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ABSTRACT OF DISSERTATION 

TOWARDS THE TOTAL SYNTHESIS OF 7-EPI-CLUSIANONE 

 

Polycyclic polyprenylated acylphloroglucinols (PPAPs) are plant- (Guttiferae) derived 

natural products. They have fascinating bicyclo[3.3.1]nonane-2,4,9-trione or 

[3.2.1]nonane-2,4,8-trione cores decorated with prenyl or geranyl groups. More than 200 

PPAPs have been isolated, but only a few of them have been synthesized, although most 

of the synthesized PPAPs are of type A and have an exo substituent at C (7). Here, we are 

trying to make a type B 7-endo PPAP, 7-epi-clusianone. The synthetic plan involves an 

alkynylation–aldol strategy to construct the bicyclic core. Having established the bicyclic 

core, the synthesis presents a new challenge: the oxidation of a very hindered 2-alkenone 

to the β-hydroxy 2-alkenone.  
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1 Introduction to natural products 

1.1 Introduction 

According to Wikipedia, natural products (NPs) are defined as compounds or 

substances that are produced by any living organism.1, 2 Scientifically speaking, however, 

secondary metabolites are referred to as NPs. Their source may come from plants, marine 

organisms, or animals. From the beginning of time, NPs have been the main source of 

sustenance for civilization. Moreover, the NPs enriched with medicinal properties, in 

particular—obtained from various plants, marine organism, and animals—have been 

fighting diseases over several millennia.3-5 Mesopotamian inhabitants used to take clay 

tablets as medicines to cure several diseases 4000 years ago.4, 6 Ancient manuscripts found 

in India, China, and North Africa revealed that the inhabitants of those areas were aware 

of distinct medicinal properties of various plants. In early Egypt, scientists knew about the 

properties of different NPs that preserved mummies for ages without any decomposition. 

Those scientists most likely drew pictures of various usages of medicinal plants on the 

walls of pyramids.7 From folklore, there were traditional medicines, which are still 

common in modern households, used to fight minor illnesses all over the world. For 

example, mandrake helps ease pain, turmeric is used as a medicine for lowering blood 

pressure, and garlic is used to reduce the cholesterols in blood. Likewise, a Chinese herb, 

artemisinin, also known as qinghaosu, has been used to treat malaria for ages. Youyu Tu 

won the Nobel Prize for medicine in 2015 for her discovery of this herb’s usages. NPs not 

only aid in medicine but have also influenced civilizations across the globe. Because of 

them, some cities were built to cater the need of NPs for foreign traders. Romans and 

Greeks knew about one of the properties of red chilies in preserving meat from rotting. 

They sailed to Muziris port, now in Cochin, India, in search of red chilies. Indigo played a 
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significant role in the Peasant Movement in India back in 1870. Indigo, a plant that grows 

in mostly river deltas, was used for dying clothes and was in high demand by mills across 

England in the 1870s when the Industrial Revolution was at its peak. In other words, NPs 

have influenced human civilization in many ways, but most prominently, via medicinal 

benefits that are the primary source of their relevance today. 

In the 19th century, when experimental science was making advances, Friedrich 

Sertürner, a 20-years old German chemist, first isolated morphine (1) from opium and 

studied its effects on humans and dogs (Figure 1.1.1).8  

 

Figure 1.1.1. Some important natural products 

Then it followed that other NPs were discovered such as atropine (2),9 strychnine (3), a 

‘Bitter Nemesis’,10 and most recently, taxol (4).11 The most common anti-inflammatory 

drug, aspirin (5), was derived from salicin, a natural product extracted from the bark of the 

willow tree. Even in the present age of chemical biology, NPs are still the best source of 

life-saving drugs and inspiration for the new drug molecules. Many pharmaceutical 

companies, however, have reduced their research on NPs because of HAT screening and 

combinatorial drug research. Despite that, since 1940, out of 175 anticancer drugs, 141 
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small molecules were either directly taken from NPs or inspired by NPs. From 1981 until 

now, 75% of the small molecules and anti-cancer drugs were directly related to NPs.12 In 

2010; twenty new drug molecules came to the market, and half of them were from NPs.13 

According to WHO report, 80% of the world’s population still relies on plant-based 

materials for minor illnesses. Recently, Newman and Cragg published a review article in 

J. Nat. Prod, where they presented 34 years of data showing that one-third of the prescribed 

drugs are directly related to NPs, which reiterates the point: NPs are still a source of major 

drug discovery (Figure 1.1.2).13 

 

Figure 1.1.2. % Natural products/year (the figure has been taken from Newman and 

Cragg’s recent article).13  

1.2 Introduction to PPAPs  

Plants from Clusiacecae (Guttiferae) and related families, namely, Symphonia, 

Allanblackia, Ochrocarpos, and Moronobea, are known for their traditional medicinal uses 

across the globe.14-16 Since prehistoric times, people have been using these plants as a 

source of medicine for treatment of various diseases, like fever, diarrhea, and fungal 

infections. In general, Guttiferae plants are found all over the world, but in particular, in 

tropical regions. Fruits, flowers, and barks of the timber from this family of plants have 

been major sources in folklore medicine. Ancient Greeks used Saint John’s wort (SJW) as 
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a remedy for depression. It was also effective in treating small burn and skin injuries.17 

SJW is a small- to medium-height herbaceous plant with yellow flowers. It is widespread 

in the northern part of Europe, and it is cultivated in North America. It is harvested and 

dried in late summer.  

 

Figure 1.2.1. Representative PPAP 

The dried herbs consist of a considerable number of phenolic derivatives of flavonoids, 

hypericin (about 0.1%) and pseudohypericin (about 0.2%). It is napthodiathone, however, 

that is responsible for the antidepressant activity. The famous Greek philosopher, Aristotle, 

advised Spartans to use propolis—a complex material produced by honeybees, containing 

primarily wax and resins collected from different buds or plant secretions—to heal wounds. 

Aristotle probably got inspiration from honeybees, which use resin and latex to construct 

hives. After killing intruders, honeybees keep the corpses of the intruders in the hives, 

which normally would cause bacterial infection in the bees. To avoid this, they use propolis 

to preserve the corpses. Studies have revealed that propolis contains nearly 200 

compounds.18, 19 The composition of propolis differs from region to region because of the 

biodiversity in Guttiferae plants. Propolis and hive extracts have shown a wide range of 

biological and medicinal attributes, such as anticancer,20 antioxidant, antiinflammatory,21 

and antimicrobial properties.22 Nemorosone was identified as one of the active ingredients 

in propolis. In the western part of India, especially the coastal region of Maharashtra, the 
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dried rind of the fruits from Garcinia, a plant from Clusiacecae family, is used to garnish 

the flavor and color of a curry. In turn, the famous kokum curry has been very effective in 

treating gastric ulcers.23  

1.3 Classification of PPAPs  

 

Figure 1.3.1. Core structures of PPAPs 

Recently, organic chemists have become more interested in secondary metabolites 

produced by these plants from the Guttiferae family. This is due in large part to the 

antidepressant activity of Hypericum perforatum, popularly known as St. John’s wort. 

Research data have shown that plants from these families contain a novel class of 

compounds, polycyclic polyprenylated acylphloroglucinols (PPAPs). Until now, more than 

200 PPAPs have been identified. After much rigorous analysis of these isolated PPAPs, 

researchers have found that they feature either bicyclo[3.3.1]nonane-2,4,9-trione or 

bicyclo[3.2.1]octane-2,4,8-trione core (Figure 1.3.1). These scaffolds are decorated with 

prenyl or geranyl group and sometimes also with lavandulyl or isolavandulyl side chains.  

Depending on unique structural patterns, PPAPs are broadly classified into two categories, 

namely, type A, type B (Figure 1.3.2). The classification is based on the spatial 

arrangement of prenyl and acyl groups on in the main scaffold. Type A has an acyl group 

at C1 and an alkyl group at C3. C1 is next to a quaternary center at C8, whereas, in the case 

of type B, the acyl group is at C3.7  
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Recently, some unusual structural patterns, which do not fall in the above 

classification, have been found in PPAPs.24, 25 Often, PPAPs can undergo further oxidation 

in prenyl or geranyl side chains to add more structural complexity, like in garsubellin A,26 

where the prenyl group undergoes further oxidative addition of C2 oxygen or C4 oxygen 

to form a tetrahydrofuran type ring in the molecule.27 Adamantane is also a common 

structural core, found in PPAPs, due to secondary cyclization.28  

 

Figure 1.3.2. Classification of PPAPs 

Type A and type B can be further classified into exo and endo. Therefore, type A 

can be both exo and endo; similarly, type B can be both exo and endo. However, most type 

A PPAPs are exo, while most type B PPAPs are endo. Exo and endo nomenclature are 

made by the orientation of C7 prenyl or geranyl group with respect to C9 keto group. If C7 

prenyl or geranyl appendage is cis to C9 keto group, it is termed as exo; in the case of trans, 

it is called endo (Figure 1.3.2).  

Recently, Xiao-Jiang Hao et al. isolated two unusual PPAPs from Garcinia 

multiflora.29 The detailed spectroscopic analysis revealed that these molecules contained 

an unusual caged type structure. The Hao group isolated two compounds, namely, 
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garcimulin A and B. The molecule contains tetracyclo [5.4.1.11,5,09,13] tridecane skeleton 

(Figure 1.3.3), which calls for an explanation in PPAPs biosynthesis. 

 

Figure 1.3.3. Unusual PPAPs 

1.4 History of PPAPs  

In modern PPAP history, a German scientist, W. Schmid, was probably the first to 

isolate a yellow crystalline compound from the plant Garcinia mangosta in 1855.30 Later, 

there were eight other scientists, after Schmid who isolated the same yellow crystalline 

substance from the Garcinia mangosta (Table 1.4.1).31 The structures proposed by the 

scientists were vividly different from each other. In 1932, a Japanese natural product 

scientist, J. Murakami, worked on the same yellow crystalline solid compound and 

proposed several structures. Five years later, in 1937, an Indian scientist, Sanjiva B. Rao, 

isolated a yellow crystalline product from the seeds from Garcinia morella. He termed it as 

morelline. The isolated compound was levorotatory, but 
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Table 1.4.1. List of earlier works on Garcinia mangosta 

Scientists Formula Year of Publication 

W. Schmid C40H44O10 1855 

R. Hill C23H24O4 1915 

J. Dekker C16H22O5 1924 

S. Yamashiro C20H22O5 1930 

O. Dragendorff C18H18O4 1930 

 

Rao could not figure out the exact structure of morelline. He, however, proposed 

that morelline might have a chemical formula of C30H34O6 and might contain four phenolic 

OH groups.32 He also suggested that morelline might possess a structure very similar to the 

same compound that was extracted from Garcinia mangosta by Schmid and the other 

scientists.  

After World War ΙΙ, science and technology were leapfrogging because of 

numerous inventions, and chemistry benefited a lot, thanks to X-ray and NMR 

spectroscopy. At the beginning of the 1960s, almost 20 different PPAPs were isolated from 

various Guttiferae plants. Surprisingly, most of them were xanthones, and a few were 

phloroglucinols. 

 While working on morelline structure determination, in 1962, Kartha and his group 

proposed that morelline might contain a bicyclo[2.2.1]octane ring.33 Kartha’s group used 

NMR and crystallographic data to reach the conclusion that morelline contains prenyl 

appendages and a α,β-unsaturated aldehyde group with a chromone ring. Hyperforin was 

the first PPAP whose structure was determined after isolation by Koloso’s group in 1975. 

Later, his group also defined the absolute stereochemistry.  
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Figure 1.4.1. History of some PPAPs 

For type B PPAPs, xanthochymol and isoxanthochymol were isolated in 1970 by 

Karanjoakar et al. in a collaboration with Western Regional Research Laboratory, 

Berkeley.34 They proposed a bicyclic structure for isoxanthochymol based on the derivative 

of the naturally occurring crystals (Figure 1.4.1). Rao, however, could not figure out the 

xanthochymol structure. A year later in 1971, Dreyer predicted a very similar structure that 

was proposed by Rao et al.—a monocyclic structure of xanthochymol—after extracting it 

from an autograph tree (Clusia rosea).35 Dreyer, however, proved that there were three 

aromatic protons, three vinyl groups, and a disubstituted C=C bond in the molecule, but he 

O

xanthochymol 
accoding to Dreyer

OH

OH
O

OHO O

OO

OH

HO

iso-xanthochymol

O

O

O

OH

morelline

OHC

11
1312

HO O

O

O

HO O

O

O

7-epi-clusianoneclusianone

9 10



 27 

was not sure about vinyl C-methyl groups in the molecule. Moreover, overlapping integrals 

at δ 2.8 rendered him undecided on the structure of xanthochymol.  

In 1976, Blount and William revisited the structure of xanthochymol and iso-

xanthochymol.36 Relying on X-ray and 1H NMR data, the duo proposed the structures 

shown in Figure 1.4. To continue the research, they extracted xanthochymol and 

isoxanthochymol from Garcinia xanthochymus. The structure of isoxanthochymol was 

determined from a bromo derivative of 8.36 The lack of a sufficient number of H atoms in 

the bicyclic scaffold misled Dreyer to deduce the incorrect structure of xanthochymol. 

Blount and William assigned the correct structure of xanthochymol with the help of X-ray 

crystallography. 

Clusianone (9) and 7-epi-clusianone (10) remained enigmas for several years so far 

as their structures were concerned. Clusianone was first isolated from Clusia congestiflora, 

a plant from Guttiferae, which comprises of 40 genre and 1200 species,37 in 1976. X-ray 

analysis firmly established the structure of clusianone and showed that the C7 prenyl group 

is exo. In 1991, Dalle et al. reported clusianone—extracted from fruits of Clusia 

sandinesis—in the form of a white crystal.38 In 1996, De Oliveira isolated clusianone from 

the floral resin of Clusia spiritu-santensis after diazomethane treatment.39 The structures 

of clusianone and 7-epi-clusianone were markedly different from one another. Later, 

Santos et al. isolated 7-epi-clusianone from Raheedia gardneriana. NMR and X-ray 

analysis showed that the C7 prenyl group in 7-epi-clusianone is endo, thereby confirming 

the structure of 7-epi-clusianone (Figure 1.4.2).40  
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Figure 1.4.2. Clusianone and 7-epi-clusianone 

Lalibinone and its analogs, A–E (14-18), were isolated from Hypericum 

papuanum.41 It is a woody plant from the Guttiferae family and grows widely in mountains 

of Papua New Guinea. In folklore medicine, this tree’s leaves were used in treating sores. 

In 1999, Winlemann et al. isolated five different compounds from the aerial part of H. 

papuanum in the form of a hexane extract.42 Detailed structural analyzes—based on 1H 

NMR, 13C NMR, HMBS, and HSQC—of these isolated five compounds revealed that the 

molecules contain a tricyclic structure with a bicyclo[2.3.1] octane-2,4,8-trione core 

(Figure 1.4.3) 

Laxifloranone (19) is a unique PPAP. It was isolated from an organic extract of 

Marila laxiflora Rusby.43 The plant belongs to the Clusiaceae family. Bokesch et al. 

determined its structure in 1999.44 The molecule is rich with aromatic rings. Structural 

analysis showed that the molecule has a hydrocinnamic acid side chain, instead of a prenyl 

group. In that respect, the molecule is different than other PPAPs. It belongs to the type B 

endo PPAP family.  
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Figure 1.4.3. Lalibinones A-E and laxifloranone 

1.5 Revisiting some structures of type B endo PPAPs  

Along with medicinal properties and architectural diversity of NPs, the third reason 

for the total synthesis is to confirm whether existing structures in the literature are correct 

or not. This has been the case similarly with PPAPs. The correct structure determination 

of PPAPs has been a problem for years because of the relative stereochemistry at the C7 

appendage, which specifically categorizes a PPAP as endo or exo. In some cases, however, 

scientists were successful in isolating PPAPs from plants as crystalline solids. 

Consequently, X-ray analysis of those PPAPs unambiguously established their structures, 

including exo or endo stereochemistry of C7.40 In this section, I will revisit some of such 

stories related to the endo type B PPAPs, whose structures were corrected after they had 

been reported.  
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Figure 1.5.1. Structural diversity among PPAPs 

Although the overlapping peaks in 1H NMR spectra make the identification of 

PPAPs difficult, high-temperature NMR, nearly at 60 °C, resolves some of the issues, such 

as finding the 1,3-diketone framework in the molecule and the C3 substituent.41 The real 

problem, however, is the determination of exo or endo stereochemistry of the molecule 

concerned. Grossman and Jacob have demonstrated that 1H NMR and 13C NMR are very 

helpful in categorizing the PPAPs as exo or endo based on the chemical shifts of certain 

protons and carbons.45-47 They proposed that if the difference of chemical shifts between 

the two H atoms at C6 in the 1H NMR spectrum is 0.3 to 1.2 ppm, and the C7 chemical 

shift in the 13C NMR spectrum is 41 to 44 ppm, the PPAP is exo, whereas if the difference 

of chemical shifts between the two H atoms at C8 in the 1H NMR spectrum is 0.0 to 0.2 

ppm, and the C7 chemical shift in the 13C NMR spectrum is 45 to 49 ppm, the PPAP is 

endo. I shall utilize these observations to consider some endo PPAPs where the 

discrepancies were found in previous reports (Figure 1.5.2).  

Initially, there were doubts in assigning the stereochemistry of some endo type B 

PPAPs like garcinol (22) ([α]D –138 (0.1)) and isogarcinol (23)  ([α]D +224 (MeOH, 0.1)), 

and some endo PPAPs have different C(7)  or H(6) or H(8) chemical shifts, which were 

not consistent with endo PPAPs of the same configuration.5 The enantiomers of garcinol 
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and isogarcinol were named differently: (+)-garcinol (62) was given the name of 

guttiferone E (24) ([α]D –101 (0.1)), and (+)-isogarcinol (23) was given the name of 

isoxanthochymol (25) ([α]D +181 (EtOH, 0.6)) (Figure 1.5.2). Assigning the absolute 

configuration to these compounds becomes tough by various names and optical rotations. 

Moreover, the chemical shifts of C7 or hydrogens at C6 or C8 were not as per the general 

rule proposed by Grossman and Jacob.45 For isogarcinol and isoxanthochymol (Figure 

1.5.2), the values are within the range of exo compounds: C6 hydrogen in isogarcinol or 

C8 hydrogen in xanthochymol has a chemical shift of 0.75 or 0.70 ppm in HNMR 

respectively. Plietker and Socolsky noticed the discrepancies and attempted to resolve it 

via chemical synthesis. 

 

Figure 1.5.2. Structural conundrum: guttiferone E and isoxanthochymol 

The previously recorded X-ray crystallographic analyses of these compounds were 

confirmed with the crystals obtained from Plietker’s work. The crystal analysis of both 

compounds showed that the tetrahydropyran ring is at lowest energy conformation: in a 

twist boat form. Because of that, the isoprenyl substituent became equatorial. Socolsky and 

Plietker not only relied on chemical syntheses but also utilized TURBOMOLE6.5 in 

conjunction with the graphical interface Tmole 3.4. They also used TD-DFT (Time 

Dependent Density Functional Theory) to calculate the excitation energy and find out the 
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combinations of a possible number of allowed spins in excited states. They converted these 

data into simulated CD (circular dichroism) spectra that gave a theoretical graph. Then, 

they compared these simulated CD spectrum with the natural products (garcinol and 

isogarcinol) that Plietker’s group had synthesized. The theoretical CD spectrum of 

isogarcinol—where the relative configuration of C30 is S—showed both positive and 

negative Cotton effect at 220 and 265 nm respectively. That was agreeing with the 

experimental value obtained with chemically synthesized isogarcinol. This result proved 

that they synthesized the naturally occurring enantiomer of isogarcinol and garcinol. A 

similar result was observed with isoxanthochymol. Thereby, Socolsky and Plietker 

concluded that isoxanthochymol and isogarcinol are enantiomers. Previously, Grossman 

and Ciochina proposed the same observation in their review article.7 Socolsky and 

Plietker’s article reiterated the importance of chemical syntheses of NPs: to correct a 

structure of a natural product. 

There were also some discrepancies about the correct structures of guttiferone G 

(74) and guttiferone I (66) (Figure 1.5.3). These two compounds were isolated from the 

same source, G. hummulis, by Herath et al. NMR analysis, UV, and IR data showed that 

both molecules contain a dihydroxy phenol group. Nevertheless, there was confusion about 

the assignment of the C7 prenyl group. Initially it was thought that both compounds were 

endo type B.  The specific rotation, however, of both compounds were different; 

guttiferone I has a specific rotation of +8.7° in CHCl3, while guttiferone G showed a 

rotation of –25° in CHCl3 also. The J-coupling value for H atoms at C6-C8 in guttiferone 

I was 13.0 Hz, which is quite high among the all other type B endo PPAPs. 2D-NOE gave 

an indication that guttiferone I is a type B endo, but the experiment did not negate the 

possibility of type B exo either. Later, Nilar et al. attempted to assign the absolute 
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stereochemistry of guttiferone G–I, and because of conflicting data, they could not assign 

it.48  

 

Figure 1.5.3. Guttiferones I and G 

Another interesting revelation was determination of sampsonione P (26) and 

hyperibone I (28). Initially, scientists proposed that sampsonione P has an endo 

configuration and its isomer, hyperibone I, has an exo configuration. Grossman and 

Ciochina, however, predicted that hyperibone might be endo type B.7 Plietker and his group 

synthesized both the molecules and carried out 2D NOE to assign the absolute 

stereochemistry at C7. They observed a strong correlation between C7 H and C6 Hax. 

Moreover, there were two other strong correlations—firstly, between C6 axial hydrogen 

and an axial methyl group; secondly, C7 equatorial hydrogen and a C6 equatorial methyl 

group. In consideration of this evidence, the duo proposed the following structure (Figure 

1.5.4), proving Grossman’s hypothesis on hyperibone I correct. Similarly, they concluded 

the same relative configuration—type B endo PPAP predicted by Grossman and 

Ciochina—with sampsonione P. 
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Figure 1.5.4. hyperibone I and sampsonione P 

1.6 Biosynthesis of MPAPs  

The recent advances in labeling experiments have provided a deep insight into the 

biological pathways. Several research studies have shown enough evidence that PPAPs are 

products of two important biological pathways—shikimate and acetate-isoprenoid. The 

shikimate pathway contributes the phenol part to the overall molecule and the acetate-

malonate pathway provides side chains and carbocycle.49 Plants synthesize PPAPs from 

MPAPs, which are products from the acetate pathway. Three malonyl-CoA and an acetate 

unit combine in Claisen condensation to make a β-polyketoester. The poly ketoester can 

fold in two ways—one way goes to orselinic acid and the other to phloroglucinols (Scheme 

1.6.1), which are the starting unit of many MPAPs. An enzyme complex carries out the 

whole sequence of reactions without any detectable intermediates.50 From the organic 

chemist’s point of view, the formation of acylphloroglucinols from poly β-keto-esters is a 

result of Claisen condensation. 
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Figure 1.6.1. Diverse arrays of PPAPs from benzophenone 

The polyketide synthase and polyketide catalase are two enzymes responsible for 

Dieckman condensation in this case. The enzymes have structural resemblance with fatty 

acid synthase. The distinctive feature of this pathway is that the oxygenation pattern is 

meta, and even after the formation of the final product, the meta-oxygenation pattern is 

retained. The MPAPs can undergo various transformations further, and one of the 

transformations is prenylation with DMAPP (dimethyl allyl pyrophosphate) or GMAPP 

(geranyl pyrophosphate). The prenyl transferase catalyzes these reactions, leading to other 

MPAPs. The labeling experiments have shown that the prenylation goes via a non-

concerted way. Out of different MPAPs, cohulolones and colupulones are noteworthy since 

they have some commercial values.  
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Scheme 1.6.1. Biosynthesis of MPAPs 

The polyketide synthase and polyketide catalase are two enzymes responsible for 

Dieckman condensation in this case. The enzymes have structural resemblance with fatty 

acid synthase. The distinctive feature of this pathway is that the oxygenation pattern is 

meta, and even after the formation of the final product, the meta-oxygenation pattern is 

retained (Scheme 1.6.1). The MPAPs can undergo various transformations further, and one 

of the transformations is prenylation with DMAPP (dimethyl allyl pyrophosphate) or 

GMAPP (geranyl pyrophosphate). The prenyl transferase catalyzes these reactions, leading 

to other MPAPs (Scheme 1.6.2). The labeling experiments have shown that the prenylation 

goes via a non-concerted way. Out of different MPAPs, cohulolones and colupulones are 

noteworthy since they have some commercial values. MPAPs have shown anti-fungal, anti-

bacterial, and antifeedant properties. Hops—scientifically known as Humulus lupulus—

have been in use in folklore medicine as an anti-bacterial agent, tranquilizer, and healing 

the symptoms of menopause.51 The most significant hops are female inflorescences, which 

are used in beer production. Interestingly, MPAPs have shown anti-fungal, anti-bacterial, 

and antifeedant properties. Interestingly, it is the α-acid, which adds flavor and bitter taste 
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to the beer. The β- acids act as a radical scavenger and have shown anti-bacterial properties. 

it is the α-acid, which adds flavor and bitter taste to the beer (Figure 1.6.2). The β- acids 

act as a radical scavenger and have shown antibacterial properties (Table 1.6.1).  

 

Scheme 1.6.2. Synthesis of α and β-acids from MPAP 

 

Figure 1.6.2. α and β-acids  

 

Table 1.6.1. Different α-acids and β-acids  
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i-Pr Cohumulone Colupulone 

i-Bu Humulone Lupulone 

OH O

R

OHHO

phloroacetophenone

Prenyl transferase
DMAPP OH O

R
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1.7 Biosynthesis of PPAPs 

PPAPs are synthesized from MPAPs that could undergo further modifications in 

the presence of prenyl transferase to construct the bicyclo[3.3.1]nonane. Type A, B and C 

PPAPs originate from acylphloroglucinols through a series of carbocationic 

rearrangements (Scheme 1.7.1). The chemoselective bond formation in the enzymatic 

pathway leads either type A, B or C. According to Cuesta-Rubio, MAPPs cyclize in the 

presence of prenyl transferase to type A and type B from the same precursor 52. The 

mechanism needs an SN2 type attack on DMAPP by one of the enantiotopic prenyl groups, 

giving rise to a carbocation intermediate that could make a bond either to C1 or C5 in the 

aromatic ring. Attack from C1 end leads to a type A; while the C5 attack leads to a type B. 

Type C PPAPs are rare, and it can be explained by a mechanism mentioned in 

Scheme 1.7.2. To make a type C PPAP, C1 must have a quaternary center and to synthesize 

it naturally is not simple, possibly because of the steric factor. 
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Scheme 1.7.1. Precursors to type A, B, and C PPAPs 

In the previous section, we have said that MAPPs are synthesized from acetyl or 

malonyl-CoA via a series of Dieckman condensations.52 If we consider the detail of the 

mechanism, we find that benzoyl-CoA is derived from the shikimate pathway. L-

Phenylalanine undergoes a series of reactions, namely, deamination and decarboxylation 

to produce benzoyl-CoA (Scheme 1.7.1). Then benzoyl-CoA again undergoes a series of 

reactions, namely, Dieckman condensation, and alkylation, to produce type A, B, and C 

PPAPs. PPAPs can undergo further cyclization that adds more complexity to the overall 

structure of the PPAP. For example, the type A PPAPs may react with another molecule of 

DMAPP, and consequently, PPAP with an adamantane is formed. Plukenetione A 32 is an 

example of such a PPAP. 
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Scheme 1.7.2. Mechanistic pathway for type A, B and C 

In section 1.1.2, I mentioned two unusual PPAPs (17, 18) that contained a 

tetracyclotridecane skeleton. The formation of such an unusual skeleton can be explained 

based on [4+2] cycloaddition followed by a keto-enol tautomerism (Scheme 1.7.3).  
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Scheme 1.7.3. Mechanistic rationale for two unusual PPAPs 
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1.8 Sources and structures of type B endo PPAPs  

Until now, we know many things about PPAPs, including type A, B, and C, namely, 

their structure and biological activities. My predecessors, Roxana Ciochina and M. P. 

Suresh Jayasekara, have given a detailed account of biological importance and the sources 

of PPAPs in their dissertations.5, 53 Therefore, there is no point in going over the same 

PPAPs again, here. In past several years, however, natural product scientists have isolated 

many new PPAPs that were not talked about neither in Ciochina nor in Jayasekara’s 

dissertation. In this section, I will focus on endo type B PPAPs whose structures have been 

known or discovered recently. Nearly 23 new PPAPs have been identified between 2006 

to 2013.  There will be a separate section where I will place some new type B and some 

unusual type A PPAPs, which cannot be avoided because of structure and medicinal 

properties associated with them. However, focus of my research remains on type B endo 

PPAPs. 

Table 1.8.1. Type B endo PPAPs 

No. 
R group or 

structure. 
Name Source []D

1 (°) 

 
59  

R1, R2= prenyl, R3= 

OH, 
guttiferone A 

S. globulifera2 

G. livingstonei3 

G.humils 

+34 (c4 

1.7) 

 

                                                 

 
1 OMe or OAc indicates the specific rotation was measured for that derivative 

2 S= Symphonia 

3 G = Garcinia 

4 not all of the stereocenters’ configuration have been assigned 
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60 

R2= prenyl; R3= 

OH, R1= ω-

lavandulyl 

guttiferone C S. globulifera 

mixed 

with 61 

+92 (c 

0.9) 

61 

R1= lavandulyl 

R2 = prenyl, R3= 

OH 

guttiferone D S. globulifera 

mixed 

with 60 

+92 (c 

0.9) 

 

62 
R1= (S) lavandulyl; 

R2= prenyl, R3= OH 
guttiferone E 

Cuban propolis 

C.rosea 

G.ovafolia 
 

+101 (c 

0.5) 

63 
R1= (S)-lavandulyl; 

R2=H (enantiomer), 

R3= OH 

garcinol 

(camboginol) 

G.cambogia 

G.indica 

–138 (c 

0.1) 

64 

R1= 3,4-(OH)2C6H3 

R2= prenyl; R3= 

(R)-isogeranyl, R4 = 

H 

guttiferone F 
Allanblackia  

stulhlmannii 

293 (c 

0.4) 

 

65 
R1= prenyl, 

R2= H; R3= OH 
aristophenone G.xanthochymus 

+58 (c 

0.1) 

OAc: +53 

(c 0.1) 

+54 (c 

0.1) 

66 
R1= geranyl; 

R2= H, R3= OH 
guttiferone I 

G. griffithii 
Cuban propolis, 

G.xanthochymus 

‒68 (c 

1.2) 

67 
R1 = (S)-ω-

lavandulyl; R2 = H, 

R3 = OH 

xanthochymol 

G.mannii 

G.staudtti 

G.subelliptica 

R. madrunno 

+138 (c 

0.1) 

68 
R1= (S)-lavandulyl, 

R2 = H, R3= H 

 

14-

deoxygarcinol 
M. coccinea 

+41 (c 

0.3) 

69 

32-hydroxy-ent-

guttiferone 
guttiferone M Rheedia edulis 

[α]D
25 = 

+9.6 

(c 0.1, 

MeOH) 
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70 

 
6-epi-guttiferone 

J 
Rheedia edulis 

[α]D
25 = 

+10.8 

(c 0.1, 

MeOH) 

 

 
71 

R1= Me; R2= Ph hyperibone L H. scabrum 
+69.5 (c 

0.2) 

72 R1= prenyl; R2= Ph 7-epi-clusianone 
Rheedia 

gardeneriana 

+62 (c 

1.1) 

73 R1=Me; R2=i-Pr hyperpapuanone H. papuanum 

+15 (c 

0.1, 

MeOH 

 

 

74 R1 = R2= prenyl guttiferone G 
G. humilis 

G. macrophylla 

‒25 (c 

0.04) 

75 R1 = prenyl; R2 = H oblongifolin C G. oblongifolia 
+23 (c 

0.35) 

 

76 R1= geranyl; R2 = H oblongifolin D54 G. olongifolia 

+44.6 (c 

0.21) 

 

 

 

O

R1

O OH

O

OH

R2

HO



 45 

77 R2 = H, R1= prenyl isogarcinol55, 56 

G. indica 
G. pedunculata 

G. cambogia 

G. pyrifera 
G. subelliptica 

+224 (c 

0.1, 

MeOH) 

78 R2 = H; R1= prenyl 

isoxanthochymo

l55, 56 

(enantiomer) 

G. xanthochymus 
G.ovafolin 

+181 (c 

0.6, 

EtOH) 

79 
R2 = H, R1= 

isoprenyl 

(‒) 

cycloxanthochy

mol57 

G.subelline 

+80.5 (c 

2.20, 

MeOH) 

 

 

 

80 
R= (E)-CH= 

CHCMe2OH 
hyperibone H H. scabrum 

+12.4 (c 

0.4) 

81 R = prenyl hyperibone I H. scabrum 

+13.3 (c 

0.3) 

 

82 

 

sampsonione P H. samsonii 

+18.6 (c 

0.022) 

 

83 

 

hyperibone I 
Hypericum 

scabrum 
N/A 

84 

 

1,16-

oxyguttiferone 

A58 

 

or 

oxyguttiferone 

K1 

S. globulifera 

[α]D
20 = 

+53 (c 1, 

MeOH) 
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85 

 

 
hyperattenin J59 

 
H. attenuatum 

[α]D
25 = 

+23.8 (c 

0.3, 

MeOH) 

86 

 

attenuatumione 

E60 
 
H. attenuatumn 

[α]D
25 = 

+39.7 

(c 0.13, 

CHCl3) 

 

87 

 

 
attenuatumione 

F60 

 

H. attenuatum 

[α]D
25 = 

+19.6 

(c 0.18, 

CHCl3) 

88 

 

 
spiranthenones 

B61 

 
Spiranthera 
odoratissim 

[α]D
30 = 

+13 

(c 0.17, 

CHCl3) 

89 

 

 
guttiferone O62 

Garcinia afzelli N/A 

90 

 

 

guttiferone P62 
Garcinia afzelli N/A 

91 

 

7-epi-coccinone 

B63 

Symphonia 

globulifera 
N/A 

OOHO
O

O

geranyl

OH

OH

OH

O

O
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92 

 

symphononeE15 
Symphonia 

globulifera 

+50 (c 
0.4, 

CHCl3 

93 

 

symphonone B15 
Symphonia 

globulifera 

–50 (c 0.9, 

CHCl3) 

 

94 

 

symphonone I15 
Symphonia 

globulifera 

‒22 (c 0.4, 

CHCl3) 

95 

 

symphonone C15 
Symphonia 

globulifera 

‒67 (c 1.0, 

CHCl3) 

96 

 

guttiferone H64, 

65 

G. xanthochymus 
 

N/A 

97 

 

gambogeneone64 
G. xanthochymus 

 
N/A 

98 

 

7-epi-

isogarcinol 

G. multiflora 

 
N/A 

O
OH

OH

OH

O

O

HO
HO

O
OH

OH

OH

O

O

HO

O
O

OH

OH

O

O
O

H

OHO

O

OH

OH

O

O
O

OH

OH

O

O O

O

O

OH

OH
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99 

 

guttiferone H64, 

65 
G. xanthochymus N/A 

100 

 

gambogenone64 G. xanthochymus N/A 

101 

 

coccinone A63 
Moronobea  

coccinea 

+28 (c 

1.0, 

CHCl3) 

102 

 

coccinone B66 
Moronobea 

coccinea 

‒55 (c 0.3, 

CHCl3) 

103 

 

coccinone C15 
Moronobea 

coccinea 

‒55 (c 0.2, 

CHCl3) 

104 

 

 

coccinone F63 

 
Moronobea 

coccinea 

‒32 (c 0.7, 

CHCl3) 

105 

 

coccinone G63 

 
Moronobea 

coccinea 

‒16 (c 1.0, 

CHCl3) 

106 

 

coccinone H63 
Moronobea 

coccinea 

+2 (c 1.0, 

CHCl3) 
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107 

 
R = prenyl 

garcicowin B56 Garcinia cowa N/A 

108 

 
R = prenyl 

garcicowin C56 Garcinia cowa N/A 

109 

  
R = prenyl 

garcicowin D56 Garcinia cowa N/A 

110 

 

 
R= prenyl 

garcimultifloron

e H67 
G. multiflora 

[α]D
20 = 

+29.8 

(c 0.62, 

MeOH) 

 

 

111 
R = prenyl; R2 = 

lavandulyl 

 

multiflorone J67 G. multiflora 

[α]D
20 = 

+11.1 

(c 0.44, 

MeOH) 

 

112 

 

oblongifolin J G. oblongifolia 

[α]D
25 = 

+8.6 

(c 0.03, 

MeOH) 

 

113 

 

oblongifolin K G. oblongifolia 

[α]D
25 = 

+55.4 

(c 0.07, 

MeOH) 
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114 

 

oblongifolin T G. oblongifolia 

[α]D
20 = 

+10.8 

(c 0.05, 

MeOH) 

 

115 

 

eugeniaphenon68 G. eugeniaefolia 

[α]D
27 = 

+41.6 

(c 0.11, 

MeOH) 

116 

 

paucinone D69 G. paucinervis 

[α]D
27 = 

+41.6 

(c 0.11, 

MeOH) 

117 

 

18-hydroxy-7-

epi-clusianone70
 

H. hypericodies N/A 

118 

 

18-hydroxy-

clusianone70 
H. hypericodies N/A 

119 

 

sampsonione P H. sampsonii 

[α]D
20 = 

+18.6 

(c 0.022, 

CHCl3) 

1.9 Medicinal properties of type B endo PPAPs 

Until today, many type B PPAPs have been isolated from nature, and most of them 

have shown potential biological activities. Diseases such as leishmaniasis and 
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trypanosomiasis caused by parasites are on the rise. In the case of malaria alone, this 

tropical disease affects more than 300 million people all over the world and this has led to 

the death of a population of more than 429,000 people in the world in 2015. These diseases 

are becoming more lethal because of inefficient therapies, the toxicity of drugs, and 

growing resistance to current therapeutic drugs. For last few years, World Health 

Organization, WHO, has resorted to combinatorial therapy to deal with malaria because of 

increasing drug resistance. Artemisinin has been a champion drug for several years to treat 

malaria.71 Despite this, there are some evidence that mosquitos are moving toward 

resistance to artemisinin.52, 72 Therefore, new drugs are sought in order to win over these 

diseases, and type B PPAPs could be the ideal candidates. Here, we are giving of account 

some of them that have drawn the attention of the both biologists and organic chemists. 

1.9.1 Garcinol and its derivatives 

Garcinol and its epimer, isogarcinol, also known as camboginol and isocamboginol, 

are typical representatives of type B PPAPs (Figure 1.9.1) They are obtained from Garcinia 

indica, a tropical, medium- or small-sized tree with shiny dark green leaves and ovoid 

fruits, which are red or yellow in color with six to eight seeds embedded in a juicy rind. 

The plant is abundant on the west coast of India.73 The dried fruit’s rind is used as a gourmet 

item, kokum curry. Garcinols and its related members like isogarcinol (70), 

cycloxanthochymol, 30-epi-cambogin A, and 7-epi-garcinols (98) have shown very wide 

rgane of biological activity. Isogarcinol is very interrsting compound because of its wide 

range of therapeautic index, ranging from colon cancer, leukemia,74 HIV,75 

medullablastoma,76 antioxidant,77 antimicrobial,75, 78 transplant rejection, autoimmunine 
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diaseases like collagen-induced rheumatoid arthiritis79, 80 to breast cancer and Parkinson’s 

disease.80 Both garcinol and isogarcinol have shown promising biological activities. 

  

Figure 1.9.1. Garcinol and derivatives 

Traditionally, fruit rinds of garcinol have been in use for years to treat bowel 

problems and rheumatism and also available for human consumption in the form of 

mangosteen drink. Garcinol and isogarcinol are very effective against the methicillin-

resistant bacteria S. aureus with a comparison to vancomycin. It inhibits the topoisomerase 

I and II in a concentration comparable to etoposide.81 It has been known to suppress colonic 

aberrant crypt foci formation by acting as HATs inhibitors, inducing apoptosis through 

cytochrome c release, and activating caspases in the human leukemia HL-60 cell. Its 

antioxidant property is noteworthy. Several experiments have shown that garcinol 

suppresses superoxide anion, hydroxyl radical, and a methyl radical in H2O2-NaOH-
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DMSO. In spite of an unknown mechanism of the antioxidant property, garcinol is three 

times more potent than the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and DL-α-tochopherol 

scavenging activity by weight. Garcinol and its epimer have been shown to inhibit NF-κB 

activation and a COX-2 expression. In addition, it decreases the iNOS expression and NO 

release from the LPS-stimulated macrophase by inhibition of the signal transducer and 

activator of transcription-I. Garcinol and isogarcinol have interesting antiulcer and 

antibiotic activities against methicillin-resistant staphylococcus aureus (MRSA). Garcinol 

has been shown to inhibit histone acetyltransferase and p300/PCB, a well-known gene 

regulator6. 

1.9.2 Guttiferone A-F, K, O, P 

Guttiferone and its analogs (Figure 1.9.2) are derived from Garcinia aristata in the 

form of a hexane extract from fruit rinds. They show very promising medicinal properties. 

For example, it has shown anti-HIV, cytotoxic, trypanocidal, antiplasmodial, 

leishmanicidal,82 and antibacterial activity.83, 84 Most recent studies have revealed its 

substantial neuronal quality and the permeability of the mitochondrial membrane. 

Guttiferone has shown moderate activity against gram-positive bacterium S.areus but has 

not demonstrated any discernable activity against E. coli, fungi T. rubrum, and C. albicans 

in vivo studies as manifested by IC50 ± SD values in μM (Table 1.8.1).82 

Table 1.9.1. Bioactivity of guttiferone A against different virus 

 S. aureus E. coli T. rubrum C. albicans 

Guttiferone A 7.5±0.8 >64 19.6±17.5 64.0 

 

But more interesting results are found in the fight against protozoa, P. 

falciparum—the prime reason for malaria—with IC50 values lower than 1 μM. The 
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cytotoxicity on the MRC-5 cell showed IC50 value in the range of 1.2 μM where the SI 

value is 24. Although the in vivo mechanism of this action has not been discovered for 

guttiferone A, in vitro studies have revealed that it can inhibit cysteine proteases B, papin, 

serine peptidase cathepsins G, and trypsin because these are present in plasmodium 

parasites for the development of the host cell. This explains why guttiferone A is lethal in 

fighting against malaria.  

 

Figure 1.9.2. Guttiferones A, E, C, D 

In a different study, guttiferone A revealed its role as antineurodegenerative agent 

by scavenging ROS and thereby protecting the cell against oxidative stress .85 

Recently, Xin Li’s study84 has demonstrated that guttiferone F (GF) can inhibit the 

growth of prostate cancer cell lines under serum starvation by inducing the increase in a 

sub-G1 fraction and DNA fragmentation. By controlling the Bcl-2 protein family, GF 

promotes the apoptosis targeting mitochondria. It also reduces the expression of an 

androgen receptor and the phosphorylation of ERK½ protein, and increases JNK protein 

phosphorylation and Ca2+ influx. Therefore, controlling the caloric restriction, GF could be 

lethal against prostate cancer without much toxicity although the viability of in vivo caloric 

restriction has been a subject of debate. In a different study, guttiferone K (0.1-25 μg⁄mL), 

like guttiferone A, has revealed its power in protecting protein and lipid degradation by 

reducing the formation of the carbonyl group and TBARS.86 
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Table 1.9.2.  IC50 values on different cell lines of guttiferone F 

Cell line Cell type IC50 (μM) 

Ln Cap Prostate cancer 5.17±0.20 

Hep G2 Hepatocellular carcinoma 32.92±1.56 

HeLa Cervical cancer 13.13±1,32 

CNE Nasopharyngeal carcinoma 17.97±1.30 

PC 3 Prostate cancer 12.64±3.01 

Ligand-controlled transcriptional factors are members of a nuclear receptor family 

that controls embryogenesis, calcium homeostasis, and lipid and glucose metabolism. 

Guttiferone I has inhibited the binding activity selectively to the LXR  receptor with an 

IC50 at 3.4-nM in a binding assay.87 Guttiferone O and P have shown inhibitory effects on 

phosphorylation of the synthetic biotinylated peptide substrate KKLNRTLSVA. These two 

PPAPs stop this process by the serine/threonine protein kinase MAPKAPK-2 (Figure 

1.9.3). The IC50 value is 22 mM. As a result, these two PPAPs could be potential drugs for 

inflammatory diseases and cancer.62 



 56 

 

Figure 1.9.3. Mechanism of transcription regulation by LXR triggered by guttiferone I88 

 

Figure 1.9.4. Diagram for cell death mechanism induced by guttiferone A 

1.9.3 Clusianone and 7-epi-clusianone 

Clusianone (9) is a member of the PPAP family with a wide biologically active 

profile. It is extracted from the roots of Clusia congestiflora. Clusianone, a type B exo 
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PPAP, and its 7-endo epimer have drawn the attention of scientists because of their 

extensive medicinal properties, namely, anti-HIV, anti-Epstein-Barr virus, being cytotoxic 

against HD-MY-Z, K-562, KE-37 tumor cell lines, antimicrobial, antinociceptive, and anti-

inflammatories.89-95  

 

Figure 1.9.5. Clusianone and 7-epi-clusianone 

In the past several years, chemotherapeutic drugs have been in use for treating 

cancer, and one of the problems of these drugs is that competent cancer cells develop 

resistance to them, leading to an increase in dose and, ultimately, failure of the treatment. 

Therefore, scientists are in urgent need to find new types of drugs. Clusianone (9) and 7-

epi-clusianone (10) could be alternatives to current therapeutics.  

Biologists have shown that 7-epi-clusianone could be used to cure lung cancer, 

which is one of the largest causes of death worldwide. Despite its antiproliferative effects 

against several tumor cells, 7-epi-clusinone’s activity against lung cancer cell lines is very 

promising. Cell lines A549 derived from lung cancer tumors are under investigation in 

several studies against the activity of 7-epi-clusianone. In in vitro studies, these results have 

demonstrated a new understanding of how 7-epi-clusianone acts as a potent 

antiproliferative agent.  

Studies done by Marisa Ionta et al.96 showed that 7-epi-clusianone has been very 

effective in arresting the cell cycle in the G1/S transition and promotes apoptosis. 
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Generally, healthy cells that have wild type P53 arrest the cell cycle in the G1 phase 

because of the G1 phase check point activation. Conversely, the cells that have mutated or 

impaired P53 arrest the cell cycle in the G2 phase.  

The research conducted by Marisa Inota et al. has shown that 7-epi-clusianone can 

activate the G1 check point to arrest the cell cycle of the cancer cells. The results showed 

that the cell viability was reduced drastically, in a concentration-dependent manner, after 

48-hour incubation, indicating an IC50 value of 16.13 ± 1.12 μM. 7-epi-clusianone has 

shown better potency than cisplatin (IC50 value of 21.71 ± 1.17 µM), the most commonly 

used chemotherapeutic drug. In a similar study, cytotoxicity of 7-epi-clusianone was tested 

against several cancer cell lines like KE-37 (T-cell-leukaemia), K-652 (chronic myeloid 

leukaemia) and HD-MY-Z (Hodgkin’s lymphoma) and daunorubicin was taken as a 

reference. The result was promising and 7-epi-clusianone has shown cytotoxicity against 

these cancer cell lines (Table 1.9.3). 

Table 1.9.3. Cytotoxicity against cancer cell lines 

IC50 (µmol) 

Compound KE-37 K-652 HD-MY-Z 

7-epi-clusianone 13.6 ± 1.5 11.8 ± 1.3 9.8 ± 1.4 

Daunorubicin 0.6 ± 0.01 1.5 ± 0.1 2.1 ± 0.11 

Like guttiferone A, 7-epi-clusianone has shown promising activity against 

trypomastigotes of T. cruzi in vitro with a dose of IC50 at 518 mM. The result was not very 

encouraging in the mouse model study because of the ineffectiveness of the drug in vivo. 

7-epi-clusianone has indicated an activity against Leishmania amazonensis with an IC50 

value of 19.13 M. The drug, however, has been toxic to mammalian cells.97 The role of 7-

epi-clusianone as a vasodilator has been known since 1998. The effect of the molecule was 
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studied on rat model by Cortes and his colleagues. The research group observed an 

endothelium-dependent vasodilating response at a lower concentration but induced a 

vasocontractile effect at higher concentrations.98 

Obesity is a growing concern in the modern world. A current estimation has shown 

that 30% or more world population are either obese or overweight.99 7-epi-clusianone has 

revealed its promise to be an alternative to Rosiglitazone, an antidiabetic drug, because of 

its high hydrophobicity, electrostatic, π-stacking interaction, and hydrogen bonding 

capacity because of keto functionality. The conclusion was drawn from SAR studies with 

Rosiglitazone which possesses akin structure to 7-epi-clusianone, although the latter has 

fewer OH groups than are essential to potency, as revealed by the docking studies.100 

Piccinelli et al. have shown that clusianone is active at very low concentration (EC50 

= 0.02 µM) with a reduced therapeutic index, whereas its 7-epimer has better anti-HIV 

(EC50 = 2.0 M) properties, with an enhanced therapeutic index of 10.37 The difference 

between these values is contingent upon the orientation of the C7 prenyl group.  

The exact mechanism of action of these two molecule are debated, but Reis et al. 

demonstrated how the cytotoxicity of clusianone against Hep2 cells ultimately led to 

apoptosis by specifically targeting the mitochondrial membrane potential (Figure 1.9.6).101 

Their studies indicated that the free enolic OH played an instrumental part in targeting the 

mitochondrial potential. 89When the enolic OH was protected as a methyl enol ether, it lost 

potency.7 Therefore, it was concluded that the free enolic OH was important to target the 

mitochondria. The study also showed that the apoptosis was related to the depletion of 

ATP, which ultimately triggered the cell death (Figure 1.9.6). The similar argument could 

be put forward in the context of 7-epi-clusianone, which is a known topoisomerase II 

inhibitor. 
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Figure 1.9.6. Possible mechanism of action of clusianone 

1.9.4 Coccinones A-H 

Coccinones A-H were extracted from the latex of Moronobea coccinea. Extracts 

from the trunk bark and fruit of this tree have revealed encouraging antiplasmodial activity. 

Coccinone A through H have shown effective activity against chloroquine-resistant P. 

falciparum and have been proven to be cytotoxic to human MRC-5. However, all the 

coccinones were not equally effective; coccinones A through E were proved to be effective 

with an IC50 value in the range of 3.3 to 9 µM. The value surprisingly indicated a typical 

pattern in the structure of coccinones A-E; all five PPAPs contain a tetrahydropyran ring 

fused to the bicyclo [3.3.1] nonane. However, coccinones F through H showed a reduced 

antiplasmodial activity toward P. falciparum, having an IC50 value of more than 10 µM, 

and these three PPAPs have a free enolic hydroxyl group. On the other hand, in case of 

cytotoxicity, coccinones that have a free enolic hydroxyl group were noteworthy.63 
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Table 1.9.4. Biological activity of coccinones A-H 

Coccinone IC50 p.f.FcB1 (µM)± 

SD3 

IC50 MRC 5(µM) 

A 4.3±1.3 3.3±0.8 

B 5.5±0.4 11.7±0.6 

C 9.0±1.2 9.3±1.1 

D 7.0±0.9 10.9±0.3 

E 4.9±0.7 9.1±1.3 

F 17.0±9.4 21.3±2.8 

G 19.2±5.9 11.5±0.4 

H 16.6±6.1 10.5±0.6 

chloroquine 0.078±0.006 25±3.8 

 

1.9.5 Symphonones A-I 

Symphonones A-I were derived from Symphonia globulifera by Marti et al. in a 

continuing research aimed at finding a better PPAP for treating malaria, a leading cause of 

death in the developing world. They observed a very similar trend mentioned in the 

previous section, during their study towards the activity of coccinones against P. 

falciparum. The research group carried out a similar study as they performed with 

coccinones. Symphonones A through E, and G— which contain either a fused 

tetrahydropyran or a tetrahydrofuran ring—gave better anti-plasmodium activity than 

symphonones F, H, and I—have a free enolic hydroxyl group—with IC50 values ranging 

from 2.1 to 10.1 µM. The trend was reversed in the case of cytotoxicity; the PPAPs with a 

free enolic hydroxyl group gave better cytotoxic responses than those PPAPs containing a 

fused ring attached to the bicyclo[3.3.1]nonane framework.15 

1.10 SAR (structure-activity relationship) studies in type B PPAPs 

The wide range of biological activities of PPAPs has inspired several scientists to 

study SAR on these molecules (Figure 1.10.1). The results from these experiments are 
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interesting and can lead to new drug discoveries in the future. Several research studies have 

debated over the importance of a phenyl ring or a phenol moiety in PPAPs for the potency. 

It is no doubt that presence of the phenyl ring affects the cytotoxicity of PPAP to cancer 

cell lines. In 2010, Kuo published an article on the cytotoxicity of different PPAPs, namely, 

garcinialiptone A (a type A), garcinialiptone B, cycloxanthochymol (a type B), and 

garcinialiptone C (a type C), xanthochymol (a type B), and isoxanthochymol (a type B), 

having a 2,3-dihydroxy-phenol moiety common in all of them. These compounds were 

tested against HeLa and WiDr cells. Paclitaxel (Taxol) was used as a positive control in 

the experiment. The cytotoxic study revealed that all the compounds have a moderate to a 

borderline activity (IC50 4-5 µg/mL range); interestingly, garsubellin A—which does not 

have an aromatic ring—has no cytotoxic effect on the cancer cell lines. Although these 

molecules were less active than paclitaxel but were active against the MDR subline, it was 

concluded that these six molecules could be potential anticancer agents.102  

Phenolic compounds are known for their antioxidant activity. The research carried 

out by Saputri et al. demonstrated that the number of OH groups at the benzene ring 

influences the antioxidant activity because the phenolic OH groups stabilize the radicals, 

which are essential for antioxidant activity.103 

Keto-enol tautomerism is an important phenomenon in PPAPs, which influences 

cytotoxicity activity of the NPs. The comparative studies repeatedly demonstrated that 

etherification or cyclization of enolic oxygen diminishes the antioxidant activity.81 

However, the etherification of the phenolic oxygen also reduces the antioxidant activity. If 

there is more than one phenolic OH, etherification of one the phenolic OH has less impact 

on the antioxidant activity.104 
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Figure 1.10.1. Structure activity relationship of PPAPs 

Prenyl groups also play a significant role in SAR.65 Some research data show that 

the presence of more prenyl groups increases the potency of the PPAPs against 

leishmanicidal activity.105 Pereira’s study demonstrated a direct correlation between 

lipophilic character and leishmanicidal activity of some PPAPs.97  

The importance of the enolic hydroxyl group in PPAPs has been debated over last 

decade.106 In an interesting study, Iinuma established that the presence of an enolic 

hydroxyl group was necessary for the cytotoxicity against the methicillin-resistant 

Staphylococcus aureus.107 In that research, the scientists studied five different PPAPs, 

namely, garcinol, isogarcinol, xanthochymol, isoxanthochymol, and cycloxanthochymol 

that were obtained from the pericarps of G. subellipta. Out of the five PPAPs, only garcinol, 

and xanthochymol showed strong anti-MRSA activity. The minimum inhibitory 

concentration or MIC for xanthochymol showed a range of 3.13 to 12.5 µg/mL against 

MRSA, which was equal to vancomycin, 6.25 µg/mL. Isogarcinol, isoxanthochymol and 

cycloxanthochymol were found to be less reactive compared to xanthochymol and 

garcinol. This result suggested that the chelation of the hydroxyl group is necessary for 

inhibitory activity.107 
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The side chains, like geranyl or lavandulyl or isolavandulyl, and fused rings, like 

tetrahydropyran and tetrahydrofuran, in PPAPs, also play a significant role in 

antiplasmodial activities (Fig. 1.10.1).66 Marti et al. have proposed that the presence of 

nonpolar side chains contributes to antiplasmodial activity against falciparum FcB1 and 

cytotoxicity on the human fibroblast cell line MRC5. The studies on symphonones A-I and 

coccinones A-H have demonstrated a strong correlation in activities with the presence of 

fused side rings.  

Surprisingly, the free enolic hydroxyl group reduced the antispasmodic activity. 

For symphonones A-H, the IC50 values ranged from 2.11 to 10.1 µM, which were close to 

the result obtained on a similar study on M. coccinea by the same research group, Marti et 

al.71 The result concluded that the presence of a fused ring with the bicyclo[3.3.1]nonane 

slightly increases the antiplasmodial activity, whereas 7-epi-garcinol (98), with no fused 

ring to bicyclo[3.3.1]nonane, showed a reduced potency. These studies show that the 

presence of an enolic hydroxyl group plays a significant role in the cytotoxicity of the 

cancer cells, whereas a fused ring attached to bicyclo[3.3.1]nonane is required for 

antiplasmodial activity.88  
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2 Synthetic endeavors towards type B endo-PPAPs 

2.1 Introduction  

Organic chemists have always been impelled by the total synthesis of natural 

products. This is not only because of the fascinating architectural design of many natural 

products but also the fact that they provide numerous medicinal benefits. Almost 70% of 

drugs in the market, for example, have been derived from natural products.108 Total 

synthesis also prods synthetic organic chemists, particularly regarding structural 

revision.37, 109 For the last six decades, synthetic organic chemists have been learning from 

and utilizing quintessential works of Woodward, Overman, Corey, Nicolaou, Baran, Stoltz, 

Sarpong, and numerous others. PPAPs meet the criteria noted above. In some parts of the 

world, they are used as food garnishing material, while in others they are found in folklore 

medicine. PPAPs have shown very potent biological activities:  

Nemorosone - antibacterial;  

Clusianone - antimicrobial and antiproliferative;  

Garsubellin A - antineurodegenerative;  

Hyperforin - antidepressant (signature member of all PPAPs, popularly known as Saint 

John’s wort). 

It is highly encouraging that hyperforin is on the market and sold as Saint John’s 

wort. However, hyperforin has developed some problem because of drug-drug interaction. 

It has manifested itself by the total number of syntheses reported. Less than 20 of the nearly 

200 PPAPs have been synthesized to date. Many research groups were investigating the 

process of developing a method to construct PPAPs synthetically. In 1999, Nicolaou and 

his group at Scripps first published a methodology to construct bicyclo[3.3.1]nonane core 

for garsubellin.110 Seven years later, Danishefsky’s group published the total synthesis of 
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garsubellin A,111 and subsequently, a classic divergent synthesis of nemorosone and 

clusianone.112 Then came Shibasaki’s ent-hyperforin synthesis in 2010,113 which consisted 

of nearly 55 steps.114 That was the first enantioselective synthesis of any known PPAP. 

Since then, numerous research groups have focused on synthesizing different PPAPs or 

trying to find new, shorter routes to construct these molecules. A few years ago, Maimone’s 

and Shair’s groups synthesized hyperforin independently.115, 116 Recently, Barriault’s 

group also synthesized hyperforin, papuaforin, and nemorosone using gold catalysis. These 

remarkable syntheses reiterate the importance of total synthesis of PPAPs even today. In 

all of these cases, the number of steps continued to decrease to less than twelve. There is a 

commonality in the previously mentioned syntheses: all the molecules are exo type A 

PPAP, expect Porco’s seminal work on 7-epi-nemorosone, which was the only endo type 

A PPAP synthetically reported until today. 

Much progress towards the total synthesis of PPAPs was made for type A exo 

PPAPs, but syntheses of type B endo PPAPs were elusive until 2011. In that year, Plietker’s 

synthesis of an endo type B PPAP117 was the first of this kind and, since then, his group 

has published the synthesis of several type B endo PPAPs.  

My research centers on finding a viable route for the total synthesis of 7-epi-

clusianone (10), a type B endo PPAP. Therefore, syntheses of some type B endo PPAPs 

will be summarized in this section. Although my research focuses on type B endo PPAPs, 

some of the notable syntheses of type A PPAPs, published between 2012–2015, will also 

be discussed.  

My predecessors, Jayasekara and Ciochina, who had worked on the PPAP project 

before me, wrote elaborately about the syntheses of type A compounds before 2009 in their 

dissertations.5, 118 There is no point in rehearsing these details here. At the same time, it is 
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very tough to resist talking about some of the recently published (post 2010) total 

syntheses, because these are state-of-the-art. As far as our knowledge of this topic goes, no 

group has yet reported the synthesis of any type C PPAP. Finally, each of the syntheses is 

unique, and it will also be interesting to see how these syntheses have resolved the issue of 

C4 oxidation to install a 1,3-funtionality in the respective molecules. 

Organic chemists approach a total synthesis in two ways: one is strategy derived 

where an organic chemist prudently disconnects a molecule so that they could use the 

chemistry available to them; the other think of developing a new methodology of a key 

reaction in the scheme, which could lead to the final target. In the recent years, mostly after 

2010, we came across some new interesting methodology developments to synthesize 

PPAPs. I have summarized some of them here. 

2.2  Some newer synthetic strategies for constructing bicyclo [3.3.1] nonane  

In this section, I discuss some new synthetic methodologies that were published in 

recent years for synthesizing the bicyclo nonane functionality in PPAPs.  

2.2.1 Annulation approach of allenyl sulphonate esters to make bicyclo nonane by 

Bhat et al. 

To synthesize bicyclo[3.3.1]nonane, Bhat et al. proposed an annulation of allenyl 

sulphonate esters (Scheme 2.2.1).119 Synthetically speaking, the reaction is nothing but an 

addition to an sp carbon atom of an allenyl ester 131, followed by a reductive aldol 

condensation. The reaction looks apparently straightforward; however, it proceeds via an 

enol-lactone intermediate 132, instead of a bicyclic diketone, which Bhat et al. did not 

expect. Fortunately, they realized the enol-lactone could be transformed into a 
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bicyclo[3.3.1]nonane in two-step process via the reductive-aldol reaction. Finally, the aldol 

product could be oxidized to the bicyclic diketone with an excellent yield.119 

 

Scheme 2.2.1. Synthesis of bicyclo[3.n.1]nonane by Bhat et al. 

The research group attempted the methodology over several substrates and found 

out that the viability of the synthetic route was acceptable. The diastereomeric ratios, 

however, in some cases, were not excellent, merely an average of 5:3 (Table 2.2.1). 

Table 2.2.1. Substrate Scope for annulation 
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The reaction Scheme 2.2.1 might look promising in constructing a bridged bicyclic 

compound, the main motif in PPAPs; however, one of the shortcomings is that the 

construction of a 1,3-diketone functionality that was not addressed in the article. The 

synthesis of 1,3-diketone functionality could be achieved by oxidizing the vinyl methyl 

group to carboxylic acid, followed by converting the resulting acid to acid azide which 

would lead to diketone functionality, thanks to Curtius rearrangement. This strategy can 

only be applied in the substrate with β-vinyl methyl group, and not the substrates with both 

α and β vinyl dimethyl groups. Another problem with the synthesis is that diastereomeric 

ratio in annulation step is not very high, which might prove to be the Achilles’ heel of the 

scheme. 

The reaction mechanism for the formation of the bridge bicycle was absorbing and 

shown below (Scheme 2.2.2). It started off with the nucleophilic attack of sp carbon of 

allenyl ester 131 by the enolate from 135 via a reductive aldol fashion. The reaction 

ultimately furnished enolate 137 that kicked off the sulphonate group, and then reduction 

to generate the diol 138. The final oxidation of 138 brought forth the bridge bicycle 139.  

 

Scheme 2.2.2. Mechanism of annulation strategy 
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2.2.2 Metathesis-acylation approach to construct bicyclo [3.3.1] nonane  

In 2014, S. Schmitt et al. proposed a new synthetic methodology for constructing a 

bicyclic core of PPAPs using a ring-closing metathesis and a transannular cyclization of 

the acid chloride.120 According to Schmitt et al. plan (Scheme 2.2.3) that compound 140  

 

Scheme 2.2.3. Retrosynthetic analysis of bicyclo[3.3.1]nonane by Schmitt et al. 

envisioned, retrosynthetically, by a disconnection from cycloocteneacidchloride 141, 

which could be synthesized by Grubbs’ metathesis of the ester compound 145, furnished 

by a TiCl4-catalyzed Sakurai reaction between pent-4-enal 143 and 4-methyl-2-oxo-3-

pentenitrile 144. Sakurai reaction yielded an ester 142 with an 89% yield. The resulting 

alcohol was protected as methyl ether 145 with an excellent yield of 93%. The protected 

methyl ether set the stage for Grubbs’ metathesis, which underwent with an impressive, 

thanks to the gem-dimethyl effect. For a transannular ring closer of an acid chloride, 

cyclooctenemethyl ester 146 was required to be hydrolyzed to acid 147, and this reaction 

was proved to be tough to accomplish because of the gem-dimethyl group next to the 

tetrahedral carbon.  
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Scheme 2.2.4. Synthesis of bicyclo [3.3.1] nonane by Schmitt et al. 

However, the research group found a harsh condition: refluxing ester 146 in DME, 

in the presence of LiOH and water, for four days yielded the acid, which was converted 

into acid chloride 148. This acid chloride then set the transannular ring closer that furnished 

149 with a poor yield in the presence of AlCl3; however, the corresponding acid chloride 

in DME at 21 hours of reflux yielded the required bridge bicycle. The reaction yielded both 

exo and endo diastereomers in an 18:1 ratio (Scheme 2.2.4). The current plan 

unambiguously showed that the reaction had some problem, and Schmitt et al. realized that 

instead of acid chloride, the acid anhydride would better serve the purpose for the 

transannular ring closer. Moreover, it turned out as per expectation; the mixed anhydride 

of the TFA salt of the acid, in situ, furnished the exo diastereomer exclusively at 0 °C, and 

the yield of the reaction increased to a 98% (Scheme 2.2.5). The next task was to complete 

the synthesis of the model compound and therefore, the TFA compound was cleaved into 

two diastereomeric alcohols that were treated with NaHCO3 to remove TFA, and then 

oxidation of the resulting alcohol yielded 152. The next challenge was to install 1,3-
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such a route in their present scheme. This might be a major problem for the applicability 

of the route. 

 

Scheme 2.2.5. Modified approach to bicyclononane by Schmitt 

2.3 Domino Michael-aldol approach by Alexakis 

We have seen many PPAPs with a bicyclo[3.2.1]octane core. Lalibinone A, enaimeone A, 

and liliflodione are few examples of such PPAPs that contain a bicyclo[3.2.1]octane 

scaffold (Figure 2.3.1). This was the inspiration for Alexakis et al. to propose a domino 

Michael–aldol reaction strategy to construct a bicyclooctane motif. 

 

Figure 2.3.1. PPAPs family having bicyclo [3.2.1] octane cores 
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they needed a five-carbon unit, which came from a cyclopentanone derivative, and a three-

carbon unit, which came from ethyl (3E)-2-oxo-4-phenyl-3-butenoate 159.  

 

Scheme 2.3.1. Synthetic scheme for domino Michael–aldol reaction by Alexakis et al. 

With this plan in mind, they applied the condition of domino Michael–aldol reaction to 

ethyl (3E)-2-oxo-4-phenyl-3-butenoate 159 and methyl 2-oxocyclopentane-1-carboxylate 

160 catalyzed by urea-based bifunctional catalyst (Figure 2.3.2). The reaction yielded the 

bicyclo[3.2.1]octane with four stereocenters with an excellent diastereoselectivity; 

however, the enantioselectivity was not impressive (Scheme 2.3.2). Using other 

bifunctional catalysts, namely, 163, 164, and 165, the improvement in enantioselectivity 

did not increase, even using a 20 mol% catalyst in the reaction. 

 

Scheme 2.3.2. Probable mechanism for domino Michael–aldol reaction 
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Figure 2.3.2. Bifunctional catalysts  

With this plan in mind, they applied the condition of domino Michael–aldol reaction to 

ethyl (3E)-2-oxo-4-phenyl-3-butenoate 159 and methyl 2-oxocyclopentane-1-carboxylate 

160. The catalyst used in the reaction was a urea-based bifunctional catalyst (Figure 2.3.2). 

The reaction yielded the bicyclo[3.2.1]octane with four stereocenters with an excellent 

diastereoselectivity; however, the enantioselectivity was not impressive. Using other 

bifunctional catalysts, namely, 163, 164, and 165, the enantioselectivity did not increase, 

even using a 20 mol% catalyst in the reaction. 

2.4 Syntheses of (+)-30-epi, (–)-6-epi, and ()-6,30-diepi-13,14-didehydroxy-

isogarcinol by Porco et al. 
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Figure 2.4.1. Several target didehydroxyisogarcinols 

Impressed by the therapeutic index of 13,14-didehydroxyisogarcinol, namely, 

potent against leukemia, colon cancer, HIV, medulloblastoma, autoimmune disease, Porco 

and his research team devised a scheme to synthesize different series of nonnatural 

diastereomers of 13,14-didehydroxyisogarcinols.121 His group is famous for dearomatizing 

annulation, a thoughtfully crafted strategy that had already delivered some remarkable 

syntheses.122-124 However, he wanted to synthesize three different molecules, (+) 30-epi-, 

(‒)-6-epi-, and (+)-6,30-diepi-13,14-didehydroxyisogarcinols, from a common 

intermediate, either 170 or 169, and to achieve that he needed another strategy—that could 

fulfill his goal—which is called diastereoselective, Lewis-acid-controlled cyclization. In 

many ways, the approach is partly reminiscent of Nature’s strategy to synthesize PPAP 

molecules from a common intermediate; that is, we see Nature manufactures type A and 

type B PPAPs from a common cationic intermediate via a diastereoselective carbocationic 

cyclization (Scheme 2.4.1). 
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Scheme 2.4.1. Retrosynthetic analysis of (‒)-6-epi and (+)-30-epi-13,14-

didehydroxyisogarcinols 
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(‒)-6-epi-13,14-didehydroxyisogarcinol diverged from this intermediate, 169. 

Regioselective dearomative cyclization of 172 with alcohol 173 would provide 169, and 

on the other hand, alcohol 173 could be synthesized from a commercially available starting 

material, ethyl 3-methyl-2-butenoate, whereas 172 could be prepared from commercially 

available phloroglucinol 174 via Friedel-Crafts acylation. 
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Scheme 2.4.2. Syntheses of bisalkylated didehydrobenzopyrans 
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ratio of 1.9:1.4:1. Out of these three enols, 178A is a racemic enol, whereas 178B and C 

are meso/ achiral, and their structures were confirmed by X-ray crystallography. From pure 

enantiopure alcohol of 173, after regioselective alkylation, the reaction brought forth 

enantiopure 169. Intermediate 169 then set the stage for diastereoselective Brønsted/Lewis 

acid-base carbocyalization. Porco and his group found the right conditions to get the 

desired diastereomers from the same intermediate. Use of SnCl4/phosphoric acid 

combination produced a single enantiomer, 171, with a 10:1 dr, whereas BF3-OEt3 

furnished 175 with a 5:1 dr. To get two different enantiomerically pure single 

diastereomers from an enantiomerically pure single diastereomer, Porco needed a reagent 

that could differentiate between two diastereomeric alkenyl appendages in 169, based on 

the rate of protonation. In one case, he found that 169 reacted with SbCl5/ phosphoric acid 

and produced 171 that would lead to (+)-6-epi-13,14-dehydroisogarcinols, whereas BF3-

OEt3 combination reacted with 169 to produce 175, which would lead to (+)-30-epi-13,14-

dehydroisogarcinol.  

The acidity of a Brønsted acid increases upon the addition of a Lewis acid, and this 

increased acidity also restricts the release of H+, depending on the accessibility of a 

protonating center. This property was exploited in this cyclization reaction for the 

construction of the pyran ring. Authors gave a detailed account of computational studies to 

explain this result with the help of several reaction trials, using different Bronsted/ Lewis 

acid combination. Deprotonation of the pyranodienones -H in 171, 175 and 181 with Li 

(2-Th)2Cu(CN)Li and then, reacting with allyl bromide furnished 170, 174 and 182 in a 

good yield. The next critical step was to convert pyradienones, 170, 174, and 182, into 

bicyclo[3.3.1]nonane trione cores 185, 184 and 183 repectively. The formation of (–)-6-

epi-13,14-didehydroxyisogarcinol from 185, and similarly, (±)-6,30-epi-13,14-
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didehydroxyisogarcinol from 183 did not pose as much of a challenge as for (+)-30-epi-

13,14-didehydroxyisogarcinol from 184. In the previous two cases, TFA/H2O in a 1:1 ratio 

at 60°C smoothly converted the pyradinones to bicyclo[3.3.1]nonane, giving rise to 166 

and 168 in impressive yields (Scheme 2.5.1). 

 

Scheme 2.5.1. Finishing the total synthesis of (+)-6-epi- and 30-epi-13,14-

didehydroxyisogarcinol  
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The axially oriented allyl group at C6, generated from 174, increases the energy of 

the transition state as shown in (Figure 2.5.1) by clashing with benzoyl group in T1A. There 

is no such unfavorable interaction in T2A, leading to product 183. In neat TFA, compound 

174 produced O-alkylated product 184A as a major product in addition to the required C-

alkylated product. However, in the presence of water, the diastereomeric cationic carbo-

cyclization favored C-alkylation product with a low yield. The amount of water was very 

critical for this transformation, which could favor the reaction toward either 184A or 184 

(Figure 2.5.1). Fortunately, 1% water in TFA proved to be the ideal condition for the 

reaction, which gave the correct diastereomer 184, with a low yield of 14%. Surprisingly, 

the reaction took 5 days to complete, and the prolong reaction time could be another reason 

to the increased amount of O-alkylated product 184A (Scheme 2.5.2). 

 

Figure 2.5.1. Transition state model for cyclization 
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produced O-alkylated product 184A as a major product in addition to the required C-

alkylated product. However, in the presence of water, the diastereomeric cationic carbo-

cyclization favored the C-alkylation product with a low yield (Scheme 2.5.2).  

 

Scheme 2.5.2. By-product formation 

Finally, global Grubbs’ metathesis of 185, 184 and 183 produced 166, 168 and 166 with 

an excellent yield of 98%, 70% and 91% respectively. 

2.6 Total synthesis of natural analogs of (+)-clusianone by Coltart et al.  

Coltart and his research group at Duke University were intrigued by PPAPs because 

of its synthetic challenges and medicinal properties. Subsequently, his group came up with 

α-alkylation of chiral N-aminocarbamate derived hydrazones 191 strategy to synthesize 

enantiomerically pure α-alkyl cyclohexanones 187 to synthesize some of the PPAPs.126 

The idea behind the route was that chiral auxiliary would react rapidly with ketones to 

furnish corresponding hydrazones, which later would undergo deprotonation by the strong 

base to an aza enolate to install prenyl group at α to the ketone and this -ketone would, 

then cyclize with malonyl dichloride to construct bicyclo[3.3.1]nonane. With this idea in 

mind, the group disconnected the -prenyl group at C3 from 9 to produce 187 (Scheme 

2.6.1). The reason behind this disconnection was that Danishefsky showed that the late 

stage bridgehead alkylation was possible. 187 could be obtained from 189 by a base-
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mediated ring closer with malonyl dichloride. 189 could be synthesized from 188 by 1,4-

Michael addition to the , - unsaturated double bond followed by a methyl enol formation. 

The conjugated ketone 188 could be furnished from 189 with a LDA mediated prenylation 

of hydrazone of 190 in good yield. 

 
Scheme 2.6.1. Retrosynthesis of (+)-clusianone by Coltart 

 

Scheme 2.6.2. Synthesis using enantioselective alkylation 
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2.6.2). Oxalyl chloride converted to vinyl chloride 192. 192 was dechlorinated with Zn in 

AcOH in the presence of AgOAc to 190. The ketone, 190, formed a hydrazone 193 with 

191 and alkylated with prenyl bromide by LDA to yield 194 with a high chiral induction 

of 98:2 dr. The removal of the chiral auxiliary with P-TsOH produced 195 with a high er 

of 99:1. 

 

Scheme 2.6.3. Finishing the total synthesis of (+)-clusianone 
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subsequently the ring closing by Effenberger cyclization, with malonyl dichloride PTC, 

and benzyl triethyl ammonium chloride, afforded the desired bicyclo[3.3.1]nonane 199 

plus 196. Compound 199 was converted into its methyl enol ether in two steps. A 

bridgehead allylation with LDA and allyl bromide produced 200. Finally, acylation at C3 

with benzoyl chloride, LiTMP, and hydrolysis of the methyl enol ether with LiOH in 

dioxane built a natural analog of (+)-clusianone 9, in 79% yield in the final step (Scheme 

2.6.3). 

2.7 Total synthesis of ()-hyperforin by Shair 

Two years after Shibasaki’s hyperforin synthesis, in the year of 2012, Matt Shair’s group 

proposed a biomimetic approach towards hyperforin116 and a successful synthetic route 

comprised of 18 steps, bringing it down 33 steps from Shibasaki’s synthesis, which 

required 51 steps.  

 

Scheme 2.7.1. Retrosynthetic analysis of hyperforin by Shair’s group 
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Retrosynthetically, hyperforin 6 (Scheme 2.7.1) could be obtained by assembling 

six chemicals. Therefore, he envisaged that hyperforin could be obtained by bridgehead 

alkylation of alcohol 201, and alcohol 201 could be made from stereoselective and 

chemoselective Lewis acid mediated epoxide ring opening of 202. This cyclohexene 

containing epoxide could be synthesized regioselectively from the reaction of 1,5-

dimethoxy-1,4-cyclohexadiene 203 with prenyl chloride 204 and epoxy geranyl bromide 

205. Although the route was inspired by nature’s robust mechanistic artillery, known as an 

enzyme, Shair’s group had no such luxury (Scheme 2.7.2); as a result, they thought that 

epoxide moiety might be placed in such a way that stereochemical information could be 

passed on to construct 201, and the selective choice of Lewis acid would do the job. 

However, the issue was concerned with diastereoselectivity, the stereochemistry of C7 in 

201, and whether OH would occupy axial or equatorial position based on the transition 

state (TS). Thus, the boat TS was disfavored over the chair TS (Scheme 2.7.4). The boat-

like TS, however, led to 5-(enol-endo)-tet cyclization to form a bicyclo[3.3.1]nonane, and 

this cyclization is unfavorable; therefore, the reaction follows the 6-(enol endo)-tet 

cyclization. This watershed reaction ultimately took care of three major issues: formed the 

bicyclo[3.3.1]nonane scaffold, established the C5 stereochemistry, and also defined the 

stereochemistry at C8.   

 

Scheme 2.7.2. Matt Shair’s biomimetic approach 
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Based on these findings, Shair’s group set out to synthesize the target molecule, 

hyperforin. The synthesis (Scheme 2.7.3) began with enantioselective epoxidation of 

geraniol and bromination, which yielded 205 (91% ee). Oxymercuration–hydration of 205, 

and then protection of the concomitant alcohol with TESCl gave 206 in 88% yield. 1,3-

Dimethoxycyclohexadiene—obtained from 1,3-dimethoxybenzene by Birch reduction—

was subjected to prenylation with the help of ortho-lithiation and mediated by freshly 

synthesized BaI2, giving 207 in 85% yield.  

 

Scheme 2.7.3. Hyperforin synthesis by Shair 

The next goal was to install a geranyl moiety into the molecule for building the 

bicyclic motif. Again, with the help of ortholithiation mediated by s-BuLi, the allyl anion 

generated from 207 reacted in SN2 fashion with 206. Then, 208 underwent cyclization in 

the presence of TMSOTf to produce ketal 209 in a decent yield. This step accomplished 

three tasks: establishing the stereochemistry at C5 and C8 and construction of the bicyclic 

motif. The next step was the allylic oxidation of C2, which was accomplished by the 

treatment of TBHP, PhI(O2CCF3), and O2. The reaction yielded 210 in 55% yield. This 

Br
O

205
Br

O
TESO

1. Hg(OAc)2, H2O
2.TESCl

206

OMe

OMe

1. Li in Liq NH3

2. t-BuLi; BaI2; 204

85%

OMe

OMe

207

s-BuLi; 206

85%
OMe

MeO

O
TESO

208

O

OMe

OMe

TESO 5

7
8

209

TMSOTf

79%

overall 88%



 88 

oxidation was challenging and has been a bottleneck for many PPAP syntheses, given the 

stereoelectronic environment around carbon.  

 

Scheme 2.7.4. The origin of diastereoselectivity 

The Lewis acid, BrBMe2, opened the epoxide ring of 210 via a chair TS, leading to 

alcohol, which was converted to thiocarbonate 211 in 72% yield in three steps. BEt3 /air 

worked to initiate a free radical prenylation reaction with allyl tributyltin in 62% yield. The 

reaction was famously known as Keck allylation. This reaction was followed by metathesis 

with 2-methyl-2-butene in the presence of Grubbs II catalyst (Scheme 2.7.5).  

Bridgehead acylation with isopropyl cyanoformate, using LiTMP as a hindered base, 

installed the isopropyl ketone moiety at C1, and microwave-assisted desilylation went 

smoothly. Then deprotonation of C3 by LDA, transmetallation with Li(2-Th)CuCN, and 

trapping the resulting vinyl anion with prenyl bromide installed the last prenyl group on 

C3. Finally, heating 213 in DMSO-LiCl mixture unmasked the hydroxyl group and brought 

forth hyperforin. Thereby, after 18 steps, the total synthetic scheme yielded 40 mg of 

hyperforin (Scheme 2.7.5).  
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Scheme 2.7.5. Finishing synthesis of hyperforin by Shair et al. 
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Scheme 2.8.1. Retrosynthesis of hyperforin by Maimone 
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Scheme 2.8.2. Synthesis of hyperforin by Maimone 
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starting material. This step might prove to be an Achilles’ heel for the overall synthetic 

scheme. They, however, did not consider this low yielding step and proceeded with the 

scheme. Compound 217 was converted into regioisomeric vinylogous esters, 218 and 219, 

in 1:1 ratio by the action of TMS-diazomethane. These esters were separable, and later, 

after a rigorous analysis, compound 219 was found to be the requisite intermediary for the 

synthesis of hyperforin.  Compound 219 was a milestone in the hyperforin synthesis and 

set the stage for an oxidative rearrangement, which is the unique selling point of this total 

synthesis (Scheme 2.8.3). 

 
Scheme 2.8.3. Proposed mechanism of oxidative rearrangement 
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an excellent yield of 92%. LiTMP-mediated deprotonation of the C3 proton, followed by 

chlorination with TMSCl, gave a good yield of 221. The halogen-metal exchange has not 

been effective for vinyl chloride. Using Li(2-Th)CuCN, however, they performed a 

halogen metal exchange with vinyl chloride 222 and which underwent a reaction with 

prenyl chloride resulting in 200. Finally, LiCl in DMSO removed the methoxy group and 

installed the OH group leading to 1,3-diketone functionality in the molecule. 

In a nutshell, the focus on the synthesis was an Umpolung-derived oxidative 

rearrangement of an intermediate 217 to construct the bicyclic motif in 221. This approach, 

regarding synthesis, resembles the biosynthetic pathway. It is also interesting to note that 

C4 in the molecule (in the case of a type A PPAP) is already in a right oxidation state from 

the beginning of the synthesis. Thus, chemists need not think about the intricacies of a late 

stage oxidation.  

2.9 Hyperforin and papuaforin A-C, and formal synthesis of nemorosone by 

Barriault et al. 

In 2014, Louis Barriault and his group developed a gold-catalyzed carbocyalization 

approach to construct PPAPs (Figure 2.9.1) and published the synthesis of hyperforin, 

papuaforin A-C, and nemorosone from a common intermediate (Figure 2.9.1).127 In many 

ways, this synthesis reminds researchers of Danishefesky’s seminal work on the total 

synthesis of clusianone and nemorosone,111 where the latter resorted to a common 

precursor, which was en route to two different PPAPs via a series of riveting chemical 

transformations.  
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Figure 2.9.1. Target molecules for Barriault’s group 

2.9.1 Retrosynthetic approach of Barriault  
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Scheme 2.9.1. Synthesis of PPAP core by gold catalysis 

Retrosynthetically speaking, all allyl groups replaced the prenyl groups in 200 

(Scheme 2.9.2). Compound 226 could be obtained from the alkylation of C3 by a sterically 

hindered base, and 227 could be converted to 226 by bridgehead acylation following 

Danishefsky’s method, which he adopted in synthesizing clusianone and nemorosone.111 

Compound 228 could be obtained by the 6-endo-dig cyclization of silyl enol ether 227, 

thanks to  [(JohnPhos)Au(NCMe)][SbF6]. Compound 227 could be easily traced back to a 

commercially available 3-methoxycyclohex-2-en-1-one, 230. 
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Scheme 2.9.2. Retrosynthesis of type A PPAPs by Barriault 

2.9.2 Synthesis of hyperforin, nemorosone, and papuaforin A-C by Barriault et al. 

With the retrosynthetic scheme in mind, Barriault’s group started by alkylating 230 

with allyl bromide and LDA (Scheme 2.9.3). The resulting compound from the previous 

reaction underwent a Grignard reaction that depended upon the final target compound 

(Figure 2.9.1). For example, for hyperforin, the group used (but-3-en-1-yl) magnesium as 

a Grignard reagent. Yet, for nemorosone, they chose MeLi. Subsequently, hydrolysis with 

1 M HCl, depending on target compound, furnished 229 in a decent yield (>80%, 

depending on the Scheme). LiHMDS-mediated alkylation of 229 gave a decent yield. 

Deprotonation of the C5 hydrogen from 229A, 229B, or 229C and then, treating the 

resulting enolate with the 3-(TMSCl)-2-propynal. The reaction yielded 232 in alkynol with 

a variety of diastereomeric ratios, which was dependent on the synthesis of the target PPAP 

(Figure 2.9.1) 
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The next step was very interesting regarding setting up the stereochemistry at C8. 

The conjugate addition to 232 was tricky since substrate 232—a δ substituted 

cyclohexenone—was prone to an anti-addition but, fortunately, Barriault’s group observed 

a syn-addition (Scheme 2.9.3). Magnesium makes a chelate on the top face of the double 

bond and, thereby, facilitates the nucleophile to approach to the double bond by syn 

fashion; this was a steric approach control that determined the outcome of the 

stereochemistry.  

 

Scheme 2.9.3. Syntheses of the silyl ketones 

Next, oxidizing the propargyl alcohol to the ketone and deprotecting the silane 

group, followed by bromination with AgNO3 and NBS, furnished 232. The ketone was 

protected with TBSOTf to produce enol ether, 228. This step set the stage for the most 

important reaction of the entire synthetic scheme: a gold(Ι)-catalyzed carbocyclization for 

the construction of a [3.3.1] bicyclo nonane motif, 227A-C. The bromo-bicyclic enone was 
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The step was critical for finishing the synthesis of the PPAPs because of the steric 

and electronic encumbrance around the C4 carbon, which has been a red herring in 

numerous trials for successful PPAP synthesis. Compounds 226 A-C were important 

stopping points in the syntheses. Hyperforin and papuaforin A-C, along with the synthesis 

of nemorosone, took different routes.  

 

Scheme 2.9.4. Synthesis of bromoalkyne for cyclization 

In other words, compounds 226A-C proved to be an important junction in the whole 

synthetic endeavor. Nemorosone was synthesized from 226A within five steps (Scheme 
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Scheme 2.9.5. Finishing the total synthesis of nemorosone 

The LDA-mediated iodination of the bridgehead carbon (C1), not touching the other double 

bonds, as well as an I/Li exchange using t-BuLi, installed the isopropyl ketone in all the 

final molecules; namely, nemorosone, hyperforin, and papuaforin A-B. Although 

bridgehead acylation helped the group reach their targets, the yields were not satisfactory, 

ranging between 18% to 29%. 
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uneventful (Scheme 2.9.6). Papuaforin A-C, however, contains an extra dihydropyran ring, 
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diastereoselectively leading to papuaforin A and B.  
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The mechanism for the formation of the ring is very simple: Wacker type oxidation. 

Since the 1,3-diketone functionality is in equilibrium with two different mesomeric forms, 

both the keto oxygen at C2 and C4 act as nucleophilic centers, resulting in papuaforin A 

and B (Scheme 2.9.6). 

 

Scheme 2.9.6. Finishing the syntheses of papuaforins A–C 

Key points from this synthetic research are the formation of a bicyclo[3.3.1]nonane motif 

by gold catalysis from bromoalkyne (228), and the subsequent replacement of the Br-group 

in 227 with an OMe group to circumvent the problem of oxidation at C4. 

2.10 Total synthesis of 7-epi-nemorosone by Porco 
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Porco’s approach to these types of compounds is known as dearomatization-annulation. 

Using this method, his group synthesized (±)-clusianone.123 

 

Scheme 2.10.1. Retrosynthetic scheme of 7-epi-nemorosone by Porco 

With the help of metathesis, all the prenyl groups could be introduced easily; this 
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Scheme 2.10.2. Synthesis of 7-epi-nemorosone by Porco et al. 

The synthesis (Scheme 2.10.2) started off with deprotonation of phenolic hydrogen 

of 238 by one equivalent of LiHMDS; the resulting phenoxide underwent 1,4-addition to 

237, at which point the nascent enolate anion expelled acetate. The second equivalent of 

LiHMDS generated phenoxide again, and this resulting phenoxide anion underwent 

Michael addition followed by aldol condensation to generate adamantane alcohol 236 

(Scheme 2.10.3). 
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Using steric congestion around the adamantane core in 236, a CeCl3 / vinyl 

magnesium-mediated tandem retro-aldol condensation was followed by a Grignard 

reaction. It furnished two alcohols esterified by Ac2O and pyridine. The deacylation of 239 

catalyzed by Pd(PPh3)4, however, proved problematic because of an unusual rearrangement 

to adamantane core 241 as a major product.  

 

Scheme 2.10.4. Mechanistic rationale for unusual rearrangement 
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smoothly; 242 was reductively de-acylated with ammonium formate with the help of 

Pd(PPh3)4, and Grubbs (ΙΙ) catalyst replaced all the allyl groups with prenyl groups. Finally, 

Bu4NOH, in a 1,4-dioxane-H2O mixture, deprotected the pivalate ester 243, resulting in 7-

epi-nemorosone in an impressive 78% yield. 

 

Scheme 2.10.5. Finishing the synthesis of 7-epi-nemorosone 

Key points from this synthesis are dearomative/cyclization and a CeCl3-catalyzed 

vinyl magnesium-mediated ring opening to bicyclo [3.3.1] nonane (Scheme 2.10.5). 
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type B endo PPAPs because of their unique structure and a wide range of medicinal 

properties, but success was elusive. From my perspective, the geometry of type B endo 

compounds was the main reason behind the long list of unsuccessful synthetic attempts by 

organic chemists. The type B endo PPAPs exist in a boat conformation rather than a chair, 

which is common to type an exo PPAPs. Things changed in 2011—when Bernd Plietker 

and his group developed a unique approach to addressing these challenges for the type B 

endo synthesis.117 This led to the total synthesis of 7-epi-Clusinone, oblongifolin, 

hyperibone L, hyperpapuanone, and regio-hyperpapuanone. As far as our knowledge goes 

in this field, his group is the only one that has been synthesizing type B endo compounds 

successfully. Here, I will provide an account of his method and decipher the philosophy of 

these state-of-the-art syntheses. Since his approach to this synthetic challenge is the same 

for all five compounds, I shall only discuss 7-epi-Clusinone, which is also the molecule of 

my interest, in more detail. The remaining four compounds will be discussed briefly. 

2.11.2 Retrosynthetic analysis of type B endo PPAPs  

Plietker’s group decided to approach the synthetic challenge using simple 

chemistry without a protecting group strategy (Scheme 2.11.1). Plietker envisioned 

developing a common module that would deliver a diverse array of type B endo PPAPs. 

Accordingly, he proposed that target 245 could be achieved from 248 via Dieckman 

condensation, which would be applied here for the first time to synthesize type B endo 

PPAPs. Compound 248 could be obtained from 247 by tandem conjugate addition and -

alkylation. Compound 247 could be made from 3-methyl-3-buten-2-one derivative 246 via 

a tandem Michael–Knoevenagel reaction. Finally, compound 246 could be synthesized by 

alkylation of acetyl acetone followed by aldol condensation with formaldehyde.  
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Scheme 2.11.1. Retrosynthetic analysis of Plietker’s synthesis of type B endo PPAP 

2.11.3 Total synthesis of 7-epi-clusianone  

Keeping in mind the diversification of the synthetic route, acetyl acetone was the 

starting point and suitable alkylating reagent. For 7-epi-clusianone, prenyl bromide was 
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The question that arose here, inevitably, was: which reaction should go first, 

alkylation at C1 or MeLi addition at C5 ester carbonyl carbon? The molecule, being a β-

keto ester, has the option to distinguish between two esters. Thus, NaH first deprotonates 

the C1 proton because of its low pKa. Subsequently, the ester group at C1 becomes poorly 

electrophilic since the negative charge on C1 can now be delocalized between C1 ester and 

C9 carbonyl. MeLi could now be added easily to C5 ester carbonyl, converting it into a 

methyl ketone. Once the conversion of the ester into ketone was successful, the addition of 

prenyl bromide added the second prenyl group at C1 with the correct stereochemistry. The 

yield was 62% in this step. This step also fixed the oxidation state of C4.  

 

Scheme 2.11.2. Synthesis of 7-epi-clusianone 
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MeMgBr at 78 °C. The reaction yielded the desired product, 246 epi_c. Having 

established a gem dimethyl group at C6, there were three more steps to accomplish the 

total synthesis of 7-epi-clusianone: (Ι) installing the last prenyl group at C5 with a correct 

stereochemistry; (ΙΙ) making bicyclo[3.3.1]nonane; and the last, (ΙΙΙ) putting the phenacyl 

group at C3. When the group tried to install the prenyl group at C5 by alkylation using 

NaH, they faced steric congestion at C6 because of the gem-dimethyl group. This led to 

failure in seeding the prenyl appendage at C5. After deliberations, they decided to rely on 

the allylic alkylation method,137 which they had developed in their lab, using a 

Bu4N[Fe(CO)3(NO)] catalyst. The reaction demanded putting the prenyl group at C5 trans 

to C7 prenyl with an acceptable dr. Fortunately, they succeeded in installing the prenyl 

group at C5 with an acceptable dr with a high yield of 90%. This allylic alkylation deserves 

some deliberation regarding diastereocontrol. Two equivalents of KO-t-amylate were used. 

One was used to deprotonate C5 in 246 epi_c, the pKa of which is very low, near 10, and 

the second equivalent was used to prevent acetate anion from picking up an α-proton. The 

enolate anion from the deprotonation created flattened chair conformation, where the 

bottom face was covered by carboethoxy and Me group, because of the chelation by the 

iron between C9 carbonyl oxygen and C5 methyl ketone oxygen. Now, the incoming 

electrophile, π-allyl complex, had no option but to approach the reactive center other than 

from the top face (Figure 2.11.1). 
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Figure 2.11.1. Rationale for diastereoselection of allylic substitution 

The next step was to construct a bicyclo [3.3.1] nonane in 249 epi_c. They envisioned 
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2.12 Total synthesis of oblongifolin 

Oblongifolin is another type B endo PPAP.117 It has the same structure as 7-epi-

clusianone, but includes the C7 appendage, which is a geranyl rather than a prenyl group. 

So, the overall scheme remains the same. 

 

Scheme 2.12.1. Synthesis of oblongifolin 

Since the retrosynthetic approach towards the molecule was the same as 7-epi-

clusianone (Scheme 2.11.2), Plietker’s group accomplished the total synthesis of 

oblongifolin with the same methodology (Scheme 2.11.2). In the first step, acetyl acetone 

underwent alkylation with geranyl bromide, followed by aldol type methylenation, to set 

the stage for the Michael–aldol reaction. The last step, the acylation at C3 with 3,4-

dihydroxybenzoyl cyanide, resulted in oblongifolin in 33% yield (Scheme 2.12.1). The 

yields in each step were very much on par with 7-epi-clusianone 10.  
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2.13 Total synthesis of hyperpapuanone  

Hyperpapuanone (73) is a type B endo PPAP and structurally very similar to 7-epi-

clusianone (10), but with two minor differences: first, there is is a methyl group at C1 

instead of a prenyl group; and second, there is an isobutyryl substituent at C3 instead of a 

benzoyl group (Figure 2.13.1).117  

 

Figure 2.13.1. Hyperpapuanone, regio-hyperpapuanone, and 7-epi-clusianone 

Since the retrosynthetic approach towards the hyperpapuanone was the same as 7-
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hyp_c, as well as acylation at C3 with 2-methylpropanoyl cyanide, were the only two 
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Scheme 2.13.1. Synthesis of hyperpapuanone 
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when the last alkylation step was reached, where a KH/MeI combination methylated C5, 

which resulted in the transformation of 246 epi-c into 249 hyp-c. The last step, acylation 

at C3 with isobutyryl cyanide and benzoyl cyanide respectively, was the only step that 

differentiated the syntheses of hyperibone L and regio-hyperpapuanone. The overall yields 

were quite on par with 7-epi-clusianone at 22% and 14%, respectively.  

 

Scheme 2.14.1. Synthesis of regio-hyperpapuanone and hyperibone L 
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upon late stage oxidation; rather, they devised a strategy where the C4 was at the desired 

oxidation state from the very beginning, and they took care of this step in the Michael–

aldol tandem reaction. Perhaps the structure of the final molecules, which exist in a boat 

conformation rather than a chair—a common feature among endo PPAPs, led to this kind 

of approach. They envisioned constructing the bicyclo[3.3.1]nonane via Dieckman 

condensation from the precursor, which was in a chair conformation but was required to 

transform into a boat form. The explanation was the same what I have proposed in the case 

of clusianone (Scheme 2.11.1).   

2.15 Total syntheses of sampsonione P and hyperibone I by Plietker et al. 

After his seminal work in 2011, Plietker and his group did not stop there; they 

continued exploring additional type B endo PPAPs employing their established 

methodology. In this process of exploration, the group published a total synthesis of 

sampsonione P (81) and hyperibone I (82) in 2013 (Figure 2.15.1).109 These are two unique 

type B endo PPAPs with tetrahydrofuran side chains. Plietker and his group were not only 

fascinated by the unique structures of these PPAPs, but also intrigued with determining 

them correctly and differentiating their useful biological properties. Sampsonione P was 

isolated from Hypericum sampsonii, a family of Hypericaceae, in 2007, and hyperibone I 

was obtained from Hypericum scabrum in 2002.138 There was confusion about the correct 

structure of both PPAPs; initially, it was thought that hyperibone I and sampsonione P were 

isomers, differing only at the C7 appendage orientation; that is, hyperibone I was thought 

to be an exo type B PPAP, while sampsonione P was assigned to be an endo type B PPAP. 

Dr. Grossman et al. had proposed a type B endo structure for hyperibone I in 2006 based 

on the available data.7  
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Figure 2.15.1. Sampsonione P and hyperibone I  

To confirm Grossman’s proposal, Plietker and his group set out to synthesize these 

two molecules. They relied on the same strategy that was published in 2011,117 which was 

discussed in detail in previous sections. Retrosynthetically speaking, 81 and 82 are the 

same as 7-epi-clusinanone, hyperpapuanone, and hyperibone L, but there is an extra 

tetrahydrofuran ring present in hyperibone I (82) and sampsonione P (81) (Scheme 2.15.1). 

This tetrahydrofuran ring is the result of further oxidation and cyclization of one of the 

prenyl side chains. The strategy was to install prenyl and allyl groups regiospecifically in 

254 to give regioisomers 252 and 253, and then to execute a chemoselective epoxidation 

of the prenyl group to construct the tetrahydrofuran rings in 81 and 82 (Figure 2.15.1).  
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Scheme 2.15.1. Retrosynthetic analysis of sampsonione P and hyperibone I 

The synthesis began with acetylacetone (Scheme 2.15.2) and was the same as 7-

epi-clusianone in both cases. Therefore, only noteworthy steps will be discussed here.  
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Scheme 2.15.2. Synthesis of sampsonione P and hyperibone I 
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C2. This reaction installed the tetrahydrofuran ring in 262 sam. Finally, the stage was set 

for Grubbs metathesis to convert the two allyl groups into prenyl groups; this was 

accomplished to give sampsonione P (81) in 65% yield (Scheme 2.15.3). 

 

Scheme 2.15.3. Syntheses of sampsonione P 
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Scheme 2.15.4. Finishing the synthesis of hyperibone I 

2.16 Total syntheses of guttiferone A and 6-epi-guttiferone A by Plietker et al. 

In 2014, Plietker’s group published another article on the total synthesis of 

guttiferone A and 6-epi-guttiferone A. 139  
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Structurally, guttiferone A is an endo type B PPAP (Figure 2.16.1) and contains geranyl 

appendage at C6. If we compare hyperforin and guttiferone A, it is quite clear that they 

both possess the same structure, differing in C3 substituents, where guttiferone A has a 

phenacyl group at C3 and hyperforin has an isopropyl ketone at C5. Guttiferone and epi-

guttiferone are epimers. The stereochemistry only differs at C6. 

2.16.1 Retrosynthetic approach of guttiferone A and 6-epi-guttiferone A 

Based on the retrosynthetic strategy (vide supra), they delivered a couple of successful 

endo type B PPAPs beforehand. Therefore, they envisaged that dimethyl cuprate type 

addition to an enone Scheme 2.16.1 (Scheme 2.16.1) would establish the quaternary center 

at C6 with the correct stereochemistry. The geranyl appendage must be cis to the allyl 

group in 264 in guttiferone A, while trans in epi-guttiferone A. This was the prime 

challenge in the total synthesis. The remaining steps in the syntheses were the same as the 

other type B endo PPAP syntheses, which were discussed in depth in the previous sections, 

beginning with the alkylation of acetyl acetone with allyl bromide. 

 
Scheme 2.16.1. Retrosynthetic analysis of guttiferone A and 6-epi-guttiferone A 
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2.16.2 Synthesis of 6-epi-guttiferone A  

The Plietker began their synthesis of guttiferone A by alkylating acetylacetone with 

allyl bromide, followed by aldol-type demethylation to generate 267 in 47% yield. Then, 

267 was allowed to react with dimethyl-1,3-acetonedicarboxyate in the presence of 

MeMgCl at low temperature to furnish cyclohexenone 266 in an 84% yield. This reaction 

was a tandem Michael-Knoevenegal reaction, which brought two ester groups in a 

molecule, separated by a ketone. Compound 266 was first treated with MeLi to convert C5 

ester to methyl ketone and was then prenylated in the same pot at C1 using NaH 

stereoselectively. After this, the most interesting step of the sequence was performed: the 

installation of a 3-buten-1-yl group at C6 to construct the quaternary center. Following 

Yamamoto protocol, compound 268 was added to a cuprate, generated from the action of 

CuI and 3-buten-1-ylmagnesium bromide, gave 265A as a single diastereomer at C6 (but 

an inconsequential 1:1 mixture of stereoisomers at C5, between the two ketones). This 

result was unexpected, and it caused the group to change the target of their synthesis from 

guttiferone A to 6-epi-guttiferone A.  
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Scheme 2.16.2. Synthesis of 6-epi-guttiferone A 

The next challenge was to install an allyl group at C5, which would be trans to the 

butenyl group at C6. Bu4N[Fe(CO)3(NO)] was the initial catalyst of choice for C-allylation, 

but it did not bring forth the desired result. Thus, they resorted to a palladium-catalyzed 

decarboxylative allylation, which was quite an effective method for Plietker’s group in 

previous schemes. To execute the plan, they allowed 266 to react with allyl carbonate and 

NaH. The reaction yielded two regioisomers in a 1:2 ratio. Heating induced a Claisen 

rearrangement of the allyl vinyl carbonates. The diastereocontrol of the Claisen 

rearrangement was excellent, 95:5.  

Once the construction of the quaternary center at C5 was accomplished, the next 

aim was to generate the bicyclo[3.3.1]nonane that was furnished by Dieckman 

condensation using potassium tert-butoxide. Global Grubbs metathesis replaced all the 

allyl groups with the prenyl groups and, finally, K2CO3 deprotonated a C3 proton, and the 
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resulting enolate reacted with 3.4-bis-acetoxybenzoyl to accomplish the total synthesis of 

6-epi-guttiferone (59) (Scheme 2.16.3). 

 

Scheme 2.16.3. Synthesis of 6-epi-guttiferone A 

2.16.3 Synthesis of guttiferone A 
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condensation of 271 with dimethyl acetonedicarboxylate constructed cyclohexene 272. 

Prenylation of 272 gave enedione 273. Then, conjugate addition of a methyl cuprate to 273 

went exclusively cis to the allyl group at C7 to give 274, as desired and expected from the 

6-epi-guttiferone synthesis.  

 

Scheme 2.16.4. Beginning of the synthesis of guttiferone A 
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Scheme 2.16.5. New diastereoselectivity problem in the synthesis of guttiferone A 

Therefore, they thought of an alternative plan: the introduction of a cyclic group 

from the two unsaturated appendages in 274 would enhance the formation of the required 

diastereomer. Thus, they converted 274 into 277 using Grubbs-ΙΙ in 94% yield (Scheme 

2.16.6). After that, they tried NaH-mediated allylation of 277 with allyl chloroformate and 

the reaction produced 278 and 278B, which was followed by Pd-catalyzed decarboxylative 

allylation to furnish 280 and 280B. The yield of the reaction was impressive, nearly 94%, 

and the diastereomeric excess ratio was 95:5 with respect to the desired isomer, 280B. 

Compound 280B was treated with potassium t-butoxide to construct the 

bicyclo[3.3.1]nonane 281. Finally, global Grubbs’ metathesis of 281 and acylation with 

O
O

O

O

O

274

O
O

O

O

O

O O

275275A

+

O

O
O

O Pd

O

O

O

O

Pd

O
O

O

O

Not required diastereomer

dioxane, 60 °C

NaH, 
allyl chlorofromate

DMF, 0 °C

92%

Pd2(dba)3, p-Tol3P

92%
dioxane, 60 °C

Pd2(dba)3, p-Tol3P

— CO2

— CO2

276

275A
275

6

5

O

O
O

OO



 126 

3,4-bis-acetoxybenzoyl cyanide yielded guttiferone A in 58% yield in 13 steps (Scheme 

2.16.6). The most important points from this synthetic plan are: I) developing a route to 

install the correct geometry at C1 and C5 so that Dieckman condensation could take place; 

and, II) starting from a precursor with the correct oxidation state at C4 so that late stage 

oxidation would not pose any threat to the new route. 

 

Scheme 2.16.6. Synthesis of guttiferone A 
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were discrepancies in secondary literature concerning the relative configuration of garcinol 

and isogarcinol (Figure 2.17.1. Garcinol and isogarcinol).140  

 

Figure 2.17.1. Garcinol and isogarcinol 
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Scheme 2.17.1. Retrosynthetic analysis of garcinol and isogarcinol 
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Scheme 2.17.2. Syntheses of garcinol and isogarcinol 

The conversion of the acetoxyprenyl group at C5 of compound 286 to a lavandulyl group 

was challenging, since a palladium catalyzed allyl–allyl exchange reaction could result in 

a simple SN2 substitution with hydrogen and β-elimination (Scheme 2.17.2). Alter 

screening many ligands and bases, they found that [Pd2(dba)3], dppe, allyl(pinacol)borane, 

and CsF gave the best result of the exchange reaction, although they recovered some β-

elimination product (Scheme 2.17.2). The stereochemical outcome could be explained by 

the TS model (Scheme 2.17.3), where Pd coordinated to the carbonyl group in cyclohexane 

ring by forming a palladacycle that prevented the allyl transfer from the other direction, 

leading to the stereoselective fixation of the allyl group on the prenyl moiety.  
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Scheme 2.17.3. Stereochemistry of the exchange reaction 

After installing the lavandulyl moiety at C5, Dieckmann condensation of 287 

promoted by KO-t-Bu was followed by Grubbs metathesis (Scheme 2.17.4). The 1,3-

diketone was again deprotonated and trapped by 3,4-dihydroxybenzoyl cyanide. Garcinol, 

69, was produced in 43% yield over the two steps. Isogarcinol, 77, was made from garcinol 

by the action of concentrated HCl. The reaction yielded isogarcinol in 87% yield. Overall, 

there were 13 steps in the garcinol synthesis and 14 in the isogarcinol one. Plietker’s group 

separated the two compounds by chiral HPLC along with possible four enantiomers, and 

each of them was identified by an arduous characterization process, namely 1H NMR, 13C 

NMR, and 2D correlation spectroscopy. After data analysis, they reached the conclusion 

that guttiferone E and garcinol were enantiomers, as were isogarcinol and 

isoxanthochymol. How they reached such a conclusion was discussed in detail in Chapter 

1.  
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Scheme 2.17.4. Synthesis of isogarcinol 

Plietker’s group separated two compounds by chiral HPLC along with possible four 

enantiomers, and each of them was identified by arduous characterization process, namely 

1HNMR, 13CNMR, 2D-correlation spectroscopy. After data analysis, they reached the 

conclusion that guttiferone E and garcinol are enantiomers, as are isogarcinol and 

isoxanthochymol. How they reached such conclusion was discussed in detail in chapter 1. 

2.18  Grossman’s approach to the synthesis of PPAPs  

Dr. Grossman’s group has a longstanding interest in this field. They have 

contributed by devising a synthetic route to construct a bicyclo[3.3.1]nonane,7, 141 which is 

known as the ‘alkynylation–aldol approach.’ They envisioned developing a scheme that 

would work as a model for the synthesis of any PPAPs irrespective of their classification. 

The scheme was initially designed for nemorosone, a type A PPAP, but later, they realized 

that the newly devised scheme would also be effective for type B endo PPAPs with some 

minor modifications. They envisioned replacing the prenyl groups with robust allyl groups 
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(Scheme 2.18.1), which would make the reactions simpler. When decoration around the 

bicyclic core was needed, prenyl groups would be introduced by global metathesis in 290. 

Compound 290, on the other hand, could be constructed from 291 by an aldol followed by 

oxidation. The most interesting point about 291 is that it is a Z-alkenal and, to construct 

291, it was necessary for the aldol condensation. Here, they thought about making a model 

system to synthesize 291 without the gem-dimethyl next to the benzoyl group in 291. 

Therefore, they redrew their retrosynthetic scheme without the gem-dimethyl group and 

291 could be deconstructed to 292, which did not contain a gem-dimethyl group. 

 Grossman et al. thought to reduce the alkynal chemoselectively using cobalt 

catalyst. They decided on a model study to examine if the route proposed could be realistic. 

Therefore, 292 was replaced by 293, which could be synthesized via a double alkylation 

from ethyl acetoacetate, 294.  

 

Scheme 2.18.1. Retrosynthetic analysis of nemorosone by Grossman et. al. 

They began with ethyl acetoacetate 294, which was first alkylated with allyl 

bromide (Scheme 2.18.2) to 295. The addition of prenyl bromide to the dianion of methyl 
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dig cyclization of 296 converted it into 298 via a radical mechanism. The cyclic β-keto 

ester 296 was then converted to dimethoxy compound 297 by Pb(OAc)4 and subsequent 

hydrolysis yielded 298.  

 

Scheme 2.18.2. Model study by Grossman et al. 

Alkynal 298 was hydrosilylated to alkenal 299 by Co2(CO)8 and Et3SiH. One of the 

interesting aspects of this chemistry is that the triple bond was reduced to a cis double bond. 

The Z-geometry of the double bond is essential for closing the ring by aldol condensation. 

An HCl-mediated aldol reaction led to bicyclic compound 300. The real challenge was to 

install a 1,3-diketone functionality in 300 by oxidizing the C4 carbon. It appeared from 

their model study that C4 carbon was too reluctant to undergo sp2 to sp3 hybridization. All 

the methods to put any oxygen-containing group at C4 failed, presumably because of the 

gem-dimethyl groups at C8. Although the route did not deliver the result, and the synthesis 

of nemorosone was not accomplished, the route would be exploited with some 

modifications in the synthesis of 7-epi-clusianone 10. 
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3 Our strategy for 7-epi-clusianone 

3.1 Introduction 

In chapter 1, I have discussed the medicinal properties of PPAPs in detail.27, 142 

Frankly speaking, they are one of the prime reasons for chemists to synthesize these 

molecules. My reasons for synthesizing these molecules are not different. These molecules 

are fascinating, partly because of the wide range of therapeutic properties in their initial 

trials. Initial studies of these molecules hint towards this direction—garsubellin A shows 

antineurodegenerative activity,26 hyperforin shows antidepressant activity,101, 142, 143 and 

clusianone shows antibacterial activity.88, 101 There is another aspect of PPAPs— endo and 

exo epimers differ quite substantially,98 as far as their medicinal properties are concerned. 

However, these results are not conclusive enough that these molecules could be marketed 

for fighting diseases. For these reasons, we need to have enough of these molecules on 

hand to carry out conclusive research.  

On the other hand, we are synthetic organic chemists, and therapeutic details of a 

compound cannot be the only goal of our research; there must be another dimension to it. 

The architectural design acts as an added flavor to our research. In particular,7-endo type 

B PPAPs exist in a boat conformation, and this makes their synthesis more challenging. 

Furthermore, many total syntheses of 7-exo type A PPAPs have been reported, but the 

syntheses of type A endo, except 7-epi-nemorosone, and type B endo, with the exception 

of Plietker’s seminal works, have not been well addressed.117, 144 Therefore, we have striven 

to find a viable method to synthesize type B 7-endo PPAPs so that we could develop a 

model that would work for many PPAPs.  

We chose 7-epi-clusianone as our target compound. There are two reasons for this 

selection: one, its wide range of biological activity—anticancer,89 antiplasmodic,71 
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vasorelaxant,145 and antibacterial91, 96, 146—and the second, its unique structure, which 

exists in the boat conformation.37 When we started this project back in 2011, no one had 

published a total synthesis of a type B 7-endo PPAP. However, in 2011, a research group 

in Germany led by Bernd Plietker published the first total synthesis of 7-epi-clusianone.117 

Since then, to the best of our knowledge, no group has reported any total synthesis of the 

molecule using a different route. Herein, we have sought to devise a path for the total 

synthesis of 7-epi-clusianone 10 following the alkynylation-aldol method. 

3.2 Initial retrosynthetic strategy 

The first approach to synthesize 7-epi-clusianone 10 came from a joint venture led 

by my predecessor, M. P. Suresh Jayasekara, and Dr. Grossman. They approached the 

retrosynthesis of the molecule differently; initially, they realized that compound 10 might 

be synthesized from 1,3-diketone 310a by an acylation of C3, followed by a global Grubbs’ 

metathesis (Scheme 3.2.1). They believed that they could prepare 1,3-diketone 310a by 

oxidation of the enone in 310b. They envisaged constructing the bicyclic system by making 

a bond between the C4 and the C5 carbon (dark bond) in 310b. Therefore, diketone 310b 

might be accessed from 310c, in equilibrium with 310d, by an intramolecular aldol 

condensation followed by oxidation of the diastereomeric alcohols. They believed that the 

equilibrium between 310c and 310d would favor 310d, but they postulated that enough 

310c would be produced at equilibrium to allow the aldol reaction. Cis enal 310d, they 

thought, could be synthesized from 310e by Still-Gennari reaction. The trans relationship 

of the C2 and C4 allyl appendages in 310e was crucial for the synthesis of the desired 7-

epi-clusianone 10. They assumed that 310e could effectively be obtained from by Trost-
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Tsuji allylation of -keto ester 310f, which could ultimately be synthesized from 

cyclohexanone 310g and thence 1,3-cyclohexanedione in six steps.  

 

Scheme 3.2.1. First retrosynthetic strategy 

3.3 Synthesis of 7-epi-clusianone 

The details on the synthesis based on this first retrosynthetic strategy can be found 

in Jayasekara’s dissertation, therefore, I am not discussing every aspect of it. However, I 

will comment on why the route (Scheme 3.3.1) did not succeed, because it was a pertinent 
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proceed. He reasoned that A1,2-strain in 310c1 prevented the enol or enolate from forming, 

preventing the intramolecular aldol reaction from occurring. 

 

Scheme 3.3.1. A1,2-strain 

3.4 Revised retrosynthetic strategy  

Realizing that the A1,2-strain made the intramolecular aldol of 310d impossible in 

the first trial, they pondered over redesigning the retrosynthetic strategy, keeping the 

overall approach the same. Hence, they decided to disconnect the C1–C2 bond of 10 

instead of the C4–C5 bond (Scheme 3.4.1); in that case, there would not be any issue of 

A1,2-strain in the enol or enolate undergoing the key intramolecular aldol reaction. They 

envisaged that the C4 OH group of 310a might be introduced into simple alkenone 310, 

which, in turn, could be synthesized by an intramolecular aldol reaction of compound 312. 

The strategy requires that 312 assume its higher energy conformation, 312a, before 

undergoing the reaction. The essential Z-alkenal 312 might be obtained by a stereoselective 

reduction of alkynoate 313, which could be prepared by two-carbon homologation from β-

keto ester 314. They planned to make ester 314 from alkenone 315, which could be 
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accessed from commercially available 1,3-cyclohexanedione in three steps with good 

yields. I inherited the scheme, and my research goal was to oxidize the C4 carbon of 310 

and then complete the total synthesis, which was three steps away from the target.53  

 

Scheme 3.4.1. Revised retrosynthetic strategy for 7-epi-clusianone 

3.5 Enol ether formation and allylation followed by methylation 

We commenced from commercially available 1,3-cyclohexanedione, and converted 

it into an isopropyl enol ether 316 in a high yielding reaction (Scheme 3.5.1).147 

Subsequently, compound 316 underwent LDA-mediated allylation and furnished 315 

without any purification (93% yield).148 We were happy to be able to avoid any rigorous 

column purification in the two initial steps.  
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Scheme 3.5.1. Synthesis of allyl enone 315 

3.6 Methylation and hydrolysis 

 

Scheme 3.6.1. Methylation and hydrolysis 

Following the Stoltz protocol for Stork-Danheiser reaction, a nucleophilic addition 

of MeLi or MeMgBr to the carbonyl carbon of 317 gave allyl alcohol 317B, and addition 

of 1 M HCl to 317B induced a transposition of an allylic double bond to compound 315 in 

87% yield after column purification (Scheme 3.6.1).  

3.7 Synthesis of -keto ester 

Compound 315 was treated with lithium dimethylcuprate in the presence of HMPA 

to add a methyl group across the double bond to construct the C6 quaternary center. The 

resulting enolate was trapped by methyl or ethyl cyanoformate to furnish β-keto ester, 318B 

or 318 with a decent yield ranging from 79% to 76% (Scheme 3.7.1).149 The yield of the 

reaction was very sensitive to the amount of HMPA used. We screened several reactions 
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using 1 to 8 equivalents of HMPA to find the optimum conditions, and the best result was 

obtained using 7.2 equivalents of HMPA. Less than 6 equivalents of HMPA promoted O-

acylation rather than C-acylation. We tried to replace HMPA with DMPU because of 

HMPA’s carcinogenicity, but the yield was very low in that case.  

Both my predecessor and I encountered several challenges in maintaining a good 

yield while scaling up this reaction. I surmounted this impediment by using mechanical 

stirring and slow cooling of the reaction to –70 °C using a dry ice–isopropanol bath; the 

slow cooling helped the magnetic stirring. As we scaled up, cost motivated us to prepare 

our own ethyl or methyl cyanoformate. We prepared them by Webber and Childs’ 

protocol,150 but the yield was higher when we prepared ethyl cyanoformate in a large 

amount (59% yield vs. 30%), so thereafter we used ethyl cyanoformate and prepared 318.  

 

Scheme 3.7.1. Synthesis of β-ketoesters 318 and 318B 

3.8 Allylation and enol ether synthesis 

The keto ester 318 was converted into O-allyl vinyl ether 324 (Scheme 3.8.1) using 

NaH and allyl bromide with an excellent yield of 88%.151 The O-allyl ether 324 was 

dissolved in dry toluene and heated in a sealed tube for 12 h at 150 °C. A [3,3]-sigmatropic 

O

O O

Oi) CuI, MeLi, Et2O, -5 °C, 1 h

ii) HMPA, CH3CH2OCOCN, -78 °C to rt

79%

O O

O

ii) HMPA, CH3OCOCN, -78 °C to rt

76%

i) CuI, MeLi, Et2O, -5 °C, 1 h

318

318B

315



 141 

rearrangement yielded two diastereomers, 314 and epi-314, in a 3:1 ratio and excellent 

yield.152  

By examining a transition state model (Figure 3.8.1), we thought that the reaction 

would more likely to proceed via TSa, which had fewer steric interactions than the 

alternative TSb, and we, therefore, believed that TSa would produce the major 

diastereomer; whereas TSb would produce the minor diastereomer epi-314, which was 

expected to be undesired one. We also expected the major diastereomer to be the desired 

one. But we did not know yet at this point. We purified the both diastereomers by column 

chromatography and attempted to confirm our hypothesis by 1H NMR, COSY, and 

NOSEY. Unfortunately, overlapping peaks in the 1H NMR spectra of both diastereomers 

made it difficult to assign their stereochemistry unambiguously. Therefore, we reserved 

our judgment on whether the major product was 314 or epi-314 until we could 

unambiguously assign the structures of downstream intermediates in the synthesis.  

 

Scheme 3.8.1. O-allylation and Claisen rearrangement and enol ether synthesis 
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Figure 3.8.1 Transition state model for the diastereoselectivity 

3.9  Determination of stereochemistry of major diastereomer 

It was necessary to reduce the ester carbonyl in C-allylated β-ketoester 314 to an 

aldehyde to allow us to carry out a two-carbon homologation. Before doing that, we 

protected the keto group so that we could selectively reduce only the ester group. The 

reason behind choosing methyl enol ether as a protecting group was not because of the easy 

synthetic preparative method, but the steric bulk around the quaternary carbon. We 

previously attempted different protecting groups, like TMS or TBDMS, but in those cases, 

the alkynylation turned out to be very low-yielding, as was also the case when we left the 

ketone unprotected. Therefore, we selected the methyl enol ether as the optimum protecting 

group for the ketone, even though the protecting group strategy necessitated an extra step. 

We converted the ketone in 314 to methyl enol ether with trimethyl orthoformate 

and H2SO4 (cat) in 94% yield. In past, we had trouble converting 314 fully into 325, 
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equivalents sounded like a lot of CH(OMe)3. Pleasingly, we did not observe any 

transesterification in this reaction, although there was a possibility of it because of the 

presence of an ethyl ester.  

 

 

Figure 3.9.1. 1H NMR spectrum of 325 in C6D6 

We had reserved our judgement on the identification of the major diastereomer in 

the Claisen rearrangement (314 or 314A) because of overlapping peaks in its 1H NMR 

spectra. Here, in the case of 325 (Figure 3.9.1), 1H NMR isochrony at 400 MHz did not 

impede the assignment of the diastereomers. Therefore, we could proceed with a COSY 

and NOESY analysis. Assignments of peaks in COSY experiment was essential for 

establishing the trans geometry of the two allyl groups in 325. Because we needed these 

correctly assigned protons in NOSEY which is the main experiment to assign the geometry. 

We, here, were using the process of elimination to find a proton which was the key for the 

whole process; it was H5. We had to assign it.  
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We assigned the resonance at  4.60 ppm as the enol ether double bond proton H3 

because it was quite distinct from the rest and it was vinylic proton, showing a doublet of 

double. However, we had two other vinylic protons but they were further downfield and 

multiplets. Therefore, neither of them could be H3. Therefore, we found that this resonance 

correlated with resonances at  2.12 ppm and 1.60 ppm in the COSY spectrum (Figure 

3.9.2), which we assigned as H4a and H4b. Due to their chemical shift and multiplicities, 

we could assign resonances at  2.68 ppm and 3.01 ppm to the two H8 atoms; these 

resonances showed a correlation in the COSY spectrum to the resonance at  6.00 ppm, 

which we assigned to H9. This assignment then allowed us to assign the resonance at  

5.85 ppm to H11, which in turn allowed us to identify the resonances at  2.20 ppm and 

1.86 ppm as H10a and H10b. So, only proton left to assign was H5; and we assigned it. 

However, identification of H8 and H9 were not important from COSY perspective, but 

identification of these two peaks led us to assign H5 which was a very important proton to 

establish the trans geometry of the two-allyl groups in 325. Finally, we were able to assign 

the resonance at  1.78 ppm as H5 due to its strong correlations with H10a, H10b, H4a, 

and H4b in the COSY spectrum.  
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Figure 3.9.2. COSY spectrum of 325 

In the NOESY spectrum of 325 (Figure 3.9.3), we observed a strong correlation 

between resonances due to H5 and one of the H8 atoms, unambiguously establishing the 

trans geometry of the two allyl groups (Figure 3.9.1, major product). We would not have 

observed this correlation if the two allyl groups had been cis (Figure 3.9.1, minor product). 

We also found a strong correlation between peak 12, which was a methyl group, with 4b, 

and therefore, they must be both axial. On the contrary, we did not observe any correlation 

of 12 with either of 8a or 8b. These observations unambiguously established the trans 

geometry of the two allyl groups in 325. Since 325 was synthesized from 314, so we 

concluded that 314 was the major and desired diastereomer. 
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By contrast, in the NOSEY spectrum, the minor constituent which we assigned epi-

325 correlated H8 and axial CH3 (identified by correlation to axial which had large JH4-

H5 (Figure 3.9.4). 

 

Figure 3.9.3. NOESY spectrum of 325 
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Figure 3.9.4 NOE interactions in 325 and epi-325  

3.10 Conversion of ester to aldehyde 

Ester 325 was reduced to alcohol 326 (Scheme 3.10.1) in 87% yield with LiAlH4.152 

We carried this alcohol 326 forward to the next step without any purification. Applying the 

Dess-Martin periodinane to 326, the reaction completed within 4 hours. After purification 

by a short column chromatography, the reaction gave aldehyde 327 in an overall yield of 

92% over two steps.153 

 

Scheme 3.10.1. Synthesis of aldehyde before alkynylation 
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precedents in the literature about converting an aldehyde into an alkyne.154 In our case, 

probably because of the steric bulk around the sp2 carbon of the aldehyde, we had a poor 

yield when we used the Corey–Fuchs reaction. However, we obtained an excellent yield 

when we used a Colvin rearrangement to convert 327 to 328 (Scheme 3.11.1).155  

 

Scheme 3.11.1. Synthesis of alkyne and O-allyl vinyl ether 
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327. The nascent alkoxide undergoes a Peterson olefination-like reaction to generate a 

carbene intermediate, 327B, after the expulsion of N2 from 327A. Finally, a 1,2-shift 

furnishes 328. The Colvin rearrangement of 327 probably proceeds better than the Wittig 

reaction because of the reduced steric bulk and greater nucleophilicity of the organolithium 

regent used in the former reaction.  
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At this point in the synthesis, for introducing the third, and the last, allyl group in 

the molecule, we decided to exchange the O-methyl vinyl ether for an O-allyl vinyl ether 

(Scheme 3.11.1). Our idea was to later introduce an allyl group on the C1 carbon by Claisen 

rearrangement. We applied allyl–methyl exchange reaction to add the allyl group in the 

molecule 328, converting it into 329 with a decent yield of 78%. We screened several 

catalysts, but CSA·2H2O gave the best result. Hydrolysis of the enol vinyl ether to the 

ketone was not a problem under these conditions. Pleasingly, we isolated the product 329 

without need for column purification. 

3.12 Carboxymethylation and reduction 

After installation of an alkyne and the allyl group in 329, the next task was to 

introduce a CHO group at the terminal alkyne carbon in compound 329. Alkynes are 

readily converted into alkynoates,156 alkynals157 or propargyl alcohols158 by treating them 

with n-BuLi followed by an electrophile such as chloroformate, DMF, or 

paraformaldehyde. We attempted all of these conditions, but, to our surprise, we recovered 

only the starting material 329. Therefore, we searched for an alternate route. Thankfully, 

the alkynoate 313 was synthesized from 329 using CO, MeOH, NaOAc, and CuCl2 and a 

catalytic amount of PdCl2 (Scheme 3.12.1).
159 After column purification, the reaction 

yielded the alkynoate 313 in 87% yield. The reaction was sensitive to scale-up: the reaction 

of more than 5 mmol scale failed several times.  
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Scheme 3.12.1. One-carbon homologation–methoxycarbonylation 

To our surprise, compound 329B was a solid. Pleasingly, X-ray crystallographic 

analysis revealed that both the allyl groups at the C5 and C7 were trans to each other 

(Figure 3.12.1), which confirmed our stereochemical assignment of 325 and its precursor, 

314.  

 

Figure 3.12.1. X-ray Structure of 329B 
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the double bond, but we did not observe this overreaction. After column purification, the 

reaction gave O-allyl alkynol 330 in 86% yield. 

3.13 Claisen rearrangement and oxidation of alcohol 

We were now ready to install the last allyl group. Therefore, we subjected 

compound 330 to Claisen rearrangement (Scheme 3.13.1). After heating compound 330 in 

a sealed tube for two hours at 150 °C, the reaction yielded 331 as an inconsequential 

mixture of diastereomers at C1 in nearly 75% yield. We were not concerned with the 

diastereomers since C1 would shortly undergo deprotonation as part of the aldol 

condensation. We carried the crude mixture over to the next step, which involved a DMP 

oxidation, furnishing the alkynal 332 in 92% yield within 4 h.153 

 

Scheme 3.13.1. Synthesis of the alkynal 

3.14 Stereoselective reduction of alkynal to Z-alkenal, and intramolecular aldol 

reaction 

We envisaged reducing the C≡C triple bond chemoselectively to Z–alkenal 312 so 

that we could make the bicyclo[3.3.1]nonane ring via aldol condensation (Scheme 3.14.1). 

For years, our lab has been studying the regiospecific syn reduction of alkynals in the 

presence of isolated double bonds.5, 118 A catalytic amount of Pd(PPh3)4 and a 

stoichiometric amount of (n-Bu)3SnH reduced 332 to cis alkenal 312 in 52% yield.160 The 

reaction was clean and finished within 1 hour.  
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Scheme 3.14.1. Reduction of alkynal to cis alkenal 

This result was rather surprising to us, because alkynoates generally undergo 

hydrostannylation under such conditions,161 but we observed the only syn reduction of the 

triple bond. We hypothesized that the reaction might proceed via a Pd-stannylketene 

intermediate 312a, which could then be protonated on its less hindered face to give the cis 

double bond in alkenal 312. There could be another possibility; after the initial 1,4-addition 

of H– to the alkynal 332, reductive elimination of 312a could lead to the stannyloxyketene 

intermediate and then, the protonation led to the formation of the cis double bond in 312 

via the same mechanism. 

 

Figure 3.14.1. Possible intermediate in syn reduction  

Armed with alkenal 312, we were ready for aldol condensation, for which we used 

NaOEt in EtOH (Scheme 3.14.2). We envisaged enolate conformers 312-hc5 and 312-fhc6 

in equilibrium. We believed the equilibrium would favor 312-hc due to a reduced 1,3-

diaxial interactions, but we also believed that enough 312-fhc might be formed to allow 
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the aldol reaction to proceed. Our hope was that the formation of the C–C bond in the 

product 333 would compensate for the increased steric strain in the bicyclic compound 333 

as opposed to 312. In the event, the aldol reaction finished within 2 hours, giving us two 

diastereomeric alcohols 333. Without purification, we used DMP to oxidize the alcohols, 

and, after column purification, we obtained bicyclic diketone 310 in a solid crystalline form 

and in 92% yield over the two steps. The crystal structure (Figure 3.14.2) unambiguously 

established the endo geometry of the bicyclic core of 7-epi-clusianone. It was necessary to 

establish the endo geometry of the bicyclic structure in order to synthesize 7-epi-

clusianone. 

 

Scheme 3.14.2. Synthesis of bicyclo[3.3.1]nonane via aldol reaction 
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Figure 3.14.2. Bicyclic structure of 310 

3.15  Oxidation of C4 in bicyclo[3.3.1]nonane: a dilemma or enigma?  

With bicyclic compound 310 in hand, we set out to oxidize the C4 carbon in 310 to 

move closer to the finish line, only three steps away. To the best of our knowledge, no one 

had ever done a late stage C4 oxidation in a synthesis of a 7-endo type B PPAP, so it would 

be significant if we could develop a method for this oxidation. My predecessor tried 

unsuccessfully to oxidize the C4 to advance in the total synthesis.5 Here, we are not 

rehashing those results. However, we will be discussing some of his ideas.  

 

Scheme 3.15.1. Ultimate roadblock to the success! 

3.16 Plan for the oxidation of C4 in 310 

3.16.1 Desaturation followed by oxidation 

We envisaged that adding MeLi followed by an allylic oxidation would give us a 

3-methyl enone (Scheme 3.16.1). We would then oxidize the methyl group to a carboxylic 

310

12
3

4

OO OO

HO

310a

i) X = ?

O
ii)  PhC(O)CN



 155 

acid and subsequently form the acid azide 336X. The resulting acid azide could undergo a 

Curtius rearrangement to give a 3-isocyanato enone 336Y. Finally, the hydrolysis of the 

product from the Curtius rearrangement would give us the 1,3-diketone functionality. If 

the oxidation of the Me group to a CO2H group proved difficult, we could instead use 

BnOCH2Li, which would provide a handle for the oxidation.  

 

Scheme 3.16.1. Proposed synthetic scheme for the oxidation of C4 in 310 

With this idea, we allowed MeLi to react with 310 to furnish 335a (Scheme 3.16.2). 

The resulting diastereomeric alcohol 335a was directly subjected to oxidation. Because the 

alcohol in 335a was allylic and tertiary, we expected an oxidative allylic transposition to 

occur. There is a lot of literature precedent for such chemistry.162, 163 PCC, CrO3, and IBX 

are common oxidants for this type of reaction. However, my predecessor showed that in 

our case, neither PCC, CrO3 gave the desired product, leading to either unreacted starting 

material or the rearrangement into 310. I further attempted the allylic transposition reaction 

on 335a with IBX in DMSO at 60 °C, and disappointingly, we also recovered starting 

material.  
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Scheme 3.16.2. Failed allylic transposition  

The alkyllithium LiCH2OCH2OMe also reacted with 310 to furnish the 

corresponding tertiary alcohol, but my predecessor showed that treatment of this compound 

with PCC or CrO3 either gave back 310 or did not result in a reaction at all.118 The reason 

for the failure was attributed to steric hindrance around the C4 carbon, which made it very 

resistant to change its hybridization. 

3.16.2 Reduction and enol ether formation followed by oxidation 

Next, we thought of reducing the double bond of the enone in 310 chemoselectively 

to diketone 337 (Scheme 3.16.3). Our idea was that ketone 337 could be converted into 

TIPS-enol ether 338., which we then might be able to oxidize at C4 with the help of C–H 

activation. In 2003, Corey and Yu had shown that such an oxidation worked in a bicyclic 

system.164 This idea was successfully implemented by Nakata in his hyperforin 

synthesis.165 So, we are hopeful that we could try this method of oxidation.  
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Scheme 3.16.3. Strategy for C4 oxidation via Corey-Yu’s method 

We set off to reduce the conjugate double bond in 310. The reductions of 

conjugated double bonds are very common in organic chemistry.161, 166, 167 Because 310 

had three allyl groups, we had to find a chemoselective method of reducing the conjugated 

double bond. Transition metal hydrides have demonstrated the ability to reduce such 

conjugated double bonds. Stryker’s reagent, [(PPh3)CuH]6, is an example of one such metal 

hydrides. Therefore, we attempted to reduce 310 with Stryker’s reagent, but we found that 

the reagent did not touch the conjugated double bond at all, and we ended up recovering 

the starting material.167  
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Scheme 3.16.4. Attempts to reduce the α, β-unsaturated ketone in bicyclic enone 310 

Stryker’s reagent, however, is bulky, and because of that, we thought, the delivery 

of H to the double bond might have been difficult. Therefore, we envisioned generating 

CuH in situ, and then we could reduce the conjugated double bond. Accordingly, we 

attempted to reduce the conjugated double bond in 310 using CuH, generated in situ from 

the action of CuI and Bu3SnH, in the presence of LiCl and TMSCl. Unfortunately, this 

reaction furnished the allylic alcohol, leaving the conjugated double bond unreacted 

(Scheme 3.16.4).  

Not discouraged by the results, we turned our attention to other metal hydrides. 

TeH is also reported to reduce conjugated double bonds.168 Unfortunately, TeH, which we 

generated by the action of Te powder and NaBH4, in ethanol, reduced both ketones in 310, 

instead of the conjugated double bond, producing allylic alcohol 341.  

The dissolving metal reduction of α,β-unsaturated ketones has long been utilized in 

organic synthesis.169 We were hopeful that the lack of steric demand of the reducing agent 
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in this reaction would allow our desired reaction to proceed. When 310 was subjected to 

Li in liquid NH3 without any cosolvent, however, we obtained an intractable mixture of 

products, and the NMR spectrum of the crude product indicated that there had been no 

reduction of the conjugated double bond. The same reaction in the presence of the proton 

source t-BuOH did not reduce the conjugated double bond in 310, but caused the loss of 

an allyl group to give 342 (Scheme 3.16.5). Na2S2O4 failed to react completely.170  

 

Scheme 3.16.5. Trials for dissolved metal reduction 

We were aware that Hudlicky’s group had done a lot of research on chemoselective 

reduction of a conjugated double bond in α,β-unsaturated esters using Mg/MeOH.161, 171-

173 After allowing 310 to react with Mg in refluxing MeOH for 4 h, we obtained a strange 

result: the reagent not only reduced the double bond but also promoted the skeletal 

rearrangement of bicyclo[3.3.1]nonane, leading to the completely unexpected 

bicyclo[4.3.0]nonane 343 in 51% yield, along with some allylic alcohol (Scheme 3.16.6). 

X-ray crystallographic analysis established the stereochemistry of 343 without doubt 

(Figure 3.16.1).  
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Scheme 3.16.6. An unusual reaction of 310 with Mg in methanol 

 

Figure 3.16.1. Crystal structure of 343 

A possible mechanism for the rearrangement is shown here (Scheme 3.16.8). To 

the best of our knowledge, it was a new kind of reaction where bicyclo[3.3.1]nonane had 

rearranged to a bicyclo[4.3.0]nonane motif. Unfortunately, though, it did not contribute to 

a solution to our problem.  

The proposed mechanism suggested that the α, β-unsaturated ketone of 310 was 

indeed reduced to the saturated ketone before further reaction occurred. Therefore, we 

attempted to forestall the rearrangement by using less Mg powder (<10 equivalent), but to 

no avail. An alternative mechanism for the unusual transformation could be proposed 

(Scheme 3.16.7). We believed that mechanism in the Scheme 3.16.8 is less likely to 
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happen because of the formation of cyclopropane intermediate, which is a high in energy. 

 

Scheme 3.16.7. An alternate reaction mechanism for the bicyclo[4.3.0]nonane 

 

Scheme 3.16.8. Mechanistic rationale for an unexpected rearrangement 
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These failed trials hint us that the C4 carbon of 310 is very resistant to changing its 

hybridization from sp2 to sp3. Therefore, we need to rethink our strategy to overcome the 

challenge. A late-stage oxidation strategy may not work here; we need to think about an 

early stage oxidation. 

 

3.16.3 Epoxidation and nucleophilic ring opening  

Nucleophilic epoxidation of an enone has been an efficient route for the oxidation 

of β-carbon of an enone because the resulting epoxide is prone to nucleophilic ring opening 

(Scheme 3.16.9). Ciochina successfully implemented the strategy—a nucleophilic 

epoxidation followed by the ring opening—on a model compound in proposing a route for 

the total synthesis of nemorosone.5 Therefore, we decided to attempt the strategy on 

molecule 310; our plan was to epoxidize the enone 310 to 344, and then, regiospecifically, 

to open up the epoxide ring in 344 with any less bulky nucleophile. After the ring was 

opened, the alcohol 345 could then be oxidized to diketone 346.  

 

Scheme 3.16.9. C4 oxidation: epoxidation and nucleophilic ring opening 
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Unfortunately, the nucleophilic epoxidation with H2O2 in the THF and 10% KOH 

mixture did not touch the double bond of the enone 310, and we recovered 310.174 

3.16.4 Conjugate addition–oxidation 

We knew that thiols added to enones in a 1,4-fashion. Therefore, we thought of 

adding thiophenol at the C4 carbon in 310 (Scheme 3.16.10). Our idea was simple; if we 

could add PhS– to C4 of 310, we could close the ring, remove the PhS– by oxidizing the 

sulfur, and subsequently, install OH group at the C4. Accordingly, we attempted to add 

thiophenol to enone 310. Not surprisingly, the reaction did not go as per our hope, and we 

recovered the starting material 310.  

 

Scheme 3.16.10. Addition of sulfur nucleophile to bicyclic enone 

3.17 New plan for C4 oxidation 

“In solving a problem of this sort, the grand thing is to be able to reason backwards.” 

— Sir Arthur Conan Doyle, A Study in Scarlet.  

The problem of oxidation of C4 in 310, demanded further deliberation. We 

reexamined the crystal structure of 310. Its analysis revealed that the gem-dimethyl groups 

at the C6 hindered any approach of nucleophile or electrophile from the endo face of the 
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conjugated double bond. The exo face was still accessible to any approach of Nu–or 

electrophile, but, as the reaction proceeded, the endo H at C4 was forced into an eclipsing 

position with one of the gem-dimethyl groups, which rendered any reaction virtually 

impossible (Scheme 3.17.1). Henceforth, we realized that late stage oxidation of the C4 in 

310 would not be a viable option, and we needed to think an alternative.  

 

Scheme 3.17.1. Rationale for the failure of the oxidation at C4 in 310 

We decided to alter the route, keeping the alkynylation-aldol approach intact. We 

thought if the C4 carbon were in the right oxidation state before the aldol condensation, we 

could complete the synthesis. This idea led us to a new, revised synthetic scheme. 

3.18 The revised plan for oxidation of C4 

The C4 in 310 was stereochemically and electronically very resistant to change its 

hybridization from sp2 to sp3, as we learned from a series of failed reactions. Therefore, we 

envisioned developing a route where the C4 was already in a correct oxidation state before 
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correct oxidation state, and after that we could carry out the aldol condensation (Scheme 

3.18.1). Settling with the substrate for the crucial oxidation, we were now in search of a 

nucleophile that could add to alkynal 332 in a Michael addition fashion.  

Thiols have shown such property of adding to a α, β–unsaturated aldehyde.175, 176 

Thiophenol is a known to add to β carbon of an alkynal. My predecessor had added a PhS 

group to the β-carbon of ,-unsaturated alkynal 332, but he obtained the E-alkynal 352, 

which could not undergo aldol condensation.  

 

Scheme 3.18.1. Addition of PhSH to 332 

The formation of E-alkenal 352 from the reaction of thiophenol and alkynal 332 

was disappointing. Therefore, we searched for an alternative to thiophenol. Ley showed 

that 1,2 and 1,3-propanedithiols are nucleophilic towards alkynals and alkynoates, giving 

a mixture of E and Z isomers (Scheme 3.18.2).177 We thought we could apply his 

methodology on our substrate 332. Our plan was to affect a Michael addition on 332 to 

give the aldehyde 354. However, we knew that we would get a Z-alkenal, but, after second 

Michael addition, there would not be any issue of E or Z. Therefore, we hoped to get 354A 

to avoid any façade of E or Z- geometry. 
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Scheme 3.18.2. Strategy for C4 oxidation via propanedithiol reaction 

 

Scheme 3.18.3. Addition of 1,2 or 1,3-dithiol to alkynal 

With these thoughts in mind, we combined alkynal 332 with 1.1 equivalents of 1,3-
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Scheme 3.18.4. Proposed mechanism for the deformylation of 332 

Small, soft nucleophiles like N3 also add to α,β–unsaturated carbonyl compounds 

in 1,4-fashion (Scheme 3.18.5). Therefore, we envisioned adding N3
 to the β-position of 

alkynal 332, converting it to 355, which could undergo a base-catalyzed aldol reaction, 

followed by a DMP oxidation, to 356. Using Staüdinger reaction condition, 356 could be 

reduced to enamine, and after the hydrolysis of enamine, we could get 310a. The literature 

suggested that Me3SiN3 and tetramethylguanidine hydrochloride would produce 

tetramethylguanidine azide that could undergo the addition reaction with 332.178  
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reaction (Scheme 3.18.5). The result was surprising; we rationalized it with a mechanism 

similar to the one shown in Scheme 3.18.4.  

3.18.1 Hydrosilylation and C–H activation  

Our next idea was to try to use a C–H activation reaction to functionalize the -

carbon of the bicyclic enone, using a nitrogen heterocycle tethered through a Si atom to the 

-carbon (Scheme 3.18.6). This approach required that we hydrosilylate alkynal 332 with 

a silane containing a heterocycle, and that the hydrosilylation of 332 would proceed with 

syn stereochemistry and would direct the silyl group selectively to the -carbon and the H 

to the -carbon.  

 

Scheme 3.18.6. Hydrosilylation–C–H activation route for C4 oxidation  

Hydrosilylation of an internal alkyne is not new to organic chemists.179, 180 Over the 

last two decades several research groups have been investigating on this topic.181, 182 There 
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from the substrate via a Tamao–Fleming reaction to carry out further downstream 

modifications, or one can perform Hiyama coupling on silanes.  

The biggest challenge of the hydrosilylation is to control the regio- and 

stereochemistry of the addition. Our substrate was unsymmetrical alkyne 332. An 

unsymmetrical internal alkyne can be hydrosilylated to give four isomers (, , E, and Z). 

Happily, we had already discovered conditions for the hydrosilylation of 332 that gave syn 

addition across the triple bond and regioselectively placed the silyl group on the -carbon 

and the H on the -carbon.183  

After the hydrosilylation, we expected that Z–silylated alkenal 357 would undergo 

the aldol condensation followed by oxidation to 358 (Scheme 3.18.6). We hypothesized if 

we used 2-pyridyldimethylsilane as a hydrosilylating agent, we could utilize the pyridyl 

group as a directing group to promote C–H activation at C4 of 358 to give 359. Then the 

pyridyl silane group could be removed by hydrolysis, and, hopefully, would provide 310.  

With this idea, we set out to hydrosilylate alkynal 332 with 2-

pyridyldimethylsilane. Following Ferreira’s method, the hydrosilylation of 332 with PtCl2 

and PySiHMe2 for more than 24 hours, did not produce 357;179 instead, we recovered 332 

(Scheme 3.18.7). We also attempted to implement Itami’s184 and Hosoya’s182 reaction 
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condition separately on 332 (Scheme 3.18.7), but we did not observe hydrosilylation; 

instead, we recovered starting material.  

 

Scheme 3.18.7. Attempts to hydrosilylate 332 with 2-pyridylsilane 

3.19 Co-promoted hydrosilylation 

Co-promoted hydrosilylation has been used to reduce an α,β-unsaturated alkynal.185 

In 2003, in an effort to develop a model to synthesize nemorosone, Dr. Grossman resorted 

to a Co2(CO)8-catalyzed hydrosilylation to reduce an alkynal stereoselectively to Z-

alkenal.5 Jayasekara implemented the methodology successfully to synthesize a 

bicyclo[3.3.1]nonane, 310 (Scheme 3.19.1). We decided to see if the same reaction would 

work with 2-pyridyldimethylsilane.53  

 
Scheme 3.19.1. Co-promoted hydrosilylation of alkynal 332 with HSiEt3 
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Following the protocol set by Jayasekara, we attempted to reproduce the result with 

2-(dimethylsilyl)pyridine. To our disappointment, we did not obtain 361 (Scheme 

3.19.2).184, 186, 187 An attempt at hydrosilylation with (4-methoxyphenyl)dimethylsilane was 

equally unsuccessful.  

 

Scheme 3.19.2. Co-promoted hydrosilylation with 2-pyridyldimethyl silane 
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Experimental 

General: All the reactions were done under N2 atmosphere unless otherwise mentioned. 

THF, Et2O, toluene, and benzene were dried over Na/benzophenone. CH2Cl2 was dried 

over CaH2. Anhydrous MeOH was purchased from Sigma.1,3-Cyclohexanedione, 2.5 (M) 

n-BuLi, 1.8 (M) MeLi, trimethylsilyldiazomethane, 3 (M) MeMgBr, and PdCl2 were 

purchased from Acros organic, and were used without any purification. Allyl alcohol and 

allyl bromide were distilled before use. Ethyl cyanoformate was synthesized in the lab 

using Weber-Childs protocol.150 The reactions were monitored by aluminum backed TLC, 

and GC. Iodine, KMnO4, and p-anisaldehyde were used as TLC stains where required. 

CDCl3 and C6D6 were used as NMR solvents. NMR spectra were obtained on a 400 MHz 

Varian instrument. All the chemical shifts were reported in δ ppm with respect to SiMe4.  

 

3-(propan-2-yloxy)cyclohex-2-en-1-one (316): A 250 mL three-necked round-bottomed 

flask equipped with a dean stack apparatus was charged with of 1,3-cyclohexanedione 

(7.50 g, 66.3 mmol) and PTSA·H2O (631 mg, 3.31 mmol). Isopropyl alcohol (10 mL, 165 

mmol) and benzene (30 mL) were added to the reaction mixture. The resulting light orange 

solution was refluxed for 4 h. GCMS was monitored to confirm the completion of the 

reaction. The reaction mixture was cooled to room temperature and the organic solvents 

were evaporated to red oil. The red oil was dissolved into Et2O (100 mL) and then the 

organic solvent was extracted with Na2CO3 (2×20 mL), NaHCO3 (2 20 mL), and H2O (20 

mL). The organic layer was finally washed with brine (20 mL). It was dried over anhydrous 

magnesium sulfate. Finally, the organic solvent was evaporated to red hued yellow oil (9.52 

O

O
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g, 60.0 mmol, yield 93%). 1H NMR (CDCl3): δ 5.30 (s, 1H), 4.41 (sep, 6.4 Hz, 1H), 2.25 

(m, 4H), 2.0 (dd, 13 Hz, 6.5 Hz, 2H), 1.26 (d, 6.4 Hz, 6H). 13C NMR (CDCl3): δ 199.9, 

176.9, 102.9, 70.8, 36.6, 29.5, 21.4, 21.1. IR (neat): 2978, 1649, 1379, 1379 1222 cm-1. 

 

6-(2-propen-1-yloxy)3-(propan-2-yloxy)cyclohex-2-en-1-one (317): n-BuLi in hexane ( 

2.50 M, 85.5 mL, 213 mmol) was added to a solution of distilled diisopropylamine (23.8 

g, 235 mmol) in anhydrous THF (350 mL) under nitrogen at –5 °C. The reaction was stirred 

for 1 h. The reaction mixture temperature was taken down to –78 °C. In a separate round-

bottomed flask, 316 (30.0 g, 200 mmol) was dissolved into dry THF (30 mL) and then 

added into the previous solution at –78 °C evenly over a period of 10 min. After the 

addition, the reaction mixture was stirred at –78 °C for 1 h. Allyl bromide (25.8 g, 213 

mmol) was dissolved into anhydrous THF (10 mL), and added slowly to the cooled 

solution. Thereafter, the reaction flask was removed from the dry ice acetone bath, and was 

allowed to reach at room temperature, and then the reaction mixture was stirred for 3½ h 

at room temperature. Saturated solution of NH4Cl (300 mL) was added to the reaction. The 

organic layer was separated, and the aqueous layer was extracted with Et2O (4×100 mL). 

The combined organic solvent was washed with H2O (2×100 mL) and brine (100 mL), and 

finally was dried over anhydrous MgSO4. The organic solvent was evaporated under 

reduced pressure to a light red oil. (34.1 g, 180 mmol, 93%). 1H NMR (CDCl3): δ 5.80 (m, 

1H), δ5.25 (s, 1H), 5.0 (m, 2H), 4.41(sep, 6.2 Hz, 1H), 2.64 (m, 1H), 2.37 (m, 1H), 2.12 

(m, 1H), 2.03 (m, 1H), 1.76 (m, 1H), 1.29 (d+m, 5.3 Hz, 6H). 13C(CDCl3): δ 200.6, 140.2, 

120, 100, 70, 42, 28, 26, 20, 12. IR (neat): 3050, 2985, 1741, 1447, 1374 cm-1; m/z= 194. 

O

O
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3-Methyl-4-(2-propen-1-yloxy)cyclohex-2-en-1-one (315): Compound 317 (6.0 g, 40.0 

mmol) was added to an oven dried Schlenk round-bottomed flask and then dry THF ( 100 

mL) was added. The solution was cooled to –5 °C under N2. 1.6 M MeLi (1.60 M, 37. 5 

mL, 60.0 mmol) was added to the cooled solution and it then was stirred at RT for half an 

hour through GCMS monitoring. Once the starting material vanished, the reaction mixture 

was cooled to 0 °C, and 1 M HCl (60 mL) was added slowly (warning: vigorous 

exotherm). The ice bath was removed, and the reaction mixture was stirred for 1 h again at 

RT. The reaction progress was monitored by GCMS. Next, the reaction mixture was poured 

into a separatory funnel, and the aqueous layer extracted with Et2O (2 ×50 mL). The 

combined organic layer was washed with water (2 × 50 mL) and then with brine (1 × 50 

mL). The organic solvent was dried over MgSO4, and evaporated to pale yellow liquid. 

The reaction yielded 315 (4.33 g, 30.0 mmol, yield 94%) after column chromatography 

(eluent: petroleum ether: ethyl acetate 5:5). 1H NMR (CDCl3): δ 5.80-5.60 (s+m, 2H), 5.20-

5.00 (m, 2H), 2.50-2.40 (m, 2H), 2.37 (m, 2H), 2.05-1.84 (m+s, 5H). 13C NMR (CDCl3): δ 

199.3, 164.9, 135.9, 127.0, 117.3, 39.1, 35.6, 33.7, 26.2, 22.9. IR (neat): 3074, 2928, 1669, 

1329, 1251 cm-1. 

 

Ethyl 2,2-dimethyl-6-oxo-3-(2-propen-1-yloxy)cyclohexane-1-carboxylate (318): 

O

O O

OEt



 175 

Oven dried CuI (5.25 g, 25.8 mmol) and dry Et2O (60 mL) were added to an oven-dried 

three-necked flask fitted with a mechanical stirrer and N2 inlet. The suspension was cooled 

to –5 °C. To this cooled suspension, 1.60 M MeLi (33.0 mL, 51.6 mmol) was slowly added. 

Soon, the suspension turned into a lime yellow solution, which was stirred for 10 min at –

5 °C. Afterwards, enone 315 (2.00 g, 12.9 mmol) was dissolved into dry Et2O (10 mL), 

and was slowly added into the yellow solution over a period of 10 min. After the addition, 

the reaction mixture was stirred for 1 h at –5 °C. HMPA (10 mL, 55.8 mmol) was added 

and the reaction mixture was stirred vigorously, and the reaction temperature was taken 

down slowly to –70 °C by dry ice-methanol bath. 10 min later, ethyl cyanoformate (6.25 

g, 51.6 mmol) was dissolved into Et2O (10 mL) and added slowly to the previous solution 

at –70 °C. After the addition, the reaction mixture was allowed to reach room temperature 

within 1 h. Then, a 1:1 NH4OH and saturated solution of NH4Cl (100 mL) mixture was 

added to the reaction mixture and stirred for 30 min. The crude solution was passed through 

a celite pad to get rid of the fine copper precipitates. The organic phase was separated, and 

the aqueous layer was extracted with Et2O (3×50 mL). The combined organic layers were 

washed with H2O, brine, and dried over MgSO4. The organic solvent was evaporated to a 

pale-yellow liquid that was purified with 10% ethyl acetate in petroleum ether to a colorless 

oil 318 (3.05 g, 10.0 mmol 76.0%) as a mixture of diastereomers. 1H NMR (CDCl3): δ 5.80 

(m, 2H), 5.10 (m, 4H), 4.21 (q, 7.3 Hz, 2H), 3.01 (s, 1H), 2.90 (ddd, 19.3 Hz, 12.1 Hz, 7.1 

Hz, 1H), 2.44 (m, 1H), 2.29 (ddd, 15.5 Hz, 9.6 Hz, 6.6 Hz, 1H), 2.00 (m, 1H), 1.90 (ddd, 

12 Hz, 10 Hz, 8.2 Hz, 1H), 1.79 (m, 1H), 1.66 (ddd, 14 Hz, 9.0 Hz, 5.8 Hz, 1H), 1.53 (m, 

1H), 1.30 (t, 7.3 Hz, 3H), 1.13 (s, 3H), 0.99 (s, 3H). 13C NMR (CDCl3): δ 206.1, 169.0, 

137.7, 116.7, 68.8, 60.7, 46.7, 45.9, 41.2, 40.9, 38.9, 34.4, 27.6, 21.9, 14.3. IR (neat): 3423, 

2978, 2360, 1712, 1640, 1370, 1228, 1165 cm-1 
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Ethyl 6,6-dimethyl-5-(prop-2-en-1-yl)-2-(2-propen-1-yloxy)cyclohex-1-ene-1-

carboxylate (324): NaH (1.26 g, 31.5 mmol), which was washed with petroleum ether 

(3×5 mL), was added to a 250 mL round-bottomed flask and then dry THF ( 25 mL) was 

poured into the flask. The suspension was cooled to 0 °C and keto-ester 318 (6.00 g, 25.2 

mmol) was dissolved into anhydrous THF (25 mL), and added into the suspension for over 

5 min via an addition funnel. After the addition, the suspension was stirred for 1 h at room 

temperature. Allyl bromide (3.65 g, 30.2 mmol) was dissolved into anhydrous THF (4 mL) 

and added into the suspension. After this, the suspension was refluxed for 36 h at 60 °C. 

The reaction mixture was cooled to 0 °C. H2O (20 mL) was added followed by extraction 

with Et2O (3× 40 mL). The combined organic layers were washed with H2O (2 20 mL), 

brine (20 mL), and dried over MgSO4. Finally, the organic solvent was evaporated to a 

thick yellow liquid, and the thick liquid was purified by column chromatography (eluent: 

10 % EtOAc in petroleum ether) to yield a viscous liquid 324 (5.35 g, 20.0 mmol, yield 

76%). 1H NMR (CDCl3): δ 5.92 (m, 1H), 5.80 (m, 1H), 5.3 (dd 3.1 Hz, 1.7 Hz, 1H), 5.18 

(dd, 3.2 Hz, 1.6 Hz, 1H), 5.06 (m, 2H), 4.27 (m, 4H), 2.36 (m, 1H), 2.19 (m, 2H), 1.86 (m, 

1H), 1.74 (m, 1H), 1.48 (m, 1H), 1.3 (t, 7.66 Hz, 3H), 1.10 (s, 3H), 1.02 (s, 3H). 13C NMR 

(CDCl3):  170.3, 152.4, 138.7, 134.7, 122.2, 117.0, 116.5, 115.9, 68.7, 60.4, 43.4, 36.1, 

34.0, 27.1, 24.0, 22.4, 22.4, 14.4. IR (neat): 3077, 2972, 2935, 2862, 1714, 1667 cm-1.  

O O

OEt
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Ethyl (1R,3S)-2,2-dimethyl-6-oxo-1,3-bis(2-propen-1-yl)cyclohexane-1-carboxylate 

(314): O-allyl vinyl ether 324 (5.80 g, 20.8 mmol) was dissolved into anhydrous toluene 

(62 mL) and was heated to 150 °C for 8 hours in a sealed tube. After 8 h, the toluene was 

evaporated to a red oil and the residue was purified through a column using 5% ethyl 

acetate in petroleum ether. The reaction furnished required diastereomer 314 (4.40 g, 20.0 

mmol, yield 75.0%). 1H NMR (CDCl3): δ 5.80 (m, 2H), 5.08 (m, 4H), 4.21 (q, 7.3 Hz, 2H), 

2.74 (m, 2H), 2.44 (m, 1H), 2.29 (ddd, 15.5 Hz, 9.6 Hz, 6.6 Hz, 1H), 2.08 (m, 1H), 1.90 

(ddd, 13 Hz, 11 Hz, 8.3 Hz, 1H), 1.79 (m, 1H), 1.66 (ddd, 14 Hz, 9.0 Hz, 5.8 Hz, 1H), 1.30 

(t, 7.24 Hz, 3H), 1.13 (s, 3H), 0.99 (s, 3H). 13C NMR (CDCl3): δ 205.5, 170.6, 164.3, 137.8, 

134.9, 117.0, 115.8, 67.6, 60.2, 45.0, 43.18, 42.4, 37.4, 35.3, 33.5, 24.7, 21.7, 13.6. IR 

(neat): 3076, 2973, 2360, 1712, 1640, 1442, 1371 cm-1. 

 

Ethyl (1R, 5R)-2-methoxy-6,6-dimethyl-1,5-bis(2-propen-1-yl)cyclohex-2-ene-1-

carboxylate (325): Anhydrous CH(OMe)3 (2.04 mL, 22.7 mmol) and MeOH (1.50 mL, 

0.10 mL/mmol) were mixed in a separate round-bottomed flask. Ethyl carboxylate 314 

(3.85 g, 15.1 mmol) was added into the previous solution. The reaction was cooled in an 

ice bath. After that, conc. H2SO4 (40.0 L, 0.07 mmol) was added, and the reaction mixture 
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was stirred for 36 h at room temperature. GCMS was checked after 36 hours, and then the 

reaction mixture was concentrated. The crude mass was dissolved into of Et2O (30 mL). 

The organic layer was washed with a saturated solution of NaHCO3 (2×20 mL), H2O (10 

mL), and brine. The organic solvent was dried over anhydrous MgSO4. After rotary 

evaporation and column chromatography by 5% ethyl acetate in petroleum ether, the 

reaction yielded methyl enol ester 325 (3.70 g, 12.0 mmol, yield 87%). 1H NMR (CDCl3): 

δ 5.80 (m, 2H), 5.0 (m, 2H), 4.88 (dd, 7.84 Hz, 2.04 Hz, 1H), 4.78 (dd, 6.1 Hz, 2.0 Hz, 

1H), 4.22 (m, 2H), 3.41 (s, 3H), 2.81 (m, 1H), 2.54 (dd, 14 Hz, 9.3 Hz, 1H), 2.3 (m, 1H), 

2.14 (ddd, 16 Hz, 6.0 Hz, 4.06 Hz, 1H), 1.78 (m, 3H), 1.24 (t, 7.0 Hz, 3H), 1.05 (s, 3H), 

0.78 (s, 3H); 13C NMR (CDCl3): δ 173.1, 154.3, 138.2, 137.0, 115.5, 114.6, 95.7, 60.0, 

59.2 54.0, 38.8, 38.0, 34.1, 26.6, 22.3, 19.8, 14.2. IR (neat): 3073, 2974, 2946, 2834, 1722, 

1671 cm-1. 

 

 [(1S,5R)-2-methoxy-6,6-dimethyl-1,5-bis(2-propen-1-yl)cyclohex-2-en-1-

yl]methanol (326): Ethyl enol ester 325 (3.94 g, 14.1 mmol) was dissolved in dry Et2O 

(150 mL) and cooled to 0 °C. LiAlH4 (927 mg, 22.5 mmol) was added to the cold solution 

of enol ester 325 at 0 °C, and stirred for 3½ h at RT. H2O (1 mL) and 1 M NaOH (1 mL) 

were added to the reaction mixture. A few minutes later, H2O (3 mL) was added to it. 

Diethyl ether (100 mL) was added to the slurry and stirred under nitrogen for 20 min at 

room temperature. The organic solvent was decanted carefully, dried over anhydrous 

MgSO4, and evaporated to a thick white liquid (3.02 g, 10.0 mmol, 86%). 1H NMR 

MeO

OH
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(CDCl3): δ 5.90 (m, 2H), 5.04 (m, 4H), 4.77 (dd, 5.37 Hz, 2.31 Hz, 1H), 3.81 (dd, 11 Hz, 

6.5 Hz, 1H), 3.71 (dd, 11 Hz 8.1 Hz, 1H), 3.48 (s, 3H), 2.54 (dd, 8.0 Hz, 6.1 Hz, 1H), 2.32 

(m, 2H), 2.18 (dt, 11 Hz, 5.3 Hz, 1H), 1.89 (m, 3H), 0.98 (s, 3H), 0.82 (s, 3H). 13CNMR 

(CDCl3): δ 157.1, 138.4, 137.9, 115.3, 114.7, 95.5, 65.8, 65.2, 53.8, 49.5, 38.9,38.1, 34.2, 

26,9, 21.8, 17.6, 15.2. IR (neat): 3435, 3073, 2969, 2934, 2832, 1672 cm-1. 

 

 (4R, 6R)-6-ethynyl-5,5-dimethyl-4,6-bis(2-propen-1-yl)-1-(2-propene-1-

yloxy)cyclohex-1-ene (329): Allyl alcohol (5 mL, 0.07 mmol), CSA·H2O (14.3 mg, 0.06 

mmol) and benzene (15 mL) were added in a 50 mL round-bottomed flask, fitted with dean 

stack apparatus, and the reaction mixture was heated to reflux for an hour. The solution 

was allowed to reach room temperature and then alkyne 328 (300 mg, 1.22 mmol), 

dissolved in anhydrous benzene (5 mL), was added to the previous solution. The reaction 

mixture was refluxed for 2½ h. The reaction mixture was cooled to room temperature and 

the organic layer was diluted with 20 mL of Et2O. The organic solvent was extracted with 

Na2CO3 (2× 10 mL), NaHCO3 (2  10 mL) and brine. The organic layer was dried over 

anhydrous MgSO4 and was evaporated to dryness. The residue was eluted with 5% ethyl 

acetate in petroleum ether to furnish O-allyl-alkyne 329 (276 mg, 0.01 mmol, yield 78%). 

1H NMR (CDCl3): δ 6.03 (m, 1H), 5.98 (m, 1H), 5.8 (m, 1H), 5.38 (ddd, 17 Hz, 3.7 Hz, 

2.1 Hz, 1H), 5.18 (ddd, 10 Hz, 3.4 Hz, 1.8 Hz, 1H), 5.04 (m, 4H), 4.58 (dd,  5.1 Hz, 2.8 

Hz, 1H), 4.26 (ddt, 13 Hz, 5.4 Hz, 1.8 Hz, 1H), 4.08 (ddt,  13 Hz, 5.4 Hz, 1.8 Hz, 1H), 2.56 

(ddt, 13.4 Hz, 6.8 Hz, 2.02 Hz, 1H), 2.44 (dd, 13, 7.8 Hz, 1H), 2.34 (dd, 9.3 Hz, 5.5 Hz, 

O
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1H), 2.22 (s, 1H), 2.19 (dt, 9.8 Hz, 5.0 Hz, 1H), 1.78 (m, 2H), 1.68 (m, 1H), 1.42 (s, 3H), 

1.0 (s, 3H). 13C NMR (CDCl3): δ 153.3, 138.0, 136.9, 133.6, 128.3, 116.0, 115.6, 114.6, 

94.3, 85.4, 71.7, 67.5, 49.8, 42.8, 39.4, 36.9, 35.1, 29.6, 27.1, 23.1, 19.1. IR (neat): 3075, 

2955, 2923, 2855, 2150, 1639 cm-1 

 

 (3aR, 6R, 7aR)-7a-hydroxy-5,5-dimethyl-2,3a,6-tris(2-propen-1-yl)-octahydro-1H-

inden-1-one (343): Mg powder (30.0 mg, 1.27 mmol) was added in an oven dried round-

bottomed Schlenk flask. Enone 310 (19.0 mg, 0.06 mmol) was dissolved into anhydrous 

MeOH (3.00 mL) in a separate round-bottomed flask, and then was added to the Schlenk 

flask. The reaction mixture was refluxed for 3 h, and then the reaction mixture was cooled 

to room temperature. The reaction mixture was treated with 1 M HCl (2 mL). The reaction 

mass was extracted with Et2O (3×5 mL) and then, H2O (1×10 mL). The combined organic 

layer was dried over anhydrous MgSO4. The organic solvent was evaporated under reduced 

pressure, and the residue was chromatographed (eluent 7:3 petroleum ether: EtOAc) to 

afford 343 (8.35 mg, 0.04 mmol, yield 51%). 1H NMR (CDCl3): δ 5.8-5.6 (m, 3H), 5.0 (m, 

6H), 3.6 (s, 1H), 2.80-2.40 (m, 8H), 1.10 (s, 3H), 1.00 (s, 3H). 13C NMR (CDCl3): δ 219.7, 

139.3, 136.7, 136.0, 117.7, 116.2, 115.6, 83.6, 50.1, 47.5, 37.4, 35.2, 33.2, 32.4, 31.2, 28.5, 

23.9, 23.5, 23.3. 

  

HOO
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Conclusion 

7-epi-Clusianone is an important molecule because of its broad range of biological 

activity, namely, vasorelaxant, antimalarial, cytotoxic. These properties have inspired us 

to devise a scheme for a total synthesis of the molecule and, later, propose a general scheme 

for other endo or exo PPAPs. We have not succeeded in finishing the synthesis; however, 

we have a couple of feats in this project that has offered more satisfaction than conceiving 

a solution.  

We developed a robust method of a 1,4-addition followed by an acylation even on 

a large scale (Scheme 3.7.1). Establishing a method for synthesis of methyl enol ether from 

a β-keto ester without transesterification is worth mentioning here (Scheme 3.8.1). 

We established a robust method for constructing a bicyclo [3.3.1] nonane using 

alkynylation followed by aldol approach. The strategy has viability with a board substrate 

scope including silanes, although the yield was not impressive.  

We observed an interesting rearrangement of a carbon skeleton into another when 

we tried to reduce a α, β-bond in bicyclic enone (310) to a saturated ketone. As far as 

our knowledge goes, it was a first of its kind of reaction, where a bicyclo [3.3.1] nonane 

rearranged to a bicyclo [4.3.0] nonane (Scheme 3.16.6). Currently, we are writing the 

manuscripts to publish the result.  

Finally, we have realized that the oxidation of C4 carbon has been a bottleneck for the 

overall scheme of the total synthesis. The gem-dimethyl at C6 has been at the root of the 

problem. Therefore, we need to devise a scheme where C4 is in the correct oxidation 

state before we think about the constructing the quaternary center at C6. 

 



 182 

Appendix 

 

 

Figure 3.19.1 H NMR of 343 

HOO
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Figure 3.19.2. C NMR of 343 

  

HOO
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Table 3.2.  Crystal data and structure refinement for 343. 

Empirical formula        C20H30O2 

Formula weight        302.44 

Temperature         90.0(2) K 

Wavelength         1.54178 Å 

Crystal system, space group     Triclinic, P -1 

Unit cell dimensions 

a          6.6628(2) Å 

α              78.1350(11)° 

b          11.2157(3) Å 

β              76.4840(12)° 

c          12.1836(3) Å 

γ              84.0060(12)° 

Volume         864.81(4) Å3 

Z, Calculated density       2, 1.161 

Mg/m3 

Absorption coefficient       0.561 mm−1 

F(000)

 332 

Crystal size (mm)      0.200 x 0.080 x 0.025 

Θ range for data collection (°)    3.799 to 68.211 

Limiting indices        -3 ≤ h ≤ 8 

•          13 ≤ k ≤ 13 

          14 ≤ l ≤ 14 

Reflections collected / unique     11768 / 3080 

[Rint = 0.0351] 

Completeness to        Θ = 67.679 98.4% 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission        0.956 and 0.871 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters        3080 / 0 / 201 

Goodness-of-fit on F2 1.077 

Final R indices [I > 2σ(I)] R1 = 0.0371, wR2 = 0.0953 
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R i ndices (all dat a) R1 = 0. 0411, wR2 = 0. 0981 

Exti nction coeffici ent 0. 0023(5) 

Lar gest diff. peak and hole 0. 261 and -0. 198 e· Å−3 

Table 3.3. Atomic coordinates (x 104) and equivalent isotropic 

displacement parameters (A2 x 103) for 343. 

U (eq) is defined as one third of the trace of the orthogonalized 

Uij tensor. 

x                  y                z               U(eq) 

 

O(1)         4505(1)       8253(1)       6162(1)       18(1) 

O(2)         7748(1)       9497(1)       4492(1)       20(1) 

C(1)         6948(2)       8677(1)       7236(1)       16(1) 

C(2)         8119(2)       8604(1)       5187(1)       16(1) 

C(3)        10161(2)       7883(1)       5159(1)       19(1) 

C(4)         9690(2)       6708(1)       6052(1)       18(1) 

C(5)         7297(2)       6674(1)       6453(1)       16(1) 

C(6)         6579(2)       5959(1)       7722(1)       18(1) 

C(7)         6811(2)       6679(1)       8655(1)       19(1) 

C(8)         5901(2)       7989(1)       8409(1)       18(1) 

C(9)         6586(2)       8060(1)       6270(1)       15(1) 

C(10)        6213(2)      10037(1)       7088(1)       19(1) 

C(11)        7165(2)      10695(1)       7776(1)       21(1) 

C(12)        6134(2)      11200(1)       8641(1)       29(1) 

C(13)        6468(2)       6063(1)       5620(1)       20(1) 

C(14)        7365(2)       6441(1)       4357(1)       21(1) 

C(15)        6303(2)       7001(1)       3597(1)       29(1) 

C(16)        8970(2)       6664(1)       8922(1)       22(1) 

C(17)        8843(2)       7106(1)      10019(1)       27(1) 

C(18)        9681(2)       8083(2)      10105(2)       35(1) 

C(19)        7754(2)       4702(1)       7900(1)       23(1) 

C(20)        4263(2)       5722(1)       7965(1)       23(1) 

— — 
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Table 3.5 Anisotropic displacement parameters (A2 x 103) for 343. The 

anisotropic displacement factor exponent takes the form: 

2 Π2 [h2 a*2 U11 + ... + 2 h k a* b* U12] 

          U11      U22      U33      U23       U13    U12 

 

O(1)     14(1)    15(1)     24(1)    -1(1)    -7(1)   0(1) 

O(2)     26(1)    14(1)     18(1)    -1(1)    -6(1)   -1(1) 

C(1)     16(1)    16(1)     17(1)    -2(1)    -5(1)   -1(1) 

C(2)     20(1)    14(1)     17(1)    -5(1)    -6(1)   -3(1) 

C(3)     17(1)    18(1)     20(1)    -2(1)    -2(1)   -2(1) 

C(4)     17(1)    16(1)     19(1)    -2(1)    -3(1)   1(1) 

C(5)     17(1)    14(1)     18(1)    -1(1)    -4(1)   0(1) 

C(6)     18(1)    16(1)     20(1)     1(1)    -3(1)   -1(1) 

C(7)     17(1)    20(1)     16(1)     1(1)    -2(1)   0(1) 

C(8)     17(1)    20(1)     16(1)    -2(1)    -3(1)   1(1) 

C(9)     12(1)    15(1)     17(1)    -2(1)    -5(1)   -1(1) 

C(10)    22(1)    17(1)     18(1)    -3(1)    -5(1)   0(1) 

C(11)    23(1)    18(1)     23(1)    -3(1)    -7(1)   -2(1) 

C(12)    31(1)    31(1)     28(1)   -12(1)   -11(1)   1(1) 

C(13)    22(1)    14(1)     22(1)    -3(1)    -6(1)   -2(1) 

C(14)    26(1)    16(1)     24(1)    -7(1)    -4(1)   -2(1) 

C(15)    40(1)    24(1)     25(1)    -5(1)   -10(1)   -4(1) 

C(16)    21(1)    23(1)     21(1)    -1(1)    -7(1)   3(1) 

C(17)    25(1)    34(1)     23(1)    -2(1)    -9(1)   0(1) 

C(18)    27(1)    45(1)     37(1)   -13(1)   -10(1)   -2(1) 

C(19)    26(1)    17(1)     24(1)     2(1)    -4(1)   0(1) 

C(20)    20(1)    21(1)     24(1)     2(1)    -2(1)   -6(1) 
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Table 3.6 Hydrogen coordinates (x 104) and isotropic displacement              

parameters (Å2 x 103) for 343. 

                                   x             y             z         U (eq) 

 

H(1O)        4254          8996          5910          27 

H(1A)        8469          8621          7199          20 

H(3A)       11164          8348          5360          22 

H(3B)       10742          7692          4385          22 

H(4A)       10316          6704          6715          22 

H(4B)       10268          5986          5708          22 

H(7A)        5906          6281          9388          23 

H(8A)        4404          7976          8442          22 

H(8B)        6060          8423          9010          22 

H(10A)       6589         10421          6265          23 

H(10B)       4688         10112          7339          23 

H(11A)       8623         10750          7571          25 

H(12A)       4675         11164          8871          34 

H(12B)       6850         11602          9035          34 

H(13A)       6719          5168          5831          23 

H(13B)       4952          6237          5751          23 

H(14A)       8800          6262          4089          25 

H(15A)       4864          7194          3834          35 

H(15B)       6975          7212          2811          35 

H(16A)       9608          5822          8986          27 

H(16B)       9865          7190          8281          27 

H(17A)       8095          6642         10708          33 

H(18A)      10442          8573          9437          42 

H(18B)       9527          8300         10836          42 

H(19A)       7282          4277          8693          35 

H(19B)       9240          4811          7750          35 

H(19C)       7487          4219          7370          35 

H(20A)       3827          5277          8754          34 

H(20B)       4039          5234          7427          34 

H(20C)       3453          6502          7867          34 
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Table 3.7 Torsion angles [°] for 343. 

O(2)-C(2)-C(3)-C(4)                       -167.61(12) 

C(9)-C(2)-C(3)-C(4)                         14.64(13) 

C(2)-C(3)-C(4)-C(5)                          8.84(13) 

C(3)-C(4)-C(5)-C(13)                        87.13(12) 

C(3)-C(4)-C(5)-C(9)                        -27.83(12) 

C(3)-C(4)-C(5)-C(6)                       -151.28(10) 

C(4)-C(5)-C(6)-C(19)                       -49.88(14) 

C(13)-C(5)-C(6)-C(19)                       71.43(13) 

C(9)-C(5)-C(6)-C(19)                      -166.34(10) 

C(4)-C(5)-C(6)-C(20)                      -167.72(10) 

C(13)-C(5)-C(6)-C(20)                      -46.40(13) 

C(9)-C(5)-C(6)-C(20)                        75.83(13) 

C(4)-C(5)-C(6)-C(7)                         73.93(13) 

C(13)-C(5)-C(6)-C(7)                      -164.76(10) 

C(9)-C(5)-C(6)-C(7)                        -42.53(14) 

C(19)-C(6)-C(7)-C(8)                       172.69(10) 

C(20)-C(6)-C(7)-C(8)                       -72.53(12) 

C(5)-C(6)-C(7)-C(8)                         48.07(13) 

C(19)-C(6)-C(7)-C(16)                       44.05(15) 

C(20)-C(6)-C(7)-C(16)                      158.83(11) 

C(5)-C(6)-C(7)-C(16)                       -80.58(13) 

C(10)-C(1)-C(8)-C(7)                      -171.99(10) 

C(9)-C(1)-C(8)-C(7)                         62.80(13) 

C(16)-C(7)-C(8)-C(1)                        73.64(13) 

C(6)-C(7)-C(8)-C(1)                        -59.11(13) 

O(2)-C(2)-C(9)-O(1)                         29.15(16) 

C(3)-C(2)-C(9)-O(1)                       -153.06(10) 

O(2)-C(2)-C(9)-C(1)                        -92.45(13) 

C(3)-C(2)-C(9)-C(1)                         85.34(11) 

O(2)-C(2)-C(9)-C(5)                        150.17(11) 

C(3)-C(2)-C(9)-C(5)                        -32.04(12) 

C(8)-C(1)-C(9)-O(1)                         70.94(12) 

C(10)-C(1)-C(9)-O(1)                       -53.00(13) 

C(8)-C(1)-C(9)-C(2)                       -165.96(9) 

C(10)-C(1)-C(9)-C(2)                        70.10(12) 
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C(8)-C(1)-C(9)-C(5)                        -54.73(13) 

C(10)-C(1)-C(9)-C(5)                      -178.67(10) 

C(4)-C(5)-C(9)-O(1)                        157.78(10) 

C(13)-C(5)-C(9)-O(1)                        42.81(13) 

C(6)-C(5)-C(9)-O(1)                        -79.70(12) 

C(4)-C(5)-C(9)-C(2)                         35.70(11) 

C(13)-C(5)-C(9)-C(2)                       -79.27(11) 

C(6)-C(5)-C(9)-C(2)                        158.22(10) 

C(4)-C(5)-C(9)-C(1)                        -76.97(12) 

C(13)-C(5)-C(9)-C(1)                       168.06(10) 

C(6)-C(5)-C(9)-C(1)                         45.55(13) 

C(8)-C(1)-C(10)-C(11)                       74.57(13) 

C(9)-C(1)-C(10)-C(11)                     -161.74(10) 

C(1)-C(10)-C(11)-C(12)                    -115.65(15) 

C(4)-C(5)-C(13)-C(14)                      -43.30(14) 

C(9)-C(5)-C(13)-C(14)                       67.33(13) 

C(6)-C(5)-C(13)-C(14)                     -167.14(10) 

C(5)-C(13)-C(14)-C(15)                    -116.66(15) 

C(8)-C(7)-C(16)-C(17)                       65.85(14) 

C(6)-C(7)-C(16)-C(17)                     -165.35(11) 

C(7)-C(16)-C(17)-C(18)                    -117.10(16) 
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Table 3.8.  Hydrogen bonds for 343 [Å and °] 

D-H...A              d (D-H)   d(H...A)  d(D...A)    <(DHA) 

O(1)-H(1O)...O(2)#1    0.84      2.09    2.8635(12)  152.6 

Symmetry transformations used to generate equivalent atoms: 

#1 -x+1, -y+2, -z+1 
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Table 3.9. Crystal data and structure refinement for 329B. 

Identification code 329B 

Empirical formula C18 H24 O3 

Formula weight 288.37 

Temperature 90.0(2) K 

Wavelength 1.54178 Å  

Crystal system, space group Orthorhombic, P2(1)2(1)2(1) 

Unit cell dimensions 

a 7.6532(3) Å 

α 90 ° 

b 13.3427(6) Å 

β 90 ° 

c 15.7225(7) Å 

γ 90 ° 

Volume 1605.49(12) A3 

Z, Calculated density 4, 1.193 Mg/m3 

Absorption coefficient 0.634F (000) 624(mm−1) 

Crystal size  0.270 x 0.250 x 0.200 mm 

Θ range for data collection 4.346 to 68.064 ° 

Limiting indices -9<=h<=3 -15<=k<=15 

 18<=l<=18 

Reflections collected / unique 20802 / 2912 

[R (int) = 0.0439] 

Completeness to Θ = 67.679 99.9 % 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.929 and 0.721 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2912 / 0 / 193 

Goodness-of-fit on F2 1.089 

Final R indices [I>2σ(I)] R1 = 0.0324, wR2 = 0.0908 

R indices (all data)  R1 = 0.0334, wR2 = 0.0916 

Absolute structure parameter 0.43(6) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.167 and -0.128 (e. Å-3) 
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Table 3.10 Atomic coordinates (x 104) and equivalent 

isotropic displacement parameters (A2 x 103) for 329B. 

U (eq) is defined as one third of the trace of the 

orthogonalized 

Uij tensor.  
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               x             y              z          U(eq) 

 

O(1)         6612(2)       5826(1)       7472(1)       39(1) 

O(2)          -73(2)       5426(1)       8711(1)       37(1) 

O(3)         2182(2)       4376(1)       8919(1)       40(1) 

C(1)         6668(2)       6724(1)       7565(1)       30(1) 

C(2)         8269(3)       7337(2)       7369(1)       33(1) 

C(3)         8743(2)       8063(2)       8086(1)       31(1) 

C(4)         7176(2)       8694(1)       8367(1)       26(1) 

C(5)         5613(2)       8029(1)       8648(1)       26(1) 

C(6)         5065(2)       7323(1)       7883(1)       27(1) 

C(7)         4305(3)       7929(2)       7115(1)       30(1) 

C(8)         3807(3)       7298(2)       6366(1)       38(1) 

C(9)         4447(3)       7414(2)       5595(1)       46(1) 

C(10)        7698(2)       9465(2)       9049(1)       31(1) 

C(11)        9236(3)      10095(2)       8799(1)       32(1) 

C(12)       10543(3)      10316(2)       9295(2)       40(1) 

C(13)        6106(3)       7366(2)       9408(1)       31(1) 

C(14)        4050(2)       8688(2)       8903(1)       30(1) 

C(15)        3738(2)       6602(1)       8171(1)       30(1) 

C(16)        2700(3)       5998(2)       8415(1)       32(1) 

C(17)        1615(3)       5177(2)       8708(1)       30(1) 

C(18)       -1241(3)       4617(2)       8955(2)       40(1) 
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Table 3.12.  Anisotropic displacement parameters (A2 x 103) 

for 329B. 

The anisotropic displacement factor exponent takes the form: 

• 2 Π2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ] 

          U11        U22        U33        U23        U13        U12 

 

O(1)     40(1)      28(1)      49(1)      -6(1)       1(1)       1(1) 

O(2)     29(1)      36(1)      47(1)       5(1)       2(1)      -4(1) 

O(3)     38(1)      33(1)      48(1)       2(1)       5(1)      -2(1) 

C(1)     31(1)      29(1)      30(1)      -2(1)      -2(1)       1(1) 

C(2)     29(1)      31(1)      39(1)      -4(1)       4(1)       3(1) 

C(3)     25(1)      32(1)      37(1)      -2(1)       2(1)      -1(1) 

C(4)     24(1)      26(1)      27(1)       1(1)       0(1)       0(1) 

C(5)     25(1)      27(1)      27(1)       2(1)       0(1)       1(1) 

C(6)     25(1)      27(1)      29(1)       1(1)       0(1)      -1(1) 

C(7)     28(1)      32(1)      31(1)       3(1)      -3(1)       1(1) 

C(8)     38(1)      37(1)      38(1)       2(1)      -8(1)      -5(1) 

C(9)     56(1)      47(1)      36(1)      -4(1)      -6(1)      -1(1) 

C(10)    30(1)      30(1)      32(1)      -2(1)      -1(1)      -1(1) 

C(11)    33(1)      29(1)      33(1)       0(1)      -1(1)      -2(1) 

C(12)    36(1)      40(1)      45(1)       4(1)      -6(1)      -7(1) 

C(13)    32(1)      31(1)      31(1)       6(1)      -3(1)      -3(1) 

C(14)    28(1)      31(1)      32(1)       0(1)       3(1)       1(1) 

C(15)    29(1)      31(1)      28(1)       0(1)      -3(1)      -1(1) 

C(16)    31(1)      33(1)      31(1)      -1(1)      -2(1)      -4(1) 

C(17)    32(1)      31(1)      27(1)      -5(1)       1(1)      -6(1) 

C(18)    32(1)      41(1)      47(1)       1(1)       4(1)     -11(1) 
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Table 5.  Hydrogen coordinates (x 104) and isotropic 

displacement parameters (A2 x 103) for 329B. 

            x             y             z           U(eq) 

H(2A)        8065          7723          6840          40 

H(2B)        9267          6880          7267          40 

H(3A)        9187          7678          8579          37 

H(3B)        9689          8514          7890          37 

H(4A)        6782          9082          7858          31 

H(7A)        3261          8302          7310          36 

H(7B)        5185          8428          6931          36 

H(8A)        2975          6780          6453          45 

H(9A)        5282          7924          5486          55 

H(9B)        4073          6986          5147          55 

H(10A)       6688          9909          9163          37 

H(10B)       7977          9107          9583          37 

H(11A)       9258         10354          8236          38 

H(12A)      10568         10072          9862          48 

H(12B)      11472         10721          9089          48 

H(13A)       6525          7788          9875          47 

H(13B)       7030          6898          9239          47 

H(13C)       5077          6988          9595          47 

H(14A)       4247          8964          9472          46 

H(14B)       2983          8282          8905          46 

H(14C)       3923          9237          8494          46 

H(18A)      -2447          4801          8815          60 

H(18B)      -1144          4498          9569          60 

H(18C)       -920          4006          8647          60 
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Table 3.13. Torsion angles [°] for 329B. 

O(1)-C(1)-C(2)-C(3)                                -131.8(2) 

C(6)-C(1)-C(2)-C(3)                                  49.3(2) 

C(1)-C(2)-C(3)-C(4)                                 -50.6(2) 

C(2)-C(3)-C(4)-C(10)                               -176.47(16) 

C(2)-C(3)-C(4)-C(5)                                  56.5(2) 

C(3)-C(4)-C(5)-C(13)                                 61.1(2) 

C(10)-C(4)-C(5)-C(13)                               -65.34(19) 

C(3)-C(4)-C(5)-C(14)                               -178.50(16) 

C(10)-C(4)-C(5)-C(14)                                55.1(2) 

C(3)-C(4)-C(5)-C(6)                                 -58.25(19) 

C(10)-C(4)-C(5)-C(6)                                175.33(15) 

O(1)-C(1)-C(6)-C(15)                                 10.0(3) 

C(2)-C(1)-C(6)-C(15)                               -171.04(16) 

O(1)-C(1)-C(6)-C(7)                                -107.4(2) 

C(2)-C(1)-C(6)-C(7)                                  71.5(2) 

O(1)-C(1)-C(6)-C(5)                                 129.8(2) 

C(2)-C(1)-C(6)-C(5)                                 -51.3(2) 

C(13)-C(5)-C(6)-C(15)                                51.8(2) 

C(14)-C(5)-C(6)-C(15)                               -66.29(19) 

C(4)-C(5)-C(6)-C(15)                                172.88(15) 

C(13)-C(5)-C(6)-C(1)                                -67.01(19) 

C(14)-C(5)-C(6)-C(1)                                174.95(15) 

C(4)-C(5)-C(6)-C(1)                                  54.11(19) 

C(13)-C(5)-C(6)-C(7)                                172.52(16) 

C(14)-C(5)-C(6)-C(7)                                 54.5(2) 

C(4)-C(5)-C(6)-C(7)                                 -66.35(19) 

C(15)-C(6)-C(7)-C(8)                                -60.0(2) 

C(1)-C(6)-C(7)-C(8)                                  57.1(2) 

C(5)-C(6)-C(7)-C(8)                                 178.55(17) 

C(6)-C(7)-C(8)-C(9)                                -122.2(2) 

C(3)-C(4)-C(10)-C(11)                                51.9(2) 

C(5)-C(4)-C(10)-C(11)                               178.48(15) 

C(4)-C(10)-C(11)-C(12)                             -135.9(2) 

C(18)-O(2)-C(17)-O(3)                                -3.1(3) 

C(18)-O(2)-C(17)-C(16)                              176.89(16) 
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