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PROTECTION OF CELLS FROM 

DEGENERATION AND TREATMENT OF 

GEOGRAPHIC ATROPHY 

RELATED APPLICATIONS 

This application claims priority from U.S. Provisional 

Application Ser. No. 61/586,427 filed Jan. 13, 2012, the 

entire disclosure of which is incorporated herein by this 

reference. 

GOV ERNMENT INTEREST 

2 

specific toxicity of excess, highly structured RNA. Still, the 

precise mechanisms of Alu RNA-induced cytotoxicity are 

unknown. 

Although the retina is a tissue exceptional for its immune 
5 privilege (Streilein, 2003), its hypersensitive response to 

exogenous insults mediated by innate immune sensors can 

result in profound inflammation. The three major classes of 

innate immune receptors include the toll-like receptors 

(TLRs ), retinoic acid inducible gene I (RIG-I)-like helicases, 
10 

and nucleotide-binding domain and leucine-rich-repeat-con­

taining (NLR) proteins (Akira et al., 2006). Numerous 

innate immune receptors have been identified in the RPE 

(Kumar et al., 2004), and a variety of exogenous substances 

can induce retinal inflammation (Allensworth et al., 2011; 

Kleinman et al., 2011). However, it is not known whether 

This invention was made with govermnent support under 
15 

Grant No. EY 022238-01 awarded by the National Institutes 

of Health. 

TECHNICAL FIELD 

The presently-disclosed subject matter relates to thera­

peutic uses of inflammasome inhibition, P2X7 inhibition, 

and inhibition of IRAKl and/or IRAK4, methods protecting 

a cell, and screening methods for identifying inhibitors. 

INTRODUCTION 

Age-related macular degeneration (AMD) is a devastating 

disease that affects the vision of tens of millions of indi­

viduals worldwide (Smith et al., 2001). AMD is character­

ized by dysfunction and degeneration of the retinal pig­
mented epithelium (RPE), a highly specialized monolayer of 
cells that is interposed between the retinal photoreceptors 
and the choroidal capillaries (Ambati et al., 2003). RPE 
dysfunction can lead to anatomical and functional disruption 
of both the photoreceptors and the choroidal vasculature 
(Blaauwgeers et al., 1999; Lopez et al., 1996; McLeod et al., 
2009; Vogt et al., 2011 ). These tissue architecture disrup­
tions lead to atrophic or neovascular disease phenotypes. 
Although there are multiple approved therapies for the 
neovascular form of AMD (Ferrara, 2010), there is no 
effective treatment for the far more common atrophic form 
of the disease. GA, the advanced stage of atrophic AMD, is 
characterized by degeneration and death of the RPE, and is 
the leading cause of untreatable vision loss. 

this surveillance machinery recognizes or responds to host 

endogenous RN As. As described herein, the present inventor 

explored the concept that innate immune machinery, whose 

20 canonical function is the detection of pathogen associated 

molecular patterns and other moieties from foreign organ­

isms, might also recognize cytotoxic Alu RNA. 

As described herein, it was shown that Alu transcripts can 

hijack innate immunity machinery to induce RPE cell death. 
25 Surprisingly, the data set forth herein show that DICER! 

deficit or Alu RNA activates the NLRP3 inflammasome in a 
MyD88-dependent, but TLR-independent manner. Until 
now, NLRP3 inflammasome activation in vivo has been 
largely restricted to immune cells, although the findings 

30 open the possibility that NLRP3 inflammasome activity may 
be more widespread than previously thought, as reflected by 
examples in cell culture studies of keratinocytes (Feldmeyer 
et al., 2007; Keller et al., 2008). The findings disclosed 
herein also broaden the scope of DICER! function beyond 

35 microRNA biogenesis, and identify its role as a guardian 
against the aberrant overexpression of toxic retrotransposon 
genetic elements that comprise roughly 50% of the human 
genome (Lander et al., 2001). The findings present a novel 
self-recognition immune response, whereby endogenous 

40 non-coding RNA-induced NLRP3 inflammasome activation 
results from DICER! deficiency in a non-immune cell. Also 
proposed herein are unique targets for protecting RPE cells 
against cell death, including P2X7 activation and IRAK-1/4. 

45 SUMMARY 
Recently, it was shown that a dramatic and specific 

reduction of the RNase DICER! results in accumulation of 
Alu RNA transcripts in the RPE of human eyes with GA 
(Kaneko et al., 2011; International Patent Application No. 
PCT/USll/38753, Ambati). These repetitive element tran- 50 

scripts, which are non-coding RN As expressed by the highly 
abundant Alu retrotransposon (Batzer and Deininger, 2002), 
induce human RPE cell death and RPE degeneration in 
mice. DICER! deficit in GA RPE was not a generic cell 
death response because DICER! expression was not dys- 55 

regulated in a variety of other retinal diseases. Likewise, Alu 
RNA accumulation did not represent generalized retrotrans­
poson activation due to a stress response in dying cells 
because several other retrotransposons were not elevated in 
GA RPE, DICER! is central in the biogenesis of mature 60 

microRNAs (Bernstein et al., 2001). Yet, intriguingly, fol­
lowing DICER! deficit, the accumulation of Alu RNA 
transcripts and not the lack of mature microRNAs was the 
critical determinant of RPE cell viability (Kaneko et al., 
2011 ). Moreover, other RN As of similar length such as 7SL 65 

RNA, transfer RNA, and primary microRNAs do not induce 
RPE degeneration (Kaneko et al., 2011), ruling out a non-

The presently-disclosed subject matter meets some or all 
of the above-identified needs, as will become evident to 
those of ordinary skill in the art after a study of information 
provided in this document. 

This S=ary describes several embodiments of the 
presently-disclosed subject matter, and in many cases lists 
variations and permutations of these embodiments. This 
Summary is merely exemplary of the numerous and varied 
embodiments. Mention of one or more representative fea­
tures of a given embodiment is likewise exemplary. Such an 
embodiment can typically exist with or without the 
feature(s) mentioned; likewise, those features can be applied 
to other embodiments of the presently-disclosed subject 
matter, whether listed in this Summary or not. To avoid 
excessive repetition, this Summary does not list or suggest 
all possible combinations of such features. 

The presently-disclosed subject matter includes a method 
of protecting a cell, which involves inhibiting one or more 
of P2X7 activation associated with or in the cell, inhibiting 
IRAKl associated with or in the cell; or inhibiting IRAK4 
associated with or in the cell. 
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In some embodiments, the cell is an RPE cell, a retinal 
photoreceptor, or a choroidal cell. In some embodiments, the 
cell is in a subject. In some embodiments, the cell is an RPE 
cell, and the method also involves identifying a subject for 
which protection of the RPE cell is desired. In some embodi- 5 

ments, the cell is an RPE cell is of a subject having 
age-related macular degeneration. In some embodiments, 
contacting the cell with an inhibitor comprises administering 
the inhibitor to a subject. 

In some embodiments of the method, the inhibiting of 10 

P2X7 activation includes contacting the cell with a P2X7 
activation inhibitor, e.g., P2X7 receptor antagonist 
A438079. 

4 

viability, or measuring the expression of a gene known to be 
induced by IRAKl and/or IRAK 4 signaling. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The novel features of the invention are set forth with 
particularity in the appended claims. A better understanding 
of the features and advantages of the present invention will 
be obtained by reference to the following detailed descrip­
tion that sets forth illustrative embodiments, in which the 
principles of the invention are used, and the accompanying 
drawings of which: 

FIG. 1. Alu RNA does not activate or function via toll-like 
receptors (TLRs). (A-E) Subretinal injection of a plasmid 

In some embodiments of the method, inhibiting IRAKl 
and/or IRAK 4 includes contacting the cell with an IRAKl 
and/or IRAK4 inhibitor (e.g., N-(2-Morpholinylethyl)-2-(3-
nitro benzoy lamido )-benzimidazole ). 

In some embodiments the method can also include inhib­
iting MyD88 associated with or in the cell; inhibiting IL-18 
associated with or in the cell; inhibiting an inflammasome 
associated with or in the cell; increasing levels of a DICER 
polypeptide associated with or in the cell; and/or inhibiting 
AluRNA associated with or in the cell. 

15 coding for Alu RNA (pAlu), but not pNull, induces retinal 
pigmented epithelium (RPE) degeneration in wild-type mice 
(A) and in mice deficient in Tlr3 (B) or Tlr7 (C), mice with
a mutation (mt) in Unc93bl (D), which are functionally
deficient in TLRs-3,7,9, or deficient in Tlr4 (E). Represen-

20 tative images shown. n=S-12. Fundus photographs, top row; 
Flat mounts stained for zonula occludens-1 (Z0-1; red), 
bottom row. Degeneration outlined by blue arrowheads. 
Scale bars, 20 µm. (F) Stimulation of HEK293 cell lines 
expressing various TLRs with either of two different Alu 

The presently-disclose d subject matter also includes a 
method of treating macular degeneration, which involves 
identifying a subject in need of treatment for macular 
degeneration; and inhibiting P2X7 activation associated 
with or in a cell of the subject; inhibiting IRAKl associated 
with or in a cell of the subject; inhibiting IRAK4 associated 
with or in a cell of the subject; inhibiting MyD88 associated 
with or in the cell; inhibiting IL-18 associated with or in the 
cell; inhibiting an inflammasome associated with or in the 
cell; increasing levels of a DICER polypeptide associated 
with or in the cell; and/or inhibiting AluRNA associated with 
or in the cell. 

25 RNA sequences does not elicit NF-KB activation as assessed 
by measuring a secreted alkaline phosphatase reporter under 
the control of a NF-KB-inducible promoter. Positive ( +) 
controls using TLR-specific ligands activated NF-KB. n=3. 

FIG. 2. Alu RNA does not activate several RNA sensors. 
30 (A and B) p7SL (a 7SL expression vector) (A) and in vitro 

synthesized 7SL RNA (B) do not induce RPE degeneration 
in wild-type mice. (C) RPE degeneration induced by sub­
retinal injection of pAlu in wild-type mice is not blocked by 
a TLR4 antagonist. (D-E) Mice deficient in Mda5 (D) or 

35 Prkr (E) are susceptible to pAlu-induced RPE degeneration. 
(F) Dephosphorylated (Dep) Alu RNA induces RPE degen­
eration in wild-type mice just as well as Alu RNA. (G) Mice
deficient in Mays are susceptible to pAlu-induced RPE
degeneration. pNull does not induce RPE degeneration in

In some embodiments of the method, the inhibiting 
MyD88 associated with or in the cell includes contacting the 
cell with a MyD88 inhibitor. In some embodiments of the 
method, the inhibiting of P2X7 activation includes contact­
ing the cell with a P2X7 activation inhibitor (e.g., P2X7 
receptor antagonist A438079). In some embodiments of the 
method, the inhibiting IRAKl and/or IRAK 4 includes 
contacting the cell with an IRAKl and/or IRAK4 inhibitor 45 

40 any strain of mice. Degeneration outlined by blue arrow­
heads. Fundus photographs, top rows; Z0-1 stained (red) 
RPE flat mounts, bottom rows. n=S (A-G). (H) A schematic 
of the innate immune pathways that are not activated by Alu 
RNA. 

( e.g., N-(2-Morpholinylethyl)-2-(3-nitrobenzoylamido )-
benzimidazole ). 

The presently-disclosed subject matter further includes 
kits useful for practicing methods as disclosed herein. In 
some embodiments, the kit includes a P2X7 activation 50 

inhibitor, packaged together with an IRAKl and/or IRAK4 
inhibitor. In some embodiments, the kit also includes a 
MyD88 inhibitor, an IL-18 inhibitor, an inflammasome 
inhibitor, a DICER polypeptide, and an AluRNA inhibitor. 

55 
The presently-disclosed subject matter further includes a 

method of identifying an IRAKl and/or IRAK4 inhibitor, 
which involves providing a cultured cell wherein phospho­
rylated IRAKl and/or IRAK4 is upregulated; contacting the 
cell with a candidate compound; and determining whether 60 

the candidate compound results in a change in the IRAKl 
and/or IRAK4. In some embodiments, the IRAKl and/or 
IRAK4 is upregulated by stimulating the cell with a MyD88 
activator. In some embodiments, the method further includes 
measuring phosphorylation of IRAKl and/or IRAK4 by 65 

Western Blotting. In some embodiments, the change in the 
IRAKl and/or IRAK4 is monitored by measuring cell 

FIG. 3. Alu RNA induces RPE degeneration via MyD88. 
(A) pAlu does not induce RPE degeneration in Mydss-1-
mice. (B) pAlu-induced RPE degeneration in wild-type mice
is inhibited by a MyD88 homodimerization peptide inhibitor
(MyD88i), but not by a control peptide. (C) pAlu-induced
RPE degeneration in wild-type mice is inhibited by intrav­
itreous cholesterol-conjugated Myd88 siRNA but not cho-
lesterol-conjugated control siRNA. (D and E) siRNA target­
ing MyD88 (siMyD88) reduces target gene (D, real-time
RT-PCR) and protein (E, western blotting normalized to
Vinculin) abundance in mouse RPE cells compared to
control siRNA transfection. n= 3, *p<0.05 by Student t-test.
(F) pAlu does not induce RPE degeneration in Myd88+1-
heterozygous (het) mice. (G) Western blot of Alu RNA­
induced phosphorylation of IRAKl and IRAK4 in human
RPE cells. Image representative of 3 experiments. (H) pAlu
reduces cell viability of wild-type but not Mydss-1- mouse
RPE cells. (I) Loss of human RPE cell viability induced by 
pAlu is rescued by MyD88i. (J) Subretinal injection of
AAVl-BESTl-Cre, but not AAVl-BESTl-GFP, protected
Myd8s17f mice from pAlu-induced RPE degeneration. (K)
pAlu transfection induces IL-18 secretion from human RPE
cells as assessed by ELISA. IL-1 � secretion is barely
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detectable. n=3, *p<0.05 by Student t-test. (L) Intravitreous 
administration of recombinant IL-18 induces RPE degen­
eration in wild-type mice but not in Mydss-1- mice. (M and 
N) pAlu-induced RPE degeneration in wild-type mice is not
rescued by intravitreous administration of IL-1 � neutraliz- 5 

ing antibody (M) but is rescued by IL-18 neutralizing
antibody (N). Representative images shown. n=S-12. Fun­
dus photographs, top row; Z0-1 stained (red) flat mounts,
bottom row. Degeneration outlined by blue arrowheads.
Scale bars, 20 µm (A-C, F, J, L-N). n= 3, *p<0.05 by Student 10 

t-test. Error bars represent the SEM of samples within a
group (D, E, H, I, K).

FIG. 4. Alu RNA induces RPE degeneration via MyD88, 
not TRIP or IFNy. (A) Subretinal administration of pAlu 
induces RPE degeneration in Ticam1-1- mice. (B) Alu RNA 15 

does not induce RPE degeneration in Mydss-1- mice. (C) 
Subretinal administration of a different Alu expression plas­
mid (pAlu(2)) also induces RPE degeneration in wild-type 
but not Mydss-1- mice. (D) Alu RNA does not induce RPE 
degeneration in Myd881+1- heterozygous (het) mice. (E) 20 

MyD88 inhibitory peptide reduces Alu RNA-induced phos­
phorylation of IRAKl/4, normalized to Vinculin expression. 

6 

normalized to Vinculin expression. (C) Caspase-1 inhibitor 
peptide blocks Alu RNA-induced substrate cleavage in 
human RPE cells. n=3. (D) Subretinal injection of Alu RNA 
does not induce RPE degeneration in Casp 1-1- mice. (E) Alu 
RNA or LPS+ATP induce the appearance of a brightly 
fluorescent cluster of GFP-PYCARD visible in the cyto-
plasm of human RPE cells. Area in insets shown in higher 
magnification. Images representative of 3 experiments. (F 
and G) Subretinal injection of Alu RNA does not induce 
RPE degeneration in Nlrp3_1_ (F) or Pycard-1- (G) mice. (H) 
The abundance ofNLRP3 in HEK293 cells transfected with 
an NLRP3 expression vector and of PYCARD in human 
RPE cells is reduced by transfection of siRNAs targeting 
these genes, compared to control (Ctr!) siRNAs. n=3, 
*p<0.05 compared to Ctr! siRNAs by Student t-test. (I) Alu
RNA-induced Caspase-1 activation (p20 subunit) in human
RPE cells is unaffected by MyD88 inhibitory peptide, nor­
malized to Vinculin expression. (J) MyD88 inhibitory pep­
tide does not reduce Alu RNA-induced cleavage activity of
Caspase-1 in human RPE cells (top panel). Fluorescence
quantification (bottom panel). (K) Caspase-1 activation (p20
subunit) in RPE cell lysates of wild-type mice treated with
subretinal pAlu administration is unimpaired by intravitre­
ous administration of anti-IL-18 neutralizing antibodies. (L)
Alu RNA-induced phosphorylation of IRAKl/4 is reduced
by Caspase-1 inhibitory peptide in human RPE cells, nor-
malized to Vinculin expression. Vehicle control injections
also do not damage the RPE. Fundus photographs, top rows;
Z0-1 stained (red) RPE flat mounts, bottom rows. n=S (D,
F, G). Images representative of3 experiments (A, B, I, J-L).

FIG. 7. Priming and activation of NLRP3. (A) pAlu 
induces NLRP3 and IL18 mRNAs in both wild-type and 
Mydss-1- mouse RPE cells. (B) pAlu induces generation of 
reactive oxygen species (ROS) in human RPE cells as 

(F) Subretinal injection of AAVl-BESTl-Cre, but not
AAVl-BESTl-GFP, protects Myd8st7f mice from Alu RNA­
induced RPE degeneration. (G) pAlu and Alu RNA induces 25 

RPE degeneration in wild-type mice receiving Mydss-1-
bone marrow (Mydss-1--wild-type) but did not do so in
Mydss-1- mice receiving wild-type bone marrow (wild­
type-Mydss-1-). (H-K) Subretinal administration ofpAlu
induces RPE degeneration in Ifng-1- (H), Ifngrl -/- (I), and 30 

Illrl-1+ mice (J) but not in Il18rl _1_ mice (K). pNull admin­
istration does not induce RPE degeneration in any strain of
mice. Degeneration outlined by blue arrowheads. Fundus
photographs, top rows; Z0-1 stained (red) RPE flat mounts,
bottom rows. n=S (A-D, F-K). 

FIG. 5. Alu RNA induces RPE degeneration via NLRP3 
inflammasome. (A) Western blot of Caspase-1 activation 
(p20 subunit) by Alu RNA in human RPE cells. (B) Western 
blot of pAlu-induced IL-18 maturation in RPE cell lysates in 
wild-type mice impaired by intravitreous Caspase-1 peptide 40 

inhibitor. (C) Intravitreous Caspase-1 peptide inhibitor pro­
tects wild-type mice from pAlu-induced RPE degeneration. 
(D) pAlu does not induce RPE degeneration in Casp1-1-
mice. (E) pAlu does not induce cytotoxicity in Casp 1-1-
mouse RPE cells. (F) Alu RNA and LPS+ATP induce 45 

formation of PYCARD clusters in human RPE cells trans­
fected with GFP-PYCARD. See also FIG. 6E. (G and H)
pAlu does not induce RPE degeneration in Nlrp3_1_ (G) or
Pycard-1- (H) mice. (I) Nlrp3_1_ and Pycard-1- mouse RPE
cells are protected against pAlu-induced loss of cell viabil- 50 

ity. (J) siRNAs targeting NLRP3 or PYCARD rescued
human RPE cells from pAlu-induced cytotoxicity, compared

35 monitored with the fluorescent probe H2DCFDA (A.U, 
arbitrary units). (C) The ROS inhibitor APDC blocks pAlu­
induced NLRP3 and ILi 8 mRNAs in human RPE cells. (D) 
Intravitreous administration of APDC protects wild-type 

to control siRNA. n=3-4, *p<0.05 by Student t-test (A, B, E,
F, I, J). Images representative of 3 experiments. Densitom­
etry values normalized to Vinculin are shown in parentheses 55 

(A, B). Fundus photographs, top row; Z0-1 stained (red) flat
mounts, bottom row. Degeneration outlined by blue arrow­
heads. n=S-12. Scale bars, 20 µm (C, D, G, H). Represen­
tative images shown.

FIG. 6. Alu RNA induces RPE degeneration via NLRP3 60 

inflammasome activation, Related to FIG. 7 (A)Alu RNA or 
LPS+ATP induce activation of Caspase-1 in human RPE 
cells as assessed by increased cleavage of Caspalux®l 
(green, left panel), a fluorescent-linked peptide substrate as 
compared to mock treatment. Fluorescence quantification 65 

shown in right panel. (B) Western blot of Alu RNA-induced 
Caspase-1 activation (p20 subunit) in THP-1 and HeLa cells, 

mice from pAlu-induced RPE degeneration. (E) pAlu does 
not induce RPE degeneration in P2rx1-1- mice. (F) Intrav­
itreous administration of P2X7 receptor antagonist protects 
wild-type mice from pAlu-induced RPE degeneration. (G) 
Intravitreous administration of glyburide, but not glipizide, 
protects wild-type mice from pAlu-induced RPE degenera­
tion. n=3-4, *p<0.05 by Student t-test (A-C). Representative 
images shown. n= S-12. Fundus photographs, top row; Z0-1 
stained (red) flat mounts, bottom row. Degeneration outlined 
by blue arrowheads. Scale bars, 20 µm (D-G). 

FIG. 8. IL-18 and MyD88 induce RPE degeneration via 
Caspase-3. (A and B) Glycine inhibits human RPE cell death 
induced by LPS+ATP (A) but not by pAlu (B). (C) Intrav­
itreous administration of recombinant IL-18 induces RPE 
degeneration in Caspi -I- mice. (D) IL-18-induced activation 
of Caspase-3 in RPE cell lysates of wild-type mice. (E) 
IL-18-induced RPE degeneration in wild-type mice is inhib­
ited by intravitreous administration of Caspase-3 inhibitor. 
(F) Intravitreous administration of MyD88 inhibitory pep­
tide inhibits pAlu-induced cleavage of Caspase-3 in the RPE
of wild-type mice. n= 3-4 (A, B, D, F), *p<0.05 by Student
t-test. Representative images shown. n=S-12. Fundus pho­
tographs, top row; Z0-1 stained (red) flat mounts, bottom
row. Degeneration outlined by blue arrowheads. Scale bars,
20 µm (C, E).

FIG. 9. DICER! loss induces cell death via inflam­
masome. (A) Western blot of Alu RNA-induced Caspase-1 
cleavage (p20) inhibited by DICER! overexpression in 
human RPE cells. (B and C) DICER! overexpression 
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reduces Alu RNA-induced Caspase-1 activation in human 

RPE cells (measured by cleavage (B left panel, green) of 

Caspalux®l fluorescent substrate). Fluorescence quantifica­

tion shown in right panel. (C) Western blot of increased 

Caspase-1 activation (p20 subunit) in RPE cell lysates of 5 

BESTl-Cre; Dicer]f
l
f mice compared to BESTl-Cre or 

Dicerlf
l
f mice. (D) Western blot of increased Caspase-1 

activation (p20 subunit) and IL-18 maturation in RPE cell 

lysates of Dicer]f
l
f mice treated with subretinal injection of

AAVl-BESTl-Cre. (E and F) RPE degeneration induced by 
10 

subretinal injection of AAVl-BESTl-Cre in Dicer]f
l
f mice is

rescued by intravitreous delivery of peptide inhibitors of 

either Caspase-1 (E) or MyD88 (F). (G) MyD88 inhibitor 

rescues loss of human RPE cell viability induced by 
15 

DICER! antisense (AS) treatment. (H) DICER! antisense 

(AS) treatment of human RPE cells reduces DICER! level 

and increases abundance of phosphorylation of IRAKl and 

IRAK4, normalized to Vinculin expression. (I) MyD88 

inhibitor rescues loss of cell viability in Dicer]f
l
f mouse RPE 20 

cells treated with adenoviral vector coding for Cre recom­

binase (Ad-Cre ). (J) Ad-Cre induced global miRNA expres­

sion deficits in Dicer]f
l
f mouse RPE cells compared to

Ad-Null. No significant difference in miRNA abundance 

between MyD88 inhibitor and control peptide-treated Dicer' 25 

depleted cells. n=3 (A, B, F-H). Densitometry values nor­

malized to Vinculin are shown in parentheses (A, C). Degen­

eration outlined by blue arrowheads. n=S (E, F). *p<0.05 by 

Student t-test (G, I). Images representative of 3 experiments 

(A, B, C, D, H). 30 

FIG. 10. DICER! is a negative regulator of Caspase-1 

activation by Alu RNA, Related to FIG. 9 (A) Knockdown 

of DICER! by antisense oligonucleotides (AS) in human 

RPE cells increases cleavage activity of Caspase-1, as 
35 

monitored by Caspalux, a fluorescent (green in overlay) 

reporter of substrate cleavage compared to control AS 

treatment. (B) Inhibition of Alu RNA by AS treatment 

reduces Caspalux fluorescence in human RPE cells treated 

with DICER! AS. Mean values of Caspalux fluorescence 40 

shown in parentheses. Images representative of 3 experi­

ments. 

8 

activated Caspase-1 to mature IL-18. IL-18 signals via 

MyD88 to phosphorylate IRAKl and IRAK4, which leads 

to activation of Caspase-3. 
FIG. 13 includes a series of images showing stained flat 

mounts following intravitreous administration of N-(2-Mor­
pholinylethyl)-2-(3-nitrobenzoylamido )-benzimidazole, an 
IRAKl/4 inhibitor, in wild-type mice, showing that 
IRAKl/4 inhibitors protects wild-type mice from Alu RNA­
induced RPE degeneration in a dose-dependent mamier. 

FIG. 14 is a bar graph presenting viability of human RPE 
cells, and showing that N-(2-Morpholinylethyl)-2-(3-ni­
trobenzoylamido )-benzimidazole, an IRAKl/4 inhibitor 
(100 µM), protects human RPE cells from pAlu-induced 
cytotoxicity. 

FIG. 15 is a bar graph presenting viability of human RPE 
cells, and showing that N-(2-Morpholinylethyl)-2-(3-ni­
trobenzoylamido )-benzimidazole, an IRAKl/4 inhibitor 
(100 µM), protects human RPE cells from Alu Alu-induced 
cytotoxicity. 

FIG. 16 is a bar graph showing that MyDss-1- mice have
reduced laser-induced choroidal neovascularization as com­
pared to wild-type mice. 

FIG. 17 is a bar graph showing that intravitreous injection 
of a peptide MyD88 inhibitor reduced laser-induced chor­
oidal neovascularization in wild-type mice compared to a 
control peptide inhibitor. 

FIG. 18 is a bar graph showing that intravitreous injection 
of an siRNA targeting MyD88 (2 µg) reduced laser-induced 
choroidal neovascularization in wild-type mice at least as 
well as a neutralizing anti-mouse VEGF antibody, compared 
to a control sirRNA. 

DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

The details of one or more embodiments of the presently­
disclosed subject matter are set forth in this document. 
Modifications to embodiments described in this document, 
and other embodiments, will be evident to those of ordinary 
skill in the art after a study of the information provided in 
this document. The information provided in this document, 
and particularly the specific details of the described exem­
plary embodiments, is provided primarily for clearness of 
understanding and no unnecessary limitations are to be 
understood therefrom. In case of conflict, the specification of 
this document, including definitions, will control. 

The presently-disclosed subject matter includes methods 
for inhibiting P2X7 activation and therapeutic and protective 
uses thereof. Also provided are method for inhibiting 
IRAKl and therapeutic and protective uses thereof. Also 
provided are methods for inhibiting IRAK4 and therapeutic 
and protective uses thereof. Also provided are methods for 
identifying inhibitors. 

In some embodiments, the presently-disclosed subject 
matter includes a method of protecting a cell, which involves 
inhibiting one or more of P2X7 activation associated with or 
in the cell, inhibiting IRAKl associated with or in the cell; 
or inhibiting IRAK4 associated with or in the cell. The cell 
being protected can be, for example, an RPE cell, a retinal 

FIG. 11. NLRP3 Inflammasome and MyD88 activation in 
human GA. (A) NLRP3 and IL18 abundance was signifi­
cantly elevated in macular GA RPE (n= 13) compared to 45 

normal age-matched controls (n=12). *p<0.05 by Mami­
Whitney U-test. There was no significant difference between 
groups (p=0.32 by Marni-Whitney U-test) in ILlB abun­
dance. (B-D) Increased immunolocalization of NLRP3 (B), 
PYCARD (C) and Caspase-1 (D) in macular GA RPE 50 

compared to age-matched normal controls. Specificity of 
staining confirmed by absence of reaction production with 
isotype control antibody in GA eye sections. Scale bar, 20 
µm. (E) Western blots of macular RPE lysates from indi­
vidual human donor eyes show that abundance of NLRP3, 55 

PYCARD, and phosphorylated IRAKl/4 (which are acti­
vated by MyD88 signaling), normalized to the levels of the 
housekeeping protein Vinculin, is reduced in geographic 
atrophy (GA) compared to age-matched normal controls. 
Representative images shown. n=6 (B-E). 

FIG. 12, Schematic representation of proposed model of 
NLRP3 inflammasome activation by DICER! deficit-in­
duced Alu RNA that leads to RPE degeneration and geo­
graphic atrophy. Alu RNA induces priming of NLRP3 and 
ILi 8 mRNAs via generation of reactive oxygen species 65 

(ROS). Alu RNA activates the NLRP3 inflammasome via 
P2X7 activation. This triggers cleavage of pro-IL-18 by 

60 photoreceptor, or a choroidal cell. In some embodiments, the 
cell is in a subject. In some embodiments, the cell is an RPE 
cell. In some embodiments, the method includes identifying 
a subject for which protection of an RPE cell is desired. In 
some embodiments of the method, the cell is an RPE cell of 
a subject having age-related macular degeneration. 

As will be recognized by one or ordinary skill in the art, 
the term "protecting" or "protection" when used with ref-
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erence to a cell or group of cells does not refer to an ability 
to complete eliminate all instances of cell death. Rather, the 
skilled artisan will understand that the term "protecting" 
refers to a reduction in cytotoxicity for a cell or group of 
cells, or to a reduction in the likelihood of cell death for a 
cell or group of cells, e.g., Alu-RNA-induced cytotoxicity or 
cell death. Such reduction can be a reduction by at least 
about 50%, at least about 75%, at least about 90%, or at least 
about 95% of the cytotoxicity/cell death of a cellular popu­
lation. Such reduction can be determined relative to a 
control, e.g., in the absence of P2X

7 
activation inhibitor, 

IRAK-1 inhibitor, and/or IRAK-4 inhibitor. 
An inhibitor as described herein can be a polypeptide 

inhibitor (including oligonucleotide inhibitor), a small mol­
ecule inhibitor, or an siRNA inhibitor. It is noted that, the 
terms "inhibit", "inhibitor", or "inhibiting" are not meant to 
require complete inhibition, but refers to a reduction in 
signaling. Such reduction can be a reduction by at least 
about 50%, at least about 75%, at least about 90%, or at least 
about 95% of the signaling in the absence of the inhibitory 
effect, e.g., in the absence of a compound that is an inhibitor 
of the signaling. 

In some embodiments of the presently-disclosed subject 
matter, a method of protecting a cell can include inhibiting 

10 
the presently-disclosed subject matter include but are not 
limited to N-(2-Morpholinylethyl)-2-(3-nitrobenzoy­
lamido )-benzimidazole, and other examples are described, 
for example, in Buckley, G. M, et al., (2008) "IRAK-4 
inhibitors. Part III: A series of imidazo[l,2-a]pyridines" 
Bioorganic & Medicinal Chemistry Letters, 18:656-3660, 
and other known IRAK inhibitors, including those being 
developed by Merck (e.g., eshop.emdchemicals.com) and 
Ligand Pharmaceuticals (e.g., www.ligand.com/irak4-in-

10 hibitor). 
The methods as described herein can further include 

inhibiting MyD88 associated with or in a cell of the subject; 
inhibiting IL-18 associated with or in a cell of the subject; 
inhibiting an inflammasome associated with or in a cell of 

15 the subject; increasing levels of a DICER polypeptide asso­
ciated with or in a cell of the subject; and/or inhibiting 
AluRNA associated with or in a cell of the subject. Relevant 
information and details regarding such additional steps of 
embodiments of the presently-disclosed subject matter can 

20 be found, for example, in U.S. Provisional Patent Applica­
tion No. 61/543,038; U.S. Provisional Patent Application 
No. 61/508,867; and International Patent Application No. 
PCT/USll/38753, each of which is incorporated herein by 
reference. 

of P2X
7 

activation associated with or in the cell of the 25 

subject. In some embodiments, the method further includes 
identifying a subject in need of treatment for a condition of 
interest. In some embodiments, inhibiting P2X

7 
activation 

includes contacting the cell with a P2X
7 

activation inhibitor. 

In some embodiments, the method of protecting a cell as 
described herein can be useful for the treatment of a con­
dition of interest, for example, a condition selected from: 
Geographic atrophy; Macular degeneration; Alzheimer dis­
ease; Cryopyrinopathies; Inflammatory Bowel Disease; 
Keratitis; Gout; Acne vulgaris; Crohn's disease; Ulcerative 
colitis; Irritable bowel syndrome; Type I diabetes; Type 2 
diabetes; Insulin resistance; Obesity; Hemolytic-Uremic 
Syndrome; Polyoma virus infection; Immune complex renal 
disease; Acute tubular injury; Lupus nephritis; Familial cold 

In some embodiments, contacting the cell with the inhibitor 30 

comprises administering the inhibitor to a subject. Such 
inhibitors can be administered, for example, by topical, 
intravitreous, subretinal, peribulbar, suprachoroidal, intraca­
psular, intravenous, intramuscular, or subcutaneous admin­
istration, or by inhalational of the inhibitor. 35 autoinflammatory syndrome; Muckle-Wells syndrome and 

neonatal onset multisystem inflammatory disease; Chronic 
infantile neurologic cutaneous and articular autoinflamma­
tory diseases, Renal ischemia-perfusion injury; Glomerulo-

Examples of appropriate P2X
7 

activation inhibitors 
include, but are not limited to a P2X

7 
receptor antagonist 

nephritis; Cryoglobulinemia; Systemic vasculitides; IgA 
nephropathy Atherosclerosis; HIV/AIDS; Malaria; Hel­
minth parasites; Sepsis and septic shock; Allergic asthma; 
Hay fever; Chronic obstructive pulmonary disease; Drug­
induced lung inflammation; Contact dermatitis; Leprosy; 
Burkholderia cenocepacia infection; Respiratory syncitial 

( e.g., A438079), an inhibitor of the activation of the P2X
7 

receptor, or an inhibitor of the expression of P2X
7 

(includ­
ing, for example, inhibition of transcription of the P2RX7 40 

gene, and inhibition of translation of a product of the P2RX7 
gene, including by use of RNA interference technologies). 
Examples of inhibitors include, polypeptide inhibitors 
(which include oligonucleotide inhibitors), small molecule 
inhibitors, and siRNA inhibitors. 45 virus infection; Psoriasis; Systemic lupus erythematosus; 

Scleroderma; Reactive arthritis; Cystic fibrosis, Syphilis, 
Sjiigren's syndrome; Rheumatoid arthritis; Inflammatory 
joint disease; Non-alcoholic fatty liver disease; Cardiac 
surgery (peri-/post-operative inflanimation); Acute and 

In some embodiments of the presently-disclosed subject 
matter, a method of protecting a cell can include inhibiting 
IRAKl and/or IRAK 4 associated with or in the cell of the 
subject. In some embodiments, the method further includes 
identifying a subject in need of treatment for a condition of 
interest. In some embodiments, inhibiting IRAKl and/or 
IRAK 4 includes contacting the cell with a IRAKl and/or 
IRAK 4 inhibitor. In some embodiments, contacting the cell 
with the inhibitor comprises administering the inhibitor to a 
subject. Such inhibitors can be administered, for example, 
by topical, intravitreous, subretinal, peribulbar, suprachor­
oidal, intracapsular, intravenous, intramuscular, or subcuta­
neous administration, or by inhalational of the inhibitor. 
Examples of appropriate IRAKl and/or IRAK 4 inhibitors 
include, an antagonist, such as a small molecule antagonist, 

50 chronic organ transplant rejection; Acute and chronic bone 
marrow transplant rejection; and Tumor angiogenesis. In 
some embodiments, the condition of interest is geographic 
atrophy and the cell is an RPE cell. In this regard, a subject 
having age-related macular degeneration can be treated 

55 using methods and compositions as disclosed herein. It is 
noted that macular degeneration refers to both a dry form of 
macular degeneration ( e.g., geographic atrophy/retinal 
degeneration), as well as a wet form of macular degeneration 
(e.g., angiogenesis/blood vessel growth). In this regard, 

60 inhibitors as disclosed herein can be useful for treating all 
forms of macular degeneration. By way of specific example, 
a MyD88 inhibitor can be used to treat various forms of 
macular degeneration, and is specifically contemplated for 
inhibition of choroidal neovascularization. 

or an inhibitor of the expression of IRAKl, and/or IRAK4 
(including, for example, inhibition of transcription and inhi­
bition of translation, including by use of RNA interference 
technologies). Examples of inhibitors include, polypeptide 
inhibitors (which include oligonucleotide inhibitors), small 65 

molecule inhibitors, and siRNA inhibitors. Specific 
examples of inhibitors that can be used in accordance with 

As used herein, the terms treatment or treating relate to 
any treatment of a condition of interest, including but not 
limited to prophylactic treatment and therapeutic treatment. 
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such as GENBANK® and SWISSPROT. Information 

including sequences and other information related to such 

nucleotides and polypeptides included in such publicly­
available databases are expressly incorporated by reference. 
Unless otherwise indicated or apparent the references to 
such publicly-available databases are references to the most 
recent version of the database as of the filing date of this 
Application. 

As such, the terms treatment or treating include, but are not 
limited to: preventing a condition of interest or the devel­
opment of a condition of interest; inhibiting the progression 
of a condition of interest; arresting or preventing the devel­
opment of a condition of interest; reducing the severity of a 
condition of interest; ameliorating or relieving symptoms 
associated with a condition of interest; and causing a regres­
sion of the condition of interest or one or more of the 
symptoms associated with the condition of interest. 

As used herein, the term "subject" refers to a target of 
treatment. The subject of the herein disclosed methods can 
be a vertebrate, such as a mammal, a fish, a bird, a reptile, 

While the terms used herein are believed to be well 
10 understood by one of ordinary skill in the art, definitions are 

set forth to facilitate explanation of the presently-disclosed 
subject matter. 

Unless defined otherwise, all technical and scientific 
terms used herein have the same meaning as commonly 

or an amphibian. Thus, the subject of the herein disclosed 
methods can be a human or non-human. Thus, veterinary 
therapeutic uses are provided in accordance with the pres­
ently disclosed subject matter. 

The terms "polypeptide", "protein", and "peptide", which 
are used interchangeably herein, refer to a polymer of the 20 
protein amino acids, or amino acid analogs, regardless of its 
size. The terms "polypeptide fragment" or "fragment", when 
used in reference to a reference polypeptide, refers to a 
polypeptide in which amino acid residues are deleted as 
compared to the reference polypeptide itself, but where the 
remaining amino acid sequence is usually identical to the 
corresponding positions in the reference polypeptide. Such 
deletions can occur at the amino-terminus or carboxy­
terminus of the reference polypeptide, from internal portions 

15 understood by one of ordinary skill in the art to which the 
presently-disclosed subject matter belongs. Although any 
methods, devices, and materials similar or equivalent to 
those described herein can be used in the practice or testing 
of the presently-disclosed subject matter, representative 

20 methods, devices, and materials are now described. 
Following long-standing patent law convention, the terms 

"a", "an", and "the" refer to "one or more" when used in this 
application, including the claims. Thus, for example, refer­
ence to "a cell" includes a plurality of such cells, and so 

25 forth. 

of the reference polypeptide, or a combination thereof. A 
fragment can also be a "functional fragment," in which case 
the fragment retains some or all of the activity of the 30 
reference polypeptide as described herein. 

The terms "modified amino acid", "modified polypep­
tide", and "variant" refer to an amino acid sequence that is 
different from the reference polypeptide by one or more 
amino acids, e.g., one or more amino acid substitutions. A 35 
variant of a reference polypeptide also refers to a variant of 
a fragment of the reference polypeptide, for example, a 
fragment wherein one or more amino acid substitutions have 
been made relative to the reference polypeptide. A variant 
can also be a "functional variant," in which the variant 40 
retains some or all of the activity of the reference protein as 
described herein. The term functional variant includes a 
functional variant of a functional fragment of a reference 
polypeptide. 

The presently-disclosed subject matter further includes a 45 
kit, useful for practicing the methods as disclosed herein. In 
some embodiments, the kit can include a P2X7 activation 
inhibitor, packaged together with an IRAKl and/or IRAK4 
inhibitor. In some embodiments, the kit can also include an 
IL-18 inhibitor, an inflammasome inhibitor, a DICER poly- 50 
peptide, and an AluRNA inhibitor. 

The presently-disclosed subject matter also includes a 
method for identifying an IRAKl and/or IRAK 4 inhibitor, 
including providing a cultured cell wherein phosphorylated 
IRAKl and/or IRAK4 is upregulated; contacting the cell 55 
with a candidate compound; and determining whether the 
candidate compound results in a change in the IRAKl 
and/or IRAK4. The IRAKl and/or IRAK4 can be upregu­
lated in the cell, for example, by stimulating the cells with 
a MyD88 activator (e.g., Alu-RNA, LPS) and measuring 60 
phosphorylation (activation) of IRAKl and/or IRAK4 by 
Western blotting. The change in the IRAKl and/or IRAK4 
can monitored, for example, by measuring cell viability, or 
measuring the expression of a gene known to be induced by 
IRAK 1 and/or IRAK 4 signaling. 65 

In certain instances, nucleotides and polypeptides dis­
closed herein are included in publicly-available databases, 

Unless otherwise indicated, all numbers expressing quan­
tities of ingredients, properties such as reaction conditions, 
and so forth used in the specification and claims are to be 
understood as being modified in all instances by the term 
"about". Accordingly, unless indicated to the contrary, the 
numerical parameters set forth in this specification and 
claims are approximations that can vary depending upon the 
desired properties sought to be obtained by the presently­
disclosed subject matter. 

As used herein, the term "about," when referring to a 
value or to an amount of mass, weight, time, volume, 
concentration or percentage is meant to encompass varia­
tions of in some embodiments ±20%, in some embodiments 
±10%, in some embodiments ±5%, in some embodiments 
±1 %, in some embodiments ±0.5%, and in some embodi­
ments ±0.1 % from the specified amount, as such variations 
are appropriate to perform the disclosed method. 

As used herein, ranges can be expressed as from "about" 
one particular value, and/or to "about" another particular 
value. It is also understood that there are a number of values 
disclosed herein, and that each value is also herein disclosed 
as "about" that particular value in addition to the value itself. 
For example, if the value "10" is disclosed, then "about 10" 
is also disclosed. It is also understood that each unit between 
two particular units are also disclosed. For example, if 10 
and 15 are disclosed, then 11, 12, 13, and 14 are also 
disclosed. 

The presently-disclosed subject matter is further illus­
trated by the following specific but non-limiting examples. 
The following examples may include compilations of data 
that are representative of data gathered at various times 
during the course of development and experimentation 
related to the present invention. 

EXAMPLES 

Example 1 

Subretinal Injection and Imaging. 
Subretinal injections (1 µL) in mice were performed using 

a Pico-Injector (PLI-100, Harvard Apparatus). In vivo trans­
fection of plasmids was achieved using 10% Neuroporter 
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(Genlantis). Fundus imaging was performed on a TRC-50 
IX camera (Topcon) linked to a digital imaging system 
(Sony). Immunolabeling of RPE flat mounts was performed 
using antibodies against human zonula occludens-1 (Invit­
rogen). 

Cell Viability. 
Cell viability measurements were performed using the 

Cell Titer 96 AQueous One Solution Cell Proliferation Assay 
(Promega) in according to the manufacturer's instructions. 

mRNA Abundance. 
Transcript abundance was quantified by real-time RT­

PCR using an Applied Biosystems 7900 HT Fast Real-Time 
PCR system using the 2-Mct method. 

Protein Abundance and Activity. 
Protein abundance was assessed by Western blot analysis 

using primary antibodies recognizing Caspase-1 (1:500; 
Invitrogen), pIRAKl (1:500; Thermo Scientific), pIRAK4 
(1:500, Abbomax, Inc), PYCARD (1:200, Santa Cruz Bio­
technology), NLRP3 (1:500, Enzo Life Sciences) and Vin­
culin (1:1,000; Sigma-Aldrich). Caspase-1 activity was 
visualized using Caspaluxl E1D2 (Oncoimmunin) reagent 
according to the manufacturer's instructions. 

Mice. 

14 

Caspase-1 (prediluted, AbCam). Isotype IgG was substituted
for the primary antibody to assess the specificity of the
staining. Bound antibody was detected with biotin-conju­
gated secondary antibodies, followed by incubation with

5 ABC reagent and visualized by Vector Blue (Vector Labo­
ratories). Levamisole (Vector Laboratories) was used to
block endogenous alkaline phosphatase activity. Slides were
washed in PBS, counterstained with neutral red (Fisher
Scientific), rinsed with deionized water, air dried, and then

10 mounted in Vectamount (Vector Laboratories). Fluorescent
labeling of human tissue was performed with the rabbit
antibody against PYCARD (1:50, Clone N-15, Santa Cruz
Biotechnology). Immunolabeling was visualized by fluores­
cently conjugated anti-rabbit secondary antibody (Invitro-

15 gen). Tissue autofluorescence was quenched by incubating
the sections in 0.3% Sudan black (Fisher Scientific). Sec­
tions were mounted in Vectashield with DAPI (Vector Labo­
ratories). Mouse RPE/choroid flat mounts were fixed with
4% paraformaldehyde or 100% methanol, stained with rab-

20 bit antibodies against human zonula occludens-1 (1: 100,
Invitrogen) and visualized with Alexa594 (Invitrogen). All
images were obtained using the Leica SP-5 or Zeiss Axio
Observer Zl microscopes.

All animal experiments were approved by institutional 
review committees and in accordance with the Association 25 

for Research in Vision and Ophthalmology Statement for the 
Use of Animals in Ophthalmic and Visual Research. Wild­
type C57BL/6J, Tlr3-1-, Tlr4-1- (C57BL/10ScNJ), Trif-1-
(Ticaml Lps2) Ifng_;_ Ifngr1-1- Illrl -/- Ill 8rl -/- P2rx7_;_
Myd8st7--'; a�d Dice;]flf mice' were p�chased 'from Th� 
Jackson Laboratory. Casp1-1-, Nlrp3-1-, and Pycard-1- mice
have been previously described (Kanneganti et al., 2006). 
Unc93bl mutant mice were generously provided by B. A.
Beutler via K. Fitzgerald. Myd88_1_ and Tlr7_1_ mice were
generously provided by S. Akira via T. Hawn and D. T. 35 

Golenbock. Mda5_1_ mice were generously provided by M.
Colonna. Prkr-1- mice were generously provided by B. R.
Williams and R. L. Silverman. Mavs-1- mice were gener­
ously provided by Z. Chen via K. Fitzgerald. For all pro­
cedures, anesthesia was achieved by intraperitoneal injec­
tion of 100 mg/kg ketamine hydrochloride (Ft. Dodge 
Animal Health) and 10 mg/kg xylazine (Phoenix Scientific), 
and pupils were dilated with topical 1 % tropicamide (Alcon 
Laboratories). 

Subretinal Injection.
Subretinal injections (1 µL) in mice were performed using

a Pico-Injector (PLI-100, Harvard Apparatus). In vivo trans­
fection of plasmids coding for two different Alu sequences
(pAlu) or empty control vector (pNull) (Bennett et al., 2008;
Kaneko et al., 2011; Shaikh et al., 1997) was achieved using

Fundus Photography. 
Retinal photographs of dilated mouse eyes were taken 

with a TRC-50 IX camera (Topcon) linked to a digital 
imaging system (Sony). 

Human Tissue. 
Donor eyes or ocular tissues from patients with geo­

graphic atrophy due to AMD or age-matched patients with­
out AMD were obtained from various eye banks. These 
diagnoses were confirmed by dilated ophthalmic examina­
tion prior to acquisition of the tissues or eyes or upon 
examination of the eye globes post mortem. The study 
followed the guidelines of the Declaration of Helsinki. 
Institutional review boards granted approval for allocation 
and histological analysis of specimens. 

Immunolabeling. 
Human eyes fixed in 2-4% paraformaldehyde were pre­

pared as eyecups, cryoprotected in 30% sucrose, embedded 

30 10% Neuroporter (Genlantis). AAVl-BESTl-Cre (Alexan­
der and Hauswirth, 2008) or AAVl-BESTl-GFP were
injected at 1.0xl011 pfu/mL and in vitro transcribed Alu
RNA was injected at 0.3 mg/mL.

Drug Treatments.
siRNAs formulated in siRNA buffer (20 mM KCL, 0.2

mM MgC12 in HEPES buffer at pH 7.5; Dharmacon) or
phosphate buffered saline (PBS; Sigma-Aldrich); the TLR4
antagonist Ultra Pure Rhodobacter sphaeroides LPS (LPS­
RS, InvivoGen), a peptide inhibitor of MyD88 homodi-

40 merization IMG-2005 (IMGENEX), control inhibitor (IM­
GENEX), recombinant IL-18 (Medical & Biological
Laboratories), neutralizing rat antibodies against mouse
IL-1 � (IMGENEX), neutralizing rat antibodies against
mouse IL-18 (Medical & Biological Laboratories), isotype

45 control IgGs (R&D Systems or eBioscience as appropriate),
Caspase-1 inhibitor Z-WEHD-FMK (R&D Systems), Cas­
pase-3 inhibitor Z-DEV D-FMK (R&D Systems), Caspase
control inhibitor Z-FA-FMK (R&D Systems), (2R,4R)­
APDC (Enzo Life Sciences), Glipizide (Sigma-Aldrich),

50 Glyburide (Sigma-Aldrich), and P2X7 receptor antagonist
A438079 (Tocris Bioscience) were dissolved in phosphate
buffered saline (PBS; Sigma-Aldrich) or dimethyl sulfoxide
(DMSO; Sigma-Aldrich), and injected into the vitreous
humor in a total volume of 1 µL with a 33-gauge Exmire

55 microsyringe (Ito Corporation). To assess the effect of
MyD88 blockade on pAlu-induced RPE degeneration, 1 µL
of cholesterol ( chol) conjugated MyD88 siRNA (17 +2 nt; 2
µg/µL) was intravitreously injected 1 day after pAlu injec­
tion. As a control, Luc siRNA-chol (17+2 nt) was used with

60 identical dosages.
Bone Marrow Chimeras.

in optimal cutting temperature compound (Tissue-Tek OCT; 
Sakura Finetek), and cryosectioned into 10 µm sections. 
Depigmentation was achieved using 0.25% potassium per­
manganate and 0.1 % oxalic acid. Immunohistochemical 65 

staining was performed with the rabbit antibody against 
NLRP3 (1:100, Sigma Aldrich) or rabbit antibody against 

Bone marrow transplantation was used to create
Myd88-1- chimera mice wherein the genetic deficiency of
Myd88 was confined to either circulating cells (Myd88_1_
-WT) or nonhematopoietic tissue (WT-Myd88-1-).
Briefly, bone marrows were collected from femur and tibia
of congenic WT or Myd88_1_ donor mice by flushing with
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RPMI 1640. After two washing steps, cells were resuspended 
in RPMI1640. lxl07 cells in 150 µL of RPMI1640 were 
injected into the tail vein of irradiated donor mice. Two 
chimera groups were generated: WT----;,Myd88_1_ (WT cells
into Myd88-1

- mice) and Myd88-1
- -;,WT (Myd88-1

- cells 5 

into WT mice). 2 months after bone marrow transfer, mice 
were injected subretinally with Alu RNA, vehicle, pA!u, or 
pNull, and monitored for RPE degeneration 7 days later. 

Real-Time PCR. 

16 

000) for 1 h at RT. The signal was visualized by enhanced
chemiluminescence (ECL plus) and captured by Vision­
WorksLS Image Acquisition and Analysis software (Version
6.7.2, UVP, LLC).

Cell Culture. 
All cell cultures were maintained at 37° C. and 5% C02. 

Total RNA was extracted from tissues or cells using Trizol 
reagent (Invitrogen) according to manufacturer's recom­
mendations, DNase treated and reverse transcribed (Quan­
tiTect, Qiagen). The RT products ( cDNA) were amplified by 
real-time quantitative PCR (Applied Biosystems 7900 HT 
Fast Real-Time PCR system) with Power SYBR green 
Master Mix. Oligonucleotide primers specific for human 
ILlB, human NLRP3, human 18S rRNA, mouse Myd88, 
mouse Nlrp3, mouse 1118, and mouse 18S rRNA were used. 
The QPCR cycling conditions were 50° C. for 2 min, 95° C. 

Primary mouse RPE cells were isolated as previously 
described (Yang et al., 2009) and grown in Dulbecco Modi­
fied Eagle Medium (DMEM) supplemented with 20% FBS 

10 and standard antibiotics concentrations. Primary human 
RPE cells were isolated as previously described (Yang et al., 
2008) and maintained in DMEM supplemented with 10% 
FBS and antibiotics. HeLa cells were maintained in DMEM 

15 
supplemented with 20% FBS and standard antibiotics con­
centrations. THP-1 cells were cultured in RPMI 1640 

for 10 min followed by 40 cycles of a two-step amplification 20 

program (95° C. for 15 s and 58° C. for 1 min). At the end 

medium supplemented with 10% FBS and antibiotics. 
In Vitro Transcription of Alu RNAs. 
Two Alu RNAs were synthesized: a 281 nt Alu sequence 

originating from the cDNA clone TS 103 (Shaikh et al., 
1997) and a 302 nt Alu sequence isolated from the RPE of 
a human eye with geographic atrophy. Linearized plasmids 
containing these Alu sequences with an adjacent 5' T7 
promoter were subjected to AmpliScribe™ T7-Flash™ 

Transcription Kit (Epicentre) according to the manufactur­
er's instructions. DNase-treated RNA was purified using 
MEGAclear™ (Ambion), and integrity was monitored by 
gel electrophoresis. This yields single stranded RNAs that 
fold into a defined secondary structure identical to Pol III 

of the amplification, melting curve analysis was applied 
using the dissociation protocol from the Sequence Detection 
system to exclude contamination with unspecific PCR prod­
ucts. The PCR products were also confirmed by agarose gel 25 

and showed only one specific band of the predicted size. For 
negative controls, no RT products were used as templates in 
the QPCR and verified by the absence of gel-detected bands. 
Relative expressions of target genes were determined by the 
2-,\.,\.ct method. 30 derived transcripts. Where indicated, transcribed RNA was 

dephosphorylated using calf intestine alkaline phosphatase 
(Invitrogen) and repurified by Phenol:Chloroform:Isoamyl 
alcohol precipitation. 

miRNA Quantification. 
Total RNA containing miRNAs was polyadenylated and 

reverse transcribed using universal primer using the All-In­
One miRNA q-RT-PCR Detection Kit (GeneCopoeia) 
according to the manufacturer's specifications using a uni- 35 

versa! reverse primer in combination with forward primers 
for: mouse miR-184; mouse miR-221/222; mouse miR-
320a; and mouse miR-484. miRNA levels were normalized 
to levels of U6 snRNA using the 2-Mct method. Detection 
was achieved by SYBR green qPCR with the following 40 

conditions: 95° C. for 10 min followed by 40 cycles of 95° 

Transient Transfection. 
Human or mouse RPE cells were transfected with pUCl 9, 

pA!u, pCDNA3.1/Dicer-FLAG, pCDNA3.1, Alu RNA, 
NLRP3 siRNA sense, PYCARD siRNA sense, MyD88 
siRNA sense, DICERl antisense oligonucleotide (AS), con­
trol (for DICERl) AS, Alu AS, and control (for Alu) AS 
using Lipofectamine 2000 (Invitrogen) according to the 
manufacturer's instructions. 

Adenoviral Infection. C. for 10 s, 60° C. for 20 s and 72° C. for 20 s. Amplicon 
specificity was assessed by melt curve analysis and unique 
bands by agarose gel electrophoresis. 

Western Blotting. 

Cells were plated at density of 15xl03/cm2 and after 16 h,
at approximately 50% confluence, were infected with AdCre 

45 or AdNull (Vector Laboratories) with a multiplicity of 
infection of 1,000. Tissues or cells were homogenized in lysis buffer (10 mM 

Tris base, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM 
EGTA, 1% Triton X-100, 0.5% NP-40, protease and phos­
phatase inhibitor cocktail (Roche)). Protein concentrations 
were determined using a Bradford assay kit (Bio-Rad) with 50 

bovine serum albumin as a standard. Proteins ( 40-100 µg) 
were run on NuPAGE Bis-Tris gels (Invitrogen) and trans­
ferred to Immun-Blot PVDF membranes (Bio-Rad). Cells 
were scraped in hot Laemmli buffer (62.5 mM Tris base, pH 
6.8, 2% SDS, 5% 2-Mercaptoethanol, 10% Glycerol, 0.01 % 55 

Bromophenol Blue). Samples were boiled and run on 4-20% 
NuPAGE Tris-Glycine gels (Invitrogen). The transferred 
membranes were blocked for 1 h at RT and incubated with 

Cell Viability. 
MTS assays were performed using the Cell Titer 96 AQue­

ous One Solution Cell Proliferation Assay (Promega) 
according to the manufacturer's instructions. For examining 
the cytoprotective effect of glycine in Alu RNA induced cell 
death, human RPE cells were transfected with pNull/pA!u. 
At 6 h post-transfection the cells were incubated with 
complete media containing glycine (5 mM) or vehicle, and 
cell viability was assessed after 24 h. Similarly, human RPE 
cells primed with LPS (5 µg/ml for 6 h) were treated with 
ATP (25 µM) in the presence of glycine containing media (5 
mM). 30 min post ATP cell viability was assessed as 
described above. 

Caspase-1 Activity. 
Caspase-1 activity was visualized by incubating cells with 

CaspaluxlEl D2 reagent (Oncoimmunin) according to the 
manufacturer's instructions. Caspalux1E1D2 signal was 
quantified reading the fluorescence ( excitation 5 5 2 nm, 

antibodies against human Caspase-1 (1:500; Invitrogen), 
mouse Caspasel (1:500; MBL), NLRP3 (1:1000; Enzo Life 60 

Sciences), PYCARD (1:1000, RayBiotech), phospho­
IRAKl (S376) (1:500, Thermo Scientific), phospho-IRAK4 
(T345) (1:500, AbboMax), DICERl (1:2,000; Bethyl), 
MyD88 (1:1,000; Cell Signaling), and mouse IL-18 (1:200; 
MBL) at 4° C. overnight. Protein loading was assessed by 
immunoblotting using an anti-Vinculin antibody (1:1,000; 
Sigma-Aldrich). The secondary antibodies were used (1 :5, 

65 emission 580 nm) using a Synergy 4 reader (Biotek). Quan­
tification of fluorescence from images was performed by 
converting images into grayscale in Adobe Photoshop CS5, 
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and measuring the integrated density of black and white 
images using ImageJ software (NIH) (Bogdanovich et al., 
2008). 

Caspase-3 Activity. 

18 

scribed Alu RNAs (Kaneko et al., 2011) did not activate 
TLR-2, 3, 4, 5, 7, 8, or 9 in a reporter assay system based in 
human embryonic kidney 293 cells expressing each of the 
TLRs (FIG. lF). 

The caspase-3 activity was measured using Caspase-3 5 

Fluorimetric Assay (R&D Systems) according to the manu­
facturer's instruction. 

Because Alu RNA induced RPE degeneration indepen-
dent of TLR activation, whether other dsRNA sensors such 
as melanoma-differentiation-associated gene 5 (MDA5, 
(Kato et al., 2006)) or protein kinase R (PKR, encoded by 
Prkr, (Yang et al., 1995)) might mediate Alu RNA toxicity 

ROS Activation. 
Intracellular ROS was assessed using the ROS-specific 

probe 2'7'-dichlorodihydrofluorescin diacetate (H2DCFDA, 
BioChemica, Fluka). Sub-confluent human RPE cells were 
transfected with pNull and pAlu. After 24 h cells were 
loaded for 10 min with 10 µM H2DCFDA and washed twice 
with PBS. Fluorescence was recorded in 96-well plate using 
with a Synergy 4 reader (Biotek) using a FITC filter (exci­
tation 485 nm, emission 538 nm). 

ELISA. 
Secreted cytokine content in conditioned cell culture 

media was analyzed using the Human IL-1 � and IL-18 
ELISA Kits (R&D) according to the manufacturer's instruc­
tions. 

TLR Screen. 
A custom TLR ligand screen was performed by Invivo­

Gen using HEK293 cells over-expressing individual TLR 
family members coupled with an AP-1/NF-KB reporter 
system. Cells were stimulated with each of two Alu RN As 
synthesized by in vitro transcription, or a TLR-specific 
positive control ligand. 

Statistical Analysis. 
Results are expressed as mean±SEM, with p values <0.05 

considered statistically significant. Differences between 
groups were compared by using Mann-Whitney U test or 
Student t-test, as appropriate, and 2-tailed p values are 
reported. 

Results 
Alu RNA does not Activate a Variety of TLRs or RNA 

Sensors. 
Alu RNA has single-stranded (ss) RNA and double­

stranded (ds) RNA motifs (Sinnett et al., 1991). Therefore, 
whether Alu RNA induced RPE degeneration in mice defi­
cient in toll-like receptor-3 (TLR3), a dsRNA sensor (Alexo­
poulou et al., 2001), or in TLR7, a ssRNA sensor (Diebold 
et al., 2004; Heil et al., 2004) was tested. Subretinal admin­
istration of a plasmid coding for Alu RNA (pAlu) induced 
RPE degeneration in Tlr3_1_ and Tlr7_1_ mice just as in 
wild-type mice (FIGS. lA-C). It has been shown that 
21-nucleotide or longer fully complementary siRNAs can
activate TLR3 on RPE cells (Kleinman et al., 2011). The
lack of TLR3 activation by Alu RNA can be attributed to its
complex structure containing multiple hairpins and bulges
that might preclude it from binding TLR3. Neither 7SL
RNA, the evolutionary precursor of Alu RNA that also has
ssRNA and dsRNA motifs, nor p7SL induced RPE degen­
eration in wild-type mice (FIGS. 2A and 28), suggesting
that the cytotoxicity of Alu RNA might be due to as yet
unclear structural features. pAlu induced RPE degeneration
in Unc93bl mutant mice (FIG. lD), which are devoid of
signaling from TLR3, TLR7, and TLR9 (Tabeta et al., 2006),
indicating that these nucleic acid sensing TLRs are not
activated by Alu RNA redundantly. pAlu administration also
induced RPE degeneration in Tlr4_1_ mice (FIG. lE). Cor­
roborating these data, the TLR4 antagonist Rhodobacter
sphaeroides LPS (Qureshi et al., 1991) did not inhibit
pAlu-induced RPE degeneration in wild-type mice (FIG.
2C). These data dismiss the possibility that TLR4-activating
lipopolysaccharide contamination induced the observed
RPE cell death. Furthermore, two different in vitro tran-

10 was tested. However, pAlu induced RPE degeneration in 
both Mda5 and Prkr_;_ mice (FIGS. 2D and 2E). The 
possibility was evaluated that the 5'-triphosphate on in vitro 
transcribed Alu RNA, which could potentially activate other 
immune sensors such as retinoic acid inducible gene I 

15 (RIG-I) or interferon-induced protein with tetratricopeptide 
repeats 1 (IFIT-1) that can sense this moiety (Hornung et al., 
2006; Pichlmair et al., 2011), might be responsible for RPE 
degeneration. Dephosphorylated Alu RNA induced RPE 
degeneration in wild-type mice just as well as Alu RNA that 

20 had not been subjected to dephosphorylation (FIG. 2F), 
indicating that the presence of this chemical group is not 
responsible for the observed cell death in vivo. Indeed, it has 
been recently shown that a 5'-triphosphate ssRNA that 
activates RIG-I does not induce RPE degeneration in mice 

25 (Kleinman et al., 2011 ). Supportive of these findings, pAlu 
induced RPE degeneration in mice deficient in mitochon­
drial antiviral signaling protein (MAYS) (FIG. 2G), an 
adaptor protein through which RIG-I and MDA-5 signal 
(Kumar et al., 2006; Sun et al., 2006). Collectively these 

30 data pointed to a novel mechanism of Alu RNA-induced 
RPE degeneration not mediated by a wide range of canoni­
cal RNA sensors. 

35 

Alu RNA Cytotoxicity is Mediated Via MyD88 and 
IL-18. 

The potential involvement of TRIF (encoded by Ticaml), 
an adaptor protein for TLR3 and TLR4 was tested (Hoebe et 
al., 2003; Yamamoto et al., 2003), and myeloid differentia­
tion primary response protein (MyD88), an adaptor protein 
for all TLRs except TLR3 was also tested (Akira et al., 2006; 

40 Alexopoulou et al., 2001; Suzuki et al., 2003 ). Subretinal 
administration of Alu RNA induced RPE degeneration in 
Ticaml -I- mice (FIG. 4A), consistent with the findings in 
Tlr3_1_ and Tlr4_1_ mice. Unexpectedly however, neither Alu
RNA nor two different pAlu plasmids induced RPE degen-

45 eration in Myd88-1
- mice (FIGS. 3A, 48, and 4C). To 

corroborate these genetic findings, pharmacological inhibi­
tion of MyD88 was tested. Intravitreous administration of a 
peptide inhibitor of MyD88 homodimerization (Loiarro et 
al., 2005) prevented RPE degeneration induced by subretinal 

50 administration of Alu RNA in wild-type mice, whereas a 
control peptide did not impart protection (FIG. 38). A 
MyD88-targeting short interfering RNA (siRNA) was 
tested, which was shorter than 21 nucleotides in length to 
prevent TLR3 activation and conjugated to cholesterol to 

55 enable cell permeation (Kleinman et al., 2008). MyD88 
siRNA inhibited RPE degeneration induced by pAlu in 
wild-type mice, whereas a control siRNA did not do so 
(FIGS. 3C-3E). Myd88+1- heterozygous mice were pro­
tected against Alu RNA-induced RPE degeneration (FIGS. 

60 3F and 4D), corroborating the findings from the siRNA 
studies that partial knockdown of MyD88 is therapeutically 
sufficient. 

MyD88-mediated signal transduction induced by inter­
leukins leads to recruitment and phosphorylation of the 

65 IL-IR-associated kinases IRAKl and IRAK4 (Cao et al., 
1996; Kanakaraj et al., 1999; Suzuki et al., 2003; Suzuki et 
al., 2002). Alu RNA increased phosphorylation of IRAKl/4 
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RNA-induced RPE degeneration was explored. Alu RNA 
treatment of human RPE cells led to Caspase-1 activation as 
measured by western blot analysis and by a fluorescent 
reporter of substrate cleavage (FIGS. SA and 6A). Indeed, 

in human RPE cells (FIG. 3G), supporting the concept that 
Alu RNA triggers MyD88 signaling. The MyD88 inhibitory 
peptide reduced Alu RNA-induced phosphorylation of 
IRAKl/4 in human RPE cells (FIG. 4E), confirming its 
mechanism of action in this model. 

Next it was assessed whether MyD88 activation mediates 
Alu RNA-induced cell death in human and mouse RPE cell 
culture systems. In congruence with the in vivo data, pAlu 
transfection reduced cell viability in wild-type but not 
Mydss-1- mouse RPE cells (FIG. 3H). The MyD88-inhibi­
tory peptide, but not a control peptide, inhibited cell death in 
human RPE cells transfected with pAlu (FIG. 31). Taken 
together, these data indicate that MyD88 is a critical media-

5 Alu RNA induced Caspase-1 activation in other cell types 
such as HeLa and THP-1 monocytic cells (FIG. 68), sug­
gesting that the cytotoxicity of Alu RNA has potentially 
broad implications in many systems. Intravitreous adminis­
tration of the Caspase-1-inhibitory peptide Z-WEHD-FMK, 

tor of Alu RNA-induced RPE degeneration. 

10 but not a control peptide Z-FA-FMK, blocked IL-18 matu­
ration and pAlu-induced RPE degeneration in wild-type 
mice (FIGS. SB and SC). The Caspase-1-inhibitory peptide 
blocked Alu RNA-induced substrate cleavage in human RPE 
cells (FIG. 6C), confirming its mechanism of action in this 

15 system. These findings were corroborated by the absence of 
RPE degeneration in Caspi -I- mice treated with Alu RNA or 
pAlu (FIGS. SD and 6D). Also, pAlu did not induce cell 
death in Casp1-1- mouse RPE cells (FIG. SE).

MyD88 is generally considered an adaptor of innate 
immune cells (O'Neill and Bowie, 2007). However, Alu 
RNA induced cell death via MyD88 in RPE monoculture 
systems. Therefore, it was determined whether Alu RNA­
induced RPE degeneration in mice was also dependent 
solely on MyD88 activation in RPE cells or whether it 
required MyD88 activation in innate immune cells. To 
determine the cell population that is critical for MyD88-
dependent RPE cell death, "foxed" MyD88 mice were 
studied, as well as generated MyD88 bone marrow chime­
ras. Conditional ablation ofMyD88 in the RPE by subretinal 
injection of AAVl-BESTl-Cre in MydSst"f mice protected 
against Alu RNA-induced RPE degeneration (FIGS. 3J and 
4F). Consistent with this finding, Alu RNA induced RPE 
degeneration in wild-type mice receiving Mydss-1- bone
marrow but did not do so in Mydss-1

- mice receiving 30 

wild-type bone marrow (FIG. 4G). Collectively, these 
results indicate that MyD88 expression in the RPE, and not 

Caspase-1 can be activated within a multiprotein innate 
20 immune complex termed the inflammasome (Tschopp et al., 

2003). The best-characterized inflammasome pathway is one 
that is activated by binding of NLRP3 (nucleotide-binding 
domain, leucin-rich-containing family, pyrin domain-con­
taining-3) to the caspase-1 adaptor apoptosis-associated 

25 speck-like protein containing a caspase-recruitment domain 
(ASC; encoded by PYCARD). 

in circulating immune cells, is critical for Alu RNA-induced 
RPE degeneration. These findings comport with histopatho­
logical studies of human GA tissue that show no infiltration 35 

of immune cells in the area of pathology (personal commu­
nication, C. A. Curcio, H. E. Grossniklaus, G. S. Hageman, 
L. V. Johnson).

Although MyD88 is critical in TLR signaling (O'Neill
and Bowie, 2007), activation of MyD88 by Alu RNA 40 

appeared to be independent of TLR activation. Thus, other 
potential mechanisms of MyD88 involvement were exam­
ined. MyD88 can regulate interferon gamma (IFN-y) sig­
naling by interacting with IFN-y receptor 1 (encoded by 
Ifngrl) (Sun and Ding, 2006). However, pAlu induced RPE 45 

degeneration in both Ifng_;_ and Ifngrl -/- mice (FIGS. 4H 
and 41). MyD88 is also essential in interleukin-I (IL-1) 
signaling (Muzio et al., 1997). Therefore, it was tested 
whether IL-1 � and the related cytokine IL-18, both of which 
activate MyD88 (Adachi et al., 1998), were involved in 50 

mediating Alu RNA cytotoxicity. Interestingly, whereas Alu 
RNA overexpression in human RPE cells increased IL-18 
secretion, IL-1� secretion was barely detectable (FIG. 3K). 

Recombinant IL-18 induced RPE degeneration in wild­
type but not Mydss-1

- mice (FIG. 3L). A neutralizing 55 

antibody against IL-18 protected against pAlu-induced RPE 
degeneration in wild-type mice, whereas IL-1� neutraliza­
tion provided no benefit (FIGS. 3M and 3N). Supporting 
these findings, pAlu induced RPE degeneration in Illrl-1-
mice but not Il18r1_1

_ mice (FIGS. 41 and 4K). These data 60 

indicate that IL-18 is an important effector of Alu RNA­
induced cytotoxicity. 

Alu RNA activates the NLRP3 inflammasome. 
Whether Caspase-1 (encoded by Caspi), a protease that 

can catalyze cleavage of the pro-forms of interleukins to 65 

their biologically active forms (Ghayur et al., 1997; Gu et 
al., 1997; Thornberry et al., 1992), was involved in Alu 

To assess whether Alu RNA induced inflammasome 
assembly, human RPE cells were transfected with a vector 
encoding a fusion protein of PY CARD and green fluorescent 
protein (GFP-PYCARD), which enabled spatial clustering 
of PYCARD that occurs upon PYCARD activation in cell 
culture to be optically-monitored (Fernandes-Alnemri et al., 
2007). Alu RNA induced the appearance of a brightly 
fluorescent cluster of GFP-PYCARD visible in the cyto­
plasm similar to treatment with LPS and ATP, which is 
known to activate the NLRP3 inflammasome (FIGS. SF and 
6E) (Mariathasan et al., 2006). 

Next the functional relevance ofNLRP3 and PYCARD to 
Alu RNA cytotoxicity was tested using genetic and phar­
macological inhibition. Neither pAlu nor Alu RNA induced 
RPE degeneration in either Nlrp3_1_ or Pycard-1- mice
(FIGS. SG, SH, 6F and 6G), demonstrating the critical 
importance of the inflammasome in transducing the cyto­
toxicity of Alu RNA. It was also found that pAlu did not 
induce cell death in Nlrp3_1_ or Pycard-1- mouse RPE cells
(FIG. SI). Moreover, knockdown ofNLRP3 or PYCARD by 
siRNAs rescued pAlu-induced human RPE cell death 
(FIGS. SJ and 6H). These findings provide direct evidence 
that NLRP3 activation in response to Alu RNA occurs in 
RPE cells and does not require the presence of other immune 
cells. 

It was determined that IL-18 and MyD88 activation 
indeed were downstream of Caspase-1 activation by show­
ing (1) that whereas the MyD88 inhibitory peptide reduced 
Alu RNA-induced phosphorylation of IRAKl/4 in human 
RPE cells (FIG. 4E), it did not reduce Alu RNA-induced 
Caspase-1 cleavage or fluorescent substrate cleavage (FIGS. 
61 and 6J); (2) that IL-18 neutralizing antibodies did not 
inhibit Alu RNA-induced Caspase-1 cleavage (FIGS. 6K); 
and (3) that the Caspase-1 inhibitory peptide reduced Alu 
RNA-induced phosphorylation of IRAKl/4 (FIG. 6L). 

NLRP3 inflammasome function is thought to require two 
signals, the first of which is termed priming. pAlu induced 
inflammasome priming as it upregulated both NLRP3 and 
ILi 8 mRNAs. This priming occurred equivalently in both 
wild-type and Mydss-1- mouse RPE cells (FIG. 7 A), further
corroborating that MyD88 functions downstream ofNLRP3 
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in this system. pAlu induced the generation of reactive 
oxygen species (ROS) (FIG. 78), a signal for NLRP3 
priming (Bauernfeind et al., 2011; Nakahira et al., 2011), 
and the ROS inhibitor APDC blocked pAlu-induced NLRP3 
and IL18 mRNA upregulation (FIG. 7C). Consistent with 5 

these data, APDC blocked pAlu-induced RPE degeneration 
in wild-type mice (FIG. 7D). 

NLRP3 inflammasome activation is also known to 
involve the ATP-gated channel P2X7 ( encoded by P2RX7), 
whose activation leads to cellular efflux ofK+ (Mariathasan 10 

et al., 2004). As disclosed herein, P2rx1-1- mice were
protected against pAlu-induced RPE degeneration and the 
P2X7 receptor antagonist A438079 blocked pAlu-induced 
RPE degeneration in wild-type mice (FIGS. 7E and 7F). 
Consonant with these data, pAlu-induced RPE degeneration 15 

in wild-type mice was inhibited by glyburide, which func­
tions downstream of P2X7 to block NLRP3 activation (Lam­
kanfi et al., 2009), but not by the closely related glipizide, 
which does not block NLRP3 (FIG. 7G). 

IL-18 and MyD88 Induces RPE Degeneration Via Cas- 20 

pase-3. 
The mode of cell death in Alu RNA-induced RPE degen­

eration mediated via IL-18 activation of MyD88 was sought 
to be determined. Alu RNA activates Caspase-1, which can 
trigger pyroptosis, a form of cell death characterized by 25 

formation of membrane pores and osmotic lysis (Fink and 
Cookson, 2006). It was found that the cytoprotective agent 
glycine, which can attenuate pyroptosis (Fink et al., 2008; 
Fink and Cookson, 2006; Verhoef et al., 2005), inhibited 
human RPE cell death induced by LPS+ATP but not by Alu 30 

RNA (FIGS. SA and SB). Pyroptosis requires Caspase-1 but 
can proceed independent of IL-18 (Miao et al., 2010). 
Therefore, the finding that IL-18 induced RPE degeneration 
in Casp1-1- mice (FIG. SC), coupled with the lack ofrescue
by glycine, suggests that Alu RNA-induced RPE degenera- 35 

tion does not occur via pyroptosis. 
It was reported earlier that Alu RNA activates Caspase-3 

(Kaneko et al., 2011), an executioner protease associated 
with apoptosis. In wild-type mice, IL-18 induced Caspase-3 
activation in the RPE (FIG. SD), and the Caspase-3 inhibitor 40 

Z-DEVD-FMK blocked IL-18-induced RPE degeneration
(FIG. SE). Because IL-18 induces RPE degeneration in mice
via MyD88, it was tested whether MyD88 inhibition also
blocks Caspase-3 activation. Indeed, the MyD88 inhibitory
peptide inhibited Alu RNA-induced Caspase-3 activation in 45 

the RPE of wild-type mice (FIG. SF). Collectively, these
data point towards apoptosis as the mode of cell death in Alu
RNA-induced RPE degeneration, and are consistent with
other systems wherein IL-18 and MyD88 induce apoptosis
(Aliprantis et al., 2000; Chandrasekar et al., 2004; Ohtsuki 50 

et al., 1997). These findings are also compatible with the
observations of Caspase-3 activation (Kaneko et al., 2011)
and apoptosis (Dunaief et al., 2002) in RPE cells in human
GA.

22 

pase-1 activation in human RPE cells, as monitored by 
western blot analysis and by a fluorescent reporter of sub­
strate cleavage, was inhibited by DICER! overexpression 
(FIGS. 6A and 68). Conversely, Caspase-1 cleavage 
induced by DICER! knockdown in human RPE cells, as 
monitored by immunofluorescence assay, was inhibited by 
simultaneous antisense-mediated knockdown of Alu RNA 
(FIGS. lOA and 108). 

Next the in vivo functional relevance of these pathways 
was tested in the context of DICER! loss in vivo. Caspase-1 
cleavage was increased in the RPE of BEST! Cre; Dicer]f

l
f 

mice (FIG. 9C), which lose DICER! expression in the RPE 
during development and exhibit RPE degeneration (Kaneko 
et al., 2011). Subretinal delivery of AAVl-BESTl-Cre in 
Dicer]flf mice induced Caspase-1 activation and IL-18 matu­
ration in the RPE (FIG. 9D). This treatment also induced 
RPE degeneration, which was blocked by intravitreous 
administration of the Caspase-1-inhibitory peptide but not 
the control peptide (FIG. 9E). AAVl-BESTl-Cre-induced 
RPE degeneration in Dicer]f

l
f mice was also blocked by 

intravitreous administration of the MyD88-inhibitory pep-
tide but not a control peptide (FIG. 9F). In addition, the 
MyD88-inhibitory peptide prevented cell death in human 
RPE cells treated with antisense oligonucleotides targeting 
DICER! (FIG. 9G). DICER! knockdown in human RPE 
cells increased phosphorylation of IRAKl/ 4, providing fur-
ther evidence of MyD88 activation upon loss of DICER! 
(FIG. 9H). The MyD88-inhibitory peptide also prevented 
cell death in Dicer]flf mouse RPE cells treated with an 
adenoviral vector coding for Cre recombinase (FIG. 91). 
MyD88 inhibition blocked RPE cell death without restoring 
the microRNA expression deficits induced by Dicer! knock­
down (FIG. 91). These findings demonstrate that DICER! is 
an essential endogenous negative regulator of NLRP3 
inflammasome activation, and that DICER! deficiency leads 
to Alu RNA-mediated, MyD88-dependent, microRNA-in-
dependent RPE degeneration. 

Inflammasome and MyD88 Activation in Human GA. 
Next, it was determined whether human eyes with GA, 

which exhibit loss of DICER! and accumulation of Alu 
RNA in their RPE (Kaneko et al., 2011), also display 
evidence of inflammasome activation. The abundance of 
NLRP3 mRNA in the RPE of human eyes with GA was 
markedly increased compared to control eyes (FIG. llA), as 
monitored by real-time RT-PCR. IL18 and ILlB mRNA 
abundance also was increased in GA RPE; however, only the 
disparity in ILi 8 levels reached statistical significance (FIG. 
llA). Immunolocalization studies showed that the expres­
sion ofNLRP3, PYCARD, and Caspase-1 proteins was also 
increased in GA RPE (FIGS. 118-D). Western blot analyses 
corroborated the increased abundance of NLRP3 and 
PYCARD in GA RPE, and revealed greatly increased levels 
of the enzymatically active cleaved Caspase-1 p20 subunit 
in GA RPE (FIG. llE). There was also an increase in the 

DICER! Loss Induces Cell Death Via Inflammasome. 55 abundance of phosphorylated IRAKl and IRAK4 in GA 
RPE, indicative of increased MyD88 signal transduction 
(FIG. llE). Collectively, these data provide evidence of 
NLRP3 inflammasome and MyD88 activation in situ in 
human GA, mirroring the functional data in human RPE cell 

It has been demonstrated that the key role of DICER! in 
maintaining RPE cell health (Kaneko et al., 2011): DICERl­
cleaved Alu RNA did not induce RPE degeneration in vivo; 
DICER! overexpression protected against Alu RNA-in­
duced RPE degeneration; and DICER! loss-induced RPE 
degeneration was blocked by antisense oligonucleotides 
targeting Alu RNA (Kaneko et al., 2011). Also, rescue of 
DICER! knockdown-induced RPE degeneration by Alu 
RNA inhibition was not accompanied by restoration of 
microRNA deficits (Kaneko et al., 2011). Therefore, it was 65 

tested whether DICER! also prevented NLRP3 inflam­
masome activation by Alu RNA. Alu RNA-induced Cas-

60 culture and mice in vivo. 

DISCUSSION 

The data presented herein establish a functional role for 
the subversion of innate immune sensing pathways by 
repetitive element transcripts in the pathogenesis of GA. 
Collectively, the findings demonstrate that the NLRP3 
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inflammasome senses GA-associated Alu RNA danger sig­
nals, contributes to RPE degeneration, and potentially vision 
loss in AMD. To date, the function of the NLRP3 inflam­
masome has been largely restricted to immune cells in vivo. 
The finding that it plays a critical function in RPE cell 5 

survival broadens the cellular scope of this inflammasome 
and raises the possibility that other non-immune cells could 
employ this platform. 

The NLRP3 inflammasome was originally recognized as 
a sensor of external danger signals such as microbial toxins 10 

(Karmeganti et al., 2006; Mariathasan et al., 2004; Mari­
athasan et al., 2006; Muruve et al., 2008). Subsequently, 
endogenous crystals, polypeptides, and lipids were reported 
to activate it in diseases such as gout, atherogenesis, 
Alzheimer disease, and Type 2 diabetes (Halle et al., 2008; 15 

Masters et al., 2010: Muruve et al, 2008; Vandanmagsar et 
al., 2011; Wen et al, 2011). To the Applicant's knowledge, 
Alu RNA is the first endogenous nucleic acid known to 
activate this immune platform. The findings disclosed herein 
expand the diversity of endogenous danger signals in 20 

chronic human diseases, and comport with the concept that 
this inflammasome is a sensor of metabolic danger (Schro­
der et al., 2010). 

Dampening inflammasome activation can be essential to 
limiting the inflanmiatory response. Pathogens have evolved 25 

many strategies to inhibit inflammasome activation (Mara­
nan et al., 2009). Likewise, host autophagy proteins (Naka­
hira et al., 2011; Saitoh et al., 2008), Type I interferon 
(Guarda et al., 2011), and T cell contact with macrophages 
can inhibit this process (Guarda et al., 2009). The finding 30 

that DICER!, through its cleavage of retrotransposon tran­
scripts, prevents activation of the NLRP3 inflammasome 
adds to the repertoire of host inflanmiasome modulation 
capabilities and reveal a new facet of how dysregulation of 
homeostatic anti-inflammatory mechanisms can promote 35 

AMD (Ambati et al., 2003; Takeda et al., 2009). 
Added to its recently described anti-apoptotic and tumor­

related functions, DICER! emerges as a multifaceted pro­
tein. It remains to be determined how this functional versa­
tility is channeled in various states. As DICER! 40 

dysregulation is increasingly recognized in several human 
diseases, it is reasonable to imagine that Alu RNA might be 
an inflanmiasome activating danger signal in those condi­
tions too. It is also interesting that, at least in adult mice and 
in a variety of mouse and human cells, the microRNA 45 

biogenesis function of DICER! is not critical for cell 
survival, at least in a MyD88-deficient environment (data 
not shown). 

Although DICER! levels are important in maintaining 
RPE cell health by metabolizing Alu RNA, other nucleases 50 

also may regulate Alu RNA. For example, Alu is a ret­
rotransposon that can form RNA-DNA replication interme­
diates, which would be substrates for RNase H. Indeed, 
RNase H inhibits retrotransposition (Ma and Crouch, 1996), 
and human enzymes such as LINE-I (Dhellin et al., 1997; 55 

McClure, 1991) contain an RNase H domain. The Argo­
naute-related PIWI family ofnucleases (Parker et al., 2004) 
also contain an RNase H domain, though it is not known 
whether the human homolog HIWI degrades retrotranspo­
son intermediates. Other enzymes such as the PIWI-related 60 

MIWI in mice also directly cleave retrotransposon RNA 
(Reuter et al., 2011 ). Thus, it is likely that DICER! is one of 
several mechanisms by which cells regulate retrotransposon 
expression. 

24 

that IL-18 is more important than IL-1 � in mediating RPE 

cell death in GA (similar to selective IL-18 involvement in 

a colitis model (Zaki et al., 2010)), pointing to the existence 
of as yet unknown regulatory mechanisms by which inflam­
masome activation bifurcates at the level of or just preceding 
the interleukin effectors. Although Caspase-1 inhibition 
could be an attractive local therapeutic strategy, caspase 
inhibitors can promote alternative cell death pathways, pos­
sibly limiting their utility (Vandenabeele et al., 2006). 

MyD88 is best known for transducing TLR signaling 
initiated by pathogen associated molecular patterns (O'Neill 
and Bowie, 2007), although recently it has been implicated 
in human cancers (Ngo et al., 2011; Puente et al., 2011; 
Rakoff-Nahoum and Medzhitov, 2007). The findings intro­
duce an unexpected new function for MyD88 in effecting 
death signals from mobile element transcripts that can lead 
to retinal degeneration and blindness, and raise the possi­
bility that MyD88 could be a central integrator of signals 
from other non-NLRP3 inflammasomes that also employ 
Caspase-1 (Schroder and Tschopp, 2010). Since non-canoni­
cal activation of MyD88 is a critical checkpoint in RPE 
degeneration in GA (FIG. 12), it represents an enticing 
therapeutic target. A potential concern is its important anti­
microbial function in mice (O'Neill and Bowie, 2007). 
However, in contrast to Myd88_1_ mice, adult humans with
MyD88 deficiency are described to be generally healthy and 
resistant to a wide variety of microbial pathogens (von 
Bernuth et al., 2008). MyD88-deficient humans have a 
narrow susceptibility range to pyogenic bacterial infections, 
and that too only in early childhood and not adult life (Picard 
et al., 2010). Moreover, as evident from the siRNA and 
Myd88 studies, partial inhibition of MyD88 is sufficient to 
protect against Alu RNA. Localized intraocular therapy, the 
current standard of care in most retinal diseases, would 
further limit the likelihood of adverse infectious outcomes. 
It is reasonable to foresee development ofMyD88 inhibitors 
for prevention or treatment of GA. 

Example 2 

It has been have shown that Alu RNA induces RPE 
degeneration via MyD88 signaling, and that Alu RNA 
increases phosphorylation of IRAKl and IRAK4, kinases 
downstream of MyD88. To determine whether IRAKl/ 
IRAK4 phosphorylation is critical to Alu RNA-induced RPE 
degeneration, N-(2-Morpholinylethyl)-2-(3-nitrobenzoy-
lamido )-benzimidazole, an IRAK/4 inhibitor, was tested. 
Indeed it was found that this IRAK/4 inhibitor blocked Alu 
RNA-induced RPE degeneration in wild-type mice in a 
dose-dependent manner (FIG. 13). With reference to FIG. 
13, Alu RNA was injected subretinally in wild-type mice to 
induce RPE degeneration. Compared to vehicle administra­
tion, intravitreous administration of an inhibitor ofIRAKl/4 
reduced the RPE degeneration induced by Alu RNA in a 
dose-dependent fashion (1.5-15 µg). With reference to FIG. 
14, exposure of human RPE cells to an inhibitor ofIRAKl/4 
rescued the cell death induced by transfection of pAlu. With 
reference to FIG. 15, exposure of human RPE cells to an 
inhibitor of IRAKl/4 rescued the cell death induced by 
transfection of Alu RNA. 

As noted herein, methods disclosed in the present appli­
cation can be useful for treating all forms of macular 
degeneration, including the wet form of macular degenera­
tion (e.g., angiogenesis/blood vessel growth). By way of 

Current clinical programs targeting the inflammasome 
largely focus on IL-1�; presently there are no IL-18 inhibi­
tors in registered clinical trials. However, the data indicate 

65 specific example, a MyD88 inhibitor can be used to treat 
various forms of macular degeneration, and is specifically 
contemplated for inhibition of choroidal neovascularization. 
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Relevant data are set forth in FIGS. 16-19. FIG. 16 is a bar 

graph showing that MyDss-1- mice have reduced laser­

induced choroidal neovascularization as compared to wild­
type mice. FIG. 17 is a bar graph showing that intravitreous 
injection of a peptide MyD88 inhibitor reduced laser-in- 5 

duced choroidal neovascularization in wild-type mice com­
pared to a control peptide inhibitor. FIG. 18 is a bar graph 
showing that intravitreous injection of an siRNA targeting 
MyD88 (2 µg) reduced laser-induced choroidal neovascu­
larization in wild-type mice at least as well as a neutralizing 10 

anti-mouse VEGF antibody, compared to a control sirRNA. 
FIG. 19 is a bar graph showing that intravitreous injection of 
an inhibitor of IRAKl/4 reduced laser-induced choroidal 
neovascularization in wild-type mice compared to vehicle. 

Tbroughout this document, various references are men- 15 

tioned. All such references are incorporated herein by ref­
erence, including the references set forth in the following 
list: 
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Polarized vascular endothelial growth factor secretion by 

human retinal pigment epithelium and localization of 

vascular endothelial growth factor receptors on the inner 

choriocapillaris. Evidence for a trophic paracrine relation. 

Am J Pathol 155, 421-428. 

Bogdanovich, S., McNally, E. M., and Khurana, T. S. 

(2008). Myostatin blockade improves function but not 

histopathology in a murine model of limb-girdle muscular 

dystrophy 2C. Muscle Nerve 37, 308-316. 

Cao, Z., Henzel, W. J., and Gao, X. (1996). IRAK: a kinase 

associated with the interleukin-I receptor. Science 271, 

1128-1131. 

Chandrasekar, B., Vemula, K., Surabhi, R. M., Li-Weber, 

M., Owen-Schaub, L. B., Jensen, L. E., and Mummidi, S. 

(2004). Activation of intrinsic and extrinsic proapoptotic 

signaling pathways in interleukin-18-mediated human 

cardiac endothelial cell death. J Biol Chem 279, 20221-

20233. 
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What is claimed is:
1. A method of treating dry macular degeneration, com­

prising: 
(a) identifying a subject in need of treatment for dry 

macular degeneration; and
(b) administering a composition to the subject the com­

position binding with MyD88 in an retinal pigmented
epithelium (RPE) cell of the subject to inhibit the
MyD88; with IL-18 in an RPE cell of the subject to
inhibit the IL-18; or with NLRP3 inflammasome, or
Caspase-1 in an RPE cell of the subject to inhibit the
inflannnasome.

2. The method of claim 1, wherein the composition
comprises MyD88 siRNA. 

* * * * *
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