 bytes per
sample × 8 channels = 1300× 106 bytes. The dirty DAQ file size (after processing):
25000 T0 × 1625 samples × 4 bytes per sample × 2 channels = 325×106 bytes.

4.2.5 The data file structure

For each clean DAQ unit, the 48 channels are divided into two sites – site 1 and
site 2, with each site (module) having 24 channels. In the data stream, each sample
is 4 bytes long. Out of these 32 bits (4 bytes), our data is 24 bits and remaining
least significant 8 bits record the channel ID. All clean DAQ data streams have the
data structure as shown in Fig. 4.14. In Fig. 4.14, n is the event length (number
of samples per pulse) and N is the number of events (pulses) per run. For n-3He,
n = 50 and N = 25000 for the detector data. The first sample of any event is the
event-header with information shown in (4.15). Here, 0xaa55f154 or 0xaa55f15f are
event makers (called event magic) to distinguish the event-header from signal. The
checksums are to ensure data integrity and any event-header contains checksum from
immediate previous event. For the dirty DAQ data file, the data structure reduces
to the structure shown in Fig. 4.16 after processing (after throwing away unused
channels), with the first sample of any event being checksum and sample number,
respectively, as shown in Fig. 4.17.
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Figure 4.14: Deata file structure for the detector data
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0: 0xaa55f154 1: 0xaa55f154 2: 0xaa55f154 3: 0xaa55f154 4: Event number 5: Checksum 1 6: Sample number 7: Checksum 2

8: 0xaa55f154 9: 0xaa55f154 10: 0xaa55f154 11: 0xaa55f154 12: Event number 13: Checksum 1 14: Sample number 15: Checksum 2

16: 0xaa55f154 17: 0xaa55f154 18: 0xaa55f154 19: 0xaa55f154 20: Event number 21: Checksum 1 22: Sample number 23: Checksum 2

0: 0xaa55f15f 1: 0xaa55f15f 2: 0xaa55f15f 3: 0xaa55f15f 4: 0 5: Checksum 1 6: Sample number 7: Checksum 2

8: 0xaa55f15f 9: 0xaa55f15f 10: 0xaa55f15f 11: 0xaa55f15f 12: 0 13: Checksum 1 14: Sample number 15: Checksum 2

16: 0xaa55f15f 17: 0xaa55f15f 18: 0xaa55f15f 19: 0xaa55f15f 20: 0 21: Checksum 1 22: Sample number 23: Checksum 2
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Figure 4.15: Content of the header for the detector data
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Figure 4.16: Data file structure (after processing) for the M1 and RFSF signals

0: 0xaa55f154 1: 0xaa55f154 2: 0xaa55f154 3: 0xaa55f154 4: Event number 5: Checksum 1 6: Sample number 7: Checksum 2

8: 0xaa55f154 9: 0xaa55f154 10: 0xaa55f154 11: 0xaa55f154 12: Event number 13: Checksum 1 14: Sample number 15: Checksum 2

16: 0xaa55f154 17: 0xaa55f154 18: 0xaa55f154 19: 0xaa55f154 20: Event number 21: Checksum 1 22: Sample number 23: Checksum 2
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Figure 4.17: Content of the header (M1 and RFSF data)
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4.2.6 ADC count to volt conversion and time bin

The bit resolution and voltage input range of a DAQ device determine the smallest
detectable change in the input signal. The smallest detectable change, called the
resolution, can be calculated using the the formula –

Resolution =
ADC Range

2bit resolution
. (4.3)

The n-3He DAQ is a 24-bit ADC. But each sample is stored as a 32-bit wording. Out
of these 32 bits, the least significant 8 bits record the channel ID and the remaining
24 bits contain the signal. The ADC has a range of +10 V to -10 V. Then

Resolution =
20 V

232
. (4.4)

Thus, 4.656612873×10−9 is used for the conversion factor from ADC value to voltage
(if the least 8 bits are not already thrown away). But if the least significant 8 bits
out of 32 bits are already thrown away, then

Precision =
20 V

224
, (4.5)

i.e. 1.192092896× 10−6 is used as the ADC count to voltage conversion factor.

The time bin (tbin) depends on the sample rate at which the DAQ takes the data.
Thus, for clean (detector) data each time bin corresponds to

1 tbinc = 16× 1

50 kHz
= 320µs. (4.6)

For dirty data, it is

1 tbind =
1

100 kHz
= 10µs. (4.7)

4.3 Wire map and the network

Out of 48 clean ADC channels, only 36 ADC channels are connected to the preamps
(ADC channels 0 to 17 and channels 24 to 41). Each clean DAQ is connected to
four wire planes (layers). There are two bad channels: DAQ21 channels 5 and 6(both
signals are combined on channel 6). Moreover, (in UD mode) DAQ22 channel 35 and
DAQ24 channels 35, 39 have opposite polarity which are corrected by reversing the
sign in the analysis. Fig. 4.18 shows the signal wire to ADC channel map [56].

Four clean DAQs and one dirty DAQ are connected to a gigabit ethernet switch, which
is in turn connected to the control computer. The control computer communicates to
the DAQs through the TCP/IP protocol to transfer the data and control the DAQs.
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Appendix D: n3He Target Chamber 257

Figure D.26: Signal wire position to DAQ channel map.
Figure 4.18: Signal wire to ADC channel map

The control computer is connected to a portable hard disk to store the data as backup.
From the control computer, the data is instantly transferred to a remote workstation
with RAID, which is accessible from off-site for offline analysis. Other data that go
into the data stream are the magnetic field data and preamp temperature data. The
control computer is equipped with a DAQ control GUI to manage run configuration, a
data plotter GUI for instant online analysis for a data quality check, a magnetic field
and temperature monitoring GUI, a watchdog program and other necessary software
[57] for long-term data taking. Fig. 4.19 shows the network diagram connecting all
the components.

All the components (five DAQs, RFSF and control computer) are synchronized with
the accelerator T0 through the trigger logic. The accelerator provides a 60 Hz T0 sig-
nal indicating the release of a proton pulse. A constant delay of 13.5 ms is applied to
this T0 to accommodate for the time taken by the neutrons to arrive at the detector
position from the moderator. In the individual level, each DAQ module is synchro-
nized to the same delayed T0 trigger. To synchronize with the control computer at
the start of the run, trigger logic is used. The control computer can send command
to the DAQ module over TCP/IP to provide either 0 mV or 500 mV digital output.
Only DAQ30 is used to produce the digital output signal for synchronization with
the control computer. This digital signal is amplified to a TTL signal levels. This
TTL signal is then ANDed with the delayed T0. Finally this ANDed trigger is input
to each DAQ module and also to the signal generator connected to the RFSF. All the
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trigger connections are optically isolated. Each DAQ is powered through an isolation
transformer to avoid ground loops. The only path to the building ground is through
the ion chamber.
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Figure 4.19: The network diagram of the n-3He experiment

4.4 Processed and compressed data file

To facilitate and speed up the analysis, two additional intermediate processed files
were generated. In one case we integrated over all time bins within each pulse to
make one file per run and in the other case we kept all the time bins but integrate
each time bins over the all the runs. We call the former processed files ’summary
files” and the later one a “data summary tape” or DST.

Summary file:
For each run with sufficient beam (which is analyzable for either LR or UD asymme-
try), a summary file was processed integrating over time bins (sum of signals) for each
event. This is done both for the detector channels (clean DAQ channels) and dirty
DAQ channels (M1 signal and RFSF current). An asymmetry for pair of adjacent
pulses of each detector channel was also computed. All these values were saved in
tree structure (TTree) in a root file. The tree has three branches : “sumc” (sum
of signals from clean DAQ), “sumd” (sum of signals from dirty DAQ) and “asym”
(calculated asymmetry), with the following structure:
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sumc[4][36]: The first index is for the DAQ number (0→DAQ21, 1→DAQ22, 2→DAQ23,
3→DAQ24)
and second index is for each channel number (the channel index is made continuous
here).
sumd[2]: sumd[0] is the M1 signal integrated over time bins and sumd[1] is the same
thing for the RFSF current.

asym[4][36]: The first index is the DAQ number and second is the channel number.
The first entry of the branch “asym” is a flag with the run number. The second
entry is asymmetry between first event and second event of the run, the third entry is
asymmetry between second and third event of the run and so on, as shown in Table
(4.1).

Entry# Content

0 Run number
1 Asymmetry between pulse# 0 & 1
2 Asymmetry between pulse# 1 & 2
3 Asymmetry between pulse# 2 & 3
4 Asymmetry between pulse# 3 & 4
...
24991 Asymmetry between pulse# 24990 & 24991

Table 4.1: Content of the branch “asym” in the summary file

In the analysis, the first entry is always skipped, since it is a flag for run number,
and only either odd entries or even entries are considered to avoid double counting.
In calculating the above asymmetry, the signal of each channel for each event is
normalized by the sum over all the detector signals to remove the beam fluctuation.
We also subtract the background from each signal following the approach explained
in section 6.1.3.

The asymmetry is constructed using:

A′ =
Yon − Yoff

Yon + Yoff

,

which differs by a negative sign from the desired spin asymmetry:

A = −A′ = Y ↑ − Y ↓

Y ↑ + Y ↓
.

The ROOT file for each run has 24991 entries, as some events at the beginning and
end of the run are skipped.

Data summary tape (DST):
In this global summary file we keep all the time bins but integrated over the signals in
all runs. We divided the entire dataset into 600 pulse sequences with only one dropped
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pulse in any sequence, which is at the beginning of the sequence. Any sequence that
had irregular dropped pulses was skipped. We integrated over the same time bins of
all pulses for each 600 pulse sequence over the entire dataset separately for two groups:
in one group all the sequences have the RFSF turned “on” during the dropped pulse
and in the other group the RFSF was turned “off” during the dropped pulse. We did
this processing for all the detector signals, the M1 signals and corresponding time
bin asymmetries. All this processed information was saved in a tree data structure
(TTree) in a ROOT file with different branches. Each branch has a multidimensional
array with indices for the RFSF state during the dropped pulse, the number of pulses
after the dropped pulse, the ADC channel and the time bin number.

4.5 The n-3He analysis tools

The n-3He analysis tool (library) [58] was implemented on top of ROOT [50] – an
object oriented data analysis framework based on C++. The library was integrated
as a shared library adding additional classes tailored for the n-3He data analysis to
the ROOT functionality. These additional features along with ROOT constitute a
robust data analysis tools and capable of extracting any imaginable information from
the n-3He data. To provide the users (of the analysis tool) the freedom to add their
own functionality based on their analysis requirement, the library was divided into
two parts. The first part (libn3He) is the core n-3He library that provides various
interface for accessing the raw n-3He data using the ROOT. This part is common to
all users and generally is not modified by individual users. The second part is the
analysis library (libAnalysis) where the user can add his own analysis functionality
using the data access functionality provided by libn3He and other ROOT’s core
features. Table (4.2) shows some of the major functionality of the n-3He analysis
library.
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Class/Function Functionality

TBranchBinary Creating TBranch object out of binary data
TTreeRaw Creating TTree object for the given run number
TTreeAsymmetry Making processed file with asymmetries calculated
n3HeChain Creating TChain object for specified run range
Help Print all the available options
List List all the available functionalities with data members
RunStatus Show run status for specified run number or range
GFactor Get geometry factor for specified layer and wire number
Wire2adc Wire to ADC map conversion
PlotIntensity Yield distribution in ion chamber
TreeMaker Creating processed summary file
MakeDST Creating data summary tape
Analyzer Standard asymmetry analyzer
AnalyzeChain Asymmetry analysis using TChain

BeamPowerDist Plot beam power distribution
FxAnalyzer Asymmetry analysis from raw data with flexibility
CalInstAsym Calculate instrumental asymmetry
Correlation Correlation calculation for single run
n3HeAnalyzer Asymmetry analysis with A and B separation
BatchAnalyzer Analyze batch data
FitAlongBatches Physics asymmetry from fit along batches
FitAlongWires Physics asymmetry from fit along wires
GetBatchInfo Get batch data information
GetLevelInfo Get level data information
... ... ... Many more functionalities

Table 4.2: Some of the major functionalities in the n-3He analysis tools integrated in
the ROOT.

4.6 Instrumental asymmetry

A test was performed to check the instrumental asymmetry in the combined setup
of the preamp, DAQ and RFSF. We tested the test setup as shown in Fig. 4.20 with
the worst possible scenario, where the RFSF was running close to the preamp with
the window open. A fake T0 signal of 60 Hz was fed to a clock divider to make a
30 Hz signal. This 30 Hz signal was used to control (to turn on and off) the signal
generator that produced the 30 kHz signal for the RFSF. Another part of the 60 Hz
fake T0 was gated and fed to the preamplifier through an optical isolator. This signal
in the preamplifier was used as a reference for spin flipper state. The first pulse of
the 60 Hz signal was synchronized to known RFSF state. Data was recorded in this
configuration. Using the reference signal in the preamplifier for the RFSF state, the
asymmetry was constructed for signals on other preamp channels.
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Figure 4.20: Setup for the instrumental asymmetry measurement
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Figure 4.21: Signal used for the instrumental asymmetry measurement

In this case, for each pair of pulses, the asymmetry was defined as A = (Von - Voff )/20,
where Von or Voff is the average voltage between two peaks (excluding the peaks) and
20 V is the normalization coming from the full scale of the ADC.

Fig. 4.22 shows the distribution of instrumental asymmetry from one of the preamp
channels. As shown in Fig. 4.23, analysis of 5 hours of data taken at 25 kHz sampling
rate showed that we get instrumental asymmetry of the order of ∼ 10−10.

Ains = (2.64± 1.64)× 10−10.
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Chapter 5

Simulation

In the experiment an ion chamber of fixed volume is used. Because of the geometry
of the ion chamber (detector) and the beam, not all of the signal wires are equally
sensitive to the desired physics asymmetry. This gives rise to the geometry factor
for each individual signal wire, that is used to extract correct physics asymmetry
from measured raw wire asymmetry. These geometry factors can not be measured
experimentally and must be calculated from the simulation. Moreover, there are other
motivations for doing a robust Monte Carlo simulation of the experiment, for example,
optimizing the pressure of 3He in the ion chamber, determining the ionization response
in each wire plane, determining the statistical error and correlations of the signals in
each wire plane.

5.1 Geometry factors

For a collection of events where neutrons hitting 3He target produce protons and
tritons, following Eq. 1.13 we can relate the yield in the i-th wire to the energy
deposition as:

Y h
i = 〈Ei(1 + hPAp cos θ)〉, (5.1)

where h is the neutron helicity, Ei is the energy deposition around the i-th wire
by all tracks, θ is the angle between proton momentum and neutron spin, P is the
polarization and Ap is the physics asymmetry.

Now considering both helicity states we construct our measured asymmetry for the
i-th wire as

Aim =
Y +
i − Y −i
Y +
i + Y −i

. (5.2)

Invoking Eq. 5.1 this can be written as

Aim = PAp
〈Ei cos θ〉
〈Ei〉

. (5.3)
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The factor sitting with the physics asymmetry Ap on the right hand side of the above
equation is called the geometry factor. Thus, the geometry factor for the i-th wire is

Gi =
〈Ei cos θ〉
〈Ei〉

. (5.4)

With this definition of the geometry factor, the physics asymmetry can be extracted
from the measured asymmetry by normalizing it by the geometry factors, i.e.

Ap =
1

P

Aim
Gi

. (5.5)

The expectation value of Ei in Eq. 5.4 is evaluated as the sum over energy deposition
Qk
i by individual tracks of a pulse

〈Ei〉 =
N∑
k=1

Qk
i . (5.6)

So, for a collection of events the geometry factor for the i-th wire is then

Gi =

∑N
k=1Q

k
i cos θki∑N

k=1Q
k
i

. (5.7)

At this point two features of the experiment are taken into account:
First, the high voltage wires around the signal wire create equipotential field lines.
As a result all the charges created within any particular cell (parallelepiped volume
around a signal wire bounded by high voltage wires) will be collected by that partic-
ular signal wire.
Second, while we are interested in the correlation between the neutron spin and pro-
ton momentum direction, we can think of energy deposition (ionization) from the
triton track as a dilution to our asymmetry. We collect energy deposition in a cell
from both the proton and triton tracks.

Gi =

∑N
k=1(Qp

i +Qt
i)k cos θk∑N

k=1(Qp
i +Qt

i)k
, (5.8)

where Qp
i and Qt

i are the energies deposited in the i-th cell by proton and triton
respective for any particular event and θk is the angle of the proton track.
Then from a simulation point of view, in order to evaluate Eq. 5.8 we need to tabulate
the energy deposited in each cell from the combination of proton and triton tracks,
and the corresponding angle between proton momentum and neutron spin for any
particular capture event.
We can easily infer the distribution of geometry factors across the ion chamber from
the form on the right hand side of Eq. 5.8. It is illustrated in the sketch in Fig. 5.1.
Since θ is the angle between y-axis (direction of neutron spin for spin up neutrons)
and the proton momentum direction, the numerator in Eq. 5.8 is positive for top
rows, and negative for bottom rows.
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Figure 5.1: Intuitive distribution of geometric factors inside the chamber. The neu-
tron spin direction is along the vertical axis.

This gives rise to positive geometry factors in the upper half and negative geometry
factors in the lower half of the ion chamber. Because of finite collimation of the beam,
in the top most rows and the bottom most rows the proton tracks are unidirectional
as shown in the Fig. 5.1. Triton tracks are mostly absent from the top and bottom
rows since triton will not reach the ends because of its short range. On the other
hand, in the central rows the tracks are bi-directional. For central rows, we have both
the proton and triton tracks coming from both above and below the cell. Thus the ge-
ometry factor is mostly washed away in the central row (∼ 0), it is maximally positive
(∼ 1) for the top row and maximally negative (∼ −1) for the bottom row.

5.2 Simulation toolkit

The Geant4 (GEometry ANd Tracking) simulation toolkit [49] (version 10.3) was used
to do a robust simulation of the experiment. Geant4 is a toolkit, written in C++,
for simulating the passage of particles through matter using the Monte Carlo ap-
proach. It includes a complete range of Monte Carlo functionality including tracking,
geometry, physics models and hits. The physics processes offered cover a comprehen-
sive range, including electromagnetic, hadronic and optical processes, a large set of
long-lived particles, materials and elements over a wide energy range. The software
provides all the tools needed for a complete Monte Carlo simulation of the experi-
mental set-up, including modeling of geometry, detector response, event management
and user interface. In Geant4 there is a wide range of physical models capable of
describing interactions of particles with matter. There are several alternative models,
which can be chosen by the user for many physical processes. The toolkit is developed
and maintained by an international collaboration. The toolkit has become the lead-
ing simulation method for high energy physics, nuclear physics, astrophysics, space
science and medical physics.
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Figure 5.2: A basic simulation process flow in the Geant4

The basic simulation approach in Geant4 requires specifying the user defined geom-
etry and materials. A set of physical models, describing interactions of particles, is
included by the users to specify the physical processes in the simulation. Once those
two are set, user can specify how the primary particles are generated to mimic the
physical source. The Geant4 kernel transports the primaries and steps them through
the geometry. The track step lengths are limited by the process with the shortest
mean free path. If applicable, secondaries are generated along the track and/or at
the end of the track. For stopped particles, the final state and any final products are
calculated based on the processes and models that were registered for the particles.
The user can interact with the kernel to get all the desired information associated
with the tracks and particles. Along the track, the energy deposition and change
in momentum can be extracted. The user also has access to the final state energy,
momentum, positions etc.

5.3 Geometry and materials

For simplicity, only the inner active part of the ion chamber is modeled in the geom-
etry. Other components taken into account in the geometry are the exit of the beam
guide and the collimator. To construct the inner active portion of the ion chamber,
a three dimensional box of dimension 30.4 cm × 16 cm × 16 cm is used. We refer
to Fig. 3.10 for the dimensions and geometry of the ion chamber. To construct the
active charge collection volume around any signal wire a parallelepiped volume of
dimension 16 cm × 1.9 cm × 1.9 cm is considered. This volume represents one signal
wire with the surrounding charge collection area. Nine of such volumes, stacked on
top of each other (along Y axis), represent a signal layer of the ion chamber. Such a
signal layer is then repeated 16 times along the Z axis to model the 16 signal layers
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inside the chamber. The parallelepiped volumes corresponding to the end signal wires
have slightly smaller vertical width than others.

Figure 5.3: A simplified geometry of the setup

The volume was filled with 100% 3He gas. To construct the 3He material inside the
chamber, an isotope was constructed with atomic number Z = 2, atomic weight a =
3.0160293201 g/mole and mass number A = 3. The density of 3He inside the chamber
was calculated in the following way: In the experiment the target chamber is filled
with 100% 3He with a pressure of 0.47 atm at room temperature. Assuming that 3He
is an ideal gas, the ideal gas relation PV = nRT can be used to calculate the density
of 3He.

ρ =
m

V
=
PM

RT
, (5.9)

where
m = mass of 3He gas in the ion chamber,
M = atomic mass of 3 He = 3.0160293201 gm/mole,
P = pressure of the ion chamber = 0.47 atm,
T = filling temperature = 298 K,
R = molar gas constant = 82.057338(47) cm3 atm K−1 mol−1.
Using these values, we get density of 3He, ρ = 5.796952× 10−5 g/cm3.

Each of the parallelepiped volume, filled with 3He is registered in the Geant4 kernel as
a sensitive volume, which allows access to the energy deposited. The other component
of the geometry, the collimator, was made of Lithium-6 and has an opening of 10 cm
× 8.2 cm in the default setting. The beam exit has a dimension of 10 cm × 12 cm.
The distance between the beam exit and the center of the chamber is 165 cm and the
collimator is 2.5 cm away from the first window of the chamber.
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5.4 Physics list

Out of many possible physics processes, three processes are relevant for our experi-
ment:

– The neutron absorption reaction:

~n + 3He→ p + t.

This is an inelastic hadronic process. Implementation of this hadronic process
requires registering it in the Geant4 kernel, choosing a suitable model, and in-
corporating the appropriate cross section data set. The relevant Geant4 class
used for this process is G4NeutronInelasticProcess. The High Precision (HP)
model was used, with the relevant Geant4 class G4ParticleHPInelastic. The
corresponding data comes from the class G4ParticleHPInelasticData, which in-
corporates the ENDF/B-VII (repackaged in G4NDL) cross-section and final
state data.

– The energy loss of the proton and triton through ionization of the 3He atoms.
This happens through the interaction with atomic electrons when the proton
and triton travel inside the ion chamber:

p + 3He→ p + 3He+ + e−,

t + 3He→ t + 3He+ + e−.

This is an electromagnetic process and the relevant class is G4hIonisation. This
class is responsible for ionization of any charged particle.

– The transportation process that applies to all the primaries (neutrons) and
secondaries (protons and tritons) is activated using the class G4Transportation.
This process transports particles through the detector geometry.

For completeness, other processes registered are as follows:
Neutron: Elastic, capture, thermal neutron scattering, radioactive decay, fission.
Proton: Elastic, bremsstrahlung
Triton: Elastic, hadronic inelastic, radioactive decay.
Gamma, electron, positron and alpha: Standard electromagnetic processes.

Instead of using a custom physics list, the same identical result was achieved while
using the Geant4 reference physics list QGSP BERT HP. It has all the required setup
with the collection of models – Quark Gluon String (QGS) model, Precomputed (P)
model used for de-excitation, Bertini-style cascade (BERT) and High Precision (HP)
neutron model. The list QGSP BERT HP is widely used and recommended for low
energy nuclear physics simulation.
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Effect of temperature:
The density of helium defines the energy-range relationship of the outgoing particles.
In calculating the density of 3He in the simulation in Eq. 5.9, we used T = 298 K.
For fixed volume, the density does not depend on the temperature. It is possible to
set the temperature in the constructor of the Geant4 material definition, which is
optional. If this temperature is set above 0 K, the High Precision (HP) model takes
into account 3He thermal motion and associated boosts which lead to the wrong
angular distribution of outgoing momentum in our case. This optional temperature
was set to 0 K in our simulation to calculate the geometry factors.

5.5 Primary particles: Neutron beam profile

Once the detector geometry and physics processes are set, the final step of the im-
plementation process is to generate the correct primary events, which in this case is
the correct neutron beam profile. Construction of the neutron beam profile is done
in the following two steps:

– Neutron energy distribution: The beam monitor-1 (M1) signal was used to
generate the neutron energy profile at the detector position.

– Neutron spatial profile: The beam scan data was used to get the neutron’s
position distribution in the xy plane at the front edge of the detector.

5.5.1 Neutron energy distribution

We are interested in neutron flux as a function of energy at the detector position,
while the monitor-1 (M1) signal is a voltage proportional to the beam intensity at the
beam exit position. Getting the correct energy distribution at the detector position
from the M1 signal involves several steps.

The first thing to consider is, the M1 signal that we see is a convolved signal of
current pulse and wraparound from previous pulses. But the ion chamber receives
the unconvolved spectrum i.e. the reaction cross-section depends on the energy of
the individual neutron. So, instead of the ordinary convolved signal, we use the
unconvolved (image) M1 signal (chopped). We make the unconvolved M1 signal
following the algorithm explained in the section 2.4.2 and use that as the reference
signal instead of the regular M1 signal.
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The next step is to propagate the M1 signal at the detector position. The pulse will
shift as it travels from the M1 position to the detector position. We start with the
M1 signal as a function of the time of flight (TOF). Now the time of flight window
at the M1 position is (AC.1):

TOFmin = 13.94 × 10 −3 sec,
TOFmax = 30.17 × 10 −3 sec,
spanned over 1624 equally spaced M1 TOF bins.

This TOF was tuned using T0 delay so that we have full pulse at the detector position.
Another way to propagate the M1 signal at the detector position is to utilize the Bragg
peak. The shift in Bragg peak from first layer of the ion chamber to the last layer is
known from the detector signal. This information with the measured M1 to detector
distance can be used to propagate the M1 signal at the detector position.
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Figure 5.4: Propagating the unconvoluted M1 signal at the detector position
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The M1 signal is represented as a function of wave length using de Broglie’s equation

λ =
h

p
=

h

mnv
=

h

mn
d
t

=
ht

mnd
, (5.10)

where t is the time of flight, d = 18 m is the distance traveled and mn is the neutron
mass. Using the corresponding values, we get the wavelength window (AC.1)

λminn = 3.064 Å,
λmaxn = 6.63 Å .
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Figure 5.5: Unconvoluted M1 signal at the detector position as a function of the
wavelength

Next, we consider the wavelength or energy dependence of the cross section. The M1
monitor contains helium gas and the yield we see comes from neutron capture in the
helium gas. This yield depends on the number of neutrons captured or specifically
on capture cross section. But we are interested in the original neutron flux. Now,
for thermal neutrons (in the 1/v region), the absorption cross-section increases as the
velocity (kinetic energy) of the neutron decreases, i.e.

σa ∼
1

v
∼ TOF ∼ 1√

E
. (5.11)

The yield in M1 depends on both the neutron flux and the capture cross section,

Y ∼ σa × Φn,

where Φn is the neutron flux which we are interested in and Y is the yield in M1.
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So the correct weight for the neutron flux at the detector position is achieved by
attenuating the M1 signal by a factor proportional to the TOF:

Φn ∼
Y

σn
∼ Y

TOF
.
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Figure 5.6: Corrected unconvoluted M1 signal at the detector position

For the simulation, we need neutron flux as a function of energy. To go to the energy
domain from time of flight domain, we use the relations,

Neutron velocity, v = d
t

And neutron energy, En = 1
2
mnv

2.

Plugging in the corresponding values we get (AC.1)

Emax
n = 8.716 meV,

Emin
n = 1.861 meV.

This range spans over 1624 bins for our desired window. The distribution (in Fig. 5.7)
is now peaked near lower energies and falls quickly at higher energies. This happens
for non-linear dependence of energy on the time of flight. This distribution is used to
generate primary neutrons of different energies in the simulation.
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Figure 5.7: Generated neutron energy distribution

5.5.2 Neutron spatial profile

The beam divergence spreads out in the xy plane as it propagates along the z-axis. We
know the spatial beam profile from the beam scan in the upstream and downstream
positions explained in section 2.4.3. Fig. 2.30 shows the neutron spatial beam profile
at upstream position. The upstream beam scan data was used as input to generate
the position of the neutron on the xy plane at the front of the detector. Neutrons
with spatial coordinates which fall outside of the collimator opening are blocked
by the collimator, and only neutrons having (x, y) coordinate within the opening
will pass through to the ion chamber. Once the neutrons outside the opening are
removed, the spatial distribution is shown in Fig. 5.8. To facilitate generation of the
neutron’s energy with the distribution of Fig. 5.7, and spatial (x, y) coordinates with
the distribution of Fig. 2.30, the data analysis framework ROOT [50] was integrated
into Geant4. The distributions (5.7 ) and (2.30) were used as input for TH1D and
TH2D classes to generate numbers that follow those distributions. Once the geometry,
physics list and primary particles all were set, a test run (with 200 primaries for
example) produced the simulated events with tracks shown in Fig. 5.9.
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Figure 5.8: Neutron position distribution on the xy plane from simulation after col-
limation (default collimation). Total 106 primary events are considered.

Figure 5.9: Example of simulated capture events (2D view) inside the chamber. Yel-
low tracks are neutrons, blue tracks are protons and gray tracks are tritons. Also
visible, few red tracks which are electrons, and green tracks which are gammas.
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5.6 Validation of the simulation

The simulation was validated using the following benchmarks:

1. Conservation of energy.

2. Cross section comparison.

3. Energy dependence of the cross section.

4. Comparison of the stopping power with PSTAR and SRIM.

4. Energy range relationship comparison with PSTAR and SRIM.

6. The angular distribution of the outgoing particle momenta.

7. Comparison of yields with the data.

8. Comparison with the collimation scan data.

In the following subsections each of the validation attempts is discussed.

5.6.1 The conservation of energy

The neutron is absorbed in the helium filled ion chamber according to the reac-
tion

1
0n + 3

2He→ 3
1H + 1

1H.

The theoretical Q-value for this reaction is already known from the resulting mass
change.
The masses of the reactants are
1
0n = 1.008665 amu,
3
2He = 3.01603 amu,
3
1H = 3.01605,
1
1H = 1.007825 amu.
Binding energy of e− = 0.14 eV (1.5 ×10−8 amu).
So the resulting mass change is
∆m= 1.008665 + 3.01603 - 3.01605 - 1.007825 - 2× 1.5×10−8 = 0.0008199 amu.

Thus, the Q-value = 0.0008199 × 931.5 MeV = 763.74 keV.

Ep = 573 keV,
Et = 191 keV.

So in the simulation we would expect proton and triton to come out always with this
initial energy. Fig. 5.10 shows that this is precisely the case in the simulation.
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Figure 5.10: Initial kinetic energy of proton and triton in the simulation. Total 106

events are considered.

5.6.2 Cross section comparison

Next, we verified the reaction depth or capture cross section. In the simulation we
kept track of the number of captures as a function of the distance inside the chamber.
To extract the cross section value from this information, we note that the number of
surviving neutrons at position x inside the chamber is related to the capture cross
section as –

I ′(x) = I0e
−Nσx, (5.12)

where
N = Density of the nuclei in the volume (nuclei/cm3),
σ = The capture cross section (barn =10−28 m2),
I0 = Initial beam intensity (cm−2s−1),
I′(x) = Beam intensity at distance x, The prime is to indicate surviving neutrons.

The number of neutrons captured per unit length is [53],

I(x) = I0e
−NσxNσ. (5.13)

Linearizing the equation we write

ln I(x) = −Nσx+ ln(I0Nσ). (5.14)

Using Eq. 5.9, N = 12.3092559 ×1018 nuclei cm−3. In a linear fit for ln I(x) the
slope and constant from that fit correspond to -Nσn and ln(I0Nσ) respectively, so
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Figure 5.11: Capture cross section from the simulation with pencil beam. Target is
at room temperature. The cross section from the simulation is compared with ENDF
cross section value.

For example, from the simulation for 6 meV neutrons and 106 number of incident
primary neutrons in Fig. 5.11 we get
slope = -0.1343 cm−1 and constant = 11.45. This gives

σSim =
0.1343cm−1

12.3092559× 1018cm−3
,

σSim = 10.910× 103 barn,

which can be compared with available cross section data from different nuclear physics
databases for the same neutron energy. Here, we compared with the data from ENDF
database, found on JANIS web, for 6 meV incident neutrons

σENDF = 10.977× 103 barn.

Also, ln(I0Nσ) = 11.81 (calculated ) can be compared with the constant from the fit,
which is 11.45.

5.6.3 Energy dependence of the cross section

The simulation used thermal neutrons of energies 1.861 meV to 8.716 meV. The
reaction cross section depends on neutron energy. Here in Fig. 5.12, we check if the
cross section falls off as 1√

E
.
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region the slope of logσ vs logEn has a value of -0.5, as verified in Fig. 5.13.
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5.6.4 The stopping power and ionization curve

One of the most important parameters for the simulation or experiment is the stopping
power or the energy loss per unit length of the proton and triton as they travel through
the ion chamber. Since the production of an ion pair requires a fixed amount of energy,
the density of ionization is proportional to the stopping power.

Our next validation compared the energy loss per unit length with available data.
Here we compared with the PSTAR data from the NIST database and with the data
from the simulation program SRIM (SRIM.org).

At first we consider the PSTAR data. There are couple of points to be considered
here. First of all, we have data for the material 4He, not for 3He. Next, PSTAR gives
data for the proton as the incident particle, not the triton. To resolve the first issue
we go back to Bethe-Bloch formula. For heavy charged particles (mincident � me), the
rate of energy loss due to collisions with electrons is given by the Bethe-Bloch formula
[51],[52] Eq. 3.20. It depends on the number density of stopping material which, for
gaseous a material, depends on the pressure and temperature; the mass of the nuclei
of the material is irrelevant for electronic processes. Thus we use 4He data for 3He (Z
= 2 for both). However, since −dE

dx
or the range (R) are usually mentioned in units

of MeV cm2/g (for −dE
dx

) and g/cm3 (for R), we need to multiply or divide by the
appropriate mass density to get them in units of MeV/cm and cm respectively.

For the triton, it is possible to interpolate −dE
dx

and R in the medium 4He from the
PSTAR data for the proton. To do that, we again refer to Bethe-Bloch formula in
Eq. 3.20 and note that the energy loss per unit length depends on the speed (or
energy) of the projectile particle. So a proton and triton with the same velocity will
give the same −dE

dx
.

Since a triton is three times heavier than a proton, i.e. mt = 3mp, if the triton and
proton have same velocity, triton will be three times more energetic, i.e KEt = 3KEp.
So

[
dEp
dx

]
E=E0

=

[
dEt
dx

]
E=3E0

. (5.15)

Next, to get the range of the triton we note that, the range is related to −dE
dx

as
follows:

For the proton range,

Rp =

∫ Ep

0

[
− dEp

dx

]−1

dEp, (5.16)

and for the triton range,

Rt =

∫ Et

0

[
− dEt

dx

]−1

dEt,
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Rt(Et) =

∫ Et

0

dEt

−dEt
dx

(Et)
,

Rt(Et) =

∫ Et

0

dEt

−dEp
dx

(Et
3

)
,

where we have used the relation in Eq. 5.15.

Rt(Et) = 3

∫ Et

0

dEt
3

−dEp
dx

(Et
3

)
.

Now, we make a change of variable, u = Et
3

, so that, du = dEt
3

when Et = 0, u=0 , and when Et = Et, u = Et
3

= u, so that

Rt(Et) = 3

∫ u

0

du

−dEp
dx

(u)
= 3Rp(u),

Rt(Et) = 3Rp(
Et
3

),

or

Rt(E) = 3Rp(
E

3
). (5.17)

So the conclusion is, to get −dEt
dx

at energy E for a triton, we need to pick the value

of −dEp
dx

at E
3

from the table for a proton. And to get Rt at energy E from proton
data, we need to pick the value of Rp at E

3
and multiply it by 3.

For data from the SRIM program, it follows its own simulation/transformation to
produce data for protons and tritons in 3He. Thus a comparison with SRIM also
provides a means to validate our scaling relations in Eq. 5.15 and 5.17. Fig. 5.14
compares energy loss per unit length of proton in 3He as predicted by our simulation
with that from the PSTAR data and SRIM.
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Figure 5.14: Proton stopping power as a function of the kinetic energy from the
Geant4 simulation, PSTAR data and SRIM. The target is at room temperature
(298K) and 0.47 atm pressure.
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Figure 5.15: Triton stopping power as a function of the kinetic energy from the
simulation, PSTAR data and SRIM. The target is at room temperature (298K) and
0.47 atm pressure.

Fig. 5.15 compares energy loss per unit length of triton in 3He as predicted by our
simulation with that from the PSTAR data and SRIM. Fig. 5.16 shows −dEt

dx
as a

function of distance from the vertex. In all cases the triton data for PSTAR was
evaluated from proton using the scaling relation in Eqs. 5.15 and 5.17.

6− 4− 2− 0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Distance from vertex [cm]

 [
ke

V
/c

m
]

d
x

d
E

- 

Vertex

.

.

Geant4 simulation
He4PSTAR data for 

SRIM

Triton

Proton

Figure 5.16: The ionization curve from the simulation, PSTAR data and SRIM. The
target is at room temperature (298K) and 0.47 atm pressure.
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5.6.5 The energy range relationship

Most of the transport calculations and Monte Carlo simulations for the calculation
of range are based on the Continuous Slowing Down Approximation (CSDA). In this
approximation, it is assumed that the particle loses its energy in a continuous way
and at a rate equal to the stopping power. Thus, the CSDA range is calculated using
Eq. 5.17. The CSDA range is the path length traveled by the particle. Since the
particle’s path is usually not straight due to scattering, the CSDA range is always
higher than projected range, which is the distance between the point where the par-
ticle enters the stopping medium and the point where the particle is absorbed (or
comes to rest), projected onto the original direction of travel. SRIM uses the PRAL
(Projected Range ALgorithm) equations for calculating the projected range.
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Figure 5.17: Comparison of proton and triton energy vs distance in 3He after the
reaction from the simulation with the PSTAR data and SRIM.

In our energy regime both the CSDA and projected ranges in the PSTAR tables are
very close. Here we used the CSDA range from the PSTAR data and the range for
the triton was evaluated from the proton data using the scaling relation in Eq. 5.17.
Here, we note that while both the PSTAR and SRIM data are provided as actual
range, but we plot in Fig. 5.16 and 5.17 as the residual range with respect to the
vertex to emulate our reaction inside the ion chamber.
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5.6.6 The angular distribution of tracks
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Figure 5.18: Proton momentum angular distribution from the simulation. Total
primary events considered 106.

Next, we verify the angular distribution of outgoing proton and triton momenta.
Fig. 5.18 shows distribution of polar angle θ and azimuthal angle φ of the outgoing
proton’s momentum. Fig. 5.19 shows the same thing for the triton momentum. In
both cases the cos θ and φ distributions are isotropic.
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Figure 5.19: Triton momentum angular distribution from the simulation for 106 pri-
mary events.

5.6.7 Comparison of yield

We compare the yield from the simulation with that of the n-3He data. Fig. 5.20(a) is
the simulated yield distribution inside the chamber with the default n-3He collimation
setting, compared with the yield distribution from a typical n-3He run as shown
on Fig. 5.20 (b) with the same collimation. In Fig. 5.20, since the yield from the
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(a) Yield distribution from the simulation (b) Yield distribution form typical n-3He data

Figure 5.20: Yield distribution in the ion chamber from the simulation and typical
n-3He run data.

simulation and the n-3He data are in different units, we compare the distribution in
normalized yields in Fig. 5.21. The wires numbered 6 and 7 in the first layer are
bad.
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Figure 5.21: Yield distribution in the ion chamber from the simulation and typical
n-3He data.
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5.6.8 Comparison with beam scan data

Here, we compare the yield in the chamber from the collimation scan data with that
from the simulation with same collimation setting. In the summer of 2015, we took
collimation scan data (run numbers 37987 - 38022) which includes both vertical and
horizontal scans.

(a) Yield distribution from the data for the collima-
tion scan: run# 37990

(b) Yield distribution from the simulation for colli-
mation scan: run# 37990

Figure 5.22: Yield distribution in the ion chamber from the simulation and the data
for the collimation scan: run# 37990
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Figure 5.23: Yield distribution in the ion chamber from the simulation and the data
for the collimation scan: run# 37990
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(a) Yield distribution from the data for the collima-
tion scan: run# 38000

(b) Yield distribution from the simulation for the
collimation scan: run# 38000

Figure 5.24: Yield distribution in the ion chamber from the simulation and the data
for the collimation scan: run# 38000

For the vertical scan, the x-collimation position was fixed with a width of 10 cm, and
the y-collimation width was 2 cm with position varying from top to bottom wire.
Fig. 5.22 and 5.23 compare a scan that covers one of the top wires. Figs. 5.24 and
(5.25) compare scan data in which y-collimator illuminates one of the middle wires
(wire 5).
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Figure 5.25: Yield distribution in the ion chamber from the simulation and the data
for the collimation scan: run# 38000

100



(a) Yield distribution from the data for the collima-
tion scan: run# 38006

(b) Yield distribution from the simulation for the
collimation scan: run# 38006

Figure 5.26: Yield distribution in the ion chamber from the simulation and the data
for the collimation scan: run# 38006

Figs. 5.26 and 5.27 compare scan data (run number 38006) in which the y-collimator
illuminates one of the bottom wires.
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Figure 5.27: Yield distribution in the ion chamber from the simulation and the data
for the collimation scan: run# 38006
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5.7 Outcome from the simulation

Once we are satisfied with all the validation tests, we calculate the geometry factors
from the simulation using Eq. 5.7. Fig. 5.28 shows the distribution of the geometry
factors for all 144 wires. The uncertainties in various measured parameters, used as
input in the simulation contribute to the uncertainty in our estimation of the geometry
factors. Fig. 5.29 shows the the worst possible deviation of the geometry factors from
our best calculated values. Systematic effects associated with the geometry factor
calculation are discussed in section 6.5.
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Figure 5.28: The distribution of the geometry factors for all the signal wires
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Figure 5.29: The geometry factors with errors
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Chapter 6

Data analysis

In more than one year of data taking, we acquired around 46000 runs, each run
having a duration of about seven minutes. Here, we present the analysis of the entire
n-3He dataset, both the LR and UD measurement. We first present different possible
avenues to analyze the data and argue why we chose a particular one over the others.
We also discuss the basis of our data selection. We first analyze the LR data and then
analyze the UD data. One important aspect of our signals is that they are correlated.
We discuss the approach to correct for correlation as they appear. The data analysis
presented here exclusively uses the data summary files explained in section 4.4.

6.1 Data analysis method

6.1.1 Asymmetry definition

Following Eq. 1.13, we write our measured observable, the yield in k-th signal wire,
as

Yk = I0εk(1 + PGpc
k Apc + PGpv

k Apv) + bk, (6.1)

where, I0 is the initial SNS beam intensity, εk is the wire efficiency, Gk is the geometry
factor, Apc is the parity conserving physics asymmetry, Apv is the parity violating
physics asymmetry, and bk is the pedestal or its associated electronic noise.
Since the alignment of the detector makes the yield sensitive either to the parity
conserving or parity violating physics asymmetry, we represent the physics asymmetry
as Ap to indicate either the PC or PV physics asymmetry.

Yk = I0εk(1 + PGkAp) + bk (6.2)

In the experiment we consider two step spin sequences (↑↓).

Y ↑k = I↑0 εk(1 + P ↑GkAp) + b↑k, (6.3)
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Y ↓k = I↓0 εk(1 + P ↓GkAp) + b↓k. (6.4)

As the spin flipper efficiency is high and stable, we can take, P ↑ ≈ −P ↓ = P, then

Y ↑k = I↑0 εk(1 + PGkAp) + b↑k, (6.5)

Y ↓k = I↓0 εk(1− PGkAp) + b↓k. (6.6)

There are several avenues that can be followed to extract the physics asymmetry Ap
using these observables. Each approach has some advantages over the other.

1) Spin asymmetry: The most obvious one is to consider the spin asymmetry

Ask =
Y ↑k − Y

↓
k

Y ↑k + Y ↓k
, (6.7)

where the superscript s indicates spin asymmetry. Using Eq. 6.5 and Eq. 6.6 this can
be written as

Ask =
(I↑0 + I↓0 )PGkAp + (I↑0 − I

↓
0 )

(I↑0 + I↓0 ) + PGk(I
↑
0 − I

↓
0 ) + (b↑k + b↓k)/εk

+
b↑k − b

↓
k

Y ↑k + Y ↓k
. (6.8)

Now, since (I↑0 + I↓0 )� PGk(I
↑
0 − I

↓
0 ) + (b↑k + b↓k)/εk, Eq. 6.8 can be simplified further

as

Ask = PGkAp +
(I↑0 − I

↓
0 )

(I↑0 + I↓0 )
+

b↑k − b
↓
k

Y ↑k + Y ↓k
. (6.9)

In Eq. 6.9, we can easily identify the first term as the contribution from the physics
asymmetry, the second term as the beam asymmetry and the third term as the
instrumental asymmetry.
In the experiment, b↑k ≈ b↓k = bk i.e. the instrumental asymmetry is significantly
smaller than the physics asymmetry contribution. This statement is also verified by
measuring the instrumental asymmetry with no beam data. In that case

Ask = PGkAp +
(I↑0 − I

↓
0 )

(I↑0 + I↓0 )
. (6.10)

Eq. 6.10 shows that this approach works best with very stable beam power. However,
as shown in section (6.1.4), we have significant beam fluctuations. This demands
some approach that will cancel the beam fluctuations.
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2) Asymmetry with normalized yields: To cancel the beam asymmetry we normalize
the yield by the beam intensity. From Eq. 6.5 and Eq. 6.6, we construct the modified
yields as

Y↑k =
Y ↑k − bk
I↑

, (6.11)

Y↓k =
Y ↓k − bk
I↓

, (6.12)

where I↑ or I↓ is an estimate for (proportional to) the total beam intensity. Here,
we assume b↑k ≈ b↓k = bk as before. In the experiment the M1 monitor uses only a
fraction of the beam to measure the beam intensity. So, instead of the M1 signal we
use a sum over all the detector signals as a measure of the beam intensity, i.e.

I↑ =
∑
k

(Y ↑k − bk), (6.13)

I↓ =
∑
k

(Y ↓k − bk). (6.14)

Now we can easily relate I↑ and I↓ to I↑0 and I↓0 respectively, as

I↑ =
∑
k

(Y ↑k − bk)

= I↑0
∑
k

εk(1 + PGkAp)

= I↑0

[
144∑
k=1

εk +
64∑
i=1

(εiPGiAp + εi∗PGi∗Ap) +
16∑
j=1

εjPGjAp

]
,

where k is the single wire index, i is the pair of wire index with i∗ being the conjugate
wire and j is the index for the central wires.
Now, we utilize the symmetry of the detector and invoke the fact that Gi ≈ −Gi∗ ,
εi ≈ εi∗ and Gj ≈ 0. This gives

I↑ ≈ I↑0
∑
k

εk = KI↑0 .

Similarly,

I↓ ≈ I↓0
∑
k

εk = KI↓0 ,

where, K is a constant,

K =
∑
k

εk .

We construct the asymmetry from these modified yields as

Ank =
Y↑k − Y

↓
k

Y↑k + Y↓k
, (6.15)
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where the superscript n indicates asymmetry constructed from yields which are nor-
malized by sum over all detectors’ signal.
Now,

Ank =

Y ↑k −bk
I↑
− Y ↓k −bk

I↓

Y ↑k −bk
I↑

+
Y ↓k −bk
I↓

=

Y ↑k −bk
KI↑0

− Y ↓k −bk
KI↓0

Y ↑k −bk
KI↑0

+
Y ↓k −bk
KI↓0

=

Y ↑k −bk
I↑0
− Y ↓k −bk

I↓0

Y ↑k −bk
I↑0

+
Y ↓k −bk
I↓0

.

Using Eq. 6.11 and Eq. 6.12 this reduces to

Ank =
εk(1 + PGkAp)− εk(1− PGkAp)

εk(1 + PGkAp) + εk(1− PGkAp)
. (6.16)

Ank = PGkAp (6.17)

The measured asymmetry Ank in Eq. 6.17 is now immune to the beam fluctuation and
can easily be used to extract the physics asymmetry Ap. This is the approach we use
here.

3) Pair asymmetry: Another approach to suppress the beam fluctuation is to utilize
the symmetry of the detector to construct pair asymmetries. Here we consider the
ratio of yields from conjugate wires, i.e. wire pairs on opposite sides of the central
wire. This approach also requires the yield to be pedestal subtracted before we
construct the ratios.

R↑kk∗ =
y↑k
y↑k∗

and R↓kk∗ =
y↓k
y↓k∗

, (6.18)

where
y↑k = Y ↑k − bk and y↓k = Y ↓k − bk.

We construct the asymmetry as

Arkk∗ =
R↑kk∗ −R

↓
kk∗

R↑kk∗ +R↓kk∗

=

εk(1+PGkAp)

εk∗ (1+PGk∗Ap)
− εk(1−PGkAp)

εk∗ (1−PGk∗Ap)

εk(1+PGkAp)

εk∗ (1+PGk∗Ap)
+ εk(1−PGkAp)

εk∗ (1−PGk∗Ap)

.

(6.19)
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Now, utilizing the symmetry of the detector, we use the fact that, Gk ≈ −Gk∗ to get

Arkk∗ =

(1+PGkAp)

(1−PGkAp)
− (1−PGkAp)

(1+PGkAp)

(1+PGkAp)

(1−PGkAp)
+ (1−PGkAp)

(1+PGkAp)

=
4PGkAp

2 + 2(PGkAp)2

≈ 2PGkAp,

(6.20)

where in the last step we have used (PGkAp)
2 � 1.

4) Another way to get the same result of Eq. 6.20 is to construct the difference of the
conjugate wire asymmetries

Ak − Ak∗ =
y↑k − y

↓
k

y↑k + y↓k
− y↑k∗ − y

↓
k∗

y↑k∗ + y↓k∗
, (6.21)

where y↑↓k or y↑↓k∗ are the pedestal subtracted yields.

Ak − Ak∗ =
I↑0 εk(1 + PGkAp)− I↓0 εk(1− PGkAp)

I↑0 εk(1 + PGkAp) + I↓0 εk(1− PGkAp)
− I↑0 εk∗(1 + PGk∗Ap)− I↓0 εk∗(1− PGk∗Ap)

I↑0 εk∗(1 + PGk∗Ap) + I↓0 εk∗(1− PGk∗Ap)

=
I↑0 (1 + PGkAp)− I↓0 (1− PGkAp)

I↑0 (1 + PGkAp) + I↓0 (1− PGkAp)
− I↑0 (1− PGkAp)− I↓0 (1 + PGkAp)

I↑0 (1− PGkAp) + I↓0 (1 + PGkAp)

=
(I↑0 + I↓0 )PGkAp + (I↑0 − I

↓
0 )

(I↑0 + I↓0 ) + PGkAp(I
↑
0 − I

↓
0 )
− (I↑0 − I

↓
0 )− PGkAp(I

↑
0 + I↓0 )

(I↑0 + I↓0 ) + PGkAp(I
↑
0 − I

↓
0 )
,

(6.22)

where in the second step we have used Gk ≈ −Gk∗ .

Again, using (I↑0 + I↓0 )� PGkAp(I
↑
0 − I

↓
0 ) in the denominator, we have

Ak − Ak∗ ≈ PGkAp +
I↑0 − I

↓
0

I↑0 + I↓0
− I↑0 − I

↓
0

I↑0 + I↓0
+ PGkAp. (6.23)

Thus
∆Akk∗ = Ak − Ak∗ ≈ 2PGkAp. (6.24)

It is also evident from Eq. 6.23 that if we take the sum of the conjugate wire asym-
metries, we get an estimate for the beam asymmetry∑

Akk∗ = Ak + Ak∗ ≈ 2
I↑0 − I

↓
0

I↑0 − I
↓
0

. (6.25)

In the remainder of this chapter we analyze the asymmetry constructed from the
yield which is pedestal subtracted and normalized by sum over all detectors (the
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second approach). The equations of interest are 6.11,6.12, 6.13, 6.14, 6.15 and 6.17.
In Eq. 6.17, the polarization P is close to 1 and we omit the polarization until the
end of the analysis. We also replace the superscript n by r on the left hand side of
Eq. 6.17 hereafter and refer to this quantity as the measured or raw asymmetry. In
the analysis, the time of flight integrated yield over the optimal TOF window, shown
in Fig. 6.1, is taken as the wire yield (Y ↑↓) for that pulse.

6.1.2 Data selection

As we saw in Fig. 2.28 and Fig. 2.29, each pulse has a small contamination from the
previous pulse and next pulse. Also, the choppers are opening and closing in this
region. So we exclude the first 5 time bins and last 4 time bins of any pulse as shown
in Fig(6.1). Thus, time bins 5 - 44 are the TOF window used in the analysis.
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Figure 6.1: The TOF window used for the anymmetry extraction. The plot shows
signal from layer 1 wire 5.

Next, while the dropped pulses are useful for doing detailed beam characterization
and extracting the pedestal, from the analysis perspective, we need to exclude those
pulses. As shown in section (2.4.2), a dropped pulse omits the injection flash in the
previous pulse and missing wrap around in the next few pulses. We not only exclude
the dropped pulse, but one pulse before it and 19 pulses after the dropped pulse (21
pulses in total, as shown in Fig. 6.2) from the analysis.
Additionally, we require considering 600-pulse sequences with no irregular dropped
pulse in between; the rationale for this data selection is explained in section (6.1.5).
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Figure 6.2: The pulses excluded from the analysis

6.1.3 Background subtraction

Each ADC channel has a time independent DC offset (pedestal). But, because of
piled-up wrap-around, there is also a significant time dependent contribution to the
signal. This is evident if we look at the signal for the dropped pulse. The signal for
the dropped pulse is non-zero for any time bin because of this contribution. This
background signal is small compared to an actual signal for the front wires, but it
dominates for the wires from the back layers where the beam is weak. This background
also depends on the accelerator beam power.

To remove this background we use the dropped pulse. From the dropped pulse signal,
the time bin with lowest signal is used to get the constant offset. Time bins 37 and
670 from the dropped pulses are used to determine the offset for the detector and M1
signals, respectively. This constant offset is subtracted from the signals corresponding
to all the time bins of the regular pulses. The constant offset is calculated for each
channel and is updated in every 600-pulse sequence from the most recent regularly
dropped pulse.

6.1.4 Beam fluctuations

Fig. 6.8 (for the LR data) and Fig. 6.26 (for the UD data) show the beam power fluc-
tuations from run to run. There are also beam power fluctuations within each run. In
most cases this fluctuation is due to dropped pulses or comparatively low beam power
pulses. The top plot in Fig. 6.4 shows the distribution of the M1 asymmetry for all the
pulses including dropped pulses. In this distribution the largest asymmetries, near
+1 and -1, come from the dropped pulses. In Fig. 6.4, the asymmetries far from zero
are because of the pulses with low beam power. The bottom plot shows the distribu-
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Figure 6.3: Pedestal measured from the dropped pulse: The signal corresponding to
time bin 37 (for detector signals) of the regularly dropped pulse is used as the offset
for signals corresponding to all other time bins.

tion once we exclude the dropped pulses and neighbors as shown in Fig. 6.2. Fig. 6.5
shows the M1 asymmetry for the LR data set (first five batches) after applying the
data selection. For this slightly smaller dataset, the beam power was comparatively
stable.

We also look at the beam fluctuation over a long time period. In Fig. 6.6, we plot
(Ii − Iave)/Iave versus distance from the dropped pulse. Here, Ii is the time bin
integrated M1 signal for the i-th pulse starting from the dropped pulse. We used
data summary tape (DST), explained in section 4.4, to generate this plot. This plot
shows how the beam intensity varies within a sequence with respect to the average
pulse intensity over a long period of time. So, we do not expect this variation to
affect our asymmetry. To remove pulse to pulse beam fluctuations (as in Fig. 6.4 ,
6.5), we follow the asymmetry definition mentioned in Eq. 6.15, i.e. asymmetry in
terms of modified yield which is pedestal subtracted and normalized by a sum over
all detectors’ signal. To account for run to run beam fluctuations (as in Fig. 6.8 and
Fig. 6.26) we divide the entire data set into batches based on beam stability. Then
the asymmetries, extracted from each of those batches, are combined to get an overall
average asymmetry.
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Figure 6.4: The M1 asymmetry from the UD data. The top graph includes all the
pulses. The bottom graph excludes dropped pulses and neighbors.
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Figure 6.5: The M1 asymmetry from the LR data (first five batches) after excluding
dropped pulses and neighbors.
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Figure 6.6: Normalized M1 signal variation as a function of distance from the dropped
pulse. Along the y-axis is (Ii − Iave)/Iave, where i is the pulse number from dropped.
The first 10 pulses with high variation are not shown in this plot.
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6.1.5 False asymmetry

We noticed slow drift in the beam. This can be shown using the image pulse explained
in section 2.4.2. Fig. 6.7 shows an image (surrogate) pulse with both axes on a log
scale. The x-axis contains 600 pulses. We see, starting from the main pulse peak,
the beam intensity is drifting slowly as we near the end of the sequence. This slow
drift can easily give rise to false asymmetry in our analysis as shown in Fig. 6.10.
To cancel this drift, we consider the pulses starting from one regular dropped pulse
until the next regular dropped pulse. This constitutes a sequence of 600 pulses with
the dropped pulse as the first pulse. We skip any sequence with an irregular dropped
pulse. Now, the dropped pulse of any sequence can have two states — the RFSF is
turned on or turned off. Based on the RFSF state during the dropped pulse, we group
the sequence as A (RFSF off) or B (RFSF on). The false asymmetry contribution,
because of the slow drift, in Eq. 6.15 will have opposite sign in group A compared
to group B. So when we combine asymmetries from both groups, they will cancel
out. This is the analysis strategy we follow — we analyze in sequences (each sequence
having 600 pulses) and group them as A and B, and finally average them to cancel
false asymmetry.

Figure 6.7: Slow drift from image pulse
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6.2 Parity conserving (LR) asymmetry

We first present the analysis of the LR (parity conserving) data set. LR data were
collected in two phases: once at the beginning of the experiment and again at the end
of the experiment. In between those, UD data were collected for the most part of the
experiment. Fig. 6.8 shows the average proton beam power for the LR dataset from
the first phase (first five batches). The proton beam power was mostly stable. We
note that the plot in Fig. 6.8 is zero-suppressed. The plot also marks the region of
the five batches. Table 6.1 enumerates each LR batch and corresponding run range.
For the LR asymmetry, the total number of runs analyzed was 718 + 329.

Batch no. Run range

Batch-1 14785 - 14880
Batch-2 14881 - 15235
Batch-3 15236 - 15520
Batch-4 15521 - 15785
Batch-5 15786 - 15860
Batch-6 57403 - 57600
Batch-7 57601 - 57796

Table 6.1: The batch numbers and corresponding run ranges of the LR data set
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Figure 6.8: Different batch groups and beam power for the LR runs. Pulses around
the dropped pulse are excluded from the beam power calculation. Note, the plot is
zero suppressed.
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Within each batch and each group (A or B), the measured or raw asymmetry is calcu-
lated according to Eq. 6.15. Fig 6.9 shows the distribution of the LR raw asymmetry
for layer 1, wire 1. If the beam power is stable, which is the case for Fig(6.9), the
distribution is purely Gaussian.
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Figure 6.9: The LR raw asymmetry from the layer number 1, wire 1

To illustrate that the raw asymmetries from group A and B have false asymmetry
contributions with opposite sign, we plot the raw asymmetries from both groups on
the same graph in Fig. 6.10. This plot represents raw asymmetries from all the LR
data (all data as a single batch) separated in two groups.
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Figure 6.10: Raw asymmetry from the entire LR data set: Group A and Group B.
The vertical red lines separate each layer of the ion chamber.
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The resultant asymmetries, that we get by taking the average of asymmetries from
group A and B, are plotted in Fig. 6.11. We see that within each layer the raw
asymmetry is maximum for the end wires and antisymmetric about the middle wire
of each layer. This trend follows the geometry factors of each wire. This clearly
indicates a non-zero parity conserving asymmetry.
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Figure 6.11: Raw asymmetry from the entire LR data set: Group A + Group B. The
vertical red lines separate the layers of the ion chamber.

We analyze each of the LR batches separately and combine asymmetries from group
A and group B using simple averaging within each batch.

To get the physics asymmetry from the combined raw asymmetry, we normalize
each raw asymmetry by the corresponding geometry factors calculated in section 5.7.
Fig. 6.12 shows the physics asymmetry for all wires from the LR batch-2 group A
data. Fig. 6.13 shows the physics asymmetry for all the wires from the LR batch-2
group B data.
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Figure 6.12: The LR physics asymmetry (uncorrected) from batch 2A. The vertical
red lines separate the layers of the ion chamber. The fit values in the box are without
correction for correlation.
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Figure 6.13: The LR physics asymmetry (uncorrected) from batch 2B. The vertical
red lines separate the layers of the ion chamber. The fit values in the box are without
correction for correlation.
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To combine the physics asymmetries from the two groups, we use

ĀiA+B =
ĀiA + ĀiB

2
, (6.26)

∆ĀiA+B =

√
(∆ĀiA)

2
+ (∆ĀiB)

2

2
, (6.27)

where ĀiA,B is the average physics asymmetry from the i-th wire in group A or B.
ĀiA+B and ∆ĀiA+B are the average physics asymmetry and its error of the i-th wire
after combining groups A and B. The combined physics asymmetries of groups 2A
and 2B are plotted in Fig(6.14). The physics asymmetry, presented here, is without
the correction for polarization.
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Figure 6.14: The LR physics asymmetry (uncorrected) from batch 2A + 2B. The
vertical lines separate the layers of the ion chamber. The fit values in the box are
without correction for correlation.

Since each signal wire is expected to give a similar physics asymmetry, we fit to a
constant here to get the average of all the signal wires. The fit values shown in the
boxes are without correction for correlations. So, the fit values for p0 represents an
uncorrected physics asymmetry. In the next section we discuss how to correct for the
correlation.
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6.3 Correction for correlation

As we mentioned in section(3.2.2), the energy deposition in multiple wires from a
single event makes the wires correlated. This is also evident from Fig. 6.15, where
we plotted the raw asymmetries from two adjacent wires along the two axes. The
slanted major axis of the ellipse is an indication of the correlation.

Figure 6.15: The raw asymmetry correlation between wires. Here the correlation is
presented between layer-1, wire-1 and layer-1, wire-2 raw asymmetries from 68 LR
runs.

We calculate the covariance for raw asymmetry using

Cov(Ari , A
r
j) =

1

N

N∑
k=1

(Ark
i − Ār i)(Ark

j − Ār j), (6.28)

where i and j are the wire number indices. Here, the raw asymmetry Ari is calculated
according to Eq. 6.15. The covariance of the physics asymmetries is

Cov(Api , A
p
j) =

Cov(Ari , A
r
j)

GiGj

, (6.29)

where superscript r indicates raw asymmetry and p indicates physics asymmetry.
Indices i and j are again for the wire numbers. G indicates the geometry factor.
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We are actually interested in the covariance of mean, which is normalize by the
number of entries (pulse pairs),

Cov(Āpi , Ā
p
j) =

1

N

Cov(Ari , A
r
j)

GiGj

. (6.30)

If i = j, then Eq. 6.28 reduces to

σ2
i =

1

N

N∑
k=1

(Ark
i − Ār i)2, (6.31)

which are the variances and the diagonal terms of the covariance matrix. For uncor-
related observables, the off-diagonal terms are all zero and only diagonal terms enter
into the weight. In the case of correlated observables, non-zero off-diagonal terms will
remain.

The measure of covariance is often expressed as the correlation coefficient, which is
just the normalized covariance, defined as

ρ =
Cov(Api , A

p
j)

σiσj
, (6.32)

where σi and σj are the standard deviations (square root of variance) correspond-
ing to the physics asymmetries. The correlation coefficient varies between -1 (anti-
correlated) and +1 (correlated), where the sign indicates the sense of correlation. If
the variables are perfectly correlated linearly, then |ρ| = 1; if the variables are inde-
pendent then ρ = 0. Fig. 6.16 shows the correlation coefficient between the physics
asymmetries of different wires. Here we used data from the LR batch 2. Along the x
and y axes are the wire numbers, and the color represents the value of the correlation
coefficient. We note that, the plot is symmetric as expected from Eq. 6.32. The red
diagonal line represents each wire’s self-correlation. On both sides of the red line, we
see two bands representing non-zero correlation. The first band, sticking to the red
line, represents the correlation between the wires of the same layer in the left-right
direction (in the LR mode) or in the up-down direction (in the UD mode). The other
band, a little bit away from the red line, represents the correlation between the wires
of the adjacent layers. This band is away from red line because of the way the wire
numbers are made serialized on the axes.Each gap in this band is for an end wire in
a layer which has no neighboring wire on one side.

We follow two independent approaches to take into account the correlation in our
weighted average or fit. These two approaches are discussed in the following two
subsections.
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Figure 6.16: The physics asymmetry correlation between wires from the LR batch-
2 data. The color represent the correlation coefficient ρ defined in Eq. 6.32. The
labels “wire number” along the axes here actually represent 8 × Layer number +
wire number. The middle wire in each layer is omitted.

6.3.1 Correlation correction by direct inversion of the covari-
ance matrix

In this approach we note that, since the off diagonal term of the covariance matrix is
not zero because of correlation between wires, we need to consider the full covariance
matrix in defining the weight used to average individual wire asymmetry. We can no
longer just use the diagonal elements (variances), as used for the case when there is
no correlation. So, we generalize our typical weighting method on the left with the
full covariance matrix on the right as shown below:

Weight: wi =
1

(δĀpi )
2

=
1

σ2
Āpi

⇒ wi =
∑
j

Cov(Āpi , Ā
p
j)
−1
, (6.33)

Weighted average: Āp =

∑
iwiĀ

p
i∑

iwi
⇒ Āp =

∑
ij Cov(Āpi , Ā

p
j)
−1
Āpi∑

ij Cov(Āpi , Ā
p
j)
−1 , (6.34)

Error: ∆Āp =
1√∑
iwi

⇒ ∆Āp =
1√∑

ij Cov(Āpi , Ā
p
j)
−1
, (6.35)
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χ2 : χ2 =
∑
i

(Āpi − Āp)2

σ2
Āpi

⇒ χ2 =
∑
ij

(Āpi − Āp)Cov(Āpi , Ā
p
j)
−1

(Āpj − Āp). (6.36)

Āpi is the mean physics asymmetry of the i-th wire and Āp is the weighted average
physics asymmetry of all the wires. Since we divide the data set in two groups A and
B, and then combine them, the covariance of the combined result is calculated using

Cov(Āpi , Ā
p
j)A+B =

1

4

[
1

NA
Cov(Api , A

p
j)A +

1

NB
Cov(Api , A

p
j)B

]
. (6.37)

Eq. 6.37 easily follows from Eqs. 6.27 and 6.30.

We can use Eqs. 6.33 to 6.36 with the covariance in Eq. 6.37 to get the correlation-
corrected average physics asymmetry and its error from the wire asymmetries.

6.3.2 Correlation correction by diagonalizing the covariance
matrix

The basic idea in this approach is to transform the wire asymmetries and the corre-
sponding uncertainties to an orthogonal basis where the covariance matrix is diagonal.
With the diagonal covariance matrix, the asymmetries in the new basis or reference
frame are independent (not correlated anymore) [66],[67]. Noting that the covari-
ance matrix C ≡ Cov(Āpi , Ā

p
j)A+B is symmetric, we can always find an orthogonal

transformation matrix S that diagonalizes it:

STCS = D, where STS = I. (6.38)

Here D is a diagonal matrix with diagonal elements

D = Diag(σ2
1, σ

2
2, σ

2
3, σ

2
4, ..., σ

2
n). (6.39)

The transformation matrix S converts back and forth between the correlated and
uncorrelated basis (reference frame). The matrix S can be built up from the eigen-
vectors of C as its columns, so that D is the diagonal matrix of eigenvalues. Before we
transform everything into the new basis, we rewrite our fit procedure in the matrix
representation. In the correlated frame we fit the physics asymmetry from all 144
signal wires to a constant, i.e. we fit to

Āi = b, (6.40)

where Āi is the average physics asymmetry for the i-th signal wire and b is the weighted
average, physics asymmetry from the fit over all the wires. In matrix representation
the above fit can be represented as

Ā = Xb, (6.41)
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where Ā is a column matrix with 144 physics asymmetries as the entries and X is the
design matrix. In the diagonal case, X is a column vector filled with all 1’s. Clearly, b
is a scalar and invariant, irrespective of our choice of the basis. By forming deviation
from the expectation in Eq. 6.41 and forming the chi square,which we minimize, we
can easily derive the following results [66], [67]:

Weight: W = C−1, (6.42)

Fit value (weighted average): b = (XTWX)−1XTWĀ, (6.43)

Error: (∆b)2 = (XTWX)−1, (6.44)

Chi square: χ2 = (Ā−Xb)TW (Ā−Xb). (6.45)

In other words, Eq. 6.42 to Eq. 6.45 are nothing but equations 6.33 to 6.36 rewritten
in the matrix representation. The above relations work both for correlated and un-
correlated data.
We note that, for uncorrelated data, the above expressions reduce to our well-known
expressions:

wi =
1

σi
, (6.46)

b =

∑
i yi

1
σ2
i∑

i
1
σ2
i

, (6.47)

∆b =
1√∑

1
σ2
i

, (6.48)

χ2 =
∑
i

(yi − b)2

σ2
i

. (6.49)

Now we transform both our data and the fit according to Eq. 6.38 so that in this new
orthogonal basis the covariance matrix is diagonal:

Ā′ = ST Ā, (6.50)

X ′ = STX, (6.51)
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Our fit relation is
Ā′ = X ′b. (6.52)

We note that from Eq. 6.51, the entries of X ′ are no longer filled with 1’s. In the new
basis the expressions Eqs. 6.42 to 6.45 become

Weight: W ′ = D−1, (6.53)

Fit value (weighted average): b = (X ′
T
W ′X ′)−1X ′

T
W ′Ā′, (6.54)

Error: (∆b)2 = (X ′
T
W ′X ′)−1, (6.55)

Chi square: χ2 = (Ā′ −X ′b)TW ′(Ā′ −X ′b). (6.56)

In the new basis, the Ā′ → X ′ map is not flat any more. But the covariance matrix
D is now diagonal, which means the individual mode is uncorrelated. The weight
of each mode is just the inverse of the corresponding diagonal element (eigenvalue).

W ′ = D−1 = Diag(
1

σ2
1

,
1

σ2
2

,
1

σ2
3

,
1

σ2
4

, ...,
1

σ2
n

). (6.57)

We can easily check that b, (∆b)2 and χ2 are invariant, irrespective of our choice of
basis (primed or unprimed frame) as expected.

(∆b)2 = (X ′
T
W ′X ′)−1 =

[
(STX)TD−1STX

]−1

=
[
XTS(STCS)−1STX

]−1

=
[
XTS(S−1C−1S)STX

]−1

=
[
XT (SS−1)C−1(SST )X

]−1

= (XTWX)−1,

(6.58)

where we have used the orthogonality of the S matrix, i.e. ST = S−1, SST = SS−1 =
I, and the properties (AB)T = BTAT , (ABC)−1 = C−1B−1A−1.

b = (X ′
T
W ′X ′)−1X ′

T
W ′Ā′ = (XTWX)−1(STX)TD−1ST Ā

= (XTWX)−1XTS(STCS)−1ST Ā

= (XTWX)−1XTS(S−1C−1S)ST Ā

= (XTWX)−1XTC−1Ā

= (XTWX)−1XTWĀ.

(6.59)
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χ2 = (Ā′ −X ′b)TW ′(Ā′ −X ′b) = (ST Ā− STXb)T (STCS)−1(ST Ā− STXb)
= (Ā−Xb)TS(S−1C−1S)ST (Ā−Xb)
= (Ā−Xb)TW (Ā−Xb).

(6.60)

In the new basis, we still extract the same weighted average, its error and the chi
square value for the fit, but the variables are now uncorrelated. Another advantage
of this approach over the previous approach, presented in section 6.3.1, is that we can
now plot the modes and fit with independent error bars giving an visual representation
of the goodness of the fit.

From Eq. 6.52, we see that if we plot Ā′ vs the mode number, then the fit is scaled
by X ′ for each mode instead of flat. Another way is to plot Ā′X ′−1 against the mode
number,which is a flat fit. In both cases, the fit parameter gives us the weighted
average, i.e. the average physics asymmetry from all wires, along with its error and
chi square as an indication for the goodness of the fit.

Out of 144 signal wires, the 16 central wires have small geometry factors. These
wires have very large error bars, since the physics signal is almost washed away. So
they have a non-significant contribution to the overall average physics asymmetry.
Moreover, we have two bad wires, which give rise to a singularity while inverting the
covariance matrix. We exclude these 18 signal wires and work with the remaining
126 signal wires to get the correlation-corrected average physics asymmetry. We
employed both approaches of the correlation correction and obtained the exact same
result. Here, we present the result using the second approach, since it allows for a
visual representation of the data.

6.3.3 Data reduction

To get the correlation-corrected average physics asymmetry from all the 126 signal
wires, we combine all the wires in two different ways as a cross check. In one case, for
each batch we calculate the correlation-corrected physics asymmetry by combining
all the wires. Then we combine all the batches to get an overall average physics
asymmetry from all batches. This data reduction approach is indicated on the right
of Fig. 6.17. In the other approach, for a particular wire, we fit along all the batches
to get an average value for that wire. We do this separately for every wire to get
126 wire average values from the fits. Then, we apply correlation correction on these
126 wire averages to get the overall physics asymmetry from all the batches. This
approach is indicated on the bottom of Fig. 6.17. In both approaches, we get the
same overall physics asymmetry.
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Figure 6.17: Two approaches of the data reduction process.

6.3.4 Correlation corrected LR asymmetry

In this section we apply the correction for the wire correlations to Fig. 6.14 using the
approach explained in section 6.3.2. Fig. 6.18 (top) shows the transformation matrix
S, which is formed from the eigenvectors of the covariance matrix as its columns. In
the bottom plot of the same figure, we show the contribution of each wire to the
eigenvector that corresponds to the most significant mode. Fig. 6.19 (top) shows the
eigenvalues and (bottom) how the units in the matrix X change in the new basis.
Both of them combined are used to determine the error bar in Fig. 6.20. In both
cases, the modes have been sorted in ascending order of the error bar in Fig. 6.20
i.e. the most significant modes are plotted first. In Fig. 6.20 we have the LR physics
asymmetry in the new basis scaled by X ′. The fit of this plot, shown in the statistics
box, gives us the correlation-corrected physics asymmetry (for the LR batch-2 data).
Thus Fig. 6.20 is the correlation-corrected version of uncorrected plot in Fig. 6.14.
We also compare χ2/ndf and the change in the uncertainty from each of the plots.
Another approach of fitting to get the same result, with the A′LR vs mode number
plot, is presented in Appendix D.1. The other approach, explained in section (6.3.1),
yields exactly the same answer.
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Figure 6.18: The top plot shows the transformation matrix S for the LR batch 2
data. The bottom plot shows the eigenvector corresponding to the most significant
mode (mode 0) for the LR batch 2 data.
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Figure 6.19: The top plot shows the eigenvalues for the LR batch 2 data. The bottom
plot shows the entries of the matrix X ′. Both of them combined determine the error
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error bar in Fig. 6.20 i.e. most contributing modes first.
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Figure 6.20: Fit for the correlation correction for the LR batch 2 data. The modes
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first. Only the most significant modes are shown here.

We apply the same recipe to all the LR batches. Table 6.2 shows the result from all
the LR batches. The left most column labels the batch number with the number of
runs analyzed in that batch in parenthesis.

Batch# Physics asymmetry Physics asymmetry Physics asymmetry
A+ B (Uncorrected) (Correlation corrected)

Group:A Group : B ALR ±∆ALR χ2/ndf ALR ±∆ALR χ2/ndf

1 (64) -0.56 ± 1.78 -7.89 ± 2.09 -4.23 ± 1.37 113.58/125 -3.81 ± 2.15 113.96/125

2 (208) -0.48 ± 1.1 -10.11 ± 1.03 -5.29 ± 0.76 110.64/125 -5.35 ± 1.19 113.77/125

3 (197) 0.91 ± 1.07 -10.60 ± 1.12 -4.85 ± 0.78 141.08/125 -5.09 ± 1.22 150.37/125

4 (195) 3.93 ± 1.09 -8.63 ± 1.12 -2.35 ± 0.78 132.35/125 -2.72 ± 1.22 130.19/125

5 (57) 4.81 ± 2.08 -9.92 ± 2.27 -2.55 ± 1.54 131.04/125 -3.69 ± 2.42 147.85/125

6 (166) -1.46 ± 1.30 -4.28 ± 1.26 -2.87 ± 0.90 109.46/125 -3.44 ± 1.39 117.17/125

7 (163) -13.00 ± 1.10 4.61 ± 1.05 -4.20 ± 0.76 115.51/125 -3.97 ± 1.17 106.85/125

Table 6.2: LR asymmetries from all the batches. Asymmetries and their errors are
in units of 10−7.

The next two columns show uncorrected physics asymmetries from groupA and group
B. The next two columns list uncorrected physics asymmetries after combining the
two groups and the corresponding χ2/NDF. The last two columns are the correlation-
corrected physics asymmetries with corresponding χ2/NDF.
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Figure 6.21: LR physics asymmetries (corrected) from all the batches

Fig. 6.21 shows the corrected LR physics asymmetries from all the batches. The fit
value in the box represents the overall corrected LR physics asymmetry from all the
LR runs, following the approach illustrated on the left in Fig. 6.17.

As a cross check of statistical consistency in time, we now follow the second data
reduction approach illustrated in the bottom of Fig. 6.17.
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Figure 6.22: LR physics asymmetries (uncorrected) from different batches for layer-1,
wire-4. Note, the batch number counting starts from zero here.

In this approach, we get the average wire physics asymmetry (uncorrected) by fitting
the asymmetries for that wire from different batches. Fig. 6.22 shows such a fit
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for layer-1, wire-4. We do a similar fit for all the other wires. Fig. 6.23 shows
the distribution of wire physics asymmetries (uncorrected) that we get following the
fit.
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Figure 6.23: Physics asymmetry (uncorrected) for each wire obtained by fitting over
all the batches.

We have 126 values for χ2, one from each fit to calculate the average physics asym-
metry in a wire. Fig. 6.24 shows the distribution of χ2.
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Figure 6.24: Chi square distribution for the fits. The log likelihood method is used
for the fit. The function f(x) represents the χ2 distribution.
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We fit the distribution in Fig. 6.24 to the chi square distribution function. The values
inside the box represent the fit values. Since there are 7 batches of LR data and one
fit parameter, the number of degrees of freedom (NDF) is 6.
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Figure 6.25: Fit for the correlation-corrected physics asymmetry. Here we used the
average wire asymmetry, which is obtained by fitting over all the batches. The modes
have been sorted in ascending order of the error, i.e. most significant modes first.
Only most significant modes are shown here.

The LR physics asymmetry presented in Fig. 6.23 is without correction for correlation.
To correct for correlation, we again follow the produces explained in section(6.3.2).
The fit values shown in Fig. 6.25 give the correlation-corrected LR physics asymmetry.
The fit values from Fig. 6.21 are in agreement with the fit values from Fig. 6.25. This
confirms that both the data reduction approaches shown in Fig. 6.17 are equivalent.
However, the first shows consistency of different wires, and the second of different
batches.

Another validation for the analysis method is achieved by comparing the correlation
from the data analysis with that from the simulation. By comparing the error from
uncorrected fit and corrected fit, for example from Fig. 6.24 and Fig. 6.25, or from
Table 6.2, we see an increase in error of ∼ 57%, which is pretty close to the prediction
by the simulation of 59%.

The LR physics asymmetry is

ALR = (−4.12± 0.52)× 10−7, (6.61)

without correction for polarization. After correcting for polarization using Eq. 3.18
and Eq. 3.19, the final LR physics asymmetry can be quoted as

ALR = (−4.41± 0.56)× 10−7. (6.62)
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6.4 Parity violating (UD) asymmetry

We now present the analysis of the parity violating (UD) data. The data analysis
recipe is exactly same as the parity conserving (LR) data. The UD run numbers used
in the analysis are in the range 18000 – 57000. We also divide this range into batches,
mostly based on the beam power stability. Table 6.3 shows the batch number and
the corresponding run range.

Batch no. Run range

Batch 1 18000 - 22000
Batch 2 22001 - 26500
Batch 3 26501 - 29100
Batch 4 29101 - 30050
Batch 5 30051 - 31250
Batch 6 31251 - 31930
Batch 7 31931 - 33800
Batch 8 33801 - 35100
Batch 9 35101 - 35660
Batch 10 35661 - 36380
Batch 11 36381 - 38100
Batch 12 38101 - 40000
Batch 13 40001 - 43700
Batch 14 43701 - 45200
Batch 15 45201 - 47200
Batch 16 47201 - 49200
Batch 17 49201 - 51200
Batch 18 51201 - 53800
Batch 19 53801 - 54800
Batch 20 54801 - 56340
Batch 21 56341 - 57000

Table 6.3: All the batches and corresponding run ranges for the UD dataset.

Fig. 6.26 shows the average proton beam power distribution for all the UD runs.
The batch numbers are also labeled on the plot. Labels for some intermediate batch
numbers are omitted as they are very small and adjacent to each other.

We calculate the raw asymmetry using Eq. 6.15. Fig. 6.27 shows the distribution of
raw asymmetry for one signal wire from some of the batch 1 runs. Generally, the
distribution has more outliers if there are beam fluctuations. Within each batch we
calculate the asymmetry in group A and group B based on the criteria explained
above. Then we combine them to get the average asymmetry. We get the physics
asymmetry from the raw asymmetry by normalizing by the same geometry factors
used for the LR asymmetry.
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Figure 6.26: Average proton beam power distribution for the UD dataset. Dropped
pulses have been excluded while calculating the beam power. Labels for the interme-
diate batch numbers from B6 to B19 are not shown in this plot.
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Figure 6.27: Distribution of the UD raw asymmetry from layer-1, wire-1, from ∼ 900
runs of batch 1.

Fig. 6.28 shows the distribution of UD physics asymmetries (uncorrected) from all
the signal wires for the UD batch 2 data. The fit value in the box represents the
average uncorrected UD physics asymmetry from all the wires for batch 2 data.

The correlation coefficient plot for the UD physics asymmetry is presented in Ap-
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Figure 6.28: The UD physics asymmetry (uncorrected) for batch-2 after combining
group A and B. The fit value in the box represents the uncorrected UD physics
asymmetry for batch-2. The vertical red lines separate the layers of the ion chamber.

pendix D.6 and is similar to that of LR shown in Fig. 6.16.
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Figure 6.29: The UD physics asymmetry (corrected) for batch 2. The modes have
been sorted by ascending error, i.e. most significant modes first. Only most significant
modes are shown here.
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Fig. 6.29 shows the correlation-corrected UD physics asymmetry using diagonaliza-
tion of the covariance matrix explained in section (6.3.2). The fit value in the box
represents the corrected physics asymmetry from batch 2. We analyzed all the other
batches in the same way. Table (6.4) lists the asymmetries from all the UD batches.
In the left most column, the number in parenthesis indicates the number of runs
analyzed in that batch. We again note that the increase in error from uncorrelated

Batch no. Physics asymmetry Physics asymmetry Physics asymmetry
A+ B (Uncorrected) (Correlation Corrected)

Group:A Group : B AUD ±∆AUD χ2/ndf AUD ±∆AUD χ2/ndf

1 (3242) -13.16 ± 2.75 6.25 ± 2.73 -3.45 ± 1.94 142.25/125 -4.61 ± 3.04 142.07/125

2 (3679) -6.57 ± 2.60 11.61 ± 2.58 2.52 ± 1.83 125.56/125 3.20 ± 2.85 134.22/125

3 (1954) -1.69 ± 3.09 -7.09 ± 3.09 -4.39 ± 2.18 146.96/125 -5.13 ± 3.40 136.34/125

4 (782) 8.11 ± 5.08 1.77 ± 5.20 4.95 ± 3.64 142.68/125 5.81 ± 5.69 133.15/125

5 (729) 14.64 ± 5.07 -4.66 ± 5.13 4.99 ± 3.61 146.91/125 2.91 ± 5.62 158.73/125

6 (397) 15.53 ± 6.33 -18.76 ± 6.77 -1.62 ± 4.63 105.16/125 -2.82 ± 7.17 110.00/125

7 (1483) 14.58 ± 3.66 -13.72 ± 3.69 0.43 ± 2.60 142.05/125 -0.96 ± 4.06 145.58/125

8 (1072) 9.78 ± 4.30 -8.57 ± 4.18 0.60 ± 3.00 152.35/125 1.36 ± 4.68 125.17/125

9 (467) -16.97 ± 6.61 14.69 ± 6.71 -1.13 ± 4.71 134.70/125 0.73 ± 7.37 142.04/125

10 (609) -10.24 ± 5.37 7.54 ± 5.74 -1.35 ± 3.93 153.14/125 0.25 ± 6.13 154.30/125

11 (1270) 10.17 ± 3.97 -2.06 ± 4.12 4.06 ± 2.86 201.82/125 3.37 ± 4.48 182.78/125

12 (503) -12.46 ± 6.18 -9.33 ± 5.66 -10.90 ± 4.19 158.10/125 -8.32 ± 6.50 152.74/125

13 (2464) 1.15 ± 2.82 2.56 ± 2.77 1.85 ± 1.98 171.64/125 2.02 ± 3.07 148.87/125

14 (1045) 0.26 ± 4.68 -5.80 ± 4.56 -2.77 ± 3.26 103.27/125 -1.23 ± 5.08 102.23/125

15 (1553) -0.06 ± 3.33 9.80 ± 3.46 4.87 ± 2.40 188.27/125 5.86 ± 3.73 185.47/125

16 (1498) 11.96 ± 4.16 3.32 ± 4.42 7.64 ± 3.04 106.6/125 5.78 ± 4.77 110.42/125

17 (1559) 4.57 ± 4.14 6.39 ± 4.00 5.48 ± 2.88 133.80/125 8.20 ± 4.52 148.30/125

18 (2280) -4.37 ± 3.81 -4.46 ± 3.70 -4.41 ± 2.65 161.43/125 -4.31 ± 4.11 163.19/125

19 (891) -34.02 ± 6.01 44.32 ± 6.05 5.15 ± 4.26 146.76/125 4.58 ± 6.59 128.37/125

20 (1111) 18.33 ± 3.78 -23.47 ± 4.06 -2.57 ± 2.77 131.20/125 -0.42 ± 4.31 144.69/125

21 (614) 14.52 ± 5.33 5.21 ± 4.85 9.86 ± 3.60 161.43/125 9.87 ± 5.60 114.66/125

Table 6.4: UD asymmetries from all the batches. Asymmetries and their errors are
presented in units of 10−8.

to correlated physics asymmetry is ∼ 57%, in agreement with the prediction from
the simulation. Fig. 6.30 shows the corrected UD physics asymmetry from all the
batches and the weighted average of them. So, the fit value in the statistics box is
the corrected UD physics asymmetry considering all the UD batches.
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Figure 6.30: UD physics asymmetries (corrected) from all the batches

As a cross check we also follow the second data reduction approach explained in
Fig. 6.17. Here, for each signal wire, we fit over all the batches to get an average
uncorrected physics asymmetry of that wire. Fig. 6.31 shows such a fit for layer 1, wire
1 over all the UD batches. We have 126 such fit values with errors and corresponding
χ2 values. This gives 126 χ2 values from all the fits. Fig. 6.32 shows the distribution
of χ2. We also fit the distribution to a chi square distribution function f(x) as shown
on the plot. The box statistics in the plot shows the fit values. The number of
degrees of freedom (NDF) is 20, since we have 21 batches for the UD data and one
fit parameter.

The wire asymmetries, obtained from the fit over all the batches, were not corrected
for correlations. As before, we go to a new basis where those asymmetries are uncor-
related and calculate the fit value in this new basis. Fig. 6.33 shows the fit outcome.
The modes are sorted, and the most dominant modes have been shown in the plot.
The fit value in the box represents the corrected UD physics asymmetry from all the
UD batches.
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Figure 6.31: Physics asymmetry for wire 1 from all the batches. The fit value repre-
sents the wire average.
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Figure 6.32: Chi square distribution from the fits. The log likelihood method was
used for the fit. The function f(x) is the χ2 distribution.
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Figure 6.33: The UD physics asymmetry (corrected) using wire asymmetries obtained
by fitting over all the batches. The modes have been sorted in ascending order of
error, i.e. most significant modes first. Only most significant modes are shown here.

The corrected UD physics asymmetry, found in the later approach (in Fig 6.33) agrees
with that to the earlier approach (in Fig. 6.30). We use the fit value of Fig. 6.30 as
the final corrected UD physics asymmetry considering all the batches:

AUD = (0.9528± 0.9527)× 10−8, (6.63)

not including the correction for polarization. After correcting for polarization using
Eq. 3.18 and Eq. 3.19, our final UD physics asymmetry can be quoted as

AUD = (1.02± 1.02)× 10−8. (6.64)
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6.5 Systematic effects

We discuss possible sources of systematics that might affect our physics asymmetry.
We consider the effect of the M1 asymmetry, the detector asymmetry, the instrumental
asymmetry and systematics associated with the geometry factor calculations.

We get the size of the M1 asymmetry from the lower plot of Fig. 6.4 (for the UD
data) and from Fig. 6.5 (for the LR data set). Here the M1 asymmetry is calculated
using Eq. 6.65.

M1 asymmetry: Ab =
M↑

1 −M
↓
1

M↑
1 +M↓

1

= 2.66× 10−7 (UD) and 4.75× 10−7 (LR). (6.65)

The M1 asymmetry is taken as the beam asymmetry. The detector asymmetry is
constructed between two conjugate wires for the same pulse.

Detector asymmetry: Aid =
Yi − Yi∗
Yi + Yi∗

(6.66)

where i and i∗ are conjugate wire indices. Fig. 6.34 shows the distribution of detector
asymmetries for all the conjugate pair of detectors.

The weight average detector asymmetry is calculated using

Ad =

∑
iwiA

i
d∑

iwi
, (6.67)

wi = δ−2Aiphy, (6.68)

where δ−2Aiphy is the square of the error of the wire physics asymmetry considering
all runs in a single batch. This gives Ad = 0.0723. Thus we get

AbAd = 1.9× 10−8 (UD) and 3.43× 10−8 (LR). (6.69)

We use the data taken without any beam to estimate the size of the instrumental
asymmetry. To calculate the instrumental asymmetry, we first note that the measured
asymmetry has a contribution from the actual signal plus a contribution from the
pedestal or instrumental noise as shown in equation Eq. 6.70. Thus we treat the
contribution from the instrumental noise exactly in the same way we treat the physics
signal.

Ai =
Y ↑i − Y

↓
i

Y ↑i + Y ↓i
=

(S↑i + b↑i )− (S↓i + b↓i )

(S↑i + b↑i ) + (S↓i + b↓i )
≈ S↑i − S

↓
i

S↑i + S↓i
+

b↑i − b
↓
i

S↑i + S↓i
(6.70)

where b↑↓i is the contribution from pedestal and Si is the contribution from the actual
signal.

Aiinst =
1

Gi

b↑i − b
↓
i

2Si
(6.71)
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Figure 6.34: Detector asymmetry, is calulated from the signals of two conjuagte wires
for the same pulse.

Ainst =

∑
iwiA

i
inst∑

iwi
(6.72)

(δAinst)
2 =

∑
iw

2
i (δA

i
inst)

2

(
∑

iwi)
2

(6.73)

where
wi = δ−2Aiphy. (6.74)

The instrumental asymmetry is normalized by the geometry factor. In Eq. 6.71 we
approximated S↑i ≈ S↓i = Si and we use the average wire signal calculated considering
all the runs as Si. The instrumental asymmetries from all the wires are combined using
the weight, which is calculated from the size of the error of the physics asymmetry
corresponding to that wire. The no-beam data includes: a) runs taken during the
summer when accelerator was down for longer period, b) maintenance day (every
Tuesday) runs and c) accidental no beam runs taken during normal operation. From
separate analysis of different groups of no-beam runs we find

Summer runs (677 runs): Ainst = (13.12± 1.15)× 10−9, (6.75)

Tuesday runs (620 runs): Ainst = (6.918± 1.15)× 10−9, (6.76)

All runs (4383 runs): Ainst = (3.14± 0.60)× 10−9. (6.77)
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Fig. 6.35 shows the wire asymmetry and M1 asymmetry for no-beam data as a func-
tion of run number from the summer. This shows a phase changing pattern in the
instrumental noise. Fig. 6.36 shows the correlation between the M1 asymmetry and
the wire asymmetry with no-beam data.
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(a) Layer-1, wire-1 asymmetry with no beam

38100 38200 38300 38400 38500 38600 38700 38800

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Run number

M
1 a

sy
m

m
etr

y

(b) M1 asymmetry with no beam

Figure 6.35: The wire asymmetry and M1 asymmetry (with no-beam data) as a
function of the run number. The summer runs have been used here. For the M1
asymmetry we used unit normalization.
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Figure 6.36: The correlation between the wire asymmetry and M1 asymmetry. Runs
with no beam have been used here. For the M1 asymmetry we used unit normaliza-
tion.

We see similar phase changing fluctuation in the M1 asymmetry with beam as shown
in Fig. 6.37. Fig. 6.37 explains the shape of the distribution for M1 asymmetry shown
in Fig. 6.4. Fig. 6.38 and Fig. 6.39 show that the calculated wire asymmetry (with
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Figure 6.37: M1 asymmetry as a function of the run number (all LR and UD runs).

beam) is immune to the common mode fluctuation. Our analysis algorithm, explained
in section 6.1.1, takes care of the common mode.
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Figure 6.38: UD raw asymmetry from layer-1, wire-1 as a function of the run number.
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Figure 6.39: Correlation between UD raw asymmetry from layer-1, wire-1 and M1
asymmetry.

To calculate the systematics associated with the geometry factor calculation, we tuned
the parameters: a)pressure, b) collimator width and c) beam centroid position used
in the simulation. The tuning process provides the optimized parameter that gives
lowest chi square between simulated yield and yield from the data. The geometry
factors calculated with the optimized parameter were used to calculate the deviation
in physics asymmetry. For pressure, we get the pressure optimization plot as shown
in Fig. 6.40. From the plot

P = 0.47 atm P0 = 0.491 atm, (6.78)

where P0 is the optimal pressure for the simulation and P is the pressure measured
in the experiment which has been used to calculate the geometry factors.

AUD(P ) = 1.02× 10−8 AUD(P0) = 1.0057× 10−8. (6.79)

This gives
δAUD(P ) = 1.43× 10−10. (6.80)

ALR(P ) = −4.41× 10−7 ALR(P0) = −4.343× 10−7. (6.81)

This gives
δALR(P ) = −6.7× 10−9. (6.82)

Optimization of collimator width y (half width) produces a plot as shown in Fig. 6.41
(a). From the plot we find that

y = 4.1 cm y0 = 3.85 cm. (6.83)
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Figure 6.40: Pressure optimization in the simulation
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Figure 6.41: Optimization of collimation width and beam centroid

And the corresponding geometry factors give

AUD(y) = 1.02× 10−8 AUD(y0) = 1.00711× 10−8. (6.84)

This gives
δAUD(y) = 1.2× 10−10. (6.85)

For LR we find

ALR(y) = −4.41× 10−7 ALR(y0) = −4.1257× 10−7. (6.86)

This gives
δALR(y) = −0.28× 10−7. (6.87)
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Similarly for the optimization of beam centroid position (y), we get the plot shown
in Fig. 6.41 (b). From this plot we get

ybc = 12.04 cm ybc
0 = 11.5 cm. (6.88)

For UD data this gives

AUD(ybc) = 1.02× 10−8 AUD(ybc
0 ) = 1.00027× 10−8, (6.89)

δAUD(ybc) = 2× 10−10. (6.90)

For LD data

ALR(ybc) = −4.41× 10−7 ALR(ybc
0 ) = −4.2937× 10−7, (6.91)

δALR(ybc) = −0.11× 10−7. (6.92)

To get the total systematic asymmetry, we add all these deviations of asymmetry in
quadrature. This gives

∆Asys
UD = 2.74× 10−10, (6.93)

∆Asys
LR = 3.08× 10−8. (6.94)

Lastly, we briefly summarize the systematic effects from the physics background.
These effects were carefully considered and calculated in the full proposal of the
experiment[68, 69].

The possible physics-induced background asymmetries can be identified by their
Cartesian invariants. The measurement is performed by reversing the neutron spin
direction in a fixed geometry and then measuring the change in yield. Any invari-
ant that excludes spin does not contribute to the detector asymmetry. Because
σiσj = δij + iεijkσk , it is sufficient to consider Cartesian invariants that are lin-
ear in ~σn, the spin of the neutron. We are then left with the remaining independent
vectors, which are the momentum of the neutron (~kn) and the momentum of the

proton (~kp). From conservation of momentum, the momentum of the proton and the

momentum of the triton are opposite to each other (~kT = −~kp). Table (6.5) gives a
list of the most significant systematic effects for the experiment.

From table 6.5, where the PV asymmetry (~σn · ~kp) and most significant background
asymmetries are shown, we see that all background contributions are well below the
statistical sensitivity. The most significant background is a parity allowed (~kn×~σn)·~kp
asymmetry. We measured the size of the parity allowed asymmetry to be -4.41×10−7.
We kept the average beam axis ~kn, the magnetic field direction ~σn and the detector
wire planes ~kp all aligned within 10 mrad to suppress this background asymmetry
below 10−9. The commissioning was confirmed to be well within the tolerance. The
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Invariant Parity Size Comments

~σn · ~kp Odd 3×10−7 Nuclear capture asymmetry

(~kn × ~σn) · ~kp Even 2× 10−10 Nuclear capture asymmetry
Even 6× 10−12 Mott-Schwinger scattering

~σn · ~B Even 1× 10−10 Stern-Gerlach steering
Even 2× 10−11 Boltzmann polarization of 3He
Even 4× 10−13 Neutron induced polarization of 3He

~σn · ~kn Odd 1× 10−11 Neutron beta decay

Table 6.5: List of the systematic effects [68, 69].

other invariant, ~σ · ~B, produces a spin-dependent velocity which can couple with
the velocity-dependent cross-section to produce a false asymmetry. This effect was
eliminated by requiring magnetic field uniformity at the level of 0.3 mG (1%) between
the spin flipper and the detector. Finally the spin-dependent β-decay PV background
is suppressed due to the small probability of decay inside the chamber, and the fact
that almost all of the energy is carried by the minimum-ionizing beta particle.
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Chapter 7

Results & discussion

In summarizing our result, we measured the parity conserving LR physics asymmetry
to be

ALR = (−4.41± 0.56)× 10−7, (7.1)

and found the parity violating UD physics asymmetry to be

AUD = (1.0± 1.0)× 10−8. (7.2)

The sizes of the errors in both measurements are consistent with the predicted errors
according to counting statistics in Eq. 2.1. This is the smallest absolute error in
any nuclear asymmetry measurement. We did not find non-zero PV signal in our
experiment, similar to the many other few-body experiments which measured a result
consistent with zero. The only non-zero PV measurement in the NN system comes
from the ~pp system. Fig. 7.1 shows how the result from this experiment contributes
in constraining the DDH coupling constants with other experiments.

Another representation is to include our result in Fig. 1.5, which shows constraints by
the previously existing data. The analysis is an approximate since, n-3He is sensitive
to a different linear combination of couplings. From Eq. 1.11, the n-3He result can be
related to the observable as

(0.1± 0.1)/− 0.185 = h1
π–0.12h1

ρ–0.27h1
ω + 0.21h0

ρ + 0.12h0
ω, (7.3)

where we have neglected h2
ρ term as it has negligible contribution according to Eq. 1.11.

Eq. 7.3 can be rearranged as

−0.21× (h0
ρ + 0.6h0

ω) = h1
π–0.12h1

ρ–0.27h1
ω + (0.54± 0.54). (7.4)

If we take
y = −(h0

ρ + 0.6h0
ω) ∼ −(h0

ρ + 0.7h0
ω), (7.5)

and
x = h1

π–0.12h1
ρ–0.27h1

ω ∼ h1
π–0.12h1

ρ–0.18h1
ω, (7.6)
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4-Parameter DDH Extraction
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data only
+ NPDGamma
   δA=0.14x10-7

+ n-3He
   δA=0.10x10-7

+ NSR
   δφ=2x10-7

DDH DDH

DDH DDH

hπ
1 hρ

0 hρ
2 hω
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Figure 7.1: Contribution of the n-3He experiment in constraining the coupling con-
stants. The spread of the rectangular box indicates the DDH ranges. Figure courtesy
of Chris Crawford.

we can rewrite Eq. 7.4 as
y = 4.8x+ (2.6± 2.6). (7.7)

If x = 0, ymax = 5.2, ymin = 0.0
If y = 35, xmax = 7.3, xmin = 6.2

This gives the green band on Fig. 7.2.
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Figure 7.2: The n-3He result on the DDH plot

From a third perspective, we note that there are five low energy weak couplings
irrespective of the descriptions (LECs, DDH or Girlanda coefficients) as shown in
Table 7.1. In a recent paper [70], Susan Gardner et al. analyzed the experimental
implications of HWI experiments in terms of LECs in the large-Nc expansion inspired
by the work of [71],[72], where Nc is the number of colors in QCD. In the analysis,
5D space of LECs Λ (along 5 orthogonal axes) are considered to two new principle
axes, along 2D I = 0 plane and I = 2 direction

Λ+
0 ≡

3

4
Λ

3S1−1P1
0 +

1

4
Λ

1S0−3P0
0 ∼ Nc,

Λ
1S0−3P0
2 ∼ Nc,

(7.8)

and the other three axes are suppressed in the 1/Nc counting

Λ−0 ≡
1

4
Λ

3S1−1P1
0 − 3

4
Λ

1S0−3P0
0 ∼ 1/Nc,

Λ
1S0−3P0
1 ∼ sin2 θw,

Λ
3S1−3P1
1 ∼ sin2 θw.

(7.9)

These three directions contribute in relative order ∼ 1/N2
c . The weak mixing angle

imposes additional suppression for ∆I = 1, sin2 θw/Nc ∼ 12. Table 7.1 also provides
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the large-Nc expansion for LECs Λ, DDH and Girlanda coefficients. The two impor-
tant things to note here are - a) G1 ∼ G̃1 ∼ Nc and G1 + 2G̃1 ∼ 1/Nc, and b) Λ+

0

and Λ
1S0−3P0
2 are the only dominant ones which are orthogonal to each other. The

NPDGamma experiment will test the smallness of Λ
1S0−3P0
2 .

Coefficient DDH Girlanda Large Nc

Λ+
0 ≡ 3

4Λ
3S1−1P1
0 + 1

4Λ
1S0−3P0
0 −gρh0

ρ(
1
2 + 5

2χρ)− gωh
0
ω(1

2 −
1
2χω) 2G1 + G̃1 ∼ Nc

Λ−0 ≡ 1
4Λ

3S1−1P1
0 − 3

4Λ
1S0−3P0
0 gωh

0
ω(3

2 + χω) + 3
2gρh

0
ρ −G1 − 2G̃1 ∼ 1/Nc

Λ
1S0−3P0
1 −gρh1

ρ(2 + χρ)− gωh1
ω(2 + χω) G2 ∼ sin2 θw

Λ
3S1−3P1
1

1√
2
gπNNh

1
π(

mρ
mπ

)2 + gρ(h
1
ρ − h1′

ρ )− gωh1
ω 2G6 ∼ sin2 θw

Λ
1S0−3P0
2 −gρh2

ρ(2 + χρ) −2
√

6G5 ∼ Nc

Table 7.1: The relationship between LECs Λ, DDH and Girlanda coefficients [70].
The right most column shows the large Nc expansion.

In the leading order approximation, the experimental constraints on large-Nc LECs
are

2

5
Λ+

0 +
1√
6

Λ
1S0−3P0
2 = 419± 43 AL(~pp),

1.3Λ+
0 = 930± 253 AL(~pα),

0.92Λ+
0 = 661± 169 Aγ(

19F),

Λ+
0 + 0.48Λ

1S0−3P0
2 = 1063± 518 AL(~pp)|221MeV.

(7.10)

For the n-3He, based on the calculation by Viviani et al. [30]

364

10−8
Ap = −Λ+

0 + 0.227Λ
1S0−3P0
2 , (7.11)

where the leading order approximation has been applied. Thus all the other experi-
ments give contribution to Λ+

0 and Λ
1S0−3P0
2 with the same sign (have negative slopes).

An important feature of the n-3He experiment is that it gives contribution with the
opposite sign (has positive slope). It helps to isolate the orthogonal combination of

Λ+
0 and Λ

1S0−3P0
2 . Because the n-3He is predominantly sensitive to h1

π, it does not
have the same sensitivity as pp scattering, but it is still in the opposite direction.
Using the n-3He result, Eq. 7.11 becomes

−Λ+
0 + 0.227Λ

1S0−3P0
2 = (364± 364). (7.12)

Fig. 7.3 shows the constraints on the leading order large-Nc solutions by the n-3He
experiment with other experiments (using Eqs. 7.10 and 7.12). The blue band gives
the constraint from AL(~pp) at 15 MeV and 45 MeV energies, the red band for AL(~pp)
at 221 MeV, the orange band for AL(~pα), the green band for Aγ(

19F) and the brown
band comes from the result (Ap) of the n-3He experiment. We did not show the lattice
QCD result since it has not happened. We see that the band added by the n-3He
experiment is one σ away from the overlap of the bands by other experiments.
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Figure 7.3: Constraints on the leading order large-Nc solutions by different experi-
ments. The LECs are presented in units of 10−7.

Thus Figs. 7.1, 7.2 and 7.3 represent the physics implications of the result from the n-
3He experiment from three different perspectives. The n-3He result, with an expected
result from the NPDGamma experiment [73] with higher precision, has the potential
to enable us to identify a common area of overlap between the results from all few
body experiments in Fig. 7.2 which might not be far from the predicted DDH best
value. Taking into account all the implications, the result of the n-3He experiment
makes a very important contribution to our understanding of the hadronic parity
non-conservation.
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Appendix A

List of n-3He parameters

In normal operation:

Chopper 1 Phase: 14.045 CW
Chopper 2 Phase: 0.245 CCW

T0 Delay :13.5 ms

DAQ dead time: 0.96 ms (detector data) and 0.430 ms (M1 and SFRF data)

Distance between moderator and detector front face: 18 m (approx)
Vertical B-field(Guide field) value: -9.14± 0.02 Gauss.

Number of time bin per event for the detector data: 49
Number of time bin per event for the M1 data: 1624
Width of each detector data time bin: 320 µ sec.
Width of each M1 data time bin: 10 µ sec

Each run length: 25000 T0 (events) (in raw file)

Pressure in the chamber: 0.47 atm (approx)

Opening for Collimator:
x-axis: 10 cm
y-axis: 8.2 cm
In LR mode the x and y axis widths are interchanged.

Number of detector wires per layer: 9
Number of detector layers: 16
HV applied to the ion chamber: -353 V.

Run number range: 14785 - 61000
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Appendix B

Spin flipper

B.1 Time evolution of µz

To get the time evolution of µz(t), we consider the situation in the rotating frame
illustrated in Fig. 3.3. In this case, the effective magnetic field is B̄r. The magnetic
moment starts out along the z axis and precesses around B̄r. The z-component of
the moment oscillates with amplitude µ sin2 α, where α is the opening angle of the
cone. At resonance, B̄r lies along the x axis and µ̄ precesses in the plane normal to
it. The amplitude of the µz oscillation is then at its maximum value of µ.

In Fig. 3.3, D is the initial position of µ̄ i.e. µ̄(0). C is the position of µ̄ at time t. 6

DAC = θ =ωrt is the angular displacement in time t.
In Fig. 3.3, CA⊥ OA, CG⊥AG, GH⊥AF, GE⊥DF, CE⊥OD.

From Fig. 3.3, 6 AOD = 6 COD = 6 GAH = α
Here, µz(t) oscillates about the point F along z-axis.

DF = FM = amplitude of oscillation

= (µ sinα) sinα = µ sin2 α

Projection of µ̄ on B̄r, OA = µ cosα.
Projection of OA on z-axis, OF = OAcosα = µ cos2 α.
AC = µ sinα, and AG = AC cos θ = µ sinα cos θ
Oscillating part of µ, along z-axis, EF = GH = AG sinα = µ sinα cos θ sinα
EF = GH= µ sin2 α cosωrt
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At time t ( at point C), the component of µ̄(t) along z -axis

µz(t) = OF + EF,

µz(t) = µ cos2 α + µ sin2 α cosωrt, (B.1)

µz(0) = µ cos2 α + µ sin2 α = µ.

From Eq. B.1
µz(t) = µz(0)(cos2 α + sin2 α cosωrt). (B.2)

Now, we express cos2 α and sin2 α in terms of ω, ω0 and B.

From Fig(3.3), ON = (B0 − ω
γ
), NQ = B and OQ = Br =

√
B2 + (B0 − ω

γ
)2.

From Fig(B.1) B̄2 = B2 +B2
0 , which gives, ω0 = γB0.

  

Figure B.1: Field components in rotating frame

Now,

cos2 α =
(B0 − ω

γ
)2

B2 + (B0 − ω
γ
)2

=
γ2(B0 − ω

γ
)2

γ2B2 + γ2B2
0 − 2B0ωγ + ω2

,

cos2 α =
(ω − ω0)2

γ2B2 + (ω − ω0)2
, (B.3)

sin2 α = 1− cos2 α =
γ2B2

γ2B2 + (ω − ω0)2
. (B.4)
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Using Eq. B.3 and Eq. B.4 in Eq. B.2 we get

µz(t) = µz(0)

[
(ω0 − ω)2

(ω0 − ω)2 + γ2B2
+

γ2B2 cosωrt

(ω0 − ω)2 + γ2B2

]
. (B.5)
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Appendix C

Simulation

C.1 M1 signal window

1. Getting the TOF window for the M1 signal:
Converting the TOF on x-axis to neutron energy on the same axis.
T0 delay = 13.5 ms
M1 data time bin = 10 µ sec.
Dirty DAQ dead time = 0.430 milli sec
So, total time of flight, t = (13.5 + 0.430 + i× 0.010 ) × 10 −3 sec = (13.93 + i×
0.010 ) × 10 −3 sec,
where i is the time bin in the M1 spectrum.
For any particular window
TOFmin = 13.94 × 10 −3 sec,
TOFmax = 30.17 × 10 −3 sec.

2. Getting neutron energy window for the M1 signal:
Distance between the moderator and the detector front end d = 18.0 m.
Mass of neutron mn = 1.6750 x 10−27 Kg.

So neutron velocity, v = d
t
.

Neutron energy,

En =
1

2
mnv

2

=
1

2
× 1.6750× 10−27kg ×

[
18.0 m

(13.93 + 0.01× i)× 10−3sec

]2

=
2.7135× 10−19Joule

(13.93 + 0.01× i)2

=
2.7135× 10−19 × 6.242× 1021 meV

(13.93 + 0.01× i)2
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1693.767 meV

(13.93 + 0.01× i)2
,

where i= 1,2,3 ... ... 1624 (The time bin number for the M1 signal).
Thus Emax

n = 8.716 meV,
and Emin

n = 1.861 meV.

3. Getting wave length window for M1 signal
Wave length is related to the velocity as

λ =
h

p
=

h

mnv
=

h

mn
d
t

=
ht

mnd

=
6.6261× 10−34 × (13.93 + 0.01× i)× 10−3

1.6750× 10−27 × 18.0
m

=
6.6261× 10−27 × (13.93 + 0.01× i)

1.6750× 10−27 × 18.0
A0

= 0.2198× (13.93 + 0.01× i)Å,

where i= 1,2,3,4 ... ... 1624 ( M1 signal time bin number).
Thus
λminn = 3.064Å,
λmaxn = 6.63Å.
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Appendix D

Data analysis

D.1 Parity conserving asymmetry
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Figure D.1: Fit with covariance for LR batch-2 data. Alternative approach of the fit
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Figure D.2: LR physics asymmetry (uncorrected) considering all the runs in a single
batch

0 20 40 60 80 100 120

-8

-6

-4

-2

0

2

4

6

8
-610×

 / ndf 2χ  100.5 / 125
b         5.316e-08± -4.111e-07 

 / ndf 2χ  100.5 / 125
b         5.316e-08± -4.111e-07 

Mode

P
h

ys
ic

s 
as

ym
m

et
ry

 (
L

R
)

Figure D.3: LR physics asymmetry (corrected) using average wire asymmetry which
is obtained by fitting over all the batches.
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Figure D.4: LR physics asymmetry (corrected) considering all the runs in a single
batch.
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D.2 Parity violating asymmetry

Figure D.5: Raw asymmetry correlation between wires. Here the correlation is pre-
sented between layer-1 wire-1 and layer-1 wire-2 raw asymmetries for UD case
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Figure D.6: Physics asymmetry correlation between wires from UD batch-1 data.
The color represent the correlation coefficient ρ defined in Eq. 6.32. The labels “wire
number” along the axes here actually represent 8 × Layer number + wire number
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Figure D.7: The transformation matrix S for UD batch-2 data
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Figure D.8: The eigenvalues from UD batch-2 data
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Figure D.9: UD physics asymmetry (corrected) for batch 2 using alternative fitting.
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Figure D.10: UD physics asymmetry (corrected) calculated using average wire asym-
metry obtained by fitting over all the batches.
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Figure D.11: UD physics asymmetry (corrected) considering all the runs in a single
batch
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