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ABSTRACT OF DISSERTATION 
 
 
 
 
 

CHRONIC ANKLE INSTABILITY AND AGING 
 

Lateral ankle sprains are the most common musculoskeletal injury among the 
general population and U.S. military personnel. Despite the common perception of being 
a minor injury, at least 1 out of 3 individuals with a previous ankle sprain will develop 
chronic ankle instability (CAI). This clinical phenomenon creates a significant barrier for 
patients to return to their prior level of physical function. Specifically, CAI is associated 
with reductions in physical activity level, leading to decreases in lower health-related 
quality of life and increase risk of developing of post-traumatic ankle osteoarthritis. 
Current evidence has largely focused on characterizing the mechanical and sensorimotor 
insufficiencies associated with CAI in adolescent and young-adult populations, with little 
attention on middle- and older-aged adults. This restricts our understanding of how these 
insufficiencies associated with CAI that develop in early adulthood progress over time 
and contribute to other chronic diseases such as post-traumatic osteoarthritis. Therefore, 
the overall objective of this study was to compare self-reported and physical function 
between three age groups: 1) young, 2) middle-aged, and 3) older-aged adults with and 
without CAI. We hypothesized participants with CAI would have age-related changes in 
self-reported and physical function compared to non-injured individuals across the 
lifespan.   
 The objective of this dissertation was to compare regional and global health-
related quality of life (HRQoL), static and dynamic balance, spinal reflex excitability of 
the soleus muscle, open- and closed-kinetic chain dorsiflexion range of motion and 
spatiotemporal gait parameters between those with and without CAI across the lifespan.  
Her callIt was hypothesized that all self-reported and physical characteristics would be 
decrease with age, but significantly more in those with CAI compare to non-injured 
individuals.  
 Results from the first study demonstrated participants with CAI had worse 
regional HRQoL compared to healthy-controls as evidenced by the lower Foot and Ankle 
Disability Index scores. Likewise, participants with CAI reported having worse overall 
physical function and pain interference during activity compared to healthy-controls. 
There was no significant interaction for Injury (CAI and healthy-control) and Age group 
(young, middle, and old) for any dependent variable.  In the second, it was determined 
that static and dynamic balance, spinal reflex excitability, ankle (dorsiflexion and 



 

 

plantarflexion) and hip extension torque were all lower in the older-aged participants 
compared to the younger-aged adults. In addition, it was determined that participants with 
CAI had decreased dorsiflexion range of motion, ankle (dorsiflexion and plantar flexion) 
and hip extension peak isometric torque compared to the healthy-control group. 
However, no significant interaction was found for Injury (CAI & healthy-control) and 
Age (young, middle, old) for any dependent variable. In the third study, there were no 
differences in spatiotemporal gait parameters between groups (CAI vs. healthy-controls) 
or age categories. 

It can be concluded from this dissertation that regardless of the age, individuals 
with CAI have worse region-specific HRQoL, lower overall physical function, greater 
pain interference, limited dorsiflexion range of motion, and decreased ankle and hip peak 
isometric torque compared to healthy-controls. Several age-related observations were 
found including decreased static and dynamic balance, ankle and hip strength, and spinal 
reflex excitability. Though no relationship was found between CAI and age, several 
interactions were found to be trending towards significance. Therefore, future work is 
needed to better understand the consequences of CAI on middle- and older-aged adults.  
 
KEY WORDS: ankle instability, patient-reported outcomes, mechanical instability, 
functional instability, gait 
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Chapter 1: Introduction 
 

Background 
     

 Lateral ankle sprains (LAS) account for a substantial portion of the acute injuries 

occurring among physical active populations including military personnel,1 high school2 

and collegiate athletes,3 as well as the general population.4 As a result, lateral ankle 

sprains have become a common reason for emergency room visits causing a serious 

economic burden to treat these injuries.5 The aggregate health care cost associated with 

the treatment of lateral ankle sprains has been estimated to be over $2 billion in the 

United States alone.4 While the proper healing time needed following damage to the 

lateral ligament complex has been suggested to be between 6 and 12 weeks,6 a recent 

report found over 75% of athletes sustaining a lateral ankle sprain returned to full activity 

within 7 days.7 A hastened return to activity likely does not provide adequate healing 

time and may contribute to the reported large recurrent injury rates,8 as well as the 

residual symptoms such as pain and ankle joint instability reported by up to 70% 

individuals with a history of an ankle sprain.9 Chronic ankle instability (CAI) is the 

comprehensive term used to describe the chronic symptoms and recurrent joint injuries 

previously described.  

 Increased concern over the development of CAI has been sparked by reports of 

individuals with CAI reporting lower levels of health-related quality of life,10,11 

functional limitations,12 and diminished physical activity levels.13 Furthermore, emerging 

evidence has illustrated that CAI increases the rate of developing posttraumatic ankle 

osteoarthritis, which requires costly diagnostic techniques and treatment strategies.14,15 
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These reports provide clear evidence that CAI is a significant public health concern that 

requires further investigation into the factors that are associated with the development of 

CAI.  

  Over the past half-century, researchers have attempted to identify the underlying 

mechanism of CAI. In doing so, researchers16,17 have tried to link mechanical alterations 

of the ankle joint to the development of CAI; whereas others18 have attempted to link 

sensorimotor insufficiencies to the cause of CAI. In spite of this effort, no significant 

conclusion has been made into identifying the exact underlying mechanism that 

contributes to the recurrent joint injury and episodes of “giving-way” at the ankle. Rather 

than a singular factor related to the mechanism of CAI, it is likely that a combination of 

mechanical and sensorimotor insufficiencies result in CAI.  

 To date, the majority of the research focused on examining the consequences of 

CAI has been on younger-aged adults. This restricts our understanding of how the 

development of these mechanical and sensorimotor insufficiencies impacts the function 

and mobility of middle- and older-aged adults with CAI. The presence of CAI in middle-

and older-aged adults might exacerbate these mechanical and sensorimotor 

insufficiencies because aging alone has been shown to cause deterioration in physical 

function. 

The Problem 
 

 It is well documented that aging brings progressive reductions in physical 

function that negatively affect the health and independence of individuals. More 

specifically, age-related changes in balance,19,20 lower extremity strength,21 integrity of 

the spinal reflex system,22-25 dorsiflexion range of motion26 and walking mechanics27 all 
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have a significant impact on self-reported function28-32 and risk of serious injury in older 

adults. 25,33-35 Unfortunately, similar sensorimotor and mechanical impairments are 

associated with early decreases in health and function of younger-aged adults with 

CAI.36-39 With these impairments developing in early adulthood, the added 

neuromuscular consequences of CAI likely compounds the effects of aging, suggesting 

that individuals with a history of an ankle injury might be at risk for greater deficiencies 

in self-reported health and physical function as the age. However, despite the growing 

body of evidence demonstrating individuals with CAI develop several sensorimotor and 

mechanical alterations early in life,37 little attention has been placed on middle- and 

older-aged adults with CAI.40 Therefore, it is important to determine if middle- and older-

aged adults with CAI experience exacerbated sensorimotor and mechanical 

insufficiencies compared to uninjured individuals.  

Experimental Aims and Hypothesis 
 

Our long-term goal is to promote healthy and regular physical activity across the 

lifespan by reducing the negative consequences of musculoskeletal injury. An important 

step in achieving this long-term goal is to understand the underlying mechanism by 

which aging and the additive effects of CAI compromise self-reported and physical 

function. The overall objective of this study was to examine the combined effects of CAI 

and age-related changes in neuromuscular function on health and disability across three 

age groups: 1) young, 2) middle-aged, and 3) elderly adults. Our central hypothesis was 

that the presence of CAI would amplify age-related changes in self-reported and 

physical-function. The research will advance our understanding of CAI by describing 

self-reported limitations and physical mal-adaptations that exist in patients of all ages 
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with CAI. A better understanding of this information will be valuable in designing novel 

and unique programs that are capable of restoring and maintaining function in CAI 

patients of all ages. To test our central hypothesis, the following specific aims were 

examined:  

Specific Aim 1:  Determine whether region specific and global self-reported 

measures of health-related quality of life (HRQoL) differ between young-adults, 

middle-aged adults and older-aged adults with and without CAI.  

 Hypothesis 1: Participants with CAI will self-report having worse region-specific 

and global HRQoL compared healthy-controls.  

 Hypothesis 2: Region-specific and global HRQoL will be worse in the middle-

aged adults compared to the younger-aged adults; the older-aged adults will have worse 

scores compared to both groups.  

 Hypothesis 3: Younger-, middle-, and older-aged adults with CAI will self-report 

having worse region-specific and global HRQoL compared to their age-matched healthy 

counterpart.  

 We will evaluate region specific HRQoL using the Foot and Ankle Disability 

(FADI) Activities of Daily Living (ADL) and Sports subscale. To evaluate global 

HRQoL we will utilize the PROMIS-43 adult profile questionnaire.   

Specific Aim 2:  Determine if differences exist in mechanical and sensorimotor 

outcomes between young-adults, middle-aged adults and older-aged adults with and 

without CAI.  

 Hypothesis 4: Participants with CAI will have decreased sensorimotor and 

mechanical outcome measures compared to healthy-controls.  
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Hypothesis 5: Sensorimotor and mechanical outcome measures will be decreased 

in middle-aged adults compared to the younger-aged adults; the older-aged adults will 

have decreased sensorimotor and mechanical outcome measures compared to both 

groups.     

 Hypothesis 6:  Younger-, middle-, and older-aged adults with CAI will have 

decreased mechanical and sensorimotor outcome measures compared to their age-

matched healthy counterpart.  

 The sensorimotor dependent variables include eyes-open single limb balance, 

dynamic balance assessed by the Star Excursion Balance Test (SEBT), spinal excitability 

of the soleus muscle and torque measures of the ankle (dorsiflexion, plantarflexion) knee 

(extension), and hip (extension and abduction).  The mechanical dependent variables 

include open-kinetic Dorsiflexion Range of Motion (DF-ROM) and the Weight-Bearing 

Lunge Test (WBLT).  

Specific Aim 3: Determine if differences exist in spatiotemporal walking gait 

parameters between young-adults, middle-aged adults and older-aged adults with 

and without CAI.  

  Hypothesis 7: Participants with CAI will have decreased spatiotemporal gait 

variables compared to healthy-controls.  

 Hypothesis 8: Middle-aged participants will have decreased spatiotemporal gait 

variables compared to younger-aged adults; the older-aged adults will have decreased 

spatiotemporal gait mechanics compared to both groups.   
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 Hypothesis 9:  Younger-, middle- and older-aged adults with CAI will have 

decreased spatiotemporal gait variables compared to their age-matched healthy 

counterpart.  

 We will evaluate group means for the following spatiotemporal gait parameters: 

gait velocity, cadence, bilateral measures of step time, cycle time, stride, step length and 

swing, stance single-support and double-support percent of gait cycle.  

Significance 
 

 The current body of literature has identified numerous sensorimotor and 

mechanical insufficiencies associated with CAI in young-adults. As a result, researchers 

have been successful at designing rehabilitation programs to target the sensorimotor41,42 

and mechanical16,43 insufficiencies, along with patient-oriented outcomes.44 Despite the 

long-term health consequences associated with an ankle sprain, the majority (~93%) of 

patients never receive physical therapy.45 Consequently, it is likely that individual’s 

sustaining an ankle sprain early in life will continue to experience residual symptoms and 

loss of function throughout their life. Yet, the majority of the research examining the 

consequences of an ankle sprain is within young-adults, with little attention on middle-

aged and older-aged adults with ankle sprain history. This restricts our knowledge of how 

to treat these different age populations and whether current treatment techniques are 

translatable to older adults. 

 Therefore, this research is significant because it: (1) will guide future 

investigations into examining the underlying mechanisms associated with CAI in older 

adults; (2) provide a framework for future rehabilitation interventions designed for 

individuals across the lifespan; and (3) direct future research in understanding the 
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relationship between CAI and other chronic injuries.  This research is an important step 

forward in promoting a healthy aging process. 

Operational Definitions 
 
Chronic Ankle Instability: a self-reported ankle pathology characterized by recurrent 

ankle sprains, repeated episodes of ‘giving-way and/or perceived ankle instability.  

Dorsiflexion: Sagittal plane motion in which the angle of the leg and dorsum of the foot 

decrease.   

Dynamic Postural Control: An individual’s ability to maintain their center of mass within 

their base of support while transitioning to a more difficult position.   

Global Health Related Quality of Life: A multidimensional approach of understanding an 

individuals overall-well being by assessing an individual’s social, physical and 

psychological health.  

Hip Abduction: Frontal plane motion in which the leg moves away from the body.  

Hip Extension: Sagittal plane motion in which the upper leg moves behind the trunk. 

Hoffman Reflex: An electrically induced reflex equivalent to the spinal stretch reflex. 

Knee Extension: Sagittal plane motion in which the angle between the upper and lower 

leg approaches zero.  

Maximal Hoffman Reflex: Estimate of the proportion of motorneurons an individual is 

capable of activating maximally.    

Maximal Muscle Response: Electrically induced activation of the entire motorneuron 

pool. 

Plantarflexion: Sagittal plane motion in which the angle of the leg and dorsum of the foot 

increase.      
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Region-Specific Health Related Quality of Life: A multidimensional approach of 

understanding how a specific condition or body-region by assessing an individual’s 

social, physical and psychological health.  

Sensorimotor Function: The process of sensory information being transmitted to the 

central nervous system, the integration and processing of this sensory information and the 

motor output produced. 

Spatiotemporal: Descriptors of gait related to space and time.   

Static Postural Control: An individual’s ability to maintain their center of mass within 

their base of support while minimizing any segment or body movement.  

Star Excursion Balance Test: A series of single-limb squats requiring an individual to 

reach maximally in different directions while maintaining their balance.  

Time-to-Boundary: A spatiotemporal analysis of the anteroposterior and mediolateral 

center of pressure (COP) trajectories that estimates the time it would take for the (COP) 

trajectories to reach the boundary of the base of support if it was to maintain its path and 

velocity.  

Torque: The amount of rotational force produced around a center of axis.  

Assumptions 
 
It will be assumed:  

1) Participants enrolled into the CAI group have the condition of interest.  

2) Participants enrolled into the middle-aged and older-aged category with CAI 

sustained their first ankle sprain before the age of 35 years old.  

3) Participants gave their best effort during data collection. 

4) Participants answered questions on all patient-reported questionnaires truthfully.  
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Delimitations 
 

1) Participants with symptomatic ankle osteoarthritis were not enrolled. 

a. Participants with symptomatic ankle osteoarthritis were not enrolled 

because osteoarthritis alone is known to impact several of these outcomes. 

2) All participants were free from any: 1) diagnosed balance, vestibular or 

respiratory disorder; 2) history of low back pain in the previous 6 months; 3) 

history of seizures; 5) history of concussion in the past 6 months; 6) history of 

neurological injuries or diseases 

a. Participants will be free of any peripheral neuropathies because of their 

potential influence on the outcome variables included.  

3) All participants will be free from lower extremity surgery.  

4) All participants will not be allowed to use any assistive-walking device.  

5) All participants will have no history of lower extremity surgery. 

6) All assessments will be performed barefoot. 
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Chapter 2: Review of the Literature 

Introduction 
 

Lateral ankle sprain is the most common lower extremity injury among young 

physically activity individuals. Epidemiological studies indicate up to 40% of injuries 

among U.S. high school athletes are classified as an ankle sprain.2,8 These trends continue 

into collegiate athletics, with reports from the National Collegiate Athletic Association 

injury surveillance program indicating between 7%7 and 15%3 of all injuries reported are 

classified as an ankle sprain. Moreover, previous research has found the incidence rate 

for ankle sprains among U.S. military personnel to range from 34.951 to 45.1446 per 1000 

person-years; 5 times greater than the general population. Considering the increase in 

sport participation, it is reasonable to speculate the rate of ankle sprains will continue to 

increase.  

The high incidence rate is not limited to athletes and military personnel. Data 

collected from emergency departments clearly demonstrates ankle sprains are common 

among the general population. During the span of a single year, researchers found ankles 

sprains were the most common reason for individuals attending the emergency 

department in the U.S.5 Specifically, the authors estimated the incidence rate to be 2.06 

per 1000 person-years.5 This was confirmed by a later study that reported the incidence 

rate for an ankle sprain over four-years to be 2.15 per 1000 person-years.47 Therefore, 

damage to the lateral ligament complex is a serious concern among the general 

population.  
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While incidence rate is the highest for individuals between 15 and 24 years of 

age,47 older populations are at risk of sustaining an ankle sprain. The foot and ankle is the 

second most common injured body site among physically active older adults (>50 

years).48,49 Notably, the incidence for ankle sprain in the U.K. for adults 50 years and 

older reporting to emergency departments range from 1.4 to 3.7 per 1000 person-years.50 

These epidemiological reports for an ankle sprain demonstrate the significant impact 

these injuries have on individuals of all ages and physical activity levels.  

The high incidence rate of an ankle sprain not only causes concern, but the 

prognosis of an ankle sprain can be poor. At least 1 out of 3 individuals with a previous 

ankle sprain will experience residual symptoms.9,51-54 Primary complaints include 

persistent pain and swelling, fear of ‘giving-way’, loss of function and recurrent ankle 

sprains.9,51-55 Chronic ankle instability (CAI) is the term used to describe these lingering 

symptoms.36,56 Tanen et al57 surveyed 512 high school and Division 1 collegiate student 

athletes and found approximately 25% of athletes reported having CAI when measured 

using the Cumberland Ankle Instability Tool (CAIT). While CAI is most often identified 

in younger-aged populations, investigators examining the prevalence of chronic 

musculoskeletal ankle pathologies among the general population (age 18 to 65 years) 

provide evidence that lingering symptoms after an ankle sprain impact individuals of all 

ages. Hiller et al58 found that 23.7% of participants surveyed had a chronic ankle 

disorder, with 50% of individuals reporting symptoms lasting longer than 10 years. 

Furthermore, of those who reported having a chronic ankle disorder, 65% of individuals 

reported having to limit or modify their physical activity level because of their ankle.58  
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Even more troubling than the high prevalence rate of individuals developing 

CAI57 after an ankle sprain are the general health-related consequences that are associated 

with CAI Researchers examining the health-related quality of life (HRQoL) have found 

individuals with CAI report having worse region-specific and global (HRQoL) compared 

to uninjured individuals. Houston et al10 undertook a systematic review with meta-

analysis and found strong evidence suggesting participants with CAI report worse region-

specific HRQoL compared to healthy-controls. Furthermore, investigators12 have found 

that the presence of CAI results a deterioration of global HRQoL. These findings indicate 

that CAI does not only impact how they perceive their ankle function, rather, it has an 

influence on individuals overall well-being.     

Reports examining the health consequences associated with developing CAI at an 

early age suggest that it can create a significant barrier for individuals to remain 

physically active.13,58 Hubbard-Turner and Turner13 found college-aged students with 

CAI took fewer steps during a 7-day period compared to age-matched healthy-controls, 

suggests those with CAI participate in less physical activity. A reduction in physical 

activity following an acute ankle sprain is not limited to younger-aged adults; rather, 

emerging evidence suggests physical activity is decreased throughout the lifespan. Hiller 

et al58 found the majority of participants (aged 18-65 years) with chronic musculoskeletal 

ankle disorders limited or modified their activity. Moreover, researchers13,59 using animal 

models have demonstrated mice with an acute ankle sprain ran significantly fewer 

minutes each day throughout their lifespan compared the control group. This decrease in 

physical activity following can potentially lead to the development of other chronic 

disease. Indeed, Turner et al59 found the mice with an ankle sprain history and reduced 
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physical activity levels had decreased performance of the left ventricle, suggesting that an 

ankle sprain might initiate a negative cycle of events across the lifespan. 

Furthermore, a majority of individuals never seek formal rehabilitation after a 

traumatic ankle joint injury45,60 and return to physical activity before adequate healing 

can occur.6,7 Inadequate treatment and a hastened return to physical activity level likely 

contribute to the development of post-traumatic osteoarthritis seen in patients with CAI. 

It has been suggested that between 66-78% of patients with CAI develop ankle PTOA.15 

The progression of PTOA is concerning because it can develop as soon as 10 years after 

CAI onset.61 This means that ankle PTOA could present as early as the 3rd decade of 

life.61 Ankle arthrodesis (fusion) remains the standard of care for treating ankle PTOA 

because few non-surgical treatment options exits.62 However, ankle arthrodesis is not 

ideal as it causes biomechanical changes up the kinetic chain.63 Therefore, the potential 

CAI has on triggering the onset of other chronic diseases associated with decreased 

physical activity levels and stress-related joint diseases like osteoarthritis, makes CAI a 

significant public health concern. By examining the factors related to the development of 

CAI, more effective interventions can be designed to reduce the potential for other 

chronic diseases from occurring and help individuals maintain a healthy and active 

lifestyle.  

Despite a growing body of evidence, the exact etiology behind the development 

of CAI remains unknown. Hertel et al37 first proposed a theoretical model suggested that 

the development of CAI was likely caused by a combination of mechanical and 

sensorimotor insufficiencies. This caused researchers to start examining several different 

sensorimotor alterations such as static and dynamic balance, spinal reflex excitability, 
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impaired proprioception, lower extremity strength and muscle activation patterns in 

participants with CAI. Sefton et al18 used 25 different sensorimotor outcome variables to 

discriminate between participants with and without CAI. This study18 revealed 7 separate 

variables related to static balance and spinal reflex excitability accurately classified 

approximately 85% of participants with CAI. Because Sefton et al18 did not include any 

measures of mechanical instability, Hubbard et al38 included a wide spectrum of 

mechanical and sensorimotor outcomes to identify which variables are most predictive of 

CAI group membership. Interestingly, the authors38 found that decreased anterior and 

posteromedial reach of the SEBT, plantarflexion peak torque, and increased inversion 

laxity were best at discriminating between individuals with and without CAI.  

Both of these studies 18,38 highlight the multifactorial nature of CAI. In response, 

Hiller et al64 proposed that CAI is not a homogenous population. Rather, several sub-

groups likely make up the development of CAI. Therefore, Hiller et al64 proposed an 

updated model of CAI by sub-classifying participants into three categories: those with 1) 

mechanical instability; 2) perceived instability; and 3) recurrent joint injury. They 

suggested that each of these, including those with recurrent sprain, can exist 

independently or in combination.64 Using this model, Terada et al65 examined differences 

in selected sensorimotor, mechanical, and psychological measures, revealing 8 outcome 

measures from neural excitability postural control, static postural and HRQoL and that 

correctly classified only 58% of group membership for participants with perceived 

instability and recurrent joint injuries.  

Therefore, CAI is a multifactorial and heterogeneous population that requires an 

in-depth understanding of the multiple negative health consequences associated with it 
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and the factors that contribute to its etiology. The purpose of this literature review is to: 

1) discuss the current evidence regarding the self-reported limitations associated with 

CAI, 2) discuss the current evidence regarding sensorimotor insufficiencies including 

static & dynamic balance, spinal reflex excitability and strength, 3) discuss the current 

evidence regarding mechanical insufficiencies including open- & closed-kinetic chain 

range of motion associated with CAI, 4) discuss the alterations in gait biomechanics 

associated with CAI.  

Health-Related Quality of Life 
 
The evaluation of health-related qualify of life (HRQoL) has been increasingly 

recognized in healthcare as an important component of evidence-based medicine because 

it provides valuable information on how the patient perceived their health condition.66 

HRQoL is a multidimensional concept that is targeted at understanding multiple domains 

of health including the physical, psychological, and social domains, all of which are 

affected by individual experiences, expectations, beliefs, and perceptions.67 HRQoL is 

typically evaluated through the use of patient-oriented outcome instruments, which are 

questionnaires or surveys that ask patients about their health status.67 These patient-

oriented outcome instruments are differentiated as either global (generic) or region-

specific. Global outcome tools are multidimensional to allow for the assessment of 

multiple health domains and to provide a general understanding of individual’s health 

status.67 The advantage of global outcome instruments is there utility for assessing 

HRQoL within or across several different patient populations. Whereas region-specific 

instruments are used in the evaluation of a the specific health domain that can be affected 

by a certain injury, disease, body region or injury site.67 These outcome instruments are 



 

 16 

designed by using questions that are highly relevant to a condition or injury. The high 

specificity associated with region-specific questionnaires makes them more apt to 

observe a change resulting from a treatment or therapeutic intervention.67 Furthermore, 

this high specificity has enabled region-specific instruments to be used as discriminative 

or evaluative.68 Discriminative instruments are used to identify individuals with a 

particular injury or disease (i.e. CAI). In contrast, evaluative instruments are designed to 

measure an individual’s change in health status because of a specific injury or disease. 

Therefore, because the aim of this dissertation is to understand the long-term impact CAI 

has on changing an individual’s health status, this literature review will only focus on 

previous literature using the patient-reported outcomes to evaluate a change in health 

status associated with CAI. Furthermore, because HRQoL is evaluated using both global 

and region-specific outcome tools, this literature review will discuss the previous studies 

evaluating both concepts separately.    

Region Specific  
  

Before discussing the evidence demonstrating CAI is associated with worse 

region-specific HRQoL compared to healthy-controls, it is necessary to acknowledge the 

multiple patient-reported questionnaires used to assess region-specific HRQoL in patients 

with CAI.10 Eechaute and colleagues69 undertook a systematic review to identify the 

evaluative instruments for individuals with CAI and review the evidence to support their 

use. Four instruments were found within the literature: the Ankle Joint Functional 

Assessment Tool (AJFAT), the Foot and Ankle Outcome Score (FAOS), the Foot and 

Ankle Disability Index (FADI), and the Foot and Ankle Ability Measure (FAAM).69 

Eechaute et al69 concluded that the FAAM and FADI are the most appropriate patient-
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assessed tools to quantify self-reported functional limitations related to CAI because of 

the overall strong strong clinimetric properties reported within the literature.  Hale and 

Hertel70 first demonstrated the FADI has good to strong content and construct validity, 

reliability and responsiveness in patients with CAI. After that, the FADI underwent 

rigorous psychometric analysis and it was determined that four items related to pain and 

one item related to sleep could be eliminated from the original FADI. Subsequently, the 

FAAM was designed and has been shown to have acceptable and useful test-retest 

reliability, content and construct validity, and responsiveness in patients with foot and 

ankle disorders.71,72 Furthermore, the advantage of the FAAM and FADI over the AJFAT 

and FAOS is that both questionnaires include a sports subscale. This subscale is useful in 

better understating the functional impairments patients with CAI experience related to 

exercise.  

 Region-specific questions are often used to identify functional limitations in 

patients with CAI.70,72-90 Because of the overwhelming amount of evidence for decreased 

region-specific HRQoL in patients with CAI, Houston et al10 conducted a comprehensive 

review of the literature to critically appraise the current evidence assessing self-reported 

limitations between those with and without CAI. Based on the meta-analysis performed, 

the authors10 found strong evidence to suggest that individuals with CAI report having 

greater self-reported functional limitations related to activities of daily living and sports 

because of their foot and ankle compared to healthy-controls and Copers. This was 

determined through the use of several questionnaires such as the FAAM, FADI, AJFAT, 

and the Cumberland Ankle Instability Tool (CAIT). Therefore, it was concluded that 

individual with CAI have greater difficulty completing activities of daily living and tasks 
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related to exercise because of their ankle compared to uninjured controls and Copers. 

However, Houston et al10 found conflicting evidence when they compared the self-

reported questionnaires between a group of healthy-controls and a group of individuals 

identified as being a Coper. The lack of consistency between these studies indicates that 

individuals with CAI develop unique impairments following an ankle sprain that result in 

decreased self-reported function.10  

 Whereas majority of the evidence suggesting CAI is associated with decreased 

region-specific HRQoL, research demonstrating improved scores on patient-reported 

outcomes tools in patients with CAI provides further support.16,42,43,91-104 Kosik et al44 

systematically reviewed the literature identifying common therapeutic interventions used 

to improve region-specific HRQoL in patients with CAI. The authors44 found a variety of 

therapeutic interventions have been used to target region-specific HRQoL in patients with 

CAI including balancing training,91,92,96,99,101,105 multi-modal,95-97,100,102,103 joint 

mobilization,16,42,43,98 resistive training,99,105 calf-stretching,42 soft-tissue mobilization,42 

and orthotics.93 The authors found consistent evidence suggesting that balance training is 

the most effective intervention for improving self-reported limitations related to activities 

of daily living and exercise.  

Taken together, these two systematic reviews10,44 provide strong evidence that 

ankle region-specific HRQoL is compromised by the development of CAI. Therefore, 

measures related to ankle region-specific HRQoL are needed to provide a better 

understanding of the long-term implications of CAI.  
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Global  
 

The short form-36 (SF-36) is the most common patient-oriented outcome 

measured used to assess global HRQoL. The SF-36 is constructed of 8 domain scales: 

physical function, role-physical, bodily pain, general health, vitality, social functioning, 

role emotional, and mental health. These scales are combined to create the physical 

component scale and mental component scale. Using the SF-36, Anandacoomarasamy et 

al9 first conducted a retrospective case control study to evaluate the global HRQoL in a 

group of patients referred to a large metropolitan hospital in Australia for an acute lateral 

ankle sprain. The authors contacted the patients at an average of 29 months after 

reporting to the hospital.9 The results demonstrated the patients who had sprained their 

ankle reported lower scores on the SF-36 compared to the age-matched healthy-control 

group.9 These findings provide evidence that an ankle sprain can significantly influence 

an individuals global HRQoL. However, the limitation of this study was that the authors 

did not confirm if the patients developed CAI. Subsequently, Arnold et al11 enrolled a 

group of participants with and without CAI and compared scores on the SF-36. The 

participants with CAI reported lower scores on the SF-36 physical component summary 

scale, physical function domain scale and the bodily pain domain scale.11 These results 

provide evidence that CAI impacts the overall physical health of individuals. However, 

CAI does not appear to impact the mental health of individuals. While this study 

demonstrated evidence for the negative impact CAI has on global HRQoL, all of the 

participants included scored higher than the normative scores reported for the general 

population.11 The disparity between the results from Arnold et al11 and SF-36 normative 

scores reported for the general population106 was likely because the authors enrolled 
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younger-aged physical active adults. Therefore, Houston et al12 evaluated the global 

HRQoL in a cohort of control group using the Disablement in the Physically Active Scale 

(DPA). The DPA was designed specifically to evaluate the global HRQoL for physically 

active individuals, and, therefore might be a better tool for assessing global HRQoL in 

younger-aged adults with CAI.107 Not surprisingly, Houston et al12 demonstrated lower 

scores on the DPA in the group of subjects with CAI compared to the healthy-control 

group. These results further confirm the previous studies reporting lower global HRQoL 

in participants with CAI.9,11 Taken together there is strong evidence demonstrating CAI is 

associated with lower global HRQoL compared to uninjured individuals.10 Therefore, 

global HRQoL should continue to be examined in those with CAI to provide a better 

understanding of the negative consequences associated with CAI 

Sensorimotor Alteration of CAI 

Postural Control 
 

Balance is an individual’s ability to maintain their center of mass within their base 

of support to avoid falling. Balance, or postural control, is measured under static and 

dynamic conditions. Measures of static postural control require the individual to establish 

a stable base of support and minimize any segment or body movement. Conversely, 

dynamic balance is measured by evaluating an individual’s ability to maintain their 

balance while transitioning from a dynamic to a static position. Dynamic postural control 

is believed to more accurately reflect the demands of physical activity than the 

assessment of static postural control.  

Several valid and reliable non-instrumented and instrumented methods are used 

for evaluating static and dynamic postural control deficits in those with CAI. Non-
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instrumented measures have the advantage of requiring little equipment or experience to 

perform and can be done at the clinic.108 While non-instrumented measures of balance 

might be more useful in the clinic, they might not be sensitive enough to detect subtle 

differences in postural control between those with and without CAI. Therefore, this 

section will provide a review of the current literature for both instrumented and non-

instrumented assessments of static and non-instrumented measures for dynamic balance.   

Static Postural Control 

Non-Instrumented Methods 
 

The balance error scoring system (BESS) is a standard clinical test often used to 

quantify postural control while balancing for 20-seconds on two different surfaces (firm 

and foam) and in three different stances (double, tandem, and single). Balance is 

quantified based on the number of errors during each test, with greater errors 

corresponding with worse static balance. Using a modified Rhomberg test, a component 

of the BESS, Freeman et al109 were the first to report patients with a history of repetitive 

ankle sprains had worse static balance compared to un-injured controls. Docherty et al110 

later confirmed these findings when they used the full version of the BESS. Specifically, 

the researchers110 found that participants with CAI had a greater total number of errors on 

the BESS compared to healthy controls.  

The foot-lift test is another error-based clinical assessment of static balance. 

Similar to the BESS, participants are required to balance on a single-limb for 30-seconds 

and the number of times any part of the foot loses contact with the ground is counted as 

an error.111 Relative to healthy-controls, individuals with CAI have a greater number of 

foot-lifts during a 30-second trial.112  
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Collectively, these findings indicate error based assessments of static balance are 

capable of distinguishing between those with and without ankle instability. While these 

results are valuable, more research is needed to determine whether error based measures 

of static balance are sensitive to identify improvements in balance following 

rehabilitation.  

Instrumented Methods  
 

Instrumented measures of single-limb balance have become standard for 

identifying balance deficits associated with ankle instability. As a result, several 

dependent variables have been derived to quantify differences in the center-of-pressure 

(COP) between groups; however, two common dependent variables include the overall 

length of the path of COP and the COP velocity. Based on individual reports comparing 

instrumented measures of balance, the literature seems to suggest that those with CAI 

have worse static balance relative to uninjured controls. However conflicting results exist 

and make it difficult to reach a definitive conclusion.113-116 In the attempt to better 

understand the relationship between ankle instability and single-limb balance, a series of 

systematic reviews117-120 and subsequent meta-analyses118-121 have been conducted to 

synthesize the evidence to better understand this relationship. Therefore, the current 

literature review will highlight these systematic reviewers and meta-analysis.  

McKeon and Hertel117 performed a comprehensive literature review to summarize 

the evidence related to ankle instability and postural control deficits in those with CAI. 

The authors retrieved eight articles comparing single-limb balance between those with 

and without CAI. The analysis revealed a broad range of point estimates (-0.29 to 1.31), 

with positive effect sizes indicating worse postural control in the CAI group. Although 
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several of the point estimates suggest worse postural control in the CAI group, several of 

the confidence intervals crossed zero. Therefore, based on these findings the authors were 

unable to conclude whether balance deficits are associated with CAI.  

Despite the lack of consensus reported by McKeon and Hertel,117 a series of meta-

analyses were later conducted to determine if postural control deficits are present in those 

with CAI.119-121 Compared to a systematic review, a meta-analysis compiles all of the 

evidence and provides a quantitative estimate of the overall effect size. Wikstrom et al119 

, using fifteen articles comparing single-limb balance between those with and without 

CAI, reported a moderate cumulative effect size (ES = 0.570, CI: 0.426 to 0.714, p < 

0.0001) suggesting postural control deficits are associated with CAI. Arnold et al121 

found similar results; however, they noted time-based measures of single-limb balance 

were more likely to differentiate between those with and without an injured ankle. 

Collectively, these findings provide evidence CAI is associated with single-limb balance 

deficits, particularly when time-based measures of single-limb balance are utilized.   

The above research provides strong evidence that postural control on the involved 

limb is impaired in those with CAI. However, centrally mediated changes have been 

previously reported that might impact postural control on the uninvolved limb in those 

with CAI. Therefore, Wikstrom et al118 performed a systematic review and meta-analysis 

to determine if bilateral postural control impairments are associated with CAI. Results 

from the meta-analysis indicated that CAI is associated postural control impairments on 

the involved limb (ES = 0.388, CI: 0.153 to 0.623, p) <0.001) but not the un-involved 

limb (ES= 0.070, CI: -0.16 to 0.301, p = 0.552) compared to uninjured controls.  The 

authors attributed the lack of bilateral postural controls deficits in those with CAI to the 
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myriad of postural control methods, the wide range of inclusion criteria used to identify 

individuals with CAI and a lack of statistical power.118 While the authors failed to 

identify a difference in bilateral postural control, several reports have demonstrated 

bilateral neuromuscular control deficits at both the ankle and proximal joint structures. 

Therefore, clinicians should consider global rehabilitation programs for both the involved 

and uninvolved limbs for those with CAI.   

Dynamic Postural Control 

Non-instrumented Methods 

  
The Star Excursion Balance Test (SEBT) was first described as a rehabilitative 

tool for lower extremity injuries but has gained popularity for its clinical utility to 

identify dynamic postural control impairments among people with ankle instability.122 

The SEBT is a series of 8 reach distances that evaluates an individuals ability to maintain 

a stable base of support during a single-limb stable while using the non-stance limb to 

maximally reach in 1 of 8 designated directions. Smaller reach distances are indicative of 

worse dynamic postural control.   

 Early reports assessing test-retest reliability found overall poor intertester and 

intratester reliability. Intratester reliability estimates (intraclass correlations coefficients 

[ICC]) for the anteromedial, anterolateral, posteromedial and posterolateral ranged form 

0.67 to 0.87.123 However, when examining scores of the SEBT, Robinson and Gribble124 

found a practice effect associated with the performance of the SEBT, with participants 

reaching farther as they performed more trials. Subsequently, they found that the scores 

on the SEBT stabilized after the fourth practice trial, making the recommendation that at 

least 4 practice trials be given before recording reach distances.  Once controlling for the 
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number of practice trials, the test-retest reliability (ICC) ranged from 0.84 to 0.92.125 

Further investigation into the properties of the SEBT revealed that there was considerable 

redundancy when performing all 8-reach directions of the SEBT.126 To avoid capturing 

redundant information, authors126 have recommended that only 3-reach directions 

(anterior, posteromedial, and posterolateral) should be conducted. Another important 

consideration for the SEBT is normalization. Gribble and Hertel127 found maximum reach 

distances on the SEBT are strongly correlated with limb-length. Therefore, the authors127 

recommend normalizing the distance reached to subjects’ limb-length to make a valid 

comparison between groups.  

 Olmsted et al128 were the first to identify dynamic balance deficits among those 

with CAI using the SEBT. The total score for all 8 directions was lower in the ankle 

instability group (78.6cm) compared to the control group (82.8cm) and when compared 

to the non-injured side (81.2cm).128 The decreased reach distance observed within the 

CAI group resulted in the authors concluding the SEBT is capable of detecting 

differences in dynamic balance between those with and without CAI. However, as 

mentioned above, limb length is significantly correlated with reach distance and should 

be considered when comparing between groups. Therefore, Gribble et al129 advanced this 

work by showing that the normalized reach distances for the CAI group in the anterior 

(p=0.03), medial (p=0.02), and posterior (p=0.02) directions were significantly less 

compared to the control group. Several authors16,18,122,126,130,131 have later confirmed 

decreased test performance among patients with CAI compared to healthy individuals. 

Collectively, the decreased reach distance observed on the SEBT indicates individuals 
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with CAI have to remain closer to the center of their base of support when performing a 

maximal reach to prevent from falling over.122     

Spinal-Reflexive Excitability  
 
  Investigators have pointed towards arthrogentic muscle inhibition (AMI) as one 

possible explanation for the neuromuscular dysfunction observed in the surrounding 

ankle musculature of those with CAI.18 AMI is an ongoing reflex inhibition of the 

uninjured musculature surrounding an injured or distended joint.132 This reflexive 

inhibition is hypothesized to be a protective mechanism to decrease excessive forces from 

acting on an injured joint.133 However, persistent inhibition of the surrounding ankle 

musculature can be detrimental to an individual’s recovery after a traumatic ankle joint 

injury.133   

 Depressed motor neuron pool excitability (MNPE) is the hallmark characteristic 

of AMI.133 The Hoffman reflex (H-reflex) is a technique commonly used to estimate the 

MNPE of a targeted muscle. H-reflex represents the proportion of the motor units 

excitable by a stimulus of the afferent pathway of a peripheral nerve.132 Whereas the 

afferent and efferent pathways contribute to the H-reflex, electrical stimulation of a 

peripheral nerve can also evoke a purely efferent response commonly referred to as the 

maximal muscle response (M-response).132 The M-response is representative of the 

maximal excitability of the motor-neuron pool.132 Therefore, the H-reflex is often 

normalized to the M-response to obtain the H:M ratio.132 The H:M ratio represents the 

proportion of the motor neuron pool capable of being activated relative to the maximal 

motor neuron pool excitability.132 A smaller H:M ratio would suggest fewer motor 

neurons are available to be recruited and, therefore, indicate the presence of AMI.  
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Authors have examined changes in motor neuron pool excitability using artificial 

ankle-effusion models;134 however, only one group135 has compared the effect of an acute 

ankle sprain on the motor neuron pool excitability. Klykken et al135 examined the H:M 

ratio of the soleus, tibialis anterior, and fibularis longus of the injured limb 24 to 72 hours 

after an ankle sprain with that of the uninjured contralateral limb and the leg of healthy 

controls. Interestingly, the only significant difference was the soleus H:M ratio of the 

injured leg was higher than in the uninjured limb.135 The increased motor neuron pool 

excitability observed was attributed to those with an acutely sprained ankle attempt at 

placing the injured ankle in a more open-packed position to prevent stress being put on 

the injured tissues.135 The researchers were quick to point out that placing the ankle in a 

more open-packed position might predispose an individual to a chronic injury because the 

ankle is in a less stable position and subsequently more likely to invert.135  

No serial investigation of the motor neuron pool excitability of the soleus after an 

acute ankle sprain exists. However, it is reasonable to speculate that if the soleus muscle 

is not targeted after an acute ankle sprain during rehabilitation, persistent alterations in 

the motor neuron pool excitability of the soleus may contribute to the development of 

CAI. The importance of targeting alterations in motor neuron pool excitability is seen 

best by the results of Sefton et al18 who found changes in spinal reflex excitability of the 

soleus, along with measures of static balance, to accurately classify 86% of participants 

with CAI. Also, studies documenting changes in spinal reflex excitability of the soleus 

muscle between those with and without CAI lend further support towards the contention 

that persistent changes in spinal reflex excitability of the soleus is a key factor in the 

development of CAI.    
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McVey and colleagues136 compared the soleus, tibialis anterior and fibularis 

longus H:M ratio bilaterally in a group of subjects with CAI. The H:M ratio of the soleus 

and fibularis longus were smaller in the injured limb compared to the uninjured leg. 

Although these findings were an important step forward in demonstrating the presence of 

AMI in those with CAI, they did not incorporate a control group.136 Not including a 

control group may result in an inaccurate conclusion for whether actual changes occur in 

the involved limb because bilateral alterations that are caused by changes in spinal reflex 

excitability have been observed in those with CAI.118    

Bowker et al137 compared the soleus H:M ratio between three different groups of 

subjects (CAI, Coper, and healthy-control). Participants included in the Coper group were 

required to have a history of an acute lateral ankle sprain, but not report any residual 

symptoms associated with the ankle sprain. Researchers have advocated for the 

comparison of a Coper group because a Coper is thought to resemble a successful 

recovery after an acute ankle sprain.138 The soleus H:M ratio was lower in the leg of the 

CAI group compared to the Coper and healthy-control groups, whereas the H:M ratio in 

the Coper group was similar to that of the control group.137 The larger H:M ratio seen in 

the Coper group compared to the CAI group highlights the importance of reestablishing 

recruitment of the soleus muscle after an acute ankle sprain. The researchers also 

emphasized the importance of maintaining adequate motor neuron pool excitability of the 

soleus when considering the role of the soleus in controlling single-limb balance.  

Indeed, researchers have found that changes in spinal reflex excitability of the 

soleus are associated with postural control alterations in subjects with CAI. Sefton et al139 

evaluated changes in H:M ratio, pre-synaptic and post-synaptic inhibition during double- 
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and single-limb stance in a group of subjects with CAI and healthy-controls. The H:M 

ratio was not different between limbs or groups, but the authors did observe changes in 

pre-synaptic and post-synaptic inhibition between groups. More specifically, the healthy-

control subjects were able to suppress their pre-synaptic inhibition when transitioning 

from double- to single-limb balance. The participants with CAI were unable to modulate 

their pre-synaptic inhibition when changing stances. Modulating pre-synaptic inhibition 

is hypothesized to be necessary to control for changes in the environment. Therefore, the 

lack of modulation observed in the CAI group provides a possible rationale for the 

difficulty patients with CAI have interacting with the environment.  

 In a series of investigations, Kim et al140,141 examined the modulation of the H:M 

ratio of the soleus and fibularis longus when transitioning from prone-to-bipedial, 

bipedial-to-unipedal, and prone-to-unipedial in a group of subjects with CAI and a 

healthy control group. Results from these investigations demonstrated as the body 

position became more difficult, the soleus and fibularis longus H:M ratio decreased in 

healthy subjects.142 Conversely, subjects with CAI presented with less modulation for the 

soleus and fibularis longus compared to the healthy control group when going from 

prone-to-unipedial.141 In subjects with CAI, a moderate and positive correlation as found 

between the altered down-regulation of the fibularis longus and single-limb balance, 

indicating less modulation is associated with worse postural control.141 Whereas 

moderate and positive correlations between modulation of the soleus H:M ratio and self-

reported function related to activities of daily living and physical activity were found.140  

 Furthermore, research investigating the efficacy of balance training has shown 

improvements in motor neuron pool excitability of the soleus in subjects with CAI. 
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Sefton et al143 compared outcomes before and after a 6-week balance-training program in 

a group of subjects with CAI to a healthy-control group. The balance-training program 

required participants to balance on a platform containing a marble maze. The level of 

difficulty progressed by raising the center support height when the participants were able 

to complete the maze 8-times in 3 minutes or less. In addition to improved dynamic 

balance and joint position sense, the researchers found the 6-week balance-training 

resulted in significantly higher H:M ratios and pre-synaptic inhibition of the soleus 

during a single-limb stance in subjects with CAI compared to the healthy-control group. 

The higher H:M ratio after the training program indicates that participants with CAI were 

able to recruit a higher percentage of available motor neurons compared to the healthy-

control group. The greater pre-synaptic inhibition during a single-limb stance suggests 

that subjects with CAI might be able to respond more accurately by dampening an 

unwanted perturbation while balancing compared to healthy controls. 

Strength  

Decreased strength of the surrounding ankle musculature has been purported as a 

potential contributing factor to the development of CAI because early reports 

demonstrated a significant proportion of individuals presenting with residual symptoms 

following an acute lateral ankle sprain had decreased evertor muscle strength.144,145 This 

led authors to conclude that a loss of peroneal muscle strength would predispose an 

individual to develop residual symptoms because the peroneal muscle group would not be 

strong enough to counteract the ankle from inverting and moving into an injurious 

position when making contact with the ground.144,146 However, the decreased peroneal 

muscle strength found in these early reports should be taken with caution as the authors 
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evaluated muscle strength based on manual muscle testing. Manual muscle testing is 

useful when used in the clinic; however, manual muscle testing can be less accurate and 

result in a subjective interpretation of strength. Therefore, a considerable amount of 

attention has been given to determine if a deficit in eversion ankle strength is the cause of 

ankle instability.  

Tropp147 was the first to compare eversion isokinetic peak torque using a Cybex 

isokinetic dynamometer. Compared to the un-involved limb, the involved limb had lower 

concentric eversion peak torque values at 30°/sec-1 and 120°/sec-1.147 The findings from 

Tropp,147 along with follow-up investigations comparing eccentric148-150 and 

eccentric/concentric ratios,151 support the initial hypothesis that decreased evertor ankle 

strength is an important factor in the development of residual symptoms after an acute 

lateral ankle sprain. However, a considerable amount of disagreement exists within the 

literature that disputes the concern for a decrease in evertor ankle strength among those 

with CAI.114,152-159 In particular, Lentell et al154,155 compared concentric eversion peak 

torque at 0°/s, 30°/s, 90°/s, 150°/s and 210°/s between the involved and un-involved limb 

in subjects with unilateral CAI.  There was no significant bilateral difference in peak 

torque at any velocity causing the authors to conclude eversion strength might not be a 

primary concern when treating those with CAI.154,155 Furthermore, Kaminski et al152 

performed an extensive investigation comparing isometric, concentric and eccentric peak 

torque values at 0°/s, 30°/s, 60°/s, 90°/s, 120°/s, 150°/s and 180°/s between subjects with 

and without CAI. The results from this study demonstrated that there is no difference 

strength regardless of the type of muscle contraction or velocity between subjects with 

unilateral CAI when compared to the control group.160 The inconsistent results for 
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whether those with CAI suffer from decreased evertor ankle strength indicates that other 

factors related to muscle function might be more important. For instance, previous 

authors examining subjects with CAI have found a difference peroneal reaction time.161 

In addition, when considering prior research demonstrating those with CAI strike the 

ground with a more inverted foot, timing of muscle activation might also be an important 

factor.146 Indeed, researchers have observed a delay in the onset of peroneal muscle 

activation while walking162,163 and during a jump-landing.164  

Given the debate over whether eversion ankle strength predisposes an individual 

to experience the residual symptoms associated with CAI, it is reasonable to suspect that 

if strength deficits do occur around the ankle, they likely occur in other muscle groups. 

Research by Ryan165 documented a deficit in inversion ankle strength of the involved 

limb versus the un-involved limb in subjects with CAI. Decreased inversion ankle 

strength seems paradoxical with the mechanism of injury and symptoms associated with 

CAI; however, later investigations found similar findings.151,156 Authors speculated that a 

reduction in invertor ankle strength likely develops in those with CAI because of 

selective inhibition.156,165 The theory of selective inhibition was conceptualized by 

Swearingen and Dehen166 when they speculated that following damage to a joint, a reflex 

mechanism is triggered that inhibits muscles that are capable of increasing the tensile 

stress on damaged ligaments. Although Wilkerson et al156 only observed a decrease in 

concentric ankle inversion strength, they speculated that if the ankle invertors were 

inhibited that they would also exhibit decreased eccentric strength. Wilkerson et al156 

further suggested that decreased eccentric strength contributes to the decreased single-

limb balance associated with CAI. More specifically, during single-limb balance, the 
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ankle invertors have to work eccentrically to counteract a lateral postural sway. 

Therefore, reduced eccentric inversion ankle strength would not be able to prevent 

excessive lateral postural sway during a single-limb balance task, resulting in loss of 

balance.37,156 Unfortunately, authors comparing eccentric inversion ankle strength have 

failed to identify any significant differences associated CAI.114,158  

The mechanism associated with an ankle sprain has likely contributed to the little 

attention placed on examining the relationship of dorsiflexion and plantarflexion strength 

in the literature. Based on the available evidence, dorsiflexion strength deficits are not 

associated with CAI.147,159,167,168 Early investigations by Tropp147 and Schrader168 failed 

to identify concentric or eccentric torque deficits between limbs in subjects with CAI or 

compared to healthy controls. In addition to peak torque, Porter et al159 compared time-

to-peak torque between a group of CAI subjects and healthy controls. They did not find a 

significant difference in time-to-peak torque or peak torque between groups; findings that 

were later confirmed by Gribble et al.167 Yet, this relationship may need further 

investigation because a retrospective investigation identified decreased dorsiflexion 

strength to be one of several predictors of sustaining an ankle sprain among physically 

active adults.169 Conversely, the evidence for plantarflexion torque deficits associated 

with CAI is inconclusive. One set of authors did not find a difference in torque values 

between groups; other researchers found an increase in plantarflexion strength in the 

injured limb,170 while other groups have observed decreased isometric170, concentric38,167 

and eccentric158 plantarflexion torque between a group of subjects with CAI and healthy 

controls. Despite the inconclusive findings, Hubbard et al38 found reduced plantarflexion 

strength to explain approximately 10% of CAI group membership. Given the amount of 
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variance plantarflexion defined in group membership and the important role the 

plantarflexor’s have in controlling balance, plantarflexion torque should be considered 

when attempting to understand the mechanisms of CAI.  

Joints of the lower extremity do not work in isolation. Function or dysfunction at 

one joint can have an effect throughout the lower extremity. Most notably, changes in hip 

abduction and adduction moments during the swing phase of gait can cause alterations in 

the placement of the foot on initial contact, rendering the ankle more vulnerable to injury 

or ‘giving-way’.171 Therefore, researchers have started to examine if changes in hip 

musculature are associated with CAI. Friel et al172 compared isometric hip abductor and 

hip extension strength in between subjects with and without CAI. Compared to healthy-

control group, subjects with CAI had decreased isometric hip abduction strength. 

Because the hip abductors are essential for maintaining pelvic stability in the frontal 

plane during the stance phase of gait, Friel et al172 speculated that the weak hip abductors 

observed in those with CAI might cause the subtalar joint to be more inverted at the time 

of initial contact. Several other authors have shown changes in muscle recruitment 

patterns173-177 and sensation175 of the hip musculature; providing preliminary evidence 

that proximal changes in hip musculature might be associated with CAI. Furthermore, a 

prospective investigation recently found hip extension strength as a predictor of an ankle 

injury in youth soccer athletes.178  

The only other group167 to examine the relationship of hip strength and CAI failed 

to identify any differences. More specifically, Gribble et al167 compared concentric knee 

extension and flexion and hip abduction and extension peak torque at 60°/s between those 

with and without CAI. Despite not finding a difference in hip strength, they did find 
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concentric knee extension and flexion peak torque was significantly lower in the CAI 

subjects relative to the healthy controls. Given this is currently the only investigation that 

has directly examined force production at the knee; it is difficult to draw any direct 

conclusions. However, the reduced force production observed at the knee is consistent 

with studies highlighting the potential for quadriceps dysfunction to be associated with 

CAI. Previous authors examining knee function have seen changes in quadriceps 

activation patterns,179 knee kinematics180 and force attenuation181 during functional 

activities.  Considering the role of the quadriceps in mitigating knee joint degeneration, 

further investigation is warranted understand the impact decreased knee strength has on 

CAI. 

Mechanical Alterations of CAI 

Dorsiflexion Range of Motion 

Mechanism  
 
 Dorsiflexion of the talocrural joint requires the talus to glide posteriorly, the distal 

fibula to glide superior and posteriorly relative to the tibia, and the proximal fibula to 

glide inferior and anteriorly on the tibia. An ankle sprain can disrupt the normal 

arhtrokinematics of the talocrural or tibiofibular joints.94,182 Studies indicate the fibula 

shifts anteriorly77,183,184 or posteriorly185,186 relative to the tibia after an ankle sprain. The 

disagreement among the literature on the location of the fibula is likely the result of the 

multiple measurement techniques used.77,183,184 Adding to the confusion, Hubbard et al77 

found that only half of the subjects with CAI had an anteriorly displaced fibula, 

indicating that not everyone with CAI has a positional fault of the fibula.  
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Rather, consistent evidence suggests the talus is positioned anteriorly relative to 

the tibia after an acutely sprained ankle and in those with CAI.187-189 Specifically, when 

the lateral ligament complex is severely damaged the talus translates anteriorly 1mm, 

internally rotates 5.7°, and superiorly translates 0.2mm relative to the intact contralateral 

limb.189 Earlier studies observing a reduced posterior talar glide support the rationale of 

an anteriorly placed talus in subjects with a history of lateral ankle sprains. Denegar et 

al182 enrolled a group of subjects who sprained their ankle in the previous 6 months and 

found a restricted posterior talar glide in the involved limb compared to the uninjured leg. 

Moreover, after a single session of anterior-to-posterior talocrural joint mobilization, 

Vicenzino et al190 demonstrated a 50% improvement in posterior talar glide in subjects 

with CAI. Increased posterior talar glide indicates the talus was likely shifted anteriorly 

before the anterior-to-posterior joint mobilization was applied.   

 A positional fault of the talus can keep the talocrural joint from reaching a closed-

packed or stable position and rendering the ankle vulnerable to inverting more easily 

during dynamic activities.37 This caused early studies to propose that restricted 

dorsiflexion range of motion might be a risk factor for an ankle sprain, however, no study 

has found decreased dorsiflexion to be a significant predictor of injury.191-193 Instead, 

reduced dorsiflexion range of motion appears to be a consequence of joint damage. 

Therefore, this section will examine deficits in dorsiflexion range of motion observed in 

participants with CAI using static measures and during dynamic activities.  

Static Measures of Limited Dorsiflexion  
 

When controlling for age and gender, Tabrizi et al194 reported adolescent patients 

with an ankle injury had 6.4° less open-kinetic chain dorsiflexion than the control group 
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with the knee extended and 9.4° less open-kinetic chain dorsiflexion with the knee flexed. 

Similar findings were seen in adolescent and young-adult dancers who reported having a 

previous lower extremity injury.195 The results from these investigations should be taken 

with caution as they included a wide variety of lower extremity overuse injuries, ankle 

ligament ruptures, and fractures.194,195 Denegar et al182 compared bilateral open-kinetic 

chain dorsiflexion range of motion in four different positions in a group of subjects 

diagnosed with an ankle sprain in the previous 6 months. Despite a decreased posterior 

talar glide in the involved limb, no difference in dorsiflexion range of motion was noted 

between limbs for any position. The authors attributed the similar dorsiflexion range of 

motion between limbs to an overstretching of the joint capsule caused be the swelling. 

Whereas the altered arhtrokinematics found might be more important in limiting motion 

during the open-kinetic chain phase of dynamic activities such as during the swing phase 

of gait or prior to landing from a jump.  

In contrast, various investigators started to examine closed-kinetic chain 

dorsiflexion range of motion using the Weight-Bearing Lunge Test (WBLT). The WBLT 

is performed by having the participant stand over a tape measure that is secured to the 

floor and perpendicular to a wall. The objective of the WBLT is to determine the 

maximum distance individuals are able to lunge forward, tap the anterior aspect of their 

knee on the wall, without lifting their heel off the ground. Therefore, lower values on the 

WEBLT equate to decreased dorsiflexion range of motion. Terada et al196 examined the 

relationship between open- and closed-kinetic chain dorsiflexion range of motion in a 

group of CAI subjects and found a positive and weak correlation between the two.196 The 

weak correlation observed indicates measurements of open-and closed-kinetic chain 
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dorsiflexion range of motion provide different information. Hoch et al were the first 

group of researchers to utilize WBLT to identify dorsiflexion deficits in a cohort of CAI 

participants. Specifically, they found that participants with CAI had lower scores on the 

WBLT compared to a group of age-matched healthy-controls. The authors speculated that 

the decreased closed-kinetic chain dorsiflexion range of motion was the result of changes 

in the arhtrokinematics of the ankle. Subsequent studies43,197 demonstrating improved 

scores on the WBLT after repetitive bouts of talocrural joint mobilization provide 

justification for changes in ankle arhtrokinematics as the cause of the lower values on the 

WBLT.  

Dynamic Activities  
 

Along with static measurements, impaired dorsiflexion range of motion has been 

observed during dynamic activities. Limited dorsiflexion range of motion has been seen 

while walking and running after an ankle sprain. Using 3-D motion analysis, Drewes et 

al198 compared the sagittal plane ankle kinematics while jogging barefoot in a group of 

participants with CAI to an age-matched healthy-control group. Participants with CAI 

were found to have significantly less dorsiflexion range of motion during the stance 

phase of the gait cycle. More specifically, participants with CAI had decreased sagittal 

plane motion from 9% to 25% of the gait cycle and at the point of peak dorsiflexion 

range motion relative to the healthy-control group.198  

Brown et al74 first allocated participants with a previous ankle sprain into one of 

three categories: 1) a mechanically unstable group; 2) a functionally unstable group; or 3) 

a Coper group. While walking, the mechanically unstable group demonstrated less ankle 

sagittal plane displacement than the functionally unstable group and Coper group. Using 
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the same cohort of participants, Brown et al199 performed a follow-up investigation 

examining the sagittal plane motion during the terminal swing phase of walking. The 

functionally unstable group had limited dorsiflexion range of motion 250 milliseconds 

prior to initial contact compared to the mechanically unstable group when walking.199 

Whereas the mechanically unstable group had greater dorsiflexion prior to contact 

compared to the Coper and functionally unstable group.199 Collectively, these findings 

suggest that individuals develop different movement patterns at the ankle while walking 

after an ankle sprain. 

These previous investigations had participant walk and jog barefoot, a novel task 

for many individuals and, therefore, may have influenced the results. Chinn et al200 

examined sagittal plane ankle kinematics while walking and jogging shod on a treadmill. 

Relative to the healthy-controls, those with CAI exhibited reduced dorsiflexion range of 

motion from 42 to 51% of the gait cycle while walking and rom 54 to 68% of the gait 

cycle while jogging.200  

Other researchers have examined sagittal plane ankle kinematics during jump-

landing tasks. A positional fault of the ankle joint prior to landing from a jump is thought 

to make an unstable ankle more susceptible to a recurrent injury. Delahunt et al201 

compared the sagittal plane ankle motion during a single-leg drop jump in a group of 

subjects with CAI to an age-matched healthy-control group using 3-D motion analysis. 

Participants with CAI were found to reach a less dorsiflexed position within the first 200 

milliseconds after landing from a single-jump compared to the healthy control.201 

Interestingly, there were no differences in sagittal plane motion prior to initial contact. 
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The authors201 hypothesized these results suggest participants with CAI are less efficient 

at controlling their ankle motion after contact, rather than prior to initial contact.  

In another study, Brown et al199 compared the sagittal plane ankle kinematics 

from a drop jump between three groups of participants: 1) a mechanically unstable group; 

2) a functionally unstable group; and 3) a Coper group. Brown et al199 found the 

mechanically unstable ground had less plantarflexion (more dorsiflexion) at initial 

contact and at maximum than the Coper and functionally unstable group. No differences 

were found between the Coper and functionally unstable group at any time point. The 

increased dorsiflexion range of motion found at initial contact within the mechanically 

unstable group likely reflects their attempt at positioning their ankle in more stable 

position to prevent any excessive movement and subsequent injury.  

Whereas the previous studies compared the group averages, other investigators 

have compared the inter-trial variability in sagittal plane motion prior to landing from a 

single-leg drop. Kipp et al at78 found participants with CAI to have greater sagittal plane 

inter-trial variability compared to the healthy-control group. The greater inter-trial 

variability indicates CAI individuals have a different sagittal plane ankle movement 

pattern each time they land from a jump. This varied movement pattern from trial-to-trial 

might increase the risk of experiencing episodes of ‘giving-way’ or recurrent joint injury.  

Gait Mechanics 
 

It has been proposed that disruption to the lateral ligament complex after an ankle 

sprain can lead to inappropriate positioning of the ankle joint during the transition from 

swing phase to the stance phase of while walking. If an unloaded ankle joint is mal-

positioned upon weight-acceptance when walking an increased subtalar inversion torque 
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may occur, increasing the risk of an individual to sustaining a recurrent joint injury or 

experience an episode of ‘giving-way’.202 As a result, numerous investigations have 

examined joint kinematics, kinetics and muscle activity while walking in patients with 

CAI. 

Joint Kinematics  
 

Monaghan et al 203 first compared the frontal plane ankle kinematics while 

walking barefoot using 3-D motion capture in a group of subjects with CAI to a group of 

healthy-controls. More specifically, they examined the frontal plane ankle kinematics 

100ms prior to heal strike and 200ms post heel strike. It was concluded that participants 

with CAI had a more inverted foot position throughout the entire time period. The 

authors203 suggested that an altered foot position during the time period before heel stride 

prevents an individual from being able to properly absorb the forces applied to the lower 

extremity when walking.  

Delahunt et al201 later confirmed individuals with CAI have a more inverted 

position of the ankle joint before, at, and immediately after heel strike compared to 

healthy-controls. In addition to comparing the patterns of lower limb 3-D joint kinematics 

while walking on a treadmill between those with and without CAI, the authors also 

examined the vertical foot-floor clearance. Interesting, the authors201 found the 

participants with CAI exhibited a decreased in vertical foot-floor clearance compared to 

the healthy-control group. This decreased vertical foot-floor clearance seen while 

walking in participants with CAI might create a predisposition causing them to 

experiencing an inadvertent contact with the ground causing them to trip and fall when 

walking, creating a serious event.  
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In a series work,74,199 3-D motion analysis at the ankle and knee was performed on 

3 groups of participants differentiated based on ankle injury history and ligamentous 

laxity while walking. Specifically, participants with a history of an ankle sprain were 

separated into three groups: 1) a mechanically unstable group; 2) a functionally unstable 

group; and 3) a Coper group. Frontal and sagittal plane ankle kinematics were only 

examined 250ms before heel strike. Data from this work74,199 demonstrated the 

mechanically unstable group had less ankle sagittal plane displacement compared to the 

functionally unstable group, and both the mechanically and functionally unstable group 

had more ankle frontal plane displaced than the Coper group.74 Furthermore, the 

mechanically unstable group had greater maximum foot external rotation and were more 

dorsiflexed while walking than both the functionally unstable and Coper groups.199 The 

decreased sagittal plane ankle motion and increased dorsiflexion observed in the 

mechanically unstable group suggests that they position to their ankle in a more stable 

position to increase reliance on bony stability rather than ligamentous stability.74 

Additionally, the greater maximum foot external rotation suggests that individuals with 

CAI might externally rotate their foot to increase the vertical foot-floor clearance while 

walking to avoid any inadvertent contact with the ground and thus episodes of 

instability.199  

 While these previous investigations provide unique insight into the joint position 

of the ankle and knee prior to weight-acceptance in participants with CAI, few 

authors199,201,203 expanded the investigations to examine if participants with CAI 

displayed deferment movement patterns throughout the entire gait cycle. Chinn et al200 

compared sagittal and frontal plane ankle kinematics throughout the entire gait cycle 
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between participants with and without CAI. Results demonstrated participants with CAI 

were less dorsiflexed from 42 to 51% of the gait cycle (stance phase).200 Interestingly, No 

differences were found in the frontal plane ankle kinematics.200 The authors200 concluded 

that an anteriorly displaced talus likely prevented participants with CAI from reaching a 

closed-packed position while walking. Furthermore, the disparity between these results 

and the earlier investigations is that Chinn et al200 had participants walk in custom-made 

shoes. Whereas the earlier investigations had participants walk barefoot.201,203 

 A limitation of these prior studies is that all of them considered the foot as a rigid 

segment.  De Ridder et al204 argued modeling the foot as a rigid segment ignores the 

complexity of the foot and therefore might miss subtle changes occurring within the foot 

while walking. De Ridder and colleagues204 compared the stance phase kinematics of 

subjects with CAI, Copers, and controls during walking using a multisegemented foot 

model. Results from this study revealed the medial forefoot was in a more inverted 

position during the stance phase of walking in both the CAI and Coper group compared 

to the healthy-control group.204   

 While identifying differences in joint ankle sagittal and frontal plane joint ankles 

when walking has provided useful insights into understanding the consequences of CAI, 

previous authors have examined the shank-rearfoot joint coupling in participants with 

CAI.  Drewes et al205 analyzed this relationship using an analysis termed continuous 

relative phase (CRP). Briefly, CRP compresses 4 variables (angular displacement and 

velocity of the proximal and distal segments) into 1 measure.205 Results demonstrated 

CAI participants were more out of phase than the healthy controls during the terminal 

swing phase. More specifically, participants with CAI had more rearfoot inversion and 
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tibial external rotation compared to the healthy-control group.205 This indicates these 

segments are less coordinated as the foot is being positioned prior to initial contact.   

The use of CRP to assess the intersegment coupling has been previously criticized 

for its normalization techniques across the entire gait cycle.206 Therefore, Herb et al206 

examined this relationship between the shank and rearfoot using stride-to-stride vector 

coding. Vector coding has been argued to be a more useful measure to examine this 

relationship because it uses on the angular position of the two segments, which allows for 

better inference on the original segmental position.206 Herb et al206 found the CAI group 

hag greater combined motion between the rearfoot and shank during the early swing 

phase of gait, but less combined motion during the late swing phase.  Furthermore, the 

authors206 examined the stride-to-stride variability of these measures and found the CAI 

group had less variability during the stance phase of gait. Taken together these findings 

indicate individuals with CAI have a lack of coordination between the rearfoot and shank 

during immediately after toe off. However, individuals with CAI reduce the movement 

between these two segments to become more rigid before heel contact and throughout the 

stance phase. This rigid pattern likely reflects their attempt at increasing ankle joint 

stability to prevent further injury or ‘giving-way’. 

Terada et al207 later confirmed CAI is associated with decreased stride-to-stride 

variability by examining the temporal structure of the sagittal and frontal plane ankle 

kinematics. It was determined that the CAI group had decreased frontal plane ankle 

kinematics compared to the control group. The authors207 concluded that this decreased 

frontal plane motion at the ankle is reflective of a more rigid movement pattern caused by 

a less adaptable sensorimotor system.   
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Kinetics 
 

Monaghan et al203 compared kinetic data relating to the period from 100ms heel 

strike to 200ms post heel strike between those with and without CAI. The authors203 

found differences between groups when examining the frontal plane ankle joint moments 

and forces. Specifically, it was determined that CAI participants exhibited an evertor 

moment throughout the 200ms period post heel strike whereas the healthy control 

participants had an invertor moment during this time frame. Furthermore, the authors203 

observed periods of concentric power generation after heel strike in participants with CAI 

as opposed to the control group where an eccentric power generation was observed 

during these same time periods. Collectively, these changes in joint moments and power 

likely occur as a result of the different movement patterns while walking observed 

previously.203  

Other authors208,209 compared the center of pressure (COP) trajectories between 

participants with and without CAI. Hopkins et al208 examined the COP trajectories during 

the stance phase of while walking from pressure measurements collected from insoles 

impeded with a grid of sensors. Analysis of the COP trajectories indicated that the COP 

trajectories were more laterally deviated at initial contact and from 25% to 90% of the 

stance phase compared to the healthy-controls.208 Likewise, Koldenhoven et al209 

examined the COP trajectories using a similar in-shoe plantar pressure measurement 

system in participants with and without while waling. They found that the CAI 

participants had a laterally deviated COP throughout the entire stance phase of gait 

compared to the healthy counterparts.209 The laterally deviated COP trajectories found in 

both of these studies indicate CAI individuals spend more time on the lateral side of their 
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foot compare to uninjured individuals. As a result, this laterally deviated COP trajectory 

might predispose individuals with CAI to experience an episode of ‘giving-way’ or 

recurrent joint injury if the COP moves outside of their base of support. In addition to the 

COP trajectories, Koldenhoven et al209 examined the peak pressure, pressure-time 

integral, time-to-peak pressure, contact area, and contact time. Interestingly, the CAI 

group an increase in peak pressure and pressure-time integral of the lateral forefoot. 

Increased time to peak pressure and amount of pressure over time on the lateral forefoot 

suggests participants with CAI have a might have to over supinate prior to toe off to 

provide stability within the foot for propulsion. 
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Chapter 3: Health-Related Quality of Life in Young, Middle, and Older-Aged Adults 
With and Without Chronic Ankle Instability 

Introduction 
 
 Lateral ankle sprains are the most common lower extremity musculoskeletal 

injury among young physically active populations.3 A 5-year review of the National 

Collegiate Athletic Association (NCAA) injury surveillance program indicates the 

incidence rate of a lateral ankle sprain is 0.495 per 1000 athlete-exposures.7 In addition to 

the high incidence rate among physically active populations, it is important to recognize 

the high incidence rate among the general population. Based on a 4-year review of the 

National Electronic Injury Surveillance System (NEISS), Waterman et al47 reported the 

incidence rate of a lateral sprain among people reporting to an emergency department in 

the USA is 2.15 per 1000 person-years. Indeed, this high incidence rate observed in the 

emergency department can cause immense financial burden placed on the health care 

system.36 Further contributing to the problem, at least 1 in 3 individuals will experience 

residual symptoms that can persist years after the initial injury,9 such as recurrent injury 

and repetitive ‘giving-way’ or otherwise known as chronic ankle instability (CAI).37 CAI 

is associated with mechanical and functional impairments that contribute to a pattern of 

inactivity early in life13,210 and the onset of post-traumatic ankle osteoarthritis.15 

Consequently, those with CAI report having lower health-related quality of life 

(HRQoL).10   

 HRQoL is an encompassing term used to coalesce information from several 

health domains including physical, mental and social.67 Thus, HRQoL reflects an 

individual’s satisfaction with life or overall well-being.67 Capturing HRQoL can improve 
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the quality of care provided by the clinician because it advances the understanding of 

how patients’ experiences, expectations, beliefs, and perceptions are affected by their 

health condition.67 Therefore, the importance of evaluating HRQoL has increased among 

healthcare professionals.211 Owing to the multiple health domains that HRQoL 

incorporates, self-reported surveys are classified as either generic or region specific. 

Generic outcome instruments are nonspecific to a body region and are broad to provide a 

glimpse into an individual’s overall health status.67 In contrast to global outcome tools, 

region specific instruments are useful in providing HRQoL about a specific region of the 

body that may be affected by an injury.67  

 Based on a systematic review with meta-analysis, there is moderate to strong 

evidence indicating long-term symptoms caused by an acute ankle sprain can be 

detrimental to both global and region-specific HRQoL.10 Arnold et al11 used the Short 

From-36 (SF-36) to compare global HRQoL between a group of subjects CAI and 

healthy-controls. The authors found the group of subjects with CAI had lower subscale 

and composite scores relative to the healthy-controls.11 The lower scores obtained in the 

previous investigation, along with follow-up studies,9,10,12 indicate individuals with CAI 

report having decreased global HRQoL. Likewise, those with CAI often report greater 

limitations as assessed by ankle and foot HRQoL outcomes. Several region specific 

instruments have been used to identify the self-reported functional impairments at the 

ankle;10 however, the Foot and Ankle Disability Index (FADI) offers additional 

information compared to other region-specific instruments because it incorporates 

information related to the severity of ankle pain.70,212 As such, research indicates CAI 
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patients routinely report lower scores on the FADI, suggesting lower ankle reported 

function.10  

The current literature has primarily focused on the HRQoL among adolescents 

and young-adults.10 Unfortunately, long-term follow-up investigations indicate a 

significant proportion of individuals never fully recover. After 6.5 years, approximately 

40% of individuals with a previous ankle sprain report residual symptoms in the involved 

limb.55 Konradsen et al54 followed patients for 7 years and noted 32% of people reported 

having chronic symptoms of pain, swelling, and recurrent injury. More importantly, of 

those respondents, 72% were functionally impaired by their ankle.54 More recent reports 

have utilized the Patient-Reported Outcomes Measurement Information System 

(PROMIS) to compare global HRQoL between middle-aged (40-64 years old) athletes 

and non-athletes. The PROMIS is a “National Institutes of Health Roadmap Initiative” 

and contains a bank of questions designed and validated to measure symptoms and health 

associated with a variety of chronic conditions. In a series of work, Simon and 

Docherty213,214 found former Division I athletes reported worse scores related to physical 

function, depression, fatigue, sleep disturbances, and pain interference compared to aged-

matched non-athletes. Further, those athletes who participated in a Division I collision 

sport presented with worse scores on all 8 subscales.214 Although these reports did not 

examine the influence of previous injury, it is well documented that a significant 

proportion of individuals sustain a lower extremity injury while participating in collegiate 

athletics,3 which certainly contributes to the HRQoL former athletes report having.213,214 

These emerging data provide promising evidence that developing CAI at an early 

age can lead to worse global and region-specific HRQoL throughout the lifespan. 
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However, there is currently no investigation that has evaluated both global and region-

specific HRQoL in middle-aged and older-aged adults with CAI. Understanding the 

influence of CAI on global and region-specific HRQoL as individuals age may offer a 

better indication of the long-term self-reported deficits associated with CAI and help 

direct future rehabilitation studies targeting an older population.  

Therefore, the aim of this investigation is to compare global and region-specific 

HRQoL in young-, middle-, and older-aged adults with or without CAI. We hypothesize: 

1) Participants with CAI will self-report having worse region-specific and global HRQoL 

compared healthy-controls; 2) Region-specific and global HRQoL will be worse in the 

middle-aged adults compared to the younger-aged adults; the older-aged adults will have 

worse scores compared to both groups; 3) Younger-, middle-, and older-aged adults with 

CAI will self-report having worse region-specific and global HRQoL compared to their 

age-matched healthy counterpart. 

Methods 

Study Design 

 We utilized a cross-sectional case control study design. The independent variables 

were Injury (CAI or healthy-control) and Age (younger-, middle-, and older-aged adults) 

whereas the dependent variables were global (PROMIS-43) and region-specific (FADI-

ADL and FADI-Sport) HRQoL outcome instruments.  

Participants 

 Sixty participants with self-reported CAI and 40 healthy-control participants were 

recruited from a large regional university and the surrounding community. Based on age, 
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participants were classified into three age categories: 1) younger-aged adults (age: 18-35, 

n = 31); middle-aged adults (age: 36-59, n = 25); and older-aged adults (age: 60+, n = 

11). All participants read and signed an informed consent that was approved by the 

University of Kentucky institutional review board.  

 Inclusion criteria for younger-aged adults with CAI were based on criteria set by 

the International Ankle Consortium for identifying individuals with CAI.56 Specifically, 

younger-aged adults with CAI were required to have: 1) a previous history of an acute 

lateral ankle sprain which resulted in swelling, pain and temporary loss of function; 2) 

repeated episodes of ‘giving-way’ and/or recurrent sprain; and 3) perceived instability 

determined by a score of ≥ ‘5’ on the Ankle Instability Instrument (AII) and/or ≥ ‘11’ on 

the Identification of Functional Ankle Instability (IdFAI). There is currently no standard 

used to identify middle- and older-aged adults with CAI. Therefore, middle- and older-

aged adults with CAI were identified according to the presence of having: 1) experienced 

an acute lateral ankle sprain that caused swelling, pain and temporary loss of function 

before the age of 35 years-old; 2) repeated episodes of ‘giving-way’ and/or recurrent 

ankle sprains; and 4) perceived instability determined by a score of ≥ ‘5’ on the AII 

and/or ≥ ‘11’ on the IdFAI. The AII and IdFAI have been shown as reliable and valid in 

assessing patient-reported functional limitations in those with CAI. In the event 

participants reported a bilateral history of ankle sprains, the limb with the greatest self-

reported functional limitations according to the AII and IdFAI were used as the test limb.  

 Participants allocated to the healthy-control group were required to report not 

having sustained an acute lateral ankle sprain, no ‘giving-way’, and score ‘0’ on the AII 

and IdFAI.  
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 All participants were free from any: 1) diagnosed balance, vestibular or 

respiratory disorder; 2) history of low back pain in the previous 6 months; 3) previous 

history of fracture or surgery in the lower extremity; 4) history of seizures; 5) history of 

concussion in the past 6 months; 6) history of neurological injuries or diseases; 7) use of 

any assistive-walking device; and/or previous history of any self-reported 

musculoskeletal or neurovascular injuries and disorders in the lower extremity within the 

previous 6 months other than an lateral ankle sprain.   

Instrumentation 

Foot and Ankle Disability Index  

 The FADI is a region-specific outcome instrument designed to measure activity 

limitations and participation restrictions associated with foot and ankle conditions.70 The 

FADI consists of two subscales: 1) Activities of Daily Living (FADI-ADL) and Sport 

(FADI-Sport). Both scales are scored on a 5-point Likert scale with ‘0’ representing no 

difficulty at all and ‘4’ signifying unable to do. Scores are transformed into percentages 

with 100% equating to no self-reported functional limitations. Test-retest reliability for 

the FADI and FADI-Sport is 0.89 and 0.85, respectively.70 

Patient-Reported Outcomes Measurement Information System (PROMIS) 

 The PROMIS is a NIH Roadmap for Medical Research Initiative with the goal of 

developing and validating a bank of items for the clinical research community to evaluate 

global HRQoL for the general population and to those with chronic conditions.215-218 The 

conceptual framework for designing the bank of items was based on 3 generic areas of 

health: 1) physical health; 2) mental health; and 3) social health. Based on that 

framework, items were further sub-categorized into 7 domains of HRQoL: 1) physical 
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function; 2) pain interference; 3) fatigue; 4) sleep disturbance; 5) anxiety; 6) depression; 

and 7) ability to participate in social roles & activates.219  

 Items were selected based on an extensive literature review, a panel of expert 

reviewers, cognitive interviews, and focus groups with patients diagnosed with specific 

diseases.219 Based on the final pool of items, those that produced the greatest information 

in each domain were selected and used to design several short forms of varying 

lengths.219  

 Each item has five response options ranging in values from 1 to 5. The total score 

from each short-form is calibrated by converting the raw score into a T-score with the 

mean of the US general population equal to 50 and a standard deviation fixed at 10. 

Higher scores for sleep, anxiety, depression, fatigue and pain interference represent 

poorer health, whereas higher scores for physical function and ability to participate in 

social roles & activities corresponding with better health.218,219  

Experimental Procedures 

 Participants reported to the laboratory for a single testing session. After reading 

and signing the informed consent, participant’s completed electronic version of the FADI 

and PROMIS-43. Participants were instructed to complete both instruments based on the 

directions at the top of each document. The primary investigator did not provide any 

additional explanation unless the participant asked for clarification. After completing 

both surveys, the primary investigator scored both survey instruments for analysis based 

on the established guidelines.  
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Statistical Analysis 

Separate 2x3 between-group analysis of variance models were conducted to 

explore the impact of Injury (CAI vs. healthy-control) and Age groups (young, middle, 

and old) on anthropometric information and for each dependent variable. A Bonferroni 

post hoc analysis was used in the event of any significant differences. The a priori alpha 

level was set a p ≤ 0.05. 

 All statistical analyses were performed using IBM SPSS Statistics, version 23 

(IBM, Corp., Armonk, NY, USA).    

Results 

Participant demographics and injury characteristics are listed in Table 3.1 and 

Table 3.2. The interaction effect between Injury and Age group, along with simple main 

effects, was not statistically significant for height, weight and BMI. There was a 

statistically significant age main effect for age (F 2, 94
 = 475.57, p = 0.001, partial E2 = 

0.908, observed power = 1.00). As expected, post hoc comparisons using a Bonferroni 

test indicated that participants allocated to the middle-aged group (46.2 ± 7.5, p = 0.001) 

and older-aged group (67.2 ± 5.9, p = 0.001) were older than those in the younger-aged 

group (24.0 ± 3.4). Likewise, those in the older-aged group were significantly older than 

those in the middle-aged group (p = 0.001).  

Group means and standard deviations for each dependent variable are given in 

Table 3.3.  

Foot and Ankle Disability Index  
 

The interaction effect between Injury and Age group was not statistically 

significant for the FADI-ADL or FADI-Sport (p > 0.05).  
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There was a statistically significant Injury main effect for the FADI-ADL (F2, 82 = 

27.54, p < 0.001, partial E2 = 0.266, observed power = 0.99) and FADI-Sport (F 2,82 = 

29.24, p < 0.001, partial E2 = 0.278, observed power = 1.00), indicating participants with 

CAI scored lower on the FADI-ADL (92.6 ± 7.1 vs. 100.00 ± 0.0) and FADI-Sport (82.2 

± 6.5 vs. 100.00 ± 0.0) compared to the healthy-control group.  

Patient-Reported Outcome Measurement Information System  
 

The interaction effect between Injury and Age group was not statistically 

significant for any PROMIS dependent variables (p>0.05).  

There was a statistically significant Injury main effect for the Physical Function 

(F2, 92 = 6.43, p = 0.013, partial E2 = 0.064, observed power = 0.70) and Pain Interference 

(F2, 100 = 3.785, p = 0.05, partial E2 = 0.039, observed power = 0.48) subscales. These 

results indicate participants with CAI self-reported having worse physical function (53.68 

± 5.9) compared to the healthy-control group (57.55 ± 3.8, p = 0.013). Further, 

participants with CAI self-reported having greater pain interference (44.85 ± 5.84) 

compared to the healthy-control group (42.18 ± 3.4, p = 0.05). 

There was a statistically significant Age main effect for Anxiety (F2, 100 = 2.986, p 

= 0.05, partial E2 = 0.060, observed power = 0.56) and Social (F2, 100 = 3.047, p = 0.05, 

partial E2 = 0.061, observed power = 0.57) subscales. Post hoc comparisons using a 

Bonferroni test failed to identify any significant pairwise comparisons between Age 

categories (p >0.05).   

Discussion 
 
 The purpose of our investigation was to compare global and region-specific 

HRQoL between those with and without CAI across the lifespan. We hypothesized 
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participants with CAI would self-report having worse region-specific and global HRQoL 

compared healthy-controls. Secondly, region-specific and global HRQoL would be worse 

in the middle-aged adults compared to the younger-aged adults; the older-aged adults 

would have worse scores compared to both groups. Lastly, younger-, middle-, and older-

aged adults with CAI will self-report having worse region-specific and global HRQoL 

compared to their age-matched healthy counterpart. Our primary finding was participants 

with CAI, regardless of their age, reported having greater functional limitations as a 

consequence of their ankle, worse overall physical function, and greater pain interference 

compared to the healthy-control group. However, there were no significant interactions 

for Injury and Age group for any main outcome measure.  

 Regional HRQoL outcome instruments are designed to provide a better 

understanding of the self-reported functional limitations caused by a particular condition 

or injury.67 The FADI is a region-specific HRQoL questionnaire intended to characterize 

the level of difficulty individuals have experienced in the past 7 days because of their 

ankle during broad spectrum activities such as walking on even or uneven ground, 

walking up and down stairs, running, and jumping.70 In our study, we observed lower 

scores on the FADI-ADL and FADI-Sport in the CAI group compared to the healthy-

control group, irrespective of their age. The lower scores on the FADI indicate those with 

CAI have a harder time performing activates of daily living and tasks related to physical 

activity because of deficiencies at the ankle. Thus, lingering symptoms after ankle sprain 

impact an individual’s ability to interact with their surrounding, regardless of their age.  

 This is the first investigation to examine region-specific HRQoL in participants 

with CAI between different age groups. To date, the majority of the evidence examining 
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the region-specific HRQoL associated with CAI has been in younger-aged adults. 

Houston et al10 undertook a systematic review with meta-analysis to evaluate region-

specific HRQoL instruments between those with and without CAI. Despite the 

heterogeneity of outcome tools included, the authors10 found convincing evidence that 

CAI individuals report having a lower HRQoL relative to healthy-controls and compared 

to a Coper group.10 The results from this systematic review indicated CAI is associated 

with the development of unique impairments that cause individuals with CAI to report 

having functional limitations because of their ankle. Indeed, researchers220 have 

demonstrated static and dynamic balance contribute to scores on the ADL subscale of the 

Foot and Ankle Ability Measure (FAAM); while dorsiflexion range of motion, eversion 

strength and static balance were found to explain a significant portion of the variance for 

the sport subscale of the FAAM.220 Although we did not examine the mechanical and 

sensorimotor impairments associated with CAI in this current investigation, there is 

reason to believe that the lower FADI-ADL and FADI-Sport scores observed were the 

result of a combination of the mechanical and sensorimotor insufficiencies that are 

associated with CAI.37  

 In addition to being limited by their ankle during activities of daily living and 

exercise, participants with CAI also reported having lower levels of specific aspects of  

physical quality of life as measure via the PROMIS-43. This is consistent with the work 

by Arnold et al11 who noted scores on the physical component of the Short-Form 36 (SF-

36), but not the mental component, were lower in a group of younger-aged adults with 

CAI compared to age-matched healthy-controls. Additionally, Houston et al12 reported 

decreased scores on the Disablement in the Physically Active Scale in a group of 
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younger-aged participants with CAI relative to their healthy counterpart. These 

cumulative findings,10-12 along with those presented in the current study, suggest CAI 

significantly and negatively impacts the overall physical quality of life of individuals.  

The exact reason why participants with CAI reported having overall worse 

physical quality of life compared to the uninjured participants in the current study is 

unknown. One potential explanation might be might because participants with CAI 

reported pain interfered with their day-to-day activities and ability to attend social events 

(Table 3.3). While the extent of the influence of pain associated with development CAI is 

widely debated among researchers,221 there is evidence to suggest that residual pain after 

an ankle joint injury can interfere with quality of life of individuals. Early reports 

indicated patients could experience lingering ankle pain for as long as 7 years after an 

acute lateral ankle sprain.54,55 Hiller et al58 surveyed almost 200 individuals with chronic 

musculoskeletal ankle disorders and found over half (63%) had to modify or limit their 

activity. Furthermore, pain was the most common complain compared to weakness, 

swelling, ‘giving-way’ and instability, suggesting that pain was the most common reason 

why individuals had to modify or limit their activity.58 Moreover, Arnold et al11 observed 

that participants with CAI reported having greater overall bodily pain and indicated that 

the increased bodily pain was likely the cause of the decreased scores on the physical 

component of the SF-36 reported by participants with CAI. Therefore, it is reasonable to 

speculate that the increased pain interference reported by participants in the current study 

likely contributed to the decreased physical HRQoL. Further research is needed to better 

understand how pain with movement affects the physical HRQoL in patients with CAI.   
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 Although we observed differences between those with and without CAI, we did 

not find region-specific or global HRQoL to change with advancing age in participants 

with CAI. This is not in agreement with previous research examining the influence on the 

number of ankle injuries on global HRQoL measured using the SF-8.222 Specifically, 

Bruce et al222 found age and history of sustaining at least one injury to the ankle 

negatively impacted the physical quality of individuals. Additionally, Simon and 

Docherty213,214 surveyed former division 1 athletes (age 40-60 years old) using the 

computer adaptive version of the PROMIS and found that former athletes reported having 

greater difficulty performing activities of daily living and exercise compared to age-

matched non-athletes. The authors concluded that this decreased global HRQoL was 

because the majority (70%) of the former division 1 respondents said that they had 

sustained at least 1 significant injury during their career and were 2.1 times more likely to 

continue participating with an injury or illness compared to non-athletes. The high 

prevalence of respondents noting they had a history of a severe injury and the hastened 

return to activity reported by the former Division 1 athletes may have caused poor 

healing to occur at the time of the injury. Given the hastened return to activity before 

adequate healing can occur seen after an ankle sprain6,7 it was surprising that we did not 

observe a difference between younger-, middle- and older-aged adults with CAI 

compared to their age-matched healthy counterpart.   

The lack of differences across age categories between those with and without CAI 

may be attributed to a shift in their frame of reference in which to compare their HRQoL 

against. Given that the majority of individuals sustain an ankle sprain as an adolescent or 

young-adult47 and can develop CAI within a year after the initial injury,223,224 it is 
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plausible that people with CAI as a young adult may learn to cope with their functional 

limitations over time by adjusting the environment that they interact with as they progress 

into middle-age and older adulthood. For example, to prevent their ankle from ‘giving-

way’ when running across uneven ground, individuals with CAI might begin to exercise 

on more level surfaces. As a result, individuals with CAI may undergo a mental 

recalibration of their physical expectations as they come to terms with the functional 

limitations imposed on them.225,226 This mental recalibration of an individual’s standards, 

values, and priorities is known as a response shift.225,226 A response shift has been shown 

to interfere with the ability to detect changes in a patient’s health accurately. Specifically, 

a response shift can occur in patients with low back pain,227 after knee surgery,228-230 and 

with terminal illness where an individual’s physical health deteriorates, yet their self-

reported HRQoL remains stable.227,231 The idea that an individual with CAI can be 

subjected to a mental recalibration of their physical expectations and now have a new 

frame of reference to compare the health status might help to explain why we did not see 

a detectable deficiency in HRQoL in those with CAI.225,226 However, more research is 

needed to understand the influence of a response shift in HRQoL outcome tools for 

individuals with CAI before we can make this conclusion definitively. 

Limitations  
 

This study is not without limitations. Frist, we instituted an inclusion criteria that 

middle- and older-aged participants with CAI to self-report having sustained their first 

ankle sprain before the age of 35, which does introduce recall bias. Secondly, by 

requiring middle- and older-aged participants to self-report having sustained their first 

ankle sprain before the age of 35 we had hoped to identify individuals who had 
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developed CAI as a young-adult. While the duration of symptoms reported by the 

middle- and older-aged adults with CAI was higher in each group, it is reasonable to 

speculate that some of the middle- and older-aged participants may not have started to 

experience symptoms of CAI until they were older. If participants didn’t develop 

characteristics of CAI until they were older, they may not have experienced as many 

functional limitations as someone who has had CAI their entire adult life. We are among 

the first to consider CAI across multiple age groups, yet there is not a standard for 

identifying middle- and older-aged adults with CAI. We applied the most contemporary 

published guidelines for defining CAI, but these are based on literature using exclusively 

young adults. There is some concern that our criteria fit as well for middle-aged and older 

adults. Therefore, there is a clear need to develop and determine valid and reliable 

methods to assess the level of functional instability in middle- and older-aged adults. 

Lastly, our sample size in the middle- and older-aged groups was considerably smaller 

compared to the younger-aged group. Therefore, the results of this study may be 

threatened by a Type 2 error and should be taken with caution.  We hope to build upon 

the work to this point in an effort to reduce this potential source of error. 

Conclusion 
 
 At least 1 in 3 individuals will experience residual symptoms following an ankle 

sprain, which will manifest into CAI. On the basis of these data, CAI is associated with 

lower region-specific compared to healthy-controls. Specifically, participants with CAI 

scored worse on the FADI-ADL and FADI-Sport compared to their healthy counterparts. 

The consequence of these findings is individuals with CAI appear to have a harder time 

completing activities of daily living and tasks associated with exercise because of 
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lingering symptoms from their ankle sprain.  Furthermore, it was found that participants 

with CAI reported having worse overall physical quality of life compared to the healthy-

control group. This decreased physical quality of life is likely attributed to the increase in 

pain interference reported by those with CAI. Increase in pain can prevent individuals 

from wanting to participate in physical activity or attend social events and therefore 

likely experience a lower overall physical quality of life. Research is needed to better 

understand how lingering pain from an ankle sprain translates into worse overall physical 

quality of life. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

63 

T
ab

le
 3

.1
: P

ar
tic

ip
an

t d
em

og
ra

ph
ic

s f
or

 a
ll 

si
x 

gr
ou

ps
 

 
Y

ou
ng

er
-A

ge
d 

A
du

lts
  

(M
ea

n 
± 

SD
) 

M
id

dl
e-

A
ge

d 
A

du
lts

 
(M

ea
n 

± 
SD

) 
O

ld
er

-A
ge

d 
A

du
lts

 
(M

ea
n 

± 
SD

) 
M

ai
n 

Ef
fe

ct
 

In
ju

ry
 

M
ai

n 
Ef

fe
ct

 
A

ge
 

In
te

ra
ct

io
n 

C
A

I  
n 

= 
31

 

H
ea

lth
y-

C
on

tro
l 

n 
= 

27
  

C
A

I  
n 

= 
18

  

H
ea

lth
y-

C
on

tro
l 

n 
= 

8 
 

C
A

I  
n 

= 
11

 

H
ea

lth
y-

C
on

tro
ls

 
n 

= 
6 

F 
p-

va
lu

e 
F 

p-
va

lu
e 

F 
p-

va
lu

e 

A
ge

 
(y

ea
rs

) 
24

.2
±3

.7
 

23
.8

±3
.0

 
45

.4
±7

.0
 

46
.5

±8
.4

 
67

.5
±5

.8
 

66
.8

±6
.6

 
0.

00
 

0.
97

 
47

5.
5 

<0
.0

01
* 

0.
17

 
0.

84
 

H
ei

gh
t 

(c
m

) 
16

6.
6±

9.
4 

16
9.

6±
9.

5 
16

7.
9±

12
.0

 
17

0.
1±

9.
8 

17
3.

4±
7.

4 
17

0.
1±

13
.0

 
0.

08
 

0.
77

 
0.

81
 

0.
44

 
0.

61
 

0.
54

 

W
ei

gh
t 

(k
g)

 
72

.2
±1

4.
1 

69
.1

±1
7.

0 
79

.4
±1

8.
9 

75
.5

±1
2.

4 
78

.5
±1

5.
4 

80
.1

±1
4.

5 
0.

22
 

0.
63

 
2.

62
 

0.
07

 
0.

16
 

0.
85

 

B
M

I 
(k

g/
m

2 ) 
26

.0
±4

.5
 

23
.8

±4
.6

 
28

.4
±7

.5
 

26
.0

±3
.1

 
25

.9
±3

.3
 

27
.5

±2
.1

 
0.

72
 

0.
39

 
2.

08
 

0.
13

 
0.

96
 

0.
38

 

*I
nd

ic
at

es
 si

gn
ifi

ca
nt

 d
iff

er
en

ce
s b

et
w

ee
n 

ag
e 

gr
ou

ps
 (p

 <
 0

.0
5)

 
A

bb
re

vi
at

io
ns

: C
A

I =
 C

hr
on

ic
 a

nk
le

 in
st

ab
ili

ty
; c

m
 =

 c
en

tim
et

er
s;

 k
g 

= 
ki

lo
gr

am
s  

             



  

64 

 T
ab

le
 3

.2
: P

ar
tic

ip
an

t i
nj

ur
y 

ch
ar

ac
te

ris
tic

s f
or

 a
ll 

si
x 

gr
ou

ps
 

 
Y

ou
ng

er
-A

ge
d 

A
du

lts
 

  (
M

ea
n 

± 
SD

) 
M

id
dl

e-
A

ge
d 

A
du

lts
 

(M
ea

n 
± 

SD
) 

O
ld

er
-A

ge
d 

A
du

lts
 

(M
ea

n 
± 

SD
) 

C
A

I 
H

ea
lth

y-
C

on
tro

l 
C

A
I 

H
ea

lth
y-

C
on

tro
l 

C
A

I 
H

ea
lth

y-
C

on
tro

ls
 

A
II 

5.
7 

± 
1.

5 
0.

0 
± 

0.
0 

4.
7 

± 
2.

3 
0.

0 
± 

0.
0 

4.
7 

± 
2.

8 
0.

0 
± 

0.
0 

Id
FA

I 
17

.4
5 

± 
3.

3 
0.

0 
± 

0.
0 

12
.2

 ±
 7

.6
 

0.
0 

± 
0.

0 
10

.9
 ±

 8
.9

 
0.

0 
± 

0.
0 

C
A

IT
 

17
.5

 ±
 4

.8
 

0.
0 

± 
0.

0 
19

.9
 ±

 7
.7

 
0.

0 
± 

0.
0 

20
.0

 ±
 6

.7
 

0.
0 

± 
0.

0 
# 

of
 L

A
S 

3.
0 

± 
3.

6 
0.

0 
± 

0.
0 

3.
2 

± 
3.

5 
0.

0 
± 

0.
0 

1.
6 

± 
0.

7 
0.

0 
± 

0.
0 

Fi
rs

t L
A

S 
(y

ea
rs

)  
6.

0 
± 

4.
5 

0.
0 

± 
0.

0 
30

.0
 ±

 3
9.

8 
0.

0 
± 

0.
0 

47
.1

 ±
 2

0.
3 

0.
0 

± 
0.

0 
M

os
t R

ec
en

t L
A

S 
(m

on
th

s)
 

33
.0

 ±
 3

4.
2 

0.
0 

± 
0.

0 
12

1.
6 

± 
11

4.
5 

0.
0 

± 
0.

0 
27

0.
6 

± 
24

8.
0 

0.
0 

± 
0.

0 

D
ur

at
io

n 
of

 S
ym

pt
om

s 
(y

ea
rs

) 
4.

9 
± 

3.
7 

0.
0 

± 
0.

0 
10

.7
 ±

 1
0.

4 
0.

0 
± 

0.
0 

22
.0

 ±
 3

1.
2 

0.
0 

± 
0.

0 

# 
of

 ‘g
iv

in
g-

w
ay

’ i
n 

pa
st

 6
 m

on
th

s 
4.

3 
± 

5.
1 

0.
0 

± 
0.

0 
2.

8 
± 

5.
0 

0.
0 

± 
0.

0 
3.

5 
± 

7.
3 

0.
0 

± 
0.

0 

A
bb

re
vi

at
io

ns
: C

A
I =

 C
hr

on
ic

 a
nk

le
 in

st
ab

ili
ty

; A
II

 =
 A

nk
le

 in
st

ab
ili

ty
 in

de
x;

 Id
FA

I =
 Id

en
tif

ic
at

io
n 

of
 F

un
ct

io
na

l A
nk

le
 

In
st

ab
ili

ty
; C

A
IT

 =
 C

um
be

rla
nd

 a
nk

le
 in

st
ab

ili
ty

 to
ol

; L
A

S 
= 

la
te

ra
l a

nk
le

 sp
ra

in
;  

        



  

65 

  T
ab

le
 3

.3
: G

ro
up

 m
ea

ns
 a

nd
 st

an
da

rd
 d

ev
ia

tio
ns

 fo
r t

he
 p

at
ie

nt
 re

po
rte

d 
ou

tc
om

es
 fo

r a
ll 

si
x 

gr
ou

ps
 

 
 

Y
ou

ng
er

-A
ge

d 
A

du
lt 

(M
ea

n 
± 

SD
) 

M
id

dl
e-

A
ge

d 
A

du
lt 

(M
ea

n 
± 

SD
) 

O
ld

er
-A

ge
d 

A
du

lt 
(M

ea
n 

± 
SD

) 
M

ai
n 

Ef
fe

ct
 

In
ju

ry
 

M
ai

n 
Ef

fe
ct

 
A

ge
 

In
te

ra
ct

io
n 

 
 

C
A

I 
H

ea
lth

y-
C

on
tro

l 
C

A
I 

H
ea

lth
y-

C
on

tro
l 

C
A

I 
H

ea
lth

y-
C

on
tro

l 
F 

p-
va

lu
e 

F 
p-

va
lu

e 
F 

p-
va

lu
e 

Fo
ot

 a
nd

 A
nk

le
 D

isa
bi

lit
y 

In
de

x 
(%

) 

 
FA

D
I-A

D
L 

91
.2

±7
.6

 
10

0.
0±

0 
93

.3
±5

.6
 

10
0.

0±
0 

93
.4

±8
.9

 
10

0.
0±

0 
28

.4
 

<0
.0

01
#  

0.
34

 
0.

70
 

0.
34

 
0.

70
 

 
FA

D
I-S

po
rt 

78
.4

±1
5.

0 
10

0.
0±

0 
82

.3
±1

7.
7 

10
0.

0±
0 

88
.5

±1
5.

4 
10

0.
0±

0 
30

.6
 

<0
.0

01
#  

0.
92

 
0.

40
 

0.
92

 
0.

40
 

Pa
tie

nt
-R

ep
or

te
d 

O
ut

co
m

e 
M

ea
su

re
m

en
t I

nf
or

m
at

io
n 

Sy
st

em
 

 
Ph

ys
. F

un
c.

 
54

.1
±6

.1
 

58
.1

±2
.6

 
53

.6
±3

.6
 

57
.0

±4
.6

 
53

.0
±6

8 
54

.7
±6

.1
 

6.
43

 
0.

01
#  

1.
27

 
0.

28
 

0.
33

 
0.

72
 

 
A

nx
ie

ty
 

48
.4

±7
.3

 
47

.0
±8

.2
 

44
.5

±4
.3

 
44

.8
±6

.7
 

43
.0

±4
.8

 
44

.3
±5

.9
 

0.
00

 
0.

99
 

2.
98

 
0.

05
* 

0.
30

 
0.

74
 

 
D

ep
re

ss
io

n 
42

.9
±6

.6
 

43
.1

±6
.1

 
43

.1
±4

.0
 

43
.9

±9
.4

 
42

.7
±5

.6
 

40
.5

±3
.3

 
0.

06
 

0.
80

 
0.

44
 

0.
64

 
0.

29
 

0.
74

 
 

Fa
tig

ue
 

47
.2

±8
.0

 
44

.4
±8

.3
 

42
.3

±6
.2

 
45

.6
±7

.1
 

44
.2

±6
.6

 
40

.1
±7

.7
 

0.
43

 
0.

51
 

1.
56

 
0.

21
 

1.
43

 
0.

24
 

 
Sl

ee
p 

48
.7

±7
.4

 
45

.3
±8

.1
 

45
.4

±5
.9

 
48

.7
±7

.0
 

47
.8

±4
.6

 
41

.3
±5

.5
 

1.
7 

0.
19

 
0.

76
 

0.
46

 
2.

46
 

0.
09

 
 

So
ci

al
 

60
.1

±7
.2

 
62

.1
±4

.9
 

62
.2

±3
.9

 
60

.9
±1

0.
1 

57
.8

±7
.4

 
55

.8
±7

.7
 

0.
05

 
0.

81
 

3.
04

 
0.

05
* 

0.
88

 
0.

41
 

 
Pa

in
 In

te
r. 

45
.2

±6
.5

 
41

.8
±2

.8
 

43
.4

±4
.4

 
43

.2
±5

.5
 

45
.9

±5
.8

 
42

.4
±3

.3
 

3.
7 

0.
05

#  
0.

14
 

0.
86

 
0.

81
 

0.
44

 

 
# In

di
ca

te
s s

ig
ni

fic
an

t d
iff

er
en

ce
s b

et
w

ee
n 

in
ju

ry
 (p

 <
 0

.0
5)

 
*I

nd
ic

at
es

 si
gn

ifi
ca

nt
 d

iff
er

en
ce

s b
et

w
ee

n 
ag

e 
gr

ou
ps

 (p
 <

 0
.0

5)
 

A
bb

re
vi

at
io

ns
: C

A
I =

 C
hr

on
ic

 a
nk

le
 in

st
ab

ili
ty

; F
A

D
I =

 F
oo

t a
nd

 a
nk

le
 d

is
ab

ili
ty

 in
de

x;
 A

D
L

 =
 A

ct
iv

iti
es

 o
f d

ai
ly

 li
vi

ng
; P

hy
s. 

Fu
nc

. =
 

ph
ys

ic
al

 fu
nc

tio
n;

 In
te

r.
 =

 In
te

rf
er

en
ce

 
    



 

 66 

 

Chapter 4: Sensorimotor and Mechanical Outcomes in Young, Middle, and Older-Aged 
Adults With and Without Chronic Ankle Instability 

Introduction 
 
 Ankle sprains are the most common lower extremity injury among young 

physically active populations and have a high incidence rate among the general 

population.3,36,47 An estimated 23,000 ankle sprains occur daily with an economic burden 

of approximately $2 billion in accumulated health care cost each year in the USA.47 With 

over half of all ankle sprains occurring during the early stages of life,47 the majority of 

individuals with a history of a traumatic ankle joint injury will develop chronic ankle 

instability (CAI) as a young-adult.9,53,57 CAI is an encompassing term used to describe the 

persistent pain, swelling, activity limitations, and recurrent joint injury commonly seen 

after an ankle sprain.37,56,232 These lingering symptoms have been suggested to contribute 

to the lower health-related quality of life9-12,220 and decreased physical activity levels59,210 

reported by young-adults with CAI.   

It is well established within the literature that various sensorimotor insufficiencies 

contribute to the development of CAI in young-adults.18,37,120 Specifically, those with 

CAI have worse static119,121 and dynamic balance,122,128,131 decreased sagittal plane torque 

throughout the lower extremity,167,178 and diminished spinal reflex excitability of the 

soleus muscle.136,137,139,141 In addition to the sensorimotor insufficiencies, mechanical 

restrictions at the ankle can occur in those with CAI,37 primarily, a loss in open78,198 and 

closed-kinetic chain dorsiflexion range of motion (DF-ROM).131 Together the mechanical 

and sensorimotor insufficiencies previously observed in young-adults with CAI have 

been linked to the early decrease in their health-reported quality of life and self-reported 
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function.140,220 Therefore, CAI is considered a multi-factorial pathology that has 

immediate consequences in early adulthood   

While the mechanical and sensorimotor impairments found in young-adults with 

CAI are thought to result in the development of CAI, similar impairments have been 

shown to contribute to the loss of independence21,28,29,233 and increase the risk of serious 

injury later in life.21,33-35,233,234 Specifically, static postural control,19-21,233-235 the integrity 

of the spinal reflex system,22-25 lower extremity strength21,26 and DF-ROM26 have all been 

seen to decrease with age. Given the majority of individuals develop CAI as a young-

adult; the mechanical and sensorimotor impairments associated with CAI may compound 

the effect of aging. As a result, people with a history of a traumatic ankle joint injury 

early in life might be at an increased risk of greater decreases in their health and mobility 

as they get older compared to their age-matched healthy counterpart. However, majority 

of the empirical evidence aimed at understanding the consequence of CAI is in younger-

aged adults with CAI.40  

Therefore, the aim of this investigation is to compare static and dynamic postural 

control, spinal reflex excitability, lower extremity strength, and DF-ROM in younger-, 

middle- and older-aged adults with and without CAI. We hypothesized: 1) participants 

with CAI will have decreased sensorimotor and mechanical outcome measures compared 

to healthy-controls; 2) sensorimotor and mechanical outcome measures will be decreased 

in middle-aged adults compared to the younger-aged adults; the older-aged adults will 

have decreased sensorimotor and mechanical outcome measures compared to both 

groups; 3) younger-, middle-, and older-aged adults with CAI will have decreased 

mechanical and sensorimotor outcome measures compared to their age-matched healthy 
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counterpart. This study will advance our understanding of CAI by describing the physical 

mal-adaptations that persist later in life. A better understanding of these mal-adaptations 

will be valuable in designing novel and unique programs that are capable of addressing 

functional deficiencies in CAI patients of all ages. 

Methods 

Study Design  
  

This was a cross-section case control design requiring participants to report to the 

research laboratory for a single testing session. All methodological research protocols 

were approved by the University of Kentucky Institutional Review Board.  

Participants  
  

Sixty participants with self-reported CAI and 40 healthy-control participants were 

recruited from a large regional university and the surrounding community. Based on age, 

participants were classified into three age categories: 1) younger-aged adults (age: 18-35, 

n = 31); middle-aged adults (age: 36-59, n = 25); and older-aged adults (age: 60+, n = 

11). All participants read and signed an informed consent that was approved by the 

University of Kentucky institutional review board.  

 Inclusion criteria for younger-aged adults with CAI were based on criteria set by 

the International Ankle Consortium for identifying individuals with CAI.56 Specifically, 

younger-aged adults with CAI were required to have: 1) a previous history of an acute 

lateral ankle sprain which resulted in swelling, pain and temporary loss of function; 2) 

repeated episodes of ‘giving-way’ and/or recurrent sprain; and 3) perceived instability 

determined by a score of ≥ ‘5’ on the Ankle Instability Instrument (AII) and/or ≥ ‘11’ on 

the Identification of Functional Ankle Instability (IdFAI). There is currently no standard 
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used to identify middle- and older-aged adults with CAI. Therefore, middle- and older-

aged adults with CAI were identified according to the presence of having: 1) experienced 

an acute lateral ankle sprain that caused swelling, pain and temporary loss of function 

before the age of 35 years-old; 2) repeated episodes of ‘giving-way’ and/or recurrent 

ankle sprains; and 4) perceived instability determined by a score of ≥ ‘5’ on the AII 

and/or ≥ ‘11’ on the IdFAI. The AII and IdFAI have been shown as reliable and valid in 

assessing patient-reported functional limitations in those with CAI.212,236,237 In the event 

participants reported a having bilateral ankle sprain, the limb with the greatest functional 

limitations according to the AII and IdFAI was used as the test limb. Participants 

allocated to the healthy-control group were required to report not having sustained an 

acute lateral ankle sprain, no ‘giving-way’, and score ‘0’ on the AII and IdFAI.  

 All participants were free from any: 1) diagnosed balance, vestibular or 

respiratory disorder; 2) history of low back pain in the previous 6 month’s; 3) previous 

history of fracture or surgery in the lower extremity; 4) history of seizures; 5) history of 

concussion in the past 6 month’s; 6) history of neurological injuries or diseases; 7) use of 

any assistive-walking device; and/or previous history of any self-reported 

musculoskeletal or neurovascular injuries and disorders in the lower extremity within the 

previous 6 months other than an lateral ankle sprain.   

Instrumentation 

Static Postural Control  
 
Center of pressure (COP) trajectories in the anteroposterior (AP) and mediolateral 

(ML) directions were measured using a Bertec force platform (Bertec FP6090-15-2000; 

Bertec Inc., Columbus, OH) integrated with Cortex 5.5 motion capture software (Motion 
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Analysis Corporation, Santa Rosa, CA) at a sampling rate of 100Hz. The COP data were 

filtered using a low pass, fourth order Butterworth filter set at a cutoff frequency of 5 

Hz.238 The COP velocity data were used in the calculation of the mean of time-to-

boundary (TTB) minima (sec) for the ML and AP direction. The TTB variables were 

calculated using a custom MATLAB file (Mathworks, Inc. Natick, MA) using a 

previously described method.239 

Spinal Reflex Excitability   
 
 Electromyography (EMG) signals were collected using two pre-gelled Ag/AgCL 

EMG recording electrodes (EL503, BIOPAC Systems, Inc.) placed 1.75 mm apart and 

positioned in line with the muscle fibers approximately 2 finger widths distal to the 

gastrocnemius muscle.240 The ground electrode was placed over the contralateral medial 

malleolus.240,241 Both areas were shaved, abraded with fine sandpaper, and cleaned with 

isopropyl alcohol wipes.  

  A Digitimer DS7AH constant current stimulator (Digitimer Ltd., Hertfordshire, 

England) delivered a 1-ms square wave stimulus through a 4mm shielded disk-shaped 

stimulating electrode (EL254S; BIOPAC Systems, Inc., Goleta CA, USA) located over 

the popliteal fossa.240 A 7-mm carbon-impregnated dispersive pad was placed over the 

ipsilateral quadriceps.240 A 16-bit converter (MP150, BIOPAC Systems, Inc., Goleta CA, 

USA) was used to process analog-to-digital signal conversion. EMG signals were 

sampled at 2000Hz and amplified at a gain of 1000 (EMG100C, BIOPAC Systems, Inc., 

Goleta CA, USA). Acqknowledge BIOPAC Software (BIOPAC version 3.7.3) was used 

to visualize the signals and manipulate the stimuli. 
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Isometric strength 
 
 Ankle, knee and hip strength was assessed through maximal voluntary isometric 

contractions (MVIC) using a BTE evaluator (BTE™ Evaluator, BTE, Hanover, MD) 

portable load cell with attachments designed for handheld dynamometry.  

Experimental Procedures  

Static Postural Control 
 
 Static postural control was measured during an eyes-open single-limb balance 

task (Figure 4.1). Participants were asked to stand barefoot on the involved limb in the 

middle of the force platform for 20-seconds. Participants were instructed to cross their 

arms across their chest while keeping their foot flat on the force plate. Participants were 

given three practice trials and then instructed to perform three test trials with their eyes-

open. Trials were discarded and repeated if: 1) the non-testing limb made contact on the 

force platform or the stance limb; 2) participants hopped or took at step with the stance 

limb; 3) removed their hands from their chest; and/or 4) they lifted their arms from their 

chest. Lower TTB values represent greater postural instability.242  

Dynamic Postural Control 
 

Dynamic postural control was measured using the Star Excursion Balance Test 

(SEBT).122 The SEBT was originally designed as a lower extremity reach test performed 

on an eight-directional star pattern constructed by metric tape measures secured to the 

floor. However, recent work by Hertel et al126 has advocated for a reduction in the 

number of reach directions because of the amount of redundancy when all eight-

directions are performed. Therefore, the anterior (SEBT-A), posteromedial (SEBT-PM) 
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and posterolateral (SEBT-PL) reach directions were measured (Figure 4.2).122,131 The 

SEBT has excellent inter- and intra-rater reliability.243  

  Participants were instructed to stand barefoot in the center of the star pattern with 

their hands on their waist.122 While maintaining a single-limb stance on the involved 

limb, participants were instructed to reach maximally in the designated reach direction 

with the non-stance limb by lightly touching the line and returning to the starting 

position.122 For the SEBT-A direction the most distal portion of the participant’s first toe 

was placed at the center of the star. For the SEBT-PM and SEBT-PL reach directions the 

participant’s heel was placed at the center of the star. Participants were given four 

practice trials in each reach direction.124 Three test trials were recorded for each reach 

direction. Trials were discarded and repeated if the individual: 1) touched heavily or 

came to a rest at the point of touchdown; 2) participants hopped or took a step with the 

stance limb; and/or 3) lifted or shifted any part of the foot of the stance limb. The 

maximum distance reached in each direction was recorded in centimeters and normalized 

to the length of the participant’s stance limb.127 Leg length was measured as the distance 

from the anterior superior iliac spine to the most distal portion of the medial malleolus.127 

The normalized average for each direction was used for statistical analysis. Lower 

normalized reach distance equates to decreased dynamic postural control.122 

Spinal Reflex Excitability 
 
 Spinal reflex excitability (Figure 4.3) was performed using a previously published 

protocol for eliciting the Hoffman reflex (H-reflex) and muscle response (M-

response).132,244 The soleus muscle was targeted because: it is a muscle used to help 

maintain upright postural control;245,246 and prior studies have demonstrated both older 
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adults22-25 and younger-aged adults with CAI have alterations in the soleus muscle H-

reflex.136,137,139,141,143 Participants were prone on a standard height plinth with their 

involved knee flexed and supported by a pillow placed underneath their ankle.141,142 The 

stimulating electrode was shifted to find the location that elicited the largest peak-to-peak 

twitch response at a constant stimulus in the Soleus.132,137,240,244 Once this location was 

found the electrode was secured and used for all testing trials. Next, the stimulus intensity 

was increased or decreased with 10 seconds of rest between trials until the maximum 

peak-to-peak H-reflex (Hmax) was identified.244 Three trials were measured and recorded. 

To determine the maximum M-response (Mmax), the stimulation was increased in 

increments of 10.0 mA until the peak-to-peak amplitude of the M-wave 

plateaued.132,137,244 Three Mmax trials were measured and recorded. The average Hmax was 

normalized to Mmax to calculate the Hmax: Mmax and was used for statistical analysis.132 

Lower Hmax: Mmax ration indicate decreased spinal reflex excitability of the soleus.132 

Lower Extremity Torque   
 
 Participants were asked to remove his/her shoes and were positioned on a 

standard examination table. For each testing, participants were positioned in accordance 

to previously published data for testing isometric force.247 Participants were instructed to 

provide resistance for 5-seconds, ramping up during the first 3-seconds, then providing a 

maximal effort for the final 2-seconds.248 The participant was given one practice trial and 

then three test trials were recorded. Participants were provided a 30-second rest interval 

between trials.248 

To assess ankle dorsiflexion torque (Figure 4.4), participants laid supine with their 

hip, knee and ankle at 0°.247 Two straps placed over the lower leg and thighs were used to 
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prevent any accessory motion. The handheld dynamometer was placed proximal to the 

metatarsophalangeal joint.247 Participants were instructed to pull their ankle against the 

handheld dynamometer. Good test-retest reliability has been demonstrated.249  

 Plantarflexion torque (Figure 4.4) was assessed with the participant in a prone 

position with their head supported by their arms. The participant’s hip, knee and ankle 

were placed at 0°. Two straps were placed over the lower leg and thighs to prevent any 

accessory motion. The hand held dynamometer was located over the metatarsal heads on 

the plantar side of the foot.247 Participants were instructed to push their ankle against the 

dynamometer. Good test-retest reliability has been demonstrated.249 

Knee extension torque (Figure 4.5) was evaluated with the participant seated on 

the edge of an examination table with their hips and knees flexed to 90°; and their arms 

resting on their chest.250 A strap was placed over their lap to limit accessory motion. The 

portable load cell was placed behind the involved limb. One end of the portable load cell 

was attached to a stabilizing strap attached approximately 5.08cm above the medial 

malleoli of the participant’s involved limb.250 The opposite end of the portable cell was 

fixed to the examination table.250 Participants were instructed to perform a maximal 

voluntary isometric knee extension. Good test-retest reliability has been demonstrated.250  

 Hip abduction torque (Figure 4.6) was evaluated with participants placed in a 

sideline position.251 A pillow was placed between the limbs to ensure the two limbs were 

in neutral position and the both knees were fully extended.251 A strap was placed over the 

waist of the participant to limit accessory motion. A second strap was used to hold the 

handheld dynamometer 5.08 cm proximal to the lateral joint line.251 Participants were 
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instructed to push into the dynamometer with their involved limb. Good test-retest 

reliability has been demonstrated.251 

 Hip extension torque (Figure 4.6) was assessed with the participant in a prone 

position.252 The hip was placed in neutral position and the knee flexed to 30°.252 A strap 

was placed over the waist to limit accessory motion. The handheld dynamometer was 

placed over the distal thigh, just proximal to the popliteal fossa. A second strap was used 

to hold the dynamometer in place and the participants were instructed to extend their hip 

upwards against the dynamometer. Good test-retest reliability has been demonstrated.251 

 Peak force for each test trial was recorded in pounds (lbs) and converted to 

Newton’s (N) and the average for each strength assessment was calculated. To calculate 

peak torque the length of the femur, lower leg and foot was recorded and used as the 

moment arm. The femur was measured as the distance from the greater trochanter to the 

lateral aspect of the knee joint. The length of the lower leg was measured as the distance 

from the lateral joint line to the most distal aspect of the lateral malleolus. Foot length 

was measured as the distance from the posterior lateral malleolus to the metatarsal heads. 

The length of the femur was used in the calculation of hip abduction and extension 

torque, the length of the lower leg was used for knee extension torque, and the length of 

the foot was used for dorsiflexion and plantarflexion torque. The average maximal force 

output (N) was multiplied by the moment arm (m) and normalized to each participant’s 

body weight (kg) and expressed as Nm/kg. The average Nm/kg was used for all statistical 

analysis. Lower values correspond with decreased torque.  

Open-Kinetic Chain Dorsiflexion Range of Motion 
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 Open-kinetic dorsiflexion range of motion was assessed with the participants 

seated on the edge of a standard plinth with their knees flexed to 90° (Figure 4.7).182 The 

thigh was secured to the table by Velcro straps for stabilization. The bubble inclinometer 

was placed over the fifth metatarsal of the foot using a Velcro strap. With the ankle 

placed in neutral (0°) participants were asked to actively dorsiflex the ankle maximally. 

Once the participant reached their end range of motion, ankle dorsiflexion was recorded. 

The average of three measures were recorded and used for statistical analysis. Lower 

values represent decreased DF-ROM.  

Weight-Bearing Lunge Test 
 
 Closed-kinetic chain dorsiflexion range of motion was assessed using the weight-

bearing lunge test (WBLT) (Figure 4.7).253 The WBLT was performed using a previously 

published protocol.131,253 A standard metric tape measure was used to secure to the floor 

perpendicular to a wall. Participants placed their hands on the wall to help maintain 

balance and with their feet in a tandem stance over the tape measure. Participants 

performed a forward lunge until the anterior aspect of their involved knee touched the 

wall. Participants were gradually moved further away from the wall in 1cm increments 

until they could no longer touch the wall with their anterior knee and their heel flat on the 

floor.131,253 The maximum distance from the wall was recorded in cm. Three trials were 

recorded and the average was used for statistical analysis.  Lower values represent 

decreased DF-ROM.253   

Statistical Analysis  
 

Separate 2x3 between-group analysis of variance models were conducted to 

explore the impact of Injury (CAI vs. healthy-control) and Age groups (young, middle, 
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and old) on anthropometric information and for each dependent variable. A Bonferroni 

post hoc analysis was used in the event of any significant differences. The a priori alpha 

level was set a p ≤ 0.05 

 All statistical analyses were performed using IBM SPSS Statistics, version 23 

(IBM, Corp., Armonk, NY, USA).   

Results 
 

Participant demographics and injury characteristics are listed in Table 4.1 and 

Table 4.2. The interaction effect between Injury and Age group, along with simple main 

effects, was not statistically significant for height, weight and BMI. There was a 

statistically significant Age group main effect for age (F 2, 94
 = 475.57, p = 0.001, partial 

E2 = 0.908, observed power = 1.00). As expected, post hoc comparisons using a 

Bonferroni test indicated that participants allocated to the middle-aged group (46.2 ± 7.5, 

p = 0.001) and older-aged group (67.2 ± 5.9, p = 0.001) were older than those in the 

younger-aged group (24.0 ± 3.4). Likewise, those in the older-aged group were 

significantly older than those in the middle-aged group (p = 0.001).  

Static Postural Control 
 

Group means and standard deviations for all of the static postural control 

variables are given in Table 4.3. The interaction effect between Injury and Age group was 

not statistically significant for any main outcome variable (p > 0.05). Likewise, there was 

not a statistically significant Injury main effect for any main outcome variable (p > 0.05). 

There was a statistically significant main effect for Age group for the TTBAP mean of 

minima (F2, 86 = 9.55, p < 0.0001, partial E2 = 0.193, observed power = 0.97), TTBAP 

S.D. of minima (F2, 86 = 7.44, p < 0.001, partial E2 = 0.157, observed power = 0.93), and 
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TTBAP absolute minimum (F2, 86 = 9.55, p = 0.004, partial E2 = 0.127, observed power = 

0.85).  

TTBAP mean of minima (sec) 
 

Post hoc comparisons indicated the TTBAP mean minima was greater in the 

younger aged (5.862 ± 1.8) compared to the middle-aged (4.27 ± 1.2, p = 0.002) and 

older-aged participants (4.02 ± 1.1, p = 0.007). There was no difference between the 

middle-aged and older-aged participants (4.27± vs. 4.0±, p = 0.99).  

TTBAP S.D. of minima (sec) 
 

Post hoc comparisons indicated the TTBAP S.D. of minima was lower in the 

middle-aged group compared to the younger-aged group (3.55 ± 1.2 vs. 5.68 ± 2.6, p = 

0.002). There was no difference between the younger-aged group and older-aged group 

(5.68 ± 2.6 vs. 4.01 ± 1.2, p = 0.106) or between the middle-aged and older-aged group 

(3.55 ± 1.2 vs. 4.01 ± 1.2, p = 0.99).   

TTBBAP absolute minimum (sec) 
 

Post hoc comparisons indicated the TTBAP absolute minimum was lower in the 

older-aged participants compared to the younger-aged participants (0.86 ± 0.21 vs. 1.1 ± 

0.31, p = 0.016). There was no difference between the middle-aged and older-aged 

participants (0.98 ± 0.33 vs. 0.86 ± 0.31, p = 0.99) or between the middle-aged and 

younger-aged participants (0.98 ± 0.33 vs. 1.1 ± 0.31, p = 0.060).   

Dynamic Postural Control 
 
 Means and standard deviations for each reach direction of the SEBT are given in 

Table 4.4. The interaction effect between Injury and Age group was not statistically 
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significant for any main outcome variable (p > 0.05). Likewise, there was not a 

statistically significant Injury main effect for any main outcome variable (p > 0.05). 

There was a statistically significant main effect for Age group for the SEBT-PM (F2, 99 = 

10.33, p < 0.0001, partial E2 = 0.182, observed power = 0.98) and SEBT-PL (F2, 99 = 

12.77, p < 0.001, partial E2 = 0.216, observed power = 0.99) reach directions.  

Posteromedial (% LL) 

Post hoc comparisons indicated the SEBT-PM reach direction was lower in the 

older-aged adults (67.2 ± 10.7) compared to the younger-aged adults (81.0 ± 10.6, p < 

0.001) and middle-aged adults (76.4±10.9, p = 0.033). There was no difference between 

the younger-aged and middle-aged adults (81.0 ± 10.6 vs. 76.4 ± 10.9, p = 0.264).  

Posterolateral (%LL) 

 Post hoc comparisons indicated the SEBT-PL reach distance was lower in the 

older-aged adults (54.6 ± 11.0) compared to the younger-aged adults (74.0 ± 13.5, p < 

0.001) and compared to the middle-aged adults (70.2 ± 14.4, p = 0.001). There was no 

difference between the middle-aged and younger-aged adults (70.2 ± 14.4 vs. 76.4 ± 

10.9, p = 0.264).  

Spinal Reflex Excitability  
 

Means and standard deviations for Hmax:Mmax ratio are provided in (Table 4.5) . 

The interaction effect between Injury and Age group was not statistically significant (p > 

0.05). There was no significant Injury main effect (p > 0.05). There was a statistically 

significant main effect for Age group (F2, 88 = 3.446, p = 0.037, partial E2 = 0.019, 

observed power = 0.631).  
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Post hoc comparisons indicated the Hmax:Mmax ratio was lower in older-aged 

adults compared to the younger-aged adults (0.44 ± 0.26 vs. 0.67 ± 0.21, p = 0.039). 

There was no difference between the middle-aged and younger-aged adults (0.60 ± 0.44 

vs. 0.67 ± 0.21, p = 0.600) or between the middle-aged and older-aged adults (0.60 ± 0.44 

vs. 0.44 ± 0.26, p = 0.661).   

Lower Extremity Torque  
 
 Means and standard deviations for each torque measurement are given in Table 

4.6. The interaction effect between Injury and Age group was not statistically significant 

for any main outcome variable (p > 0.05).  

There was a statistically significant Injury main effect for Dorsiflexion (F2, 97 = 

4.682, p = 0.033, partial E2 = 0.049, observed power = 0.572), Plantarflexion (F2, 85 = 

5.945, p = 0.017, partial E2 = 0.063, observed power = 0.675), and Hip Extension (F2, 95 = 

4.810, p = 0.031, partial E2 = 0.037, observed power = 0.446).  

There was a significant Age group main effect for Dorsiflexion (F2, 97 = 4.984, p = 

0.009, partial E2 = 0.099, observed power = 0.800), Plantarflexion (F2, 85 = 2.914, p = 

0.05, partial E2 = 0.002, observed power = 0.557), and Hip Extension (F2, 85 = 5.536, p = 

0.005, partial E2 = 0.111, observed power = 0.105). 

Dorsiflexion Torque (Nm/Kg) 

Post hoc comparisons indicated the CAI group had decreased Dorsiflexion torque 

compared to the healthy-control group (0.30±0.09 vs. 0.39±0.14, p = 0.033). Regardless 

of Injury group, the post hoc comparisons indicated the older-aged participants had 

decreased dorsiflexion torque compared to the younger-aged groups (0.27±0.08 vs. 

0.37±0.13, p = 0.008). There was no difference between the younger-aged and middle-
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aged participants (0.37±0.13 vs. 0.33±011, p = 0.442) or between the middle-aged and 

older-aged participants (0.33±0.11 vs. 0.27±0.08, p = 0.376).  

Plantarflexion Torque (Nm/Kg) 
 
Post hoc comparisons indicated the CAI group had decreased Plantarflexion 

torque compared to the healthy-control group (0.53 ± 0.14 vs. 0.63 ± 0.19, p = 0.017). 

Regardless of Injury group, post hoc comparisons indicated the older-aged participants 

had decreased Plantarflexion torque compared to the younger-aged participants (0.51 ± 

0.13 vs. 0.63 ± 0.18, p = 0.05). There was no difference between the younger-aged and 

middle-aged participants (0.63 ± 0.18 vs. 0.57 ± 0.15, p = 0.99) or between the middle-

aged and older-aged participants (0.57 ± 0.15 vs. 0.51 ± 0.13, p = 0.495).  

Hip Extension Torque (Nm/Kg) 
 

Post hoc comparisons indicated the CAI group had decreased Hip Extension 

torque compared to the healthy-control group (1.47 ± 0.55 vs. 1.73 ± 0.69, p = 0.031). 

Regardless of Injury group, post hoc comparisons indicated the older-aged participants 

had decreased Hip Extension torque compared to the younger-aged participants (1.35 ± 

0.62 vs. 1.88 ± 0.60, p = 0.010). There was no difference between the younger-aged and 

middle-aged participants (1.88 ± 0.60vs. 1.57 ± 0.59, p = 0.111) or between the middle-

aged and older-aged participants (1.57 ± 0.59 vs. 1.35 ± 0.62, p = 0.860). 

Open-Kinetic Chain Dorsiflexion Range of Motion 
 
 Means and standard deviations are given in Table 4.7. The interaction effect 

between Injury and Age group was not statistically significant (p > 0.05).  There was no 

significant Injury or Age group main effect (p >0.05). 
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Weight-Bearing Lunge Test  
 
 Means and standard deviations are given in Table 4.7. The interaction effect 

between Injury and Age group was not statistically significant for any main outcome 

variable (p > 0.05).  There was no significant Age group main effect (p > 0.05). There 

was a significant Injury main effect (F2, 99 = 4.664, p = 0.034, partial E2 = 0.048, observed 

power = 0.570).  

Post hoc comparisons indicated the CAI group and decreased WBLT scores 

compared to the healthy-control group (7.25±3.4 vs. 9.27±3.5, p = 0.033).  

Discussion 
 

Chronic ankle instability is associated with multiple mechanical and sensorimotor 

insufficiencies that are linked to early decrease in health and self-reported function in 

younger-aged adults.37,140,220 Little empirical evidence exists on whether these common 

mechanical and sensorimotor factors persist as individuals with CAI get older.40 

Therefore, the aim of this investigation was to compare the common mechanical and 

sensorimotor measures reported in CAI participants in younger-, middle-, and older-aged 

adults with and without CAI. We hypothesized the middle-aged adults would have 

decreased mechanical and sensorimotor outcomes compared to the younger-aged adults; 

while the older adults would have greater mechanical and sensorimotor deficiencies 

compared to both groups. Several age-related differences were observed in the current 

investigation including static and dynamic balance, spinal reflex excitability, and ankle 

(plantarflexion and dorsiflexion) and hip extension torque were all lower in the older-

aged adults compared to the younger-aged adults. Secondly, we hypothesized that the 

mechanical and sensorimotor factors would be worse in the CAI group compared to the 
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healthy-control group. Our results support this hypothesis as participants with CAI had 

decreased dorsiflexion range of motion and ankle (plantar flexion and dorsiflexion) and 

hip extension torque compared to the healthy-control group. Lastly, we hypothesized 

younger-, middle-, and older-aged adults with CAI would have decreased mechanical and 

sensorimotor outcome measures compared to their age-matched healthy counterpart.  Our 

results do not support this hypothesis because we did not observe any significant 

interaction for Injury (CAI & healthy-control) and Age (young, middle, and older) for 

any of the selected dependent variables.   

Age-Related Differences  

Age-related changes using spatiotemporal measures of single-limb balance have 

been previously shown. Slobounov et al20 used a composite score to measure the 

spatiotemporal characteristics of the AP and ML trajectories in older-aged adults and 

found decreases in the spatiotemporal characteristic with advanced age. Additionally, van 

Wegen et al19 observed reduced spatiotemporal measures in older-adults (age 55-69 years 

old) in the AP direction compared to younger-aged adults (age 25-38 years old). Our 

results are in agreement with these earlier investigations as we found the middle-aged and 

older-aged participants had lower TTB mean minima in the AP direction compared to the 

younger-aged adults (Table 4.3). While the earlier investigations have compared between 

younger- and older-aged adults, our results provide evidence suggesting balance can 

begin to change as early as the 4th decade of life. Furthermore, the lower TTB mean 

minima in the AP direction observed in the middle-and older-aged participants indicates 

they were using a less ideal strategy to balance because they were balancing closer to the 

edge of their base of support compared to the younger-aged participants. The implication 
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of these results is that the middle-aged and older-aged adults have less time to respond to 

an unanticipated perturbation and are at an increased risk of falling because they might 

not have enough time to make a postural correction. However, it is important to recognize 

all of the participants included in the present investigation were able to complete the 

single-limb balance task. Therefore, more research is needed to understand the 

consequence of these findings.  

The lower TTB mean in the AP direction found in the current study might be 

explained by age-related changes occurring within the muscle spindle. Muscle spindles 

are intrafusal fibers that are sensitive to changes in muscle length and are involved in 

controlling posture. Various investigators254-256 have suggested aging results in several 

morphological changes to the muscle spindles that can impair their sensitivity and 

therefore the information relayed to the central nervous system. Because of the important 

role the soleus has in maintaining upright postural control,245,246 older-aged individuals 

might have to lean forward or slightly flex their knee to increase the tension and 

sensitivity of the muscle spindles within the soleus muscle. This compensation likely 

places an individual’s COP closer to the edge of their base of support and might help to 

account for the lower TTB mean minima in the AP direction observed in the current 

study. However, we did not examine the joint kinematics of participants as they balanced 

and more research is needed to confirm this hypothesis.   

Along with lower average TTB minima, we found the middle-aged participants 

had smaller TTB standard deviations in the AP direction (Table 4.3). Early studies19,20 

demonstrated older-aged adults had smaller TTB standard deviations compared to 

younger-aged adults. Additionally, researchers257 determined patients with Parkinson’s 
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disease exhibit similar alterations in the TTB standard deviations compared to healthy-

controls. Examining the standard deviations can provide additional information about the 

amount of variability within the TTB profile.242 Smaller TTB standard deviations are 

thought to be reflective of diminished variability caused by neuromuscular 

dysfunction.242 Madhavan and Shields258 demonstrated older-aged individuals have 

increased EMG activity in the plantar flexors and dorsiflexors compared to younger-aged 

adults when balancing. This increased co-activation is hypothesized to improve joint 

stability and increase sensitivity in the muscle spindles.258 However, this increased co-

activation could lead to a more rigid postural control system and reduce the variability 

within COP oscillations. The consequence of this is the potential for individual’s to lose 

the flexibility to adapt to an unanticipated perturbation and be at an increased risk of 

falling when balancing. This is supported by previous studies demonstrating larger TTB 

standard deviations are associated with improve postural control.92 More research is 

needed to examine the role co-activation of the surrounding ankle musculature has on 

measures of TTB variability.   

Additionally, we found age-related decreases in dynamic postural control 

measured with the SEBT (Table 4.4). Primarily, we found the older-aged participants 

produced a shorter reach distance in the posteromedial direction of the SEBT compared 

to the younger-aged adults; as well as, in the posterolateral reach direction relative to the 

younger- and middle-aged adults (Table 4.4). Previous research using the Y Balance Test 

has shown differences in all 3 distances between middle-aged (age 45-60 years old) and 

older-aged (age 70-80 years old) adults.259 Other researchers have implemented the Berg 

Balance Scale260 and Functional Reach Test261,262 to demonstrate decreases in dynamic 
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balance in older-aged adults. However, the differences in methodology and participant 

demographics between these earlier studies260-262 and the present investigation make it 

difficult to make comparisons. Of note, we did not find a difference in any direction of 

the SEBT between the younger-aged and middle-aged participants (Table 4.4). This lack 

of differences is not in agreement with previous research using the SEBT. Specifically, 

Bouillon and Baker263 found middle-aged (age 40-54 years old) women reached a shorter 

distance in the anteromedial, medial, and posteromedial directions compared to younger-

aged (age 23-39 years old) women. These findings suggest dynamic balance can begin to 

deteriorate as early as 40 years old.  

The SEBT is a dynamic postural control task requiring an individual to maintain a 

single-limb stance and maximally reach with their contralateral limb in different 

directions.122 Therefore, this test challenges an individual to move to the edge of their 

base of support without falling. The lower reach distances by the older-aged participants 

in the current investigation suggest they remained closer to the center of their base of 

support (Table 4.4). Given the limited investigations to have implemented the SEBT to 

identify dynamic balance deficits in older-aged adults makes it hard to determine the 

exact cause for the older-aged participants to remain over the center of their base of 

support.  

Robinson and Gribble264 reported hip flexion of the stance limb accounted for 

approximately 88% of the variance for the posteromedial and 95% of the posterolateral 

reach direction of the SEBT. These findings indicate that greater reach distance on the 

posteromedial and posterolateral directions is equated with greater hip flexion. Therefore, 

considering older-aged participants have a greater reliance on proximal hip musculature 
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to balance,265 it is reasonable to speculate that decreased hip strength might help to 

explain the decreased reach performances observed in the current study. Although we did 

not measure hip flexion strength, we did find older-aged participants had decreased hip 

extension torque. However, research focusing on the SEBT has largely been focused in 

younger-aged adults, making it difficult to conclude whether hip function contributes to 

the performance of the SEBT in older-aged adults. Rather, other impairments associated 

with a reduction in balance such as reaction time,233 vestibular and oculomotor 

function,21,234 and fear of falling266 might explain why older-aged adults do not reach as 

far on the SEBT. 

In addition, we found the Hmax:Mmax ratio of the soleus muscle was lower in the 

older-aged participants compared to the younger-aged participants (Table 4.5). The 

literature examining age-related changes in Hmax:Mmax ratio of the soleus muscle has 

mainly focused on understanding its relationship with postural control. Specifically, 

Koceja et al23 demonstrated that elderly subjects were unable to modulate the soleus H-

reflex when transitioning from a prone to standing position, whereas younger-aged 

participants depressed the soleus H-reflex when standing.  Angulo-Kinzler et al22 

compared the soleus H-reflex gain between younger-aged and older-aged participants and 

reported the older-aged participants did not modulate the gain of the reflex when 

transitioning to a standing position. This lack of down modulating the H-reflex amplitude 

was found to be associated with greater postural way in older adults.23  

The mechanism leading to the reduction in modulating a down-regulation of the  

H-reflex has been explained by changes in presynaptic inhibition.267 While previous 

studies demonstrated a relationship between changes in Hmax:Mmax ratio of the soleus 
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muscle to be related to static postural, it would be easy to speculate that the decreased 

Hmax:Mmax ratio of the soleus muscle observed in the current study might partially explain 

the decreased balance observed as well in the current study. However, it is difficult to 

make those conclusions because methodology used in the current investigation and those 

used previously.22-25,267 Therefore, the functional consequence of the age-related 

decreases in Hmax:Mmax in the current study remains speculative.  

 Finally, this study demonstrated older-aged participants had decreased sagittal 

plane isometric peak torque at the ankle and hip compared to the younger-aged adults. 

Specifically, the older-aged adults had decreased isometric plantar flexion, dorsiflexion 

and hip extension peak torque compared to the younger-aged participants (Table 4.6). 

Reduced isometric peak torque suggests the older-aged participants produced less force 

compared to the younger-aged adults. These findings are in agreement with previous 

studies demonstrating decreases in sagittal plane strength in older-aged adults for the leg 

extensors,268-270 plantar flexors,271-273 dorsiflexors.272,273 Decreases in ankle plantar 

flexion and dorsiflexion strength have been shown to be correlated several age-related 

changes in physical function including static balance,17,274,275 walking speed,274 stair 

ascent,276 and increased risk of falling277. Similarly, decreases in hip extension strength 

have been correlated with impaired gait mechanics,278,279 as well as, static265 and dynamic 

balance.280 Therefore, the decreased dorsiflexion, plantar flexion and hip extension 

observed in the current study likely have negative age-related consequences that could 

impact older-aged individuals ability to perform day-to-day activities. More research is 

needed to better understand the impact the decreased sagittal plane ankle and hip strength 

found in the present study.  
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Injury Differences  

Along with age-related decreases, we hypothesized that the CAI group would 

have worse mechanical and sensorimotor outcome measures compared to the healthy-

control group. According to the results, the participants with CAI had decreased 

dorsiflexion range of motion, specified by the decreased scores on the WBLT (Table 4.7). 

Hoch et al131 examined dorsiflexion range of motion using the WBLT in younger-aged 

adults (age 18-35 years old) with and without CAI and reported lower scores in the CAI 

group relative to their healthy counterpart. In addition, restricted dorsiflexion range of 

motion has been observed during functional activities such as landing from a jump.201 

The decreased dorsiflexion range of motion found in the present study could be caused by 

an anteriorly displaced talus. Wikstrom et al188 compared the location of the talus 

between those with and without CAI using radiographic images. The participants with 

CAI were found to have an anteriorly displaced talus relative to the tibia compared to the 

healthy-control group.188 Limited dorsiflexion range of motion is a significant concern 

because of its implications in the performance of the anterior reach direction of the 

SEBT;281 a test that has been associated with an increase risk of re-injury.282 Furthermore, 

reduced dorsiflexion range of motion is associated with a jump-landing strategy using 

reduced joint flexion that attenuated forces less efficiently.283 This could increase the risk 

of injury further up the kinetic chain, as well as, alter the loading patterns experienced at 

the ankle. While these early reports into the consequences of limited dorsiflexion range of 

motion examined only younger-aged participants, the results from the current 

investigation add to the literature by demonstrating limited dorsiflexion is associated with 

CAI irrespective of an individuals age.  
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Results from this study also demonstrated participants with CAI had decreased 

isometric dorsiflexion and plantar flexion (Table 4.6) peak torque compared to the 

healthy-control group. Decreased isometric peak torque suggests participants with CAI 

produced less force compared to the healthy-control group. We examined sagittal plane 

ankle torque rather than the frontal plane because of CAI appears to be more associated 

with sagittal plane ankle strength compared to frontal plane strength deficits. Specifically, 

Hubbard et al38 found decreased plantar flexion peak torque of the involved limb in a 

group of subjects with CAI compared to a healthy-control group and deceased plantar 

flexion-to-dorsiflexion peak torque compared to a healthy control group. They further 

found decreased plantar flexion peak torque of the involved limb in a group of subjects 

with CAI compared to a healthy-control group and deceased plantar flexion-to-

dorsiflexion peak torque compared to a healthy control group. In addition, Gribble et al 

167 compared concentric ankle (plantar flexion and dorsiflexion) peak torque between 

limbs of participants with CAI and to a group of healthy-controls, and reported decreases 

in concentric plantar flexion peak torque between limbs and groups; however, no 

difference between groups or limbs was found for dorsiflexion peak torque. Therefore, 

the results from the current investigation further demonstrate CAI is associated with 

decreases in sagittal plane torque.  

Furthermore, this study demonstrated participants with CAI had decreased 

isometric hip extension peak torque compared to the healthy-control group (Table 4.6). 

The results from the current investigation provide further support for previous 

investigations identifying proximal neuromuscular alterations in those with CAI 

compared to healthy-controls.177 173,176,284 The functional consequence of this decreased 
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hip extension torque might be related to the recurrent joint injury associated with CAI. 

Recent work from our laboratory has demonstrated hip strength significantly contributes 

to the performance of the SEBT in younger-aged adults with CAI.285 Given the SEBT has 

been shown to be a predictor of an ankle sprain,282 decreased hip extension strength in 

participants with CAI might contribute to the recurrent joint injury commonly associated 

with CAI. This is further supported by De Ridder et al 178 who found decreased hip 

strength was a significant predictor for an acute lateral ankle sprain in youth soccer 

players. However, conflicting evidence exist in the literature for whether strength deficits 

in sagittal plane hip extension are associated with CAI. Specifically, previous 

researchers38,167 have failed to identify hip extension deficits between limbs of 

participants with CAI and compared to a healthy-control group. Therefore, future work is 

needed to confirm if strength deficits in the proximal hip musculature are associated with 

CAI and their functional consequence.  

We did not find a significant interaction for Injury (CAI & healthy-control) and 

Age group (young, middle, old) for any dependent variable.  It is well known that aging 

brings a progressive decline in postural control,19,20,233,235 integrity of the spinal reflex 

system,22-25 lower extremity strength247 and range of motion;286 all of which have a 

significant impact on the self-reported function,28-30,287 health-related quality of life and 

risk of serious injury in older-aged adults.25,33-35 Given the common sensorimotor and 

mechanical alterations that are associated with aging and CAI,21,37,233,234 we hypothesized 

participants younger-, middle-, and older-aged participants with CAI would have greater 

deficits compared to their age-matched healthy counterpart. However, results from this 

study failed to identify group differences (CAI & healthy-control) in any age cohort.  
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We can speculate a few possible explanations for the lack of Injury differences 

among different age categories. First, because this is the first investigation to examine the 

impact of CAI in middle-aged and older-aged participants, it is unknown if the same 

mechanical and sensorimotor insufficiencies known to be associated with CAI in 

younger-aged adults continue to persist later in life. Rather, the middle-aged and older-

aged participants might have learned to compensate for these impairments over time and 

now have developed new neuromuscular alterations.  

An alternative explanation might be because of the unknown etiology of CAI37 

and its relationship with the development of post-traumatic ankle osteoarthritis 

(PTOA).288 CAI is a multifactorial and heterogeneous pathology.37,64,65 For example, 

some patients with CAI might have decreased balance whereas others experience 

mechanical restrictions. Because of the multifactorial and heterogeneous nature of CAI, 

researchers have been unable to identify the specific impairments associated with CAI 

that cause PTOA. Therefore, we included a wide-range of mechanical and sensorimotor 

impairments in hopes of identifying those that might contribute to age-related changes 

rather than the development PTOA. However, because we did not find group differences 

(CAI & healthy-control) among different age categories, it is reasonable to speculate that 

some combination of the mechanical and sensorimotor impairments included into this 

study are associated with the development of PTOA rather than the aging process. 

Indeed, Hubbard et al289 found decreased isometric ankle strength, double-limb static 

balance, and increased ankle joint stiffness in patients with unilateral ankle osteoarthritis 

compared to age-matched healthy-controls. Therefore, other factors known to be 

associated with CAI in younger-aged adults such as delayed peroneal reaction time161 or 
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altered joint position sense290 might be important factors in middle-aged and older-aged 

adults with CAI.  

Limitations 

This study is not without limitations. The primary limitation of this study is the 

small sample size of middle-aged (n = 26) and older-aged (n = 17) participants enrolled. 

A post hoc analysis showed that majority of the variables that were not statistically 

different were associated with low statistical power (observed power <0.5 for all 

variables). Conversely, the variables that were found to be significantly different were 

considered to have strong statistical power (observed power >0.9). Therefore, the small 

sample size included in this study raises the concern of an increased risk of Type II error 

and the results should be taken with caution.  

Our overall aim of this investigation was to understand the long-term 

consequences of developing CAI as a young-adult. However, there is currently no 

established guidelines to identify middle-aged and older-aged participants who developed 

CAI as a young-adult. Therefore, we developed our inclusion criteria using the previously 

established guidelines set by the International Ankle Consortium and further required 

participants to have sustained an acute ankle sprain before the age of 35-years old.56 

Certainly, asking participants when they first sprained their ankle and the duration of 

symptoms is subject to recall bias. More research is needed to develop more effective 

ways to identify middle-aged and older-aged participants with CAI.   

This study included a broad spectrum of mechanical and sensorimotor 

impairments known to be associated with CAI in younger-aged adults.37 Other 

sensorimotor factors such as delayed muscle reaction time,161 altered activation 
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patterns,76,177,201 or supraspinal alterations241,244,291 are associated with CAI. Likewise, 

measures related to mechanical instability were not included in this study.37 Therefore, 

future studies should determine whether these impairments are present in middle-aged 

and older-aged adults with CAI.  

Conclusions  

The aim of this investigation is to compare static and dynamic postural control, 

spinal reflex excitability, lower extremity strength, and DF-ROM in younger-, middle- 

and older-aged adults with and without CAI. Results demonstrated older-aged adults had 

decreased static and dynamic postural control, sagittal plane ankle and hip isometric peak 

torque, and spinal reflex excitability compared to younger-aged adults. While participants 

with CAI had decreased dorsiflexion range of motion and ankle and hip extension 

strength compared to healthy-controls.   
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Figure 4.1: Eyes-open static postural control 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4.2: Star Excursion Balance Test  

 

 

 

 

 
 
 
 
 
 

 
 

 

 
 
 
 
 
 

A. B. C. 

Abbreviations: A. Anterior reach direction; B. Posteromedial reach direction; C. 
Posterolateral reach direction 
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Figure 4.3: Spinal reflex excitability 

 

 

 

 

 

 

 

 

 
 
 
 

 

Figure 4.4: Dorsiflexion and plantarflexion torque  

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Abbreviations: A. Dorsiflexion Torque Position; B. Plantarflexion Torque 
Position 

A. B. 
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Figure 4.5: Knee extension torque  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4.6: Hip abduction and extension torque 

 
 
 
 
 
 
 
 

 

 

 
 
 
 

 
 

 

 
 

Abbreviations: A. Hip abduction; B. Hip extension 

A. B. 
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Figure 4.7: Open- and closed-kinetic chain dorsiflexion range of motion 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: A. Open-kinetic chain dorsiflexion; B. Weight-
bearing Lunge Test 

A. B. 
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Chapter 5: Spatiotemporal Gait Mechanics in Young, Middle, and Older-Aged Adults 
With and Without Chronic Ankle Instability 

Introduction 
 

Musculoskeletal injury rates are rising; with rates for lateral ankle sprain being the 

highest among young physically active individuals.3 Though young-adults with an acute 

ankle sprain can return to normal activity quickly,7 at least 1 in 3 people experience 

residual symptoms after returning to their normal activity.9,51,53 Most notably, individuals 

complain of an increase sensation of ankle joint instability, episodes of ‘giving-way’ and 

recurrent joint injury; collectively described as chronic ankle instability (CAI).56 The 

term CAI is often used to describe these residual impairments and has garnered 

international attention from researchers and health care professionals because of the 

physical and social impacts it has on an individual early in life.36,56 Therefore, further 

study into the long-term implications of developing CAI as a young-adult is warranted.   

Gait deviations have been previously described in CAI patients. During walking, 

participants with CAI have been found to have a more inverted position of the 

forefoot,204,292 rearfoot,205 and ankle,163,203 a more externally rotated shank205 and 

decreased sagittal plane motion163,199,200 at various time points throughout the gait cycle. 

Changes in gait patterns are not constrained to the ankle as alterations in sagittal plane 

motion at the knee, and hip have been found in participants with CAI.223 Furthermore, 

Terada et al 207 observed less stride-to-stride variability in frontal ankle kinematics, 

whereas Herb et al206 found less stride-to-stride variability in the shank-rearfoot coupling. 

It is hypothesized that individuals with CAI walk with a more rigid movement pattern to 

minimize the risk of their ankle ‘giving-way’ or sustaining a recurrent injury. 



 

 106 

These changes in sagittal and frontal plane motion and rigid movement patterns 

found during walking could influence the spatiotemporal gait patterns displayed by 

individuals with CAI.  Gigi et al293 recently found participants with CAI walked slower, 

took smaller and wider steps, and spent less time during single-limb support compared to 

the healthy control group. Additionally, the authors293 found these alterations were 

significantly associated with the lower health-related quality of life reported by 

participants with CAI. These findings indicate that alterations in spatiotemporal gait 

mechanics contribute to the early decrease in health of individuals with CAI. However, 

the age-related effect of developing these spatiotemporal gait patterns is unknown 

because the majority of the current evidence regarding gait patterns in patients with CAI 

is on younger-aged adults. Understanding the age-related consequences of these 

spatiotemporal gait patterns associated with CAI is important because similar alterations 

have been identified as significant predictors of subsequent disability later in life. 

Investigators have found decreased gait velocity294-296 and stride length296,297 and 

increases in step width296,297 and duration of double-limb stance295 are predictors of fall 

risk and mobility impairments later in life.298-300 Subsequently, there is a reason to believe 

that these early spatiotemporal alterations observed in young adult populations with CAI 

might pose a potential contribution to greater mobility impairments in those with ankle 

sprain history later in life.  

Therefore, the purpose of this investigation is to compare the spatiotemporal gait 

patterns in younger-, middle-, and older-aged adults with and without CAI. We 

hypothesize: 1) participants with CAI will have decreased spatiotemporal gait variables 

compared to healthy-controls; 2) middle-aged participants will have decreased 
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spatiotemporal gait variables compared to younger-aged adults; the older-aged adults will 

have decreased spatiotemporal gait mechanics compared to both groups; and 3) younger-, 

middle- and older-aged adults with CAI will have decreased spatiotemporal gait variables 

compared to their age-matched healthy counterpart. Understanding the long-term impact 

of CAI on the spatiotemporal patterns will aid in the development of more efficient 

rehabilitation program for patients with CAI of all ages. 

Methods 

Study Design 

This was a cross-section case control design requiring participants to report to the 

research laboratory for a single testing session. All methodological research protocols 

were approved by the University of Kentucky Institutional Review Board.  

Participants 
 

Sixty participants with self-reported CAI and 40 healthy-control participants were 

recruited from a large regional university and the surrounding community. Based on age, 

participants were classified into three age categories: 1) younger-aged adults (age: 18-35, 

n = 31); middle-aged adults (age: 36-59, n = 25); and older-aged adults (age: 60+, n = 

11). All participants read and signed an informed consent that was approved by the 

University of Kentucky institutional review board.  

 Inclusion criteria for younger-aged adults with CAI were based on criteria set by 

the International Ankle Consortium for identifying individuals with CAI.56 Specifically, 

younger-aged adults with CAI were required to have: 1) a previous history of an acute 

lateral ankle sprain which resulted in swelling, pain and temporary loss of function; 2) 

repeated episodes of ‘giving-way’ and/or recurrent sprain; and 3) perceived instability 
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determined by a score of ≥ ‘5’ on the Ankle Instability Instrument (AII) and/or ≥ ‘11’ on 

the Identification of Functional Ankle Instability (IdFAI). There is currently no standard 

used to identify middle- and older-aged adults with CAI. Therefore, middle- and older-

aged adults with CAI were identified according to the presence of having: 1) experienced 

an acute lateral ankle sprain that caused swelling, pain and temporary loss of function 

before the age of 35 years-old; 2) repeated episodes of ‘giving-way’ and/or recurrent 

ankle sprains; and 4) perceived instability determined by a score of ≥ ‘5’ on the AII 

and/or ≥ ‘11’ on the IdFAI. The AII and IdFAI have been shown as reliable and valid in 

assessing patient-reported functional limitations in those with CAI. In the event 

participants reported a bilateral history of ankle sprains, the limb with the greatest self-

reported functional limitations according to the AII and IdFAI was used as the test limb.  

 Participants allocated to the healthy-control group were required to report not 

having sustained an acute lateral ankle sprain, no ‘giving-way’, and score ‘0’ on the AII 

and IdFAI.  

 All participants were free from any: 1) diagnosed balance, vestibular or 

respiratory disorder; 2) history of low back pain in the previous 6 month’s; 3) previous 

history of fracture or surgery in the lower extremity; 4) history of seizures; 5) history of 

concussion in the past 6 month’s; 6) history of neurological injuries or diseases; 7) use of 

any assistive-walking device; and/or previous history of any self-reported 

musculoskeletal or neurovascular injuries and disorders in the lower extremity within the 

previous 6 months other than an lateral ankle sprain.   

Instrumentation 
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Spatiotemporal gait parameters were used measured using a GAITRite® (CIR 

Systems, Inc. Havertown, PA USA) electronic walkway with an active area of 

approximately 7.32 m long and 0.61 m wide. Data were sampled at 120 Hz and processed 

using GAITRite Platinum software v.4.7.7  (CIR Systems, Inc., Havertown, PA USA). 

The GAITRite System has been shown to a valid and reliable measurement for gait 

parameters.301,302 

Experimental Procedures  
 

Participants were asked to walk un-assisted with their shoes off across the 

electronic walkway at their normal self-selected pace. Participants initiated and 

terminated their walk 3 meters before and after the walkway to avoid any acceleration/de-

acceleration effects. Participants were given three practice trials and performed 5 test 

trials. Trials were discarded and repeated if the participant: 1) stopped or slowed down on 

the walkway; 2) tripped or took a double-step; and/or 3) did not keep their eyes looking 

forward.  

Spatiotemporal data were collected for both the involved and uninvolved limbs 

making a total of 16 different dependent variables. Table 5.1 provides a description of 

each main outcome variable used.  

To control for the potential influence of height, step length and stride length for 

both limbs were normalized to each participant’s limb length. Limb length was measured 

as the distances from the anterior superior iliac spine to the most distal portion of the 

medial malleolus. Therefore values for step length and stride length are expressed as a 

percentage of limb length (%LL).  

Data from all 5-test trials were averaged together and used for statistical analysis.  
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Statistical Analysis 
  

Separate 2x3 between-groups analysis of variance was conducted to explore the 

impact of Injury (CAI & healthy-control) and Age group (young, middle, old) on 

anthropometric information and for each dependent variable. A Bonferroni post hoc 

analysis was used in the event of any significant differences. The a priori alpha level was 

set a p ≤ 0.05 for comparisons of anthropometric information. However, to reduce the 

risk of a Type 1 error based on the number of outcomes collected simultaneously during 

the gait task, a Bonferroni correction was made based on the number of dependent 

variables collected to set the new alpha level at p ≤ 0.003 for all spatiotemporal 

comparisons.  

 All statistical analyses were performed using IBM SPSS Statistics, version 23 

(IBM, Corp., Armonk, NY, USA).   

Results 
 

Participant demographics and injury characteristics are listed in Table 5.2 and 

Table 5.3. The interaction effect between age and group, along with simple main effects, 

was not statistically significant for height, weight and BMI. The statistically significant 

age main effect for age (F 2, 94
 = 475.57, p = 0.001, partial E2 = 0.908, observed power = 

1.00) confirms our Age cohorts. Post hoc comparisons using a Bonferroni test indicated 

that participants allocated to the middle-aged group (46.2 ± 7.5, p = 0.001) and older-

aged group (67.2 ± 5.9, p = 0.001) were older than those in the younger-aged group (24.0 

± 3.4). Likewise, those in the older-aged group were significantly older than those in the 

middle-aged group (p = 0.001).  
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Group means and standard deviations for each dependent variable are given in 

Table 5.4 and Table 5.5. The interaction effect between age and group was not statistically 

significant for any main outcome variable (p > 0.003).  There was no significant group or 

age main effect (p > 0.003) for any main outcome variable. 

Discussion 
 

The aim of this investigation was to compare the spatiotemporal gait patterns 

between those with and without CAI and across age categories. We hypothesized that 1) 

participants with CAI would have decreased spatiotemporal gait variables compared to 

healthy-controls; 2) middle-aged participants would have decreased spatiotemporal gait 

variables compared to younger-aged adults; while older-aged adults will have decreased 

spatiotemporal gait mechanics compared to both groups; and 3) younger-, middle- and 

older-aged adults with CAI would have decreased spatiotemporal gait variables compared 

to their age-matched healthy counterpart. Based on the test for statistical significance, the 

results do not support our hypotheses. Specifically, the results determined that 

spatiotemporal gait patterns are not different Age cohorts (young, middle, old) or 

between Injury groups (CAI & healthy-controls).  

The lack of difference between age categories indicates spatiotemporal gait 

mechanics do not change with age (Table 5.4 & Table 5.5). Previous studies have reported 

an increase in age is associated with decreased walking speed and stride length and an 

increase in stride width and double support time.27,297,303,304 Specifically, comfortable 

walking speed has been shown to decline at a rate of 0.2% per year up until the sixth 

decade of life and 1.6% per year after that.305 Because of this steady decline in speed, 

self-selected gait velocity is considered a useful marker in the surveillance of health and 
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functional status in older adults.32 Additionally, Hageman and Blanke297 compared gait 

patterns of healthy younger-aged women (age 20-35 years old) to a group of healthy 

older-aged women (age 60-84 years old). They found the older-aged women walked 

slower and took smaller steps compared to the younger-aged women.297 In another study, 

individuals made shorter and broader strides with advanced age. 303 These studies 

collectively suggest that spatiotemporal gait patterns change with age. Changes in gait 

patterns occur with advanced age because of subtle changes in musculoskeletal function 

such as an increased joint stiffness, decreased strength and impaired balance.21,233,304 

Other researchers306 have suggested that older-aged adults have an increased fear of 

falling making them walk slower and take smaller steps to increase their double-limb 

support time, and, therefore have a safer and more stable gait patterns.  

The disparity between these studies and the current investigation might be 

explained by the demographics of participants examined. Earlier investigations303,304 

examining the spatiotemporal gait parameters between different age cohorts included 

older-aged participants that were almost 10 years older than the upper age limit of 

participants included in the current investigation. Jansen et al307 compared the temporal 

gait patterns between younger (age 20-29 years old) and older adults (age 60-69 years 

old) and reported no differences between groups. This is further supported by follow-up 

studies demonstrating discrete spatiotemporal gait variables are not different between age 

cohorts.308,309 Therefore, our results support those previously demonstrating 

spatiotemporal gait patterns in otherwise healthy adults do not change until late 

adulthood.  
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No group differences were identified for any spatiotemporal measure used in this 

study (Table 5.4 & Table 5.5). The lack of group differences implies CAI is not associated 

with a change in spatiotemporal gait mechanics. Only one other study has directly 

examined the spatiotemporal gait patterns associated with CAI. Gigi et al293 compared the 

spatiotemporal gait patterns of a group of middle-aged adults with CAI (age 36.7 ± 15.0 

years old) to a group of age-matched healthy-controls (age 36.6  ± 13.3 years old). The 

researchers determined the participants with CAI walked slower, took more steps that 

were shorter and wider, and spent less time during single-limb stance on the involved 

limb.293 The authors hypothesized that the CAI participants displayed this gait pattern, as 

a way to reduce the amount of time the unstable ankle must maintain a single-limb 

stance.293 However, gait velocity alone can influence the several spatiotemporal 

measures. Because Gigi et al293 demonstrated differences in gait speed between groups, 

it’s reasonable to speculate that if they had controlled for gait velocity, they might not 

have seen group differences.  

Additionally, we did not observe any significant difference in young, middle, and 

older-aged adults with CAI compared to their age-matched healthy counterpart (Table 5.4 

& Table 5.5). This is the first investigation to examine the age-related effects of CAI on 

spatiotemporal gait mechanics. Researchers studying other chronic diseases such as end-

stage ankle63 and knee310,311osteoarthritis have shown age-related differences in 

spatiotemporal gait mechanics compared to age-matched healthy controls. When 

considering these studies examining the effect of osteoarthritis on spatiotemporal gait 

mechanics, it might be that the spatiotemporal gait patterns in those with CAI may only 

change if they develop symptomatic post-traumatic ankle osteoarthritis; which might help 
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to explain the lack of group differences or age-related changes observed in the current 

study. However, because of the large difference in participant demographics between 

these studies and the current investigation, it 's hard to draw any direct comparisons and 

more research is needed to substitute this claim.   

However, what can be taken away is a direction for future research. Rather than 

comparing the discrete averages, researchers have demonstrated age-related changes in 

the variability of spatiotemporal gait patterns. Specifically, Callisaya et al312 found 

greater intra-individual gait variability for most spatiotemporal gait measures with 

increasing age. Furthermore, changes in gait variability have been found to be better 

predictors of decreased health status and increased risk of injury later in life compared to 

absolute gait measures.299,313-316 Therefore, future work should considering comparing the 

stride-to-stride variability in younger, middle, and older-aged adults with and without 

CAI 

Limitations 
 

This study is not without limitations. The primary aim of this investigation was to 

examine the long-term effects of developing CAI on the spatiotemporal mechanics. There 

is currently no standard for identifying middle-aged and older-aged participants with 

CAI. As a result, we adopted the recommendations set the International Ankle 

Consortium for identifying younger-aged adults with CAI.56 Therefore, research is 

needed to examine the validity and reliability of the AII and IdFAI for identifying 

middle-aged and older-aged participants with CAI. Additionally, we required participants 

with CAI to have sustained their first ankle sprain before the age of 35, which is open to 

recall bias. Moreover, because CAI is a self-reported pathology we cannot confirm when 
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the middle-aged and older-aged participants indeed developed CAI. It is reasonable to 

speculate that the middle-aged and older-aged participants might not have developed CAI 

until they were older. Further research is warranted in designing more certain inclusion 

criteria for individuals of all ages with CAI.  

Another potential limitation is the sample size. We only included a total of 26 

participants in the middle-aged group and 17 in the older-aged group. Post hoc power 

analysis revealed low to moderate statistical power for both group (observed power 

>0.910 to <0.183 for all dependent variables) and age (observed power >0.100 to <0.420 

for all dependent variables) main effects; along with all the main interactions (observed 

power >0.121 to <0.341). Certainly, this observed lower power raises concern for a Type 

II error, and, therefore the results should be taken with caution.  

Conclusion 
 

The aim of this investigation was to compare spatiotemporal gait mechanics 

between those with and without CAI across three different age categories. No age-related 

differences were observed for any spatiotemporal gait variable. Similarly, the presence of 

CAI was not associated with a change in any dependent variable compared to the healthy-

control, regardless of age. It can be concluded from this investigation that neither age nor 

CAI impacts the spatiotemporal gait mechanics. Future studies should examine the 

influence CAI on age-related changes in spatiotemporal gait variability rather than the 

average of discrete variables.   
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Table 5.1: Description of spatiotemporal gait parameters 

Gait Parameter Description 

Velocity (m/sec) The linear distance covered per second 
Cadence (steps/min) Number of steps taken per minute. 
Step Length (cm) The anterior-posterior distance from the heel of one print to the heel 

of the opposite footprint.  

Stride Length (cm) The anterior-posterior distance between heels of two consecutive 
footprints of the same foot.  

Step Width (cm) The distance from the heel center of one footprint to the line of 
progression formed by two consecutive footprints of the opposite 
foot.   

Swing Time (%GC) The swing phase is the time between toe off and until contact is 
made again with the same foot and is normalized to the %GC.   

Stance  (%GC) The stance phase is the time between the initial contact and the last 
contact of a single footfall and is normalized to the %GC.  

Single (%GC) Single support phase is the time between the last contact of the 
current footfall to the first contact of the next footfall of the same 
foot and is normalized to the %GC.  

Double (%GC) Double support phase is the amount of time both feet are in contact 
with the ground simultaneously throughout the entire gait cycle and 
is normalized to the %GC.  

Abbreviations: %GC = Percent of gait cycle  
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Chapter 6: Summary 
 

The first purpose of this dissertation was to compare regional and global health-

related quality of life using the Foot and Ankle Disability Index and the Patient Reported 

Outcomes Measurements Information System-43 adult profile between younger-, middle-

, and older-aged adults with and without CAI. Similarly, the second purpose of this 

dissertation was to compare the common mechanical sensorimotor deficits associated 

with CAI between Injury (CAI vs. healthy-controls) and Age groups (young, middle and 

old). Specifically, time-to-boundary variables during a static single-limb balance task, 

reach distances on the Star Excursion Balance Test, spinal reflex excitability of the soleus 

specific by the Hmax:Mmax ratio, sagittal plane torque values of the ankle, knee and hip, 

open-kinetic chain dorsiflexion range of motion, and the Weight-Bearing Lunge test. The 

last purpose of this dissertation was to determine if differences exists in spatiotemporal 

gait parameters while walking at a self-selected pace in younger-, middle- and older-aged 

adults with and without CAI. To better summarize the findings, the hypotheses from 

Chapter 1 are revisited:  

Hypotheses for Specific Aim 1:  

 Hypothesis 1: Participants with CAI will self-report having worse region-specific 

and global HRQoL compared healthy-controls.  

 Hypothesis 2: Region-specific and global HRQoL will be worse in the middle-

aged adults compared to the younger-aged adults; while the older-aged adults will have 

worse scores compared to both groups.  
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 Hypothesis 3: Younger-, middle-, and older-aged adults with CAI will self-report 

having worse region-specific and global HRQoL compared to their age-matched healthy 

counterpart.  

Findings: Those with CAI had worse region-specific HRQoL as specified by lower 

scores on the Foot and Ankle Disability Index (FADI) and Foot and Ankle Disability 

Index Sport (FADI-Sport) compared to healthy-controls. Furthermore, participants with 

CAI self-reported having deficits in global HRQoL represented by worse physical 

function and having pain interfere with their day-to-day activities and attending social 

events compared to the healthy-control group. We did not find any differences for any 

region-specific or global HRQoL outcome measure between younger-, middle- and older-

aged adults with and without CAI.  

Hypotheses for Specific Aim 2:  

 Hypothesis 4: Participants with CAI will have decreased sensorimotor and 

mechanical outcome measures compared to healthy-controls.  

Hypothesis 5: Sensorimotor and mechanical outcome measures will be decreased 

in middle-aged adults compared to the younger-aged adults; the older-aged adults will 

have decreased sensorimotor and mechanical outcome measures compared to both 

groups.     

 Hypothesis 6:  Younger-, middle-, and older-aged adults with CAI will have 

decreased mechanical and sensorimotor outcome measures compared to their age-

matched healthy counterpart.  

Findings: It was determined that participants with CAI had decreased dorsiflexion range 

of motion compared to the healthy control group, as evidenced by the lower scores on the 
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Weight-Bearing Lunge Test.  Furthermore, participants with CAI had decreased 

dorsiflexion, plantarflexion and hip extension torque compared to the healthy-control 

group. Taken together these findings suggest that participants with CAI have mechanical 

restrictions at the ankle and decreased sagittal plane isometric strength in the surrounding 

ankle and hip musculature  

 Regardless of injury history, the results demonstrated age-related differences in 

static postural control. Specifically, the anteroposterior time-to-boundary mean minima 

and standard deviations were lower in the middle and older-aged participants compared 

to the younger-aged group; the anteroposterior absolute minimum was only lower in the 

older-aged participants compared to the younger-aged adults. These results imply that as 

early as 40 years old, individuals begin to balance closer to the edge of their boundary of 

support which leaves individuals less time to respond efficiently to an unanticipated 

perturbation and increases the risk of falling.  

Older-aged participants reached less distance on the posteromedial and 

posterolateral reach directions of the Star Excursion Balance Test (SEBT) compared to 

the younger- and older-aged participants, irrespective of injury history. These findings 

indicated older individuals are unable able to move to the edge of their base of support 

during dynamic activity and must remain closer to the center of their base of support to 

maintain balance.  

Age differences for the Hman:Mmax ratio were found between the younger-aged 

and older-aged adults. The older aged adults had a lower Hman:Mmax ratio of the soleus 

muscle compared to the younger-aged participants, suggesting spinal reflex excitability 
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of the soleus muscle is decreased in the older-aged participants compared to younger-

aged adults.   

Several age differences for sagittal plane isometric peak torque were noted. The 

older-aged participants exhibited lower dorsiflexion, plantarflexion and hip extension 

isometric peak torque compared to the younger-aged adults, irrespective of injury history. 

Reduce sagittal plane isometric torque in the older-aged participants suggests they 

produced less isometric force compared to the younger-aged adults.  

Several differences between Injury (CAI & healthy-control) groups, were 

observed for sagittal plane isometric peak torque. Participants with CAI have had 

decreased dorsiflexion, plantarflexion and hip extension isometric peak torque compared 

to the healthy-control group. Lower sagittal plane isometric peak torque suggests 

participants with CAI produced less isometric force compared to the healthy-control 

group. 

Participants with CAI had decreased scores on the WBLT compared to the 

healthy-control group. Decreased scores on the WBLT suggest participants with CAI 

have decreased dorsiflexion range of motion compared to the healthy-control group.  

There were no significant interactions for Injury (CAI & healthy-control and Age 

(young, middle, old) for any outcome measure included.  

Hypotheses for Specific Aim 3:  

 Hypothesis 7: Participants with CAI will have decreased spatiotemporal gait 

variables compared to healthy-controls.  
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 Hypothesis 8: Middle-aged participants will have decreased spatiotemporal gait 

variables compared to younger-aged adults; the older-aged adults will have decreased 

spatiotemporal gait mechanics compared to both groups.   

 Hypothesis 9:  Younger-, middle- and older-aged adults with CAI will have 

decreased spatiotemporal gait variables compared to their age-matched healthy 

counterpart.  

Findings: No changes in spatiotemporal gait parameters were observed between Injury 

(CAI & healthy-control) or Age groups (young, middle, and old).    

Synthesis and Application of Results 
 

The aim of the first study in this dissertation was to advance the understanding of 

CAI on region-specific and global HRQoL across the lifespan. It was determined from 

this study that those with CAI report experiencing greater difficulty because of their 

ankle when performing activities of daily living and tasks related to exercise. Therefore, 

persistent symptoms at the ankle appear to impact an individual’s ability to interact with 

their environment. These finding provide valuable evidence for the importance of seeking 

formal rehabilitation following an ankle sprain in attempt to prevent lingering symptoms 

from developing. This study also demonstrated participants with CAI had self-reported 

having worse overall physical quality of life compared to the healthy-control group. This 

decreased physical quality of life is likely attributed to the increase in pain interference 

reported by those with CAI. An increase in pain can prevent individuals from wanting to 

participate in physical activity or attend social events and therefore likely experience a 

lower overall physical quality of life. More research is needed to better understand how 

lingering pain from an ankle sprain translates into worse overall physical quality of life. 
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Despite not finding differences in region-specific or global HRQoL between Injury 

(young, healthy-control) across Age groups (young, middle, old), this study provided 

unique insight into how living with the organismic constraints associated with CAI might 

re-shape the way an individual view their functional capability as they learn to adapt to 

their new environment over time. More work is needed to develop more sensitive 

questionnaires capable better identifying deficits in HRQoL in middle- and older-aged 

participants with CAI.  

The aim of the second study in this dissertation was to determine if middle- and 

older-aged adults with CAI present with similar mechanical and sensorimotor 

insufficiencies commonly observed in younger-aged adults with CAI. We hypothesized 

that the mechanical and sensorimotor outcome measures would be worse with the older-

aged groups. Results from the study partially support this hypothesis as we observed age 

differences in several sensorimotor outcome measures. Specifically, we found the 

middle-aged and older-aged adults had lower time-to-boundary absolute minimum, mean 

minima and standard deviations compared to the younger-aged adults. Age-related 

differences in static postural control are well documented within the literature; however, 

our results provide additional evidence indicating static balance strategies can begin to 

change as early as the 4th decade of life. More specifically, the lower TTB mean minima 

indicate as individuals get older they more their COP trajectories closer to the edge of 

their boundary of support. The consequence of this is individuals have less time to 

respond to an unanticipated perturbation while balancing before the COP trajectories 

would reach the edge of their base of support and keep from falling. Whereas the 

decreased TTB standard deviations suggest as people age they reduce the number of 
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degrees of freedom when balancing, likely to increase stability to successfully complete 

the balance task. The significance of these findings is the development of a less adaptable 

or more rigid postural control system that would be incapable of correcting for a large 

perturbation when balancing. 

Age differences were found for dynamic static postural control between the 

younger-aged and older-aged adults. Older-aged participants reached less distance in both 

the posteromedial and posterolateral reach directions of the SEBT compared to younger-

aged and middle-aged adults. Decreased reach distance on the SEBT indicates older-aged 

participants have to remain closer to the center of their base of support during dynamic 

activities compared to younger-aged adults. This is the first investigation to demonstrate 

differences in reach distances between younger-aged and older-aged adults. More 

research examining which mechanical and sensorimotor factors contribute the most to the 

performance of the SEBT in the older-aged adults is needed. Because the SEBT requires 

the use of multiple mechanical and sensorimotor factors, the SEBT may provide greater 

clinical utility for identifying lower extremity deficits that might cause an increased risk 

of sustaining a more serious injury later in life. 

Several age differences in sagittal plane ankle strength were observed. Older-aged 

participants had decreased dorsiflexion, plantar flexion and hip extension isometric peak 

torque compared to the younger-aged adults. The lower isometric peak torque indicates 

older-aged participants produced less force compared to the younger-aged participants. 

Age differences in lower extremity strength are well documented within the literature and 

have been demonstrated as important factors in maintaining an active lifestyle as 

individuals get older.   
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In addition to age differences, we observed changes in dorsiflexion range of 

motion between those with and without CAI. Participants with CAI had decreased scores 

on the WBLT compared to the healthy-control group. Decreased dorsiflexion range of 

motion has been previously observed in a cohort of younger-aged adults (age 18-35 years 

old) compared to age-matched healthy-controls. Restricted dorsiflexion range of motion 

on the WBLT is likely attributed to the anteriorly displaced talus commonly observed 

after an ankle sprain. An anteriorly displaced prevents the ankle from reaching a closed-

packed position and in-turn decreased scores on the WBLT.  

Group differences were also seen for sagittal plane isometric peak toque. 

Participants with CAI had decreased dorsiflexion, plantarflexion and hip extension peak 

torque compared to the healthy-control group. Lower isometric peak torque values 

indicate participants with CAI produced less isometric force compared to the healthy-

control group. This decreased isometric peak force might account for the less efficient 

force attenuation previously seen in those with CAI and might increase their risk of 

sustaining an ankle sprain.  

The lack of between differences between younger-, middle-, and older-aged adults 

with and without CAI might attribute to the unknown association between CAI and the 

development of ankle post-traumatic osteoarthritis. CAI is a multifactorial pathology 

arising from combination of mechanical and sensorimotor insufficiencies. It is believed 

that some combination of these mechanical and sensorimotor outcome measures 

contribute to the onset of post-traumatic ankle osteoarthritis. Considering of the unknown 

etiology causing individuals with CAI to develop ankle osteoarthritis and because we did 
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not enroll participants with diagnosed ankle osteoarthritis, it reasonable to assume that 

the factors in the current study impact the development of osteoarthritis rather than aging.  

Finally, it was determined for this dissertation that spatiotemporal gait mechanics 

were not different between Injury (CAI & healthy-control) groups or across Age 

categories (young, middle, and old). Early reports demonstrated differences in 

spatiotemporal gait patterns between younger-aged and older-aged adults. However, 

these studies demonstrated age-related changes included participants that were up to 10 

years older than the older-aged participants enrolled in the current investigation. Reports 

including similar age cohorts as we did have demonstrated that spatiotemporal gait 

patterns do not change with age. Additionally, in Chapter 5 we did not find group 

differences or any significant group (CAI vs. healthy-control) interaction for any 

dependent variable related to the walking task. The lack of Injury group (CAI & healthy-

control) differences suggests CAI is not associated with a change in spatiotemporal gait 

mechanics. Furthermore, we did not find a significant interaction for Injury and Age for 

any spatiotemporal variable. This is the first investigation to examine the age-related 

influences of CAI on spatiotemporal gait mechanics, making it difficult to draw 

comparisons to previous studies. However, what can be taken away is a direction for 

future research. Rather than discrete averages, researchers have demonstrated age-related 

changes in the variability of spatiotemporal gait patterns, which have been shown to be 

better predictors of a decrease in in health status and increased risk for injury in late 

adulthood. Therefore, more work is needed to determine if changes in variability are 

better indicators of a decrease in mobility compared to absolute measures in those with 

CAI.  
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The studies presented in this dissertation provide interesting insight into the 

presence of CAI on region-specific and global HRQoL, sensorimotor and mechanical 

outcomes measures, and spatiotemporal gait mechanics in different age cohorts. In 

Chapter 3 there was evidence of decreased region-specific HRQoL and global HRQoL 

compared. In addition, Chapter 4 demonstrated evidence of decreased static and dynamic 

balance, sagittal plane ankle and hip torque, and spinal reflex excitability across different 

age categories. Results also demonstrated decreased dorsiflexion range of motion and 

sagittal plane ankle and hip isometric peak torque in the CAI group compared to the 

healthy-control group. It was determined that there were no differences between younger-

, middle-, and older aged adults with and without CAI. Moreover, there is evidence in 

Chapter 5 that suggests spatiotemporal gait variables are not different between those with 

and without CAI or across different age categories. Although no significant differences 

between Injury groups was found, future research should examine the intra-individual 

variability of the spatiotemporal gait patterns between Injury groups (CAI & healthy-

controls) because changes in variability have been shown to be better indicators of health 

status in older adults. 

Despite not finding a significant interaction for any main outcome measure, future 

work is still needed to examine the age-related changes associated with CAI. Considering 

that not all individuals with CAI develop symptomatic post-traumatic ankle osteoarthritis, 

middle-aged and older-aged individuals with CAI likely still experience a difference in 

their self-reported HRQoL and physical function. Therefore, this dissertation provides the 

foundation for future work into understanding the impact of middle-aged and older-aged 

adults with CAI. Additionally, this dissertation provides direction for future 
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investigations into examining the etiology of post-traumatic ankle osteoarthritis in those 

with CAI. This is because many of the sensorimotor and mechanical outcome measures 

examined in this investigation are thought to contribute to the development of post-

traumatic ankle osteoarthritis. Because we did not find any significant interaction and 

enrolling only participants who were asymptomatic from post-traumatic ankle 

osteoarthritis, it is reasonable to speculate that the dependent variables examined in this 

dissertation might contribute more to the development of ankle osteoarthritis rather than 

the aging process. However, more research is needed to substantiate this claim. This is 

highlighted by the small sample size included in the middle-aged and older-aged 

participants in this dissertation. We only included a total of 26 participants in the middle-

aged group and 17 in the older-aged group. Post hoc power analysis revealed low to 

moderate statistical power for both Injury and Age main effects; along with all the main 

interactions. Certainly, this observed lower power raises concern for a Type II error, and, 

therefore the results and conclusions should be taken with caution.  
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