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ABSTRACT OF DISSERTATION 

 

The mare experiences a transient innate immune response to breeding, the resolution of which is 
crucial for optimal fertility. The majority of mares are able to modulate this inflammation in a timely 
fashion, but a subpopulation exists which fail to do so and are considered susceptible to persistent 
breeding-induced endometritis (PBIE). Seminal plasma has been shown to modulate aspects of this 
inflammation.  Recently, two seminal plasma proteins have garnered interest for their immune 
modulating properties:  cysteine-rich secretory protein-3 (CRISP-3) and lactoferrin. These proteins 
have been found to alter the binding between sperm and neutrophils based on sperm viability in vitro, 
but minimal work has evaluated their effect on endometrial mRNA expression of cytokines and 
inflammation in response to breeding. Experiments were performed to analyze the expression of 
equine CRISP-3.  Found to be primarily synthesized in the ampulla of the vas deferens and to a lesser 
extent in the vesicular gland, CRISP-3 expression was only seen  in the postpubertal stallion. Due to 
the effect of sperm viability on protein function in vitro, varying sperm populations were analyzed for 
their effect on gene expression in the uterus.  It was determined that viable sperm suppressed the gene 
expression of the inflammatory modulating cytokine interleukin-6 (IL-6) in comparison to dead sperm. 
Next, the effect of CRISP-3 and lactoferrin on endometrial gene expression in the normal and 
susceptible mare was investigated. Neither protein had a significant effect on the mRNA expression of 
inflammatory cytokines in the normal mares at six hours post-breeding. In contrast, lactoferrin was 
found to significantly suppress the expression of the pro-inflammatory cytokine tumor necrosis factor 
(TNF)-α in susceptible mares.  Due to this, lactoferrin was further analyzed as an immunomodulant for 
the treatment of PBIE. Susceptible mares were infused with varying doses of lactoferrin at six hours. 
post-breeding.   Although not in a dose-dependent fashion, lactoferrin was found to decrease both fluid 
retention and neutrophil migration, in addition to suppressing the expression of the pro- inflammatory 
cytokine interferon gamma (IFNγ) and increasing the gene expression of the anti- inflammatory 
cytokine interleukin-1 receptor antagonist (IL-1RN). In conclusion, CRISP-3 expression occurs in 
secretory aspects of the male reproductive tract and appears to be up regulated after sexual maturation. 
Viability of spermatozoa affects the immune response to breeding and should be taken into 
consideration for experimental design and interpretation of data. The seminal plasma proteins CRISP-
3 and lactoferrin have minimal effect on endometrial gene expression in normal mares, but lactoferrin 
suppresses the expression of TNF in susceptible mares.  Finally, lactoferrin was found to function as a 
potent anti-inflammatory for the persistent inflammation seen in susceptible mares when administered 
post-breeding. This protein should be further investigated as a potential therapeutic for the treatment 
of persistent breeding-induced endometritis. 
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CHAPTER 1 
 

REVIEW OF THE LITERATURE 

1.1 Abstract: 
Breeding-induced endometritis has been extensively studied in the horse, with 

primary focus on its pathway to infertility and the potential therapeutics to avoid this 

outcome. The healthy equine uterus undergoes a transient innate immune response to 

breeding, allowing it to clear excess spermatozoa and bacteria in preparation for 

successful embryo survival and development. A sub-population of mares exists that are 

unable to do this in a timely fashion and are deemed susceptible to persistent breeding- 

induced endometritis (PBIE), which is one of the leading causes of equine infertility. 

Seminal plasma is a known mediator of the uterine inflammatory response of the uterus 

to spermatozoa.  A population of proteins within the seminal plasma is potentially acting 

to both protect the viable spermatozoa, allowing them to reach the oviduct as well as to 

recruiting neutrophils to assist with the digestion and clearance of dead spermatozoa. 

These proteins may affect the immune response of the uterus by activating and mediating 

cytokines and growth factors, as well as stimulating the secretion of prostaglandins to aid 

in uterine contraction; therefore prompting the removal of excess contaminants from the 

uterus, preparing it for pregnancy.  In this review, the inflammatory process of the uterus, 

as well as a subset of the constituents of seminal plasma that possibly affect it, will be 

discussed. 
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1.2 Introduction: 
At the time of breeding, billions of sperm are deposited directly into the uterus of 

the mare along with a high volume of seminal fluid and potential contaminating bacteria. 

The components of the seminal plasma derive from the rete testis, epididymis, and the 

accessory sex glands, and are essential for sperm maturation and capacitation. Because 

seminal plasma is considered to be detrimental to sperm quality during long term storage 

under cooled or frozen conditions, the majority of seminal plasma is removed when 

semen is prepared for cryopreservation or cooling. However, current literature suggests 

that elements of seminal plasma are critical in regulating the immune response of the 

uterus, including but not limited to, the resolution of breeding-induced endometritis [1, 

2]. The inflammatory response is characterized by an increase in the expression of pro- 

inflammatory cytokines that signal the recruitment of polymorphonuclear neutrophils 

(PMNs) into the uterine lumen [3-5].  Mares that are resistant to PBIE are able to fully 

clear excess spermatozoa, fluids, and bacteria from the uterus within 24-36 hours of 

breeding.  A population of mares that are unable to clear this inflammation are considered 

susceptible to PBIE and they experience uterine inflammation for a considerable length 

of time post-insemination. Susceptible mares are thought to make up 10-15% of the 

broodmare population, causing the disease to be one of the greatest reproductive health 

concerns in veterinary medicine [6, 7]. Due to the residual state of the endometrium and 

uterine lumen at the time the embryo migrates to the uterus from the oviduct 

(approximately 5-6 days post-ovulation [8]), susceptibility may lead to lower conception 

rates [6].  Woodward et al. found a significant difference in the mRNA expression of key 

endometrial cytokines between susceptible and resistant mares, suggesting that a 

defective anti-inflammatory response may be involved in the pathophysiology of the 
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condition [9].  It has been suggested that seminal plasma plays a role in mediating this 

immune response to semen deposition into the uterus, with specific seminal plasma 

proteins potentially acting as key players [10, 11]. 

1.3. Persistent Breeding-Induced Endometritis: 
The elimination of excess sperm and contaminants after insemination is a crucial 

aspect to preparing the uterus for embryo survival and development.  The transient innate 

immune response begins within 0.5 hours following sperm deposition in the uterus, and 

the inflammation is resolved within 36 hours post-breeding [5].  The process begins with 

expression of pro-inflammatory cytokines, which are synthesized by the epithelial cells in 

addition to readily occurring within the native ejaculate. These cytokines recruit the 

inflammatory cells, including mononuclear cells such as macrophages and lymphocytes, 

in addition to the PMNs that represent the first line of defense to the invasion of 

spermatozoa, bacteria, and other foreign contaminants presented to the uterus at the time 

of breeding.  The surge of PMNs to the site of inflammation within the uterus leads to 

phagocytosis of spermatozoa as well as an increased prostaglandin F2α (PGF2α) 

production, which accounts for the myometrial contractions observed 4-12 hours post 

insemination [12, 13]. Susceptible mares are prone to this persistent inflammation due to 

a variety of reasons; with age, malformation of both internal and external reproductive 

organs, and the lack of a functional innate immune response all being potential risk 

factors [6, 9, 14, 15].   The prolonged uterine inflammation in susceptible mares has been 

found to be detrimental to the conceptus, creating an environment not conducive to 

embryo survival or implantation [16-18]. Previous literature had suggested that the 

inflammation was caused by bacteria inoculated into the uterus at the time of breeding, 
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but dual studies by Kotilainen et al. (1994) and Troedsson et al. (1995) found that aseptic 

inoculation of spermatozoa to the uterus caused a similar inflammatory response to that 

of bacteria [19, 20]. 

In regards to innate immunity, mares who are susceptible to PBIE were found to 

have a down-regulation of the endometrial gene expression for interleukin (IL)-6, 

interleukin-1 receptor antagonist (IL-1RN), and tumor necrosis factor (TNF)-α at 3 hours 

after E.coli inoculation, with a prolonged inflammatory response demonstrated by an up 

regulation of IL-1β, IL-1RN, and IL-8 for over 72 hours post breeding.  In contrast, 

resistant mares returned to baseline in their cytokine expression within 12 hours from 

breeding [21].  Concurrently with this study, Woodward et al. (2013) found that 6 hours 

after exposure to freeze-killed spermatozoa is a critical transitional time for the 

inflammatory response in both resistant and susceptible mares. Resistant mares had an 

increased expression of IL-6, IL-1RN, and IL-10 at this time, when compared to 

susceptible mares [9].  Both studies agree that there is an inherent difference between 

resistant and susceptible mares in their ability to modulate the inflammatory response to 

breeding. 

1.4 Uterine Defense and the Immune Response of the Uterus 
 

1.4.1 Physical Barriers 
The equine uterus is well protected from outer contamination by three specific 

barriers: the vulva, the cervix, and the vestibule or vaginal vault.  In the normal mare, 

these barriers provide protection from fecal matter, bacterial infiltration, as well as air 

and urine pooling.  During estrus, progesterone in circulation is low, allowing the vulva 

and the cervix to relax, thereby increasing the risk of uterine contamination.  In the 
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normal mare, this risk is minimal and contaminants are easily expelled via myometrial 

contractions induced after exposure, as well as through an effective mucosal defense.  If 

any of the three barriers are compromised, an increased risk of infection can occur. This 

occurs predominantly in older pluriparous mares, where poor perineal conformation is 

common.  These factors induce a change in the overall position and angle of the vulva, 

which can then lead to an increased risk of fecal contamination.  In addition, the routine 

deposition of spermatozoa into the uterus at the time of breeding is an additional cause of 

inflammation in the mare [4, 20, 22, 23]. This requires the uterus to have a unique 

immune response, one that will mount a rapid and potent response to bacterial pathogens, 

but be fairly tolerant to the spermatozoa that are introduced during breeding [24]. 

 

 

Figure 1.1 Equine female reproductive tract from a dorsal view [25]. 
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1.4.2 The Innate Immune Response of the Uterus 
The urogenital tract, which includes the uterus, is part of the mucosal immune 

system. The organs that make up this system all have a mucus-secreting epithelium that 

is the primary defense mechanism against foreign pathogens.  Due to its physiological 

function of reproduction, this mucosal surface of epithelium is extremely permeable, and 

therefore of heightened risk to infection [26].  In addition to the pathogens that interact 

with the epithelium the mucosal immune system is also unique in that it is often exposed 

to foreign antigens that are not pathogenic.  In the uterus, the spermatozoa as well as the 

proteins and enzymes within the seminal plasma are examples of this. 

Although the uterus experiences both an innate and adaptive immune response, 

the innate immune response is both the first to defend, and the most potent defender. The 

innate immune system relies on different cell populations to enact specific activities. 

This includes the dendritic cells to act as antigen-presenting cells, while macrophages and 

neutrophils act to process antigens [27]. Antigens are detected by specific markers on 

their cell membranes, most commonly either pathogen-associated molecule patterns 

(PAMPs) or Toll-like receptors (TLR’s), indicating that the antigen is in fact pathogenic. 

TLR’s signal through ligand-receptor mediated pathways, which leads to the intracellular 

signaling and activation of PMNs and macrophages, as well as the recruitment and 

activation of the adaptive immune response [28, 29]. 
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Figure 1.2 Schematic diagram of the innate immune response to breeding in the 
equine uterus. The deposition of semen activates the increased expression of 
inflammatory cytokines from the epithelial cells.  These cytokines are multifunctional, 
and activate a number of immune cell types, including the macrophages, dendritic cells, 
granulocytes, and neutrophils.  These cells than prepare the uterus for eventual embryo 
arrival and implantation. Figure used in permission by Dr. Robertson, and depicted in 
[30] 

 
 

1.4.21 Epithelial Cells 
Once activated, the TLR’s activate the NFkβ pathway, which leads to the 

generation of pro-inflammatory molecules by the epithelial cells. These cells cover the 

mucosal surface and provide a physical barrier, preventing pathogens from getting further 

into additional aspects of the body. The epithelial cells are connected by tight junctions, 

which are regulated by steroids (estrogens and progestogens), calcium ions (Ca2+), and 

numerous signaling molecules. These molecules majorly consist of lactoferrin, 

lysozyme, secretory leukocyte inhibitory protein (SLPI), and many cytokines [31-34]. 

It has been hypothesized that the primary role of the epithelial cells is to produce 
 

antimicrobial proteins in response to activated phagocytes [35]. In this study, activated 
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macrophages produced the cytokine IL-1β, and this increase induced the epithelial cells 

to heighten their production of the antimicrobial protein human beta defensin-2 (HBD-2). 

In conjunction to this study, Li et al. (2015) found that the intravenous infusion of the 

antimicrobial protein lactoferrin significantly suppressed synthesis of IL-1β after 

stimulation of inflammation in mice [36]. It appears that cytokines and antimicrobial 

proteins may function together either jointly or at least cohesively along similar 

pathways. 

1.4.22 Cytokines 
One example of the pro-inflammatory molecules that the epithelial cells produce 

is that of the cytokines and chemokines.  This has been widely studied in the uterus of 

many species, with cytokines such as interleukin one (IL-1), interleukin six (IL-6), 

interleukin eight (IL-8), interleukin ten (IL-10), transforming growth factor beta (TGF-β), 

tumor necrosis factor (TNF)-α and -β, colony forming factor one (CFF-1), interferon 

(IFN)-α, -β, -τ, and –γ, and granulocyte macrophage colony stimulating factor (GM-CSF) 

reported [37-40]. In addition to the cytokines that have been noted in the uterus, 

prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2α), and inducible nitric oxide 

synthase (iNOS) were also increased in expression following the induction of 

inflammation in the uterine epithelium [33, 41, 42]. One of the first responders, TNF, is 

produced either by macrophages (TNF-α), or T cells (TNF-β). The interleukins (IL-1 to 

IL-17) are involved in the interaction between lymphocytes and other leukocytes. 

Interferon’s (IFNα, β, γ, τ, ω) are primarily synthesized in response to viral infection, but 

are also induced under immune and chemical stimulation. All cytokines and chemokines 
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are regulated by receptor expression, receptor antagonists, and other cytokines that may 

have stimulatory or antagonistic effects [43]. 

The cytokines have many downstream pathways, including the recruitment of 

immune cells, activation of hormones, and induction of myometrial contractility of the 

uterus.  TNF is considered a first responder of the innate immune response, as it activates 

numerous downstream pathways.   This pro-inflammatory cytokine is involved with the 

activation of the vascular endothelium, which increases membrane permeability, and 

therefore increases the entry of immunoglobulin’s, complement, and other immune cells 

and mediators (Reviewed by [44]) .  In a study done by Jacobs et al. (1993), it was shown 

that the pro-inflammatory cytokine IL-1 was responsible for the activation of 

prostaglandin synthesis, which in turn stimulated myometrial contractility of the uterus 

[45]. IL-1β is also involved in the activation of lymphocytes, as well as localized tissue 

destruction.  The pro-inflammatory cytokine IL-8 is primarily responsible for the 

recruitment of PMN’s due to its ability to up regulate cell-surface adhesion molecules, 

which enhances PMN adherence to the endothelial cells.  In addition to this, IL-8 is 

involved with the activation of lymphocytes and increased antibody production. IL-6 is 

unique in that it has both pro- and anti-inflammatory abilities. At the beginning of an 

inflammatory response it acts through pro-inflammatory pathways, but then becomes 

critical in minimalizing PMN activation and instead recruits monocytes, leading to the 

resolution of inflammation.  IL-10 is an anti-inflammatory cytokine, as it prohibits 

monocytes from producing pro-inflammatory cytokines.  IL-1RN is also anti- 

inflammatory, as it is a competitive inhibitor of the IL-1 receptor, effectively blocking the 

pro-inflammatory activity of IL-1β [46]. 



10 

 

 

In a study done by Woodward et al. (2013), it was found that in the healthy 

uterus, the synthesis of the pro-inflammatory cytokines (IL-1β, IL-8, IFNγ, and TNF) is 

increased within 2 hours after insemination, and peaks by six hours [9].  The expression 

of the anti-inflammatory cytokines (IL-1RN, IL-10) and inflammatory modulating 

cytokines (IL-6) was not as evident at two hours after insemination, but arose around six 

hours.  In this study, the acute nature of inflammation was shown to occur at the 6-hour 

time point, as the key pro-inflammatory cytokines were relegated to basal levels at this 

time, while the anti-inflammatory cytokines were increased.  This was hypothesized to be 

the cause of the acute and transient inflammation seen in the normal mare that is resistant 

to PBIE. 

1.4.23 Immune Cells of the Innate Immune Response 
One of the main functions of the pro-inflammatory cytokines is to stimulate, 

recruit, and activate the immune cells. PMNs, macrophages, and other leukocytes are the 

primary responders, and act swiftly to either digest or signal the elimination of foreign 

molecules.  The first 24 hours of inflammation in the uterus appears to be regulated 

primarily by neutrophilic cells, and transitions to a monocytic cellular control after this 

time, with this transition controlled by the previously mentioned IL-6 [46]. PMNs and 

macrophages are both phagocytic cells, but macrophages also function as antigen- 

presenting cells, whereas PMNs do not. Phagocytosis of microorganisms and foreign 

antigen such as spermatozoa occurs through a multistep process starting with chemotaxis 

via the chemokine CXC8.  This begins by adherence of neutrophils through the activation 

of ICAM-1, followed by diapedesis of the neutrophils through the endothelial wall, which 
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involves many molecules, including LFA-1 and PECAM [3, 47-49]. This process enables 

the phagocytic immune cells to travel to the site of inflammation swiftly and efficiently. 

In the uterus, the influx of PMNs occurs within 30 minutes after insemination, 

and this is simulated after the infusion of bacteria, seminal plasma, spermatozoa, or 

sterile solutions [5, 10, 20].  PMNs bind to microorganisms, including spermatozoa, via 

Neutrophil Extracellular Traps (NETs), as well as an unknown receptor/ligand mediated 

binding mechanism [10, 50].  Adhesion molecules such as the selectin family have been 

investigated as the ligand for the receptor/ligand binding mechanism, but their 

functionality was determined to be unaffected by the addition of antibodies specific to 

epitopes of their structure [51]. 

PMN phagocytosis appears to be regulated by proteins within the seminal plasma. 
 

In vitro studies have shown two seminal plasma proteins that modulate the interaction 

between PMNs and spermatozoa, cysteine-rich secretory protein-3 (CRISP-3) and 

lactoferrin.  In a study done by Doty et al. (2011), CRISP-3 was found to selectively 

suppress the binding of PMNs to viable spermatozoa [11].   Conversely, a study done by 

Troedsson et al. (2014) demonstrated that lactoferrin increases the portion of PMNs 

which bind to spermatozoa, and this was further investigated and found to be selective 

towards dead spermatozoa [52]. Further research is required to investigate the 

functionality of these proteins in vivo. 

The shift from a neutrophilic infiltration in the uterus to a monocytic resettlement 

is controlled by the expression of specific cytokines that recruit the two cell populations. 

As stated previously, PMNs are primarily activated by a heightened IL-8/CXC8 
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expression, which occurs early (<24 hours) in the inflammatory response.  In contrast, 

monocytes are activated by monocyte chemotactic protein-1 (MCP-1), which increases in 

expression later in the response, and is maintained for numerous days (reviewed by [46]). 

IL-6 may play a role in this transition, as it is able to activate endothelial cells to secrete 

both IL-8 and MCP-1 [53]. In the normal mare, PMN migration in the uterus is resolved 

within 24-48 hours, which is when macrophages begin to travel to the uterus. The 

macrophage invasion is then involved in angiogenesis, epithelial cell proliferation, and 

the restructuring on the endometrium as it prepares the endometrium to nurse an embryo 

[54]. Since all spermatozoa are removed before antigen-presenting cells enter the uterus, 

the development of an immunological memory against spermatozoa is avoided. 

1.4.24 Prostaglandins 
Another important aspect of the innate immune response to breeding is the 

contractility of the musculature of the uterus that is induced by an increase in 

prostaglandins synthesis. Prostaglandin F2 alpha (PGF2α) and prostaglandin E2 (PGE2) 

are derived from arachidonic acid and are under the control of cyclooxygenase-2 (COX- 

2).  These prostaglandins are produced in the male reproductive tract and secreted into 

seminal plasma, therefore describing their nomenclature. In addition to their synthesis in 

the accessory sex glands, they can also be produced by uterine cells as well as by 

activated PMNs that have migrated to the uterine lumen after breeding. These hormones 

are involved in a variety of phenomena in reproduction including ovulation, luteolysis, 

oviductal and uterine contractility, shedding of the uterine lining during menses, and 

involution of the uterus after parturition (Fuches, 1987). 
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The infusion of seminal plasma into the uterus activates further production of 

prostaglandins both PGE2 and PGF2α, and this increase may affect the functionality of  

the ovary in the horse. In gilts, intra-uterine seminal plasma infusion increased the 

number of ovarian leukocytes at 34 hours in addition to having an effect on corpus 

luteum (CL) functionality [55].  In seminal plasma treated gilts, both plasma progesterone 

and the weight of the corpus luteum increased 5-9 days post-infusion.  This was 

hypothesized to be due to the up regulation of COX-2 transcription in response to seminal 

plasma infusion.  COX-2 is intrinsically involved in the production of prostaglandins, 

which can then access the ovary via the countercurrent articular circulation. This has not 

been determined in the equine ovary, which has different vasculature for which 

prostaglandins may travel to the ovary. 

In addition to the role in luteolysis, prostaglandins play an integral role in the 

mechanical clearance of the uterus. This is crucial for uterine health after the deposition 

of semen, during parturition, as well as in the involution of the uterus post-partum. The 

dual functionality of PGF2α and PGE2 are critical in this, as PGF2α has been shown to 

stimulate myometrial contractility, while PGE2 acts to relax the cervix to allow for proper 

drainage from the uterus [49, 56]. 

In addition to the role in smooth muscle contractions, prostaglandins have been 

suggested to be involved in the disease process of endometrosis. Defined as degeneration 

of the endometrium and chronic fibrosis, an alteration in the mRNA expression of 

prostaglandin synthases has been described in addition to the production of 

prostaglandins in the endometrium of mares that suffer from this disease [57, 58]. 
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Together, these hormones play pivotal roles in the resolution of inflammation after 

breeding. 

1.4.3 The Adaptive Immune Response of the Uterus 
In addition to the initial innate immune response, the uterus can also undergo an 

adaptive response to the presence of microorganisms.  The uterus is unique in that it must 

mount this response to microorganisms, but maintain a low level of memory towards the 

repeated insult of spermatozoa.  There exists a subpopulation of females that are unable 

to suppress this adaptive response, and in turn produce anti-sperm antibodies (ASAs), 

which have been suggested to be correlated with infertility [59]. A successful pregnancy 

is associated with a suppression of the adaptive immune response, including the 

expression of MHC molecules and T cells, allowing the embryo to remain viable in the 

uterus without being rejected (reviewed by [60]). Therefore, the production of ASAs, or 

any other aspect of the adaptive immune response, may result in lower fertility rates. 

 
1.4.31 Immune Cells of the Adaptive Immune Response 

In the adaptive response, macrophages and dendritic cells encounter foreign 

particles within the endometrium, bind, and then provide transportation to the lymph 

node for processing.  This results in the activation of the Major Histocompatibility 

Complexes (MHC) Class I/II.  Other cells of the adaptive immune response that have 

been found present in the uterus are the CD2+ (natural killer cell = NK cell), CD4+ 

(helper T cell), and the CD8+ (cytotoxic T cell) cells [61]. These cells function together 

to detect, process, and pursue foreign particles and organisms that infiltrate the body. 

The adaptive immune response to breeding in agricultural animals has been most 

widely studied in the sow.  Dual studies by Kaeoket et al. (2003) evaluated the effect of 
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inseminating pre-and post-ovulation on the immune cells that compose the adaptive 

response. The CD2+ cells were the most highly expressed cell in the surface and 

glandular epithelium and this was most notable within the first 24 hours after 

insemination [61, 62]. Upon investigation of the deeper tissues (subepithelial and 

glandular), the CD8+ were more present than the CD4+ cells, and this occurred later in 

the response, with the highest expression seen nineteen days after insemination.  It was 

concluded in this study that the expression of these cell types was greater in the 

subepithelial layer later in the response, possibly due to the embryonic interaction with 

the surface of the epithelium at this time.  The suppressed immune response within the 

surface epithelium may be intentional to enhance pregnancy outcome and lower the risk 

of rejection. In the equine uterus, T-cell populations have been investigated through 

immunohistochemistry.  In a study by Tunón et al. (2000), it was shown that there is an 

increase in CD4+ but not CD8+ at 6 and 48 hours after insemination in the horse [63]. 

Further research is necessary to further describe the adaptive immune response in the 

uterus of the horse. 

1.4.32 Anti-sperm antibodies 
A hallmark of the adaptive immune response is the production of antibodies to the 

antigen present.  Spermatozoa were found to be antigenic over a century ago, and in a 

small subpopulation anti-sperm antibodies (ASA) are present in circulation. In humans, 

ASA are detected in approximately 10% of infertile couples, but they are also found in 

1.5% of fertile males and females (reviewed by [64]).  Although largely correlated with 

infertility, minimal investigation has been conducted on their production, lifespan, and 

pathways. 



16 

 

 

Spermatozoa are produced in the seminiferous tubules of the male gonad, within 

which exists the blood-testis barrier.  Created by interlinking sertoli cells, this provides a 

barrier between the premature spermatozoa and the immune cells that are constantly 

circulating through the system.  This is essential to the production of viable spermatozoa 

as the spermatozoa are not present prior to puberty when the immune system is 

developing.  Therefore, in males ASAs can be produced when the blood-testis barrier is 

damaged either by trauma, congenital abnormalities, or vasectomy [65]. 

ASAs are also produced in women; the production of which has been a topic of 

great debate for decades.  In the 1920s, Baskin demonstrated that intramuscular 

immunization of previously fertile women with spermatozoa caused the production of 

ASAs [66].  However, repeated insemination of spermatozoa into the female reproductive 

tract did not cause the same response, indicating that the genitalia produce an inherently 

different response to the deposition of the antigen, or in this case, sperm. Although it is 

known that the female reproductive tract has a potent innate immune response consisting 

largely of a rapid influx of neutrophils and macrophages, it is widely believed that the 

factors that prevent antigenicity of spermatozoa are actually present within the seminal 

plasma, and specifically transforming growth factor beta (TGF-β) and prostaglandins.  In 

a study by Stavnezer et al. (1995), it was shown that the production of ASA in the female 

mouse is dependent on TGF-β in a dose-dependent manner [67].  It was hypothesized that 

this was caused by the ability of TGF-β to inhibit B cell proliferation, which is an 

essential step in antibody production. The concentration of TGF-β, prostaglandins, and 

other mediators of the immune response within the ejaculate are variable, and this may be 

the reasoning behind a subpopulation of women producing ASAs. 
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In the horse, minimal work has been done on the effect of ASAs on fertility.  In a 

case study done by Zhang et al. (1990), ASAs were found in a thoroughbred stallion 

suffering from infertility after testicular trauma [68]. A study by Kenney et al. (2000) 

found that inducible testicular degeneration causes an increase in ASA production, and 

that this lead to subfertility in stallions [69]. In this study, an ELISA was developed for 

the detection of ASAs, but minimal work has been published since. 

1.5 The Role of Seminal Plasma in Breeding-Induced Endometritis 
Unlike many other species where semen is deposited caudally to the cervix, 

spermatozoa and seminal plasma are deposited directly into the uterus of the horse at the 

time of breeding. Seminal plasma is the aqueous portion of the ejaculate, consisting of 

proteins, enzymes, electrolytes, and fluid derived from the accessory sex glands and 

epididymis of the stallion, which together make up a volume of 20-80 mL on average 

[10, 70]. Through the action of these proteins, enzymes, and metabolites, seminal plasma 

of the horse and pig has been shown to enhance sperm transport, hasten ovulation, and 

increase blood flow to the uterus and oviducts [71-73]. 

Seminal plasma is generally removed from spermatozoa to prepare for both the 

cryopreservation and cooling process involved in artificial insemination with cooled or 

frozen/thawed sperm.  This can increase the duration of the inflammatory response to 

breeding, and possibly predispose mares to becoming susceptible to PBIE. In a study 

done by Alghamdi et al., mares were inseminated with or without seminal plasma after 

having uterine inflammation induced, and found that only 1/22 (0.5%) of the mares 

conceived when seminal plasma was removed. Conversely, 17/22 (77%) of the mares 

that had seminal plasma in addition to the spermatozoa became pregnant [74]. It was 
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concluded that aspects of seminal plasma were critical to protecting spermatozoa from 

aspects of the immune system in order to achieve optimal fertility. 

The effect of seminal plasma on the immune response has been studied in a 

variety of species, including mice, humans, and swine.  It was found in mice that seminal 

plasma activates the expression of pro-inflammatory cytokines, including granulocyte- 

macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and several 

chemokines in the epithelium of the uterus [40, 75]. The expression of GM-CSF was also 

up regulated in the human epithelium, whereas in swine, GM-CSF, IL-6, and monocyte- 

chemotactic protein-1 (MCP-1) were the most notable pro-inflammatory cytokines to be 

activated after infusion with seminal plasma [76, 77]. Palm et al. (2008) found that 

seminal plasma caused an increase in the expression of IL-1β, IL-6, TNF, and COX-2 at 

12 hours post insemination in the endometrium of the horse, but noted that extender and 

phosphate buffered saline (PBS) caused similar results [78]. Unlike other studies into the 

immune response to breeding, this study only looked at the effect of treatment with 

semen extenders as well as seminal plasma without the addition of the spermatozoa, 

leaving for variation when comparing this response to that of what occurs at the time of 

breeding in the field. 

1.6 Seminal Plasma Proteins 
A primary constituent of seminal plasma are the proteins that are involved in 

many essential steps preceding fertilization including capacitation, regulation of the 

immune response to breeding, sperm transport and elimination, the establishment of the 

sperm reservoir at the oviduct, and gamete interaction and fusion [70]. Ranging from 

hormones to enzymes and proteinases, in addition to growth factors, the protein content 
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of the equine ejaculate is relatively low when compared to other species, at 

approximately 10 mg/mL.  The majority of the seminal plasma proteins can be 

categorized into three groups; the fibronectin type II molecules (FN-2 type proteins), the 

cysteine-rich secretory proteins (CRISPs), and spermadhesins [70, 79].  Frazer and Bucci 

(1996) found a total of 14 proteins groups that were common to all stallions, and this was 

confirmed by the findings of a 2D-PAGE study by Brandon et al. (1999) [80, 81]. The 

first eight of these proteins to appear on the chromatography chart were categorized as 

HSP-1 to HSP-8 in chronological order of discovery. 

1.6.1 FN-2 Type Proteins 
The FN-2 type proteins, specifically HSP-1, HSP-2, and EQ-12 account for 70-80% 

of the total protein content of seminal plasma and are the equine ortholog to the major 

bovine heparin-binding proteins that play a role in sperm capacitation in cattle [82, 83]. 

HSP-1 and HSP-2 are produced by the ampulla of the vas deferens, whereas EQ-12 is 

synthesized in the caudal and corpus aspects of the epididymis [83]. The FN-2 type 

proteins are the most abundant seminal plasma protein in cattle, goats, and bison, 

although in the horse, a member of the CRISP family encompasses a large portion of the 

proteome [84-86]. These proteins are able to form oligomers due to their heparin-binding 

ability, forming larger aggregates of almost 90 kDa [87]. The most notable feature of 

these FN-2 type proteins is their ability to bind specifically with the phospholipids of the 

sperm membrane, which is mediated specifically by the choline lipids [88]. Widely 

studied in the bovine species, the bovine FN-2 type proteins, or BSPs, have been found to 

stimulate capacitation and induce the acrosome reaction [89]. Binding tightly to sperm at 

the post-acrosome and midpiece region via phospholipids, the BSPs travel through the 
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female reproductive tract with the ejaculate and appear to be involved with the 

development of the oviductal reservoir [83, 90]. It has been shown that bovine FN-2 type 

proteins are able to bind to phosphatidylcholine (PC) molecules that reside within the 

sperm plasma membrane, allowing the BSP-5 protein to actually penetrate the membrane 

[91]. When this occurs, it acts as a decapacitation factor, protecting the sperm from 

prematurely capacitating in the female reproductive tract (FRT). This protein also 

promotes capacitation once removed by increasing cholesterol efflux and phospholipid 

scrambling. 

Recently, HSP-1 and HSP-2 have been shown to have chaperone activity, potentially 

protecting spermatozoa against damage [92].  Studies by Kumar et al., these seminal 

plasma proteins were found to protect spermatozoa from oxidative, thermal, and chemical 

stress, and this was found to be potentially regulated by surfectants such as SDS and 

Tween-20 [92][93-95]. In addition, a pH switch was identified that control the chaperone- 

like activity of these seminal plasma proteins, indicating that their activity might be 

controlled by varying environments in the female reproductive tract [95]. Further 

research is required into the function of these proteins in vivo, and whether they may be 

critical for equine sperm capacitation. 

1.6.2 Spermadhesins 
The spermadhesin proteins have thus far only been found in ungulates, including 

the bull and horse, and have been extensively studied in swine. HSP-7 is the equine 

homologue of the spermadhesin AWN found in swine, which acts as a sperm-binding 

protein that is secreted in the caudal epididymis, and appears to play a role in fertilization 

[96]. One of the many proteins that are proposed to aid in sperm-zona pellucida 
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interactions, spermadhesin AWN-1 is synthesized in the tubuli recti, rete testis, and 

seminal vesicle epithelial cells of the porcine reproductive tract [97]. Most widely 

studied in swine, AWN-1 has phosphorylethanolamine-binding ability, which accounts 

for its ability to coat membranes and is a proposed mechanism for its ability to bind to 

zona pellucida [98]. 

In the bull, a similar seminal plasma protein is acidic seminal fluid protein, or 

aSFP.  While structurally similar to porcine AWN-1, it lacks both the ability for sperm- 

coating as well as zona-pellucida binding [99]. The equine homologue, now known as 

HSP-7, or Equine AWN, shares 97.7% homology to porcine AWN-1, alluding to 

comparable activity [100]. Found in the spermatogonia, rete testis, ductus epididymis, as 

well as the seminal vesicles, it is a carbohydrate-binding protein that has been found to 

bind to intact equine zona pellucidae [100, 101]. Although it has been eluded that this 

protein may have a similar role in zona pellucida-sperm interactions as those seen in 

swine, this activity has not been investigated to our knowledge. 

1.6.3 Cysteine-Rich Secretory Proteins 
Recently, the CRISP family of proteins has gained interest in equine research due 

to the sizeable concentration found in the ejaculate of stallions. Multiple members of the 

CRISP family have been identified in the horse, including CRISP-1, CRISP-2, CRISP-3, 

and CRISP-4.  Defined by the presence of 16 conserved cysteine residues that fold into 

two domains: a N-terminal CRISP with a CAP domain that contains six conserved 

cysteine residues, and the smaller C-terminal CRISP that contains 10 conserved cysteine 

residues [102].  While the CAP domain has been extensively studied, no known 

biological role has been found for it. Conversely, the C’ terminal CRISP domain has 
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been found to play a role in the regulation of ion channels [103]. Transcripts for the 

CRISP proteins have been found throughout the reproductive tract of both mice and 

humans, with CRISP-1 found in the entire epididymis, CRISP-2 in the testis, epididymis, 

and seminal vesicles, and CRISP-3 in the epididymis, prostate, testis, and vas deferens 

[104]. CRISP proteins have been found bound to the sperm at a variety of locations, 

including the equatorial and post-acrosomal region, as well as the midpiece [105]. 

1.6.31 CRISP-1 
CRISP-1, also referred to as Protein DE or AEG, has been studied extensively in 

rats with a focus on its ability to decapacitate spermatozoa.  This allows the sperm in the 

epididymis to remain in a quiescent state, although the mechanism is unknown [106].  In 

vitro studies in the rat have shown that when recombinant CRISP-1 (rCRISP-1) is used in 

the media of zona-free rat eggs, the number of sperm that are able to penetrate is 

noticeably decreased, although the number of sperm that are able to simply bind to the 

egg remains the same [107].  A similar process has been described for both human and 

murine CRISP-1, implicating its involvement in gamete fusion via its binding to a 

complementary site on the egg [108, 109]. Another biological role of CRISP-1 is its 

involvement with protein tyrosine phosphorylation, an essential step in sperm 

capacitation.  Studies done in CRISP-1 knockout mice have shown that Crisp1-/- mice 

had clearly lower levels of protein tyrosine phosphorylation than control mice, although 

they demonstrated similar levels of capacitation and maintained fertility [110]. 

Functionality of CRISP-1 has not been studied in the horse. 
 

1.6.32 CRISP-2 
Although CRISP-2 differs in only two amino acids from CRISP-1, its known 

 
biological function varies greatly.  It has been shown that both mouse and human eggs 
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display complementary sites for CRISP-2, and this site may be shared with CRISP-1. 

The incubation of sperm with antibodies for CRISP-2 led to an inhibition of sperm 

penetration to the egg, although the number of sperm at the perivitelline layer was 

actually increased, leading the scientists to believe that CRISP-2 works at the sperm-egg 

membrane interaction level, and plays a direct part in gamete fusion [111]. 

1.6.33 CRISP-3 
Although CRISP-1 and CRISP-2 have been found to play a role in male fertility, 

including assisting with the binding of the sperm to the oocyte and regulating motility, 

CRISP-3’s only known biological activity lays in its ability moderate the immune defense 

of humans and rats [112, 113]. Transcripts for human CRISP-3 are found throughout the 

body, but predominantly in the salivary gland, pancreas, and prostate, which secretes 

CRISP-3 into the seminal plasma [114]. It is found in equine semen at a concentration of 

0.3-1.3 mg/mL, and differs from human and murine CRISPs due to its lack of a N- 

glycosylation site [105]. 

It has been determined that equine CRISP-3 is a non-glycosylated protein that 

displays an isoelectric point of 8.0 [105, 115]. This differs from other members of the 

CRISP family, such as rat epididymal protein DE, mouse CRISP-1, and human 

neutrophil specific granule protein of 28 (SGP28) [116-118].  The most widely studied 

members of the family; these three proteins are all acidic or neutral glycoproteins. The 

proteins D and E, also known as CRISP-1, are N-glycosylated and highly homologous 

proteins [116, 119].  Equine CRISP-3 is similar to other CRISPs in that 14 of the 16 

cysteine residues are located in the carboxyl terminus of the protein, but differs in that its 

N-terminal amino acid is blocked [105, 115]. It is proposed that amino acids 1-22 of the 
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gene represent a hydrophobic signal peptide, with the 23rd amino acid being glutamine, 

which is modified to glutamic acid.  The mature equine CRISP-3 protein is 224 amino 

acids long, and this sequence shows 82% homology to human CRISP-2, 78% homology 

to guinea pig CRISP-2, and 77% homology to human CRISP-3 [105]. Within the CRISP- 

3 protein structure, all 16 cysteine residues are involved in disulfide bonds. 

Research has investigated the use of CRISP-3 in the stallion ejaculate as an 

indicator for fertility, and its role in sperm/PMN interaction in the uterus. Hamann et al. 

(2007) found that the Hanoverian horse expresses 52 polymorphic sites for CRISP-3, and 

the E208K polymorphism in the transcript had a significant correlation with fertility in 

stallions [120].  Homozygosity for the specific genotype c.+622G, where a single 

nucleotide exchange resulted in an amino acid change from lysine to glutamine was 

found to be associated with increased fertility [120].  It was also recently shown that an 

abundance of CRISP-3 in the ejaculate is positively correlated with first cycle conception 

rates as well as high semen freezability [121, 122].  While CRISP-3 correlates with these 

aspects of fertility, the mechanism is unknown and requires further research. 

Doty et al. (2013) demonstrated in vitro that the addition of equine CRISP-3 to 

PMNs and live spermatozoa caused a decreased amount of binding between PMNs and 

spermatozoa, and this was even greater than that of seminal plasma [11]. Conversely, 

when nonviable spermatozoa were used instead of live, this protection from phagocytosis 

was no longer present.  CRISP-3’s ability to provide selective protection of viable 

spermatozoa from the phagocytosis by PMNs would not only be of great importance for 

increased fertility but would also assist with effective clearance of the uterus post 

breeding [12]. 
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1.6.34 CRISP-4 
While CRISP-1, CRISP-2, and CRISP-3 have been identified in many 

mammalian species, CRISP-4 has only been found in the epididymis of murine species. 

Found to be the ortholog of human CRISP-1, it has been hypothesized to play a similar 

role in sperm-egg fusion.  In a study done by Turunen et al. (2011), murine iCre knockins 

for the CRISP-4 gene were created to show that mice deficient of the CRISP-4 gene 

produced sperm that were unable to undergo the progesterone-induced acrosome  

reaction, as well as lower fertilization ability, although they did remain fertile in natural 

mating conditions [111].  In this study, it was also noted that less CRISP-4 deficient 

sperm were found bound to the oocyte when compared to wild type. These results lead 

the scientist to the conclusion that murine CRISP-4 plays a pivotal role in sperm-egg 

interactions. 

1.6.4 Lactoferrin 
A smaller portion of the protein fraction in the stallion ejaculate is made up of 

miscellaneous proteins that do not fall into the category of FN Type-II protein, 

spermadhesin, or CRISP.  One of these proteins is lactoferrin, a seminal plasma protein 

that has been found to have a stimulatory effect on the binding of spermatozoa to PMNs 

[123].   Lactoferrin has been localized to the acrosome region and the sperm tail, but 

motile sperm showed no positive staining for the protein, suggesting that lactoferrin may 

bind selectively to non-viable spermatozoa [124]. Recent research suggests that this 

observation may involve a lactoferrin associated protein rather than lactoferrin, and this 

needs to be confirmed (unpublished observation). There is limited research on lactoferrin 

in the stallion, but it is known to be found in the seminal plasma of the stallion at an 
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average concentration of 157μg/mL and has been suggested to correlate with low semen 

freezability [122, 125]. 

With a molecular mass of 80kDa, lactoferrin is an iron chelator that is found 

throughout the body, including secretions such as semen, milk, and uterine luminal fluid, 

as well as in the secondary granules of neutrophils [126-128]. Lactoferrin has been found 

to act in a bactericidal fashion over a wide range of bacterial hosts, including 

Streptococcus, Salmonella, and Escherichia [129]. In addition, lactoferrin has been 

shown to suppress tumor growth and impede fungal infection development [130, 131]. 

Considered one of the principles in the first line of defense, lactoferrin has been 

found to affect many aspects of the immune system.  Lactoferrin is able to stimulate 

macrophage function by binding to lactoferrin specific receptors on the cell membrane 

[132]. Via this binding, lactoferrin has been shown to suppress the activity of several 

pro-inflammatory cytokines, including TNF, IL-6, and granulocyte-macrophage colony- 

stimulating factor (GM-CSF) [133-136]. It has been demonstrated that lactoferrin 

functions through the NFκβ and MAP kinase pathways to affect the activation, 

differentiation, maturation, and function of many other immune cells, including natural 

killer (NK) cells and lymphocytes [137, 138]. 
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Figure 1.3 Schematic diagram of the role of lactoferrin in the innate immune 
response of humans.  As described by Kanwar et al., (2015) [139]. Lactoferrin plays an 
important role in the activation of immune cells, including the differentiation, maturation, 
activation, migration, proliferation and function of macrophages.  Lactoferrin also 
promotes the cell-cell interaction and activation of PMNs and NK cells, therefore 
boosting the immune response. 

 

Human lactoferrin has also been found to play an essential role in the Eppin 

Protein Complex (EPC), which is a part of the ejaculate coagulum that coats the 

spermatozoa immediately after ejaculation.  The EPC is made up of lactoferrin, clusterin, 

and semenogelin, and is assembled on the surface of spermatozoa during the last step of 

spermiogenesis, acting to protect spermatozoa due to its bactericidal properties [140]. 

Research in humans also demonstrated that lactoferrin positively correlates with semen 

samples showing oligospermia as well as increased sperm motility and concentration 

[141-143]. 

Limited work has been done on lactoferrin in the horse.  Lactoferrin has been 

shown to be up-regulated in the endometrium of the susceptible mare, indicating a role in 
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the immune response of the equine endometrium [144]. In addition, its synthesis was 

found to be hormonally regulated, as it was determined to be estrogen-dependent in the 

caudal aspect of the stallion epididymis [145]. 

1.6.5 Other 
In addition to the three main families and lactoferrin, there exists many other 

seminal plasma proteins found in the ejaculate.   Horse seminal protein-4 (HSP-4) has 

been found to relate to the calcitonin-like protein family.  In humans and mice, calcitonin 

levels correlate with sperm motility, indicating that HSP-4 may be involved in equine 

sperm motility [146]. Horse seminal protein-6 (HSP-6) and horse seminal protein-8 

(HSP-8) are thought to be isoforms of a single protein that is similar in structure to 

human prostate-specific antigen (PSA), which is involved in the cleavage of seminal 

coagulum [147].  While the gel fraction is removed during artificial insemination, in 

natural breeding and live cover, this would be an important role for a seminal plasma 

protein. Sperm protein 22 (SP22) was found to be primarily detected on the equatorial 

region of the sperm head.  Environmental stress to spermatozoa associated with 

cryopreservation and cooling of semen altered the binding pattern of SP22 [148]. 

Although this protein is thought to be involved in fertility in rats, minimal work has been 

done on its effect on fertility in the horse [149]. Other proteins and enzymes, such as 

leptin, lipase, and angiotensin-converting enzyme have also been found to be secreted 

into the seminal plasma of stallions, but little is known on their function.  With new 

technology developing on the purification and identification of proteins, future studies are 

expected on the proteomics of the equine ejaculate. 
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1.7 Steroid Regulation of Protein Secretion in the Male Reproductive Tract 
 

1.7.1 Hormonal influences on male reproduction 
In the male, testicular function and output is controlled by the hypothalamic- 

pituitary-gonadal axis, which involves the function of gonadotropin releasing hormone 

(GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), androgens, 

estrogens, and inhibin. GnRH is released from the hypothalamus and travels in a pulsatile 

fashion to the anterior pituitary, where it binds to G-protein coupled receptors to 

stimulate the release of the gonadotropins, LH and FSH. The gonadotropins then travel 

via circulation to the testis, where LH stimulates the production of testosterone from the 

Leydig cells that surround the seminiferous tubules.  Conversely, FSH binds to the Sertoli 

cells and stimulates the production of inhibin, activin, and androgen binding protein 

(ABP). While FSH regulates spermatogenesis during puberty, testosterone becomes the 

primary regulator of sperm production in the postpubertal male. Testosterone and inhibin 

then travel back to the hypothalamus via circulation in a primarily negative feedback 

loop. 

Estrogens also play a role in testicular function, predominantly by regulating the 

secretion of LH into the system. While many estrogens have been detected in circulation 

of the stallion, estradiol-17β has been most studied.  In a study done by Parlevliet et al. 

(2006) expression of estradiol-17β in the epididymis was found to be affected by age 

[150]. Prior work done by Roser et al. (1997) and Stewart (1998) demonstrated that 

estradiol-17β modulates the release of LH from the anterior pituitary, and that there were 

increasing levels of this hormone as age increased [151, 152]. It has also been shown that 

a population of infertile stallions have a significantly lower concentration of estrogens 
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than what is found in fertile stallions.   It is evident that estrogens, specifically estradiol- 

17β, play an important role in stallion fertility and testicular function. 

 

 
Figure 1.4 Schematic diagram of the male hypothalamic-pituitary-gonadal axis 

 
 
 

1.7.2 Hormonal influences on seminal plasma proteins 
It has long been known that steroid hormones play a role in the development and 

functionality of both the female and male reproductive systems. The removal of the testis 

via castration has been used to significantly suppress the production of testosterone, and 

this in turn may affect the synthesis and secretion of seminal plasma proteins [153]. In a 

study done in 1996 by McDowell et al., stallions were separated into three groups: intact 

stallions, geldings, and geldings supplemented with testosterone.  It was seen that certain 

protein groups, specifically group 1 (60kDa, pI 7) and group 2 (23 kDa, pI 4-5) were 

more prominent in the stallions with testosterone in their systems, both the intact group as 

well as the supplemented.  Conversely, the other three protein groups, group 3 (25-30 

kDa, pI 5.5-6), group 4 (23 kDa, pI 7-8), and group 5 (15-20 kDa, pI 6-7.5) were more 
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prominent in the geldings who were not supplemented with testosterone, demonstrating 

that some proteins in the seminal plasma may be dependent on testosterone [154]. The 

authors suggested that more research was required to distinguish these proteins, as well as 

further investigate the androgen and estrogen dependency of each.  Recently, a similar 

study was done in humans, where the seminal plasma protein content of men with 

hypogonadism was studied via mass spectrometry to determine if specific seminal plasma 

proteins were lacking in these patients, and testosterone supplementation was then 

performed to determine if any of the absent proteins were able to be reintroduced [155]. 

Thirty-three of the sixty-one proteins studied were not found in patients suffering from 

hypogonadism, and of these thirty-three, fourteen were detected after 6 months of 

testosterone supplementation.  Some of the proteins identified were S-100 A9, lactoferrin, 

prolactin-inducible protein (PIP), prostatic acid phosphatase (PAP), carboxypeptidase E, 

and cystatin C, all of which have been shown to play a role in fertility. Their absence in 

the hypogonadic patients may explain the infertility related to the disease.  Although it is 

known that seminal plasma proteins play a role in sperm maturation, capacitation, and 

fertilization, minimal work has been done on the effect of hormones on regulating protein 

synthesis in the horse. 

1.7.21 Lactoferrin 
Lactoferrin is found in the caudal and corpus regions of the epididymis in the 

horse.  In a study done by Parlevliet et al. (2005), it was shown that the epididymis of the 

male horse is dependent on both androgens and estrogens.  The concentration of 

testosterone in the testis and epididymis does not change as the horse matures, while the 

concentration of estrogens in all regions of the epididymis did increase with age, 
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suggesting that estradiol may play a role in the maturation of the epididymis, as well as its 

functionality [150].  It was recently shown that lactoferrin was not expressed in any 

aspect of the epididymis in pre-pubertal animals [145].   In a second study by Pearl and 

Roser, lactoferrin was further investigated through tissue culture of the epididymis [145]. 

It was determined that testosterone did not increase the amount of lactoferrin in the 

culture media, while estradiol-17β resulted in a significantly increased of this protein.  It 

was concluded that estrogen appeared to regulate the secretion of lactoferrin from the 

epididymis of post-pubertal stallions.  This correlates with previous research in humans 

and mice that demonstrated that lactoferrin upregulated in the epididymis of the immature 

mouse under estrogen supplementation [156, 157]. 

In the female, lactoferrin has been shown to be estrogen dependent in the human, 

monkey, mouse, rate, and equine endometrium [144, 158, 159].  In the equine model, 

Kolm et al. found that the stage of the estrous cycle in mares had a significant effect on 

the level of transcription for lactoferrin. Transcription was 5500-fold higher during 

estrus when compared to diestrus.  It was also found in this study that mares susceptible 

to PBIE had increased levels of lactoferrin transcription throughout their cycle when 

compared to normal mares, and this reached statistical significance during proestrus. 

This increase in lactoferrin in the susceptible mare was found to correlate with the 

number of uterine glands and not the increased number of CD18+ leukocytes. These 

studies suggest that lactoferrin is estrogen dependent also in horses. 

1.7.3 CRISP-3 
Although found to be regulated by androgens in both the human and murine 

models, no studies have been performed on the androgen or estrogen regulation of 
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CRISPs in the horse.  It was demonstrated in the murine model that castrated males 

showed a significantly decreased expression of CRISP-3 in the salivary gland than intact 

males [160]. This was further investigated via the administration of a gonadotropin- 

releasing hormone (GnRH) antagonist, where both CRISP-1 and CRISP-3 expression 

was markedly reduced in the salivary gland, while CRISP-2 expression in the testis was 

not effected [161].  In this same study, female mice were ovariectomised and 

supplemented with testosterone propionate before having their salivary glands analyzed 

by RT-PCR where CRISP-1 and CRISP-3 expression were notably increased, suggesting 

that both CRISP-1 and CRISP-3 are androgen dependent in the salivary gland, where 

they are primarily expressed in this species. 

More notably, CRISP-3 is being used as an androgen dependent biomarker in 

diseases of the immune system in humans, such as Sjӧgren’s Syndrome (SS).  A disease 

of the exocrine glands that causes keratoconjunctivitis sicca (dry eyes) and xerostomia 

(dry mouth), it is primarily seen in older females [162].  In the human model, it has been 

shown that dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT) up regulate 

the expression of CRISP-3, and that this pathway seems to be defective in patients with 

SS [163].  Because patients with SS are unable to produce adequate amounts of DHEA 

and DHT, they are unable to produce normal amounts of CRISP-3 in the salivary gland, 

and physicians can use the expression of CRISP-3 as an androgen dependent biomarker 

to assist in their diagnosis of this disease. 

1.8 Conclusions 
Semen deposition occurs directly into the uterus of the mare, and this causes an 

innate transient immune response. Mares that are able to clear the resulting inflammation 
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within 24-36 hours are considered resistant to PBIE.  However, a subset of mares are 

unable to clear the uterus from inflammation in a timely fashion, and this is an important 

cause of infertility in horses. This response is characterized by an influx of pro- 

inflammatory cytokines from the lumen, which recruit PMNs to begin the phagocytosis 

of excess spermatozoa as well as the trigger for synthesis of prostaglandins to initiate the 

contractility required to clear the uterus in preparation for embryo implantation. This 

neutrophil response is both rapid and transient, and the seminal plasma that carries the 

spermatozoa appears to play a key role in this action. Seminal plasma derived lactoferrin 

was shown to promote the binding of PMNs to dead sperm whereas the seminal plasma 

protein CRISP-3 was found to suppress this phagocytosis of viable sperm, and is 

theorized to help escort them to the oviduct in order to reach the ovulated oocyte. 

Therefore, we hypothesize that these select seminal plasma proteins will have an effect 

on aspects of the innate immune response to breeding in both the normal and diseased 

mare. 
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2.1 Abstract 
The seminal plasma protein cysteine-rich secretory protein-3 (CRISP-3) has been 

correlated with increased fertility and first cycle conception rates, and has been suggested 

to be involved in the immune response to breeding in the horse. Previous research 

demonstrated that equine CRISP-3 is located in both the ampulla of the vas deferens and 

the seminal vesicles. However, this was done with non-quantitative laboratory techniques. 

In humans and rodents, CRISP-3 has been described as an androgen-dependent protein, 

but the effect of androgens on the expression of CRISP-3 has not been investigated in the 

horse. The objectives of this study were to a) confirm and quantify the expression of 

CRISP-3 in the male equine reproductive tract, b) describe the localization of CRISP-3 

within the specific tissues which express it, and c) determine if expression of CRISP-3 

increases after puberty. We hypothesized that expression of CRISP-3 would be expressed 

in the ampulla of the vas deferens and the seminal vesicles, and expression would increase 

after puberty. Tissues were collected postmortem from three prepubertal colts (< six 

months) and six postpubertal stallions (> 3 years). Tissue samples were collected from the 

ampulla of vas deferens, seminal vesicles, bulbourethral gland, prostate gland, testis, as 

well as the cauda, corpus, and caput aspects of the epididymis. qPCR and 

immunohistochemistry (IHC) were performed using an equine specific CRISP-3 designed 

primer and monoclonal antibody. A mixed linear additive model was used to compare 

mRNA expression between age groups, and significance was set to P<0.05. There was a 

significant interaction between maturity and tissue type. mRNA expression of CRISP-3 

was found primarily in the ampulla of the vas deferens with lesser expression in the seminal 

vesicles.  Expression of CRISP-3 was higher in the postpubertal stallion when compared 

to the prepubertal colt for the ampulla (P<0.0001) and seminal vesicles (P=0.0013).  IHC 
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showed that equine CRISP-3 is primarily located in the glandular aspects of both the 

ampulla of the vas deferens and the seminal vesicles, with staining concentrated in the 

cytoplasm of the epithelial cells that surrounded the glands of the mucosa. CRISP-3 was 

only observed in the postpubertal male horse, suggesting that puberty plays a role in 

activation of equine CRISP-3 expression. 

2.2 Introduction 
Seminal plasma proteins play an important role in many aspects of reproduction 

including sperm maturation and transport, fertilization, as well as the inflammatory 

response to breeding [11, 98, 164]. Previous studies have found that a portion of the 

protein content of seminal plasma is regulated by androgens and estrogens.  In a study 

done by McDowell et al. (1996), it was found that certain seminal plasma protein groups 

were more prominent in the stallions with testosterone in their systems, as both the intact 

stallions and geldings that were supplemented with testosterone showed increased protein 

content [154]. Unfortunately, data on the specific proteomics of equine seminal plasma 

was unavailable at this time.  It was therefore concluded that future studies should be 

performed on the effect of androgens on the specific proteins within seminal plasma, but 

minimal work has been done to date. 

One seminal plasma protein of interest, cysteine-rich secretory protein-3 (CRISP- 

3), is found in the equine ejaculate at a higher concentration than in any other species 

studied (1mg/mL), and is associated with many markers of reproductive wellness [105]. 

CRISP-3 has been found to correlate with first cycle conception rates, and the modulation 

of polymorphonuclear neutrophil (PMN)-binding and phagocytosis of spermatozoa 

during the inflammatory response to breeding [11, 120, 121]. Although these studies 
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show CRISP-3 correlating with aspects of reproduction, there is minimal data 

demonstrating the pathway through which CRISP-3 acts. 

In humans and rodents, CRISP-3 has been described as an androgen-dependent 

protein.  In a study by Haendler et al. (1993), castrated male mice showed a significantly 

suppressed expression of CRISP-3 in the salivary gland in comparison to intact males 

[160]. This was further investigated via the administration of a gonadotropin-releasing 

hormone (GnRH) antagonist, causing both CRISP-1 and CRISP-3 expression to be 

markedly reduced in the salivary gland, while CRISP-2 expression in the testis was not 

affected [161].  When testosterone propionate was supplemented after the 

implementation of the GnRH antagonist, CRISP-3 expression was restored.  In the same 

study, female mice were ovariectomised and supplemented with either estrogen or 

testosterone propionate.  Testosterone propionate significantly increased the expression 

of CRISP-1 and CRISP-3, whereas estrogen had no effect, suggesting that both are solely 

androgen dependent. 

While the salivary gland of the horse also has been found to express CRISP-3, our 

primary focus is on the expression of CRISP-3 within the reproductive tract.  In other 

species, the protein is found predominantly in the epididymis and prostate, but previous 

research finds equine CRISP-3 primarily located in the ampulla of the vas deferens with a 

more moderate amount expressed in the seminal vesicles [105]. The equine differs from 

other species in the concentration of CRISP-3 synthesized, as well as the localization of 

its expression, making inferences with other species difficult to make. 
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Therefore, the objectives of this study were to a) confirm and quantify the amount 

of CRISP-3 mRNA transcript present in the ampulla and seminal vesicles of the mature 

stallion, b) describe the localization of CRISP-3 protein in the specific tissues via 

immunohistochemistry, and c) determine if CRISP-3 expression is up-regulated in the 

tissues of the postpubertal horses when compared to the prepubertal. We hypothesize 

that the pubertal transition in the male horse, which is controlled by an increased 

synthesis of androgens, will have an effect on the expression of equine CRISP-3 in the 

reproductive tract of the male horse. 

2.3 Materials and Methods 
 

2.31 Tissue Collection 
For quantitative real-time polymerase chain reaction (qPCR) and 

immunohistochemistry (IHC), three prepubertal (<six months) and six postpubertal 

(>three years) animals were used. Reproductive tracts were collected from normal males 

of mixed breeds post mortem. Reproductive tracts were divided into eight parts: the 

ampulla of the vas deferens, bulbourethral gland, prostate gland, seminal vesicles, testis, 

and the caput, corpus and cauda of the epididymis.  Tissues were fixed in 4% 

paraformaldehyde (w/v) for immunohistochemistry (IHC) or RNALater (Applied 

Biosystems, Carlsbad, CA, USA) for qPCR. 

2.32 Quantitative Polymerase Chain Reaction Analysis 
Total RNA was extracted from 50 mg of tissue using TRIzol® Reagent (Invitrogen, 

Carlsbad, CA, USA) as described by the manufacturer. Total RNA was precipitated 

using sodium acetate and isopropanol, resuspended in ddH2O and DNAse treated (DNA- 

free™, Applied Biosystems), and then analyzed for quantity and quality via a 

NanoDrop® spectrophotometer (Thermo Scientific, Wilmington, DE, USA). RNA was 
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reverse transcribed and qPCR was performed as described by Fedorka et al. [165]. 

Briefly, 1.5 μg of RNA in 41.5 μL ddH20 was reverse transcribed using Promega 

reagents; 0.5 μL AMV Reverse Transcriptase, 16 μL 5x RT Buffer, 1 μL RNAsin®, 16 

μL MgCl, 4 μL dNTP, and 1μL Oligo(dT) Primer (Promega, Madison, WI, USA). 

Samples were incubated at 42°C for 60 minutes followed by 95°C for 5 min. 

Primer/probe sequences are shown in Table 2.1.  cDNA was diluted 1:1 with ddH20, and 

qPCR was performed using 4.5 μL of cDNA, 5μL of Sensimix™ II (Bioline, Tauton, 

MA, USA) and 0.5 μL of a custom primer/probe set from Applied Biosystems. 

Reactions were performed in duplicate with GAPDH as the reference gene using the 

ViiA 7 Real-Time PCR System (Applied Biosystems, Grand Island, NY, USA) [166]. 

Samples were incubated at 95°C for 10 min, followed by 45 cycles of 95°C for 15 sec 

and 60°C for 60 sec.  PCR efficiencies were calculated using LinRegPCR (version 

2013.0).  Results were expressed as the mean relative quantification value (RQ) which 

were calculated using the 2-ΔΔCT method as described by Livak and Schmittgen, with the 

calibrator as the mean cycle threshold (ΔCT) value of all prepubertal horses from the 

specific tissue utilized [167]. 

 
2.33 Immunohistochemistry 

Immunohistochemical staining was performed using the monoclonal mouse anti- 

equine CRISP-3 antibody derived from the HL2175 line (University of Florida’s 

Hybridoma Core Lab; Gainesville, Florida).  Tissue sections of 5μm were cut from 

paraffin blocks.  Slides were stained following the manufacturers protocols of the Bond 

Polymer detection systems (Leica Biosystems) as previously described by Klein et al. 

[168].  The liver from a mature intact male was used as a negative control.  Briefly, this 
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involved an initial automated dewaxing and rehydration step, followed by heat-induced 

antigen retrieval (100°C for 20 min) with ethylenediaminetetraacetic acid (EDTA)-based 

ready-to-use solution (Leica Biosystems) at a pH of 8.8. The slides were then incubated 

with 3% hydrogen peroxide (5 min), diluted primary antibody (15-30 min), a post- 

primary blocking reagent to prevent nonspecific polymer binding (8 min), horseradish 

peroxidase-labeled polymer (8 min), and diaminobenzidine substrate (10 min). 

The primary antibody was diluted 1:200 using Bond Primary Antibody Diluent 

(Leica Biosystems).  Washing steps between each reagent were performed using Bond 

Wash Solution 10x Concentrate (Leica Biosystems) diluted to a 1x working solution with 

distilled water. 

2.34 Statistical Analysis 
For the qPCR data, analysis was performed using SAS 9.4 (SAS Institute INC., Cary, NC, 

USA). A mixed linear additive model with maturity and tissue type as fixed effects, and 

stallion as random was analyzed with proc glm.  Data was tested for normality using both 

a Bartlett’s and Modified Levine’s test, and RQ values were square root transformed for 

normality. An analysis of variance was done on the main effects of maturity and tissue 

type with post hoc analysis performed using a Duncan’s test.  Significance was set to P ≤ 

0.05.  Data are presented as the untransformed means ± the standard error of the mean. 
 
 

2.4 Results 
Using the ΔΔCT method, expression levels of equine CRISP-3 analyzed by qPCR 

were calculated relative to the levels seen in prepubertal horses (Fig. 2.1). There was a 

significant interaction between maturity (prepubertal and postpubertal) and tissue when 

comparing the mRNA expression of CRISP-3 in the tissues of the reproductive tract 
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(P<0.0001). The main effects were spliced out and analyzed individually, and a difference 

in the mRNA expression of CRISP-3 was observed in the postpubertal stallion (P<0.0001) 

but not the prepubertal colt (P=0.0746). 

 
The tissue with the highest level of mRNA expression of CRISP-3 was the ampulla 

of the vas deferens. There was a significantly higher mRNA expression of CRISP-3 in the 

ampulla of the postpubertal stallion than the prepubertal colt (P<0.0001). A similar 

increase in the mRNA expression was seen in the seminal vesicles of the postpubertal 

stallion (P=0.0013). There were no significant differences in the level of mRNA 

expression of CRISP-3 when examining the bulbourethral gland, prostate gland, testis, or 

the cauda, corpus, or caput aspects of the epididymis, with minimal expression in both the 

prepubertal and postpubertal males seen (Fig 2.1). 

 
Equine CRISP-3 immunolabelling was observed in the ampulla of the vas deferens 

of the postpubertal stallion (Fig 2.2A) as well as in the seminal vesicles (Fig 2.2B). A 

strong immunolabelling was detected in epithelial cells surrounding the glands of the 

ampulla. This staining was restricted to the cytoplasm of the epithelial cells and not 

detected in the nucleus (Figure 2.2E). The strongest immunolabelling was present in the 

mucosa directly surrounding the lumen of the ampulla, with minimal staining detected 

between the lumen and the muscularis. The majority of glands within the ampulla of the 

vas deferens of the postpubertal male horse stained positive for CRISP-3 (Fig 2.2A). The 

muscularis also showed strong immunolabelling for CRISP-3. The ampulla of the vas 

deferens in the prepubertal colt showed no labeling for CRISP-3 (Fig 2.2C). 
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The seminal vesicles showed expression for CRISP-3 primarily in the secretory 

epithelium of the mucosal folds (Fig 2.2B). Similar to the ampulla, this labeling occurred 

in the cytoplasm of the epithelial cells, but did not occur in the nucleus (Fig 2.3B). 

Immunolabelling of the seminal vesicles occurred throughout the tissue, and was present 

where glandular distribution was notable. This expression was not seen in the seminal 

vesicles of the prepubertal colt (Fig 2.2D). Immunolabeling was not observed in the other 

tissues examined, including bulbourethral gland, testis, as well as the cauda, corpus, and 

caput aspects of the epididymis in either the postpubertal stallion or prepubertal colt (data 

not shown). 

 
The salivary gland of a postpubertal male also showed expression for CRISP-3 (Fig 

2.3) while the prepubertal salivary gland did not. This was seen throughout the gland 

wherever glandular distribution was present. Similar to the other tissues, the cytoplasm of 

the cells stained positive, while the nuclei did not. 
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Figure 2.1: Relative Quantification (RQ) of mRNA expression of equine CRISP-3 in 
the male reproductive tract.  Accessory sex glands, epididymis, and testis in 
prepubertal (<six months, n=3) and postpubertal (>three years, n=6) male horses. Along 
the x-axis is ampulla of the vas deferens, bulbourethral gland, caput epididymis, cauda 
epididymis, corpus epididymis, prostate gland, seminal vesicles, testis, liver (negative 
control), and salivary gland (positive control).  The gene expressions are normalized to 
GAPDH and displayed as average RQ ± SEM. Significance was set to P<0.05, and 
differences in expression are indicated as an *. 
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Figure 2.2: Immunohistochemical staining for equine CRISP-3 in the ampulla of the 
vas deferens and the seminal vesicles. Utilizing the monoclonal mouse anti-equine 
CRISP-3 antibody HL2175 at a dilution of 1:200. (A) ampulla of the postpubertal 
stallion at 20x, (B) seminal vesicles of the postpubertal stallion at 20x, (C) ampulla of the 
prepubertal stallion at 20x, (D) seminal vesicles of the prepubertal stallion at 20x, (E) 
ampulla of postpubertal stallion at 63x, and (F) seminal vesicles of the postpubertal 
stallion at 63x. 
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Figure 2.3: Immunohistochemical staining for equine CRISP-3 in the salivary gland 
of the postpubertal male horse. Utilizing the monoclonal mouse anti-equine CRISP-3 
antibody HL2175 at a dilution of 1:200 at a magnification of 20x. 

 
 
 

2.5 Discussion 
The present study demonstrates that equine CRISP-3 is expressed primarily in the 

ampulla of the vas deferens of the mature male, and to a lesser degree the seminal 

vesicles.  These findings corroborate with previous work done by Schambony et al. 

(1998) where both reverse transcriptase polymerase chain reaction (RT-PCR) and 

western blot demonstrated that mRNA as well as the protein expression were located in 

the ampulla of the vas deferens, the seminal vesicles, as well as the salivary gland of the 

adult male [105].  In our study, we utilized real time quantitative polymerase chain 

reaction (qPCR) and immunohistochemistry (IHC) to both confirm the previous study as 

well as quantify the expression.  There was an increased mRNA expression of CRISP-3 

in both the ampulla of the vas deferens as well as the seminal vesicles in the postpubertal 
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male when compared to the prepubertal colt. The expression of CRISP-3 in the ampulla 

was 300-fold higher in expression in the postpubertal male horse compared to the 

prepubertal male horse, 10-fold higher than the expression of the other tissues in the 

postpubertal male horse, 5-fold higher than the mature male salivary gland, and 3-fold 

higher than the expression of CRISP-3 in the seminal vesicles, the only other 

reproductive tissue studied that exhibited expression. 

Equine CRISP-3 is of interest in the male reproductive tract due to its secretion in 

the seminal plasma being correlated with many markers of reproductive wellness. The 

genotype of stallions for the CRISP-3 gene has been shown to correlate with increased 

fertility.  In a study by Hamann et al. (2007) it was shown that Hanoverian stallions 

express 52 polymorphic sites for CRISP-3, with the E208K polymorphism having a 

significant correlation with fertility.  Homozygosity for the specific genotype c.+622G, 

where a single nucleotide exchange from lysine to glutamine occurs, was found to be 

responsible for the correlation with increased fertility [120].  A study done by Novak et 

al. (2010) found that increased amounts of equine CRISP-3 in the ejaculate correlated 

with increased first cycle conception rates [121]. Increased concentrations of CRISP-3 in 

the seminal plasma have also been shown to correlate with high semen freezability [122]. 

While many studies have indicated a role for CRISP-3 in stallion fertility and 

reproductive function, minimal information has elucidated the pathways that this protein 

is involved with, and therefore determining its expression, localization, and regulation is 

imperative. 

IHC staining utilizing a monoclonal mouse anti-equine CRISP-3 antibody further 
 

confirmed the qPCR results.  Expression of CRISP-3 was found in both the ampulla of 
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the vas deferens as well as the seminal vesicles of the postpubertal male. No staining for 

CRISP-3 was detected in any other postpubertal tissues, as well as any prepubertal male 

tissues.  In the ampulla of the vas deferens, immunolabelling was detected in the mucosa 

directly surrounding the lumen of the ampulla, with the staining concentrated in the 

epithelial cells lining the glands. The staining intensity was similar in both the ampulla of 

the vas deferens and the seminal vesicles, which challenges our findings utilizing qPCR, 

where the ampulla was the major contributor to CRISP-3 expression. It should be noted 

that IHC represents a single moment in time, and is not a quantitative representation of 

protein expression.  Both tissues showed immense staining within the glandular 

compartments, which may be suggestive of the secretory aspect of this protein. 

The intense staining in the seminal vesicles as well as the ampulla of the vas 

deferens could correlate with the concentration of CRISP-3 that has previously been 

documented in the equine ejaculate [105]. In humans, CRISP-3 is primarily localized to 

the epididymis, with a more moderate amount in the prostate, testis, and vas deferens. As 

this study demonstrates, the localization of CRISP-3 in the equine male reproductive tract 

differs from other species. In addition, equine CRISP-3 is found in the ejaculate at an 

immense concentration of 1mg/ml, which is unique to the species, and differs greatly 

from the average concentration in the human ejaculate at 11ug/mL [105, 112].  It has 

been well documented that the accessory sex glands, in which the ampulla of the vas 

deferens is commonly included with, are the primary source of the fluid portion of the 

ejaculate.  The immunolabelling of CRISP-3 within the glandular aspects of two of these 

secretory glands may be indicative of its uniquely heightened concentration in the equine 

ejaculate. 
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There was negligible detection of equine CRISP-3 in any of the tissues 

investigated of the prepubertal male.  This indicates that equine CRISP-3 may be similar 

to murine and human CRISP-3 in its regulation by androgens [160, 161, 169]. In a study 

by Haendler et al. (1997), male mice were treated with the gonadotropin-releasing 

hormone (GnRH) antagonist Ac-DNapAla-DClPhAla-DPyrAla-Ser-Tyr-DCtly-Leu- 

Lys(Mor)-Pro-DAla-NH2, and then supplemented with testosterone propionate (TP) to 

determine androgen dependency [161].  It was determined in the study that CRISP-3 was 

androgen dependent, as its expression increased with testosterone supplementation.  In 

the same study, female mice were ovariectomized and supplemented with either estrogen 

(E2) or TP to evaluate both androgen and estrogen dependency. The expression of 

CRISP-3 in female mice was found to be androgen dependent, but not estrogen 

dependent. 

This has been further investigated in the human, where two regions within the 

human CRISP-3 gene share strong homology with androgen response elements (ARE’s). 

In a study by Laine et al. (2007), human CRISP-3 mRNA expression in the salivary 

gland was found to be controlled by dihydroepiandrosterone (DHEA) [169]. Because of 

its regulation by androgens, human CRISP-3 is now being utilized as a biomarker for 

androgen-dependent diseases, such as Sjögrens Syndrome and prostate cancer [169, 170]. 

The present study demonstrated that puberty, and its concurrent increase in both 

androgens and estrogens, plays a role in the expression of equine CRISP-3 in the male 

reproductive tract.  Further studies are required to elucidate if equine CRISP-3 expression 

is actually regulated specifically by either androgens or estrogens. 
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In conclusion, equine CRISP-3 is found primarily in the ampulla of the vas 

deferens, with a more moderate expression in the seminal vesicles of the mature male 

reproductive tract.  In both tissues, it is found in the cytoplasm of the epithelial cells, 

which line the glands, as well as secreted within the glands of the mucosa.  Its 

localization to the accessory sex glands may be contributory in the immense 

concentration that it is found in the average equine ejaculate.  Expression of both protein 

as well as mRNA transcript was exclusive for the postpubertal male horse, with 

negligible expression in the prepubertal colt. This indicates that equine CRISP-3 may be 

similar to murine and human CRISP-3, that are both androgen dependent, but further 

investigation is required to confirm this. 
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3.1 Abstract 
The innate immune response to breeding in the mare is essential for effective uterine 

clearance of excess spermatozoa and bacteria. The resulting response is modulated via a 

cascade of signaling molecules, specifically cytokines.  The effects of freeze-killed 

spermatozoa, extender, and bacteria on pro- and anti- inflammatory cytokine mRNA gene 

expression have been compared within and between susceptible and resistant mares. 

However, data is lacking on the possibility of a difference in the immune response 

following insemination with live versus dead spermatozoa. Therefore, the objective of 

this study was to examine the expression of IL-1β, IL-1RN, IL-6, IL-8, and IL-10 in 

endometrial tissue after insemination with either 1x109 progressively motile or 1x109 

freeze-killed sperm.  We hypothesized that there would be no difference in the immune 

response of the uterus after insemination with either live or dead spermatozoa. Semen 

was collected and pooled from 2 stallions, centrifuged to remove seminal plasma, and 

resuspended in 30 mL Equipro extender (Minitube of America, Verona, WI).  Four mares 

were inseminated in estrus over two consecutive cycles in randomized order. Culture and 

cytology examinations were performed prior to insemination to rule out the presence of 

existing inflammation. An endometrial biopsy was obtained at the base of the uterine 

horn at 6 hours post-breeding for qPCR analysis of select pro- and anti- inflammatory 

cytokines. A one-way ANOVA was used to compare mRNA expression between the 

treatment groups, and significance was set to P<0.05.  The mRNA expression of IL-6 was 

increased when mares were infused with dead in comparison to live sperm (P=0.049). 

No significant difference was found between the treatment groups for the mRNA 

expression of IL-1β, IL-1RN, IL-8, and IL-10.  The cause of the increased expression of 
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IL-6 following insemination with dead sperm was not determined under the condition of 

this study. A possible explanation is the loss or relocation of sperm proteins that are 

involved in regulation of uterine inflammatory responses. In conclusion, there was a 

limited but significant effect on the innate immune response of the uterus following 

breeding with varying inseminants. 

 
 

3.2 Introduction 
In the horse, the deposition of semen directly into the uterus at the time of 

breeding causes a transient innate immune response. Described as breeding-induced 

endometritis, this inflammation begins by an increase in the expression of pro- 

inflammatory cytokines.  These cytokines then signal the recruitment of immune cells 

such as the polymorphonuclear neutrophils (PMNs), which bind to and digest excess 

spermatozoa and contaminating pathogens. Exposed to spermatozoa by either the 

neutrophil extracellular traps (NETs) or an unidentified receptor/ligand mechanism, the 

PMNs create large cellular aggregates that are proposed to interfere with sperm transport 

[50].  This is followed by an increased synthesis of anti-inflammatory cytokines, which 

are thought to resolve this inflammation. The majority of mares are able to accomplish 

this resolution within 24-36 hours after breeding, and these mares are considered resistant 

to persistent breeding-induced endometritis (PBIE) [5, 49]. In contrast, it was found that 

10-15% of the thoroughbred mare population in Central Kentucky are unable to resolve 

this inflammation in a timely fashion, and are considered susceptible to the disease of 

PBIE [6]. 
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Numerous studies have evaluated the differences between and within the 

inflammatory process of the resistant and susceptible mare.  In a study by Woodward et 

al., it was shown that susceptible mares experienced an inherently different innate 

immune response to breeding than the resistant [9]. Six hours after the insemination of 

freeze-killed sperm susceptible mares had significantly suppressed mRNA expression of 

the anti-inflammatory cytokines interleukin (IL)-10 and IL-1 receptor antagonist (IL- 

1RN), as well as the inflammatory modulating cytokine IL-6. Christoffersen et al. (2012) 

found that resistant mares have an up-regulation of the pro-inflammatory cytokines IL-1β, 

IL-8, IL-6, and tumor necrosis factor (TNF)-α at three hours after the inoculation with 

Escherichia coli [21].  In addition, many studies have shown the effect of 

immunomodulators, ecbolics, and lavage, on the severity of PBIE, with bacterial 

inoculation, as well as fresh, cooled, and frozen semen being used as the inducer of 

inflammation [171-173]. In addition, lipolysaccharide has been utilized to induce uterine 

inflammation in other species [36]. 

A variety of foreign molecules including bacteria, seminal plasma, spermatozoa, 

as well as sterile solutions have been shown to cause an inflammatory response in the 

uterus of the mare [174, 175].  Numerous studies have investigated this response by 

examining the expression of signaling molecules such as cytokines, enzymes, and 

immune modulating cells, but with considerable variation between insemination 

protocols, time points, and outcomes. 

Minimal research has investigated the effect of varying insemination or 

inflammation inducing protocols on the immune response. It has been shown that 

artificial insemination with frozen semen causes an increase in leukocyte count, and this 



55 

 

 

was hypothesized to be due to the increase in dead sperm within the insemination dose of 

frozen semen [19].   In addition, we have recently shown that the viability of spermatozoa 

has an effect on PMN binding.  However, Katila et al. (1997) demonstrated that the 

viability of sperm had no effect on neutrophil numbers, endometrial edema, or vaginal 

discharge at five hours after breeding [176]. With minimal, and at times contrasting, work 

on this subject, further investigation is required. Therefore, the objective of this study was 

to evaluate the effect of inseminating live versus dead spermatozoa at six hours after 

breeding on the expression of selected cytokines associated with inflammation. 

3.3 Materials and Methods 
 

3.3.1 Insemination of Live Versus Dead Spermatozoa 
 

3.3.11 Mares 
Four reproductively normal mares of mixed breeds and age (5-20 yr) qualified for the 

study and were kept on grass pasture with grain supplementation and access to water and 

minerals ad libitum at the University of Kentucky’s Maine Chance Farm in Lexington, 

KY, USA. All experimental procedures were approved by the Institutional Animal Care 

and Use Committee of the University of Kentucky (protocol number 2013-1070). 

 
3.3.12 Semen Collection and Isolation of Fresh Spermatozoa 
Semen was collected from two stallions by the use of a Missouri model artificial vagina 

(Nasco, Fort Atkinson, WI, USA) equipped with a gel filter (Animal Reproductive 

Systems, Chino, CA, USA). Only samples with >60% progressively motile sperm were 

utilized. Semen was centrifuged at 1600xg for 5 min, and the supernatant was removed. 

After centrifugation, sperm samples were adjusted to a total concentration of 1x109 

spermatozoa in 30mL Equipro® extender (MOFA Global, Verona, WI, USA).  The live 

spermatozoa treatment was kept at room temperature (23-25°C) until insemination, but 
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for no longer than 15 min. The freeze-killed treatment was processed through freeze/thaw 

cycles to render the sperm non-viable. At least twice, the aliquots were exposed to -20°C 

and then brought back to room temperature repeatedly. Freeze-killed samples were stored 

at -20°C, and thawed slowly to room temperature (23-25°C) before insemination. 

 
3.3.13 Insemination of Spermatozoa 
Mares were examined daily via rectal palpation and ultrasonography of their reproductive 

tracts for follicular development, endometrial edema, as well as uterine and cervical tone. 

When the presence of a preovulatory follicle was noted (>35mm) combined with reduced 

uterine tone, increased endometrial edema, and a relaxed cervix, mares were evaluated 

for the presence or absence of inflammation by endometrial cytology and bacterial 

cultures [177]. A positive cytology was defined as greater than 2 PMNs observed for 

every 100 epithelial cells, and a positive culture defined as any bacterial growth after 24 

hours of incubation.  Only mares clear of inflammation were inseminated. Over the 

course of two estrous cycles, mares were inseminated with one of the following 

treatments in randomized order: (1) 1x109 progressively motile spermatozoa in 30mL 

milk-based extender; or (2) 1x109 freeze-killed spermatozoa in 30mL milk-based 

extender. Mares received 3000 IU of human chorionic gonadotropin (hCG; Intervet 

International B.V., Boxmeer Holland) intravenously at the time of insemination to 

standardize the interval between insemination and ovulation.  Endometrial biopsies were 

collected six hours after insemination with sterile alligator jaw biopsy forceps and the 

endometrium was stored in RNALater® (Applied Biosystems, Carlsbad, CA, USA) 

overnight at 4°C, and then transferred to -20°C until further processing. Mares were 

monitored for ovulation daily, treated with 7.5 mg of intramuscular prostaglandin F2a 
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(PGF2a; Lutalyse, Pfizer, New York, NY, USA) at 7 days post ovulation, and submitted 

to subsequent treatment in the following estrus. 

 
 
 

3.3.2 Quantitative Polymerase Chain Reaction Analysis 
Total RNA was extracted from 50mg of endometrial tissue using TRIzol® Reagent 

(Invitrogen, Carlsbad, CA, USA) as described by the manufacturer. Total RNA was 

precipitated using sodium acetate and isopropanol, resuspended in ddH2O and DNAse 

treated (DNA-free™, Applied Biosystems) and then analyzed for quantity and quality via 

a NanoDrop® spectrophotometer (Thermo Scientific, Wilmington, DE, USA). RNA was 

reverse transcribed and qPCR was performed as described by Woodward et al. [9]. 

Briefly, 1.5μg of RNA in 41.5 μL ddH20 was reverse transcribed using Promega 

reagents; 0.5 μL AMV Reverse Transcriptase, 16 μL 5x RT Buffer, 1 μL RNAsin®, 16 

μL MgCl, 4 μL dNTP, and 1μL Oligo(dT) Primer (Promega, Madison, WI, USA). 

Samples were incubated at 42°C for 60 minutes followed by 95°C for 5 min. cDNA was 

diluted 1:1 with ddH20, and qPCR was performed using 4.5 μL of cDNA, 5μL of 

Sensimix™ II (Bioline, Tauton, MA, USA) and 0.5μL of a custom primer/probe set from 

Applied Biosystems.  Reactions were performed in duplicate with Beta-actin (ACTB) as 

the reference gene using the ViiA 7 Real-Time PCR System (Table 3.1: Applied 

Biosystems, Grand Island, NY, USA).  Samples were incubated at 95°C for 10 min, 

followed by 45 cycles of 95°C for 15 sec and 60°C for 60 sec. PCR efficiencies were 

calculated using LinRegPCR (version 2013.0). Results were expressed as the mean 

relative quantification value (RQ) which were calculated using the 2-ΔΔCT method as 

described by Livak and Schmittgen, with the calibrator as the mean cycle threshold (ΔCT) 
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value of the negative control (LRS and 1x109 spermatozoa) collection from all mares 

[167]. 

 
3.3.3 Statistical Analysis 
Data were analyzed using SigmaPlot 12.3 (SyStat, San Jose, CA, USA) and log 

transformed for normality.  Comparisons were made between treatments using the mean 

± the standard error via a one-way ANOVA with post hoc analysis performed using a 

Fisher’s protected least significant difference (LSD) test and significance was set to P ≤ 

0.05. Data are presented as the mean ± the standard error of the mean. 
 

3.4 Results 
The endometrial mRNA expression for the pro-inflammatory cytokines IL-1RN, 

IL-1β, IL-8, and IL-10 were not significantly altered between treatment groups (Fig 3.1). 

There was however, a reduction of expression of the inflammatory modulating cytokine 

IL-6 in the live spermatozoa treated group when compared to the dead spermatozoa 

treated group (P=0.049) (Fig 3.2). 

Time of ovulation was noted for all cycles after insemination. All of the mares 

ovulated within 36 hours after hCG was administered. None of the mares had a positive 

culture or cytology at the time of insemination, and therefore no rest cycles were 

required.  None of the mares presented with fluid retention 24 hours after insemination. 
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Table 3.1 Dual hydrolysis primer/probe set sequences for the detection of equine mRNA. 
Primer/probe sets were designed using Assays-By-Design (Applied Biosystems) 

 
 Cytokine  Forward primer 

sequence 5’-3’ 
 Reverse primer 
sequence 3’-5’ 

 Probe sequence  

 EqACTB  CTGGACTTCGAGC 
AGGAGATG 

 CGTCGGGCAGCTC 
GTA 

 CCGCGGCCTCCA 
GCT 

 

 EqIL1β  CCGACACCAGTG 
ACATGATGA 

 ATCCTCCTCAAAG 
AACAGGTCATTC 

 ATTGCCGCTGCAG 
TAAG 

 

 EqIL1RN  AGTTGCTGGATAC 
TTGCAAGAATCA 

 GAGTCCCAGGAAT 
AGAGCATCAG 

 CATCTATCTTCTC 
TTGTAATTTA 

 

 EqIL6  GGATGCTTCCAAT 
CTGGGTTCAAT 

 TCCGAAAGACCAG 
TGGTGATTTT 

 ATCAGGCAGGTC 
TCCTG 

 

 EqIL8  GCCGTCTTCCTGC 
TTTCTG 

 CCGAAGCTCTGCA 
GTAATTCTTGAT 

 CAACCGCAGCTTC 
AC 

 

 EqIL10  ATGCCCCAGGCT 
GAGAAC 

 CGGAGGGTCTTCA 
GCTTTTCC 

 CCAGACATCAAG 
GAGCACG 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Relative quantification (RQ) of mRNA transcripts of endometrial gene 
transcripts. Specifically IL-10, IL-1β, IL-1RN, and IL-8 after insemination with live or 
dead spermatozoa.  The gene expressions are normalized to β-actin and displayed as RQ 
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± SEM.  RQ values describe fold changes in each mare compared to the ΔCT value. 
There were no significant differences in any of the cytokines studied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Relative quantification (RQ) of mRNA transcript of endometrial IL-6 
after insemination with live or dead spermatozoa.  The gene expressions are 
normalized to β-actin and displayed as RQ ± SEM. RQ values describe fold changes in 
each mare compared to the ΔΔCT value. Significance set to p < 0.05 and * indicates 
significant differences between treatments.  Insemination of dead spermatozoa resulted in 
a significant increase in the endometrial mRNA expression of IL-6. 

 
 

3.5 Discussion 
The equine uterus undergoes a transient innate immune response to the deposition 

of semen at the time of breeding. Considerable work has gone into investigating this 

response to breeding by utilizing varying models and obtaining contrasting results. Many 

models have been applied to this topic in the research setting, including the infusion of 

common bacteria, with others studying the inflammatory response through the 

insemination of either fresh or freeze-killed sperm.  In addition, there exists the variable 

of the addition or exclusion of seminal plasma, varying extenders, and suspended in 

sterile solutions. With such variable methodology, extrapolating results to compare 

reports can be difficult. 
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While minimal work has gone into the comparison of these contrasting methods 

on the immune response, some of the individual infusions and insemination protocols 

have been studied.  The utilization of frozen semen in artificial insemination practices has 

been shown to significantly increase the leukocyte numbers, and this was found to be 

dependent on the added volume and concentration of spermatozoa [19]. Due to the high 

population of dead sperm (as high as 70%) seen post-thaw in the frozen semen 

insemination dose, it was also hypothesized that this increase in leukocyte numbers was 

due to the presence of the nonviable sperm. Therefore, Katila (1997) evaluated the effect 

of live versus dead sperm on a variety of outcomes, and found no significant effect of 

sperm viability on endometrial edema, neutrophil numbers, or vaginal discharge at 5 

hours post-breeding. It was concluded that the insemination of dead sperm had no effect 

on the inflammation seen post-breeding. 

Recently, the signaling pathways involved in the innate immune response to 

breeding have been investigated.  Uterine inflammation is activated by an increase in the 

expression of pro-inflammatory cytokines, specifically interleukin-1β (IL-1β), and tumor 

necrosis factor (TNF)-α, which peak around two hours post-breeding [9].  IL-1β, in 

addition to other pro-inflammatory cytokines such as interleukin-8 (IL-8) then signal the 

migration of the PMNs to the uterine lumen to begin phagocytosis of excess sperm and 

bacteria.  At this time, the uterus also begins undergoing myometrial contractions, 

signaled by an increase in prostaglandin-F2-alpha (PGF2α).  Finally, inflammation is 

resolved by an increase in the expression of the anti-inflammatory cytokines, specifically 

interleukin-1 receptor antagonist (IL-1RN), and interleukin-10 (IL-10), in addition to the 

inflammatory modulating cytokine interleukin-6 (IL-6) [9, 46, 178].  While this increase 
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in anti-inflammatory cytokines is most prominent at six hours post breeding, full 

resolution of residual inflammation occurs within 24-36 hours after the deposition of 

semen [9, 179]. 

In this study, the insemination of freeze-killed sperm significantly increased the 

endometrial mRNA expression of the inflammatory modulating cytokine IL-6.  Initially 

seen as pro-inflammatory early in the inflammatory response, at approximately 24 hours 

after the deposition of semen, IL-6 is essential for the transition from a neutrophilic 

response to a monocytic response, therefore modulating the preliminary inflammatory. 

While we are uncertain what instigates the significant increase in the endometrial mRNA 

expression of this cytokine, it may be correlated with the decreased functionality of the 

remaining seminal plasma proteins within the insemination dose post-thaw.  While the 

majority of the seminal plasma was removed via centrifugation, a small portion remained 

in the insemination dose.  Recent research has found two specific seminal plasma 

proteins, lactoferrin and cysteine-rich secretory-protein 3 (CRISP-3) to be involved in the 

binding of sperm to PMNs based on their viability [11, 123]. Studied in vitro, lactoferrin 

was shown to significantly increase the number of PMNs bound to dead sperm, while 

CRISP-3 was found to increase the binding of PMNs to live. Under the confines of this 

study, the presence and functionality of these specific proteins in vivo was not evaluated, 

but their role in the innate immune response in vitro should be considered. 

In conclusion, the insemination of freeze-killed sperm significantly increased the 

endometrial mRNA expression of the inflammatory modulating cytokine IL-6 in 

comparison to live.  To our knowledge, this is the first report suggesting that the viability 

of sperm may have a significant effect on the innate immune response seen in the uterus 
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of mare post-breeding.  While we are unsure what causes this increase at six hours post- 

breeding, it may explain the variability amongst results in the study of uterine 

inflammation when utilizing varying protocols. Future research is needed to fully assess 

the causation and implications of this effect. 
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4.1 Abstract 
The equine uterus undergoes a transient innate immune response after breeding, also 

known as breeding-induced endometritis.  The deposition of spermatozoa triggers the 

expression of pro-inflammatory cytokines, which results in the migration of 

polymorphonuclear neutrophils (PMNs) into the endometrium and the uterine lumen. 

Select seminal plasma proteins, specifically cysteine-rich secretory protein 3 (CRISP-3) 

and lactoferrin, have been shown to affect the activity of the PMNs, either by suppressing 

(CRISP-3) or promoting (lactoferrin) the phagocytosis of spermatozoa based on their 

viability in vitro.  Conjointly, many components of inseminate, including seminal plasma, 

bacteria, and spermatozoa itself, have shown to have an effect on the expression of 

endometrial cytokines after breeding. The objective of this study was to determine if 

select proteins affect the mRNA expression of endometrial cytokines after insemination. 

Six mares were bred during four consecutive estrous cycles with treatments in 

randomized order of: 1mg/mL CRISP-3, 150 ug/mL lactoferrin, seminal plasma, or 

Lactated Ringer’s Solution (LRS) to a total volume of 10mL combined with 1x109 

progressively motile spermatozoa pooled from two stallions. Six hours after treatment, 

an endometrial biopsy was obtained for qPCR analysis. No treatment effects were found 

for the mRNA expression of IL-1β, IL-6, IL-8, IL-10, TNF, and IFNγ, while lactoferrin 

significantly suppressed the mRNA expression of IL-1RN when compared to LRS. In 

conclusion, the seminal plasma proteins CRISP-3 and lactoferrin have minimal effect on 

the expression of select endometrial cytokines at 6 hours post breeding. 

4.2 Introduction 
Breeding-induced endometritis is a transient inflammatory response to 

spermatozoa that are deposited into the equine uterus at the time of breeding. 
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Characterized by an increase in the expression of pro-inflammatory cytokines, a subset of 

which signal the recruitment of polymorphonuclear neutrophils (PMNs) into the uterine 

lumen, this inflammatory response begins within 30 minutes after insemination [3-5]. 

Neutrophils are exposed to spermatozoa through neutrophil extracellular traps (NETs), 

and an unidentified receptor/ligand mechanism, which may interfere with sperm transport 

to the oviduct [50].  The reproductively healthy mare is able to fully clear the 

inflammation and excess spermatozoa, fluids, and bacteria from the uterus within 24 to 

36 hours after breeding, and is deemed resistant to persistent breeding-induced 

endometritis (PBIE) [4, 5]. Mares who fail to clear this transient inflammatory response 

are considered susceptible to PBIE, which persists for more than 72 hours after 

insemination, and may therefore be present when the embryo descends from the oviduct 

into the uterine lumen at 5 days after fertilization [4, 180].  Due to this lengthy 

inflammatory response, these mares have lower fertility rates, and are considered a great 

economic burden to the equine industry [181]. 

Mares resistant to PBIE have been found to have an up regulation in the 

expression of the anti-inflammatory cytokines interleukin-1 receptor antagonist (IL-1RN), 

interleukin-6 (IL-6), and IL-10 when compared to susceptible mares [9]. The authors 

concluded that six hours after insemination represents a critical time point in the further 

development of the inflammation, as it showed the most marked difference in the up 

regulation of anti-inflammatory cytokines.  They also concluded that the inflammatory 

response to insemination in susceptible and resistant mares were notably different, 

suggesting that susceptible mares have a defective ability to mount a transient innate 

immune response in the uterus. 
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Numerous studies have demonstrated that seminal plasma plays a role in the 

modulation of the innate immune response to breeding [74, 174, 182]. In a study done by 

Palm et al, seminal plasma without spermatozoa caused an up regulation in the mRNA 

expression of IL-1β, IL-6, tumor necrosis factor-α (TNF-α), as well as cyclooxygenase-2 

(COX-2) in the equine endometrium, and similar findings have been reported for mice, 

swine, and humans [75-78, 183]. All species showed an up regulation of granulocyte- 

macrophage colony-stimulating factor (GM-CSF), and both the mouse and swine also 

showed an increase in the expression of IL-6. In addition, seminal plasma appears to 

influence PMN-chemotaxis in vitro [184]. This data suggest that seminal plasma is 

involved in the inflammatory response to semen in the uterus, but no known mechanism 

has been described. While the inflammatory response to breeding has been widely 

studied, including the response to seminal plasma itself, less information is available on 

the components of the seminal plasma.  Recently, two seminal plasma proteins have been 

identified for their activity on the interaction of PMNs and sperm in vitro; cysteine-rich 

secretory protein-3 (CRISP-3) and lactoferrin. 

CRISP-3 is a 26kDa protein that is found at a concentration of greater than 

1mg/mL in seminal plasma, which makes it the most abundant seminal plasma protein in 

the equine ejaculate, differing from other species [105]. Stallion CRISP-3 positively 

correlates with many markers of reproductive wellness, including high semen 

freezability, first cycle conception rate, as well as increased fertility rates [120-122]. 

Furthermore, Doty et al suggested that equine CRISP-3 is involved in the selective 

transport of live sperm in the female reproductive tract, possibly by its suppression of the 

binding of PMNs to live spermatozoa [11]. This protective effect against PMN digestion 
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and elimination of live spermatozoa may explain CRISP-3’s association with increased 

fertility, but no in vivo studies to confirm this have been reported. 

Lactoferrin, an 80 kDA iron chelating protein with bactericidal properties, is 

found in most secretions in the body, including semen, saliva, and milk, as well as the 

epithelial lining of a variety of organs including the genital tract [141]. Lactoferrin is 

present in the stallion ejaculate at a concentration of approximately 150 ug/mL, and has 

been found to negatively correlate with stallion semen freezability as well as positively 

correlating with oligospermia in men [122, 125, 141].  In addition, we have previously 

observed that lactoferrin stimulates the binding of PMNs to dead spermatozoa in vitro in 

concentrations approximating those in semen [123].  It was suggested that the increased 

phagocytosis of nonviable spermatozoa in the presence of lactoferrin could assist with the 

clearance of the uterus post-insemination, readying it for survival, and eventual 

implantation, of the embryo. 

Although the effect of seminal plasma on the inflammatory response to breeding 

has been reported previously, investigations on the role of specific proteins within the 

seminal plasma are limited.  Therefore, the objective of this study was to determine the 

effect of CRISP-3 and lactoferrin on the mRNA expression of select cytokines that have 

previously been investigated in the endometrium of the uterus at six hours post- 

insemination after sperm induced inflammation. 



69 

 

 

4.3 Materials and Methods 
 

4.3.1 Insemination of Seminal Plasma Proteins 
 

4.3.11 Classification of Mares 
Reproductively normal mares were screened for resistance to persistent mating induced 

endometritis (PBIE) based on the following criteria: a) an endometrial biopsy that was 

examined for periglandular fibrosis, inflammatory cells, glandular distribution and 

lymphatic lacunae, and scored a I to IIa according to the Kenney and Doig scale [185], b) 

a negative culture and cytology at 0 and 48 hours pre- and post- insemination, and c) no 

intrauterine fluid accumulation at 48 hours post-insemination . Six mares of mixed 

breeds and age (5-20 yrs) qualified for the study and were kept on grass pasture with 

grain supplementation and access to water and minerals ad libitum at the University of 

Kentucky’s Maine Chance Farm in Lexington, KY, USA. For classification of resistance 

to PBIE, mares were inseminated in estrus with 1x109 freeze-killed spermatozoa 

suspended in 30 mL EquiPro® extender (>35 mm follicle, presence of uterine edema, 

and relaxed cervix).  All experimental procedures were approved by the Institutional 

Animal Care and Use Committee (IACUC) of the University of Kentucky under the 

protocol number 2013-1070. 

 
4.3.12 Semen Collection and Isolation of Fresh Spermatozoa 
Semen was collected from two stallions by the use of a Missouri model artificial vagina 

(Nasco, Fort Atkinson, WI, USA) equipped with a gel filter (Animal Reproductive 

Systems, Chino, CA, USA).  Semen was collected fresh on the day of insemination, and 

only samples with >50% progressively motile sperm were utilized. Semen from two 

stallions was pooled and centrifuged at 1,400x g for 15 min, and seminal plasma was 

discarded.  The sperm pellet was washed in lactated ringer’s solution (LRS), and 
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centrifuged again at 1,400x g for another 15 min. After centrifugation, sperm samples 

were adjusted to a concentration of 1x109 spermatozoa in LRS and kept at room 

temperature (23-25°C) until insemination, but for no longer than 15 min. 

 
4.3.13 Preparation of Seminal Plasma and Proteins 
Seminal plasma was prepared by centrifugation of fresh semen pooled from two stallions 

immediately after collection at 1,400x g for 15 min at room temperature to remove the 

spermatozoa. Ten mL of seminal plasma was added to the 1x109 spermatozoa dose 

immediately prior to insemination so that all seminal plasma samples were fresh. Human 

recombinant lactoferrin (ProSpec, East Brunswick, NJ, USA) was reconstituted in LRS at 

a concentration of 150 μg/mL (the average concentration found in the natural stallion 

ejaculate) and stored at -20°C until thawed at 38°C immediately before insemination 

[125].  Biological activity of human recombinant lactoferrin was confirmed by comparing 

its effect to equine lactoferrin on equine sperm-PMN binding via flow cytometry (Figure 

4.3), following the protocol previously described by Doty et al. [11] .  Equine CRISP-3 

was obtained from ejaculates pooled from five stallions and purified as described by Doty 

et al. [11], then stored with proteinase inhibitors at a concentration of 1mg/mL (the 

concentration found on average in the natural stallion ejaculate) in LRS at -20°C until 

thawed at 38°C via immediately before insemination [105]. 

 
4.3.14 Insemination of Seminal Plasma Proteins 
Mares were examined daily via rectal palpation and ultrasonography of their reproductive 

tracts for follicular development, endometrial edema, as well as uterine and cervical tone. 

When the presence of a pre-ovulatory follicle was noted (>35mm) alongside the reduction 

in uterine and cervical tone and the presence of endometrial edema, mares were evaluated 

for the presence or absence of inflammation by endometrial cytology and bacterial cultures 
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[177]. Endometrial cytology was performed using a cytology brush, and uterine culture 

performed with a cytologic swab (MOFA Global; Verona, WI, USA). Negative culture 

was defined as less than two neutrophils per five fields at × 400 magnification. Negative 

culture defined as complete absence of bacterial growth on a blood agar plate at 24 hours 

of incubation at 32ºC. Only mares clear of inflammation were inseminated, and in 

consecutive cycles with treatment in randomized order, each serving as their own control. 

The treatments were: (1) 1x109 spermatozoa in 10mL seminal plasma as the positive 

control; (2) 1x109 spermatozoa in 10mL LRS as the negative control; (3) 1x109 

spermatozoa and 1mg/mL equine CRISP-3 resuspended in 10mL LRS; (4) 1x109 

spermatozoa and 150μg/mL human recombinant lactoferrin resuspended in 10mL LRS. 

Mares received 3000 IU of human chorionic gonadotropin (hCG; Intervet International 

B.V., Boxmeer Holland) intravenously at the time of insemination to standardize the 

interval between insemination and ovulation. Endometrial biopsies were collected at six 

hours after insemination using a sterile alligator jaw biopsy punch and the endometrium 

was stored in RNALater® (Applied Biosystems, Carlsbad, CA, USA) overnight at 4°C, 

and then moved to -20°C until further processing. Mares were monitored for ovulation and 

fluid retention daily and treated with 7.5 mg of intramuscular prostaglandin F2α (PGF2α; 

Lutalyse, Pfizer, New York, NY, USA) at 7 days post-ovulation and treated in the 

subsequent estrous with no rest. 

 
4.3.2 Quantitative Polymerase Chain Reaction Analysis 
Total RNA was extracted from 50mg of endometrial tissue using TRIzol® Reagent 

(Invitrogen, Carlsbad, CA, USA) as described by the manufacturer. Total RNA was 

precipitated using sodium acetate and isopropanol, resuspended in ddH2O and DNAse 
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treated (DNA-free™, Applied Biosystems) and then analyzed for quantity and quality via 

a NanoDrop® spectrophotometer (Thermo Scientific, Wilmington, DE, USA). RNA was 

reverse transcribed and qPCR was performed as described by Woodward et al [9]. 

Briefly, 1.5μg of RNA in 41.5 μL ddH20 was reverse transcribed using Promega 

reagents; 0.5 μL AMV Reverse Transcriptase, 16 μL 5x RT Buffer, 1 μL RNAsin®, 16 

μL MgCl, 4 μL dNTP, and 1μL Oligo(dT) Primer (Promega, Madison, WI, USA). 

Primer/probe sequences are shown in Table 1. Samples were incubated at 42°C for 60 

mins followed by 95°C for 5 min. cDNA was diluted 1:1 with ddH20, and qPCR was 

performed using 4.5 μL of cDNA, 5μL of Sensimix™ II (Bioline, Tauton, MA, USA) 

and 0.5μL of a custom primer/probe set from Applied Biosystems. Reactions were 

performed in duplicate with β-actin (ACTB) as the reference gene using the ViiA 7 Real- 

Time PCR System (Applied Biosystems, Grand Island, NY, USA). Samples were 

incubated at 95°C for 10 min, followed by 45 cycles of 95°C for 15 sec and 60°C for 60 

sec.  PCR efficiencies were calculated using LinRegPCR (version 2013.0).  Results were 

expressed as the mean relative quantification value (RQ) which were calculated using the 

2-ΔΔCT method as described by Livak and Schmittgen, with the calibrator as the mean 

cycle threshold (ΔCT) value of the negative control (LRS and 1x109 PMS) collection 

from all mares [167]. 

 
4.3.3 Statistical Analysis 
Data were analyzed using SigmaPlot 12.3 (SyStat, San Jose, CA, USA) and log 

transformed for normality.  Comparisons were made between treatments using the mean 

± the standard error via a one-way ANOVA with post hoc analysis performed using a 
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Fisher’s protected LSD test and significance was set to P ≤ 0.05. Data are presented as 

the mean ± the standard error of the mean. 

4.4 Results 
The mRNA expression for the pro-inflammatory cytokines IL-1β, IL-8, IFNγ, and 

 
TNF were not significantly altered between treatment groups (Figure 4.1a-d). 

Furthermore, we did not observe any significant alteration between treatment groups with 

regards to mRNA expression for the modulating cytokine IL-6, or the anti-inflammatory 

cytokine IL-10 (Figure 4.1e and 1f). There was however, a reduction of expression of the 

anti-inflammatory cytokine IL-1RN in the lactoferrin treated group when compared to the 

LRS treated control group (P=0.033). Furthermore, there was a tendency towards a 

decrease in mRNA expression of IL-1RN after treatment with seminal plasma when 

compared to LRS (P=0.059) (Figure 4.2). 

Time of ovulation was noted for all cycles after insemination. All of the mares 

ovulated within 36 hours after hCG was administered. None of the mares had a positive 

culture or cytology at the time of insemination, and therefore no rest cycles were used. 

None of the mares presented with fluid retention 24 hours after insemination. 
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Figure 4.1a-f: Relative quantification (RQ) of mRNA transcripts of endometrial a) 
IL-1β, b) IL-8, c) IFNγ, d) TNF, e) IL-6, and f) IL-10. As analyzed after insemination 
with CRISP-3, lactoferrin, LRS, or seminal plasma. The gene expressions are normalized 
to β-actin and displayed as RQ ± SEM. There were no significant differences noted in 
any treatment. 
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Figure 4.1c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1d 
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Figure 4.1e 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1f 
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Figure 4.2: Relative quantification (RQ) of mRNA transcripts of endometrial IL- 
1RN in mares after insemination with CRISP-3, lactoferrin, LRS, and seminal 
plasma. The gene expressions are normalized to β-actin and displayed as RQ values ± 
SEM.  RQ values describe fold changes in each mare compared to the ΔCT value. 
Significance set to p < 0.05 and different letters (a,b) indicate significance among 
treatments.  Exogenous lactoferrin significantly suppressed the expression of IL-1RN in 
comparison to LRS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3:  Percentage of spermatozoa bound to PMN’s. Utilizing flow cytometry 
with the addition of treatments PBS, equine purified lactoferrin, and human recombinant 
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lactoferrin.  Significance set to P < 0.05 and different letters (a,b) indicate significance 
among treatments. 

 
 

Table 4.1: Dual hydrolysis primer/probe set sequences for the detection of equine 
mRNA. Primer/probe sets were designed using Assays-By-Design (Applied Biosystems) 
[9]. 

 
 Cytokine  Forward primer sequence 

5’-3’ 
 Reverse primer sequence 
3’-5’ 

 Probe sequence  

 EqACTB  CTGGACTTCGAGCAG 
GAGATG 

 CGTCGGGCAGCTCGTA  CCGCGGCCTCCAGCT  

 EqIL1β  CCGACACCAGTGACA 
TGATGA 

 ATCCTCCTCAAAGAAC 
AGGTCATTC 

 ATTGCCGCTGCAGTAA 
G 

 

 EqIL1RN  AGTTGCTGGATACTT 
GCAAGAATCA 

 GAGTCCCAGGAATAG 
AGCATCAG 

 CATCTATCTTCTCTTGT 
AATTTA 

 

 EqIL6  GGATGCTTCCAATCT 
GGGTTCAAT 

 TCCGAAAGACCAGTG 
GTGATTTT 

 ATCAGGCAGGTCTCCT 
G 

 

 EqIL8  GCCGTCTTCCTGCTTT 
CTG 

 CCGAAGCTCTGCAGTA 
ATTCTTGAT 

 CAACCGCAGCTTCAC  

 EqIL10  ATGCCCCAGGCTGAG 
AAC 

 CGGAGGGTCTTCAGCT 
TTTCC 

 CCAGACATCAAGGAGC 
ACG 

 

 EqINFG  AGCAGCACCAGCAAG 
CT 

 TTTGCGCTGGACCTTC 
AGA 

 ATTGAGATTCCGGTAA 
ATG 

 

 EqTNF  TTACCGAATGCCTTCC 
AGTCAAT 

 GGGCTACAGGCTTGTC 
ACTT 

 CCAGACACTCAGATCA 
T 
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4.5 Discussion 
Although CRISP-3 and lactoferrin may be involved in the interaction between 

uterine PMNs and their binding and phagocytic actions on spermatozoa, the effect on the 

mRNA expression of the studied pro- and anti- inflammatory cytokines in the uterus 

appears to be minimal.  These cytokines have previously been investigated in the 

endometrium at six hours post-insemination and determined to be important to the 

resolution of inflammation seen after breeding [9]. In particular, a critical increase of IL- 

6, IL-10, and IL-1RN at this time point suggests they are important for a timely resolution 

of the transient breeding induced inflammation.  The expression of pro-inflammatory 

cytokines, and their signaling activities, act as the first line of defense in response to 

exposure to an antigen, as they initiate inflammatory cell recruitment; thus triggering the 

migration of PMNs to the endometrial tissue and into the uterine lumen in response to 

breeding [5, 30].  In previous studies on endometrial cytokine expression, seminal plasma 

and the associated proteins were removed by centrifugation in order to reduce variation 

caused by seminal plasma [9]. The current study was conducted to determine if seminal 

plasma, or selected seminal plasma proteins with known biological activity, had a 

regulatory role on cytokine expression. 

To minimize variability, all mares included in this study were classified as 

resistant to PBIE via a breeding challenge in advance of the main experiment. Although 

it has been shown that spermatozoa trigger the inflammatory response, it is not clear if 

there is a stallion effect on the uterine inflammatory response to semen [6]. To further 

minimize the potential effect of a single stallion, semen from two stallions was therefore 

pooled, and the seminal plasma was removed via centrifugation.  All treatments were 
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applied in random order in consecutive estrous cycles.  It is not known if repeated 

inseminations in consecutive estrous cycles have residual effect on endometrial 

inflammatory cytokines in resistant mares.  However, previous observations under similar 

experimental conditions, demonstrate a short duration of both pro-inflammatory and 

inflammatory modulating cytokines after insemination [9]. 

Inclusion of seminal plasma and LRS to the insemination dose had no effect on 

the expression of the cytokines studied.  These results are contradictory to a previous 

study, as Palm et al. found that infusion of seminal plasma into the uterus at estrus caused 

an increase in the expression of interleukins (IL)-1β and -6, tumor necrosis factor-α 

(TNF-α) and cyclooxygenase-2 (COX-2) [78]. Differences between studies may be 

explained by variations in the experimental protocols that were employed by the different 

studies. The study by Palm et al was conducted without sperm-induced inflammation at 

the time of treatment, as mares were not inseminated. Furthermore, the study was 

conducted as a comparison of endometrial cytokine expression between biopsies taken 

after treatments when the mares were in estrous versus biopsies prior to treatment when 

the mares were in diestrous.  Due to the differing experimental designs, it may be 

difficult to compare results between the two studies. 

Lactoferrin is a bactericidal and a known iron chelator found in a variety of 

secretions, including milk, saliva, semen, as well as neutrophils.  Kolm et al found that 

the transcription for lactoferrin in the endometrium was increased in mares susceptible to 

PBIE compared to resistant mares during proestrous. They concluded that this could be 

due to the increased influx of uterine PMN’s in these mares, as they often have an 

ongoing inflammation, and lactoferrin exists within the granules of the PMN’s [144]. It 



81 

 

 

is believed that lactoferrin acts as a first line of defense in the immune system due to its 

bactericidal activities.  Under the conditions of the present study, IL-1RN was 

significantly suppressed by the addition of lactoferrin to inseminate, in comparison to the 

treatment of LRS. There was also a trend toward a significant suppression in the 

suppression of IL-1RN in the treatment of seminal plasma (0.059) in comparison to LRS, 

which is of importance, as seminal plasma would hypothetically contain lactoferrin. 

Previous studies have demonstrated that lactoferrin can inhibit the production of 

cytokines IL-6, IL-1β, and TNF-α, but none of these studies were conducted in 

endometrial tissue or with the addition of a sperm challenge [186, 187]. 

IL-1RN is the receptor antagonist of IL-1α and IL-1β, both of which are pro- 

inflammatory cytokines that are primarily responsible for the induction of fever, but also 

for the activation of vascular endothelium, activation of lymphocytes, as well as the 

signaling of the acute phase response [188]. Previous studies have shown that IL-1RN 

plays a critical role in modulating the signaling activity of IL-1, which if not regulated, 

can cause tissue damage [189].  It has also been shown that IL-1RN plays a critical role in 

normal reproductive function [189, 190].  In the horse, IL-1RN expression was found to 

be increased at six hours post-insemination in the mare resistant to PBIE when compared 

to the susceptible mares [9].  In this study, the expression of IL-1RN was significantly 

decreased when the mares were treated with lactoferrin when compared to the negative 

control, and there was also a trend towards a decline in the expression of IL-1RN for the 

treatment of seminal plasma (P=0.059). The suppression of IL-1RN expression in the 

endometrium when the uterus is treated with lactoferrin and seminal plasma is surprising, 

since the inflammation is a natural response to breeding and seminal plasma is a 
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physiological component within the ejaculate. Furthermore, a modulation of mating 

induced endometritis appears to be necessary to resolve the inflammation in a timely 

fashion and prevent a persistent inflammation that may interfere with fertility. Future 

investigation in this area is needed to fully explain this observation. 

The treatment of CRISP-3 had no effect on the expression of the targeted 

cytokines in the endometrium when compared to LRS or seminal plasma.  This protein is 

found in the stallion ejaculate at concentration of greater than 1mg/mL, and this large 

amount is significantly greater than the concentration found in other species [105]. 

Therefore, it is hypothesized to play a critical role in many aspects of reproduction, 

including sperm transport, the immune response, and fertility, although limited data are 

available. The only known documented role of CRISP-3 is its suppression of the binding 

of PMNs to live spermatozoa in a dose dependent manner with the most noticeable 

suppression at a concentration of >125μg/mL in vitro [11].  Previous studies have 

correlated CRISP-3 with both increased fertility and first cycle conception rate [120, 

121].  In the study done by Hamann et al., Hanoverian stallions who demonstrated 

homozygosity for the polymorphism c.+622G>A SNP in the CRISP-3 gene were found 

to have increased fertility rates, while Novak et al. found that stallions of mixed breeds 

who had an abundance of CRISP-3 in their ejaculate had increased first cycle conception 

rates (r=0.495, P=0.027).   Doty hypothesized that the proteins correlation with fertility 

could be due to CRISP-3’s role in protecting spermatozoa from phagocytosis [11]. 

Further research is necessary to elucidate a pathway for which CRISP-3 can correlate 

with these functions. 
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In this study, seminal plasma and its proteins were removed from spermatozoa by 

centrifugation, and washing of the pellet in LRS. It was not determined if any lactoferrin 

or CRISP-3 were still bound to spermatozoa after this treatment. Schambony et al (1998) 

found that CRISP-3 binds tightly to the sperm head and midpiece, based on a salt wash of 

0.5 mol NaCl, which leaves the protein intact [191]. Preliminary data in Schambony’s 

study showed that the amount of CRISP-3 still present on the sperm after this salt wash 

directly correlated with the fertility of the stallion.  In the present study, spermatozoa was 

centrifuged twice at 1,400x g for a total of 30 min, but due to its strong binding, CRISP-3 

may not have been completely dislodged by this protocol, potentially causing variability 

within the results.  There has also been work done on the binding of lactoferrin to 

spermatozoa after centrifugation, which alludes to the fact that it is also bound tightly 

(unpublished).  This may lead to variability within the amount of protein-sperm 

interactions within the inseminate. However, the addition of CRISP-3, lactoferrin, or 

seminal plasma should have overcome most of this variability. Furthermore, it is not 

known if and how sperm-bound lactoferrin and CRISP-3 regulate endometrial mRNA 

expression of cytokines compared to our hypothesis regarding unbound proteins in 

seminal plasma.  The results of the study are therefore, limited to evaluating the effect of 

exogenous unbound CRISP-3 and lactoferrin in seminal plasma/media on endometrial 

mRNA cytokine expression. 

In conclusion, while lactoferrin and CRISP-3 may moderate the activity of PMN’s 

and their elimination of sperm from the lumen of the uterus, minimal effect on the mRNA 

expression of cytokines in the endometrium of the uterus after the induction of 

inflammation was demonstrated.  Lactoferrin was the only treatment with any significant 
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suppression of cytokine expression, as it suppressed the mRNA expression of the anti- 

inflammatory cytokine IL-1RN when compared to the negative control of LRS. Further 

investigations are needed to fully determine the biological mechanism for these specific 

seminal plasma proteins and their physiological roles. 
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5.1 Abstract 
In the horse, breeding induces a transient endometrial inflammation. A subset of mares 

are unable to resolve this inflammation, and they are considered susceptible to persistent 

breeding-induced endometritis (PBIE). Select seminal plasma proteins cysteine-rich 

secretory protein-3 (CRISP-3) and lactoferrin have been shown to affect the innate 

immune response to sperm in vitro. The objective of this study was to determine if the 

addition of CRISP-3 and lactoferrin at the time of insemination had an effect on the 

mRNA expression of endometrial cytokines in susceptible mares after breeding. Six 

mares classified as susceptible to PBIE were inseminated during four consecutive estrous 

cycles with treatments in randomized order of: 1mg/mL CRISP-3, 150 ug/mL lactoferrin, 

seminal plasma (positive control), or lactated Ringer’s solution (LRS; negative control) to 

a total volume of 10mL combined with 1x109 spermatozoa pooled from two stallions. 

Six hours after treatment, an endometrial biopsy was obtained for qPCR analysis of 

selected genes associated with inflammation (pro-inflammatory cytokines interleukin 

(IL)-1β, IL-8, tumor necrosis factor (TNF)-α, interferon (INF)-γ, anti-inflammatory 

cytokines IL-1RN and IL-10, and inflammatory modulating cytokine IL-6). Seminal 

plasma treatment significantly increased the mRNA expression of IL-1β (P=0.019) and 

IL-8 (P=0.0068), while suppressing the mRNA expression of TNF (P=0.0013). 

Lactoferrin also suppressed the mRNA expression of TNF (P=0.0013).  In conclusion, 

exogenous lactoferrin may be considered as one modulator of the complex series of 

events resulting in the poorly regulated pro-inflammatory response seen in susceptible 

mares. 
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5.2 Introduction 
There is a transient innate immune response in the equine uterus after the 

deposition of semen at the time of breeding. The majority of mares can clear this 

inflammation and are considered resistant to persistent breeding-induced endometritis 

(PBIE).  A subset of mares cannot modulate this immune response in a timely fashion, 

and are therefore considered susceptible to PBIE.  It is thought that this occurs in 10-15% 

of mares, and is a large economic burden on the equine breeding industry [6, 15]. 

The innate immune response to semen begins with the production of pro- 

inflammatory cytokines, which recruit circulating polymorphonuclear neutrophils 

(PMNs) to the endometrium and into the uterine lumen. In the equine uterus, PMNs are 

present in the endometrium and uterine lumen within 30 minutes after breeding [3, 49, 

192]. Neutrophils are exposed to spermatozoa by both neutrophil extracellular traps 

(NETs) and an unidentified receptor/ligand mechanism, which may create large cellular 

aggregates and interfere with sperm transport to the oviduct [50]. Within 6 hours of 

insemination, there is an increase in the synthesis of the anti-inflammatory cytokines 

interleukin (IL)-1RN and IL-10, in addition to the modulating cytokine IL-6, which are 

thought to be involved in resolving the inflammation within 24 to 36 hours [9]. 

Susceptible mares were shown to have an impaired anti-inflammatory and 

modulatory cytokine response to breeding, as well as an increased expression of nitric 

oxide synthase (iNOS) and an associated increase in the intra-uterine synthesis of nitric 

oxide (NO) when compared to resistant mares [9, 193]. As a result, inflammation is still 

present in the uterus at 24 and 72 hours after insemination in susceptible mares [9, 21, 
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179].  All of these factors may explain the delayed uterine clearance present in mares that 

are susceptible to PBIE. 

Seminal plasma, or the fluid portion of the ejaculate, contains a mixture of 

enzymes, amino acids, hormones, and proteins.  While it serves as a vehicle for the 

sperm, it also plays multiple roles in the uterine immune response to breeding. For 

example, seminal plasma was shown to increase the number of eosinophil’s that migrate 

to the uterus after breeding [78]. Seminal plasma also modulates the binding of PMN’s 

to spermatozoa and recently the specific proteins involved in this interaction were 

elucidated.  Cysteine-rich secretory protein-3 (CRISP-3) was found to suppress the 

binding of PMNs to live sperm, while lactoferrin appears to increase the number of dead 

sperm bound to PMNs in vitro [11, 123]. However, the mechanism by which this occurs 

is unknown. 

CRISP-3, a 26kDa glycoprotein, is found in the equine ejaculate as the most 

abundant seminal plasma protein (concentration of approximately 1mg/mL), which is 

unique to the equine [105].  Primarily synthesized in the ampulla, this protein has been 

shown to correlate with many markers of fertility, including first cycle conception rates 

and high semen freezability [121, 122, 191]. CRISP-3 also has high homology with 

pathogenesis-related (PR) proteins from plants, which are induced in response to foreign 

particles [112]. The only documented biological role of CRISP-3 in the equine ejaculate 

is in the modulation of PMN binding to spermatozoa, suggesting that this protein may 

play a role in the uterine immune response to breeding [11]. 
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Lactoferrin is found in the equine ejaculate at an average concentration of 150 

ug/mL [125]. This 80kDa protein is present in a variety of tissues and secretions 

throughout the body, including colostrum, seminal plasma, the epididymis, endometrium, 

and neutrophilic granules [125, 144, 145, 194, 195].  It is thought to be bactericidal due 

to its ability to chelate free iron, required for bacterial metabolism [196]. In the stallion, 

little is known about lactoferrin, but it has been shown to positively correlate with poor 

semen freezability, as well as increased sperm concentration and total sperm output [122, 

194].  In other species, research on lactoferrin has focused on its anti-inflammatory 

properties.  In the mouse, lactoferrin suppresses the expression of the pro-inflammatory 

cytokines IL-1β, as well as tumor necrosis factor (TNF)-α after lipopolysaccharide- 

induced endometritis [36].  In humans, lactoferrin is garnering interest as a therapeutic 

for immune diseases such as Crohn’s Disease, certain types of cancer, and asthma [197- 

200]. We have previously observed that lactoferrin suppresses the expression of the anti- 

inflammatory cytokine IL-1RN in mares resistant to PBIE [201]. 

While the effect of seminal plasma on the uterine inflammatory response has been 

reported previously, investigations into the roles of specific proteins within seminal 

plasma are limited. CRISP-3 and lactoferrin appeared to have minimal effect on the 

mRNA expression of both pro- and anti-inflammatory cytokines in the normal mare 

[201].  However, it is known that mares susceptible to PBIE have an inherently different 

immune response to breeding in comparison to the resistant mare.  Therefore, the 

objective of this study was to determine the effect of exogenous CRISP-3 and lactoferrin 

on the mRNA expression of select cytokines in the endometrium of the susceptible mare 

at six hours after insemination. 
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5.3 Material and Methods 
 

5.3.1 General Experimental Procedure 
 

5.3.12 Classification of Mares 
Ten mares with documented history of infertility were screened for susceptibility to 

persistent breeding-induced endometritis (PBIE) based on the following criteria: a) 

endometrial histopathology characterized by periglandular fibrosis, inflammation, 

glandular distribution and lymphatic lacunae (Category IIb to III) [202], b) negative 

culture and cytology at 0 hours, c) positive culture and cytology at 96 hours post- 

breeding, and d) intrauterine fluid accumulation at 96 hours after artificial insemination 

during estrous with 1x109 freeze-killed sperm extended in 30 mL EquiPro® extender 

(>35 mm follicle, presence of uterine edema, and relaxed cervix). A positive cytology 

was defined as greater than 2 PMNs observed for every 100 epithelial cells, and a 

positive culture defined as any bacterial growth after 24 hours of incubation on blood 

agar at 37°C.  Out of the ten mares that were screened for the condition, six mares of 

mixed breeds and age (10-25 yr) qualified as susceptible to PBIE for the study. All mares 

were kept on grass pasture with grain supplementation and access to water and minerals 

ad libitum at the University of Kentucky’s Maine Chance Farm in Lexington, KY, USA. 

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Kentucky (protocol number 2013-1070). 

5.3.13 Semen Collection and Isolation of Fresh Spermatozoa 
Semen was collected from two stallions by the use of a Missouri model artificial vagina 

(Nasco, Fort Atkinson, WI, USA) equipped with a gel filter (Animal Reproduction 

Systems, Chino, CA, USA).  In order to minimize variations due to the proportion of live 

versus dead sperm in the insemination dose, only samples with >50% progressively 
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motile sperm were utilized.  In addition, variability was minimized by collecting semen 

from two stallions, which was then pooled and layered on 15 mL of AndroColl-E  

(MOFA Global, Verona, WI, USA). Semen was centrifuged at 300xg for 20 min, and the 

supernatant was removed.  The sperm pellet was washed in lactated Ringer’s solution 

(LRS) and centrifuged again at 300xg for another 15 min. After centrifugation, sperm 

samples were adjusted to a concentration of 1x109 spermatozoa in LRS and kept at room 

temperature (23-25°C) for approximately 15 min prior to insemination. 

 
5.3.14 Preparation of Seminal Plasma and Proteins 
Seminal plasma was harvested fresh from each pair of ejaculates to be used on the day of 

insemination.  Seminal plasma was prepared by centrifugation of fresh semen pooled 

from two stallions immediately after collection at 1400xg for 15 min at room 

temperature. Ten milliliters of seminal plasma was added to 1x109 sperm immediately 

prior to insemination so that all seminal plasma samples were fresh. Human recombinant 

lactoferrin (hrLF) (ProSpec, East Brunswick, NJ, USA) was reconstituted in LRS at a 

concentration of 150 μg/mL (the average concentration found in the stallion ejaculate) 

and stored at -20°C until thawed at 38°C immediately before insemination [125]. 

Biological activity of human recombinant lactoferrin was previously confirmed by 

comparing its effect to equine lactoferrin on equine sperm-PMN binding via flow 

cytometry [201]. Equine CRISP-3 was obtained from ejaculates pooled from five 

stallions and purified as described by Doty et al. [11], then stored at a concentration of 

1mg/mL (the concentration found on average in the natural stallion ejaculate) in LRS at - 

20°C until thawed at 38°C immediately before insemination . 



92 

 

 

5.3.15 Insemination of Seminal Plasma Proteins 
Mares were examined daily via rectal palpation and ultrasonography of their reproductive 

tracts for follicular development, endometrial edema, as well as uterine and cervical tone. 

When the presence of a preovulatory follicle was noted (>35mm) combined with reduced 

uterine tone, increased endometrial edema, and a relaxed cervix, mares were evaluated 

for the presence or absence of inflammation by endometrial cytology and bacterial 

cultures [177]. Endometrial cytology was performed using a cytology brush, and uterine 

culture performed with a cytologic swab (MOFA Global; Verona, WI, USA).  Negative 

cytology was defined as less than two neutrophils per 100 epithelial cells, with PMNs 

identified through the use of the Diff-Quik stain as described by [203]. Negative culture 

defined as complete absence of bacterial growth on a blood agar plate at 24 hours of 

incubation at 38ºC. Only mares clear of inflammation were inseminated.  If inflammation 

was observed, a rest cycle was implemented and mares were treated with 20 IU of 

intravenous oxytocin (Oxytocin Injection, Biomeda-MTC Animal Health Inc., Lavaltrie, 

Quebec, CAN), lavage, and intra-uterine infusion of antibiotics based on culture results. 

Over the course of four estrous cycles, mares were inseminated with one of the following 

treatments in randomized order: (1) 1x109 spermatozoa in 10mL seminal plasma (positive 

control); (2) 1x109 spermatozoa in 10mL LRS (negative control); (3) 1x109 spermatozoa 

and 1mg/mL equine CRISP-3 resuspended in 10mL LRS; (4) 1x109 spermatozoa and 150 

μg/mL hrLF resuspended in 10mL LRS. Mares received 3000 IU of human chorionic 

gonadotropin (hCG; Intervet International B.V., Boxmeer Holland) intravenously at the 

time of insemination to standardize the interval between insemination and ovulation. 

Endometrial biopsies were collected six hours after insemination with sterile alligator jaw 
 

biopsy forceps and the endometrium was stored in RNALater® (Applied Biosystems, 
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Carlsbad, CA, USA) overnight at 4°C, and then transferred to -20°C until further 

processing.  Mares received 20 IU of intramuscular oxytocin (Oxytocin Injection, 

Biomeda-MTC Animal Health Inc., Lavaltrie, Quebec, CAN) immediately after the 

biopsy procedure. Mares were monitored for ovulation daily and treated with 7.5 mg of 

intramuscular prostaglandin F2a (PGF2a; Lutalyse, Pfizer, New York, NY, USA) at 7 

days postovulation and submitted to subsequent treatments in the following estrus. 

5.3.2 Quantitative Polymerase Chain Reaction Analysis 
Total RNA was extracted from 50mg of endometrial tissue using TRIzol® Reagent 

(Invitrogen, Carlsbad, CA, USA) as described by the manufacturer. Total RNA was 

precipitated using sodium acetate and isopropanol, resuspended in ddH2O and DNAse 

treated (DNA-free™, Applied Biosystems) and then analyzed for quantity and quality via 

a NanoDrop® spectrophotometer (Thermo Scientific, Wilmington, DE, USA). RNA was 

reverse transcribed and qPCR was performed as described by Woodward et al. [9]. 

Briefly, 1.5μg of RNA in 41.5 μL ddH20 was reverse transcribed using Promega 

reagents; 0.5 μL AMV Reverse Transcriptase, 16 μL 5x RT Buffer, 1 μL RNAsin®, 16 

μL MgCl, 4 μL dNTP, and 1μL Oligo(dT) Primer (Promega, Madison, WI, USA). 

Samples were incubated at 42°C for 60 minutes followed by 95°C for 5 min. cDNA was 

diluted 1:1 with ddH20, and qPCR was performed using 4.5 μL of cDNA, 5μL of 

Sensimix™ II (Bioline, Tauton, MA, USA) and 0.5μL of a custom primer/probe set from 

Applied Biosystems. Reactions were performed in duplicate with Beta-actin (ACTB) as 

the reference gene using the ViiA 7 Real-Time PCR System (Applied Biosystems, Grand 

Island, NY, USA).  Equine specific primer/probes for interleukin (IL)-1β, IL-1RN, IL-6, 

IL-8, IL-10, tumor necrosis factor (TNF)-α, and interferon (INF)-γ genes were developed 
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using Assay By-Design (Applied Biosystems) (Table 3.1). Samples were incubated at 

95°C for 10 min, followed by 45 cycles of 95°C for 15 sec and 60°C for 60 sec.  PCR 

efficiencies were calculated using LinRegPCR (version 2013.0).  Results were expressed 

as the mean relative quantification value (RQ) which were calculated using the 2-ΔΔCT 

method as described by Livak and Schmittgen (2001), with the calibrator as the mean 

cycle threshold (ΔCT) value of the negative control (LRS and 1x109 spermatozoa) 

collection from all mares. 

 
5.3.3 Statistical Analysis: 
Data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).  Data was 

assessed for normality using a Shapiro-Wilkes test and equal variances with a Bartlett’s 

test.  The model was assessed using a general linear additive model, with treatment and 

cytokine as fixed effects, and mare as a random effect. All significant interactions were 

spliced for analysis.  Comparisons were made between treatments using the mean ± the 

standard error and post hoc analysis performed using a Fisher’s protected LSD test and 

significance was set to P<0.05. Data are presented as the mean ± the standard error of the 

mean. 

 
5.4 Results 

All mares ovulated within 48 hours of administration of hCG. Only one mare 

required intrauterine infusions of 100mg/mL gentamicin (GentaFuse, Henry Schein 

Animal Health, Melville, NY, USA) and a rest cycle and resumed treatment on the 

following cycle.  There was a significant interaction between the effect of treatment and 

that of cytokine mRNA expression (P<0.001). 



95 

 

 

The treatment of seminal plasma significantly increased mRNA expression of the 

pro-inflammatory cytokines IL-8 (P=0.0068) and IL-1β (P=0.0192) in comparison to the 

treatment with lactoferrin, CRISP-3, and the negative control of LRS (Figure 5.1a and 

5.1b). Both seminal plasma and lactoferrin significantly suppressed the mRNA 

expression of the pro-inflammatory cytokine TNF (0.0013) when compared to LRS 

treated control group or CRISP-3 (Figure 5.2). There was no effect of treatment on the 

mRNA expression of the anti-inflammatory endometrial cytokines IL-10, IL-1RN, as well 

as the inflammatory modulating cytokine IL-6 for any treatment (Figure 5.3a). There was 

also no significant effect of treatment on the pro-inflammatory cytokine interferon 

gamma (IFN)-γ (Figure 5.3b). 

 
 
 
 

 
 

Figure 5.1a: Relative Quantification (RQ) of endometrial mRNA transcripts of IL-8 
in mares after insemination with CRISP-3, lactoferrin, LRS, and seminal plasma. 
The gene expressions are normalized to ACTB and displayed as RQ values ± SEM.  RQ 
values describe fold changes in each mare compared to the ΔCt value. Significant 
difference from other treatments is indicated as * and set to p < 0.05. 
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Figure 5.1b: Relative Quantification (RQ) of endometrial mRNA transcripts of 
endometrial IL-1β in mares after insemination with CRISP-3, lactoferrin, LRS, and 
seminal plasma.  The gene expressions are normalized to ACTB and displayed as RQ 
values ± SEM.  RQ values describe fold changes in each mare compared to the ΔCt 
value. Significant difference from the other treatments is indicated as * and set to p < 
0.05. 

 

 
 
 

Figure 5.2: Relative Quantification (RQ) of endometrial mRNA transcripts of 
endometrial TNF in mares after insemination with CRISP-3, lactoferrin, LRS, and 
seminal plasma.  The gene expressions are normalized to ACTB and displayed as RQ 
values ± SEM.  RQ values describe fold changes in each mare compared to the ΔCt 
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value. Different letters (a,b) indicate significant differences among treatment groups, set 
to p < 0.05. 

 

 
 
 

Figure 5.3a: Relative quantification (RQ) of endometrial mRNA transcripts of the 
anti-inflammatory cytokines IL-10, IL-1RN, and IL-6 in mares after insemination 
with CRISP-3, lactoferrin, LRS, or seminal plasma. The gene expressions are 
normalized to ACTB, and displayed as RQ values ± SEM. 
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Figure 5.3b: Relative quantification (RQ) of endometrial mRNA transcripts of the 
pro-inflammatory cytokine interferon gamma (IFNγ) in mares after insemination of 
CRISP-3, lactoferrin, LRS, or seminal plasma.  The gene expressions are normalized 
to ACTB, and displayed as RQ values ± SEM. 

5.5 Discussion 
In this study, we evaluated the effect of seminal plasma proteins CRISP-3 and 

lactoferrin on the mRNA expression of select cytokines after breeding in the mare. 

Seminal plasma increased the mRNA expression of the pro-inflammatory cytokines 

interleukin (IL)-8 and IL-1β, while suppressing the mRNA expression of tumor necrosis 

factor (TNF)-α.  In addition, lactoferrin significantly suppressed the mRNA expression of 

TNF at six hours post-breeding.  To our knowledge, this is the first report on the ability of 

a specific seminal plasma protein to modulate the innate immune response to breeding in 

the susceptible mare. 

Seminal plasma and its proteins were removed from the spermatozoa by single 

layer centrifugation (SLC) and the pellet was washed in lactated Ringer’s solution (LRS). 

Androcoll-E has been found effective in separating sperm-protein interactions in the boar 

and has been used in other protocols as a means to remove seminal plasma from equine 

spermatozoa [204, 205]. It was not determined whether lactoferrin and CRISP-3 were 

still bound to spermatozoa after this treatment. While we are uncertain if Androcoll-E 

was sufficient in completely separating the seminal plasma proteins CRISP-3 and 

lactoferrin, previous data indicates that the amount of seminal plasma proteins still 

adhered to spermatozoa are significantly reduced in comparison to the addition of native 

seminal plasma. 

Numerous studies have found seminal plasma to be beneficial to reproduction, 
 

and yet the majority of it is removed during artificial insemination with cooled and frozen 
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spermatozoa, due to the negative effect of seminal plasma on the viability of semen after 

thawing [206]. While the addition of seminal plasma significantly increased the mRNA 

expression of the pro-inflammatory cytokines IL-8 and IL-1β at six hours post-breeding, 

it also suppressed the mRNA expression of TNF, another pro-inflammatory cytokine. 

This may be explained by the pathway of the innate immune response; as TNF is a first 

responder [44], with IL-8 being signaled to activate downstream. Although IL-1β is also 

considered an initial responder to the detection of pathogens [207], the two cytokines 

function through different receptors and utilize different downstream pathways, possibly 

explaining the contrasting effect of seminal plasma.   In addition, this study did not 

determine the concentration of lactoferrin and CRISP-3 in the native seminal plasma 

used.  Both proteins are found in the natural ejaculate with large variability in 

concentration, and this may have led to some variability in the results. 

Studies have shown that seminal plasma plays a role in breeding-induced 

endometritis. Fewer PMNs were recovered from the uterus after breeding when seminal 

plasma was present in the inseminate, in comparison to extended semen [175]. One study 

induced inflammation in mares before breeding either with or without seminal plasma 

and found that a significantly larger number of mares achieved a pregnancy when bred 

with sperm in seminal plasma [74]. Similar to this study, seminal plasma has been found 

to increase the expression of pro-inflammatory cytokines in response to breeding in the 

mouse, human, and swine models [77, 208, 209]. It is important that the beneficial 

aspects of seminal plasma in the horse are elucidated so that these factors may be 

reintroduced at the optimal concentration to the mare at the time of breeding when using 

cooled and frozen semen. 
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During the innate immune response, there is a balance between the pro- and anti- 

inflammatory cytokines.  Anti-inflammatory cytokines modulate the pro-inflammatory 

response, which if left uninhibited, can lead to tissue damage and prolonged 

inflammation [178, 189]. Susceptible mares have an impaired modulatory cytokine 

response at six hours after breeding [9], and this subpopulation of mares also had up- 

regulated transcription of IL-1β, IL-6, and TNF at 24 hours after breeding [21]. These 

mares also have increased neutrophilic migration into the lumen of the uterus at 48 hours 

post breeding in comparison to resistant mares [210]. Lactoferrin is thought to act as a 

first line of defense in the innate immune response, mediating both of these factors; the 

expression of cytokines, as well as neutrophil recruitment and signaling [36, 123].  In the 

current study, the addition of exogenous lactoferrin to the insemination dose significantly 

suppressed the mRNA expression of the pro-inflammatory cytokine TNF in comparison 

to the negative control of LRS, as well as the treatment of CRISP-3. This observation 

correlates with recent work on endometritis in the mouse, where lactoferrin was shown to 

inhibit the uterine protein expression of TNF and IL-1β in a dose dependent manner [36]. 

Lactoferrin is an estrogen-dependent uterine protein [211] which is bactericidal 

due to its binding to free-iron [212]. In addition to iron chelation, the loop region within 

the protein is thought to be responsible for binding to lipopolysaccharide (LPS) residues 

on gram-negative bacteria [213]. Lactoferrin also modulates the innate immune response 

in other tissues by suppression of the pro-inflammatory cytokines TNF and granulocyte- 

macrophage colony-stimulating factor, as well as the inflammatory modulating cytokine 

IL-6 [36, 133-135]. Lactoferrin promotes the binding of PMN’s to nonviable spermatozoa 

in vitro, possibly contributing to their digestion and elimination [123]. Our research 
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appears to be the first to examine the effects of exogenous lactoferrin on the innate 

immune response in the uterus of susceptible mares. 

TNF is released by activated monocytes and macrophages and signals and 

regulates the synthesis of other cytokines, immune cells, and inflammatory mediators 

[214].  In the equine uterus, TNF is produced by the stromal and epithelial cells of the 

endometrium, and expression of TNF is regulated by ovarian steroids [215]. Numerous 

studies have demonstrated that TNF is significantly increased during endometritis in 

multiple species.  In the mouse, both TNF and IL-1β are significantly increased after 

LPS-induced endometritis, and this was further confirmed in the buffalo [36, 216]. In a 

study done by Woodward et al. (2013), TNF was found to be increased within 2 hours 

after insemination of freeze-killed sperm, with the resistant mare population having a 

significantly higher expression of this cytokine in comparison to the susceptible [9]. 

While studies have shown that equine CRISP-3 significantly correlates with many 

markers of reproductive efficiency, this protein had no effect on the cytokines that were 

evaluated under the conditions of this study. CRISP-3 is primarily synthesized in the 

ampulla of the vas deferens and in the salivary gland, and to a lesser degree in the 

seminal vesicles [105].  Due to its high homology with pathogenesis-related proteins 

from plants, which are induced in response to foreign materials, this protein has been 

thought to act within the immune response in the species that express it [112]. The only 

reported effect that CRISP-3 has on the immune response to breeding of the horse is in its 

suppression of PMN binding to viable spermatozoa in vitro [11]. In a recent study, it was 

shown that CRISP-3 had no effect on the expression of select endometrial cytokines in 

response to breeding in the normal mare [201]. This protein is hypothesized to play a 
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role in the protection of viable spermatozoa from neutrophilic phagocytosis, and therefore 

may enact its abilities earlier than six hours after breeding.  It is known that neutrophils 

are present within thirty minutes after insemination, and sperm transport in the uterus is 

complete within 4 hours after breeding [217, 218]. Therefore, the effect of CRISP-3 may 

occur much earlier in the innate immune response. 

In conclusion, seminal plasma had an overall effect on the endometrial expression 

of select cytokines that make up the innate immune response to breeding.  The treatment 

of a specific seminal plasma protein, lactoferrin, caused a significant suppression in the 

endometrial mRNA expression of the pro-inflammatory cytokine TNF. A suppression of 

TNF by exogenous lactoferrin has also been documented in multiple other species during 

the disease process of endometritis. This is the first report in which lactoferrin was shown 

to alter the pro-inflammatory response in mares that are susceptible to PBIE. Results 

from this study warrant further investigation into the role of lactoferrin as an 

inflammatory modulator of breeding-induced endometritis, and a potential role as a 

therapeutic immune modulator for mares that are susceptible to PBIE. 
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6.1 Abstract 
The deposition of semen into the uterus of the horse induces a transient innate immune 

response that lasts 24-36 hours in the normal mare. There exists a subset of mares that are 

unable to resolve this inflammation in a timely manner, and are classified as susceptible 

to the disease of persistent breeding-induced endometritis (PBIE). Lactoferrin is a protein 

of interest as a potential therapeutic for this persistent inflammation due to its anti- 

inflammatory and bactericidal properties. The addition of human recombinant lactoferrin 

(hrLF) to the insemination dose was previously shown to suppress mRNA expression of 

the pro-inflammatory cytokine tumor necrosis factor (TNF)-α at 6 hours after 

insemination, but no studies have shown the effect of lactoferrin when infused post- 

breeding.  Therefore, the objectives of this study were to (1) assess the safety of intra- 

uterine infusion of hrLF, (2) evaluate the effect of intrauterine infusion of hrLF post- 

breeding as a modulator of the immune response to breeding in the susceptible mare, and 

(3) determine the most effective concentration of hrLF.  For the first experiment four 

normal mares received an intrauterine infusion of 500μg/mL hrLF resuspended in 10mL 

lactated Ringer’s solution (LRS) and heart rate, rectal temperature, and respiration were 

evaluated.  For the second experiment, six mares classified as susceptible to PBIE were 

bred during estrous with 500x106 progressively motile sperm comprised of the ejaculates 

from two stallions, which were centrifuged over Androcoll-E to remove seminal plasma. 

Each insemination dose was resuspended in 30mL lactated Ringer’s solution (LRS). Six 

hours after breeding, a 1L LRS uterine lavage was performed prior to treatments. Four 

treatments were administered over four consecutive estrous cycles in randomized order 

of: 10mL LRS (vehicle control), 50μg/mL hrLF resuspended in 10mL LRS, 250μg/mL 

hrLF resuspended in 10mL LRS, and 500μg/mL hrLF resuspended in 10mL LRS. 
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Twenty-four hours after breeding the mares were evaluated via transrectal 

ultrasonography for fluid retention.  A low volume uterine lavage (250mL LRS) was 

performed and the effluent was evaluated for polymorphonuclear neutrophils (PMNs). 

Finally, an endometrial biopsy was obtained for qPCR analysis of selected inflammatory 

cytokines.  Lactoferrin had no significant overall effect on vital signs.  The addition of 

hrLF (50μg/mL, 250μg/mL, 500μg/mL) did not affect the amount of fluid detected post- 

breeding, but significantly suppressed the ratio of PMNs to epithelial cells at all three 

concentrations compared to controls.  In addition, all three concentrations of hrLF 

increased the mRNA expression of the anti-inflammatory cytokine interleukin-1 receptor 

antagonist (IL-1RN), while the 50μg/mL dose significantly suppressed mRNA expression 

of the pro-inflammatory cytokine interferon gamma (IFNγ). In conclusion, the infusion of 

hrLF post-breeding was found to modulate the inflammatory response to breeding in the 

mare, and appears to be most effective at the 50μg/mL concentration. 

6.2 Introduction 
The equine uterus experiences a transient innate immune response to the 

deposition of semen.  The inflammation is initiated rapidly by an increase in the 

expression of pro-inflammatory cytokines, which recruit immune cells such as 

polymorphonuclear neutrophils (PMNs).  This is followed by an up-regulated expression 

of anti-inflammatory cytokines, which signal for a modulation of pro-inflammatory 

cytokine activation. Following migration of PMNs into the uterus, the release of 

prostaglandin F2 alpha (PGF2α) induces myometrial contractions, and excess semen and 

contaminants are eliminated from the uterus through the dilated cervix [219]. In the 

normal mare, this inflammation begins as rapidly as 0.5 hrs after breeding, but is resolved 
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within 24-36 hrs. However, a subset of mares are unable to resolve the inflammation on 

their own, and consequently develop a persistent breeding-induced endometritis (PBIE) 

[220]. Susceptibility to PBIE is thought to occur in 10-15% of Thoroughbred mares after 

breeding, and is considered a large financial burden to the equine breeding industry 

[221]. 

The presence of PMNs and retention of inflammatory fluid in the uterus can 

persist in susceptible mares for greater than 96 hrs; therefore potentially interfering with 

embryo survival at the time of migration from the oviduct into the uterine lumen.  It has 

been shown that the susceptible mares have a different innate immune response after 

insemination compared to resistant mares [9]. At six hours post breeding, resistant mares 

were observed to have an increased expression of mRNA for the anti-inflammatory 

cytokines interleukin-10 (IL-10) and interleukin- 1 receptor antagonist  (IL-1RN).  In 

addition, mRNA expression of the inflammatory modulating cytokine interleukin-6 (IL-6) 

was also up regulated at this time.  In contrast, susceptible mares did not demonstrate the 

same level of up regulation of mRNA for anti-inflammatory cytokines at this time point. 

Therefore, a deficient anti-inflammatory response in susceptible mares may contribute to 

prolonged inflammation, and six hours after breeding appears to represent a critical time 

point for this transition. 

The pathology of PBIE has long been studied, with a multitude of therapeutic 

options proposed to help modulate the induced inflammation [171, 173, 222]. Options 

have ranged from post-breeding infusion of antimicrobials and ecbolics, to uterine 

lavage, acupuncture, and immune-modulators. Recently, the seminal plasma protein 

lactoferrin was observed to have an immune-modulating effect in mares suffering from 
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PBIE [223]. Lactoferrin is found in the body in a variety of tissues and secretions 

including breast milk, epididymis, endometrium, in addition to its presence in seminal 

plasma at an average concentration of 150μg/mL in the stallion [125].  It is thought to be 

both bactericidal and anti-inflammatory in numerous species including humans, mice, 

and buffalo [36, 195, 224].  Due to its ability to chelate the free iron that is required for 

the metabolism of gram-negative bacteria, lactoferrin has been found to disrupt the 

formation of biofilm [196].   In the horse lactoferrin has been shown to be involved in 

sperm elimination from the mare’s reproductive tract by increasing sperm-PMN binding 

in the horse in vitro [225]. In vivo, Kolm et al. (2006) found that susceptible mares have 

a significantly up regulated expression of lactoferrin in the endometrium which is not 

correlated with the number of CD 18 positive leukocytes, but rather the number of uterine 

glands [144]. In addition, exogenous lactoferrin added at the time of breeding was found 

to suppress mRNA expression of the pro-inflammatory cytokine tumor necrosis factor 

(TNF)-α in the endometrium at six hours after insemination when compared to the 

addition of lactated Ringer’s solution (LRS) in the horse [226], and similar results have 

also been reported in the murine model [36]. It was concluded that future studies in the 

horse were necessary to evaluate the therapeutic effect of exogenous lactoferrin on 

inflammation in a more clinical setting. 

Although lactoferrin is found throughout the body, the safety of intra-uterine 

infusion has not been reported.  In addition, the efficacy of exogenous lactoferrin when 

administered as a therapeutic post-breeding has not been investigated.  Therefore, the 

objectives of this study were to 1) determine if intra-uterine administration of exogenous 

lactoferrin is detrimental to the overall health and reproductive wellbeing of the horse, 2) 
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evaluate the effect of lactoferrin on the innate immune response to breeding in mares 

susceptible to PBIE when infused six hours after insemination, as well as 3) determine 

the most effective concentration of exogenous lactoferrin to be used as a modulator of the 

persistent inflammation seen in mares susceptible to PBIE. We hypothesized that the 

addition of human recombinant lactoferrin would be both a safe and effective modulator 

to the persistent inflammation seen in mares susceptible to PBIE. 

 
 

6.3 Materials and Methods 
 

6.3.1 Safety of Lactoferrin 
 

Reproductive cycles of four reproductively normal mares were followed via transrectal 

ultrasonography.  Once determined to be in diestrus (presence of a corpus luteum, toned 

cervix and lack of endometrial edema) an endometrial biopsy was obtained with sterile 

alligator jaw biopsy forceps and placed in 10% formalin to serve as a pre-treatment 

reference according to the Kenney and Doig scale based on inflammation, fibrosis, 

lymphatics, and glandular distribution [227]. In the following estrous cycle (>35mm 

follicle, presence of uterine edema, relaxed cervix), mares resting vitals were monitored, 

including 1) heart rate, 2) rectal temperature, and 3) respiratory rate.   Mares were then 

infused transcervically with 500μg/mL exogenous human recombinant lactoferrin (hrLF) 

in 10mL lactated Ringers solution (LRS).  This concentration of hrLF (500μg/mL) was 

utilized as it was 3-fold higher than the average concentration found in the normal 

stallion ejaculate and would be considered the highest concentration evaluated in the 

second experiment [125]. Vitals were evaluated immediately post-infusion, 30 min post- 

infusion, and 90 min post-infusion.  In the following diestrus (5-9 days post-ovulation), a 
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second endometrial biopsy was obtained with sterile alligator jaw biopsy forceps and 

placed in 10% formalin to serve as a post-treatment reference for inflammation, fibrosis, 

lymphatics, and glandular distribution. 

 
 

6.3.2 General Experimental Procedure 
 

6.3.21 Classification of Mares 
 

Eight mares with documented clinical history of infertility were screened for 

susceptibility to PBIE. This was based on the following criteria: a) endometrial 

histopathology characterized by the presence of one or more of the following 1) 

periglandular fibrosis, 2) inflammation, 3) glandular distribution, and 4) lymphatic 

lacunae consistent with Kenney category IIb to III) [228], b) negative culture and 

cytology pre-breeding, c) positive culture and cytology at 96 hours post-breeding, and d) 

intrauterine fluid accumulation at 96 hours after artificial insemination during estrous 

(>35 mm follicle, presence of uterine edema, and relaxed cervix) with 1x109 freeze-killed 

sperm extended in 30 mL EquiPro® extender (MOFA Global, Verona, WI). A positive 

cytology was defined as greater than 2 PMNs observed for every 100 epithelial cells, and 

a positive culture defined as any bacterial growth after 24 hours of microbial culture. Six 

mares of mixed breeds and age (5-20 yr) qualified for the study and were kept on grass 

pasture with grain supplementation with access to water and minerals ad libitum at the 

University of Kentucky’s Maine Chance Farm in Lexington, KY, USA. All experimental 

procedures were approved by the Institutional Animal Care and Use Committee of the 

University of Kentucky (protocol number 2013-1070). 
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6.3.22 Semen Collection and Insemination 
Semen was collected from two stallions with a Missouri model artificial vagina (Nasco, 

Fort Atkinson, WI, USA) equipped with a gel filter (Animal Reproduction Systems, 

Chino, CA, USA).  Only samples with >50% progressively motile sperm at the time of 

collection were utilized.  To minimize variability, semen from two stallions was pooled 

and layered on 15 mL of AndroColl-E (MOFA Global). Semen was centrifuged at 300xg 

for 20 min, and the supernatant was removed. After centrifugation, sperm samples were 

adjusted to a concentration of 500 x 106 spermatozoa in 30 mL LRS and kept at room 

temperature (23-25°C) for approximately 15 min prior to insemination. 

Mares were examined daily via transrectal palpation and ultrasonography of their 

reproductive tracts for follicular development, endometrial edema, as well as uterine and 

cervical tone.  When the presence of a preovulatory follicle was noted (>35mm) 

combined with reduced uterine tone, increased endometrial edema, and a relaxed cervix 

mares were evaluated for the presence or absence of inflammation by endometrial 

cytology and bacterial cultures [229]. Endometrial cytology was performed using a 

cytology brush, and uterine culture performed with an endometrial swab (MOFA Global; 

Verona, WI, USA).  Negative cytology was defined as less than two neutrophils per five 

fields at × 400 magnification.  Negative culture defined as complete absence of bacterial 

growth on a blood agar plate at 24 hours of incubation at 37ºC. Only mares clear of 

inflammation were inseminated.  If inflammation was observed, a rest cycle was 

implemented and mares were treated accordingly.  Over the course of four estrous cycles, 

mares were inseminated as described above and received 3000 IU of human chorionic 
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gonadotropin (hCG; Intervet International B.V., Boxmeer Holland) intravenously to 

standardize the interval between insemination and ovulation. 

6.3.23 Lactoferrin Infusion 
Six hours after insemination, a uterine lavage was performed with 1L lactated Ringers 

solution (LRS).  In brief, the vulva and perineum were scrubbed with 0.5% chlorhexidine 

three times and rinsed with water. A uterine catheter was then passed through the cervix 

and into the uterus by an examiner wearing a sterile sleeve. The end of the catheter was 

attached to a bag containing 1L LRS, the entirety of which was infused into the body of 

the uterus.  Fluid was retrieved from the uterus via gravity.   Immediately after lavage, 

the mares were infused with one of the following treatments in randomized order: (1) 

10mL LRS (negative control); (2) 50μg/mL human recombinant lactoferrin (hrLF) 

resuspended in 10mL LRS (3) 250μg/mL hrLF resuspended in 10mL LRS; and (4) 

500μg/mL hrLF resuspended in 10mL LRS. Human recombinant lactoferrin (ProSpec, 

East Brunswick, NJ, USA) was stored at -20°C until thawed at 38°C immediately before 

insemination [125].  Biological activity of human recombinant lactoferrin was previously 

confirmed by comparing its effect to purified equine lactoferrin on equine sperm-PMN 

binding via flow cytometry [230]. 

 
6.3.25 Evaluation of the innate immune response and sample collection 
Twenty-four hours after insemination (18 hours after treatment), mares were examined 

via transrectal ultrasonography to evaluate the uterus for fluid retention. Fluid was 

measured by the largest circumference of retention. A low volume lavage was performed 

according to LeBlanc et al. (2007).  In brief, a uterine catheter was then passed through 

the cervix and into the uterus by an examiner wearing a sterile sleeve. The end of the 

catheter was attached to a bag containing 250mL LRS, the entirety of which was infused 
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into the body of the uterus.  The uterus was then manipulated by rectal palpation for 30 

seconds to distribute fluid throughout.  The fluid was drained into the sterile bag by 

gravity flow.  A resuspended aliquot of 40mL was retrieved from the sample and 

centrifuged at 300xg for 10 min.  All but 5 mL of the supernatant was decanted and the 

pellet was resuspended in the remaining supernatant.  Finally, 20μL of the resuspended 

pellet was placed on a microscope slide to create a cellular smear. An endometrial biopsy 

was then collected with sterile alligator jaw biopsy forceps and the endometrium was 

stored in RNALater® (Applied Biosystems, Carlsbad, CA, USA) overnight at 4°C, and 

then transferred to -20°C until further processing. Mares received 20 IU of intramuscular 

oxytocin (Oxytocin Injection, Biomeda-MTC Animal Health Inc., Lavaltrie, Quebec, 

CAN) immediately after the biopsy procedure. Mares were monitored for ovulation daily 

and treated with 7.5mg of intramuscular prostaglandin F2α (PGF2α; Lutalyse, Pfizer, New 

York, NY, USA) at 7 days post-ovulation and submitted to subsequent treatments in the 

subsequent estrus. 

6.3.3 Quantitative Polymerase Chain Reaction Analysis 
Total RNA was extracted from 50mg of endometrial tissue using TRIzol® Reagent 

(Invitrogen, Carlsbad, CA, USA) as described by the manufacturer. Total RNA was 

precipitated using sodium acetate and isopropanol, resuspended in ddH2O and DNAse 

treated (DNA-free™, Applied Biosystems) and then analyzed for quantity and quality via 

a NanoDrop® spectrophotometer (Thermo Scientific, Wilmington, DE, USA). RNA was 

reverse transcribed and qPCR was performed as previously described by Fedorka et al. 

(2016) [226]. Briefly, 1.5 μg of RNA in 41.5 μL ddH20 was reverse transcribed using 

Promega reagents; 0.5 μL AMV Reverse Transcriptase, 16 μL 5x RT Buffer, 1 μL 
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RNAsin®, 16 μL MgCl, 4 μL dNTP, and 1μL Oligo(dT) Primer (Promega, Madison, WI, 

USA). Samples were incubated at 42°C for 60 min followed by 95°C for 5 min. cDNA 

was diluted 1:1 with ddH20, and qPCR was performed using 4.5 μL of cDNA, 5μL of 

Sensimix™ II (Bioline, Tauton, MA, USA) and 0.5μL of a custom primer/probe set from 

Applied Biosystems.  Primer sequences were designed using the TaqMan® Gene 

Expression System (Thermo Fischer, Wilmington, DE, USA) (Table 3.1). Reactions were 

performed in duplicate with beta-actin (ACTB) as the reference gene using the ViiA 7 

Real-Time PCR System (Applied Biosystems, Grand Island, NY, USA).  Samples were 

incubated at 95°C for 10 min, followed by 45 cycles of 95°C for 15 sec and 60°C for 60 

sec.  PCR efficiencies were calculated using LinRegPCR (version 2013.0).  Results were 

expressed as the mean ΔΔCT, following the method described by Livak and Schmittgen 

[167]. 

 
 

6.3.4 Statistical Analysis 
Data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).  Data was 

assessed for normality using a Shapiro-Wilkes test and equal variances with a Bartlett’s 

test. For the assessment of vitals, data was analyzed with a general linear model (proc 

glm), with individual vitals as fixed effects and mare as a random effect.  For assessing 

the effect of lactoferrin on biopsy grade, data was analyzed using the nonparametric 

McNemar’s test. When evaluating the effect of treatment on PMN:epithelial cell ratio and 

fluid retention, a general linear model (proc glm) was used with treatment as a fixed 

effect and mare as random. Finally, for the qPCR data a general linear model (proc glm) 

was assessed with treatment and cytokine as fixed effects, and mare as a random effect. 

All significant interactions were spliced for analysis. Comparisons were made between 



114 

 

 

treatments using the mean ± the standard error with post hoc analysis performed using a 

Fisher’s protected least significant difference’s (LSD) test with significance set to 

P≤0.05. Data are presented as the mean ± the standard error of the mean. 

6.4 Results 
When assessing the effect of lactoferrin on endometrial biopsy score, no mare 

lowered in score according to the Kenney and Doig scale.  Lactoferrin had an initial 

effect on temperature, heart rate, and respiration, with a significant increase noted for all 

three outcomes immediately post infusion (Fig. 6.1). However, this rise decreased back 

to at or below pre-treatment levels within thirty minutes post-infusion for all three 

outcomes evaluated. 

There was no significant effect of lactoferrin treatment on the area of fluid 

encompassed in the uterus at 24 hours post breeding (Fig. 6.2a). There was however, a 

trend towards significance when evaluating the effect of hrLF on fluid retention if the 

individual concentrations were analyzed as one variable, with hrLF decreasing the 

circumference of intrauterine fluid at 18 hours post-treatment (P=0.0941) (Fig. 6.2b). 

The infusion of hrLF significantly decreased the PMN:epithelial cell ratio seen in a post- 

breeding uterine cytology (P=0.0397). When the concentrations were analyzed 

individually, no significant difference in PMN:epithelial cell ratio was seen amongst 

concentrations of hrLF (Fig. 6.3).  All concentration of hrLF had a marked decrease on 

PMN:epithelial cell ratio in comparison to the control infusion of LRS, with 50μg/mL 

hrLF (P=0.021), 250μg/mL hrLF (P=0.008), and 500μg/mL hrLF (P=0.038) respectively. 

The effect of lactoferrin on mRNA expression of cytokines in the endometrium 
 

was evaluated at 24 hours after insemination. There was a significant effect of treatment 
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on interleukin-1 receptor antagonist (IL-1RN) (P=0.049), with all three concentrations of 

hrLF increasing mRNA expression of the anti-inflammatory cytokine in the endometrium 

(Fig. 6.4).  Lactoferrin also had a significant effect on mRNA expression of the pro- 

inflammatory cytokine interferon gamma (IFNγ), with the treatment of 50μg/mL hrLF 

significantly suppressing the mRNA expression of IFNγ in comparison to LRS (Fig. 6.5). 

No significant difference was noted for either of the increased concentrations (250μg/mL 

or 500μg/mL).  There did not appear to be an effect of lactoferrin infusion on of the other 

cytokines studied (IL-1β, IL-6, IL-8, IL-10, TNF) in comparison to the control of LRS. 

 
 
 
 
 
 
 

 
 
 

Figure 6.1: The effect of intrauterine infusion of lactoferrin on vitals. Heart rate, respiration, 
and temperature were evaluated on normal mares before the intra-uterine infusion of 500ug/mL 
hrLF resuspended in 10mL lactated Ringers solution (LRS). This was repeated immediately post- 
infusion, in addition to 30 and 120 min post-infusion. There was a significant increase in all three 
vitals immediately post-infusion with all returning to below resting within 30 min post-infusion. 
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Figure 6.2a: The effect of varying concentrations of hrLF infusion on uterine fluid. 
Area (cm2) uterine fluid evaluated via transrectal ultrasonography at 24 hours post- 
insemination.  There were no significant differences found when comparing the infusion 
of hrLF to that of LRS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2b. The effect of total hrLF infusion on uterine fluid. Area (cm2) 
inflammatory uterine fluid evaluated via transrectal ultrasonography at 24 hours post- 
insemination. hrLF tended to decrease the circumference of fluid retention when 
individual concentrations of hrLF were combined into one variable (P=0.0941). 
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Figure 6.3: The effect of hrLF infusion on the ratio of PMN’s to epithelial cells. 
PMN migration evaluated via low volume lavage at 24 hours post-breeding. Cells were 
counted using a cellular smear stained in Diff Quik. 10 views at 40x were evaluated, 
different letters (a,b) signify significant differences . All three concentrations of hrLF 
(50μg/mL, 250μg/mL, and 500μg/mL) significantly decreased the ratio of PMNs to 
epithelial cell numbers. 
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Figure 6.4: ΔΔCT of endometrial mRNA transcripts of IL-1RN in mares 18 hours 
after infusion with exogenous hrLF. The gene expressions are normalized to ACTB 
and displayed as ΔΔCT values ± SEM with LRS as the calibrator. Different letters (a,b) 
indicate significant differences among treatment groups, set to p < 0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5:  ΔΔCT of endometrial mRNA transcripts of IFNγ in mares 18 hours 
after infusion with exogenous hrLF. The gene expressions are normalized to ACTB 
and displayed as ΔΔCT values ± SEM with LRS as the calibrator. Different letters (a,b) 
indicate significant differences among treatment groups, set to p < 0.05. 

6.5 Discussion 
In this study, exogenous human recombinant lactoferrin (hrLF) was found to 

modulate the innate immune response seen after breeding in the susceptible mare. When 

administered in estrous, hrLF was found to have no overall detrimental effect on the vital 

signs evaluated, with rectal temperature, heart rate, and respiration all returning back to 

basal levels or below within 30 min post-infusion.  Intrauterine infusion of hrLF was also 

shown to significantly effect many aspects of the inflammation to breeding. To our 
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knowledge, this is the first report of a seminal plasma protein altering the innate immune 

response to breeding in susceptible mares when infused at 6 hours after insemination. 

Lactoferrin is an estrogen-dependent protein found to be bactericidal due to its 

ability to chelate free iron, enabling its usage to suppress a wide rage of gram-negative 

bacteria such as Staphylococcus aureus, which has been reported as a common uterine 

pathogens [213].   In addition, lactoferrin has been shown to function as an anti- 

inflammatory on many markers of innate immunity.  A study by Machnicki et al. (1993), 

found lactoferrin to significantly decrease the serum concentration of tumor necrosis 

factor (TNF) and interleukin-6 (IL-6) after induction of inflammation by intravenous 

lipopolysaccharide (LPS) injection in the mouse [135]. Another murine study found the 

intravenous infusion of lactoferrin to significantly suppress the synthesis of both 

interleukin-1β (IL-1β) and tumor necrosis factor (TNF) after lipopolysaccharide (LPS)- 

induced endometritis [36]. 

In the horse, lactoferrin has been shown to affect the innate immune response both 

in vitro and in vivo. Lactoferrin was found to significantly increase the number of 

polymorphonuclear neutrophils (PMNs) bound to sperm, and specifically nonviable 

sperm in vitro [225].  In vivo, lactoferrin has also been shown to modulate the innate 

immune response to breeding in mares suffering from persistent breeding-induced 

endometritis.  When added at the time of breeding, 150μg/mL hrLF was found to 

significantly suppress the endometrial mRNA expression of the pro-inflammatory 

cytokine TNF at six hrs after breeding [226]. While the literature supports the basis of 

lactoferrin affecting many markers of the innate immune response, to our knowledge the 
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present study is the first to assess the ability of lactoferrin to modulate persistent 

breeding-induced inflammation in the equine uterus. 

In this study, the addition of hrLF significantly decreased the ratio of 

polymorphonuclear neutrophils (PMNs) to epithelial cells post-breeding. Elevated 

numbers of PMNs are found within the uterine lumen as rapidly as 30 mins post- 

insemination, and PMN numbers peak approximately 4-8 hours after breeding [231]. In 

the susceptible mare, PMN migration into the uterus can persist upwards of 96 hours 

post-breeding; and the resolution of this is paramount for optimal fertility [232].  It has 

been shown that the addition of seminal plasma to the insemination dose suppresses the 

PMN infiltration at 24 hours after breeding, but research into the specific components of 

seminal plasma which play a role in this suppression is lacking [175].  In the current 

study, the migration of PMNs was evaluated at 24 hours after insemination, and analyzed 

between varying concentrations of hrLF added at 6 hours post-breeding in contrast to the 

negative control of lactated Ringers solution (LRS).  When mares were infused with 

LRS, the percentage of PMNs to every 100 epithelial cells was 12.6%, a value 

comparable to previous literature. Cocchia et al. (2012) evaluated chronically infertile 

mares for neutrophil migration through a variety of techniques and found the average 

ratio of PMNs to epithelial cells after low-volume lavage to be 10.67 [233].  In this study, 

the addition of exogenous hrLF was found to significantly suppress the PMN:epithelial 

cell ratio at all three concentrations (50μg/mL, 250μg/mL, and 500μg/mL) and to below 

the average seen in other reports (6.5, 5.6, and 6.3 respectively). While there was no 

effect on the specific concentration of hrLF infused, the suppression on this hallmark of 

the innate immune response at 24 hours after breeding is intriguing. 
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In addition to its effect on PMN migration, the infusion of hrLF significantly 

affected the endometrial mRNA expression of inflammatory cytokines.  In particular, all 

three concentrations of hrLF infusion at six hrs post-breeding significantly increased the 

mRNA expression of interleukin-1 receptor antagonist (IL-1RN) in comparison to LRS. 

IL-1RN is a competitive inhibitor of the receptor for the pro-inflammatory cytokine 

interleukin-1 (IL-1/IL-1β), therefore acting as an anti-inflammatory in response [234]. 

IL-1β, in addition to tumor necrosis factor (TNF), are initial responders to the detection of 

foreign particles and pathogens to the system.  Both IL-1β and TNF stimulate the 

production of interleukin-6 (IL-6), which is critical for the transition from a neutrophilic 

to monocytic invasion. Woodward et al. (2013), found that susceptible mares have a 

significantly lower endometrial mRNA expression of IL-1RN in comparison to resistant 

mares at 6 hours post-breeding, and it was suggested that this suppression of the anti- 

inflammatory response was explanatory to the prolonged inflammation seen in the 

susceptible mare [9].  The infusion of exogenous hrLF at six hours post-breeding appears 

to modulate this suppression of the anti-inflammatory response to breeding, and may 

assist with the resolution of the prolonged inflammatory state of the uterus that occurs in 

these mares. 

In addition to its effect on IL-1RN, the infusion of 50μg/mL of exogenous hrLF 

also significantly suppressed the endometrial mRNA expression of interferon gamma 

(IFNγ). A pro-inflammatory cytokine, IFNγ is a critical component in the activation of 

mononuclear phagocytes, and specifically the macrophage population [235]. IFNγ is also 

critical in inducing antigen-presenting cells to produce increasing amounts of other pro- 

inflammatory cytokines, such as TNF and interleukin-12 (IL-12).   In addition to its effect 
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on the immune response, researchers have found IFNγ to play a role in pregnancy 

development and maintenance in other species.  A study by Szekeres-Bartho et al. (1990) 

found that when IFNγ, TNF, and IL-2 were injected into non-abortion prone mice, their 

risk of miscarriage significantly increased [236]. In addition, increased levels of IFNγ 

expression were found in endometrial biopsies of pigs that contained retarded, though 

viable, conceptuses [237]. The role of IFNγ in equine pregnancies has not been 

investigated. 

Although lactoferrin showed a significant affect on the signaling molecules of the 

innate immune system, no significant difference was seen in the level of inflammatory 

fluid when exogenous lactoferrin was infused.  All three doses of hrLF appeared to lower 

the circumference of fluid retention in the susceptible mare in comparison to LRS, but 

this was not found to be significant.  When the individual concentrations of hrLF were 

combined as a single variable of treatment, there was a trend towards a significant 

decrease in the circumference of inflammatory fluid retention when hrLF was added in 

contrast to that of LRS (P=0.0941). We believe that the low number of mares evaluated 

in this study, in addition to the high variability seen in fluid grades across mares as well 

as between cycles contribute to the lack of significance, and should be noted. 

In conclusion, the infusion of exogenous human recombinant lactoferrin at six 

hours post-breeding was found to be both a safe and potent modulator of the prolonged 

inflammation seen in the mare suffering from persistent breeding-induced endometritis. 

The intrauterine infusion of hrLF in normal mares in estrous did not have a clinically 

relevant effect on the heart rate, temperature, or respiration under the conditions of this 

study.  When administered post-breeding, the intrauterine infusion of all three 
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concentrations of hrLF post-lavage in mares susceptible to PBIE significantly suppressed 

the ratio of PMNs to epithelial cells.   In addition, all three concentrations of hrLF 

significantly increased the endometrial mRNA expression of the anti-inflammatory 

cytokine IL-1RN, with the concentration of 50μg/mL hrLF also decreasing the 

endometrial mRNA expression of the pro-inflammatory cytokine IFNγ. To our 

knowledge, this is the first report in which the administration of exogenous lactoferrin 

significantly altered the immune response of the susceptible mare at 24 hours post 

breeding. Results from this study show that hrLF is an effective modulator of the 

inflammation seen after breeding in the mare that is susceptible to PBIE, and future 

research is required to see its effect on fertility. 
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CHAPTER 7 

GENERAL DISCUSSION 

Persistent breeding-induced endometritis (PBIE) in the horse is considered an 

economic burden to the breeding industry.  While multifactorial in causation, its 

incidence has been shown to correlate with increasing age, worsening endometrial biopsy 

score, poor perineal conformation, and parity [14, 15, 238-240]. Immense research has 

been conducted on the disease process of PBIE in addition to therapeutics with which to 

resolve it in a timely fashion, but considerable variability exists within the results. This 

may be due to the inconsistencies found within protocols for the induction of 

inflammation, screening of mares for disease risk, in addition to the endpoints evaluated 

and the time points they are performed. 

The constituents of the insemination dose vary tremendously between 

management protocols, stallions and methods of breeding.  In the live cover or natural 

breeding situations, the sperm is supported by the addition of both seminal plasma and 

the gel fraction.  The gel fraction is eliminated during most semen collection practices 

through filtration, and the seminal plasma removed via centrifugation or dilution to a 

minimal amount prior to cryopreservation or cooling [241].  While the removal of 

seminal plasma may be beneficial to the longevity and viability of sperm, its presence has 

been documented as beneficial to the immune response seen post-breeding in the mare [1, 

74]. The role of specific aspects of seminal plasma on inflammation post-breeding is 
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lacking, with limited data to support their functionality in vivo. In vitro, seminal plasma 

proteins have been found to modulate specific markers of inflammation, including the 

bioactivity of PMNs. While lactoferrin was found to significantly increase PMN binding 

to dead sperm [123] and CRISP-3 was found to suppress PMN binding to live sperm 

[11], the data within this dissertation is the first to look into their effect in vivo. 

To properly understand the mechanisms and pathways with which these select 

seminal plasma proteins act additional information is required. In Chapter 2, the effect of 

puberty on the expression of CRISP-3 in the male reproductive tract was evaluated. 

There exists generous literature to support the role of androgens and estrogens on the 

synthesis and expression of seminal plasma proteins, but minimal work has been done on 

this specific constituent of the proteome in the horse. In Chapter 2, it was determined that 

puberty plays a role in the activation of CRISP-3 expression, as both mRNA and protein 

expressions were increased in the postpubertal male.  Unfortunately, under the confines 

of this experiment, it remains uncertain if this is due to the activation of androgens and/or 

estrogens that occurs at the onset of puberty, or if additional variables were involved. It 

also became apparent in this chapter that CRISP-3 is primarily produced in the glandular 

aspects of the secretory glands of the reproductive tract.  We hypothesize that this is what 

causes the immense concentration of this protein found in the stallion ejaculate, 

approximately 1mg/mL, which is considerably more than what is seen in other species 

[105]. 

A crucial aspect of the pathology of persistent breeding-induced endometritis is 

within the innate immune response. Pivotal research identified differing inflammatory 

gene expression of key cytokines when comparing the resistant and susceptible mare 
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populations [9, 21].   Unfortunately, there exists vast differences in methodology in 

comparable studies, and therefore the effect of inseminating live versus dead sperm on 

inflammatory gene expression was evaluated.  The results from the experiment in 

Chapter 3 confirmed the hypothesis that the insemination protocol affected the results of 

the study, as the infusion of live sperm caused a significantly different response in 

comparison to that of freeze-killed sperm. With a suppression of the inflammatory 

modulating cytokine interleukin-6 (IL-6), this result suggests that the protocol used to 

induce inflammation, and its effect on the outcomes studied should be considered when 

interpreting data.  Although some researchers choose to induce inflammation through the 

intrauterine infusion of non-physiological components, such as freeze-killed sperm or 

bacterial pathogens, this study demonstrates that the variable of inseminant may have an 

effect on the outcomes reported, and potentially stray from the physiological state in a 

normal breeding operation. 

Previous studies found that six hours post-breeding is a key time point for the 

diverging immune response between that of susceptible and resistant mares to occur [9]. 

At this time, resistant mares were found to have a significant increase in the expression of 

both the anti-inflammatory and inflammatory-modulating cytokines.  In contrast, the 

susceptible mares failed to mount this response, and it was hypothesized that this failure 

to launch an anti-inflammatory response was the cause of the prolonged inflammation 

noted.  This pivotal study was performed with the infusion of freeze-killed sperm to 

induce inflammation, and with the seminal plasma reduced significantly from its original 

volume. As noted, it has been shown that seminal plasma may play a role in the 

inflammatory response to breeding, although minimal attention has been paid to the 
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specific proteins within the ejaculate. Two proteins of interest are that of lactoferrin and 

CRISP-3, both of which have been shown to modulate the binding activity of PMNs to 

spermatozoa in vitro. Therefore, the dual objectives of Chapters 4 and 5 were to 

determine if the addition of these two proteins at the time of breeding had an effect on the 

gene expression of key cytokines in either the resistant or susceptible mare.  While 

neither protein was found to have a substantial effect on the genes studied in resistant 

mares, the addition of lactoferrin was found to significantly suppress the expression of 

the cytokine tumor necrosis factor (TNF)-α in susceptible mares. The suppression of this 

pro-inflammatory signaling molecule at 6 hours post-breeding indicates that the seminal 

plasma protein lactoferrin may function as an anti-inflammatory in response to 

insemination.  Minimizing the concentration of this protein via centrifugation for 

artificial insemination practices therefore may explain the increased risk of endometritis 

when using cryopreserved semen in the field. 

The pathway which inherent lactoferrin acts in the equine uterus has not been 

reported.  Our proposed pathway is described in Figure 7.1.  We hypothesize that the 

deposition of semen in the uterus at the time of breeding induces an increase in the 

expression of pro-inflammatory cytokines IL-1β and TNF from the epithelial cells of the 

endometrium. These cytokines are considered the first responders of the innate immune 

response and are activated rapidly after the detection of foreign materials.  This increase 

then signals an increased production of IL-8, which activates the migration of PMNS 

from the endometrium to the uterine lumen. This is thought to occur within 0.5hr after 

breeding, and peaks at 2 hrs. [242]. Lactoferrin, which is present in the seminal plasma 

of the ejaculate, has been found to increase the binding of PMNs to nonviable sperm [52]. 
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However, it is unknown how lactoferrin mediates this action, as no specific receptor for 

the protein has been detected on neutrophils. It has also been shown that the granules of 

neutrophils contain lactoferrin, and therefore the enhancement of phagocytic activity may 

be due to the functionality of the neutrophil-derived protein, as the phagosome is created 

through the extrusion and entrapment of foreign materials via the granules of the 

neutrophils. The presence of granulitic lactoferrin within the phagocytic cell itself may 

contribute to this bactericidal activity. 

While the initial cellular immune response to breeding is predominantly a 

neutrophilic one, this has been shown to shift to a monocytic invasion around 24 hours 

after insemination, and this is mediated by the dual function of IL-6.   It is hypothesized 

that lactoferrin may bind to macrophages present, as lactoferrin specific receptors have 

been found on the phagocytic cells in the bovine and human model [139]. The monocytes 

predecessor, macrophages are responsible for the production of cytokines such as TNF 

through the activation of the NFkβ pathway [243], and the inhibition of this action by 

lactoferrin may explain the suppression of TNF at 6 hours post-breeding.  The latent 

suppression of TNF at 6 hours post-breeding could then potentially have a negative 

feedback on production of IL-8.  As IL-8 is the primary stimulant for PMN migration, 

this suppression will be followed by a decrease in PMN infiltration, and a resolution of 

inflammation.  In the normal mare, this occurs within 24-36 hours, and lactoferrin 

appears to play an important role in this pathway.  In the susceptible mare, a 

supplemental addition of this protein at the time of breeding may be beneficial to 

stimulate this feedback. 
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Figure 7.1: Schematic diagram of the inherent lactoferrin pathway.  Orange arrows 
indicate inherent lactoferrin effect, as caused by the effect of lactoferrin within seminal 
plasma. It is hypothesized that the deposition of semen directly into the uterus activates 
an increased expression in the pro-inflammatory cytokines, resulting in an increased 
neutrophilic migration.  Lactoferrin is thought to increase PMN binding, although the 
receptor/ligand has not been determined. Lactoferrin is hypothesized to bind to activated 
macrophages and suppress the synthesis of TNF.  This decrease in TNF may then 
suppress the production of IL-8, resulting in the cessation of the neutrophilic infiltration. 
This indicates that lactoferrin may play an essential role in the activation of the pro- 
inflammatory response in addition to the negative feedback required for the checks and 
balances of the innate immune system. 

 
 

Although the majority of seminal plasma is removed before cryopreservation of 

semen, it is left whole for practices of live cover and most artificial insemination 

protocols using fresh semen.  In addition, a subset of thoroughbred mares bred under live 

cover conditions also experience persistent breeding-induced endometritis, as noted in a 

study by Zent et al. (2005).  This disease was shown to occur in 10-15% of the 

thoroughbred population in Kentucky, indicating that the addition of seminal plasma 

proteins at the time of breeding does not offer total inhibition of the prolonged 

inflammation from occurring. The susceptible mares experience a persistent 

inflammatory response, which left uninhibited, can lead to infertility and possibly chronic 

endometrial fibrosis if unattended to.  Therefore, in Chapter 6 we investigated the use of 
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exogeous lactoferrin as a potential modulator of persistent inflammation in the uterus. 

Although not in a dose-dependent fashion, lactoferrin was found to act as an anti- 

inflammatory when infused post-breeding, the mechanism for which is described in 

Figure 7.2. The suppression of PMN infiltration, fluid retention, and dual suppression of 

pro-inflammatory cytokines (IFNγ) while stimulating anti-inflammatory cytokine 

production (IL-1RN) in the diseased mare indicates a potential pathway for exogenous 

lactoferrin to prepare the uterus for embryo arrival and future implantation.  However, 

future studies are required to examine its affect on fertility. 

 
 
 
 

 
 

Figure 7.2 Schematic diagram of the exogenous lactoferrin pathway. In the 
susceptible mare, persistent inflammation can remain in the uterus for upwards of 
96 hours. Green arrows indicate effect of exogenous lactoferrin as described in the 
dissertation, and black indicating hypothesized outcomes as indicated in previous 
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literature. Exogenous lactoferrin administered at 6 hours post-breeding acts as an 
anti-inflammatory, dually suppressing the expression of the pro-inflammatory 
cytokine IFNγ while increasing the expression of the anti-inflammatory cytokine IL- 
1RN. This activity functions cohesively to both decrease the activity of IL-1β while 
also further suppressing the macrophage-stimulated TNF synthesis. This 
suppression may inactivate the IL-8 pathway to neutrophilic infiltration, effectively 
decreasing the neutrophilic presence in the uterine lumen. In addition, exogenous 
lactoferrin was found to suppress uterine fluid. In other species, a down-regulated 
expression of IFNγ is imperative for the endometrium to achieve pre-implantation 
quality. 

 
 

The proteomics of the stallion ejaculate deserve further investigation into 

their functionality, in addition to the pathways that regulate them. While the 

majority of seminal plasma is removed from the insemination dose in many artificial 

insemination practices, we have shown that certain proteins may be beneficial to the 

resolution of inflammation seen post breeding, and their reinstatement at the       

time of breeding may be beneficial. In addition, the proteins found capable of 

affecting the immune response should be further pursued as biologically derived 

immunomodulators. If found effective, biologics that are intrinsic to the ejaculate 

may serve as better options for the treatment of inflammation when compared to 

nonsteroidal anti-inflammatories (NSAIDs), antimicrobials, and steroids as they are 

less likely to induce contraindicated effects. 

In conclusion, lactoferrin suppresses numerous aspects of the pro- 

inflammatory pathway of the innate immune response, serving as an innately 

produced anti-inflammatory in the ejaculate. Increased understanding into the 

functionality of both lactoferrin, in addition to other proteins within the seminal 

proteome, may further improve our management of broodmares. 
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Appendices 
 

Appendix A: The effect of the gonadotropin-releasing hormone (GnRH) antagonist 
acyline on the synthesis of CRISP-3 in the equine ejaculate 

 
 

A.1: Background 
The effect of androgens and estrogens on seminal plasma proteins is of interest to 

further determine the pathways with which these proteins function. Recently, the third 

generation GnRH antagonist acyline (Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Ac)- 

D4Aph(Ac)-Leu-Lys(Ipr)-Pro-DAla-NH2) was investigated in the horse. Numerous 

studies have shown that acyline suppresses the HPG axis in canines and humans, and it 

has been used as a therapeutic in androgen dependent diseases [244-246].  Acyline was 

recently found to suppress the hypothalamic-pituitary-gonadal (HPG) axis for upwards of 

five days in the stallion [247], significantly decreasing the production of steroid 

hormones; including testosterone, estrogen, luteinizing hormone (LH) and follicle 

stimulating hormone (FSH).  This suppression was reversible, and within 10-15 days 

after the end of treatment, the levels had replenished to their normal values.  It was also 

shown in this study that total protein content of the seminal plasma was significantly 

lowered in the stallions treated with acyline, but the individual proteins within the 

seminal plasma were not evaluated. 

While the androgen dependency of the seminal plasma protein CRISP-3 has been 

reported in the murine and human model, no data can be found to support this in the 

equine.  Therefore, the objective of this study was to investigate the effect of the third 

generation GnRH antagonist acyline on the synthesis of CRISP-3 in the seminal plasma 

of the mature stallion. We hypothesize that androgens, and their decreased synthesis due 
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to the serial injections of acyline, will have a negative effect on the synthesis of equine 

CRISP-3 in equine seminal plasma. 

 
 
 

A.2: Materials and Methods 
 

A2.1 Animals and Sample Collections 
All animal research and sample collection was conducted according to Davolli et al. 

 
(2016) [247]. 

 
 

A2.2: Western Blotting 

Protein concentration in seminal plasma was determined with coomassie 

(Bradford) protein assay kit (#23200, Thermo Scientific, Kalamazoo, MI, USA) as 

previously described by Bradford [248]. Seminal plasma was then resuspended to a 

concentration of 100μg/mL in 50% 10 mM Tris (Bio-Rad, Hercules, CA, USA) (pH 7.2), 

47.5% Laemmli Sample Buffer (Invitrogen, Carlsbad, CA, USA), and 2.5% b- 

mercaptoethanol (MP Biomedicals, Solon, OH, USA), mixed vigorously for 30 s, and 

boiled at 90–100°C for 5 min. From each sample, 50ng of protein was loaded onto a 12% 

polyacrylamide gel and electrophoresed at 200 V for 40min, then the proteins were 

transferred to an Immun-Blot PVDF Membrane (Fisher Scientific, Pittsburgh, PA, USA) 

at 100 V for 1 h in a transfer buffer consisting of 70% deionized water, 20% methanol 

(Fisher Scientific) and 10% Tris/Glycine buffer (Fisher Scientific). Following transfer, 

the membranes were rinsed well in deionized water and blocked using 5% non-fat dry 

milk (Carnation, Wal-Mart, Lexington, KY, USA) in 0.1% Tween-20 (Sigma) (PBS-T) 

for 1h. The membranes were washed three times in 1x PBS for 5 min each, then 

incubated overnight with 0.1% Tween-20 (Sigma) (PBS-T) with 3% bovine serum 
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albumin (Eastman Kodak Co., Rochester, NY, USA) (BSA) and primary antibody against 

CRISP-3 at a dilution of 1:5000. The next day, following incubation in primary antibody, 

the membranes were washed three times in 1x PBS-T for 5 min each, then incubated for 1 

h in 1x PBS- T and anti-rabbit whole molecule horse- radish peroxidase-conjugated 

(HRP) secondary antibody (A-3415) (Zeiss) at a dilution of 1:5000, followed by washing 

three times in 1% PBS-T for 5 min each. The membranes were treated with SuperSignal 

West Pico Chemiluminescent Substrate (Pierce, Rockford, IL, USA) for 5 min prior to 

developing on high performance chemiluminescence film (Applied Biosystems, Foster 

City, CA, USA) using a Kodak X-OMAT 1000A Processor (Eastman Kodak Co.). 

 
A.3: Results 
The decrease of testosterone and estrone sulfate in the serum of stallions had no significant 

effect on the production of CRISP-3 in the seminal plasma. Although a level of decrease 

was noted on certain days (refer to +50 day), this was not due to treatment, as controls also 

experienced a suppression of CRISP-3 synthesis at that specific time point (Fig A.1). 

These results may be due to seasonal variations as the experiment was conducted during 

the months of August-December. 

 
 
 

 
Figure A1.1: Western blot of eCRISP-3 as evaluated pre- during and post-serial acyline 
administration. No significant decrease in CRISP-3 synthesis in the seminal plasma was 
noted across stallions, with large variability seen between stallions and days. 
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A. 4: Discussion 
In this experiment, the effect of a gonadotropin-releasing hormone (GnRH) 

antagonist on the synthesis of equine CRISP-3 in the ejaculate was evaluated. The 

expression and synthesis of CRISP-3 has been found to be hormonally regulated in a 

variety of species, including the murine and human models.  Although data suggests that 

it is puberty dependent in the horse [223], no research has gone into the specific 

endocrine markers which affect its expression and synthesis. Although the third 

generation GnRH antagonist acyline was determined to be an effective and reversible 

suppressant of both androgens and estrogens in the stallion, it had minimal effect on the 

synthesis of CRISP-3 [247]. In the study by Davolli et al. (2016), acyline was found to 

significantly decrease the total protein content in the ejaculate. While it is intriguing that 

the total protein content was suppressed, but not CRISP-3 synthesis, it should be noted 

that the antibody used to detect equine CRISP-3 in this project was a polyclonal antibody 

raised in rabbits against purified protein. When attempted for usage in an enzyme-linked 

immunosorbent assay (ELISA), this antibody demonstrated tremendous inter- and intra- 

assay variability, and therefore its sensitivity and specificity is questionable.  In addition, 

it is difficult to extrapolate the exact causative function of any of these hormones on the 

synthesis of seminal plasma proteins in the confines of this study, as both testosterone 

and estrone sulphate were suppressed.  This may have contributed to the results of this 

study, as although CRISP-3 was found to be testosterone dependent in other species, 

estrogen is a known mediator of the synthesis of other seminal plasma proteins, including 

lactoferrin [145]. Future work should consider this quandary, and assess the effects of the 
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specific steroid hormones individually on the synthesis of equine CRISP-3 in the stallion 

ejaculate. In addition, antibodies should be re-developed against a protein of higher purity 

or of recombinant form to further increased the specificity and sensitivity. 

 
 
 
 

Appendix B: The development of an equine specific CRISP-3 enzyme-linked 
immunosorbent assay (ELISA) 

B. 1: Background 
The use of an enzyme-linked immunosorbent assay (ELISA) has become common 

practice in research and diagnostics due to its high precision and accuracy at measuring 

protein, hormone, and antibody concentrations in a variety of fluids. One protein, equine 

cysteine-rich secretory protein-3 (CRISP-3) has gained interest due to both its high 

homology with plant pathogenesis-related (PR) proteins in addition to its ability to suppress 

the binding between polymorphonuclear neutrophils (PMNs) to viable spermatozoa in 

vitro, leading to the hypothesis of its involvement in the immune response to breeding [11]. 

In a study by Novak et al. (2010) it was found that the abundance of CRISP-3 in the 

ejaculate was positively correlated to high first cycle conception rates, but no causative 

effect was found [121]. Because of this, our ability to assess total CRISP-3 content in the 

ejaculate may be beneficial in predicting future fertility potential of a stallion. Previously, 

a competitive indirect ELISA was postulated to detect equine CRISP-3 [249], but the 

protocol described was not replicable in the confines of our laboratory. Therefore, the 

objective of this study was to produce and validate an additional ELISA for the detection 

of CRISP-3 in equine seminal plasma with minimal variability and great repeatability. 

 
There are three types of ELISAs: direct, indirect, and sandwich.  The specific 
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steps of each style of ELISA differ, but all utilize the specific binding between antigens 

and their antibodies to detect the presence of a molecule of interest [250]. Finally, a 

colorimetic reaction takes place between an enzyme conjugated to an antibody and 

substrate, and the measurement of a target substance can be performed through the use of 

optical density values. 

ELISA’s involve the stepwise addition of reagents and the reactions between them 

upon a solid phase-bound substance, usually a plastic microwell plate.  The three basic 

systems of ELISA are all based off of this same principle application, with varying 

degrees of difference.  In the direct ELISA, which is considered the most basic platform, 

an antigen is diluted into either a high pH bicarbonate or carbonate buffer or a basic pH 

solution such as PBS and allowed to attach passively to the plastic of the microwell 

plates.  After incubation, the plate is washed thoroughly by flooding and emptying the 

wells of the plate using a neutral solution (PBS or TBS).  Once washed, antibodies are 

added that are raised against the specific antigen and are conjugated to substrate. These 

conjugated antibodies are diluted in a substance that will interfere with passive binding 

but not interfere with the direct binding between antibody and antigen. These diluents  

are referred to as blocking buffers, and commonly are bovine serum albumin (BSA) or 

nonfat freeze dried milk (NFDM). The antibody is allowed to incubate for a specific 

amount of time, and this is again followed by a washing step.  Finally, a suitable substrate 

that reacts with the conjugate of the antibody is added. This will evolve into a 

colorimetric that can be quantified be the use of spectrophotometer reading at the 

appropriate wavelength. 

The initial steps of an indirect ELISA are similar to that of a direct system, with 
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the exception that an additional antibody is utilized.  Following the coating of antigen and 

washing steps, an unlabeled antibody specific for the coating antigen is added in a 

blocking buffer and incubated for a specific time. This is washed to remove excess and 

then a second anti-species antibody is added. These secondary antibodies are raised 

against the immunoglobulins of the primary antibody species and are then conjugated to 

the detecting substrate.  The final steps are similar to the direct ELISA, with the 

development of color that can be detected through the use of a spectrophotometer. The 

addition of the second antibody allows for the addition of a number of antisera to be 

utilized, making them easy to use.  Unfortunately, this also leads to an increase in 

nonspecific binding in the individual sera (Crowther 2001). 

The sandwich ELISA can be further divided into two subsets of platforms: the 

direct sandwich ELISA, and the indirect sandwich ELISA. In the direct sandwich ELISA, 

specific non-conjugated antibodies coat the plate and then antigen is added following the 

washing and blocking steps. Following this, the antigen is captured by a secondary 

antigen-specific antibody that is conjugated to substrate. This second antibody can be the 

same as the first in terms of species it was raised in, or it can differ. The steps following 

the capture of antigen are identical to the previous systems described. This system is 

limited in a variety of ways, including that the antigen must have at least two antigenic 

sites, or epitopes.  It is also limited in specificities since a single enzyme-conjugated 

antibody is used.  It is recommended that only one of the antibodies be monoclonal so as 

to not limit the detection of the antigen. 

In the indirect sandwich ELISA, the first steps are identical to that of a direct 

sandwich ELISA.  A specific antibody coats the plate, and following wash and blocking 
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steps, the antigen of interest is added and incubated.  Following the addition of antigen, a 

second non-conjugated antibody is added.  Finally, an anti-species conjugated tertiary 

antibody is added to detect the secondary non-conjugated antibody.  The bound tertiary 

antibody is then detected as in the previously described systems. This system increases 

the specificity of detection, but is also rather expensive due to the number of antibodies 

needed to achieve results. 

In addition to the three differing systems, it is also possible to increase or decrease 

capture and specificity of the platform by choosing either a monoclonal or polyclonal 

antibody.  The antibodies generated in the natural immune response or after 

immunization are a mixture of molecules that contain different specificities and affinities 

[251]. Some of this is due to the immunization of a variety of epitopes of antigen, but 

antibodies raised against a single antigenic determinant can still be heterogeneous. This 

can be overcome by fusing spleen cells from the specific species immunized against 

antigen to that of a myeloma to produce a hybrid cell, or hybridoma, that can proliferate 

indefinitely and produce antibodies specific for the antigen used for immunization. Due 

to the fact that these hybridomas are clones derived from the fusion with a single B cell, 

they produce antibodies that are identical in structure, including in their antigen-binding 

site.  These antibodies are therefore called monoclonal antibodies due to their specificity 

for a single epitope.  In contrast, polyclonal antibodies are developed through the 

immunization against a specific antigen, but without the hybridization of the clones. 

Therefore, polyclonal antibodies maintain their heterogenicity and are less specific for a 

single epitope of antigen. 

Throughout the process of the development of an ELISA specific for the detection 
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of equine cysteine-rich secretory protein-3 (CRISP-3), numerous systems, antibodies, 

reagents, blocking solutions, wash buffers, and substances were evaluated. Each was 

assessed at varying dilutions and concentrations, and yet no true detection system was 

found to possess both minimal variability and high repeatability.  While initially 

following the protocol previous described by Connor (2009), it was noted that this led to 

a complete lack of colorimetric detection as written, and troubleshooting began.  The 

following is a description of the variables assessed and their respective outcomes. 

 
 
 

B.2: Attempts to develop and validate an equine-specific CRISP-3 ELISA 
 

B.2.1 Protocol as per Connor (2010) 
The initial protocol for the quantification of equine CRISP-3 in the seminal 

plasma of stallions was performed as described by [249]. In brief, an indirect competitive 

ELISA was used, utilizing the Nunc Maxisorpt 96-well plates. Each plate was coated 

with 1μg/ml CRISP-3 diluted in PBS. Coating incubation was overnight at 4ºC. After 

completion of coating, plates were washed using WellWash and were blocked with a 

volume of 200 μl 1% BSA. After incubation via shaking for one hour at room 

temperature, the plate was washed again. Every plate included a standard curve ranging 

from 10μg/ml to 25ng/ml purified equine CRISP-3, a total binding measurement as well 

as a non-specific binding measurement. Seminal plasma samples were diluted for 

analysis, ranging from 1:2400 to 1:307200 in a dilution curve. Each dilution was 

duplicated within the plate and added to the plate at a volume of 50μL. The mouse anti- 

equine monoclonal antibody HL2175 was diluted from glycerol stock solution to a 

dilution of 1:80,000 and 50μl of antibody was added to appropriate wells of the plate. The 
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plate was incubated for one hour, shaking at room temperature and then washed. 

Following washing, 50μl of rabbit anti-mouse IgG secondary antibody conjugated to 

alkaline phosphatase (AP) was added at a dilution of 1:1000 to each well. The secondary 

antibody incubated for one hour, shaking at room temperature. Following washing, P- 

Nitrophenyl-phosphate (pNPP; 200μL of 1mg/mL) was used as a substrate and added to 

each well.  The pNPP was hydrolyzed to p-nitrophenol by the AP and detected 

spectrophotometrically at 405nm. The concentration of the resulting enzymatic product 

was inversely proportional to the amount of the antigen present in the sample. 

 
 
 

B.2.2 Troubleshooting the equine CRISP-3 ELISA 
No color developed after repeated attempts following the protocol as described by Connor, 

and potential adjustments were investigated. It was noted upon purchase of the secondary 

antibody conjugated to alkaline phosphatase that researchers were advised against diluting 

any alkaline phosphatase linked enzyme in PBS due to its potential inhibition on enzymatic 

activity. 

 
Determination of Coating Buffer and Binding Absorption of Plates 
Immulon® Microtiter™ (medium binding) and Nunc® Maxisorp (high binding) 96-well 

plates were analyzed for binding efficacy of antigen and background noise. Immulon® 

Microtiter™ (medium binding) was chosen due to low background noise and coefficient 

of variability amongst negative controls (Fig 1). 
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Figure B.1: Inter-assay Coefficient of Variation’s (CV) of blank wells, as averaged over 5 
plates. Immulon® Microtiter™ (medium binding) had an acceptable albeit high inter- 
assay CV of 15.6%, while Nunc Maxisorp (high binding) plates had an inter-assay CV of 
44%. 

 
 
 

Utilizing the Immulon® Microtiter™ 96-well plates, varying concentrations of 

purified equine CRISP-3 ranging from 50ng/mL to 10μg/mL were diluted in one of the 

following diluents: 1) 1x PBS (Fischer Scientific), 2) 1x TBS (0.2 M Tris-HCL + 5 mM 

MgCl2), pH 7.6 buffer (Trizma; Sigma Aldrich), or 3) carbonate buffer (50mM, pH 9.6: 

15mM Na2CO3, 35 mM NaHCO3) to assess binding efficacy and well overload. No color 

was noted when using either PBS or TBS, and 1ug/mL of purified equine CRISP-3 in 

carbonate buffer was chosen as the coating antigen (Fig. 2). 

 
In addition, BSA (1%, w/v) in 0.2 M Tris buffer solution was used for diluting all 

antigen (both purified CRISP-3 and seminal plasma), the primary antibody, and the 

secondary  antibody.     Tris  buffer  solution  was  the  buffer  chosen  for  the  ELISA 
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spectrophotometric measurements due to the lack of color development when PBS was 

utilized due to its denaturing by alkaline phosphatase. The washing solution (TBS-T) was 

used after each assay step and was prepared by adding 0.05 Tween 20 (v/v) to the 1x TBS. 

 

 
 
 

Figure B.2: Analyzing varying coating concentrations of purified equine CRISP-3. 
An increase in OD was noted from 50ng/mL upwards to 1,000ng/mL. Any higher 
concentration of eCRISP-3 was found excessive and resulted in wasted protein. 

 
 

Determination of Blocking Buffer 
Both BSA (1% w/v) and NFDM (5%, w/v) in 0.2 M Tris buffer solution were evaluated 

for use as blocking reagent. NFDM (5% w/v) was selected as the blocking buffer due to 

its low optical density evaluated on duplicated negative control wells across plates (n=8), 

in addition to its low intra-assay correlation of variation (CV) (Fig 3). Negative controls 

were defined as duplicated wells where no antigen was applied to the coating stage, and 

used to evaluate percent binding, as they indicated any background noise seen across wells. 
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Figure B.3: Average optical density of varying blocking buffers.  Note the increased OD 

and intra-assay CV when 1% BSA was utilized in comparison to 5% NFDM. 

 
Selection of primary anti-equine CRISP-3 antibody 

The initial antibody selected for use as a primary anti-equine antibody was a 

monoclonal mouse anti-equine antibody raised at the University of Florida’s Hybridoma 

Core Lab utilizing standard protocols to develop monoclonal antibody production as 

described by Doty et. al. The specific antibody chosen was selected due to the highest 

functionality as evaluated via western blot and raised from the HL2175 cell line, herein 

referred to as simply HL2175 [249]. Both HL2212 and HL2199 were investigated as 

potential primary antibodies and resulted in a lack of detection of purified CRISP-3 via 

western blot. HL2175 was titrated and found to be of highest functionality at a dilution of 

1:80,000. At this dilution, optimal color was developed and resulted in the production of 

standardization, with low intra-assay CV’s. Unfortunately, repeatability of this protocol 

was unacceptably low, which resulted in high inter-assay CV’s (33%) (Fig 4). 
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Figure B.4: Repeatability of ELISA protocol utilizing monoclonal mouse anti-equine 
antibody HL2175. 

 
 

Because of this variability, a second antibody was developed. Purified equine CRISP-3 

was obtained as described by Doty et al. (2011) and sent for antibody development at 

Thermo Fischer Laboratories. A polyclonal rabbit-anti equine CRISP-3 antibody (875) 

was produced from a single animal and raised for 57 days. Titration of this antibody found 

the optimal dilution to range from 1:400 to 1:1,600, and 1:1,000 (Fig 5a) was selected as 

the dilution to minimize materials used for each plate. Unfortunately, the 875 antibody 

also resulted in considerable variability and lacked repeatability, resulting in high intra- 

and inter-assay CV’s (32% and 29% respectively (Fig 5b/5c). 
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Figure B.5a: Titration of polyclonal rabbit anti-equine CRISP-3 antibody. The best range 
of titration was found from between 1:400 to 1:1,600, with the higher dilution being chosen 
to minimize amount of antibody necessary per plate. 
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Figure B.5b: Repeatability of ELISA protocol utilizing polyclonal rabbit anti-equine 
antibody 875 

 

 
 

Figure B.5c.   Intra-assay CV’s for varying concentrations of antigen added.  This was 
analyzed in replicates of 16. 

 
 
 

Secondary Antibody, Conjugated Substrate, and Detection System 
Both goat anti-rabbit IgG and rat anti-rabbit IgG conjugated to alkaline phosphatase were 

assessed as capture antibodies with minimal variability between the two. The secondary 

antibody was applied at the manufacturers recommend dilution of 1:1,000 in BSA (1%, 

w/v) in 0.2 M Tris buffer solution.  P-Nitrophenyl-phosphate (pNPP) tablets (3 mM p- 

nitrophenyl phosphate (NPP) + 0.05 M Na2CO3 +  0.5 m M M gC l2; Sigma Aldrich) 
 

were diluted in P-NPP buffer at a concentration of 1mg/mL and were used as the 

substrate diluted.  In this detection system, pNPP is hydrolyzed to p-nitrophenol by the 

AP, and transforms to a yellowish hue.  ELISA plates were read using a 405nm filter to 

detect pNPP. 
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B.3: Conclusions 
In conclusion, we were unsuccessful in constructing an indirect competitive ELISA 

for the detection of equine CRISP-3 in seminal plasma. Great effort was applied to this 

platform, with unacceptably low repeatability and high levels of both intra- and inter-assay 

variability detected. The initial application of the protocol as described within the thesis 

of Connor produced no colorimetric response, possibly caused by the use of phosphate 

buffered saline (PBS) as the diluent. Alkaline phosphatase acts by cleaving the phosphate 

groups through dephosphorylation, and would therefore disrupt the molecular structure of 

PBS. Because of this, further steps to troubleshoot the development of this platform were 

performed with Tris buffered saline (TBS) as the diluent. 

 
The use of TBS as the diluent was still applied to the initial antibody produced to 

detect equine CRISP-3. This monoclonal mouse anti-equine antibody was raised as 

described by Doty et al., and was determined effective at detecting equine CRISP-3 in a 

western blot [11]. Unfortunately, when we applied this antibody to an ELISA platform, a 

high level of inter-assay variability was detected. A second antibody was produced, a 

polyclonal rabbit-anti equine antibody which also was validated via western blot. It should 

be noted that when the monoclonal antibody was analyzed on western blot, two bands were 

detected at roughly 26 and 28 kDa in size.  When the polyclonal antibody was evaluated, 

a single band was noted, at approximately 28kDa. Previous work by Doty et al. on the 

monoclonal antibody stated that the dual bands were present due to glycosylation of the 

native protein, which was also noted in the human CRISP-3 protein [11, 252]. In contrast, 

the single band detected when the polyclonal antibody was utilized correlates with previous 

literature.  A study by Schambony et al. (1998) sequenced purified equine CRISP-3 from 
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seminal plasma and determined it to not have an N-linked glycosylation site [105]. The 

contrast in band structure was not determined and is therefore, unknown. Monoclonal 

antibodies detect a specific region on the protein of interest and may cross react with any 

other protein that shares a similar epitope, therefore offering lower sensitivity but with 

heightened specificity. The polyclonal antibody will allow for the entire protein to be 

detected, as numerous immunoglobulins are raised from varying regions of the protein. 

Although this allows for greater sensitivity, it also increases the chance of cross reactivity, 

as numerous epitopes can cross react with similar proteins. 

 
Some of the variability may lie within the purification of the equine CRISP-3. 

Equine CRISP-3 shares considerable homology to both human and murine CRISP-3 (78% 

and 82%), and recent literature points to the difficulties with purifying this protein in other 

species. Equine CRISP-3 shares similar structure with other CRISP-3’s in that the mature 

protein contains 16 cysteine residues, with 14 cysteines clustered in the carboxy-terminal, 

exhibiting similar spacing characteristics to that found in the rat, human, and mouse [105]. 

As Anklesaria et al. (2016) reported, these 16 cysteines lead to a considerable amount of 

disulfide linkages, the purification of which can lead to protein misfolding and the 

formation of protein aggregates [253]. In addition, Magdaleno et al (2005) reported that 

the protein was folded into a compact structure, making access to various epitopes difficult 

[115]. This protein misfolding and structure may contribute to the considerable variability 

noted in both the production of a standard curve in addition to the monoclonal and 

polyclonal antibodies, all of which utilize the purified equine CRISP-3. It may also 

contribute to the ability of either antibody to detect equine CRISP-3 through the utilization 

of a western blot, which detects denatured protein and not whole.   To minimize the 
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variability caused by this purification, it would perchance be beneficial to develop a 

recombinant equine CRISP-3, or at least validate the purity of the purified protein. 

 
In addition, the platform used may have affected the variability within the results. 

The development of a conjugated secondary antibody for equine CRISP-3 for use in a 

direct sandwich ELISA could possibly help minimize the variability seen in the indirect 

competitive platform. In addition, an unconjugated secondary antibody may have assisted 

in developing an indirect sandwich platform. The addition of a second antibody specific 

for the antigen of interest, in this case, equine CRISP-3, could potentially minimize 

variability, as numerous epitopes are being detected instead of the singular epitope that was 

detected with the monoclonal antibody. The heightened concentration found on average 

of this protein in the ejaculate may play a role in the lack of sensitivity of the platform 

investigated, and the additional antibody may help increase the sensitivity of detection. 

 
In conclusion, we were unable to develop or validate an ELISA for the detection of 

CRISP-3 in the equine ejaculate. While a competitive indirect ELISA was assessed with 

both monoclonal and polyclonal antibodies added, unacceptable variability was seen 

throughout the process, indicating the lack of repeatability or use for research or 

commercial settings. It is believed that consideration should be applied towards obtaining 

a protein of higher purity or even a recombinant protein for the development of a more 

specific antibody, as well as the development of a secondary antibody for the development 

of a sandwich ELISA. Neither of those objectives was performed within this dissertation. 
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