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Abstract 

 

 

 

ABSTRACT OF DISSERTATION 

 

EFFECTS OF CORE AND SHELL MODIFICATION TO TETHERED 

NANOASSEMBLIES ON SIRNA THERAPY 

 

siRNA therapy is an emerging technique that reduces protein expression in cells by 

degrading their mRNAs via the RNA interference pathway (RNAi). Diseases such as 

cancer often proliferate due to increased protein expression and siRNA therapy offers a 

new method of treatment for those diseases. Although siRNA therapy has shown success 

in vitro, it often fails in vivo due to instability in the blood stream. To overcome this 

limitation, delivery vehicles are necessary for successful transfection of siRNA into target 

cells and cationic polymers have been widely studied for this purpose. However, 

complexes between siRNA and delivery vehicles made from cationic polymers exhibit 

stability issues in the blood stream which results in toxicity and low transfection. This 

work hypothesizes that improvement of vehicle/siRNA complex stability will improve 

siRNA transfection efficiency. To test this, the contributions and outcomes of 

poly(ethylene glycol) [PEG] shell and hydrophobic core modification to a 

polyethylenimine (PEI) based tethered nanoassemblies (TNAs) were examined. Initially, 

hydrophobic modification of palmitate (PAL) to the core of the TNA yielded improved 

transfection efficiency due to an enhanced endosomal escape capability. However, this 

modification also reduced the TNA/siRNA complex stability. This indicated that the core 

hydrophobicity must be balanced in order increase stability while increasing transfection 

efficiency. Additionally, TNAs made from PEG and PEI did not cause transfection in our 

initial study. The PEG shell density was found to be too great and thereby reduced 

transfection efficiency. Reducing the PEG density by lowering PEG molecular weight, 

reducing attachment percentage, and removing small PEI impurities from the synthesis 

stock increased overall transfection efficiency and unimolecularity of the TNA 

complexes. This indicated that the shell composition of the TNA must be tuned in order 

to improve particle design. Further study of the hydrophobically modification to TNAs 

yielded unintended effects on the transfection efficiency evaluation assay. These particles 

exhibited an siRNA independent reduction in the reporter protein used to observe 

transfection, or a false positive effect, that was not previously observed. It was found that 

this false positive was influence mainly by the hydrophobic group rather than the cationic 

polymer backbone. Cellular stress was observed in cells dosed with the hydrophobically 



 

modified TNAs which lead to over ubiquitination and rapid degradation of the luciferase 

protein. This demonstrated that core components of TNAs could cause cellular stress and 

influence interaction outside of the TNA. Overall, this work demonstrates that 

hydrophobic core and PEG shell modification require balancing and consideration to 

improve properties of future cationic polymer based siRNA delivery vehicle design.  

 

 

Keywords: Tethered nanoassemblies, siRNA therapy, gene delivery, cationic polymer, 

chemical modification, transfection  

  

Steven Rheiner 

Date 

7/13/17 



 

 
Approval Page 

 

 

 

 

 

EFFECTS OF CORE AND SHELL MODIFICATION TO TETHERED 

NANOASSEMBLIES ON SIRNA THERAPY 

 

 

By 

Steven Neil Rheiner 

 

 

 

 

 

 

 

 

 

 

  

Director of Dissertation 

Director of Graduate Studies 

Dr. Younsoo Bae 

Dr. David Feola 

7/13/17 

Date 



 

Dedication 

To my wife and family, without your love and support I would not have been able to 

accomplish this. 



iii 
 

 
Acknowledgments 

ACKNOWLEDGMENTS 

Firstly, I would to thank my thesis advisor, Dr. Younsoo Bae, whose support and 

guidance has been instrumental to my success in my PhD training. I would like to thank 

Dr. Bae for the opportunity to learn from him and his lab in order to forge a path of my 

own in such an interesting research field. I sincerely appreciate Dr. Bae’s mentoring and 

invaluable advice throughout my research. 

Secondly, I would also like to thank my committee members, Dr. Patrick McNamara, 

Dr. Daniel Pack, and Dr. Edith Glazer, for their guidance through my research, qualifying 

exam, and defense. Their advice and help throughout my graduate studies has been 

invaluable to my development as a scientist and furthering my research.  

 Further, I would like to thank the Cancer Nanotechnology Training Center 

(CNTC) of the University of Kentucky for the opportunity to participate in such a 

wonderful program. The CNTC granted me the opportunity to gain insight into my 

research project from a diverse group in a collaborative setting. This knowledge and 

opportunity was valuable to my research and scientific career. Special thanks to Dr. Piotr 

Rychahou, Dr. Brad Anderson, and Dr. Robert Yokel for their insight into my research 

project and Tonya Vance for her help throughout the traineeship.  

 I would also like to thank all current and past lab members of the Bae laboratory 

that have shared their experience and knowledge to assist with research and growth as a 

scientist. Their advice has proven invaluable to my scientific development. I would like 

to extend special thanks to Derek Reichel whose critical analysis of my writing and 



iv 
 

experimentation has been a valuable source of improvement. Additionally, I would like to 

thank all past lab members, Dr. Andrei Ponta, Dr. Pengxiu Cao, Dr. Geunwoo Jin, Dr. 

Matthew Dickerson, and Amber Jerke, for their assistance and support. 

I would like to acknowledge and give thanks to all other faculty and staff members 

throughout my graduate career, especially graduate coordinator Catina Rossoll and 

director of graduate studies Dr. Jim Pauly at the College of Pharmacy at University of 

Kentucky. They have given me guidance and advice throughout my graduate career that 

has helped keep me on track even in difficult times.   

I would like to thank and show appreciation to my family. My wife, Faith Rheiner, 

has always been by myside to help me through all the ups and downs my graduate career 

has brought about. Her love and support has been crucial to my success. I would like to 

thank my parents Richard and Cathryn Rheiner, sister Rebecca Rheiner, aunt and uncle 

Dr. Mike Cotta and Patti Cotta, and all my other family members that have shown me 

love and support my entire life. They have provided a strong support system that I needed 

in order to be successful. I would also like to thank my friends, Greg Laver, Liam Flavin, 

Danny Jasinski, Dan Binzel, Rob Wensing, Kevin Chen, Matt McErlean, and Ryan 

Hughes, as well as many others who have also provided an invaluable support system and 

advice throughout the years.  

Finally, I would also like to give special thanks to Richard Rheiner, Dr. Mike Cotta, 

and Dr. Matthew Wheeler. They have helped to foster and guide my interest in science as 

well as provide wisdom in difficult times during my education. Their advice has guided 

many of my decisions and helped me to realize my dreams. 



v 

 

 

Table of Contents 

Acknowledgments.............................................................................................................. iii 

List of Figures ..................................................................................................................... x 

List of Tables .................................................................................................................... xii 

1. Chapter 1: Tethered Nanoassemblies for siRNA Therapy .......................................... 1 

1.1. Genetic Disease Treatment and siRNA Therapy ................................................. 1 

1.2. Tethered Nanoassembly (TNA) as siRNA Delivery Vehicles ............................. 5 

1.3. Chemical Modifications to Improve siRNA Therapy Efficacy ........................... 7 

2. Chapter 2: Effects of Hydrophobic Core Modification on TNA stability and siRNA 

transfection ........................................................................................................................ 12 

2.1. Introduction ........................................................................................................ 13 

2.2. Materials and Methods ....................................................................................... 18 

2.2.1. Materials and Cells ............................................................................................. 18 

2.2.2. Synthesis of stabilized TNAs ............................................................................ 18 

2.2.3. Characterization of stabilized TNAs ................................................................ 19 

2.2.4. Analysis of TNAs and siRNA Interactions ..................................................... 20 

2.2.5. In vitro transfection efficiency of TNAs.......................................................... 21 

2.2.6. Toxicity of TNAs in vitro .................................................................................. 22 

2.2.7. In vitro intracellular uptake and trafficking of fluorescent siRNA in TNAs .. 

  ............................................................................................................................... 22 



vi 

 

2.3. Results ................................................................................................................ 24 

2.3.1. The hydrophobicity of the TNA core reduces interactions between siRNA 

and TNA  ............................................................................................................................... 24 

2.3.2. Increased hydrophobicity of the TNA core increases TNA transfection 

efficiency .............................................................................................................................. 30 

2.3.3. Hydrophobic modification of nanoassembly core increases intracellular 

siRNA delivery and endosomal escape ............................................................................ 33 

2.3.4. Combined dosage of hydrophobic modified and unmodified TNA 

decreases colocalization of siRNA in endosomes .......................................................... 38 

2.3.5. Modulating the hydrophobic substitution of TNA core increases 

transfection efficiency while decreasing siRNA/particle interactions ......................... 38 

2.4. Discussion .......................................................................................................... 41 

2.5. Conclusions ........................................................................................................ 45 

3. Chapter 3: Effects of TNA shell modification on siRNA transfection ..................... 46 

3.1. Introduction ........................................................................................................ 47 

3.2. Materials and Methods ....................................................................................... 51 

3.2.1. Materials and Cells ............................................................................................. 51 

3.2.2. Synthesis of TNAs of varying PEG substitutions and PEI backbones ........ 51 

3.2.3. Quantification of size and surface charge of TNAs and complexes ............ 52 

3.2.4. Complex formation of TNAs with siRNA ...................................................... 52 

3.2.5. In vitro transfection efficiency and toxicity of TNAs .................................... 53 



vii 

 

3.3. Results ................................................................................................................ 54 

3.3.1.       Increasing PEG corona density increases particle size and decreases surface 

charge ...  ..................................................................................................................... 54 

3.3.2. Increased polymer homogeneity of TNAs increases particle size and 

decrease number of polymer chains used in complexation ........................................... 57 

3.3.3. Increased PEG corona density increases particle/siRNA complexation ratio 

  ............................................................................................................................... 59 

3.3.4. PEG corona density decreases siRNA transfection efficiency ..................... 62 

3.3.5. Increased polymer homogeneity decreases necessary complexation ratio to 

achieve maximum siRNA transfection............................................................................. 64 

3.4. Discussion .......................................................................................................... 66 

3.5. Conclusions ........................................................................................................ 70 

4. Chapter 4: Hydrophobic Modifications to TNAs and Non-Specific Reduction of 

Reporter Protein Concentrations. ...................................................................................... 71 

4.1. Introduction ........................................................................................................ 72 

4.2. Materials and Methods ....................................................................................... 76 

4.2.1. Materials and Cells ............................................................................................. 76 

4.2.2. Synthesis of TNAs with different backbones and hydrophobic moieties ... 77 

4.2.3. Determination of minimum complexation ratios of TNAs and siRNA ....... 78 

4.2.4. In vitro transfection and toxicity efficiency of TNAs .................................... 78 

4.2.5. Analysis of Luciferase Protein Expression Levels in vitro ........................... 80 



viii 

 

4.2.6. Activity of luciferase protein after pre-incubation with TNAs ..................... 81 

4.2.7. Observed interactions of TNAs and components with siRNA through 

Raman spectroscopy ........................................................................................................... 81 

4.3. Results ................................................................................................................ 82 

4.3.1. Hydrophobic moiety in the TNA core has greater influence on luciferase 

expression reduction than TNA condensation ................................................................. 82 

4.3.2. Luciferase activity is unaffected by TNA interactions with either luciferase 

or luciferin ............................................................................................................................ 87 

4.3.3. Raman spectroscopy indicates that hydrophobic moieties contribute to 

TNA’s interaction with siRNA .......................................................................................... 89 

4.3.4. Hydrophobically modified TNAs reduce protein expression, membrane 

integrity, and ATP concentration but retained mitochondrial activity ......................... 92 

4.3.5. TNAs increased ubiquitination and degradation of luciferase ...................... 94 

4.4. Discussion .......................................................................................................... 96 

4.5. Conclusions ...................................................................................................... 102 

4.6. Limitations of Observations ............................................................................. 102 

5. Chapter 5: Conclusions............................................................................................ 104 

5.1. Core components of TNAs influence siRNA/TNA complex stability and 

transfection efficiency ................................................................................................. 105 

5.2. PEG shell density effects transfection efficiency and complex stability ......... 106 

5.3. Future Directions .............................................................................................. 107 



ix 

 

6. Supplemental Figures .............................................................................................. 109 

7. References ............................................................................................................... 115 

8. Vita .......................................................................................................................... 131 

 

  



x 

 

List of Figures 

List of Figures 

Figure 1.1: RNA Interference Pathway .............................................................................. 4 

Figure 2.1. Synthesis of tethered nanoassemblies (TNAs) for siRNA delivery. .............. 17 

Figure 2.2. Characterization of TNAs............................................................................... 27 

Figure 2.3. Complex formation and stability of TNAs. .................................................... 29 

Figure 2.4. Transfection efficiency and toxicity of TNAs. ............................................... 32 

Figure 2.5. Fluorescent microscopy. ................................................................................. 35 

Figure 2.6. Elucidation of siRNA transfection mechanisms for TNAs. ........................... 36 

Figure 2.7. Intracellular distributions of siRNA-loaded TNAs. ....................................... 37 

Figure 2.8. Complex formation and siRNA transfection of TNAs with varying PAL 

contents in the core. .......................................................................................................... 40 

Figure 3.1. PEG density analysis. ..................................................................................... 50 

Figure 3.2. Gel permeation chromatograms of PEG-PEI particles. .................................. 56 

Figure 3.3 Gel permeation chromatography of PEG-PEI-d particles. .............................. 58 

Figure 3.4. siRNA complexation of PEG-PEI particles. .................................................. 60 

Figure 3.5. siRNA complexation of PEG-PEI-d particles. ............................................... 61 

Figure 3.6. Effect of PEG density on transfection efficacy of siRNA/PEG-PEI complexes.

........................................................................................................................................... 63 

Figure 3.7. Effect of PEG density on transfection efficacy of siRNA/PEG-PEI-d 

Complexes......................................................................................................................... 65 



xi 

 

Figure 4.1: TNA Scheme .................................................................................................. 75 

Figure 4.2: Characterization of TNAs .............................................................................. 84 

Figure 4.3: TNA in vitro Luciferase Reduction ................................................................ 85 

Figure 4.4: PLL Based TNA in vitro Luciferase Reduction ............................................. 86 

Figure 4.5: Direct TNA/Protein and TNA/Substrate Interactions .................................... 88 

Figure 4.6: Raman Spectroscopy of TNAs and Their Components ................................. 91 

Figure 4.7: Alternative Cell Health Markers After Incubation with 3P ........................... 93 

Figure 4.8: TNA Induced Ubiquitination of Luciferase ................................................... 95 

Figure S1: Characterization of 2PD TNA ....................................................................... 110 

Figure S2: Raman spectra of siRNA ............................................................................... 111 

Figure S3: Raman spectra comparison of multiple PEG samples .................................. 112 

Figure S4: Normalized Raman spectra comparison of multiple PEG samples .............. 113 

Figure S5: Multiple Raman spectra comparison of single PEG sample ......................... 114 

 

 

  



xii 

 

List of Tables 

List of Tables 

Table 2.1. Particle diameter, polydispersity index (PDI), and zeta potential of 2P and 3P 

particles ............................................................................................................................. 28 

Table 3.1. Characterization of PEG-PEI and PEG-PEI-d Library .................................... 55 

 

 



1 

 

 

1. Chapter 1: Tethered Nanoassemblies for siRNA Therapy
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1.1. Genetic Disease Treatment and siRNA Therapy 

Genetic diseases, such as cancer, are caused by damaged cells with abnormal protein 

expressions that allows these cells to grow rapidly and without checks1-2. Current small 

molecule therapies to target these diseases only target a small subset of proteins involved 

in their proliferation. Currently, small molecule drugs cannot target many of these 

abnormally expressed proteins. Instead, the drugs target proteins and pathways that are 

not necessarily specific to the proteins involved in the disease which can kill both healthy 

and diseased cells3-4. A more specific and tailored therapy would involve targeting the 

specific proteins known to cause the disease. Nucleic acids that alter the expression of 

specific proteins, known as gene therapy, has been widely studied since its discovery 

nearly 40 years ago5.   

Gene therapy has the potential to upregulate or downregulate protein expression in 

diseased cells. Gene therapy can upregulate specific protein expression in diseased cells 

by introducing exogenous DNA containing the code for the targeted protein6-7. This DNA 

will be translated and replicated in the nucleus just as other genes providing multiple 

copies of the targeted protein8. Though many genetic diseases can benefit from an 

increase in protein expression, it is often a long-term or permanent solution that may not 

be desirable. To achieve the desired effect in cells, DNA is either delivered via plasmid 

or injected in to the genome. Though plasmid activity can be long term but not 

permanent, gene insertion is permanent and if not inserted correctly will cause genetic 

damage leading to more cell issues9. Conversely, Gene therapy achieves protein 

downregulation using a less permanent method which is inherently safer10-11. Introducing 
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a short length of RNA complimentary to an endogenous mRNA or DNA that is 

complimentary to an endogenous DNA gene sequence, referred to as “antisense” 

nucleotides, will form pairs with the endogenous genetic material to prevent their 

transcription or translation. This is a reversible process that will inhibit specific protein 

production, called antisense therapy12. Currently, antisense therapy is widely studied due 

to its increased safety compared to protein upregulation methods. 

Antisense therapy uses two mechanisms to reduce protein expression: physically 

blocking translation and transcription or inducing degradation of complimentary mRNA. 

Initially, it was discovered that complimentary RNA and DNA could physically block 

translation and transcription by tightly binding to regions that produce the targeted 

protein13. Complimentary DNA was found to prevent translation but it was a reversible 

process which shortened the time of the antisense effect. Further investigation in to 

complimentary RNA discovered that it could promote cleavage of the mRNA by RNases 

in the cell14. This improved upon physically blocking mRNA translation by degrading the 

mRNA and improving the therapy. In 1994, an endogenous pathway was discovered that 

could promote mRNA degradation using specific lengths of double stranded RNA, called 

the RNA interference pathway (RNAi)15-16 (Figure 1.1).  

RNAi is an endogenous pathway that uses 21-25 base pairs of small interfering RNA 

(siRNA) complimentary to a portion of the mRNA of a targeted protein17. Once siRNA 

enters the cytoplasm of the cell, a dicer complex takes up the siRNA to load it in to the 

RNA induced silencing complex (RISC). RISC then unwinds and removes one strand of 

the siRNA while keeping the other as a guide strand. The siRNA loaded RISC screens 

mRNA present in the cytoplasm until it reaches a region complimentary to the siRNA 
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guide strand. RISC’s RNase activity then cleaves the mRNA. RISC may then release the 

siRNA guide strand to pick up another piece of siRNA or reclaim the previous guide 

strand to seek out more mRNA. This effect is continuous until the siRNA is degraded 

within the cell18.  

The concept of RNAi has been proven in vitro using multiple diseased cell lines and 

many different protein targets19-22 but very little siRNA has succeeded in in vivo testing. 

At the in vivo level, siRNA is introduced to clearance mechanisms, blood proteins, and 

immune responses that quickly degrade and remove naked siRNA from the blood stream. 

RNases present in blood serum will rapidly degrade siRNA generating a short half-life 

ranging from 5 minutes to 1 hour23-24.  Additionally, siRNA is cleared due to its small 

size overcome these issues, further reducing its half-life in the blood stream. This short 

half-life is a large problem for siRNA circulation which prevents it from reaching its 

active site and hinders its clinical potential25. To improve the efficacy of siRNA, current 

studies are focused on increasing stability of siRNA in the bloodstream by different 

means. 
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Figure 1.1: RNA Interference Pathway 

mRNA degradation pathway induced by small interfering RNA (siRNA) in the cell 

involving the RNA induced silencing complex (RISC)  
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1.2. Tethered Nanoassembly (TNA) as siRNA Delivery Vehicles 

As mentioned in the previous section, siRNA is in need of a means to improve its 

stability in the blood stream. Many methods have been investigated to increase siRNAs 

stability, including chemical modification of siRNA26-28, but research in to siRNA 

delivery vehicles has been at the forefront of this field. siRNA delivery vehicles are 

designed to protect siRNA by encapsulating them which prevents RNase degradation. 

Further, these vehicles should also help usher the siRNA to the location of the targeted 

cells and in to their cytoplasm, either through endosomal escape or another uptake 

method29. These factors will allow delivery vehicles to enhance siRNA therapy.  

Initially viral delivery systems were developed as gene therapy delivery vehicles for 

both DNA and siRNA30-31. Viral delivery vehicles are viruses, such as retroviruses or 

adeno-associated viruses, that have part of their genetic code altered to prevent 

replication and include a copy of the targeted gene32. The viral vectors will inject genetic 

material in to the cell using the viral mechanism. These can be used in siRNA therapy by 

employing small hairpin RNA (shRNA) which will be replicated inside the cell to 

consistently produce the desired siRNAs33. However, viral delivery presents safety issues 

including risk of the virus replicating or random insertion of genetic material into the 

cellular genome which can interfere with normal cellular processes34-35. These safety 

issues have led to increased research in to non-viral delivery systems.   

Non-viral delivery systems include a wide range of vectors including polymer and 

lipid based systems36-38. Lipid based systems, such as liposomes39-40 and lipid 

nanoparticles41-42, have been investigated for siRNA delivery as they were already a well-

studied system for drug delivery. These lipid based vehicles usually include lipids 
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modified with cationic head groups in order to form an ionic complex with the siRNA43. 

The cationic charge density of the lipid vehicle can be tuned by including non-cationic 

lipids along with the cationic lipids44. However, these vehicles often have lower 

efficiency when forming complexes compared to cationic polymers. Cationic polymers 

are synthetic and natural based polymers, such as poly-l-lysine (PLL)45 and 

polyethylenimine (PEI)46-47, that have a high cationic charge density48. Again, these 

polymers form ionic complexes with siRNA and offer base for modification to tune the 

vehicle for desired delivery characteristics. 

Although both lipid and polymer based systems have value to deliver siRNA, this 

work focuses on cationic polymer based delivery vehicles because of their intrinsic 

properties which offer advantages to siRNA delivery. These properties include: high 

cationic charge density49, endosomal escape capability50, ease of modification51, and 

control of particle size52. Cationic polymers include repeating units containing primary, 

secondary, and sometimes tertiary amines. The pKas of these amines determine that they 

are usually protonated at physiological pH which increases binding of siRNA to the 

polymer. Some polyamine compounds, including PEI53, have multiple pKas for their 

amines due to their close proximity to other amines leading to a unique endosomal escape 

ability called the proton sponge effect54-55. The proton sponge effect occurs when the 

polymer/siRNA complex enters the endosome. As the endosome decreases its pH to 

become a lysosome, the polymer increases the protonation of its amines. This removes 

hydrogens from the inside of the endosome, forcing the endosome pump in more ions and 

swell in order to lower its pH. Eventually, the endosome will burst and release the vehicle 

to the cytoplasm of the cell. This creates one mechanism of endosomal escape for these 
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polymers. Additionally, the cationic groups can interact with membranes which causes 

disruption and frees the polymer/siRNA complex56-57. These cationic groups also offer 

sites for modification of the polymer by relatively simple chemistry, such as n-

hydoxysuccinimide (NHS) coupling58-59. This can tune the vehicle for its intended 

purpose. Further tuning can be done by altering the chain length of the polymer to change 

the size of the polymer/siRNA complexes. Size of the complex is important to avoid 

immune response (diameter > 100 nm)60 and renal clearance (diameter < 15 nm)61.   

Based on these advantages, this work uses a model cationic polymer based delivery 

system called a tethered nanoassembly (TNA). TNAs are a delivery vehicle consisting of 

the cationic backbone, such as PEI or PLL, which poly(ethylene glycol) [PEG] and other 

chemical modifications which are chemically linked, or “tethered”.  TNAs were designed 

to help elucidate the contribution of polymer/siRNA complex stability to transfection 

efficiency and overall efficacy of siRNA delivery. While increased stability can be 

achieved through modification, discussed further in section 1.3, the inherent design of the 

vehicle also contributes to complex stability. A long chain cationic polymer was used as a 

backbone so that a single polymer can form complexes with siRNA rather than multiple 

polymers, which is common for these delivery vehicles. The resulting unimolecular 

system can increase the uniformity of the vehicles and siRNA entrapment, thereby 

increasing complex stability.  

1.3. Chemical Modifications to Improve siRNA Therapy Efficacy 

Cationic polymer based delivery vehicles are widely studied because of their 

advantageous properties for delivering siRNA but these vehicles have difficulty 

achieving success in in vivo models. This is often due to a lack of siRNA/vehicle 
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complex stability that can result in increased toxicity, low siRNA uptake in to the cell, 

and increased siRNA clearance62-63. Poor complex stability results in polymers breaking 

free from the complex which will increase non-specific interaction and toxicity, both in 

the blood stream64 and inside the cell65. As more polymers break free, the siRNA is less 

protected from degradation and doesn’t reach its target site. This indicates that complex 

stability is crucial to delivery vehicle efficacy. In order to overcome these issues, research 

has been focused on modification of the polymers making up the delivery vehicle to 

improve complex stability and efficacy.  

Chemical modification to siRNA delivery vehicles can alter physical and chemical 

properties of the complex in order to improve its stability and efficacy66-67. When 

considering chemical modifications, two properties play a key role: cationic surface 

charge68 and secondary structure formation69. Increased cationic surface charge can cause 

both toxicity and accelerated blood clearance due to non-specific interactions with 

cellular membranes and blood proteins70-72, respectively. Therefore, reducing the surface 

charge will benefit the overall efficacy of the complex. Surface charge reduction is often 

done by covalent modification of PEG to the vehicle, or pegylation. Additionally, 

increasing the types of forces, i.e. ionic interaction or hydrophobic interaction, used by a 

vehicle to form its secondary structure can increase stability of the siRNA/vehicle 

complex and reduce the amount of free polymer in formulation73-74. This reduces toxicity 

and improves delivery of siRNA to its target site75-77. There are multiple ways to increase 

secondary structure formation78-79, however inclusion of hydrophobic moieties80-81 on 

cationic polymers is common. Based on this, this work focuses on pegylation and 

hydrophobic modification of cationic polymer delivery vehicles.   
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Pegylation siRNA/vehicle complexes can enhance complex stability by reducing 

surface charge and preventing off-target effects. Modification of vehicles with PEG 

produces a field of PEG around the outside of the vehicle, also known as a PEG shell82. 

This PEG shell has been shown to reduce surface charge by hiding the charged moieties 

toward the center of the vehicle, or core83. This gives the vehicle what has been referred 

to as “stealth” properties including reduced ionic interaction with blood proteins and 

cellular membranes, reduced opsinization of the vehicle and removal by the immune 

system, and avoiding renal clearance by increasing vehicle diameter84. It should be noted 

that reduced cellular membrane interaction reduces toxicity caused by membrane 

disruption, the main mechanism of toxicity for cationic polymers, but it is also required to 

activate endocytosis85-87, which is a main mechanism of cellular uptake for cationic 

polymer delivery vehicles. Additionally, pegylation can also benefit secondary structure 

formation by pushing the polymer towards a core/shell structure73. These actions of 

pegylation have proven to benefit vehicles by increasing circulation time and vehicle 

stability which increases the efficacy of the vehicle88-89.   

Hydrophobic modification to cationic polymers can improve complex stability and 

enhance intracellular uptake by increasing the secondary structure formation80. 

Hydrophobic modification is the introduction of a hydrophobic group to the cationic 

polymer. These groups give the polymer a mechanism other than ionic forces to form a 

secondary structure with itself or other polymers90. This prevents unwanted release of 

polymer and siRNA from the complex. It has also been shown that genetic materials may 

use the hydrophobic groups in complex formation91-92, therefore increasing the binding 

efficiency of the polymer to siRNA and further stabilizing the siRNA/vehicle complex. 
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Hydrophobic modification also provides additional benefits such as increasing cellular 

membrane interactions93-94. Increasing membrane interactions can increase endocytosis 

by increasing activation of this pathway as well as increasing endosomal escape through 

interaction and disruption of the endosomal membrane.  

Understanding the effects of chemical modification on cationic polymers can often be 

difficult due to variance in properties of different cationic polymers. Modifications, such 

as with PEG and hydrophobic groups, can often have similar effects across polymers but 

it becomes difficult to attribute specifics effects to modifications. The TNA model system 

used in this work offers a uniform system to pinpoint effects from modifications. TNAs 

offer a backbone to which many different modifications can be tethered. The design of 

these particles allows for sequential modification and analysis where differences between 

TNAs can be attributed to specific modifications. These findings can likely translate to 

other cationic polymers. This system will bring more focus on the effects of chemical 

modification to cationic polymer delivery vehicles.  

Based on this background, this work hypothesizes that increasing the stability of the 

delivery vehicle through chemical modification will increase its siRNA transfection 

efficiency. In the subsequent studies, the contributions of hydrophobic core modification 

and pegylation of the shell on transfection efficiency and complex stability are elucidated 

using a model colon cancer cell line (HT29). This work will modify TNAs with 

hydrophobic moieties and PEG as a model system for these modifications in order to 

gather information that is relevant to both PEI based siRNA delivery vehicles as well as 

other cationic polymer based vehicles. This will increase our understanding of these 
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modifications in order to improve future particle design of both TNAs and other cationic 

polymer delivery vehicles. 
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2. Chapter 2: Effects of Hydrophobic Core Modification on TNA stability and 

siRNA transfection 
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This section was adapted with permission from work published by the author in 

AIMS Biophysics on July 30th, 201595.  I would like to extend a special acknowledgment 

to Dr. Piotr Rychahou who assisted with the cell line and transfection methods.  

2.1. Introduction 

As mentioned in the previous chapter, gene therapy using siRNA, siRNA therapy, has 

been investigated to treat different genetic diseases, including cancer96-97. Currently, 

siRNA therapy has shown great promise in treating undruggable proteins and pathways in 

an in vitro setting. However, siRNA’s shows poor stability, rapid degradation, and low 

circulation time in the bloodstream98-99. This makes progression from in vitro to in vivo 

evaluation difficult. In order for siRNA therapy to be viable in a clinical setting, the 

siRNA must be protected during delivery to its target site. Therefore, there has been a 

push to develop siRNA delivery carriers that overcome these hurdles.  

Though multiple types of carriers have been studied for delivery of siRNA98, 100, this 

work focuses on cationic polymer based delivery vehicles. Delivery vehicles typically 

form ionic complexes between the cationic portions of the vehicle and the anionic 

phosphate backbone of siRNA. In this regard, the poly-amine nature of cationic polymers 

enhances their abilities as delivery vehicles because of their high cationic charge density 

which improves ionic complexation with siRNA101-103. One such example of a cationic 

polymer is branched poly(ethylene imine) (bPEI)64. bPEI contains primary, secondary, 

and tertiary amines, which are protonated at physiological pH, that may be used in 

combination to complex with siRNA in a high efficiency104, resulting in bPEI offering a 

highly charged, nanosized delivery carrier for siRNA. Although PEI can be toxic to cells, 

bPEI is considered a safer alternative to linear PEI because it often shows comparatively 
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lower cytotoxicity105. However, issues of stability and off-target effects in the presence of 

negatively charged serum proteins and other anions in the bloodstream prevent 

bPEI/siRNA polyplexes from success in vivo74. 

Typically to increase the stability of the polyplexes, the ratio of polymer to siRNA is 

increased which introduces excess polymer in to the formulation. However, the polymers 

that fail to interact with the siRNA, or free polymers, are left separate from other 

polyplexes which often cause various adverse effects due to the increased availability of 

their cationic groups106.  Polymers that weakly interact with the complexed siRNA can 

dissociate from the polyplex in the presence of the competing anion. This can further 

reduce the stability of the polyplex and further dissociation until the siRNA is no longer 

protected107. Additionally, cationic polymers used in excess can also create a large 

positive surface charge detrimental to the polyplexes safety and stability108-109. High 

surface charge and free polymers are known to reduce the particle circulation time in 

vivo, cause cytotoxicity, decrease stability of the formulation, and fail to protect siRNA 

before delivery to target sites73, 110. These all culminate in a lack of transfection efficiency 

and stability of the siRNA formulation but modifications to the existing polymers could 

help to return the lost efficacy.  

Modification to both the core and shell of cationic polymer based delivery vehicles 

can address these unwanted aspects of formulation111. Excess cationic surface charge can 

be attenuated through pegylation, or covalent modification of the polymer with 

[poly(ethylene glycol): PEG]112. Pegylation creates a hydrophilic shell around the particle 

that shields and increases the circulation time of the polyplexes by reducing interactions 

with its environment and neutralizing its surface charge113. Free polymer in the 
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formulation can be decreased by increasing the attractive forces between the polymers in 

the polyplex core. Hydrophobic interaction has been shown to enhance particle stability 

by allowing the polymer chain to interact with itself as well as the siRNA114-116. Nucleic 

acid strands have shown to interact with hydrophobic groups once their anionic charge 

has been neutralized which would further stabilize the complex117. Additionally, if 

siRNA dissociates from the complex, the particle can stay together based on the 

hydrophobic interactions and prevent free polymer generation118. Alternatively, linking 

all free cationic polymer together, effectively forming a unimolecular system, will reduce 

free polymer in formulation because it would remove free polymer from the system all 

together. By modifying a single cationic polymer to covalently link with multiple other 

moieties including PEG and hydrophobic groups, a single polymer could form a complex 

with siRNA creating a unimolecular particle with no ability to dissociate its components 

from itself yet siRNA would be free to associate and disassociate. By reducing the free 

polymer and surface charge of the cationic polymer delivery vehicle, efficacy and 

stability should increase resulting in increased transfection efficiency. 

Based on this background, we hypothesized that siRNA transfection efficiency will 

improve by protecting siRNA in the core of a unimolecular cationic nanoassembly with 

improved complex stability. To test this, the work in this chapter set out to create 

polymer nanoassemblies stabilized with a lipophilic core and examine the effects of 

complex stability on transfection efficiency, toxicity, and intracellular siRNA delivery. 

Polymer nanoassemblies were synthesized by tethering hydrophilic polymer chains, PEG, 

onto a single polymer backbone (branched PEI: PEI) while modifying the core of the 

nanoassemblies with lipophilic pendant groups (palmitate: PAL). Figure 2.1 illustrates 
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two types of polymer tethered nanoassemblies (TNAs) used in this chapter, PEG-PEI 

(2P) and PEG-PEI-PAL (3P). 2P has cationic moieties in the core and thus attract siRNA 

to prepare polyionic complexes while 3P has a hydrophobic core modified with PAL to 

increase stability of the complexes through ionic and hydrophobic interactions between 

the core and siRNA payload. The PAL content in 3P was also modulated at varying ratios 

to prepare TNAs that behave between 2P and 3P. For this chapter, the siRNA-loaded 

TNAs were designed to reduce luciferase, an exogenous bioluminescent protein, 

expression level within a cell so that its efficacy in vitro could be examined through a 

facile method. 
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Figure 2.1. Synthesis of tethered nanoassemblies (TNAs) for siRNA delivery.  

TNAs were designed to form a unimolecular assembly entrapping siRNA in the core. The 

amount of PAL was controlled to modify lipophilicity of the core of TNAs. 
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2.2. Materials and Methods 

2.2.1. Materials and Cells 

PEG (5 kDa, α-methoxy-ω-NHS activated) was purchased from NanoCS (New York, 

NY). Branched PEI (bPEI) and palmitoyl chloride were purchased from Sigma Aldrich 

(St. Louis, MO). HEPES buffer (pH 8.0, 1 M), pyridine, NuSieve agarose gtg, dialysis 

membrane with molecular cut-off (MWCO) of 8 and 100 kDa, dylight-547, Lysotracker, 

and other organic solvents were purchased from Fisher Scientific (Waltham, MA). 

siRNA was synthesized with a sequence of 5’-GUUGGCACCAGCAGCGCACUU-3’, 

and a siGLO RISC-free control siRNA was purchased from GE Dharmacon (Lafayette, 

CO). A human colon cancer HT-29 cell line was purchased from American Type Culture 

Collection (ATCC, Manassas, VA). McCoy’s 5A, 0.05% trypsin/EDTA, and phosphate 

buffered saline (PBS) were from GE Healthcare (Logan, UT). Fetal bovine serum (FBS) 

was purchased from Atlanta Biologicals (Flowery Branch, GA). HT-29 cells were 

cultured in McCoy’s 5A media supplemented with 10% FBS according to all ATCC 

recommendations. Cells were maintained at logarithmic growth in a humidified 

environment with 5% CO2 at 37 °C. 

2.2.2. Synthesis of stabilized TNAs 

TNAs were synthesized from 25 kDa bPEI, 5 kDa NHS-PEG, and Palmitoyl chloride. 

Before use, bPEI was dialyzed using 100 kDa MWCO membrane against water for 1 day 

to remove small impurities. bPEI was reacted with 5 kDa PEG NHS ester, at a 1:100 

molar ratio, in a mixed solution of DMSO and HEPES (1:1) at room temperature. The 

reaction produced PEG-PEI (2P), which was purified by dialysis using a 100 kDa 
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MWCO membrane for 5 days in water, and collected by freeze drying. PEG-PEI was 

further reacted with palmitoyl chloride at 1:100, 1:50, and 1:30 molar ratios in THF at 40 

°C for 2 hours in the presence of pyridine as a scavenger of a hydrochloric acid byproduct 

to create PEG-PEI-PAL (3P), 3P mid, and 3P low respectively. The reaction solutions 

were precipitated in diethyl ether and subsequently dialyzed in water prior to freeze 

drying. 

2.2.3. Characterization of stabilized TNAs 

The purity and uniformity of TNAs were determined by gel permeation 

chromatography (GPC) (Asahipak GF-7M column, 2 mg/mL, PBS, 0.5 mL/min, 40 °C) 

Molecular weights were determined by comparing peak retention time to PEG standards. 

The diameter and surface charge of TNAs were determined by dynamic light scattering 

and zeta potential measurements (Zetasizer Nano, Malvern, UK). Particle solutions of 2 

mg/ml were loaded into disposable zeta cuvettes and read for particle size and then zeta 

potential in the usage. 

Extent of palmitoylation was examined by fluorescamine assay. Fluorescamine 

powder was dissolved in DMSO to 10 mg/ml. Particles were dissolved in a 50/50 mixture 

of DMSO/water to a concentration of 1 mg/ml. 100 μL of each particle solution and 

blank DMSO/water was added to a clear 96 well plate and then 10 μL of the 

fluorescamine solution was added immediately before reading on a fluorescent plate 

reader at 390/460 excitation/emission (SpectraMax M5, Molecular Devices). The 

fluorescence intensity of the blank was subtracted from the experimental wells and then 

experimental wells compared with each other. 
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2.2.4. Analysis of TNAs and siRNA Interactions 

To determine siRNA/TNA complex formation ratios, TNA complexes were formed 

by mixing solutions of particles at several concentrations from 0.1 and 100 mg/ml in 

Optimem with 720 nM siRNA in Optimem. Solutions were mixed at a 1:1 ratio and 

allowed to equilibrate for 30 minutes at room temperature. 20 μL of each solution and 5 

μL of low range DNA ladder were loaded to 4% agarose gel and run at 100 volts for 80 

minutes at room temperature. The gel was stained in 200 ml of 100 ng/ml ethidium 

bromide in TAE (Tris-Acetate 0.04 M, EDTA 0.001 M) buffer, rinsed 3 times in TAE 

buffer, and imaged via Typhoon GLA 9500 (GE Healthcare, Logan, UT) fluorescent 

imager under the ethidium bromide filter set. 

siRNA release from TNAs was determined using a competing anion assay. 

Complexes were formed by mixing solutions of particles, concentrated in optimem media 

at 10 mg/ml, with 720 nM fluorescently-labeled siRNA optimem solution at a 1:1 ratio to 

a final concentration of 5 mg/ml of particle and 360 nM of siRNA for 30 minutes at room 

temperature. 20 μL of the complex solutions were added to 10 μL solutions of varying 

heparin concentration. 0, 10, 100, 1000, and 5000 μg/ml concentrations were used to 

create weight ratios of siRNA/heparin between 0 and 500. 10 minutes later, 20 μL of each 

solution was loaded onto an agarose gel and run at 100 V for 80 minutes. The gel was 

imaged using Typhoon equipped with a cy3 filter set (dylight-547 compatible). 

siRNA protection by TNAs was determined by TNA/siRNA complex incubation in 

media containing RNases. Complexes were prepared for particle-siRNA release study 

above were also used for siRNA protection study. Complex solutions (20 μL) were 

incubated with 20 μL of active FBS or heat-inactivated FBS. A control was created by 
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adding complex solution to RNase free water (20 μL, respectively) and then frozen. 20 

μL of sample solution was loaded and run on 4% agarose gel in TAE buffer at 100 V for 

80 minutes. After the gel was run, the gel was imaged with Typhoon through the cy3 

filter set. 

2.2.5. In vitro transfection efficiency of TNAs 

Cells were seeded at 5,000 cells per well into a white opaque 96 well plate for 24 

hours. After 24 hours, Complex solutions were created by mixing 100 μL of 10 mg/ml 

particle solutions with 100 μL of 720 nM anti-luciferase siRNA, all solution in optimem. 

These were incubated at room temp for 30 minutes. Control Solutions were created by 

setting aside 200 μL of optimem for a blank control and mixing 100 μL of 720 nM anti-

luciferase siRNA solution with 100 μL optimem or 100 μL of optimem containing 5 μL 

of RNAiMAX agent to create a naked siRNA control and RNAiMAX control, 

respectively. These were incubated at room temp for 30 minutes except the RNAiMAX 

control which was incubated for 20 minutes, per manufacturer’s instructions.180 μL of 

each solution was added to 720 μL of McCoy’s 5A supplemented with 10% FBS creating 

a final concentration of 1 mg/ml particle concentration, 72 nM siRNA, and 0.5 μL well of 

RNAiMAX concentration. Media was removed from each well and 100 μL of complex 

solutions and controls were to the wells, n=8. The plates were incubated until their 

endpoints (24, 48, or 72 hours) and then assayed for bioluminescence. Cells were injected 

with 100 μL of 0.1 mg/ml luciferin solution in PBS via a GloMax luminometer 

(Promega). Bioluminescence intensity was integrated over a 10 second period and 

recorded by the luminometer. Blank control wells were used to compare normal 

bioluminescence intensity to the experimental wells and data is reported as percentage 
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luciferase activity. This data was then normalized based on a viability assay described 

later to account for cell death in the reduction of luciferase signal. For the 2P/3P 

combination experiments after 24 hours incubation, 20 μL of media was removed from 

each well. 20 μL of 10 mg/ml 3P optimem solution was added to wells containing 2P and 

20 μL of optimem was added to all other wells. Cells were then incubated for a further 48 

hours, and subjected to viability and bioluminescence assays as described previously. 

2.2.6. Toxicity of TNAs in vitro 

After the transfection assay was completed, each plate underwent a resazurin assay. 

10 μL of a 100 mM solution of resazurin in PBS was added to each well of the 96 well 

plate. The plate was returned to the incubator for 3 hours and then read on a SpectraMax 

M5 (Molecular Devices) fluorescent plate reader at an excitation/emission of 560/590. A 

control of blank media with resazurin was used to subtract out background fluorescence 

and then fluorescence intensity was compared between each experimental well and the 

blank control wells to give a percentage of viable cells. 

2.2.7. In vitro intracellular uptake and trafficking of fluorescent siRNA in TNAs 

8 well glass slides were plated with 10,000 cells per well in McCoy’s 5A media 

supplemented with 10% FBS. 24 hours later, complex solutions were created based on 

the endpoint of the imaging study. To image siRNA within the cell, 30 μL of 10 mg/ml 

unlabeled particle solutions and 30 μL of 720 nM dylight-547 labeled siRNA were 

mixed. To image siRNA/particle colocalization, 30 μL of 10 mg/ml fluorescein labeled 

particle solutions and 30 μL of 720 nM dylight-547 labeled siRNA were mixed. To 

image particle/lysosome colocalization, 30 μL of 10 mg/ml fluorescein labeled particle 
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solutions with 30 μL of 720 nM unlabeled siRNA were mixed. To image combination of 

2P/3P, 30 μL of 10 mg/ml fluorescein labeled 2P solutions with 30 μL of 720 nM 

unlabeled siRNA were mixed. Controls of naked siRNA and blanks were created by 

mixing 30 μL of 720 nM dylight-547 labeled siRNA with 30 μL of optimem and 30 μL 

of optimem with 30 μL of optimem, respectively. All solutions were incubated at room 

temp for 30 minutes. Afterwards, 60 μL of each solution was added to 240 μL of 

McCoy’s 5A supplemented with 10% FBS creating a final concentration of 1 mg/ml 

particle concentration and 72 nM siRNA. Media was then removed from each well and 

200 μL of complex solutions were added to the wells and incubated for 48 hours. 

Additionally, for the 2P/3P combination study, 24 hours after dosage 30 μL of media was 

removed from the well and 30 μL of 10 mg/ml fluorescein labeled 3P was added. 48 

hours after dosage, cells were rinsed with PBS 3 times, fixed with formalin for 20 

minutes, stained with Hoechst 33342 and Lysotracker red (if applicable), and rinsed 

another 3 times. Cells were imaged at 100X on a Zeiss axiovert 200M fluorescent 

microscope using dapi, texas red, and fluorescein filter sets. Images were captured for the 

fluorescein and Texas red filter for fluorescein particles and siRNA, respectively, while 

using the same exposure between images to compare fluorescent intensity between them. 

Cells (5,000 cells/well) were seeded into a white 96 well plate. After 24 hours, 

Complex solutions and controls were created by mixing 100 μL of 720 nM dylight-547 

labeled siRNA optimem solution with 100 μL of 10 mg/ml 3P optimem solution or 100 

μL of optimem, respectively. These were incubated at room temp for 30 minutes. One 

plate was stored in 4C for 30 minutes along with particle and control solutions to be used 

with the plate. Media was removed from the wells and 100 μL of control and complex 
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solutions were added to the plate (n=4). The plated was returned to 4 ⁰C. Another plate 

was treated identically but kept at 37 ⁰C. After 4 hours, the plates were rinsed with cold 

PBS three times and read on a fluorescent plate reader at excitation/emission of 557/570. 

The fluorescence intensity was compared with an untreated control well at each 

temperature. 

2.3. Results 

2.3.1. The hydrophobicity of the TNA core reduces interactions between siRNA 

and TNA  

TNAs were synthesized as shown in Figure 2.1. All TNAs were uniform and 

contained no impurities as confirmed by a single peak shown on GPC (Figure 2.2). DLS 

and zeta-potential measurements confirmed that 2P and 3P were less than 40 nm in 

diameter and had a neutral surface charge regardless of PAL modification (Table 2.1). 

These results indicate that PAL is mostly present in the core of TNAs and the PEG shell 

efficiently shields the charge and hydrophobic groups. However, there is a discrepancy 

between the DLS measured polydispersity index (PDI) and the sharpness of the GPC 

peak from 3P. 

Modification of the core with PAL groups did not seem to affect the surface 

properties of TNAs although it altered lipophilicity and molecular conformation of the 

core. GPC revealed that the molecular weights of 2P and 3P were 128 and 158 kDa, 

respectively. Although the exact number of primary amines on bPEI is unknown, our 

estimation based on the molecular weights of bPEI (25 kDa) and TNAs suggests that 

approximately 10% and 55% of binding sites on bPEI were conjugated with PEG and 



25 

 

PAL, respectively. To further confirm the reaction, a fluorescamine assay was used to 

compare the amounts of remaining primary amines between 2P and 3P. 3P contained 

fewer primary amines per particle than 2P, corresponding with the GPC estimation. 

Interactions between siRNA and TNAs were characterized in 3 different ways: 

siRNA uptake by TNAs, binding strength of TNA to siRNA, and protection of siRNA 

from degradation. To confirm siRNA entrapment, Figure 2.3 shows various 

concentrations of particle complexed with a fixed concentration, 5 μg/ml for effective 

visualization, of siRNA. 2P showed partial siRNA entrapment at particle concentrations 

between 0.05 and 0.5 mg/ml, and full complexation at 5 mg/mL and above. This gives 

the weight ratio between particle and siRNA necessary for complete entrapment of 

siRNA within the particle. 3P showed partial entrapment only at 50 mg/ml yet required a 

concentration for complexation too high for in vitro experiments.  

Figure 2.3 also shows how strongly siRNA was bound to the particles by measuring 

its release from siRNA TNA complexes after incubation with increasing siRNA/anion 

weight ratios of a competing anion heparin, a glycosaminoglycan found in extracellular 

matrices of many tissues. This was used to mimic conditions the TNA complex would 

encounter once inside the cell as ionic binding competition is the most common 

mechanism of siRNA release. 2P appeared to require a large ratio of heparin to release 

siRNA, indicating a large binding affinity, while 3P showed no heparin necessary for 

release as it failed to form stable complexes with siRNA. 

In order to examine the potential of TNAs to protect siRNA from degradation, TNA 

complexes were incubated with a high level (50%) of FBS. Both naked siRNA and 3P 

complexes were unstable in the presence of both active and heat-treated FBS due to 
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nuclease degradation, whereas 2P protected siRNA for the duration. This was expected as 

3P had not previously shown complexation with siRNA but 2P had shown tight binding 

to the siRNA. These results would give 2P greater potential as an in vivo formulation 

compared with 3P because of 2Ps ability to form complexes and protect the siRNA. 
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Figure 2.2. Characterization of TNAs.  

GPC spectra showing uniform size distribution and purity of 2P (A) and 3P (B). Primary 

amine assay using fluorescamine to determine relative primary amine content of 3P 

compared to 2P (C), approximately 35% primary amines remain on 3P compared to 2P. 
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Table 2.1. Particle diameter, polydispersity index (PDI), and zeta potential of 2P and 

3P particles 

  

 2P 3P 

Size (nm) 23.19 ± 1.05 34.33 ± 3.95 

PDI 0.18 0.559 

Zeta Potential (mV) 2.66 ± 0.32 -1.99 ± 0.23 
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Figure 2.3. Complex formation and stability of TNAs. 

 TNAs were mixed with siRNA (360 nM) at varying ratios to determine a particle 

concentration required for forming neutral siRNA complexes (A). siRNA-loaded TNAs 

(5 mg/mL) were incubated with heparin to determine complex stability in the presence of 

anionic counterparts other than siRNA in a solution (B). siRNA-loaded TNAs were also 

incubated with nuclease free water (n), heat-inactivated FBS (i), and active FBS (a) to 

determine protective effects of TNAs in cell culture media with digestive enzymes (C). 

Naked siRNA at 360 nM and FBS alone used as controls. 
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2.3.2. Increased hydrophobicity of the TNA core increases TNA transfection 

efficiency  

In order to assess the delivery efficacy of the TNA complexes, bioluminescence was 

used as a facile method of protein reduction quantification. Luciferase protein was 

introduced to HT-29 colorectal adenocarcinoma cells so that it was stably expressed at all 

times (HT-29-LUC). Anti-luciferase siRNA uses the RNAi pathway to degrade luciferase 

mRNA, attenuating protein production. This allows for easy detection of remaining 

protein by addition of luciferin substrate. The amount of protein remaining correlates to 

siRNA delivery efficacy18.  

HT-29-LUC cells were incubated with siRNA-TNA complexes and 72 hours later the 

cells were examined for luminescence and cell viability (Figure 2.4). Particle 

concentrations used were 1 mg/ml or 20% that of what was found to be full complexation 

in previous experiments (5 mg/ml) due to 20% the amount of siRNA (1 μg/ml) to be used 

in vitro. Initially, 2P showed no transfection but 3P showed approximately 70% reduction 

of the luciferase activity, attributed to siRNA delivery. The transfection efficiency of 3P 

was comparable to that of Lipofectamine RNAiMax, a commercially available 

transfection reagent. To further examine the transfection efficiency of both particles, 

transfection was monitored daily for total 4 days past dosage. 3P and RNAiMax showed 

a similar transfection profile, reducing luciferase expression continuously for 4 days, but 

2P induced no transfection in the same period of time. Additionally, neither 2P nor 3P 

exhibited any noticeable toxicity under our experimental condition while RNAiMAX 

showed mild toxicity with approximately 20% reduction in cell viability.  
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Further confirmation of siRNA delivery was shown by fluorescent imaging with 

fluorescently labeled siRNA. This allowed for viewing of the amount of siRNA used 

within the cells for each formulation (Figure 2.5). Compared with the non-treatment and 

free siRNA incubated cells, both TNA formulations showed siRNA within the cell. 

However, cells incubated with 3P complexes showed a much larger fluorescent intensity 

through confocal microscopy than those incubated with 2P indicating that 3P was able to 

increase the amount of siRNA that would be trafficked into the cell. 
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Figure 2.4. Transfection efficiency and toxicity of TNAs. 

A human colon cancer HT-29 cell line stably expressing a luciferase reporter gene was 

transfected with TNAs to monitor luciferase activity (A) and cell viability (B) after 72 

hours of incubation. Transfection profiles over a 4-day period were taken to determine 

long-term gene silencing effects of TNAs (C).  
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2.3.3. Hydrophobic modification of nanoassembly core increases intracellular 

siRNA delivery and endosomal escape 

Because of PAL’s ability to interact with cellular membranes, it was necessary to 

determine if the 3P particle was entering the cell through an endocytotic pathway or 

through membrane disruption (Figure 2.6). To observe this, cells were incubated with 

TNA complexes containing fluorescent siRNA at 4 °C and 37 °C. At 4 °C endocytosis is 

significantly reduced whereas at 37 °C cells operate under normal conditions. By 

comparing intracellular uptake of TNAs at these temperatures the importance of an 

endocytotic pathway in TNA uptake can be elucidated. The results show larger 

fluorescent intensity for those cells incubated at 37 °C, indicating that TNAs enter the 

cell through endocytosis in a greater amount than non-specific membrane disruption as 

seen with other cationic polymers and PAL-conjugated bPEI. 

Intracellular fluorescent imaging was further used to elucidate TNA complex 

intracellular distribution and siRNA release, following cell internalization (Figure 2.7). 

First, siRNA release from the TNAs was examined. Fluorescein labeled TNA complexes 

with dylight-547 labeled siRNA were incubated with cells for 48 hours. 2P was 

colocalized with siRNA in a greater amount compared to 3P, which would result in 

minimal siRNA being released into the cells. Minimal siRNA release would result in low 

or no transfection occurring and this correlates well with the previous in vitro results. 

3P’s lower colocalization would be expected with its lack of complex formation.  
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Next, endosomal escape (Figure 2.7) by the TNA complexes was examined. 

Fluorescein labeled TNA complexes were incubated with cells similarly and dyed with a 

lysosome stain. 2P complexes colocalized in lysosomes and 3P complexes showed less 

lysosomal colocalization. These results suggest 2P did not escape endosomes as 

efficiently as 3P and 2P’s reduced transfection efficiency was attributed to less 

endosomal escape. 
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Figure 2.5. Fluorescent microscopy.  

HT29 cells were incubated with TNAs (1 mg/mL) containing dylight-547 labeled siRNA 

(72 nM) to confirm intracellular delivery of siRNA at 48 hours post-transfection, 

following the treatment of cells with PBS (A), naked siRNA (B), 2P complexes (C), and 

3P complexes (D). 
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Figure 2.6. Elucidation of siRNA transfection mechanisms for TNAs.  

Cells were treated with siRNA-loaded TNAs at an incubation temperature that 

endocytosis is active (37 °C) or suppressed (4 °C) to determine the intracellular uptake 

mechanism for TNAs (A). Cancer cells treated with siRNA-loaded 2P were incubated 

with empty 3P at 24 hours post transfection to demonstrate a unique property of 3P that 

enhances siRNA transfection alone or in combination with 2P (B). 
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Figure 2.7. Intracellular distributions of siRNA-loaded TNAs.  

Fluorescence images of cells were taken at 48 hours post-transfection to determine the 

release of siRNA from TNAs as well as endosomal escape of TNAs during transfection. 

*TNAs were entrapped with non-labeled, anti-luciferase siRNA to avoid fluorescence 

signal interference between the siRNA and Lysotracker. 
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2.3.4. Combined dosage of hydrophobic modified and unmodified TNA 

decreases colocalization of siRNA in endosomes 

A combinatorial approach to TNA transfection was examined to help elucidate 3P’s 

role in transfection efficacy as well as attempt to protect siRNA while achieving 

transfection. 2P-siRNA complexes were incubated with cells for 24 hours and then empty 

3P particles introduced (Figure 2.6). It was found that the addition of empty 3P did 

increase the transfection efficiency of 2P-siRNA complexes from 0% to 60%.  

A closer look at the intracellular trafficking of this dosage was achieved through 

fluorescent microscopy. Colocalization between siRNA and particle was relatively less 

compared with 2P as shown in Figure 2.7. The combinatorial dosage also showed a 

relative reduction in colocalization between endosome and particle, indicating that 

particles and siRNA were escaping endosomes, previously not seen with 2P particles 

alone. This gave a greater indication that 3P has a greater endosomal escape capability 

compared with 2P and that it may lend it to other particles taken up by the cell 

concurrently. 

2.3.5. Modulating the hydrophobic substitution of TNA core increases 

transfection efficiency while decreasing siRNA/particle interactions 

Because of the success of the 2P/3P combination approach, the ratio of PAL 

substitution on 3P was examined to find an optimal ratio where 3P could form complexes 

with siRNA. This would enable 3P to protect cells so that a less complicated approach 

could be taken compared to the combination 2P/3P described in the previous section. 

Two additional TNAs were synthesized by aiming for 15% and 25% palmitoylation of 
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2P, named 3P low and 3P mid, respectively. The amounts of primary amines remaining 

in the core of 3P low and 3P mid were determined by a fluorescamine assay (Figure 2.8). 

The assay indicated that palmitoylation was achieved at differing levels compared with 

the initial 3P particle. Gel electrophoresis was performed to confirm siRNA complexation 

with 3P low and 3P mid. 3P low achieved complexation between 0.5 mg/ml and 1.0 

mg/ml, significantly lower than the original 3P at 72 nM siRNA concentration. 3P mid 

began to form partial complexes at 1 mg/ml but required a higher polymer concentration 

for complete complexation. 

To examine the effect of palmitoylation on transfection efficiency, cells were 

incubated with each form of 3P complexes with siRNA for 72 hours. Though 3P low was 

able to maintain a complex with siRNA, it did not find more than 20% transfection 

efficiency but the partial complexes formed by 3P mid increased transfection efficiency 

further. This showed a positive correlation between PAL content on 3P and transfection 

efficiency as well as provided insight into PAL’s role on transfection. 
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Figure 2.8. Complex formation and siRNA transfection of TNAs with varying PAL 

contents in the core. 

TNAs were confirmed to entrap siRNA less efficiently as the amount of PAL conjugated 

in the core increased, which were determined by gel electrophoresis (A) and 

fluorescamine assay (B), respectively. Conversely, siRNA-loaded TNAs transfected cells 

more efficiently during a 72-hour period as the amount of PAL in the core increased (C).   
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2.4. Discussion 

siRNA therapy has shown much promise in the treatment of genetic diseases, such as 

cancer, at the in vitro level by reducing expression levels of proteins currently unable to 

be target by drugs. However, few formulations evaluated in vitro have moved to the in 

vivo level or clinical trials. Most of the issues encountered in moving to in vivo involve 

lack of stability in the bloodstream which ultimately lead to low transfection efficiency. 

Many formulations have attempted to address these issues by using a linked, or 

crosslinked119-120, polymer system or a hydrophobic core121 to stabilize both the particle 

and its complex with siRNA. Here we have taken tethered nanoassemblies (TNAs) which 

consist of a unimolecular pegylated PEI system (2P) and modified its core to include a 

hydrophobic region (3P) to examine its effects on stability and transfection efficiency as 

well as elucidate its effect on improving the system as a siRNA delivery vehicle. 

Delivery vehicles for siRNA therapy must focus on 3 factors effected by complex 

stability: delivery of the siRNA to its target site, protection of the siRNA from 

degradation, and release of the siRNA into the cytoplasm of the cell. Both physical 

properties of the particle and thermodynamic properties of the TNA/siRNA complex can 

determine if it will meet these criteria and improve its chance at becoming a working in 

vivo system122. In terms of physicochemical properties, both particles have beneficial 

surface charge and size for in vivo delivery. Pegylation reduced surface charge to a 

neutral state and increased the empty particle diameter was between 20-40 nm which is 

beneficial for enhanced circulation time and decreasing off-target interactions122-123. 

Although both particles had similar physical properties, only 2P was able to form a 

stable complex with siRNA. 2P was shown to bind strongly to siRNA and protect it from 
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degradation. Tight binding, as indicated by the complexes resistance to competing anions, 

would typically indicate an effective particle124. Resistance to competing anions is 

indicative of the vehicle being capable of maintaining it’s complex with siRNA in the 

blood stream when presented with other negatively charged moieties107. However, if the 

complexes are too stable then it is troubling from a therapeutic perspective as the 

complexes may have difficulty releasing siRNA inside targeted cells125. In contrast, 3P 

was unable to form complexes at concentrations lower than 50 mg/ml or protect siRNA 

from degradation. This result was surprising because 3P was found to have active 

primary amines present in formulation, as indicated by the fluorescamine assay, but it 

required more than 100 times the amount of particle to show even slight complexation. 

The ratio of active amines to siRNA for complexation differed between 2P and 3P, 

indicating that the addition of PAL to the nanoparticle core can interfere with free 

primary amines possibly by condensing in the core around active amines to block their 

interaction with siRNA. This indicates hydrophobic modification to the core of TNAs 

causes a decrease in complex stability.  

The result contradicted our initial hypothesis as PAL was expected to increase 

stability of the TNA/siRNA complex rather than reduce it. Though the primary amines 

may be blocked from interacting with siRNA by the hydrophobic group, it would not 

affect the fluorescamine interaction since the hydrophobic nature of fluorescamine, its 

size, and the presence of organic solvent may allow for fluorescamine to reach the amine 

groups in 3Ps core. It is unclear if the addition of organic solvent during siRNA 

complexation would allow stable complex formation with 3P. Despite its lack of complex 

formation, 3P was able to transfect cells with much greater efficiency than 2P. Again, this 
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would appear to contradict traditional thinking that a strong complex is necessary for 

effective transfection. This must mean that 3P is moving siRNA into the cell more 

effectively than 2P, as we see a greater amount of siRNA within the cell after dosages. 

Two pathways are common for cellular internalization of nanoparticles: endosomal 

pathway and membrane disruption126. Membrane disruption occurs when a lipid fuses 

with a membrane to create holes or help push through them. This has been seen with 

other lipid containing nanoparticles, such as liposomes and micelles127-128. As the lipid 

portion of 3P should be localized to the core and protected by a PEG shell, an endosomal 

pathway is the most likely of these two pathways. After experimentation, it was 

confirmed that endocytosis was the major pathway of TNA uptake (Figure 2.6).  

Considering that the TNAs enter the cell via endocytosis, endosomal escape of the 

TNAs would be crucial to delivering the siRNA to the cytoplasm of the cell. Without a 

mechanism to remove the TNA/siRNA complex from the endosome, transfection 

efficiency would be greatly reduced. While there are many mechanisms for this, bPEI is 

hypothesized to exhibit the proton sponge effect129. The proton sponge effect is a type of 

hydrogen ion buffering where the hydrogen ions and chloride ions entering the endosome 

are absorbed by the amines within bPEI. This causes more and more ions to be pumped 

in the endosome in order to lower the pH, to become a lysosome. Eventually the 

endosome swells and bursts, releasing the particle130. This is considered to be the main 

mechanism of endosomal escape for many cationic polymer systems131-132. Another 

mechanism is cellular membrane disruption through direct interaction between cationic 

bPEI and anionic lipid layers125. In this case, the mechanism of endosomal escape is 

unclear but PAL addition seemed to be key in assisting disruption of the endosome. The 
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colocalization images (Figure 2.7) showed that 2P remained within the lysosomes with 

its siRNA payload but 3P had little colocalization with either. This indicates that 2P has 

lost some of its natural endosomal escape property but addition of PAL returned an 

endosomal escape method, either by proton sponge or membrane disruption via PAL. 

This would show that PAL must play a major role in the 3P’s transfection ability possible 

through endosomal escape enhancement. However, it is important to note that based on 

design PAL is presumed to be within the core of 3P but the discrepancy between the PDI 

value and GPC peak could indicate some weak hydrophobic interaction between 

particles. Aggregates between small numbers of particles would account for large PDI 

seen via DLS measurement (Table 2.1) and indicate a mild interaction with PAL between 

particles. This would not necessarily be seen in the GPC data due to shear stress and 

column interaction during measurement. Therefore, palmitate may be present in low 

amounts near the surface of the nanoparticle. Further study of how 3P delivered siRNA 

into the cell is necessary. 

It must be noted that combination of both 2P and 3P nanoparticles would provide an 

effective siRNA delivery system where 2P complexes would protect the siRNA and 

empty 3P would assist in endosomal escape. Colocalization images provided evidence for 

this, showing less particles within the endosome and less siRNA within the particles. This 

also shows that 2P is able to release its siRNA once it is within the cytoplasm of the cell. 

However, the success of this ‘combined’ formulation may depend on the co-delivery 

efficiency of both particles, and therefore developing a single particulate system might be 

still a viable option. In this chapter, we have found that increasing lipophilicity of the 

core of siRNA TNA complexes with PAL would be beneficial to enhance siRNA 
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transfection, as others have seen. However, PAL’s hindrance to siRNA loading still 

remains a major challenge to developing polymer nanoassemblies with a lipophilic core 

for future clinical applications. It may be possible to optimize transfection efficiency and 

siRNA loading in polymer nanoassemblies by utilizing alternate moieties as the effect of 

the hydrophobic group in enhancing siRNA transfection appeared evident. 

2.5. Conclusions 

In this chapter, TNAs were used to evaluate the effects of hydrophobic modification 

of the TNA core on TNA/siRNA complex stability and transfection of siRNA. The 

results showed that nanoassemblies with a hydrophilic, cationic core (2P) either bind 

siRNA too tightly to release their siRNA payload once inside the cell or are unable to 

escape the endosome. Both of these factors are crucial for an efficacious delivery system. 

However, TNAs with a hydrophobic, partially cationic core (3P) appeared to fail to form 

stable siRNA complexes but enhance target gene silencing presumably due to enhanced 

intracellular uptake and endosomal escape of siRNA. Further investigation demonstrated 

that a combined formulation of 2P and 3P was effective to protect siRNA and achieve 

effective transfection, which revealed that PAL conjugated in the core of nanoassemblies 

played an important role in determining the fate of siRNA-loaded nanoassemblies in the 

cell. Taken together, we conclude from this chapter that ionic and hydrophobic 

interactions should be considered concurrently in the design of siRNA delivery carriers to 

guarantee stability and transfection efficiency. 
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3. Chapter 3: Effects of TNA shell modification on siRNA transfection 
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This work was adapted with permission from work published by the author in AIMS 

Bioengineering on November 16th, 2016133.  

3.1. Introduction 

siRNA therapy holds promise as a method to treat genetic diseases through 

degradation of specific protein mRNAs, thereby reducing their expression96, 134. Reducing 

the expression of these targeted proteins allows for treatment of many different diseases, 

including those with few therapeutic options135-137. However, this therapy is hindered by a 

lack of stability in the bloodstream98-99, 138 and incurs the need for a delivery vehicle in 

order to improve the therapy. Cationic polymers, such as polyethylenimine (PEI), have 

intrinsic properties that aid in their development as delivery vehicles by enhancing 

protection of siRNA and escape of endosomes resulting in high transfection 

effeciencies102. Cationic PEI interacts with anionic siRNA to form ionic complexes, 

offering protection from RNase degradation and renal clearance105. These siRNA/PEI 

complexes have a highly cationic surface charge which can be used to interact with 

cellular membranes, promoting uptake through endocytosis, and endosomal escape139-140. 

However, the surface charge of siRNA/PEI complexes can limit their applications in 

vivo. The cationic surface charge of siRNA complexes has induced toxicity and reduced 

stability of the particle in the bloodstream73. Additionally, the cationic surface charge can 

promote other anionic compounds to interact with the siRNA/PEI complexes which 

increases dissociation due to counter ions. This causes decreased complex stability 

resulting in the release of polymer and free siRNA before reaching their target site. 

Released polymers may disrupt cellular membranes and cause further toxicity, while 

siRNA would leave the body and not have therapeutic effects. To address these issues, 
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chemical modifications to cationic siRNA/PEI complexes are often made to neutralize 

the surface charge. A common modification to shield surface charge and stability of 

complexes is to chemically conjugate poly(ethylene glycol) (PEG), a biocompatible and 

non-ionic polymer, to cationic PEI chains111. In previous studies, chemical conjugation of 

PEG significantly reduced toxicity of PEI by avoiding uncontrolled 

aggregation/dissociation of the PEG-conjugated PEI and genetic cargos141-142. PEG 

prevents interactions of siRNA complexes with anionic materials in the bloodstream and 

cellular membranes by forming a neutral, hydrophilic shell around siRNA/PEI 

complexes143. Preventing interactions can lessen the toxicity and enhance the stability of 

PEI complexes compared to unmodified PEI complexes. 

In the previous chapter, PEG-PEI-based nanoparticles (TNAs) for siRNA delivery 

were introduced95. The TNAs were < 30 nm in diameter with improved particle 

uniformity and stability. TNAs exhibited siRNA transfection comparable to a commercial 

reagent (RNAiMAX)95. However, it was found that the PEG-PEI (2P) TNA did not cause 

transfection which is not consistent with other groups findings136, 144. Covalent 

modification is common among PEI formulations as well as other cationic polymers 

however the size and attachment percentage varies considerably145. This variation of PEG 

density may alter the transfection efficiency of the PEI. This is evidenced by other reports 

that PEG decreases endosomal escape146, which was observed in the previous chapter. 

Additionally, particle uniformity also effects PEG density. Commercially purchased PEI 

often contains small impurities (small molecule amine compounds) that are produced by 

hydrolysis and oxidation during storage. These PEI contaminants can form a mixture of 

PEG-PEI particles and polymer chains varying in PEG density across particles.  
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Based on these factors, we hypothesize that reduced siRNA transfection of PEG-PEI 

particles is attributed to PEG density. Summarized in Figure 3.1, this chapter focuses on 

PEG molecular weight (PEG MW), PEG substitution rate (PEG%), and PEI impurities as 

factors influencing PEG densities for siRNA/PEI complexes, and aims to elucidate how 

these factors would influence siRNA transfection in a model human colon cancer cell line 

(HT29). Towards the aim, a library of siRNA/PEG-PEI complexes was created with 

varying PEG densities. PEG density was varied by changing the PEG MW and PEG%. 

siRNA complexes were synthesized using PEG-conjugated PEI nanoparticles made from 

PEI as purchased (PEG-PEI) or PEI purified by dialysis (PEG-PEI-d). Transfection 

efficiency of siRNA/PEG-PEI and siRNA/PEG-PEI-d complexes were measured with 

anti-luciferase siRNA in HT29 stably expressing the luciferase reporter gene. 
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Figure 3.1. PEG density analysis. 

Synthesis of PEG-PEI library from PEI and purified PEI (PEI-d) as seen by the gel 

electrophoresis image (A). Hypothetical PEG density effect on PEG-PEI complexes (B). 

Hypothetical PEG Density effect on PEG-PEI transfection (C).    
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3.2. Materials and Methods 

3.2.1. Materials and Cells 

PEI (25 kDa, branched) was purchased from Sigma Aldrich. PEGs (550 Da, 2 kDa, 

and 5 kDa α-methoxy-ω-NHS activated, NHS-PEG) were purchased from NOF America. 

HEPES buffer (pH 8.0, 1 M), NuSieve agarose GTG, dialysis membrane with molecular 

weight cutoff (MWCO) of 100 kDa, deuterated DMSO, Opti-MEM, SimplyBlue 

SafeStain, and phosphate buffered saline (PBS 1X) were purchased from Fisher Scientific 

(Waltham, MA). Anti-Luciferase siRNA was synthesized with the sequence of 5’-

GUUGGCACCAGCAGCGCACUU-3. A human colon cancer cell line (HT29) was from 

American Type Culture Collection (ATCC). HT29 cells were grown using McCoy’s 5A 

with 10% fetal bovine serum (FBS) according to ATCC recommendations. Cells were 

cultured in a humidified environment with 5% CO2 at 37 °C 

3.2.2. Synthesis of TNAs of varying PEG substitutions and PEI backbones 

We first purified PEI by dialysis (100 kDa MWCO) against water for 2 days. The 

dialyzed PEI (PEI-d) was collected by lyophilization. PEI and PEI-d (20 µL of a 10 

mg/mL) were run on a 2% agarose gel at 120 V for 1 hour to verify the removal of small 

impurities. The gel was stained with SimplyBlue SafeStain overnight and destained in 

water for 6 hours. PEG-PEI (or PEG-PEI-d) particles were then synthesized by reacting 

NHS-PEG with PEI (or PEI-d) in a 1:1 mixture of DMSO:HEPES buffer (1 M) for 3 days 

at room temperature. Molar ratios of NHS-PEG:PEI were 3:1, 15:1, or 40:1 for 1%, 5%, 

and 10% (denoted as PEG% of PEI). The reactants were dialyzed against water (100K 
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MWCO) to remove free PEG and other impurities. PEG-PEI and PEG-PEI-d particles 

were collected by lyophilization.  

PEG-PEI and PEG-PEI-d particles were analyzed via 1H-NMR to obtain the PEG%. 

Each PEG-PEI (5 mg) was added to deuterated DMSO (500 μL) and run in an NMR (400 

MHz Varian NMR). To determine the PEG%, peak areas were compared between the 

PEI main chain (CH2, 2.6 ~ 3.4 ppm) and PEG conjugated to PEI (CH2, 3.6 ppm). The 

peak area comparisons determined the molar ratios between PEG chains and primary 

amines of PEI (214 in average), which were converted to the percent substitution of PEG 

on PEI. The PEG-PEI and PEG-PEI-d forming unimolecular nanoparticles were analyzed 

for purity and uniformity by gel permeation chromatography (GPC, Asahipak GF-7M 

column, 0.5 mL/min, 40 °C, PBS mobile phase). 

3.2.3. Quantification of size and surface charge of TNAs and complexes 

The surface charge and diameter of the particles were determined by measuring zeta 

potential and dynamic light scattering (DLS, Zetasizer Nano, Malvern, UK). Aqueous 

solutions of PEG-PEI particles were mixed with siRNA according to their minimum 

complexation ratio, found in section 3.2.4, for 30 minutes at room temperature. PEG-PEI 

complexes and empty polymer at a concentration of 1 mg/ml (500 μL) were loaded into 

disposable zeta cuvettes and analyzed for particle diameter via DLS measurement 

(Zetasizer Nano, Malvern, UK) and then zeta potential in the same cuvette.  

3.2.4. Complex formation of TNAs with siRNA 

A solution of PEG-PEI particle (1 mg/mL) was mixed with a solution of siRNA in 

PBS to create a final concentration of particle ranging from 0 to 100 μg/mL polymer 
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mixed with 72 nM siRNA. PEG-PEI particles and siRNA were mixed at room 

temperature for 30 minutes. The mixing ratio is described as the N/P ratio, where N is 

amines on PEI and P is the phosphate groups on siRNA. siRNA/PEG-PEI complexes at 

varying N/P ratios were analyzed by gel electrophoresis (1% agarose gel, 20 μL loading 

per well, 120V, 1 hour). The gels were stained with ethidium bromide and imaged with 

Typhoon GLA 9500 (GE Healthcare, Logan, UT). 

3.2.5. In vitro transfection efficiency and toxicity of TNAs  

Cells were seeded in a white 96 well cell culture plate (5,000 cells/well, 100 μL Opti-

MEM) and incubated for 24 hours prior to experiments. A solution of each polymer was 

solubilized in Opti-MEM at 1000X the concentration at which the polymer formed 

complexes with siRNA (determined by gel electrophoresis). One hundred microliters of 

polymer dilutions (500X, 200X, and 10X) were added to 100 μL of 720 nM siRNA 

solution. The mixtures were incubated at room temperature for 30 minutes. Cell culture 

media (20 μL) in each well was replaced with 20 μL PEG-PEI/siRNA or PEI/siRNA 

complexes (n = 4). The N/P ratios were 1, 20, 50, and 100 for each well. The plates were 

incubated for 72 hours, and luciferin (100 μL, 0.1 mg/ml in PBS) was added to each well 

for luminescence measurement via a GloMax luminometer (Promega). To measure cell 

viability, a resazurin solution (10 μL, 1 mM) was added to each well. The plates were 

incubated for 3 hours and live cells were counted on a fluorescent plate reader 

(SpectraMax M5, Molecular Devices, 560Ex/590Em). The luciferase readings were 

normalized to cell viability to obtain the percentage of luciferase activity remaining after 

treatment. 
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3.3. Results 

3.3.1. Increasing PEG corona density increases particle size and decreases surface 

charge 

PEG-PEI nanoparticles were successfully synthesized by using 25 kDa PEI and PEG 

with varying molecular weights. A library of PEG-PEI particles with varying PEG 

densities. NMR confirmed successful modification of two parameters for the particles: 

PEG MW (550, 2,000, and 5,000 Da) and PEG substitution percent (1, 5, 10%). Table 

3.1 summarizes the synthesis conditions including PEG% aimed and obtained. PEG-PEI 

particles were characterized by GPC (Figure 3.2) and DLS (Table 3.1). The GPC shows 

the removal of free PEG from the PEG-PEI particles. DLS revealed that the diameters of 

empty particles ranged from 4 nm to over 30 nm. PEG MW and PEG% were considered 

collectively to determine PEG density on PEG-PEI particles. 

PEG MW and PEG substitution rate influenced PEG density directly, and particle 

diameter increased as PEG density increased. Particles increased their diameter as PEG 

MW and PEG% increased. A similar trend was observed with the surface charge of the 

particles. PEG-PEI with low PEG MW and PEG% (e.g., 550 Da or 2 kDa with 1% PEG 

substitution) showed positive surface charge. The surface charge decreased as PEG MW 

and PEG% increased, while the larger molecular weight PEGs shielded surface charge 

better at lower PEG%. Table 3.1 summarizes particle diameters of PEG-PEI particles 

forming complexes with siRNA at their minimum complexation ratios (found in section 

3.3.3). PEG-PEI particles increased diameter after complexation but less so as PEG 

corona density increased.  
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Table 3.1. Characterization of PEG-PEI and PEG-PEI-d Library  
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Figure 3.2. Gel permeation chromatograms of PEG-PEI particles. 

Gel permeation chromatography (GPC) of PEG-PEI particles in the created library. 

Dashed chromatograms are PEI and solid chromatograms are PEG-PEI.  
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3.3.2. Increased polymer homogeneity of TNAs increases particle size and decrease 

number of polymer chains used in complexation 

PEG-PEI-d was synthesized from a dialyzed version of a 25 kDa PEI which can 

reduce the PEI impurities involved in siRNA/TNA complexation. Gel electrophoresis 

(Figure 3.1A, insert) confirms that a portion of smaller molecular weight PEI chains 

were removed after dialysis. Cationic PEIs traveled toward the anode, yet undialyzed PEI 

showed a broader smear on the gel than PEI-d. These results indicate that PEI contains 

short molecular weight contaminants and its average molecular weight (25 kDa) may be 

misleading to determine the accurate polymer charge density. In contrast, PEI-d showed a 

single band with no smudge, demonstrating the removal of small molecular weight PEI 

chains and other impurities after dialysis. A library of particles mirroring the extent of 

pegylation of PEI based particles was synthesized from the PEI-d polymer and 

summarized in Table 3.1.  

PEI-d based particles had similarly uniform size distributions as the PEI based 

particles (Figure 3.3). An increase in particle diameter compared to the PEI based 

particles was observed after pegylation (Table 3.1). The PEI-d based particles had 

consistently larger particle diameters at higher PEG corona densities. Additionally, 

complexes formed between PEI-d based particles and siRNA did not exhibit swelling in 

particle diameter compared to their empty diameter. Typically, swelling of a polymer 

complex occurs due to multiple polymer strands entrapping the siRNA. This lack of 

swelling indicates less polymer strands are involved during complexation.  
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Figure 3.3 Gel permeation chromatography of PEG-PEI-d particles.  

Gel permeation chromatography (GPC) of PEG-PEI-d particles created. Dashed 

chromatograms are PEI and solid chromatograms are PEG-PEI-d. 
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3.3.3. Increased PEG corona density increases particle/siRNA complexation ratio 

Gel electrophoresis revealed that PEG-PEI and PEG-PEI-d particles increased the 

minimum amount of polymer necessary to form complexes with a set amount of siRNA 

(72 nM), which will be referred to as the minimum complexation ratio, as their PEG 

density increased. At the minimum complexation ratio, PEG-PEI neutralized the charge 

(a theoretical N/P = 1) and retained siRNA in the well of the gel (Figure 3.4 and 3.5, 

black boxes). These results indicate that PEG conjugation reduces primary amines from 

PEI and requires more PEG-PEI particles to retain the same amount of siRNA within 

complexes. In theory, a 10% 5 kDa PEG substitution (5K-10) would increase average 

molecular weight of the product from 25 kDa (PEI with no PEG) to approximately 130 

kDa (520% increase), and approximately 6 times more 5K-10 particles (572%) would be 

needed to match the number of primary amines on unmodified PEI forming complexes 

with siRNA at N/P =1. However, our observations revealed that the actual increase in 

5K-10 mass required for complexation was ~800% (Figure 3.4). It should be noted that 

these gels are reproducible as several preliminary gels had to be done in order to narrow 

down the polymer concentration range for each PEG-PEI. Though some variability in the 

minimum complex ratio can occur, this does not negate the observed effect of pegylation 

density on the PEG-PEI polymers. These results indicate that PEG-PEI and PEG-PEI-d 

particles would require greater amounts of polymer than theoretical estimation to form 

siRNA complexes as PEG density increased. 
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Figure 3.4. siRNA complexation of PEG-PEI particles. 

Gel electrophoresis images of PEG-PEI run on a 1% agarose gel. siRNA at 72 nM was 

allowed to complex for 30 minutes with varying concentrations of PEG-PEI. The mixture 

was run on the gel and stained with ethidium bromide to image. The boxes indicate at 

which point the PEG-PEI forms a complete complex with siRNA. 
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Figure 3.5. siRNA complexation of PEG-PEI-d particles.  

Gel electrophoresis images of PEG-PEI-d run on a 1% agarose gel. siRNA at 72 nM was 

allowed to complex for 30 minutes with varying concentrations of PEG-PEI. The mixture 

was run on the gel and stained with ethidium bromide to image. The boxes indicate at 

which point the PEG-PEI-d forms a complete complex with siRNA. 
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3.3.4. PEG corona density decreases siRNA transfection efficiency  

Figure 3.6 summarizes transfection efficacy of PEG-PEI particles with anti-luciferase 

siRNA at varying N/P ratios. As PEG% increased, the maximal transfection efficacy 

decreased in the PEG-PEIs containing 2 kDa and 5 kDa PEG. The PEG-PEIs containing 

550 Da PEG with 1% and 5% PEG substitution retained transfection efficiency. 

However, PEG-PEIs with 10% PEG substitution increased the N/P ratio to achieve 

maximal transfection efficiency. Combining the two trends revealed that increasing PEG 

density decreased overall transfection efficiency of siRNA/PEG-PEI complexes. Low 

PEG density exhibited a positive effect on the complexes by reaching the maximal 

transfection efficiency of the unmodified PEI at a lower N/P ratio. It should be noted that 

transfection efficiency does not is not above ~75% for any of the formulations tested. 

This may be due to the cells susceptibility to siRNA or a factor of the siRNA 

concentration.   
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Figure 3.6. Effect of PEG density on transfection efficacy of siRNA/PEG-PEI 

complexes.  

550 Da (A), 2 KDa (B), or 5 KDa (C) PEG-PEI complexes with anti-luciferase siRNA 

(72 nM) at varying N/P ratios (experimentally determined by gel electrophoresis) are 

incubated HT29 colorectal cancer cells stably expressing luciferase for 72 hours. The 

luciferase activity was normalized to cell viability.  
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3.3.5. Increased polymer homogeneity decreases necessary complexation ratio to 

achieve maximum siRNA transfection 

Figure 3.7 shows the effects of the PEG-PEI-d on transfection efficiency at varying 

N/P ratios. Similar to PEG-PEI particles, PEG-PEI-d decreased the maximal transfection 

efficacy as PEG% increased, while PEG MW showed no negative effects on transfection 

at low PEG%. However, PEG-PEI-d showed maximal transfection at a lower N/P ratio 

than PEG-PEI (20 vs 50). This effect was reduced as the PEG density was increased. 
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Figure 3.7. Effect of PEG density on transfection efficacy of siRNA/PEG-PEI-d 

Complexes.  

550 Da (A), 2 KDa (B), or 5 KDa (C) PEG-PEI-d complexes with anti-luciferase siRNA 

(72 nM) at varying N/P ratios (experimentally determined by gel electrophoresis) are 

incubated HT29 colorectal cancer cells stably expressing luciferase for 72 hours. The 

luciferase activity was normalized to cell viability. 
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3.4. Discussion 

PEI is a well-studied cationic polymer used in gene delivery, including siRNA 

delivery, because it can readily form ionic complexes with genetic material to improve 

stability of the genetic cargo in the blood stream. However, clinical applications of the 

siRNA/PEI complexes are often held back by complex instability and toxicity147. The 

toxicity of siRNA/PEI complexes is mainly attributed to the cationic surface charge 

disrupting anionic cellular membranes148. A common method of reducing surface charge 

of PEI/siRNA complexes is covalently attaching PEG to PEI149, forming a PEG shell. 

PEG is available in many different molecular weights and thus can create PEIs with a 

variety of PEG densities150. In the previous chapter, we prepared nanoparticles from 

PEG-conjugated PEI (PEG-PEI) for siRNA delivery95 and found that their transfection 

efficiency was significantly reduced, presumably due to variations of PEG density. 

However, the effects of PEG density on physicochemical properties and transfection 

efficiency of siRNA/PEG-PEI complexes were elusive. Therefore, this chapter elucidates 

how PEG density affects transfection efficiency of siRNA/PEG-PEI complexes by 

investigating three factors that influence PEG density on PEI (PEG MW, PEG% and PEI 

impurities). 

Increased PEG MW was found to weaken siRNA/PEG-PEI complex stability and 

lower transfection efficacy. These results indicated that increasing PEG MW increased 

the amount of PEG-PEI required to form complexes (Figure 3.4 and 3.5). Our initial 

speculation was that the increased amount of PEG-PEI was due to increased molecular 

weight of the polymer after PEG attachment. PEG conjugation reduces the weight 

percentage of primary amines on PEI, and thus requires more polymer to form complexes 
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with siRNA and neutralize the charge. Therefore, we used the reduced weight percentage 

of primary amines to predict the increase in the weight ratio between PEG-PEI and 

siRNA to form complexes. For example, if PEI’s primary amines are reduced by 20%, 

20% additional polymer is needed to form complexes. However, our data shows that 

PEG-PEIs containing 2 kDa and 5 kDa PEG need more polymer than predicted to form 

these complexes. This may be due to the PEG chains blocking siRNA from interacting 

with the amines of PEI, similarly to how PAL may act when attached to 3P proposed in 

chapter 2.  

Larger PEG chains (2 kDa or 5 kDa) would block cationic sites on PEI more 

effectively than shorter chains due to increased flexibility, as evidenced by the reduction 

of surface charge as the PEG chain length was increased (Table 3.1). Since both PEI and 

PEG are hydrophilic, the polymers may entangle rather than form a distinct core and shell 

system like nanoparticles containing hydrophobic polymers113, 151. This entanglement 

would block the cationic sites from interacting with the siRNA, but the effect would be 

lessened by smaller chain lengths of PEG, as confirmed by lower molecular weight PEG-

PEIs (Figure 3.4 and 3.5). Additionally, blockage of amine groups would reduce 

interaction with cellular membranes and endosomes. This may result in lowered 

transfection efficiency responsible for unsuccessful transfection of the PEG-PEI used in 

the previous chapter. PEG/PEI entanglement could further decrease complex stability as 

the interact with water at the surface of the nanoparticle. This interaction would cause the 

TNA to constantly alter its conformation, which would change the conformation of the 

core and may release siRNA prematurely.  
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Lowering PEG% increased PEG-PEI/siRNA interactions and retained transfection 

efficacy of the complex. Reducing the PEG% reduced the minimum amount of polymer 

required for complex formation regardless of PEG MW (Figure 3.4 and 3.5). Lower 

PEG% would reduce the number of PEG chains blocking cationic moieties from 

interaction with both siRNA and cellular membranes. This was supported by observing 

increased surface charge after reduction of PEG% (Table 3.1). Complexes with lower 

PEG% achieved greater transfection efficiency than those with higher PEG% (Figure 3.6 

and 3.7). In fact, complexes with relatively low PEG% and low PEG MW increased 

transfection beyond the unmodified PEI control. This result agrees with others findings 

that PEG-PEI can be more efficacious than PEI152. It should be noted that as PEG MW 

increases, the disparity in transfection efficiency between PEG% also increases. This is 

likely the result of PEG composing a larger weight percentage of the complex and further 

blocking interactions with cellular membranes. For example, when complexes are 

synthesized with 10 % attachment of 5 KDa PEG, their weight percentage of PEG is 

~81%. The PEG weight percentage will be ~30% if the complexes have 1% attachment 

of the same PEG. This increase in weight percentage of PEG on the polymer correlates 

with a larger PEG shell. These trends show the importance of PEG% to influence the 

interactions between siRNA and PEI. While the exact mechanism by which PEG chain 

length reduces transfection is unknown, it is speculated that either the complex is less 

stable145, 153 or unable to escape the endosome86, 154. Additionally, this gives further 

evidence as to why the 2P from the previous chapter did not cause transfection.  

Impurities in PEI were confirmed to alter the physicochemical properties of 

complexes and reduce transfection efficacy at low N/P ratios and thereby alter PEG shell 
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density. PEI stocks that are purchased commercially often include smaller molecular 

weight PEIs that are the result of polymer degradation and synthesis byproducts. Dialysis 

of the PEI stock used in the synthesis of these PEG-PEIs was able to successfully remove 

a portion of these impurities (Figure 3.1A). Removing these residual impurities increased 

the proportional molecular weight of the PEI and the homogeneity of the stock (PEI-d). 

After synthesis of PEG-PEIs using the PEI-d stock (PEG-PEI-d), physicochemical 

properties of PEG-PEI-d differed from PEG-PEI mainly in particle diameter before and 

after complexation with siRNA (Table 3.1).  The increased particle diameter is likely due 

to the increased proportion of larger cationic polymer chains in PEG-PEI-d. Particle 

diameter swelling after complexation was also reduced which indicates fewer PEG-PEI-d 

chains were involved complex formation. Fewer chains involved in complex formation 

increases the homogeneity of the PEG shell surrounding the particle as well as the overall 

homogeneity of the complexes. In PEG-PEI particles, the small PEI impurities can take 

part in siRNA complexation and increase the amount of PEG-PEI needed to neutralize 

the charge of siRNA and increase weight percentage of PEG. Therefore, PEG-PEI 

complexes would have greater PEG content, which is beneficial to reduce the surface 

charge yet disadvantageous to improving transfection. This speculation is supported by 

PEG-PEI-d complexes that showed transfection efficacy similar to PEG-PEI complexes 

yet transfected cells at a lower N/P ratio. 
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3.5. Conclusions 

In this chapter, pegylation density of TNA/siRNA complexes, influenced by factors 

including PEG molecular weight, PEG attachment percentage, and PEI impurities, 

significantly alters transfection efficiency of these complexes. PEG density correlated 

negatively with transfection efficiency of TNAs as low PEG density increased 

transfection efficiency and high PEG density removed transfection ability from the 

particles. This effect also demonstrates why the PEG-PEI (2P) from chapter 2 was unable 

to transfect cells. Additionally, the removal of PEI impurities increased the overall 

transfection efficiency of all complexes at lower N/P ratios. Our findings demonstrate the 

importance of PEG length, PEG attachment percentage, and removal of PEI impurities in 

improving transfection efficacy of siRNA carriers using PEG-PEI. These results may be 

applicable to other cationic polymers forming complexes with siRNA and interacting 

with cellular membranes in a similar way to PEI, such as poly(lysine) and chitosan 

derivatives, and thus provide valuable insights for future development of more effective 

and much safer siRNA carriers.
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4. Chapter 4: Hydrophobic Modifications to TNAs and Non-Specific Reduction of 

Reporter Protein Concentrations. 
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This chapter is adapted from work published in the International Journal of 

Pharmaceutics on June 15th, 2017155. I would like to extend a special acknowledgement 

to Dr. Tadahide Izumi who helped with western blotting of the high molecular weight 

luciferase. I would also like to acknowledge Dr. Piotr Rychahou who helped with cell 

lines and luciferase western blotting methods. 

4.1. Introduction 

Small interfering RNA (siRNA) can suppress mutated genes generating proteins 

which are currently unable to be targeted by small molecule drugs and thus provide a new 

therapy for genetic diseases including cancer 25, 156-157. However, siRNA often shows low 

transfection in vivo due to poor delivery efficiency158. To improve delivery of siRNA to 

target sites, polymer-based non-viral gene vectors have been developed, which include 

ionic complexes between anionic siRNA and cationic polyethyleneimine (PEI)75, 147. 

siRNA/PEI complexes have achieved successful gene silencing in various human cells in 

vitro, but they are unstable in the body105. Polyethyleneglycol (PEG) is frequently used to 

stabilize siRNA/PEI complexes121, 159. The hydrophilic PEG chains surrounding 

siRNA/PEI complexes can shield the particle charge and prevent protein adsorption. The 

siRNA/PEI complexes can be further modified with hydrophobic excipients and other 

additives for improving stability and fine-tuning release of siRNA111.  

 Based on this background, we developed siRNA delivery vectors in the previous 

chapters by using tethered nanoassemblies (TNAs) made from PEG, PEI, and 

hydrophobic pendant groups such as palmitate (PAL)95. TNAs are unimolecular 

assemblies of 30 nm diameter particles having cationic polymer backbone to which PEG 

and a hydrophobic moiety can be covalently conjugated. In previous chapters, we 
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reported that these TNAs enhanced siRNA transfection in a human colorectal cancer 

HT29 cell line as functions of PEG composition and PAL modification. These TNAs 

displayed siRNA transfection efficiency comparable to PEG-PEI formulations developed 

by other research groups136, 160 as well as commercially available transfection reagents 

such as RNAiMAX. Upon further investigation of hydrophobically modified TNAs, 

subsequent batches of PEG-PEI appeared to substantially change siRNA transfection 

efficiency although the mechanism remained elusive95. However, further study of the 

hydrophobic modification to PEG-PEI also revealed that the resulting PEG-PEI-PAL 

TNA (3P) unexpectedly reduced luciferase expression in cells even in the absence of 

siRNA, called the false positive effect.  

The false positive effect on siRNA transfection increases the difficulty in evaluating 

and predicting in vivo performance of PEG-PEI based non-viral gene vectors for future 

studies and clinical applications. Protein reporter assays are commonly used to evaluate 

the transfection efficiency of the siRNA/PEG-PEI complex, and luciferase is a widely-

used reporter protein that offer a quick method for measuring siRNA-mediated gene 

silencing in living cells18, 161-162. Luciferase protein activity is correlated to the amount of 

luciferase protein in the cell following siRNA transfection by measuring luminescence 

using luminogenic substrate 163. Luciferase has a short half-life in live cells, less than 3 

hours164, which makes it ideal for determining long-term siRNA transfection efficiency. 

Any protein left within the cell after incubation with siRNA/PEG-PEI complexes would 

be produced after the siRNA has had a chance to take effect. However, this would not 

account for protein that has been denatured or had its expression reduced by other means. 

If PEG-PEI can interfere with the luciferase reporter assay this way, it would explain 
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siRNA transfection efficiency varying among product batches. Another possible reason 

for inconsistent siRNA transfection of PEG-PEI is the cellular stress response triggered 

by siRNA/PEG-PEI complexes. Off target effects of siRNA have been demonstrated63, 73, 

yet little is known if and how PEG-PEI would induce non-specific gene silencing during 

siRNA transfection.  

Our previous findings suggest that the addition of hydrophobic pendant groups to 

TNAs would influence intracellular luciferase expression by either directly interacting 

with cells or indirectly disrupting the protein synthesis process95, 133. Therefore, this 

chapter aims to elucidate the false positive effect of hydrophobically modified TNAs on 

siRNA transfection by using TNAs made from combinations of PEG, PEI, poly(L-lysine) 

(PLL), palmitate (PAL), and deoxycholate (DOC): PEG-PEI (2P), PEG-PEI-PAL (3P), 

PEG-PLL (2P’), PEG-PLL-PAL (3P’), and PEG-PEI-DOC (2PD) as shown in Figure 

4.1. These PEG-PEI TNAs (+/- siRNA) are characterized by in vitro siRNA transfection, 

cell viability, toxicity and immunoblotting in a human colorectal cancer cell line stably 

overexpressing luciferase (HT29/Luc). Raman spectroscopy is also employed to 

investigate interactions between hydrophobic pendant groups conjugated to the TNA core 

and compounds outside the particles. To investigate the cellular stress caused by TNAs, 

assays determining total protein count, ATP concentration, and cellular membrane 

porosity are used. Data obtained from these experiments are analyzed to determine the 

effects of hydrophobic groups and polymer scaffold condensation on false transfection of 

siRNA/PEG-PEI complexes. Understanding these unexpected outcomes of covalent 

modification to cationic polymers is crucial for future design of siRNA delivery vehicle 

development.   
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Figure 4.1: TNA Scheme 

Progression of TNA development from backbone polymer (PEI or PLL) to 

subsequent random covalent modification with PEG and hydrophobic moiety (DOC or 

PAL) and finally their complexes with siRNA.   
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4.2. Materials and Methods 

4.2.1. Materials and Cells 

PEG (5 kDa, α-methoxy-ω-NHS ester activated) was purchased from NanoCS (New 

York, NY). Branched PEI (bPEI), deoxycholate (DOC), N-hydroxy succinimide, 4-

dimethylaminopyridine, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride 

(EDC HCl), palmitoyl chloride, resazurin sodium salt, sulforhodamine B based in vitro 

toxicology assay kit (TOX6), and poly(L-lysine) (PLL, 30-70 kDa) were purchased from 

Sigma Aldrich (St. Louis, MO). RNAiMAX, 4-12% NuPAGE Bis-Tris precast gels, 

HEPES buffer (pH 8.0, 1 M), MES buffer (0.1 M, pH 5.0), RIPA buffer, pyridine, 

NuSieve GTG agarose, dialysis membrane with molecular cut-off (MWCO) of 6-8 and 

100 kDa, and other organic solvents were purchased from Fisher Scientific (Waltham, 

MA). siRNA (5’-GUUGGCACCAGCAGCGCACUU-3’) was purchased from GE 

Dharmacon (Lafayette, CO). Opti-MEM was purchased from Life Technologies 

(Carlsbad, CA). Mitochondrial ToxGlo™ assay kit and Bradford assay kit were 

purchased from Promega (Madison, WI). McCoy’s 5A, 0.05% trypsin/EDTA, and 

phosphate buffered saline (PBS) were from GE Healthcare (Logan, UT). Fetal bovine 

serum (FBS) was purchased from Atlanta Biologicals (Flowery Branch, GA). 

HT29 human colon cancer cell line was purchased from American Type Culture 

Collection (ATCC, Manassas, VA), and subsequently transfected to establish a cell-line 

stably expressing firefly luciferase (HT29/Luc). Cells were cultured at logarithmic 

growth in a humidified environment with 5% CO2 at 37 °C in McCoy’s 5A media 

supplemented with 10% FBS according to ATCC recommendations. 
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4.2.2. Synthesis of TNAs with different backbones and hydrophobic moieties 

TNAs with a PEI backbone (2P and 3P) were synthesized from 25 kDa bPEI, 5 kDa 

NHS-activated PEG, and palmitoyl chloride as previously reported95. In this chapter, 2P 

was further modified with DOC through covalent conjugation to the PEI backbone. 

Briefly, DOC was mixed with NHS, EDC, and DMAP in a 5:5:0.2 molar ratio in MES 

buffer (0.1 M, pH 5.0). 2P was then added to the mixture in a 1:100 molar ratio of 

2P:DOC at room temperature. After 48 hours, the product was purified by dialysis and 

freeze drying to collect 2PD.  

TNAs with a PLL backbone (2P’ and 3P’) were prepared from 30-70 kDa PLL with 5 

kDa NHS-activated PEG and palmitoyl chloride as previously reported165. 2P’ was 

synthesized by reacting PLL with NHS-activated PEG in water:DMSO:pyridine mixture 

at ratios of 2:1:1. The solution was mixed for 72 hours at room temperature. 2P’ was 

further modified with palmitoyl chloride to create 3P’. 2P’ was dissolved in THF at 40 °C 

and palmitoyl chloride was added in a 1.1:1 molar ratio palmitate:2P’. After 15 minutes 

of mixing, pyridine in a 2:1 molar ratio of pyridine:palmitate was added as a HCl 

scavenger. The solution was reacted for additional 2 hours and purified by ether 

precipitation and dialysis. The product was collected by freeze drying. 

 Purity and molecular weight uniformity of TNAs were determined by gel 

permeation chromatography (GPC, Asahipak GF-7M column, 2 mg/mL, DMF mobile 

phase, 0.5 mL/min, 40 °C). Diameter and surface charge were determined by dynamic 

light scattering (DLS) and zeta potential measurements using Zetasizer Nano (Malvern, 

UK). 
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4.2.3. Determination of minimum complexation ratios of TNAs and siRNA 

TNAs at varying concentrations (0-1 mg/mL) were mixed with 2 µg/mL siRNA 

solutions in Opti-MEM at a 1:1 ratio and allowed to equilibrate for 30 minutes. Each 

mixture (20 µL) was then loaded on to a 1% agarose gel and run at 100 volts for 60 

minutes at room temperature in TAE (Tris-Acetate 0.04 M, EDTA 0.001M) buffer. The 

gel was stained with 100 ng/mL ethidium bromide in a TAE buffer and rinsed 3 times 

with deionized water. The gel was imaged using Typhoon GLA 9500 (GE Healthcare, 

Logan, UT) fluorescent imager with an ethidium bromide filter set. 

4.2.4. In vitro transfection and toxicity efficiency of TNAs  

Cells were plated at 5,000 cells per well into white opaque 96 well plates and 

incubated for 24 hours. After 24 hours, TNA solutions were prepared by adding 100 µL 

of 10 mg/mL TNA solutions to 100 µL of 10 µg/mL siRNA solution or 100 µL of Opti-

MEM. Naked siRNA controls were created with 200 µL of siRNA solutions at 5 µg/mL. 

Opti-MEM (200 µL) was used as the blank control. RNAiMAX controls were created by 

mixing 5 µL of RNAiMAX with 95 µL of Opti-MEM and then either 100 µL of Opti-

MEM or 100 µL of 10 µg/mL siRNA solution for the empty RNAiMAX control or 

siRNA-loaded RNAiMAX control, respectively. Complexes were formed by incubating 

the mixtures for 30 minutes at room temperature, except the RNAiMAX control that was 

incubated for 5 minutes as instructed by the manufacturer. From each well, 20 µL of 

solutions were replaced with their respective complex solutions or controls (n = 6) to 

yield 1 mg/mL of TNA and 1 µg/mL siRNA in the well. The plate was incubated for 72 

hours and then read for bioluminescent intensity using GloMax luminometer. The 

substrate was 100 µL of 0.1 mg/mL luciferin solution in PBS. Luminescent intensity was 
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collected for 10 seconds and reported as percentage of luciferase activity with respect to 

control wells. The data was normalized to cell viability (described below) to account for 

cell death in the reduction of the luciferase signal. 

Three cell viability assays were used in this chapter to consider different aspects of 

cell health. The first assay was a resazurin assay, which measures mitochondrial activity 

in live cells. 10 µL of a 1 mM resazurin solution was added to each well and incubated 

for 3 hours. The plate was read on SpectraMax M5 (Molecular Devices) fluorescent plate 

reader at excitation/emission of 560/590 nm. The readings were subtracted from blank 

controls and reported as percentage of viable cells.  

The second assay was a sulforhodamine B assay for the quantification of cellular 

proteins in live cells. Briefly, cells were fixed with 30 µL/well of provided TCA solution 

at 4 °C for 1 hour. After media removal and air drying, 20 µL/well of sulforhodamine B 

solution was added and allowed to stain for 30 minutes. The stain was then removed, 

washed with 1% acetic acid solution, and air dried. 100 µL/well of 10 mM Tris base 

solution was added and incubated for 5 minutes at room temperature. Absorbance was 

measured at 565 nm excitation and 690 nm emission with a SpectraMax M5 (Molecular 

Devices) fluorescent plate reader. The absorbance at 690 nm is subtracted from the 

absorbance at 565 nm to determine percent viable cells with respect to controls. 

The third assay was for monitoring cell membrane integrity and mitochondrial 

activity of cultured cells, which were measured with the Mitochondrial ToxGlo assay kit 

per manufacturer’s instruction. Briefly, 20 µL/well of the provided bis-AAF-R110 

solution was added to the plate and incubated at 37 °C for 30 minutes. Fluorescence was 

measured at excitation/emission of 495/520 nm using a SpectraMax M5 (Molecular 
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Devices) fluorescent plate reader. Then, 100 µL/well of the provided ATP detection 

reagent was added to the plate and read for luminescence with GloMax luminometer. The 

values were compared to their respective controls (untreated wells) and reported as 

percentages of the control. 

4.2.5. Analysis of Luciferase Protein Expression Levels in vitro 

Cells were plated at 50,000 cells/well in a 12 well clear plate. 24 hours later, 200 µL 

of media were replaced with 200 µL of Opti-MEM, empty TNAs, or siRNA/TNA 

complexes. After a 72-hour incubation at 37 °C, cells were lysed with a RIPA buffer and 

assayed for protein content with a Bradford assay kit (Promega). 100 µg of protein for 

each sample were subjected to electrophoresis through a 4-12% NuPAGE Bis-Tris 

precast gel. Afterwards, the proteins were transferred to a nitrocellulose membrane. 

Primary antibodies used to treat the membranes were anti-luciferase and anti-beta-actin 

(Cell Signaling Technologies). After washing, the membranes were exposed to IgG-

horseradish peroxidase conjugate secondary antibodies for 1 hour and developed with an 

ECL Western blotting substrate (Promega and SCBT). To detect the slow-migrating 

firefly luciferase protein in SDS/PAGE, cells were incubated with the 2P, 2P’, 3P, and 

3P’ for 72 h as described above, and further incubated in the presence of MG132 (40 µM) 

for 6 h. The protein extracts were run in SDS/PAGE and transferred to PVDF 

membranes, which were cut above the intact firefly luciferase protein to exclude the 

intact protein in the membrane, and blotted with the rabbit polyclonal anti-firefly 

luciferase antibody (Promega). The blot was developed with SuperSignal West Femto 

(Pierce, Thermofisher), and the signals were analyzed in ChemiDoc Imaging Systems 

(Bio-Rad). 
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4.2.6. Activity of luciferase protein after pre-incubation with TNAs  

20 µL of 10 mg/mL TNA solutions or RNAiMAX solution were incubated for 10 

minutes in wells of a white 96 well plate (n = 6). Each well contained 80 µL/well of PBS 

with luciferase proteins to obtain 1 mg/mL TNA and 5 ng/mL of luciferase. 100 µL of 

0.1 mg/mL luciferin solution in PBS were added to each well and read using GloMax 

luminometer with an integration time of 10 seconds. Similarly, 2 mL of 10 mg/mL TNA 

solutions or RNAiMAX solution were mixed for 30 minutes with 8 mL of 0.125 mg/mL 

luciferin solution. 100 µL of this solution was then injected using GloMax luminometer 

into each well of a white 96 well plate containing 100 µL/well of 5 ng/mL luciferase in 

PBS. Luminescence was measured and integrated for 10 seconds. Data is reported as 

RLU values. 

4.2.7. Observed interactions of TNAs and components with siRNA through Raman 

spectroscopy 

Raman spectroscopy was conducted in the solid state using a Nicolet iS 50 FTIR with 

a Raman module (Thermo Fisher Scientific, Waltham, MA). The samples were prepared 

on a 48 well metal plate. 100 µL of a 10 mg/mL solution of each sample was added to a 

well. To analyze individual components of 3P and TNAs, 100 μL of water was added to 

each well. For physical mixtures of components, 100 μL of a 10 mg/mL solution of the 

respective component was added to the well. 1 µL of a 1 mg/mL siRNA solution or 1 μL 

of water was added to each well. The loaded metal plate was put at room temp for 30 

minutes to acclimate all samples. The plate was then transferred to dry ice and the 
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samples were frozen. The frozen samples were then freeze dried overnight and then read 

on the Raman. Data was collected and deconvoluted using the Omnic Spectra Software 

suite (Thermo Fisher Scientific, Waltham, Mass.). 

4.3. Results 

4.3.1. Hydrophobic moiety in the TNA core has greater influence on luciferase 

expression reduction than TNA condensation 

Total five TNAs (2P, 3P, 2PD, 2P’, and 3P’) were synthesized to investigate the 

effects of backbone condensation (PEI vs PLL) and hydrophobic groups (PAL vs DOC) 

on siRNA transfection. Both PEI-based (2P, 3P, and 2PD) and PLL-based (2P’ and 3P’) 

TNAs were found uniform in size and contained no impurities as confirmed by GPC 

analysis (Figure 4.2 A & B, Figure S1). DLS measurements showed that all TNAs were 

30-35 nm with 2P, 3P, 2PD, 2P’, and 3P’ having diameters of 29.5, 34.3, 28.9, 31.2, and 

33.4 nm respectively. Zeta potential measurements had all particles with neutral surface 

charge. The siRNA uptake of each particle is shown in Figure 4.2 C & D and Figure S1 

B. 3P had the highest complexation ratio (mass of particle needed to completely complex 

with 1 µg of siRNA) of 1.0 mg per 1 µg of siRNA. This concentration of particle (1 

mg/mL) was chosen along with 1 µg/mL of siRNA to be used for further testing of each 

complex. 

Approximately 38% of the HT29 cells stably expressed a firefly luciferase protein, 

which was sufficient to quantify bioluminescence of cells treated with anti-luciferase 

siRNA. The reduction of the bioluminescent signal when cells are dosed with the 

luciferin substrate typically correlate with siRNA delivery efficacy. To further investigate 
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the unexpected reductions in luciferase expressions (or false positives in siRNA 

transfection), cells were dosed with 1 mg/mL TNAs with and without anti-luciferase 

siRNA for 72 hours. Figure 4.3A shows a reduction in luciferase protein of HT29 close 

to 50% when treating cells with 3P, and near 40% when treated with 2PD regardless of 

the presence of siRNA. Western blots also show a reduction in cellular luciferase 

concentration after treatment with 2PD and 3P (Figure 4.3B). 2P remains unable to 

reduce the luciferase expression, which is consistent with previous findings. None of 

these particles showed significant toxicity on a resazurin assay. These results confirm that 

both PLA and DOC induce the false positive effects. Replacing the TNA backbone with 

PLL from PEI yielded similar results (Figure 4.4). 2P’ was unable to reduce luciferase 

expression just as 2P. However, 3P’ reduced the expression of luciferase by 

approximately 25% regardless of the presence of siRNA. Interestingly, 3P’ shows a false 

positive but not to the same extent as 3P. 
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Figure 4.2: Characterization of TNAs 

Gel permeation chromatography (GPC) spectra shows particle uniformity and purity 

of PEI based TNAs (A) where black chromatograph represents 2P and green represents 

3P and PLL based TNAs (B) where black chromatograph represents 2P’ and green 

represents 3P’. Gel electrophoresis of PEI based TNA/siRNA mixtures (C) and PLL 

based TNA/siRNA mixtures (D) with 72 nM siRNA and varying concentrations of TNA 

to determine the ratio of TNA to siRNA needed to form complexes (black boxes). 
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Figure 4.3: TNA in vitro Luciferase Reduction  

A: luminometric assay of luciferase (left) and viability assay (right) after 72-hour 

incubation with each particle. Dark grey bars represent each condition without siRNA 

and light grey bars represent condition with 1 µg/mL anti-luciferase siRNA. B: Western 

blotting results after 72-hour incubation with 3P and 2PD including an untreated control. 

siRNA in each condition is represented by N (no siRNA present) or L (anti-luciferase 

siRNA, 1 µg/mL). * denotes that the column is significantly different from the control 

condition (p<0.01)   
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Figure 4.4: PLL Based TNA in vitro Luciferase Reduction 

luminometric assay of luciferase (left) and mitochondrial activity viability assay (right) 

after 72-hour incubation with each particle at a concentration of 1 mg/mL. Grey bars 

represent each condition without siRNA and striped bars represent condition with anti-

luciferase 1 µg/mL siRNA. * denotes that the column is significantly different from the 

control condition (p<0.01)  
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4.3.2. Luciferase activity is unaffected by TNA interactions with either luciferase or 

luciferin 

Although the luciferase assay is a good indicator of protein activity within the cell, it 

cannot distinguish between proteins that have lost activity and proteins that decrease in 

number. Previous western blots confirmed a reduction in luciferase protein after 

incubation with 3P and 2PD, yet contributions to loss of luciferase activity from 

interference with TNAs still need to be considered. To test for direct TNA-protein 

interaction, TNAs were incubated with luciferase for 10 minutes at room temperature and 

then probed changes in luminescence level. As shown in Figure 4.5A, no reduction in 

luciferase activity was observed. In fact, 2PD and 3P even increased protein activity 

slightly. When TNAs were incubated with luciferin before adding luciferase only 2P 

reduced the protein activity under this condition (Figure 4.5B), although it did not show 

false positives in the in vitro assays. These results indicate that the TNAs with 

hydrophobic moieties do not reduce luciferase activity through direct interactions with 

luciferase or luciferin. 
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Figure 4.5: Direct TNA/Protein and TNA/Substrate Interactions   

A: Interaction between TNAs and Luciferase protein was observed by incubating the 

protein and TNA together for 10 minutes. Then luciferin solution was added to the well 

and a luminescence reading was taken. The readings were normalized to the control well 

of luciferase protein alone. B: TNA and Luciferin (substrate to luciferase) direct 

interaction was observed by 30-minute incubation of TNA and Luciferin before an 

injection of luciferase solution was added to the well. A luminescence reading was taken 

and the values normalized to the control well which did not contain TNAs.   
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4.3.3. Raman spectroscopy indicates that hydrophobic moieties contribute to 

TNA’s interaction with siRNA 

To better understand how palmitate could interact with other cellular components and 

induce cell stress, Raman spectroscopy of 2P, 3P, and each of their individual 

components was conducted (Figure 4.6). Each component was allowed to interact with 

siRNA, which does not appear on the Raman spectra (Figure S2), while their spectra 

were compared for change in vibrational intensity. Interactions between siRNA with PEG 

or PAL were minor but the interaction between PEI and siRNA was more pronounced. 

However, physical mixtures of PAL/PEI and PAL/PEG showed unexpected interactions 

with siRNA. PEG/PAL showed a large change in vibrational intensity although neither 

component showed significant interaction with siRNA on their own. PEI/PAL increased 

its vibrational intensity, which indicates that the polymers are more mobile in the 

presence of siRNA. Raman spectra of 2P and 3P with siRNA slightly changed after the 

addition of siRNA although the exact influence of PAL in these interactions could not be 

determined.  

To account for any variance in measurement of the polymers, PEG polymer was 

analyzed under a number of conditions to determine what effect sample conditions would 

have on the measurements taken. Figure S3 indicates that samples of PEG taken from the 

same stock and analyzed in succession would have different peak intensities but the 

number and location of peaks would be the same. Referencing peak intensity to the 

largest peak of the of the spectra determined that these peaks were all in the same ratio 

(Figure S4), which supports why the Raman spectra in Figure 4.6 use normalized 

intensity. Figure S5 indicates that Raman spectra of the same sample over a few hours 
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have very minor changes. Though the Raman spectra of the polymer samples were all 

taken in succession, no experiment took longer than 2 hours to perform and therefore 

peak changes between samples should not have occurred.  
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Figure 4.6: Raman Spectroscopy of TNAs and Their Components 

Raman spectrographs of each component of TNAs, a physical mixture or components, 

and fully formed TNAs. Spectrograph A is the raw form of the Raman shift and 

spectrograph B is the deconvoluted raw spectra. Green lines indicate components or 

TNAs mixed with siRNA and black lines indicate components or TNAs alone.   
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4.3.4. Hydrophobically modified TNAs reduce protein expression, membrane 

integrity, and ATP concentration but retained mitochondrial activity 

Resazurin cell viability assay was used to determine levels of live cells after 

incubation of TNAs. The resazurin assay measures redox activity within the cell, but this 

process does not represent a complete picture of cell health. Changes in ATP content, 

total protein amount, and cell membrane porosity were also investigated to determine the 

presence of cellular stress. Figure 4.7 shows differences among these cytotoxicity assays. 

3P did not have a significant impact on redox activity in the cell but ATP and total 

protein levels in the cells greatly decreased. Additionally, membrane porosity decreased 

with incubation of 3P.  
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Figure 4.7: Alternative Cell Health Markers After Incubation with 3P 

Four cell viability markers were examined to elucidate cell stress occurring within cells 

after 72-hour incubation with empty 3P complexes at 1 mg/mL. Mitochondrial activity 

was analyzed using the resazurin assay, total protein count was determined using the 

Sulforhodamine B assay, total ATP count was done using a luminometric assay in HT29 

cells that did not express luciferase, and membrane integrity was analyzed by an assay 

that measured the cells ability to reduce Bis-AAF-R110 which can only be reduced from 

inside the cell. Values were plotted as the log of the ratio between the cells dosed with 3P 

and the control cells. Values statistically different from 0 are denoted by (*) (p<0.01) 

  



94 

 

4.3.5. TNAs increased ubiquitination and degradation of luciferase  

Western blotting determined the extent of ubiquitination of luciferase to gain a better 

understanding of the fate of the luciferase protein after TNA treatment. Western blot 

analysis of cells dosed for 72 hours with 2P, 2P’, 3P, and 3P’ and an additional 6 hours 

with MG132 proteasome inhibitor confirmed the presence of both intact luciferase and 

ubiquitinated luciferase (Figure 4.8). The proteasome inhibitor prevents the degradation 

of ubiquitinated luciferase so that it can be visualized on the blot. Figure 4.8 A shows the 

reductions in luciferase concentration previously seen with 3P and 3P’ and displays little 

effect by the proteasome inhibitor MG132. Initially ubiquitinated luciferase decreased in 

cells dosed with 3P and 3P’, but its corresponding bands increased upon addition of the 

proteasome inhibitor (Figure 4.8B). All TNAs induced an increase in ubiquitination of 

luciferase while 3P and 3P’ caused the highest increase in this band comparatively. This 

indicates that 3P and 3P’ increase ubiquitination of luciferase and they may also increase 

proteasome activity. 
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Figure 4.8: TNA Induced Ubiquitination of Luciferase 

Western blots detailed the expression of (A) luciferase, and (B) high molecular weight 

luciferase after 72h dosage of TNAs in HT-29-luc cells. Bar graphs represent 

quantification of luciferase/beta tubulin ratio from western blot and are presented as the 

expression percentage of luciferase compared with the untreated control. Additionally, 

cells were dosed as indicated with MG132 proteasome inhibitor for 6h before cell lysis. 

Cellular expression of luciferase was compared with beta tubulin. * denotes that the 

column is significantly different from the no particle, no MG132 condition (p<0.01)   
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4.4. Discussion 

In chapter 2, PEG-PEI TNAs were investigated to improve siRNA delivery by 

modulating complex stability through addition of palmitate, a hydrophobic moiety95. 

Although those TNAs modified with a hydrophobic group PAL (3P) caused increased 

transfection, their complex stability was lowered. In further investigation of how these 

TNAs were able to accomplish this effect, an siRNA-independent reduction of luciferase 

in cells treated 3P was observed in luciferase assays for transfection efficiency (Figure 

4.3), referred to as a false positive effect. These false positives can be detrimental in 

developing siRNA-based therapeutic options that require specific gene silencing for 

targeted gene therapy. Therefore, this chapter further investigated potential causes for the 

unexpected protein reduction by using TNAs made from PEG-PEI with different 

hydrophobic pendant groups (PAL vs DOC) and polymer backbone (PEI vs PLL).  

Structural differences in hydrophobic groups may influence false positives caused by 

TNAs differently. TNAs attached with rigid bile acid DOC (2PD) and the flexible fatty 

acid PAL (3P) pendant groups were investigated as these hydrophobic groups are 

structurally different. 2PD observed a reduction of luciferase activity slightly less than 

3P, indicating that the false positive effect is not unique to palmitate. However, it is 

unknown if the decreased protein activity is due to inactivated protein or reduced cellular 

concentration of luciferase because the assay does not differentiate between the two 

conditions. To observe any loss of activity of luciferase due to TNA interaction, TNAs 

were incubated with free luciferase protein or free luciferin substrate before addition of 

the other component. Since neither 3P nor 2PD reduced the activity of luciferase, the 

protein concentration should be lower in the cell. Western blotting supported this 
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speculation, indicating that 3P and 2PD reduced luciferase protein concentrations. This 

determined that the false positive transfection is due to reduced cellular protein 

concentration brought on by the hydrophobic moiety.  

Another factor that may affect the false positive effect is composition of the cationic 

backbone which influences the TNA’s secondary structure formation. Secondary 

structure refers to the folding or condensing of the polymer structure either on its own or 

in the presence of anionic groups. This can influence the location of components within 

the TNA’s core. Linear PLL, another well studied cationic polymer for gene transfection, 

replaced branched PEI as the backbone for TNAs, creating 2P’ and 3P’. These particles 

were similar in size and surface charge to PEI based TNAs. The false positive effect was 

observed in 3P’ but initially to a lesser extent than 3P. While changing the backbone 

structure mildly decreased the false positive effect, it did not eliminate it. This indicates 

that the contribution of the backbone structure to the false positive effect is significantly 

less than that of the hydrophobic moiety.     

Raman spectroscopy offers another method to better understand PALs influence on 

false positives by examining PAL’s influence on TNA interaction. Raman spectroscopy 

measures the vibrational energy of chemical bonds in a compound which can determine 

the influence of TNA components on interactions with other compounds166-168. These 

bond vibrations are unique and will change by either shifting their energy spectrum or 

reducing signal intensity depending on interactions or conformation of TNA components. 

Raman spectroscopy showed the differences in vibrational energies after the interaction 

between siRNA and components of 3P, their physical mixtures, and finally the complete 

TNAs. Initially, the Raman spectra detected minor intensity reductions when siRNA 
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interacted with each separate component of 3P (PEG, PEI, and PAL). However, physical 

mixtures of components containing PAL (PAL/PEI and PAL/PEG) showed larger 

vibrational intensity changes than the components. The changes indicated that the PAL 

had influence over the conformation or interaction of the components. When each 

component is tethered in a TNA, the vibrational changes are more intense in some areas 

as siRNA interacts with TNAs. Even if the PAL and siRNA are not directly interacting, 

PAL may influence the way 3P condenses around the siRNA, which would further alter 

the particle conformation and disrupt vibrational energies. While this is not a strong 

correlation, it gives evidence that the inclusion of PAL in the TNA does influence the 

TNA condensation when it comes in to contact with other compounds.  

PAL influence over TNA interaction with cellular components could induce cell 

stress without significant cytotoxicity. Cell stress is a condition where cell metabolism, 

protein concentration, and gene expression may be altered to combat cellular damage or 

sudden changes in environment169. Though cell stress often leads to cytotoxicity, it can 

still be present without inducing significant toxicity and can be overlooked by some 

cellular viability assays. The viability assay used in conjunction with the transfection 

assays was a resazurin based assay which is a widely-used method for determining cell 

viability in mammalian cells170. Resazurin is reduced to a fluorescent molecule, resorufin, 

in the cell indicating redox activity which correlates with cell viability. This assay 

focuses on cell metabolism and does not account for other indicators of cell health. Three 

other markers of cell health were examined to obtain a more complete picture of cell 

health: total protein concentration in cells, ATP production, and membrane porosity. 

Cells dosed with 3P exhibited less total protein, lower ATP concentration, and more 
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porous membranes than those of the control group. Lowered total protein production does 

indicate cell death has occurred but the amount of cell death indicated in Figure 4.7 

would not completely account for the reduced luciferase concentration. More porous 

membranes and lowered ATP production171 are significant signs of cell stress and adds 

further evidence that 3P is not completely harmless to the cell. These factors support that 

3P has an adverse effect on the cells that leads to cell stress but the specific cause of the 

stress is uncertain.  

Core components of hydrophobically modified TNAs have been known to cause cell 

stress in other formulations which may give possible mechanisms to cell stress induced 

by 3P. Free PAL can cause cell stress and autophagy through endoplasmic reticulum 

stress172, free radical formation173, toll like receptor activation174, caspase mediated 

apoptosis175, and glucose metabolism reduction176. Lipids attached to cationic head 

groups have been shown to increase enzyme inhibition inside cells, a result of both 

cationic and lipophilic regions177. Additionally, cationic polymers and some lipids can 

reduce protein expression and increased protein degradation due to cell stress178-181. 

However, it should be noted that these cell stress mechanisms are due to free components 

either alone or removed from their respective nanoparticles. The purification methods 

used during TNA synthesis removed all free hydrophobic groups and the hydrophobic 

moieties to the PEI backbone are stable so that no free hydrophobic groups would be 

present in formulation. However, the chemically conjugated hydrophobic moieties may 

be able to interact with cellular components in a similar way to these free hydrophobic 

groups. Although these formulations differ from TNAs, they present possible 
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mechanisms by which hydrophobic moieties can cause cellular stress through interaction 

with the cell.  

3P induced cell stress may produce false positives by causing fluctuation of cellular 

protein concentration, including luciferase. One mechanism of protein reduction in the 

cell is increased ubiquitination of proteins, which increases their proteasome degradation. 

Protein ubiquitination occurs normally in the cell as part of the ubiquitination-proteasome 

pathway but is increased in times of stress or when certain pathways are activated, such 

as autophagy182. Western blotting confirmed an increase in the molecular weight of 

luciferase inside cells dosed with hydrophobically modified TNAs. Although this is not 

direct evidence of luciferase ubiquitination, an increase in molecular weight of a protein 

can often be the result of ubiquitination. Additionally, hydrophobic groups may cause 

oxidative and endoplasmic reticulum stress which has been shown to increase protein 

ubiquitination183-184. These stresses can also lead to regulated cell death which would 

increase protein ubiquitination185 as well. Although the exact cellular mechanism 

inducing the luciferase reduction is unknown, this gives a plausible mechanism for the 

interactions hydrophobically modified TNAs are generating in the cell.  

Based on the results of this chapter, we propose that the hydrophobically modified 

TNAs can interact with cellular components by allowing hydrophobic groups to influence 

TNA interactions with compounds outside of the nanoparticle. The data suggests that the 

hydrophobic group is most influential, compared with backbone structure, in generating 

the false positive. To achieve this, the hydrophobic component would be required to 

interact near the surface of the TNA. TNAs exist as a single polymer, core/shell systems 

regardless of the presence of siRNA, as discussed in chapter 3, and empty TNAs should 
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behave similarly to complexed TNAs. Hydrophobic moieties are housed in the core of the 

TNA and the PEG shell should prevent their interaction while the TNA maintains its 

secondary structure, or folded state. However, TNAs could be in a state of equilibrium 

between the folded and unfolded states. The addition of PEG and PAL will drive the 

equilibrium toward the folded state, forming a core/shell environment, but a small 

percentage of the unfolded state will persist. This unfolded state may allow the PAL to 

interact with cellular components, possibly causing endoplasmic reticulum stress. 

While this mechanism accounts for interactions outside the TNA, the TNA may 

additionally interact with cellular components reaching its core. TNAs may also capture 

molecules needed for cellular metabolism, such as ATP or other important cellular 

process cofactors, which are small enough to enter the particle core. Entrapping these 

important cellular molecules would have induced cellular stress causing non-specific 

reduction in luciferase. In particular, 3P has both cationic and hydrophobic regions, and 

thus they can attract coenzymes like ATP through both ionic and hydrophobic 

interactions. After the coenzyme is charge neutralized, they may be entrapped in TNAs 

further strongly by hydrophobic interactions. We previously confirmed that TNAs altered 

drug release patterns in the presence of hydrophobic excipients outside of the TNAs, yet 

these hydrophobic excipients were not found to enter the TNA but weakly bound the 

surface of the TNA186. Therefore, binding of cofactors to the surface or inside the TNA is 

possible and can cause cell stress. Further investigation into these mechanisms is ongoing 

and will be reported in future studies. 
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4.5.  Conclusions 

This chapter demonstrates a false positive outcome of the luciferase based 

transfection efficiency assay induced by siRNA/TNA complexes modified with 

hydrophobic pendant groups. This effect was not specific to any hydrophobic group 

tested and may be triggered by other groups and factors including polymer composition, 

conformation, and complex stability. Altering the condensation mechanism of the TNA 

based on backbone linearity appeared to reduce this effect but was unable to eliminate it. 

Additionally, the hydrophobic moieties of the TNA appeared to induce some mechanism 

of cell stress. This stress likely caused the over-ubiquitination and degradation of 

luciferase. The exact cellular mechanism which induces this effect remains elusive but 

these results clearly indicate that the hydrophobic core components of the TNAs can 

induce false positive results in the luciferase based transfection efficiency assay. These 

findings provide a valuable insight into designing non-viral gene vectors made from 

PEG-PEI and potentially other types of cationic polymers. 

4.6. Limitations of Observations 

It should be noted that while the data in this chapter provides evidence for the 

conclusions being made, there are limitations to what the data can concretely tell us. We 

concluded that cellular stress is likely inducing an over ubiquitination of the luciferase 

protein as shown by the increased luciferase molecular weight. While the western blots 

and the viability assays point in the direction of this conclusion, it is more suggestive than 

conclusive. Future experimentation can elaborate on these findings in order to strengthen 

these conclusions. The viability assays indicate declining cell health but cellular stress 

can be more concretely measured through reactive oxidative species detection or  
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generalized oxidative stress assays. Comparing these results and the luciferase 

concentrations to a total cell count would also yield a more concrete characterization of 

normalization of cellular viability assays and cellular luciferase activity. Additionally, the 

western blot data shows an increase in high molecular weight luciferase which may 

indicate increased ubiquitination but overall ubiquitination can be measured on a western 

blot. Proteasome activity can be assayed separately which would further indicate any 

upregulation of the ubiquitin-proteasome pathway. Overall, the data in this chapter 

supports our conclusions but key control experiments would strengthen our findings.     
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5. Chapter 5: Conclusions 
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5.1. Core components of TNAs influence siRNA/TNA complex stability and 

transfection efficiency 

In this work, the effects of hydrophobic core modification on transfection efficiency 

and TNA/siRNA complex stability were examined. It was found that increasing 

hydrophobic content of the core can increase transfection efficiency but at the cost of 

reduced complex stability. The hydrophobically modified TNAs were unable to protect 

siRNA from degradation as the siRNA’s interaction with the amines present in the core 

of the TNA is likely blocked by the hydrophobic moiety. These hydrophobic groups had 

significant effects outside the core by increasing the endosomal escape ability of the 

TNA.  

The hydrophobic moiety used in the TNA did not initially interfere with the 

transfection evaluation assays but upon subsequent batches it began to cause false 

positives in the assay. A luciferase based assay was used in all parts of this work to 

evaluate transfection efficiency of the TNAs. However, subsequent batches of 

hydrophobically modified TNAs caused a reduction in luciferase activity relative to the 

control without siRNA being present. This effect was not specific to the type of 

hydrophobic moiety used and it was determined that the hydrophobic moiety was causing 

cellular stress that wasn’t observed using the mitochondrial activity assay. The reduction 

of luciferase was likely caused by over-ubiquitination and subsequent rapid degradation 

of the protein brought on by cellular stress caused by the hydrophobically modified 

TNAs. This work reinforces the necessity of proper controls to account for unexpected 

results such as this and calls attention to the inclusion of hydrophobic groups in 

unimolecular nanoparticle systems. 
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Although hydrophobic core modification of TNAs shows beneficial properties, such 

as increased endosomal escape and transfection efficiency, proper selection of these 

groups is crucial to siRNA delivery vehicle design. In this work, it was demonstrated that 

the core components of TNAs can have negative effects outside of the TNA. Proper 

selection of core components will help to reduce their negative effects and improve 

overall efficacy of the TNA. Though these effects were observed using a unimolecular 

PEI based nanoparticle, these results should be applicable to other cationic polymer based 

delivery vehicles that interact with siRNA as a single polymer and improve delivery 

vehicle design. 

5.2. PEG shell density effects transfection efficiency and complex stability 

This work demonstrated that PEG shell density influenced the overall transfection 

efficiency of the TNAs. In chapter 2, PEG-PEI (2P) was not found to transfect cells 

though other groups have had success with this formulation. Decreasing the pegylation 

density of the 2P increased its transfection efficiency past that of unmodified PEI. This 

was observed by altering all factors effecting shell composition including PEG molecular 

weight, PEG attachment percentage, and reduced PEI impurities in the synthesis stock. 

Additionally, reducing the PEI impurities also decreased the number of polymers 

involved in siRNA/TNA complex formation. This further increased the unimolecularity 

and stability of the complex.   

The effect of pegylation density on transfection efficiency and stability of the TNA 

complexes indicates that future particle design should limit the shell density in order to 

delivery vehicle efficacy. The results of this work indicated that some pegylation density 

was beneficial to the transfection efficiency of the TNA. Additionally, complexes were 
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more unimolecular after a moderate amount of pegylation and removal of PEI impurities. 

To obtain these beneficial effects, particle design needs to include a consistent and 

balanced shell density for the most efficacious delivery vehicle. Considering that 

pegylation is one of the most common shell modifications nanoparticles, these findings 

may also be applicable to other cationic polymer based delivery vehicles.  

5.3. Future Directions  

The data presented in this document shows a number of the complexities and 

problems with developing a cationic nanoparticle based siRNA delivery system. While 

the effects of modifications to the TNA on siRNA transfection were determined by this 

work, siRNA transfection issues made it difficult to examine the effects further. The 

TNA in its current form must reduce its pegylation percentage in order to deliver siRNA 

more efficaciously in vitro and control the location of the hydrophobic moiety in the core. 

Additionally, issues with hydrophobic modification of TNAs needs more elucidation. 

Therefore, the design of the TNA needs to be altered in order to examine the effects of 

improve the delivery of siRNA and  

TNAs can be redesigned while being true to their underlying values: a stable system 

that can form unimolecular complexes with siRNA. A unimolecular system can be 

formed using a single large polymer linked to itself or many smaller polymers linked 

together. Linking multiple smaller PEI polymers through crosslinking would create a 

more rigid core where hydrophobic component would be more tightly sequestered. This 

would help control or even eliminate the issues seen in this work from the hydrophobic 

group. The crosslinked TNA could then be pegylated at a lower percentage compared to 

the original TNAs. The resulting TNA could then be used to investigate the effect of 
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different hydrophobic moieties and attachment percentages on siRNA/TNA stability and 

transfection efficacy. Ideally, the resulting TNAs could be examined for siRNA/TNA 

stability using isothermal calorimetry in order to obtain a more succinct measure of 

binding stability. The results of these studies would generate more information on the 

effects of TNA/siRNA binding stability on transfection efficiency to produce a more 

efficacious siRNA delivery vehicle and further their design. 

The issues seen with hydrophobic modification also warrant further study and 

elucidation. While this work provides evidence that the hydrophobic groups increase 

ubiquitination of our reporter protein, it is unknown exactly what effect the hydrophobic 

group has on the cell. Multiple cell lines should be investigated to determine how broad 

this effect is as well as other protein concentration assays to determine the overall 

ubiquitination of proteins in the cell and proteasome activity. The viability assays should 

be compared to total cell counts in order to give a more succinct term of specific cell 

health factors per cell. Further elucidation of the pathways that the hydrophobic groups 

activate, through western blotting or RT-PCR, would help identify the cause of the 

cellular stress. This direction would allow for better choices of TNA core components 

and control or reporter proteins. Understanding this effect will be valuable for the future 

of siRNA delivery vehicle design.  
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6. Supplemental Figures
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Figure S1: Characterization of 2PD TNA 

A: Gel permeation chromatography (GPC) spectra shows particle uniformity and purity 

of 2PD B: Gel electrophoresis of 2PD with 72 nM siRNA and varying concentrations of 

TNA to determine the ratio of 2PD to siRNA needed to form complexes (black box). 
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Figure S2: Raman spectra of siRNA 

The same amount of siRNA used in Raman experiments described in section 4.2.3 was 

freeze dried to a well on the Raman sample plate. The subsequent Raman spectra of 

siRNA shows very minor peaks. The peaks of siRNA will not interfere with the peaks of 

Raman samples containing siRNA as the Raman intensity of these peaks are very low.  
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Figure S3: Raman spectra comparison of multiple PEG samples 

Raman spectra of PEG from 3 separate wells of the sample plate. 100 uL of a 10 mg/ml 

aqueous solution of 5 kDa molecular weight PEG was freeze dried in three separate wells 

of the Raman sample plate. Raman spectra was taken of each well in succession. Each 

color represents a different well. Although peak heights change between runs, the 

numbers and position of peaks did not. 
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Figure S4: Normalized Raman spectra comparison of multiple PEG samples 

Normalized Raman spectra of PEG from figure S2. The Raman spectra of each PEG from 

figure S2 was normalized to its highest peak. The overlaid spectra show that peak ratios 

and heights match between wells of the same sample. Each color indicates a different 

well.    
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Figure S5: Multiple Raman spectra comparison of single PEG sample 

Raman spectra of PEG taken at 3 different time points. 100 uL of a 10 mg/ml aqueous 

solution of 5 kDa molecular weight PEG was freeze dried in one well of the Raman 

sample plate. Raman spectra was taken of the same well 3 separate times with a 1 hour 

interval between each run. Each color represents a different run. The peaks show minor 

differences between each run. 
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