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DIMENSIONALITY ANALYSIS OF THE PALS CLASSROOM GOAL ORIENTATION 

SCALES 

Achievement goal theory is one of the most broadly accepted theoretical paradigms in 

educational psychology with over 35 years of influencing research and educational practice.  The 

longstanding use of this construct has led to two consequences of importance for this research: 1) 

many different dimensionality representations have been debated, and 2) methods used to confirm 

dimensionality of the scales have been supplanted from best practice.  A further issue is that goal 

orientations are used to inform classroom practice, whereas most measurement studies focus on 

the structure of the personal goal orientation scales rather than the classroom level structure.  This 

study aims to provide an updated understanding of one classroom goal orientation scale using the 

modern psychometric techniques of multidimensional item response theory and bifactor analysis.   

The most commonly used scale with K-12 students is the Patterns of Adaptive Learning Scales 

(PALS); thus, the PALS classroom goal orientation scales will be the subject of this study. 

 

KEYWORDS: Bifactor, PALS, Classroom Goal Orientations, Multidimensional Item Response 

Theory, Psychometrics 
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DIMENSIONALITY ANALYSIS OF THE PALS CLASSROOM GOAL ORIENTATION 

SCALES 

Chapter One: Introduction 

Teachers are tasked with the job of imparting knowledge just as students are tasked with 

the job of assimilating knowledge.  If this were a simple task, this dissertation would end here; 

unfortunately, the abyss between teacher and student necessitates the bridge of learning, a process 

often requiring a great deal of effort and persistence, even in the face of failure.  The initial 

failures encountered during early learning may be forgotten once an individual achieves great 

success, but even the greatest trumpet player once struggled to play a single note.  Journeying 

from novice to trumpet virtuoso does not occur overnight; rather, this process requires hitting 

untold milestones along the way.  The choice of milestones for which to aim and the cultivation 

of persistence in the face of difficulty are key components of moving from the imagining of an 

outcome to the accomplishment of an outcome.  The drive to persist towards a desired goal is 

often attributed anecdotally to possessing sufficient motivation. 

What is Motivation?  

Although a drive to persist describes motivation, it does not define the term.  No cohesive 

definition has attained universal acceptance, so one can resort to the roots of the actual word: 

motivation derives from a Latin verb which literally translates as the infinitive, to move (Schunk, 

Pintrich, & Meece, 2008).  As such, motivation is not a tangible or even an intangible object; 

rather, the term motivation refers to the process of being driven to act.  This course of action 

inherently involves both behavior directed towards some sort of goal as well as the maintenance 

of this behavior in the face of adversity.  One useful distinction to draw in understanding 

motivation concerns the difference between motivation and motive.  A motive answers the why of 

engagement, whether it is for money, fame, or perceived accolades, while motivation is the 

process of attaining the desired goal. 
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 Motivation as a construct has been a known topic of study stretching as far back as the 

writings of Plato; however modern technology and mathematical techniques have allowed for the 

refinement of theories through an understanding of the properties of the items used to assess a 

given motivational construct (Jones & Thissen, 2007).  These techniques are frequently grouped 

under the label of psychometrics: psychometrics can be more easily understood as the application 

of measurement theory to psychological constructs, a burgeoning movement of the twentieth 

century solidified in purpose with the formation of the Psychometric Society in 1935 (Jones & 

Thissen, 2007).  As psychometric methods advanced and motivational constructs were refined 

and tested, theorists operating from different paradigms developed divergent perspectives 

concerning motivation, its origins, and methods of intervention to increase student motivation.  

One approach which has been used to drive both classroom-level and school-level interventions is 

achievement goal theory (e.g., Ames, 1992).  Since achievement goal theory has been a popular 

framework for classroom research and interventions for the last quarter decade, the accuracy with 

which this construct is being measured is of paramount importance. 

What are its Correlates?  

Achievement goal theory initially parsed achievement into two different types, 

performance and mastery motivation, as will be discussed in greater detail in Chapter 2 (e.g., 

Elliot, 1999).  These two types of motivation were posited to differ in the underlying outcome 

which fueled the individual to pursue a task, with mastery orientation denoting pursuit with the 

intent of mastering the task while performance motivation denoting pursuit with the intention of 

outperforming others at the task.  Using this type of division for motivation, mastery orientation 

was generally concluded to be the desired form of motivation (see Urdan, 1997, for review).  

Mastery goal orientation has been found to be positively correlated with a host of desirable 

cognitive, affective, and behavioral outcomes including: the desire to pursue a task for the task 

itself and increased recruitment of self-regulatory strategies (e.g., Ames & Archer, 1988; Duda & 

Nicholls, 1992); greater persistence in the face of failure (e.g., Elliot & Dweck, 1988); and 
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positive emotions, such as pride and satisfaction, in light of success on a task (see Ames, 1992, 

for review).  In contrast, a performance goal orientation was perceived as a potential liability, 

found to be correlated to a bevy of both positive and negative outcomes, including: attributing 

failure to perceived lack of ability, devoting less time to a task when confronted with failure, and 

selecting overly easy or overly difficult tasks (see Ames, 1992 for review); increased academic 

self-efficacy and higher grade point average (Roeser, Midgley, & Urdan, 1996); and increased 

mastery goal orientation (e.g., Roeser, Midgley, & Urdan, 1996).  The confusion in outcomes 

related to performance goal orientation led to a further splintering of the construct in an attempt to 

clarify theoretical relationships by bifurcating performance goal orientation into an approach and 

an avoid dimension.  This shift was based on an in-depth analysis by Elliot (1999) who included 

both a theoretical review of the literature and a classification of prior studies based on: whether 

the participants were oriented towards an approach form of performance goal orientation (in cases 

of goal manipulation), and whether the survey instrument included solely performance approach 

items or both performance approach and avoid items.  This review found that studies using only 

performance approach items or manipulations showed positive correlations with more optimal 

outcomes such as intrinsic motivation whereas mixed instruments showed the traditional pattern 

of mixed valence correlated outcomes (Elliot, 1999).  Since the bifurcation, both performance 

approach and mastery approach motivation have been shown to be related to positive outcomes 

with performance approach generally relating to improved performance metrics such as higher 

grades and mastery goal orientation generally relating to metrics conducive for success such as 

increased interest in the subject matter and increased positive affect (Harackiewicz, Barron, 

Pintrich, Elliot, & Thrash, 2002).  Despite the perceived benefit of bifurcating the performance 

dimension, mixed results still occur suggesting the possibility of measurement issues (Anderman 

& Midgley, 2002).  Discriminant and convergent validity evidence has been used to determine the 

factor structure of the achievement goal framework, but models designed to tease out methods 

effects such as negative item phrasing or similar item content have not yet been implemented to 
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examine impact on dimensionality (Elliot, 1999; Reise, Morizot, & Hayes, 2007).  Usage of 

models, such as the bifactor model (Holzinger & Harman, 1938), would enable a better 

investigation of the dimensional structure underlying scales designed to assess goal orientations 

(see Reise, Morizot, & Hayes, 2007; Toland, Sulis, Giambona, Porcu, & Campbell, 2017, for 

examples). 

Methods of Study  

Since the origin of the scientific method, replicable observations have become the gold 

standard of scientific inquiry.  Whether these observations support or refute a hypothesis falls 

within the purview of both math and logic, generating entire fields of research and inquiry 

dedicated to the efficacy of the methods used to analyze recorded observations.  Almost 

synchronous to the adoption of the scientific method was the realization that the process of 

measuring observations introduces error (Jones & Thissen, 2007), with early developments in 

error theory originating from research by the astronomer Bessel.  His attention to the 

discrepancies in observations of the time at which major astronomical events occurred led to the 

revelation that the precision of a measurement instrument inversely relates to the amount of error 

in the measurements derived from the aforementioned instrument (Jones & Thissen, 2007).  

While measurement precision is a relatively easy concept to grasp in the realm of tangible 

objects, attempting to quantify measurement precision in the measurement of intangibles is a 

much more difficult issue.  

 One particular issue when measuring intangible constructs such as motivation is the 

heavy reliance on Likert-type response scales (e.g., Strongly Disagree to Strong Agree).  The 

scales themselves are not the issue, but the methods used to analyze data produced using Likert-

type response scales can be.  Likert-type response scales have historically been treated as 

continuous measures despite the knowledge that data produced using these scales is truly 

categorical in nature.  Treating categorical data as though it is continuous or essentially linear has 
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well-studied and acknowledged shortcomings; however the mistreatment of categorical data 

continues relatively unabated.  Historically, computational limitations necessitated this treatment, 

but technological progress has expanded the purview of implementing improved psychometric 

methods, designed to handle coarsely categorized measures, into the realm of the average applied 

researcher.  Models designed to correctly treat polytomous data emerged with Samejima’s (1969) 

graded response model, resulting in the beginning of a time period characterized by explosive 

growth in psychometric methods (Jones & Thissen, 2007).  The result is that researchers are at a 

juncture where constructs measured via instruments consisting of several items used to tap said 

construct should be examined using more powerful and exact psychometric methods, which 

increase the accuracy and precision of dimensionality assessment when applied to polytomous 

data.  The intention of this study is to use modern psychometric techniques designed to handle 

coarsely categorized measures to elucidate the dimensionality of the classroom goal orientation 

scales from the Patterns of Adaptive Learning Scales (PALS; Midgley, Maehr, Hruda, Anderman, 

Anderman, Freeman, et al., 2000).  More specifically, the literature review will discuss several 

distinct formulations of the theoretical structure of the personal goal orientation scales which 

were extended by proxy to the theoretical structure of the classroom goal orientation scales.  This 

study will use multi-dimensional item response theory [MIRT], a full-information technique, to 

compare model-data fit for each of the hypothesized models.  The bifactor model, which will be 

introduced in Chapter 2 will provide additional information concerning the plausibility of each of 

these hypothesized models.  Once the best fitting model has been selected for this data, item 

characteristics of unidimensional subscales will be analyzed in greater depth to elucidate areas of 

shortcoming or strength for this popular instrument. 
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Chapter Two: Literature Review 

Motivation can be perceived as one of the most important qualities that an individual may 

possess; however, defining what motivation actually consists of can present difficulty.  As 

mentioned in Chapter 1, motivation entails not just the drive to act, but the ability of this drive to 

persevere.  One can imagine motivation balancing against difficulties, with the desire to achieve 

optimally outweighing the consequent difficulties emergent in the process of goal attainment.  

This raises a question concerning motivation: is motivation balanced against hindrances such that 

the sheer quantity of motivation is the pertinent factor or is the quality of motivation the pivotal 

piece in determining one’s reaction to setbacks?  Furthermore, if quality of motivation is 

important, what determines motivation quality?  These questions became central upon the shift in 

focus to social-cognitive theories as explanatory in the motivation literature.  Goal orientation 

theories, one branch of social-cognitive theorizing on motivation, arose from pondering apparent 

paradoxes, with key researchers questioning why students of equivalent confidence and sufficient 

ability to accomplish the task exhibited variable responses to failure.  In order to understand goal 

theory, one must first understand the historical context in which this theory was developed. 

Theoretical Framework  

From the early 20th century until the mid-nineteen seventies, behaviorism was the 

primary theoretical orientation driving psychological research.  Behaviorism focused on 

behaviors and environmental influences, with a strict removal of hypotheses concerning the 

internal mechanisms of the mind.  Although the behaviorist approach allowed for much 

advancement in psychology as a whole, abandonment of behaviorism as a central tenant of 

psychology expanded the scope of psychological research to include the effects that individual 

cognitive construal of the outside world had on actions (Schunk, Pintrich, & Meece, 2008). 

Behaviorism originated with the idea of classical conditioning as advanced by animal 

studies in which innate needs/drives were easily identifiable.  Early works relied heavily on a 
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simplification of life processes, resulting in a theory of motivation initially reliant on using basic 

life needs, such as food, water, and sleep, to promote the reoccurrence of desired behaviors 

(Schunk, Pintrich, & Meece, 2008).  When attempting to generalize these principles to human 

motivation, the human ability to subvert basic genetic drives, or life needs, in lieu of principles 

created problems for behaviorism.  Examples of subverting basic needs to promote a moral 

principle can be seen in the occurrence of hunger strikes or monk self-immolation for a cause.  To 

handle the increased mental complexity of humans while allowing for the base simplicity 

demanded in behaviorist models, behaviorism was expanded to include operant conditioning.  

Operant conditioning extended the concept of reinforcement outside of fundamental life-

supporting components to include desired responses from others.  This extension allowed for 

additional reinforcers, such as stickers for a kindergarten-aged student or social approval for an 

adolescent, while maintaining the ability to theorize without including the components of 

cognition within the body of the theoretical framework; however, the concept of reinforcers is the 

primary weakness of behaviorism, in that the definition of reinforcement is inherently 

tautological.  Essentially a reinforcer is anything that increases the occurrence of a behavior; 

similarly, if a behavior begins occurring more frequently, the response to the behavior must have 

been a reinforce (Chomsky, 1959; Skinner, 1953).  With this definition, the predictive utility of 

this theory is undermined as a reinforcer useful for one individual may be useless for another 

individual.  Despite the disparity in interpretation of reinforcers across people, the essential 

premise of behaviorism is unaffected, leaving the theory intact.  When intensive time can be spent 

with an individual to ascertain what actions/behaviors can serve as reinforcement for this 

particular person, behaviorism can be very effective; however, with the ambiguity of 

reinforcement across people, widespread application of this theory, as might be seen in a 

classroom, would be difficult if not impossible.  Theories involving cognition emerged to remedy 

this issue by including the cognitions of the participant as an integral component of the theory.  

The basis of cognitive models is often rooted in the behaviorist framework such that 
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reinforcement for a particular behavior is posited to exist; however, from the cognitive approach, 

the focus is on the cognitions attached to the reinforcement rather than the reinforcement itself 

(Brophy, 1999). 

Overview of Intermediary Theories   

Between the pinnacle of the behaviorist era and the advent of the social-cognitive 

meteoric rise to prominence, exists a time of intermediary theories designed to modify 

behaviorism to better apply to and be predictive of human actions.  Two methods of modifying 

behaviorism existed, both espoused as an outright rejection of the behaviorist foundations: 

humanistic responses rejected the notion that humans were driven by base drives in favor of a 

more nuanced perspective of human needs, whereas achievement goal and achievement motive 

theorists expressed an early version of later cognitive theories by shifting the focus from 

reinforcements to the cognitions related to the anticipation of reinforcement.   

The first modification, humanism, was espoused as an outright rejection of the 

behaviorist premises and resulted in the effort to define and classify the essential human needs as 

undertaken by Murray, Maslow, and McClelland although under different auspices.  As the 

classification of needs continued, certain tautological problems emerged such that theorizing 

tended to occur in the fashion that individual A would engage in action B for need C, and our 

knowledge that need C existed was due to the fact that individual A engaged in activity B 

(Brophy, 1999).  Need theory also struggled with balancing the level of the need and the different 

aspects of need expression.  Needs were typically perceived as a dispositional trait such that some 

individuals had higher “needs for achievement” than other individuals.  Despite this 

classification, individuals with the same dispositional needs often reacted differently in specific 

situations, a variability unexplained by traditional need theories.  As a result of these tautological 

and situational shortcomings, goal theory, a subset of social cognitive theory, emerged to capture 

the situational context of behavior. 
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The second reactionary theory development involved a shift to the cognitions involved in 

rewards, the ignored black box of behaviorism.  Early attempts took two main forms: 

achievement motive such as expectancy-value theory and achievement attribution theory (for 

review, see Weiner, 2010).  Both of these theories were deemed to fall short with the former over-

emphasizing dispositions to the neglect of cognitions while the latter emphasized a drive towards 

achieving competence while failing to sufficiently expound upon the origins of this drive for the 

human condition (Elliot 2005).  Achievement goal theory, falling under the social-cognitive 

framework, attempted to remedy these perceived faults (Elliot, 2005; Urdan, 1997). 

Overview of social cognitive theory.  Social cognitive theory arose to counter the 

theoretical void created when behaviorism began to decline in popular psychology.  This theory 

offered intuitive appeal by treating the human mind as an integral component, useful for study, 

when explaining human actions and reactions.  One theory, which has been broadly studied in 

public school systems and falls under the social cognitive paradigm, is achievement goal theory 

(Schunk, Pintrich, & Meece, 2008).  

Development of goal structures.  Goal orientations were partially created to remedy the 

previously discussed gap in the attributional literature, namely the tautological basis of need 

theorizing and the failure of need theories, which were centered on individuals possessing 

different levels of these needs, to explain intra-individual differences in goal directed behavior 

across scenarios (Elliot, 2005).  The question left unresolved through these theories was: If an 

individual has a particular level of need for achievement as an attribute, why does this individual 

display apparent differences in achievement behavior across different scenarios? If a student 

redoubles his effort when encountering a difficult problem in math class, why does this same 

student abandon their work when encountering difficulty in history class? In order to remedy this 

gap, goal orientations were conceived as a construct that exists at multiple levels such that the 

individual can have a tendency to select a particular goal orientation when approaching tasks 

which can be modified by the perceived goal orientation structure of the teacher, classroom, or 
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school (e.g. Ames & Archer, 1988).  Ironically enough, with the express purpose of addressing 

this perceived deficit in the attributional theories, most of the theorizing related to goal 

orientations remained focused on the level of the individual (e.g., Elliot & McGregor, 2001). 

Mastery and Performance Motivation  

 Original formulation. Goal structures emerged as a social-cognitive theory intended to 

assess: individual understanding of a situation, personal construal of this scenario, and the 

individual aims that drive the individual to seek success in the endeavor (Dweck, 1986).  The 

synchronous emergence of achievement goals derived primarily from two individuals: Dweck 

(1986) posited two different learning patterns, one maladaptive and one adaptive, explained by 

adoption of either performance or learning goals in an achievement scenario (also see Dweck & 

Leggett, 1988), while Nicholls (1984) suggested differing approaches to pursuing a goal based on 

whether the child had a differentiated or undifferentiated conception of ability.  These two 

conceptions of ability were theorized to differ in the perceived relationship between effort and 

ability, with the former positing an inverse relationship while the latter posited a direct 

relationship (Urdan, 1997).  The intricacies of these different approaches will be discussed more 

as we examine the theoretical origins of goal orientations in more depth. 

 Founding origins. Goal orientation theory developed from two distinct main sources 

while incorporating the thoughts and ideas of many different prestigious motivation researchers 

of the time.  The two individuals, Dweck and Nicholls, who pursued the development of this 

theory with fervor, each went on to eventually articulate separate divergent and nuanced 

theoretical frameworks for the same basic constructs of achievement goal orientation (e.g., 

Dweck, 1986; Nicholls, 1984); however, these two theories also possess many commonalities due 

to shared premises, generated through the collaborative effort of many motivation experts.  Of 

note, a seminar series occurring at the University of Illinois in the late 1970s, including Carol 

Ames, Carol Dweck, Marty Maehr, and John Nicholls amongst others, engendered discussions 
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pivotal to the subsequent synchronistic development of the achievement goal framework (Elliot, 

2005). 

 Similarities and differences between the originating theories. The nascent premise of 

goal orientation theory had both similarities and differences when considering these two main 

fonts of theoretical development.  Both theorists: (1) sought to expand the achievement 

motivation literature by addressing different ways to conceptualize ability; (2) simplified the 

cognitions related to achievement into one of two main categories; and (3) conceived of this 

framework as functional at both the dispositional and situational levels (e.g., Dweck, 1986; 

Nicholls, 1984).  An understanding of the similarities between the theories is a necessary 

precursor to exploring the subtle differences between them. 

Conceptualizing ability and the superordinate goals of goal theory. Both Dweck and 

Nicholls focused on how individuals conceive of ability as the root of their theorizing; however, 

their conceptions diverged in qualitative focus.  Dweck began by pondering paradoxical results 

from prior studies in which students of equivalent ability exhibited disparate responses to failure, 

with some students redoubling their efforts while others abandoned the task (Diener & Dweck, 

1978).  In response, Dweck developed the superordinate purposes of goal orientation theory such 

that achievement behavior is believed to originate from one of two purposes: 1) to try and 

accomplish a task, or 2) to show competence or avoid showing incompetence.  This second 

purpose was proposed as linked in Dweck’s early theorizing even though further discussion will 

address the current conceptualization of this as bifurcated by an approach-avoid dimension 

(Dweck, 1986; Elliot, 2005).   

Nicholls (1984) approached the conceptualization of goal orientations from a different 

perspective, yet came to similar conclusions as to the utility and division of the overarching goal 

orientations that influence achievement behaviors and subsequent outcomes.  Unlike Dweck’s 

focus on response to failure, Nicholl’s began his theorizing through work with conceptions of 

ability.  Nicholl’s noted two predominant views on the relation between ability and effort which 
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emerged around the beginning of adolescence.  He posited that individuals could conceptualize of 

ability as being either directly or inversely related to effort such that individuals who possess an 

undifferentiated conception of ability believe effort and ability to be directly related while 

individuals with a differentiated conception of ability believe effort and ability to be inversely 

related.  This premise led Nicholl’s to posit a slightly different root to achievement behaviors than 

was espoused by Dweck (1986): Nicholl’s hypothesized that achievement behaviors are designed 

to either show ability or avoid showing lack of ability (essentially bifurcating the second purpose 

proposed by Dweck).  

 Dweck (1986) worked backwards, based on her observations, from her theory that 

individuals demonstrate different overarching goals in any given achievement situation to 

formulate a plausible cognitive explanation as to why these individuals selected different 

approaches.  Her original research, in which she observed individual students displaying disparate 

responses to failure, included a measure of confidence in one’s ability which she expected to act 

as a predictor of persistence when confronted with failure; however, her findings did not support 

this initial supposition (Diener & Dweck, 1978).  The cognitive solution that Dweck and 

associates arrived at was that individual students have an implicit conception of ability (later and 

more familiarly known as intelligence) in which ability can be perceived in one of two ways: 

malleable (also termed incremental) or fixed (also termed entity) (Dweck, 1986; Dweck & 

Leggett, 1988).  Individuals who perceive ability as malleable are more likely to persist in the 

face of failure due to a belief that their ability can be improved, promising the possibility of future 

success.  In contrast, individuals who perceive ability as fixed are more likely to abandon a task 

in the face of failure, believing that their ability is not equal to the task and seeking to avoid 

further demonstrations of inadequacy.  Dweck (1986) further postulates that beliefs concerning 

ability lead the student to select a referent for determining success, with incremental ability 

theorists using themselves as a referent when assessing ability while fixed ability theorists use 

others as a referent for determining success. 



13 

 

By approaching the problem from the opposite direction, beginning with conceptions of 

ability and moving towards differential outcomes when placed in an achievement situation, 

Nicholls (1984) proposed the reverse relationship from Dweck (1986): namely, because we are all 

seeking to demonstrate ability, the difference in motivational frameworks relies on how we 

determine ability.  The individual chooses either to self-reference ability at a particular task or to 

other-reference performance which leads to different salient conceptions of the relationship 

between ability and effort.  The differentiated conception of ability/effort is a consequence of 

other-referenced ability assessments while the undifferentiated conception of ability/effort is a 

consequence of self-referenced assessments.  Nicholls (1984) posited that when the individual 

perceives ability as other-referenced, task difficulty is assessed by success rate of others in 

accomplishing the task while ability assessment is rooted in an assumption of equal effort towards 

the task at hand (see Figure 2.1).  These two features of other-referenced ability assessment, when 

considered in tandem, suggest that effort and ability are inversely related, rendering the individual 

susceptible to certain maladaptive conclusions.  One such conclusion is that in order to show 

equal ability, one must succeed with the same or less effort than others use at the same task.  

Taken to the extreme, individuals may engage in behaviors often deemed as self-handicapping in 

order to prevent a negative assessment of ability by themselves or others.  For example, an 

individual may avoid studying for a test to provide a default attribution of lack of effort in case of 

failure.  From the differentiated conception, if one were to study hard for a test and then fail, a 

lack of ability would seem an inevitable conclusion (Nicholls, 1984).  

In contrast, the undifferentiated conception of effort/ability is rooted in self-referential 

analysis.  One compares his/her ability to accomplish the task to the task requirements at hand.  

An implicit assumption of this conception is that effort and ability are directly related.  One 

implication of this assumption is that tasks are perceived as difficult or easy by comparing the 

task to one’s current assessment of one’s ability; furthermore and more importantly, ‘difficult’ 

tasks are viewed as providing a greater opportunity to show ability due to the possibility of 
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greater improvement.  The ultimate implication is that an individual holding a differentiated 

conception of ability sees a difficult task as proffering a strong possibility for showing a lack of 

ability, while an individual holding an undifferentiated conception of ability will see a difficult 

task as proffering a strong possibility for showing the presence of ability.  This is the crux of 

Nicholl’s (1984) achievement goal theory and the explanation of different reactions to difficult 

tasks across individuals.  Interestingly enough, even though Dweck (1986) and Nicholls (1984) 

perceive the first two variables in opposite order, they come to the same conclusions about the 

type of superordinate goals that may be pursued in any given academic situation. 

Simplifying the goal framework to two main patterns. The final outcome for both 

Dweck (1986) and Nicholls (1984) was the belief that two different superordinate goals could 

exist for a student in any given achievement situation.  Dweck (1986) characterized these two 

goal orientations as learning versus performance goals and ascribed particular behaviors, 

cognitions, and affective responses to each of these goal orientations.  In contrast, Nicholls (1984) 

termed the two possible goal orientations as task-involvement and ego-involvement to reflect his 

belief in the driving nature of the referent, self- versus other- respectively, in determining the 

conception of ability pertinent in a given situation.  Similar to Dweck, Nicholls conceived of each 

of these goal orientations as reflecting a superordinate goal striving, the ‘why’ of achievement 

behavior, associated with its own constellation of behaviors, cognitions, and affective responses.  

Despite their similarities, Nicholls (1984) posited that ego-involvement exerted a potentially 

positive influence under certain circumstances in which the student perceived of initial ability as 

high and did not encounter failure.  These two perspectives on goal orientation were still more 

similar than different, portending their future hegemony by Ames and Archer (1987, 1988).  

Addressing both the situational and dispositional levels. Both Dweck and Nicholls 

attempted to compensate for perceived shortcomings in prior achievement attribution literature, 

which focused on dispositions as explanatory factors for behavior, by developing a theory with 

situational applications.  The situation focus of early goal-orientation research is apparent from 
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both the use of situationally induced goal orientations as well through perusing writings of these 

early theorists which detailed the potential situational applications of the theory (e.g., Ames 1984; 

Elliot & Dweck, 1988; Elliot & Harackiewicz, 1996; Nicholls, 1975; Nicholls, 1984).  

Experimental inductions were intended to influence the prominence of one goal orientation versus 

another through methods such as: providing directions that suggest a task is an ability assessment 

versus a fun activity; providing feedback after an initial task to orient the student towards either 

evaluation or skill acquisition (Elliot & Dweck, 1988; Elliot & Harackiewicz, 1996); or 

instituting a competitive reward structure for some individuals (e.g. Ames, 1984; Nicholls, 1975).  

Along with the experimental manipulations, these theorists explicitly detailed components of 

situations that would promote the adoption of an ego-involvement, or performance goal, 

orientation (e.g. Dweck, 1986; Nicholls, 1984). 

 The convergence of the three. As can be seen from the above discussion, the use of 

multiple terms across theorists can generate unnecessary complexity, as the mechanisms and 

constructs detailed show far more similarities than differences (Elliot, 2005).  With one fell 

stroke, Ames and Archer (1987) ended the proliferation of terminology in the goal orientation 

literature by declaring: “because the conceptual relation between task and learning goals or ego 

and performance goals is convergent, these perspectives have been integrated, and hereafter are 

identified as mastery and performance goals, respectively” (p. 409).  Ames and Archer (1987, 

1988) additionally summarized mastery goals as reflecting a desire to improve on a task, 

rendering effort a positive component of the process; in contrast, performance goals were 

characterized as reflecting a desire for normative success with as little effort as possible (to reflect 

greater ability).  This synopsis effectively eliminated the saliency of the most prominent 

differences between these two theories: whether an individual first selects a referent for 

comparison and then determines the pertinent conceptualization of ability or whether the 

individual selects a referent for comparison based upon personal conceptualization of ability.  

Rather than be concerned as to which variable precedes which, the focus shifted to the perceived 
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relationship of effort to success in each of these two goal orientations (Ames & Archer, 1987; 

Ames & Archer, 1988). 

 Further developments. Two main changes have been suggested since the integration of 

goal orientation theory: (1) the addition of the approach-avoid distinction, and (2) the controversy 

between proponents of the mastery goals perspective and proponents of the multiple goals 

perspective.  The approach-avoid dimension of achievement goals was suggested as an important 

theoretical component intended to clarify mixed findings regarding the effects of ascribing to a 

performance goal orientation (Elliot, 1994).  The apparent utility of this distinction garnered 

strong support for the bifurcation of performance goals into performance approach and 

performance avoid dimensions (e.g., Elliot & Church, 1997; Middleton & Midgley, 1997; Urdan 

& Midgley, 2001; Vandewalle, 1997) leading to the creation of instruments intended to assess 

this bifurcated construct (e.g., Elliot & Church, 1997, Vandewalle, 1997) as well as the expansion 

of current instruments to include assessment of the performance avoid construct (e.g., Midgley et 

al., 2000).  The division of performance goals into approach and avoid dimensions led to the 

concomitant fission of achievement goal researchers into two different theoretical camps differing 

on two key ideas: 1) the relative utility of performance approach and mastery goals, and 2) 

whether goal adoption consists of adopting a singular goal or multiple goals simultaneously.  

Considered in tandem, opinions on these two ideas are represented by the mastery goal 

perspective and the multiple goals perspective (Harackiewicz et al., 2002).   

Ways to Measure these Constructs  

Although Ames and Archer (1987) successfully stymied the unnecessary expansion of 

goal orientation terminology, the problem of a proliferation of self-report goal orientation 

instruments continued unabated.  Within one of the two articles lauded as creating a convergence 

of goal orientation theory, Ames and Archer (1988) contributed to the plethora of instruments by 

creating yet another measure to assess perceptions of classroom goal structures.  This suffusion of 

instruments for assessing goal orientations is characteristic of the nascent stage of theorizing on 
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any construct; however, as a construct continues to develop, standardization of instrumentation 

across studies allows for increased comparability and generalizability of research.  Currently, 

several instruments have emerged as prominent in the literature. 

The two most popular instruments for assessing goal orientations are the Achievement 

Goal Questionnaire (AGQ; Elliot & Church, 1997; Elliot & McGregor, 2001) and the PALS 

(Midgley et al., 2000).  In an effort to determine whether these popular measures actually assess 

the same constructs, a meta-analysis of 243 studies published prior to the year 2007 was 

undertaken by Hulleman, Shrager, Bodmann, and Harackiewicz (2010).  The crux of this study 

was an investigation into whether the representation of goal orientation theory as a unitary 

concept was supported empirically both through cross-instrument study of the qualitative content 

of the measures as well as an examination of the quantitative relationships found between 

constructs and outcome measures.  To assess this, the authors undertook an extensive review of 

the theoretical literature to define the potential components of each of the popular constructs 

followed by a review of the actual content of the questions used to measure these constructs 

across instruments/studies.  One key conclusion from this analysis was that the two most popular 

instruments for assessing achievement goal orientations in the educational literature differ 

substantively in the operationalization of the major constructs.  This suggests that the instruments 

are assessing different constructs despite the common name.  A further difference between these 

two instruments concerns the age group to which the instrument is traditionally applied.  

Although not specifically designed for different age groups, in practice the PALS have been 

traditionally used with elementary- and middle school- aged students while the AGQ has been 

used with postsecondary-aged students (Hulleman et al., 2010).  Since the majority of broad-scale 

implementations of achievement goal orientations have been intended for kindergarten through 

secondary teaching environments, this study will focus on the instrument most commonly used 

with this group, the PALS.  
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Properties of the PALS scale 

 Dimensionality assessment of the personal goal orientation scales. Instruments created 

to measure goal orientations (commonly termed goal structures when applied to the classroom) at 

the classroom level reflect the implicit assumption that dimensionality of goal orientations 

remains immutable across levels of specificity.  The PALS scales for assessing perceived 

classroom goal structures was both created and later revised to reflect the current theoretical 

perception of goal dimensionality at the individual level, initially encompassing solely master and 

performance dimensions and later modified so that the performance scale reflected the newly 

accepted bifurcated performance dimension (Midgley et al., 2000).  When the broadly accepted 

division of goal orientation was solely between mastery and performance at the individual level, 

the classroom goal structures scale reflected the same division.  Upon revision of the PALS 

personal goal orientation scales in 1999 to reflect an added distinction between performance 

approach and performance avoid, the classroom goal structures scale was modified to reflect this 

alteration simultaneously (Midgley et al., 2000).  Due to the combination of minimal empirical 

research on the dimensionality of classroom goal structures and the general assumption of 

comparability in dimensionality across the constructs of goal orientations and structures, a review 

of dimensionality for goal structures begins with a review of the dimensionality of personal goal 

orientations.  As previously discussed, the theoretical dimensionality of personal goal orientations 

has evolved over time, gradually including a third possible dimension created by the bifurcation 

of performance goals into an approach and avoid dimension (Elliot, 1999).  Although the 

additional bifurcation of mastery goal orientation into approach and avoid dimensions has been 

proposed (Elliot, 1999; Pintrich, 2000a), the mastery avoid construct has failed to see widespread 

adoption thus far outside of research involving the AGQ, which was created by one of the 

researchers who originally proposed the extended theoretical framework and a colleague (Elliot & 

McGregor, 2001).  With limited research addressing the mastery avoid construct as well as the 

general practice of treating the operationalization of mastery goal orientations solely in an 
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approach fashion, the 2x2 proposed dimensionality will be excluded from further review (Elliot & 

Church, 1997; Hulleman et al., 2010). 

 Initial formulation of Goal Orientations. The notion that an individual was either 

mastery-oriented or performance-oriented implicitly suggested that the personal goal orientation 

construct be conceptualized as one-dimensional with each of the two posited goal orientations as 

an endpoint on the construct.  Although this was a popular representation in the nascent stages of 

goal orientation theorizing evidenced by research designs which treated the two orientations as 

distinct categories based on a given student’s predominant framework (e.g., Dweck, 1986), this 

conceptualization was explicitly rejected by both Dweck and Nicholls in favor of the idea that 

each of these orientations is a distinct dimension that should be treated separately (as cited in 

Elliot, 2005, p. 56). 

 Two-factor formulation. The two-factor perspective became the primary representation 

of personal goal orientations for the next decade, representing mastery and performance goal 

orientations as distinct factors with the performance goal orientations scale including items 

assessing both a desire to out-perform others, the future approach vector, and items assessing a 

desire to avoid performing worse than others, the future avoid vector (e.g., Anderman, Griesinger, 

& Westerfield, 1998; Anderman, Urdan, & Roeser, 2003; Pintrich, 2000b).  The two-factor 

perspective allowed for any given individual to have quantifiable scores for both performance and 

mastery orientations simultaneously.  Pressure to shift to a trichotomous framework began to 

emerge towards the close of the twentieth century, mostly deriving from work by Elliot (1999; 

Elliot & Church, 1997; Elliot & Harackiewicz, 1996). 

In examining previous dimensionality analyses of goal orientation measures using the 2 

factor structure, it is important to note that reporting practices have changed across the years.  

Researchers are now encouraged to report pattern loadings, structure coefficients, estimation 

methods and missing data handling to a greater degree than was previously emphasized (Henson 

& Roberts, 2006).  As such, the information provided in early analyses is sparse in comparison to 
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current practices.  One confirmatory factor analysis (CFA) of the PALS personal goal orientations 

scale, which reported both factor pattern loadings and factor correlations, found items to load on 

the appropriate factors with all pattern loadings exceeding .49 and a factor correlation of -.017 

between the performance and mastery scales (Jagacinski, & Duda, 2001, p. 1024); however, 

neither the estimation method, structure coefficients, or approach to handling missing data was 

mentioned, leaving future researchers unable to weigh in on the accuracy of or replicate the CFA 

results.  Prior analyses using principal components analysis (PCA) to assess the scale properties 

have been performed with both orthogonal and oblique rotations.  In both of these cases, only 

factor correlations, when pertinent, and estimated reliability coefficients (s) were reported.  

Roeser, Midgley, and Urdan (1996, p. 412) used an oblique rotation and found a correlation of     

-.45 between mastery and performance personal goal orientation subscales.  Estimated reliability 

coefficients calculated in these PCA analyses for the personal mastery subscale have been found 

to range from .71 to .81 whereas personal performance subscales have been found to range from 

.65 to .84 with  values generally increasing with the age of the participants (Anderman & 

Midgley, 1997, p. 278; Roeser, Midgley, & Urdan, 1996, p. 412-413).  A study including 

personal goal orientations and classroom goal structures performed by Anderman, Griesinger, and 

Westerfield (1998, p. 86) mentioned that a factor analysis had been done, but they did not provide 

actual output in the paper.  Overall, the primary focus of analyses seemed to be on the classic 

ideas of reliability and validity with minimal concern for the issues entailed in dimensionality 

assessment and dealing with ordinal data.  Similar issues will be seen when we examine research 

involving the trichotomous formulation. 

 Trichotomous formulation. Despite the general consensus that a mastery goal orientation 

offered better outcomes when compared to a performance goal orientation (see, Ames, 1992; 

Urdan, 1997), a small subset of researchers were troubled by the seemingly inconsistent results 

found for performance goal orientations across studies (e.g., Elliot, 1999).  Upon further analysis, 
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Elliot and Church (1997), resurrecting early theoretical conceptualizations of motivation 

espoused by achievement goal orientation founders Dweck and Leggett (1988) as well as 

Nicholls (1984), determined that inconsistency in goal orientation correlates across research 

studies partially derived from a confusion in the operationalization of the performance construct 

across different goal orientation instruments.  Prior to 1997, operationalization of the performance 

construct could be grouped into two main categories: 1) instruments using only positively-

valenced items, and 2) instruments using both positively- and negatively-valenced items.  

Mastery items exhibited no such variability in valence across instruments with a consistent 

approach orientation being pervasive (Elliot, 1994; Elliot & Church, 1997).  When prior research 

was parsed to divide studies into groups based upon whether the performance scale reflected 

solely approach motivation versus a hybrid of approach and avoidance motivation, the confusion 

in correlates to performance orientation was greatly alleviated (Elliot & Church, 1997).  Once 

parsed, performance approach motivation appeared to demonstrate a relatively consistent positive 

relationship to academic outcomes, contrasting with the inconsistent results displayed across 

studies using the hybrid conception of performance motivation (Elliot & Church, 1997).  

Subsequently, a new theoretical model was created for goal orientations in which performance 

motivation was bifurcated into performance approach and performance avoid motivation while 

mastery orientation was retained as solely an approach construct.  As such, the trichotomous 

conception of goal orientations became widely adopted across the predominant goal orientation 

instruments of the time (e.g., Middleton & Midgley, 1997; Vandewalle, 1997). 

 The most prominent studies evaluating the factor structure of the newly formulated 

trichotomous goal orientation scales used either exploratory factor analysis (EFA) with 

undisclosed factor extraction techniques or CFAs using maximum likelihood (ML) estimation.  

The earliest investigation of the factor structure for the revised scale was conducted by Middleton 

and Midgley (1997) and presented at the American Educational Research Association.  Notably, 

this analysis used a scale constructed at the personal goal orientation level and resulting 
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dimensionality results were extended by proxy to classroom and school goal structures.  The 

initial EFA conducted on the first half of the sample was performed with an oblique rotation, 

resulting in support for the three-factor conceptualization.  Supporting evidence consisted of 

adequate pattern loadings and acceptable explained variance (61.3%); however, factor 

correlations were not reported.  A CFA using ML estimation was subsequently performed on the 

second half of the sample resulting in support for the three-factor model according to the 

goodness-of-fit index, the adjusted goodness-of-fit index (GFI), the chi-square value, and pattern 

loadings: factor correlations were not reported for this analysis either.  When the entire sample 

was combined, the correlation between mastery and performance approach was .04, between 

mastery and performance-avoid the correlation was .01, and between performance approach and 

performance avoid the correlation was .56 (Middleton & Midgley, 1997, p. 10).  The second 

large-scale study used to support the three factor structure of the personal goal orientations scale 

was performed by Midgley et al. (1998, p. 123) using more current diagnostic indices to assess fit 

(specifically: GFI, Tucker-Lewis Index [TLI], Comparative Fit Index [CFI], and the Root Mean 

Square of Error Approximation [RMSEA]); however, ML estimation with list wise deletion of 

missing data was still implemented.  A correlated three-factor model showed good fit although 

the factor correlations were not reported.  It was stated in the discussion section that “there is 

some overlap [between the performance-approach and performance-avoid scales] as indicated by 

the correlation between the two scales” although the exact correlation was not reported in the 

paper (Midgley et al., 1998, p. 127).  These studies considered in tandem appear to have led other 

authors to feel that dimensionality information is well-established: it is not uncommon to find 

research in which an exploratory method of dimensionality assessment was performed on the 

PALS personal goal orientation scales with no reported results attributed to the fact that “factor 

structure, reliability, and validity have been previously examined” (Linnenbrink, 2005, p. 201).  

Overall, with the exception of one study applying a Rasch analysis to each of the three PALS 

scales related to personal goal orientation, much of our dimensionality information derives from 
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the studies cited above which were performed prior to the proliferation and easy implementation 

of estimation methods designed to account for the ordinal nature of Likert-type data (Muis, 

Winne, & Edwards, 2009). 

 Issues in prior assessment. With the history of goal theory spanning over four decades, 

techniques for examining dimensionality as well as handling ordinal measures have advanced in 

both form and accessibility.  Such progress renders prior techniques outdated despite representing 

best practice at the time of publication.  In reviewing the PALS literature, composed of both 

studies with the stated purpose of establishing scale properties and studies including 

dimensionality assessment as a precursor to testing broader relationships, several common 

methods of assessing dimensionality emerge.  Almost all of the studies are purportedly couched 

in the factor analytic framework with some studies using an exploratory approach while other 

studies, typically more recent, used a confirmatory approach.  The word purportedly is key to this 

prior statement as it is not uncommon to see a study claim to be performing an EFA while 

implementing principal components extraction (e.g., Duda & Nicholls, 1992; Elliot & Church, 

1997).  The use of principal components extraction changes the nature of the technique to a 

dimension reduction process as embodied in PCA rather than a dimensionality assessment 

process as embodied in EFA (Osborne, Costello, & Kellow, 2008).  One reason that this 

distinction arises is that PCA uses all of the variance embodied in the dataset, a practice directly 

contradictory to the premises embodied in Classical Test Theory (CTT), which details the 

composition of variance as consisting of both true and error variance.  In contrast to PCA, EFA 

uses only shared (common) variance for extraction, presuming that unique variance represents the 

error component and should be parceled out.  Current recommendations frown upon the use of 

PCA in dimensionality assessment (Osborne, Costello, & Kellow, 2008; Reise, Waller, & 

Comrey, 2000).   

As discussed in the section concerning the trichotomous framework for personal goal 

orientations, CFA has gradually replaced EFA and PCA as the default dimensionality assessment 
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technique for the PALS scales as our understanding of the structure of goal orientations has 

progressed.  The movement to more sophisticated methods of factor analysis from PCA does 

represent improvement in dimensionality assessment; however the implementation of CFA still 

does not address many issues present when analyzing Likert-type data.  Both EFA and CFA 

originate from the factor analytic framework which traditionally uses summary statistics such as a 

correlation matrix as an intermediary between the individual item level responses and the actual 

factor extraction procedure (Osborne, Costello, & Kellow, 2008).  A factor analysis can generally 

proceed so long as the sample correlation matrix is provided, even without the inclusion of 

individual item-level responses.  The implication of this process is twofold in that: 1) a loss of 

item-level information occurs, and 2) the factor analysis is susceptible to any shortcomings 

entailed in the correlation calculation process (Flora, LaBrish, & Chalmers, 2012).  

In response to the first implication, full-information factor analysis, termed item-factor 

analysis (IFA), has become an area of burgeoning research; however, the limited-information 

approach to factor analysis is the most prominent method used by applied researchers (Flora, 

LaBrish, & Chalmers, 2012; Forero & Maydeu-Olivares, 2009).  The full-information approach 

to factor analysis derives from MIRT; however, IFA still differs from MIRT in estimation 

methods and overall focus due to different overarching frameworks driving the analysis, with IFA 

deriving from the structural equation modeling (SEM) perspective and MIRT deriving from the 

IRT perspective.  IFA and item response theory (IRT) using non-continuous variables has been 

repeatedly demonstrated as formally similar over the past three decades (e.g., Takane & De 

Leeuw, 1987).  Despite the prevalence of IFA in the SEM literature as a source of burgeoning 

research directions, traditional limited-information factor analysis has remained the prominent 

dimensionality assessment technique for applied researchers (DeVellis, 2006; Flora, LaBrish, & 

Chalmers, 2012).  Considering that the most prominent studies investigating the goal orientation 

construct have used the limited-information factor analysis (FA) approach, the remaining focus of 

this method review will solely consider this approach when discussing FA. 
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The second limitation of the FA approach is the common use of the Pearson correlation 

coefficient in the factor extraction process.  The original development of FA occurred to aid 

understanding of cognitive abilities through the analysis of overall cognitive test scores, scores 

which were developed to be continuous.  Consequently, FA emerged through the analysis of the 

Pearson product-moment correlation matrix, rendering the procedure optimized for analysis of 

linear continuous variables as well as sensitive to many of the same limitations of the Pearson 

product-moment correlation presented in any introductory statistics textbook.  Psychology has 

since expanded the application of FA to Likert-type scales designed to assess attitudes and 

opinions.  Despite applied psychological researchers’ common utilization of ordinal scales, the 

traditional reliance on FA with ML estimation continues relatively unabated (Flora, LaBrish, & 

Chalmers, 2012). 

FA of polytomous items using estimation procedures designed for continuous variables 

has known shortcomings, which are accentuated the more coarsely categorized  (i.e., five or fewer 

observed response categories) the variable (Flora & Curran, 2004; Flora, LaBrish, & Chalmers, 

2012).  With the most common Likert-type scale format for the PALS goal orientation measures 

consisting of five response categories, these shortcomings apply to most scenarios in which FA is 

applied to the PALS (Midgley et al., 2000).  Specific known shortcomings of using an approach 

designed for continuous variables with discrete variables include: attenuation of correlations 

leading to an underestimation of parameters, overestimation of the accuracy of these parameters 

in the form of deflated standard error estimates, and inflation of the chi-squared statistic (as 

discussed in Flora & Curran, 2004).  One alternative to Pearson-based FA while remaining within 

the FA framework involves using the polychoric instead of the product moment correlation 

matrix; however, the straight substitution of the polychoric matrix has been found to produce 

erroneous statistics and standard error calculations partially remedied through corrected 

estimation methods, such as robust WLS, developed to counter these errors (Flora & Curran, 

2004).  A second alternative is to shift to a method designed to accommodate categorical 
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variables such as IRT or MIRT.  Shifting to this framework has the additional advantage of using 

full item information in calculating the model parameters and fit statistics. 

Although EFA and CFA are traditionally construed as being differentiated by the 

intention of the analysis, as epitomized in the first terms of their names, the true difference is 

predicated on the assumptions ingrained within the analysis, with both EFA and CFA possessing 

the potential to be used in an exploratory or a confirmatory fashion1.  Using an EFA model, the 

factor loading matrix is traditionally freely estimated such that each item can load on all factors; 

in contrast, using a CFA model generally entails constraining the estimation of factor loadings 

such that each item can load on only one factor (creating simple structure).  Although there are 

further differences and various implementation possibilities of each procedure, this summarizes 

the primary difference in the most common implementation of these two procedures which both 

fall within the realm of the common factor model.  Further discussion will thus discuss FA as a 

whole rather than particularly referencing either of these two procedures specifically.  

Some historically common methods of assessing dimensionality for the PALS scales 

include: use of PCA to assess dimensionality under the guise of EFA (e.g., Duda & Nicholls, 

1992; Elliot, A. J. & Church, 1997; Harackiewicz, Durik, Barron, Linnenbrink, & Garcia, 2008); 

use of PCA, labelled as a PCA, to determine dimensionality (e.g., Deemer, 2004; Elliot, A. J. & 

McGregor, 2001; Kaplan, Gheen, & Midgley, 2002); use of CFA with ML estimation (e.g., 

Middleton & Midgley, 1997; Midgley et al., 1998); and use of CFA with no named method of 

estimation, suggesting the default most common estimation method, ML, was used (e.g., Lau & 

Nie, 2008; Urdan, 2004).  Although these methods represented accepted practice for assessing the 

psychometric qualities of a new instrument at the time, technological progress has facilitated 

access to and the easy implementation of more advanced psychometric techniques.  Reporting 

                                                           
1 Target rotation can be used to conduct an EFA in a confirmatory fashion whereas a comparison 

of a series of models can be used to conduct a CFA in an exploratory fashion (Flora, LaBrish, & 

Chalmers, 2012). 
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practices have also become more rigorous as the importance has been broadly recognized of 

reporting the estimation method, structure coefficients, specific rotation method chosen, and the 

data considerations that determined the number of factors to extract (Henson & Roberts, 2006).  

Unfortunately, many of these early articles failed to provide information concerning not only the 

actual rotation method used, but also whether the chosen rotation was even fundamentally oblique 

or orthogonal in nature.  Further compounding this problem is that the dimensionality determined 

for personal goal orientations appears to have been presumed as applicable to goal structures at 

the classroom level. 

 Extension to classroom measures. As was mentioned in the historical review of the goal 

orientation construct, the development of goal structures was a response to perceived 

shortcomings in previous theories, such as achievement motive and attributional motivational 

theories.  One driving issue that the goal orientation framework intended to redress was the 

perceived overemphasis in prior motivational theories of dispositional traits to the detriment of 

situational influences, limiting the efficacy of interventions (Elliot, 2005).  Intriguingly enough, 

goal orientation research gradually shifted from a focus on experimental manipulations designed 

to generate particular goal structures towards an emphasis on assessing already extant personal 

goal orientations (e.g., Anderman, Griesinger, & Westerfield, 1998; Bong, 2004; Church, Elliot, 

& Gable, 2001; Duda & Nicholls, 1992; Greene, Miller, Crowson, Duke, & Akay, 2004).  With 

personal goal orientations dominating the achievement goal literature, much of the current 

knowledge concerning the dimensionality and psychometric properties of achievement goals is 

based on assuming that the information derived from research with personal goal orientations 

remains true when perceived classroom goal structures are assessed.  Just as intra-individual 

dimensionality of a construct may differ from inter-individual dimensionality, the structure of 

perceived personal goal orientations may differ from the structure of perceived classroom goal 

structures (Borsboom, 2005); thus, investigation into the dimensionality of classroom goal 

structures is a vital step to progressing the theory of achievement goals. 
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 Current state of the PALS. The PALS have a long history of development and revision 

across the years, modifying the scale structure to reflect the most prominent theoretical 

framework of the time.  The PALS currently includes scales designed to assess personal goal 

orientations and classroom goal structures, as well as a bevy of additional scales.  Both the 

personal goal orientation and classroom goal structure scales were revised to conform to the 

trichotomous framework proposed in the late 1990s and rely predominantly on assessments of 

goal structure using the factor analytic model as optimized for continuous data (Anderman & 

Midgley, 2002).  As discussed previously, prior studies assessing the properties of the PALS goal 

orientation scales may represent best practice at the time, but now appear outdated in light of 

current progress in psychometric methods.  Only one study has been performed using item-level 

information to assess scale properties, a study using Rasch analysis to compare the scale 

functioning of three different instruments (Muis, Winne, & Edwards, 2009).  Although 

representing progress, this study was conducted on the personal goal orientation level and 

analyzed each proposed dimension (or subscale) separately, potentially obfuscating any issues of 

shared variance across dimensions that may affect measurement in studies implementing multiple 

subscales.  In order to understand the potential issues inherent when relying on dated methods for 

assessing dimensionality, the theoretical and practical frameworks of these two predominant 

theories, IRT and CTT, necessitates review. 

Statistical Foundations  

 The shift in psychometric recommendations from methods relying on summary statistics 

as a necessary intermediary for model estimation to methods deriving from the analysis of full 

item information has been a relatively recent phenomena.  Paradoxically, the foundational 

exposition of the tenants underlying these two different approaches are located in the same text 

published mid-twentieth century, with computational power limitations preventing the wide scale 

dissemination of full item information approaches until the beginning of the twenty-first century.  

Prior to the computational advancements which expanded the accessibility of item-based models, 
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factor analytic methods provided a useful lens for analyzing an instrument’s characteristics by 

providing an intermediary method that was implementable with the computational capacities 

available to the applied researcher of the time.  Many shortcomings of the factor analytic 

framework as commonly applied are alleviated when full item information is used to estimate 

instrument properties, rendering this a useful avenue to pursue even in an instrument that is 

already being widely applied.  One could argue that a re-examination of instrument properties 

with more modern psychometric techniques is especially prudent when an instrument has been 

widely used in the literature.  A fundamental overview of these two methods will be provided to 

contextualize the discussion of the benefits of IRT, and MIRT, when analyzing ordinal data. 

Classical Test Theory Basics 

CTT can be considered the liberating theory of mental test measurement.  Models had 

been proposed to link physical and mental stimuli, such as psychophysical models in the early 

nineteenth century; however, the computational difficulty involved in modeling item and person 

characteristics prevented the common application of these models to applied research.  Instead, a 

simplified model, reliant on definitions to sustain the precarious framework, was formed for wide 

applicability (Lord & Novick, 1968/2008).  This model considers the constraints of computational 

power while using an ideal but unattainable hypothetical scenario to model the true, observed, 

and error variance scores.  As a result, this model offered both great advancements at the time and 

hindered future research with unnecessary constraints. 

Basic model of true score theory. The advancement followed from a pre-dominating 

theory, rooted in the theory of errors, that described the observed score as a function of the “true” 

and error scores such that: 

𝑋𝑖𝑗  =  𝑇𝑖𝑗  + 𝐸𝑖𝑗, (1) 

where Xij = observed score for person i on test j; Tij = trait or “true” score for person i on test j; 

and Eij = error score for person i on test j.   
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 This decomposition can be manipulated to provide further definitions integral to CTT.  

For example, error is now defined as the difference between any individual’s true and observed 

scores: 

𝐸𝑖𝑗  =  𝑋𝑖𝑗 − 𝑇𝑖𝑗 . (2) 

When the above formula is combined with the theory of errors, the true score is defined as the 

expected observed score for any given individual. 

 Several additional assumptions were necessary to ensure that the above relationship 

would hold.  In order for the error scores to be expected to disappear upon repeated replications, 

the error scores must be random and unbiased.  The following assumptions were implemented to 

define error as truly random: 

𝜇𝐸 = 0, (3) 

where 𝜇𝐸 is the average error score for a population of participants.  The average error score 

across participants is assumed to be zero, a result we would expect if the error scores are truly 

random.  An additional assumption to ensure unbiased error is that true and error scores are 

uncorrelated within a population: 

𝜌𝑇𝐸 = 0, (4) 

where 𝜌𝑇𝐸 is the correlation between true and error scores. 

 The testing instrument is also of importance and needs to have unbiased errors for the 

overall CTT model to hold.  Therefore, the final assumption for the basic CTT model is that when 

two administrations of parallel tests or the same test are implemented, errors from the two test 

administrations are not correlated: 

𝜌𝐸1𝐸2 = 0, (5) 

where 𝐸1 is error from administration one and 𝐸2 is error from administration two. 

Implicit assumptions of CTT and Psychometric Shortcomings. Traditional practice in 

creating summary scores for CTT measures entails a set of implicit assumptions that are rarely 
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discussed (Streiner, 2010).  The issues inherent in these implicit assumptions can be compressed 

into two pertinent potentially error-inducing areas: the practice of assigning numbers and the 

treatment of these numbers.  Both of these implicit assumptions were once explicit and appear to 

derive from a seminal piece by Stevens (1946), popularly perceived to mean that the assignment 

of a number according to a rule is enough to qualify a number as approximately interval.  In 1946, 

this practice both enabled otherwise difficult data an avenue for analysis and prevented applied 

researchers from being burdened with overly complicated methods of determining appropriate 

values for the data.  Unfortunately, this practice has persisted past utility as we now have the tools 

for improved quantification of this data.  A common instantiation of this practice is to create a 

standard scoring rule across all items such that each ascending answer on a Likert-type scale is 

worth an additional digit: strongly disagree = 0, disagree = 1, agree = 2, strongly agree = 3.  Use 

of this scoring rule has additional assumptive implications: each threshold is presumed to be of an 

equal size, meaning that the amount of difference between “strongly disagree” and “disagree” is 

assumed to be the same as the amount of difference in opinion that it takes to decide to mark 

“disagree” rather than “agree” for any given item.  The veracity of this assumption goes 

unchecked in CTT; however, polytomous IRT models are available that can assess the degree of 

truth in this assumption (Streiner, 2010, p.181). 

 If several such items exist within a measurement instrument, as is likely since more items 

tend to equate to increased reliability in the CTT framework, two additional assumptions are 

invoked.  First, all items are assumed to have equal thresholds whenever the same scoring rule is 

applied across items indiscriminately: the movement from “disagree” to “agree” is assumed as 

equally difficult to make for all items (Streiner, 2010).  Second, whenever items are unweighted, 

all items have been effectively constrained to have equal weight.  In the context of a depression 

measure, this is equivalent to saying that a yes response to both of the following dichotomous 

items means the same: “my appetite is not like it used to be” and “I think I might be better off 
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dead”2.  In contrast, IRT includes item difficulty parameters and uses this information when 

formulating person parameter estimates, thus negating these assumptions. 

 The second issue with this assumption is the treatment of these assigned numbers as 

continuous.  One of the most common methods of assessing construct validity, FA, derives from 

an early extension of the initial CTT framework.  FA has traditionally depended on Pearson 

correlations as the driving engine to determine the associations between items and the underlying 

latent trait(s) (Helgado-Tello, Chacon-Moscoso, Barbero-Garcia, & Vila-Abad, 2010).  Pearson 

correlations assume an interval scale and are known to be reduced in cases of increased sample 

homogeneity on the variables in question.  By using a reduced scale such as the common Likert-

type response scale, values are inherently restricted to a few predetermined numbers rather than 

spanning a truly continuous range of possibilities, leading such increased homogeneity to be 

much more likely.  One demonstrated consequence of this issue is a systematic underestimation 

of the strength of inter-item relationships when using Pearson’s correlation with observed ordinal 

items.  This underestimation can potentially lead to extraction errors when using FA to determine 

dimensionality and underestimation factor loadings (Olsson, 1979).  Alternative estimation 

procedures that account for the ordinal nature of the variables and use full item information are 

now recommended as best practice to avoid well-known estimation errors consequent to the 

mistreatment of ordinal variables (Muthén & Kaplan, 1985; Wirth & Edwards, 2007).   

Item Response Theory Basics 

 Item response theory is a modeling method that imposes strong, yet testable, assumptions 

on the data to which it is applied (Embretson & Reise, 2000).  IRT offers a platform that can 

assess dimensionality and obviate many of the concerns raised about mistreatment of ordinal 

variables by: 1) using all item response information when estimating parameters, 2) estimating 

                                                           
2 This example is actually from an online inventory at http://www.depression-test.net/depression-

questionnaire.html; furthermore, it is actually a dichotomous item and presumed to be of equal 

weight as used in the example. 
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the difficulty in moving between item response categories through use of item-level information, 

and 3) allow for the testing of assumptions to ascertain their tenability (Birnbaum, 1968/2008; De 

Ayala, 2009; Embretson & Reise, 2000).  Technological innovations have allowed a method first 

introduced mid-twentieth century to become accessible to applied researchers in the early twenty-

first (Lord, 1952; Lord & Novick, 1968/2008, Zickar & Broadfoot, 2007). 

Limitations in scope. Many variants of IRT exist, such as: nonparametric IRT, the 

normal ogive model, and models using spline functions for the item response function (IRF) 

(Embretson & Reise, 2000).  For the purposes of this paper, the dependent variable, ability level 

or theta, is assumed to be continuous; furthermore, the following assumptions are assumed to be 

true in describing the premises of unidimensional IRT: the instrument measures a unidimensional 

trait, data demonstrates good fit to the model in terms of IRF, and conditional independence 

holds.  These premises will then be expanded upon and modified to describe the MIRT 

framework.  IRT will serve as an explanatory and simplified platform for the understanding of the 

MIRT framework and assumptions. 

Assumptions of IRT. Any model has assumptions; however, IRT models differ from 

CTT models in that the assumptions are readily testable.  The following can be considered the big 

three assumptions of IRT.  

 Dimensionality. Dimensionality broadly refers to the idea that the appropriate number of 

dimensions has been specified to account for the latent variables that exist.  The converse of this 

statement also deserves consideration, such that, the item responses result from only the latent 

dimensions specified.  For the traditional IRT model, this dimensionality assumption is 

concretized in a unidimensionality assumption.  The theoretical concept of unidimensionality is 

exactly as it sounds: the measurement instrument captures a particular single dimensioned 

construct.  Theoretically, unidimensional measures offer an advantage; however, in practice, 

unidimensionality is an assumption never fully achieved, only approached with the necessary 
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level of specificity being driven by the research questions(s) or hypotheses in tandem with the 

intended population for sampling. 

With the difficulties of ever achieving perfect unidimensionality, or even defining what 

this may look like, the concept, when applied to intangible variables, can be understood in terms 

of factor structure.  To attain unidimensionality, one factor must be predominant in explaining the 

covariance of the items.  This factor may consist of either one underlying construct, or a 

contribution of two or more underlying constructs if they contribute equally to responses to each 

item on the measurement instrument (Cronbach, 1951; Rupp & Zumbo, 2004).  Constructs that 

are theoretically multidimensional in nature should not be forced to conform to a unidimensional 

model; rather, a multidimensional IRT model should be chosen to model the items and responses 

in such a scenario.  In MIRT, the assumption of unidimensionality is altered to reflect an intent to 

model multiple dimensions; thus, the researcher assumes that the number of dimensions specified 

in the MIRT model accurately reflect the true number of dimensions underlying the construct. 

 Conditional independence. Conditional independence, or local independence, is the 

second assumption of IRT models.  In terms of unidimensional IRT, it is assumed that some 

unidimensional factor underlies the items of the measurement instrument; however, past this 

dimension, all item responses are assumed to be independent conditional on the latent theta, or 

ability, level of each individual participant.  In colloquial language, if an individual takes a math 

test, we assume that the probability for a correct response on each item is only dependent on the 

test-taker’s math ability and the difficulty of the item.  Violations in this assumption could occur 

in tandem with a violation of the dimensionality assumption: if a model is incorrectly specified in 

terms of dimensionality, the presence of an unidentified additional latent variable could be 

influencing person responses.  This assumption may also be violated due to question inter-

relationships that are not representative of erroneous dimensionality specification. 

In MIRT, the conditional independence assumption remains essentially unchanged except 

that the responses to an item are presumed independent of all other responses conditional on all of 
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the individual’s latent theta, or ability, levels.  Thus, if one were to have a group of individuals 

with identical values on all presumed factors underlying item responses, the conditional item 

response distribution would be independent between people (de Ayala, 2009).  Another way to 

imagine this is that after accounting for individual theta levels, the remaining variance is 

independent between people. 

 Item response function shape. Early psychometric research in the field of applied 

psychology focused on methods of scaling, with many competing theories emerging in the early 

twentieth century (e.g., Coombs, 1944; Guttman, 1944; Thurstone, 1925; Thurstone, 1928).  A 

monumental contribution to this arena arrived in the form of early item response theory; however, 

the early form of this used the cumulative normal distribution, or normal ogive model, to specify 

the relationship between theta, or examinee proficiency level, and the probability of correct 

response to an item at a particular difficulty level (Lord, 1952; Lord & Novick, 1968/2008).  

This innovation allowed the item to become the fungible unit of analysis, lending item 

properties readily examinable parameters.  The normal ogive model was linked to a classical test 

theory basis with some additional assumptions, yet the computational difficulty prohibited an 

easy transition to this more complex model (Lord & Novick, 1968/2008; Tucker, 1946).  Part of 

this difficulty was resolved through a subtle shift in the shape of the IRF from being rooted in the 

normal ogive model to the logistic model (Birnbaum, 1968/2008).  The logistic model has proven 

more tractable, obviating usage of the original model, and adopting a similar IRF shape.  

Both the normal ogive model and the logistic model have the same essential 

characteristics.  Across both models, the item is most discriminating when well-targeted to the 

individual.  Less information is acquired about individual ability level when the item is poorly 

targeted, as the individual is almost certainly likely to get the item correct if it is far too easy or to 

miss the item if it is too difficult.  This is both intuitive and reflected in the sigmoidal shape of the 

IRF.  The logistic and normal ogive models are almost identical with the most pronounced 

differences being at the extremes of where the probability of correct response is approaching zero 
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or one (Embretson & Reise, 2000).  With the increased tractability of the logistic function, this 

has been selected as the preferred method of modeling IRFs over time. 

With the main difference between CTT and IRT being the direct estimation of item 

parameters in IRT, the IRF plays a pivotal role in this theory and deserves further discussion.  As 

can be seen from Figure 2.2, the proposed IRF curve relates probability of correct response to 

theta level (for associated item parameters, see Table 2.1).  Less visible is the relationship shown 

between item difficulty and theta level: for the 1-parameter logistic and 2-parameter logistic (PL) 

models, item difficulty is defined as the point of slope inflection which is also where an 

individual at that ability level has an even chance of success or failure on the item (see, Figure 2.3 

for visual representation and Table 2.2 for associated item parameters). 

The shape of the IRF is a testable assumption of IRT.  Item misfit is able to be assessed, 

and either the items or the model can be deemed inadequate and replaced with different items or 

an alternative scaling method.  The decision as to which route to go depends on the purpose of the 

instrument being developed and the philosophical perspective of the researcher: Rasch adherents 

are likely to keep the model and drop or alter the item to achieve better data-model fit (Andrich, 

2004; Henning, 1989).  So long as the data and model provide adequate fit for the purposes of the 

study, the increased complexity of IRT may be a worthwhile trade for the greater information 

garnered about instrument items (e.g., Sharkness & DeAngelo, 2011).  The shape of the IRF 

remains a testable assumption of MIRT since the IRF is still assessable through investigating 

goodness-of-fit indices and residuals. 

Dichotomous IRT Models  

 The simplest form of the logistic item response model predicts only one of two outcomes 

for any given achievement item: correct or incorrect.  This dichotomous model represents the 

most parsimonious outcome structure, omitting possibilities such as partial-credit in representing 

item response.  If the test to be considered were to be an attitude measure, the outcomes would be 
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represented as agree or disagree, and the overall measure would theoretically assess level of 

endorsement overall for each examinee. 

 Although there are logistic models for polytomous response structures such as a 4-point 

Likert-type response scales ranging from ‘strongly disagree’ to ‘strongly agree,’ the following 

models will be restricted to dichotomous to serve as an introduction to the typical item-

parameters considered in applied IRT.  The models discussed will be limited to the 1-PL to 

provide a basic framework and the 2-PL which frees the discrimination parameter, allowing 

discrimination to vary across items. 

 1-Parameter logistic model. The 1-PL model is the simplest logistic model out of all the 

IRT models, estimating only person ability, item difficulty, and a common item discrimination.  

As in all IRT models, the IRF specifies the relation between person ability, item difficulty, and 

probability of correct response.  The basic 1-PL model can be expressed with the following 

equation: 

𝑃(𝑥 = 1|𝜃𝑗, 𝛽𝑖, 𝛼) =
𝑒

𝛼(𝜃𝑗−𝛽𝑖)

1+𝑒
𝛼(𝜃𝑗−𝛽𝑖), (6) 

where 𝜃𝑗 is the ability level for person j, 𝛽𝑖 is the difficulty for item i, and α represents the item 

discrimination.  It may be noted that alpha involves no subscripts: this is representative of a 

particular characteristic of the 1-PL model, specifically that one item discrimination is estimated 

across all items and constrained to constancy. 

 It can be seen from this model that the probability of success exhibits a non-linear 

relationship to person ability (also see the IRFs in Figure 2.2 or 2.3).  This non-linear relationship 

reflects that the most informative items for any given person are those targeted to their ability 

level (i.e., where the item is most discriminating based on the slope of the IRF).  Targeted items 

are also preferred in CTT, but the relationship between the individual and the item is subverted to 

the relationship between the individual and the average item difficulty on the test (Tucker, 1946). 
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 Because differentiated item discrimination and guessing parameters are not included in 

this model, certain additional assumptions apply.  The discrimination is constrained to an 

estimated value held constant across items.  Looking at the IRFs in Figure 2.2, one can see that 

the slope of the IRFs remains constant across all items: this will differentiate the 1-PL from the 2-

PL model.  The 2-PL model relaxes the assumption of equivalent item discriminations while 

maintaining the assumption that guessing is not a pertinent parameter. 

 2-Parameter logistic model. The 2-PL model frees item discriminations to vary, but in 

doing so adds additional parameters to be estimated.  It is important to always assess whether the 

sample size is large enough to produce stability in estimates as model complexity increases.  The 

2-PL model can be represented with this equation: 

𝑃(𝑥 = 1|𝜃𝑗, 𝛽𝑖, 𝛼𝑖) =
𝑒

𝛼𝑖(𝜃𝑗−𝛽𝑖)

1+𝑒
𝛼𝑖(𝜃𝑗−𝛽𝑖) , (7) 

where 𝜃𝑗 is the ability level for person j, 𝛽𝑖 is the difficulty for item i, and 𝛼𝑖 represents the 

discrimination for item i.  The addition of the subscript to item discrimination reflects the separate 

estimation of discrimination for each item.  Using this model, the item discrimination relates to 

the item-total biserial correlation used to represent item discrimination in traditional CTT analysis 

(Embretson & Reise, 2000; Lord & Novick, 1968/2008). 

 This model allows all parameters to be estimated except a guessing parameter which is 

constrained to equal zero.  By allowing item discrimination to differ, the slopes of the IRFs vary 

as can be seen in Figure 2.3.  If enough variability exists, IRFs can cross; furthermore, with this 

model, the total sum score is not enough to determine the person ability estimate.  Instead a 

weighted sum score is used with more discriminating items given greater weight when estimating 

theta (Embretson & Reise, 2000).   

 Although an examination of dichotomous IRT models can be instructive in understanding 

the general nature of the IRT framework, these dichotomous models are not able to remedy many 
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of the perceived shortcomings of treating Likert-type data as continuous.  To remedy the issues of 

assigning numbers according to a rule and treating the resultant data as approximately interval, 

polytomous IRT models need to be implemented. 

Polytomous IRT Models  

 Polytomous IRT models represent an extension of the simple dichotomous IRT models 

described above.  These models were designed to handle situations, such as in attitudinal 

measures with Likert-type rating scales, where the responses cannot be easily divided into two 

categories.  Unlike in the traditional treatment of ordered responses in CTT (i.e., each category 

given a subsequent integer value), IRT polytomous models have the capacity to estimate the 

amount of the latent trait needed to cross a threshold between response categories: an example 

would be the threshold between strongly disagree and disagree.  Figure 2.4 shows an example of 

a five-point Likert-type scale with four item thresholds.  If the number of response option is “m”, 

the number of thresholds will always be “m-1”. 

 Although there has been a proliferation of polytomous IRT models since the first 

extension of the dichotomous model into the world of polytomous responses by Samejima in 

1969, only the model selected as optimal for the purpose of analyzing the PALS scales will be 

considered at this time (Bock, 1997).  The graded response (GR) model allows item 

discriminations and threshold values to vary across items, but does require the thresholds to be 

ordered within an item, which will be expanded upon further after an introduction of the GR 

model equation (Embretson & Reise, 2000).  

 Graded Response Model. The GR model can be seen as an extension of the traditional 

2PL model: 

𝑃𝑖𝑡(𝜃) =
𝑒

𝛼𝑖(𝜃𝑗−𝛽𝑖𝑡)

1+𝑒
𝛼𝑖(𝜃𝑗−𝛽𝑖𝑡) , (8) 

ti = 1,…,ki - 1; ki = the number of response categories; and ki - 1 = the number of thresholds, or mi.  
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Equation 8 represents the probability that a person will respond in a particular category, 

such as strongly disagree rather than all higher categories (i.e., disagree, agree, strongly agree), 

for a particular item as conditioned on theta, or ability level.  As can be seen by examining the 

subscript of the discrimination parameter, item slope is allowed to vary across items, thus being 

an extension of the 2-PL dichotomous model; however, threshold slopes are restricted to 

constancy within an item.  This constancy constraint is a result of this model being what Thissen 

and Steinberg (1986) term a “difference model.”  Item response thresholds are also constrained to 

be ordinal in nature, meaning that endorsing disagree would be presumed to reflect less of the 

latent trait than would be reflected by endorsing agree on the same item.  One benefit of this 

model is that items with different response categories pose no problem: question one can ask 

participants to choose an answer on a 4-point scale (i.e., Strongly Disagree, Disagree, Agree, 

Strongly Agree), whereas question two can ask participants to select an answer from a six-point 

scale (i.e., Strongly Disagree, Disagree, Slightly Disagree, Slightly Agree, Agree, Strongly 

Agree) with no model-based problems. 

 This model estimates response probabilities in a two-stage process.  The first stage 

involves Equation 9 and consists of comparing two groups of item responses to determine where 

the thresholds fall on the latent continuum (i.e., SD vs. D, A, SA; SD, D vs. A, SA; SD, D, A, vs. 

SA).  The second stage involves estimating the actual probability of response in each category.  

This process is the basis of the term “difference” model as it involves taking the full distribution 

and subtracting off portions until all probabilities are estimated.  Mathematically, probabilities are 

calculated as follows assuming a Likert-type agreement scale: 

𝑃𝑖0 = 1.0 − 𝑃𝑖1
∗ (𝜃) For strongly disagree 

𝑃𝑖1(𝜃) = 𝑃𝑖1
∗ (𝜃) − 𝑃𝑖2

∗ (𝜃) For disagree 

𝑃𝑖2(𝜃) = 𝑃𝑖2
∗ (𝜃) − 𝑃𝑖3

∗ (𝜃) For agree 

𝑃𝑖3(𝜃) = 𝑃𝑖3
∗ (𝜃) − 0 For strongly agree.                               (9) 
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Bifactor Model  

 The bifactor model is a unique model in its ability to estimate both a general factor which 

parcels out variance common across all items and multiple orthogonal specific factors 

representing common variance among subgroups of specified items simultaneously, allowing for 

comparison of the respective importance of these factors (Reise, Moore, & Haviland, 2010; 

Toland, et al., 2017).  This allows all factors, general and specific, to exist on the same conceptual 

level rather than imposing a hierarchy among them as is common in higher-order factor models.  

The result of this is the ability to easily compare variance explained by the general factor to the 

overall variance explained by the model, allowing a quantitative understanding of the relative 

contribution of each specified factor in explaining the full estimated variance (Reise et al., 2010; 

Toland et al., 2017). 

 Following the mathematical notation set out in Toland et al. (2017), I will present three 

equations to elucidate the bifactor model using MIRT and the GR model.  The first step necessary 

for easily transforming the previously presented unidimensional GR model to the 

multidimensional GR model is rewriting the unidimensional GR model in slope-intercept form as 

follows (Toland et al., 2017): 

P(𝑌𝑗𝑖 ≥ 𝑘|𝜃𝑗, 𝑐𝑖𝑘 , 𝑎𝑖= 
𝑒

𝑐𝑖𝑘+ 𝑎𝑖𝜃𝑗

1+𝑒
𝑐𝑖𝑘+ 𝑎𝑖𝜃𝑗

 , (10) 

where 𝑌𝑗𝑖  = person j’s response to item i, 𝑐𝑖𝑘 = -𝛼𝑖𝛽𝑖𝑘, and 𝑎𝑖 = 𝛼𝑖.  In this representation, the IRT 

item discrimination parameter and category-threshold parameter are converted to the more 

traditional CFA slope and category-intercept form.  The main benefit of this representation in 

Equation 10 is that it allows a direct extension to the multidimensional GR model as follows 

(Toland et al., 2017):  

P(𝑌𝑗𝑖 ≥ 𝑘|𝜽, 𝑐𝑖𝑘 , 𝑎𝑖= 
𝑒

𝑐𝑖𝑘+ 𝑎𝑖
1 𝜃𝑗

1
+⋯+𝑎𝑖

𝑀𝜃𝑖
𝑀

1+𝑒
𝑐𝑖𝑘+ 𝑎𝑖

1 𝜃𝑗
1

+⋯+𝑎𝑖
𝑀𝜃𝑖

𝑀. 
(11) 
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The alterations to the multidimensional GR model in Equation 11 reflects the shift from the 

probability of a response in a given response category or higher depending on a single dimension, 

dimension 1, to the probability of an item response in a given response category or higher 

depending on dimensions 1 through M, with a common estimated category-intercept across all 

dimensions.  Each item has a distinct estimated slope for any given dimension which reflects the 

relationship between the latent trait level on a given dimension and the probability of an 

individual responding in a given category for that item; thus, it is logical that each person has an 

estimated latent trait value for each given dimension from 1 to M as well.  When using the 

confirmatory bifactor GRM, a response to any individual item will be influenced by item slopes, 

intercept, and person latent trait estimates from one general dimension and one specific 

dimension, orthogonally estimated, with all other dimensions being constrained to loadings of 

zero.  To conceptualize this, the multidimensional GRM will be rewritten in terms of a single 

specific trait (S) and a single general trait (G). 

P(𝑌𝑗𝑖 ≥ 𝑘|𝜽, 𝑐𝑖𝑘 , 𝑎𝑖= 
𝑒

𝑐𝑖𝑘+ 𝑎𝑖
𝑆 𝜃𝑗

𝑆
+⋯+𝑎𝑖

𝐺𝜃𝑖
𝐺

1+𝑒
𝑐𝑖𝑘+ 𝑎𝑖

𝑆 𝜃𝑗
𝑆+⋯+𝑎𝑖

𝐺𝜃𝑖
𝐺 , 

(12) 

where P is the probability of person j providing a response equal or greater than k on item i given 

a person’s estimated location (θ) on both the general and one specific trait, category k’s item-

intercept (cik), and the conditional item slope parameters on both the general (ai
G) and one specific 

trait (ai
S).  One difference between the MIRT and the bifactor models is that the MIRT model 

allows an item to contribute to the measurement of only one latent trait whereas the bifactor 

model allows for each item to contribute to both the general and one orthogonal specific trait.  

This difference allows these models to be used in a complementary fashion to understand the 

functioning of a scale. 

Plausible Models 

Based on the extant literature, seven different models as depicted in Figures 2.5 to 2.11 

could be used to understand the internal structure of the PALS Classroom Goal Structures scales.  
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These seven models fall into three different model categories: unidimensional IRT, MIRT, and 

bifactor.   

A unidimensional IRT model will model all item responses as indicative of a single latent 

trait.  In this particular case, a unidimensional model is theoretically untenable in light of current 

research; however, two purposes are served by including this model: 1) this model is the simplest 

representation of the data and thus deserves to be ruled out as a potential model to satisfy 

Occam’s razor, and 2) this model will serve as a baseline comparison for model fit when 

examining the more complex models detailed below.  A single unidimensional IRT model will be 

considered: 

 in the standard unidimensional model, all item responses are estimated to reflect 

a single latent trait representing overall perceived classroom motivation (see 

Figure 2.5 – Model A) 

MIRT models allow for multiple different correlated dimensions to be modeled 

simultaneously, offering a chance to compare different representations of classroom goal 

structures using full item information and treating the data as ordinal.  Three MIRT models will 

be considered: 

 A correlated traits model with all performance items, both approach and avoid, 

constrained to load on a performance dimension while all mastery items are 

constrained to load on a mastery dimension.  The mastery and performance 

dimensions are allowed to covary.  This represents a historical perspective on 

goal structures (see Figure 2.6 – Model B); 

 A correlated traits model with three estimated dimensions, performance 

approach, performance avoid, and mastery, which are allowed to covary.  This 

model represents the most theoretically plausible model and the intended 

structure of the scale (see Figure 2.7 – Model C); 
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 A correlated traits model with all approach items, both performance approach 

and mastery, constrained to load on an approach dimension while performance 

avoid items are constrained to load on an avoid dimension.  The approach and 

avoid dimensions are allowed to covary.  This model represents an extension of 

A. J. Elliot’s (1999) work emphasizing the historical utility of parsing constructs 

into approach and avoid components (see Figure 2.8 – Model D).. 

The bifactor model offers a unique opportunity to parse variance at the item level rather 

than between constructs, allowing for supplemental information about the extent to which items 

are representing the general versus the specific dimensions (all orthogonal).  When considering a 

scale designed to assess three dimensions, the desired result would be minimal variance being 

attributed to the general dimension and the preponderance of the variance being attributed to the 

specific dimensions.  Three bifactor models will be considered: 

 a bifactor model which complements Model B, having one general factor and 

two specific factors, performance (including both approach and avoid) and 

mastery (See Figure 2.9 – Model E);   

 a bifactor model which complements Model C, having one general factor and 

three specific factors (See Figure 2.10 – Model F); 

 a bifactor model which complements Model D, having one general factor and 

two specific factors, approach (including both mastery and performance 

approach) and avoid (see Figure 2.11 – Model G). 

Study Purpose 

The intent of this study is to provide an updated understanding of one scale, the PALS 

perception of classroom goals scale, from a commonly implemented motivational instrument.  

Since the initial inception of the goal orientation construct, the theoretical basis has been altered, 

leading to further modification of the initial scale.  Despite these changes and subsequent 
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revisions to the scale, all formal analysis has been performed from a CTT perspective (Midgley et 

al., 2000).  The current accessibility of MIRT and  bifactor analysis allow for the unique 

opportunity to examine the dimensionality and item properties of the PALS goal orientation in 

greater depth and with tools that appropriately treat ordinal responses as polytomous items to 

minimize distortion of scale structure during the estimation process.  As such, the historically 

proposed potential construct structures will be examined and compared in order to enhance 

knowledge of the properties of this scale.  The bifactor model will be utilized to better parse any 

sources of multidimensionality, potentially elucidating the latent trait dimensionality further. 

In the current study, the following research questions will be addressed: 

(1) What are the psychometric properties of the PALS classroom goal structure scale? 

a. Which multidimensional representation of the PALS classroom goal 

structure scale provides the best fit and most interpretable solution? 

b. Have items been appropriately parsed onto scales such that items are 

assessing the intended construct? 

(2) Based on the model determined above, what are the psychometric properties of each 

latent dimension considered as a unitary scale?  

a. Which items are most and least informative for each scale? 

b. How does construct coverage compare to the theta range for each scale? 

c. What is the level of measurement precision for each scale? 
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Figure 2.1. Conceptions of goal orientation precursors contrasted between models proposed by Dweck and Elliot. 
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Figure 2.2. 1-PL item response functions showing the relation of person ability and item difficulty 

to probability of correct response. 

Table 2.1 Item parameters associated with Figure 2.2 

Item (𝑖) Discrimination (α) Difficulty (β) 

A 1.06 -1.90 

B 1.06 -.025 

C 1.06 0.20 
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Figure 2.3. 2-PL item response functions showing the relation of person ability and item difficulty 

to probability of correct response. 

Table 2.2 Item parameters associated with Figure 2.3 

Item (𝑖) Discrimination (α) Difficulty (β) 

A 1.64 -1.19 

B 1.47  0.02     

C 1.65   0.49     
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Figure 2.4. Example of a likert-type response scale with five response choices and the 4 item 

thresholds between them. 

Strongly 
Disagree 

Disagree Neutral Disagree Strongly 

Agree 

Threshold 1 Threshold 2 Threshold 3 Threshold 4 



 

50 
 

 

Figure 2.5. Model A, a unidimensional representation of the perceived classroom goal structures 

PALS scale. 
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Figure 2.6. Model B, a correlated traits model with two estimated latent traits (mastery, 

performance). 
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Figure 2.7. Model C, a correlated traits model with three estimated latent traits (mastery, 

performance approach, performance avoid). 
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Figure 2.8. Model D, a correlated traits model with two estimated latent traits (approach, avoid). 
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Figure 2.9. Model E, a bifactor model with two specific factors (mastery, performance). 
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Figure 2.10. Model F, a bifactor model with three specific dimensions (mastery, performance 

approach, performance avoid). 
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Figure 2.11. Model G, a bifactor model with two specific dimensions (approach, avoid). 
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Chapter 3: Method 

Sample 

 Students, enrolled in grades 9-12, were recruited from three different southeastern public 

high schools in the United States.  Samples will be divided by school membership with one 

sample, Sample A (the initial sample), used to compare models representing different 

representations of dimensionality while the second sample, Sample B (the validation sample), 

will be used to confirm the validity of the results found using Sample A.  Sample A will only 

include one school while Sample B will include two smaller schools. 

Students in both samples were predominantly white with almost 60% of each sample 

self-identifying as being of white ethnicity.  The students in Sample A were 58.5% white, 12.7% 

African-American, 3.4% Hispanic, 7% Asian, 6.3% identifying as some other ethnicity, and 

12.2% choosing not to respond.  Students in Sample B were 59.9% white, 23.5% African-

American, 5.5% Hispanic, 2.4% Asian, 5.9% identifying as some other ethnicity, and 2.8% 

choosing not to respond.  Gender was relatively evenly split with Sample A consisting of 43.2% 

female students and 41.7% male students with 15.1% choosing not to identify gender: sample B 

consisted of 50.1% female students and 44.8% male students with 5.1% choosing not to identify 

gender.  Both samples had more respondents deriving from the lower high school grades.  Sample 

A included 28.6% ninth grade students, 28% tenth grade students, 22% eleventh grade students, 

10.9% twelfth grade students and 10.5% of students who choose not to indicate grade while 

Sample B included 35.1% ninth grade students, 26.5% tenth grade students, 22.3% eleventh grade 

students, 15.9% twelfth grade students and <1% of students who choose not to indicate grade (see 

Table 3.1). 

Instrumentation and Procedure 

Perceived classroom goal structures were assessed using a pencil-and-paper survey with 

the PALS Perception of Classroom Goal Structures scales (Midgley et al., 2000).  The subsection 
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querying perceived classroom goal structures included: 6 items designed to assess perception of 

mastery classroom goal orientation, 3 items to assess performance approach classroom goal 

orientation, and 5 items to assess performance avoid classroom goal orientation.  This subsection 

was preceded with instructions requesting the student to reflect upon either their English or Social 

Studies class and to answer the following questions to the extent that the items reflected their 

perceptions in this class (for specific item stems, see Table 3.2.  All questions used the same 5-

point Likert-type response format, where 1 = not at all true, 2 = a little bit true, 3 = somewhat 

true, 4 = quite a bit true, 5 = very true. 

Data Analysis Plan  

Given the proposed structure of the PALS goal structures scales, the unidimensionality 

assumption is untenable; thus, the following analyses will be couched in MIRT using the GR 

model to account for the categorical nature of the data3.  

Due to the assumption that the multidimensional structure of the data conform to the 

multidimensional structure specified in the MIRT model as well as the broader familiarity of 

factor analysis for the general reader, many researchers choose to assess dimensionality from a 

factor analytic framework prior to beginning analysis from the IRT framework (e.g., Edelen & 

Reeve, 2007).  Although this approach may provide an accessible entrance to the topic for those 

unfamiliar with IRT, the IRT and in particular MIRT approach was selected for two main 

reasons: 1) IRT provides more information by estimating not only an item’s discrimination 

parameter, similar to the factor loading assessed in the traditional framework, but also an 

intercept for each item in the form of a difficulty estimate (or step thresholds in the polytomous 

models); 2) although the factor analytic approach and the IRT approach will often lead to similar 

conclusions, factor analysis has been shown to obfuscate the true nature of the data in certain 

                                                           
3 The choice between polytomous models has been largely found to produce similar results, 

rendering the selection of a model a relatively trivial decision so long as it fits the data structure 

(Edelen & Reeve, 2007) 
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cases (De Ayala, 2009).  Considering these twofold reasons to select the IRT framework over the 

FA approach, the assumption of appropriate dimensionality will be examined through the 

traditional item indices provided in a MIRT analysis.   

The following analysis plan is most easily understood as a multiple stage process.  Stage 

1 consists of a comparison Models A through D, the correlated trait models, using a MIRT 

framework and a common polytomous model, the GR model, to determine the best representation 

of dimensionality.  Stage 2 consists of assessing additional sources of evidence concerning the 

nature of any multidimensionality of the data by reviewing Models E through G, the bifactor 

models.  This stage is particularly important as the PALS scales have frequently been parsed in 

research and treated as unique subscale scores (e.g., Deemer, 2004; Greene et al., 2004; Gutman, 

2006).  The results from stages 1 and 2 will lead to the selection of the most appropriate 

dimensional representation of the data.  Stage 3 will involve parsing the selected optimal MIRT 

model into unidimensional IRT models by identified constructs to provide a more in-depth 

examination of item and subscale properties.  Although the bifactor model is intended to be a 

complementary model to the MIRT models, if the bifactor model is deemed the most successful 

model, stage 3 will consist of a further breakdown of the item parameters.  Stage 4 is essentially a 

repetition of the above steps using only the optimally identified model from stage 1 and 2 on a 

sample B for validation of the results. 

The following analysis plan for stage 1 borrows heavily from the framework proposed by 

De Ayala (2009), Embretson and Reise (2000), and Toland (2014), with the focus being on 

assessing both conformance of the data to the model assumptions and item-level fit before 

proceeding to a review of model-fit indicators for each of the seven proposed models.  The first 

component of stage one involves checking the empirical data in regards to the assumptions of 

functional form and local, or conditional, independence (LI).  Due to the complexity of 

examining IRFs plotted in a multidimensional space, LI will be used as an indirect indicator of 

functional form when reviewing MIRT models as a violation of LI would indicate violations of 
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the functional form assumption.  Once the final model is selected and examined using 

unidimensional IRT for each dimension identified in the MIRT model, a graphical examination of 

predicted IRFs will be used to further assess the tenability of the functional form assumption.  

LI is the assumption that responses to items are only reflective of the latent trait variables 

included within a given model.  With this particular scale, we are assuming that responses solely 

indicate each individual’s latent traits concerning classroom goal structures; thus, the scale has 

been written in such a way that neither possible latent traits such as reading ability nor other items 

included within the classroom goal structure scale are influencing an individual’s response to any 

given item.  If LI is an issue, other item parameters may be distorted.  Particular distortions 

include: inflated slopes (suggesting better discrimination of items than is actually present), 

reduced standard error estimates at both the item and the latent trait level (suggesting greater 

accuracy than is actually present), and more homogeneous item thresholds.  Considered in 

tandem, these distortions tend to artificially inflate the apparent information provided by the scale 

(De Ayala, 2009; Edelen & Reeve, 2007; Toland, 2014).  LI will be assessed using the 

standardized local dependency (LD) 𝜒2 statistic with absolute values greater than 10 deemed 

large and absolute values that range between 5 and 10 considered worthy of further examination 

through item content analysis (Cai, du Toit, & Thissen, 2011, p. 77).  Particular attention will be 

paid to any item which shows recurrent LD issues across multiple item pairs.  If an item is 

flagged as potentially problematic when considering both context and statistical indicators, the 

appropriateness of item removal will be assessed through a comparison of models estimated both 

with and without the potentially problematic item.  Model comparison will be focused on 

potential changes in slope and threshold estimates in terms of either magnitude or pattern between 

the full and partial models.  If LD is found to be an issue for an item when considering all 

information in combination, the item will be removed from the final calibration for that model. 

After satisfactory item-level fit has been established, model-level fit will be examined.  

The primary indicator used to examine item-level fit will be the generalized S-𝜒2 item-fit 
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statistic, which is based upon a comparison of the empirical response data to the expected 

response frequencies if the data were to conform to the defined model.  This polytomous 

generalization depends on empirical response frequencies and is subsequently sensitive to data 

sparseness across the response category matrix.  Significant p-values indicate departure of an item 

from appropriately fitting the specified model.  Due to the large sample size and usage of multiple 

significance tests, items will be examined for adequate fit through evaluation at the 1% 

significance level as suggested by Toland (2014).  Information garnered from the generalized S-

𝜒2 item-fit statistic will be considered in combination with previously mentioned item 

information to determine the appropriate course of action.  The previously described actions for 

evaluating both item fit and model fit will be performed for each of Models A through D prior to 

moving on to cross-model comparison of model-fit. 

Subsequent to completing all item-fit and model-level fit decisions for each of the four 

correlated trait models, model-fit will be examined using several complementary model-fit 

statistics, specifically the Akaike Information Criteria (AIC), the Bayesian Information Criteria 

(BIC), and the 𝐶2 limited information goodness-of-fit statistic with its associated RMSEA index 

(Cai & Monroe, 2014).  The AIC, BIC, and RMSEA4  are commonly used statistics from the FA 

framework and maintain the same meaning in the context of assessing fit in MIRT models.  The 

AIC and BIC are both measures of relative model fit which function as indicators of misfit for a 

data to a model; thus, lower values indicate better fit.  These two statistics do differ in penalizing 

for increased model complexity with the BIC introducing greater cost for increased complexity.  

A less familiar statistic when approaching from a FA framework is the 𝐶2 statistic which assesses 

goodness of fit and can be considered similar to the traditional 𝜒2 statistic (Toland et al., 2017).  

The 𝐶2  statistic has an associated RMSEA index which can hold any value between 0 and 1 with 

                                                           
4 From the traditional FA framework, the RMSEA would be associated with the 𝜒2 statistic.  It is 

of note that the RMSEA mentioned here is associated with the 𝐶2 statistic.  
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lower values indicating greater fit.  For models which can be considered nested, the likelihood 

ratio test (LRT) based on the change in the -2 log likelihood value between two nested models 

will also be used as a source of evidence.  The LRT indicates whether the additional complexity 

of the full model provides substantially better fit when compared to the reduced model.  The end 

result of the first stage of the data analysis will be a decision as to which MIRT model best 

represents the empirical data in terms of dimensionality. 

The next stage, Stage 2, of the data analysis involves accruing additional evidence 

concerning the dimensionality of the PALS classroom goal orientation scales by modelling the 

data with Models E through G, the complementary bifactor models.  The initial stages of 

assessing model data fit follow the same pattern as analysis outlined in stages 1 and 2 for the 

correlated trait MIRT models.  One important caveat is that the bifactor model should not be 

considered nested; thus, the LRT will not be used in model comparison.  After assessing item-

level fit and model-level fit using the previously delineated procedure, marginal bifactor slopes 

will be calculated and compared following the procedure and formulas detailed by Stucky and 

Edelen (2015).   

An additional source of information, crucial to understanding the dimensional structure in 

a bifactor model is explained common variance (ECV), a calculation that determines the 

proportion of common variance explained by either a general or specific factor: this can be 

converted to a percentage by multiplying the value by 100 (Reise et al., 2010; ten Berge & Socan, 

2004; Toland et al., 2017).  The ECV can be calculated for the general dimension as an index of 

unidimensionality or for the specific dimensions to determine the uniqueness of each dimension 

(Stucky & Edelen, 2015).  An item-based ECV (IECV) can be calculated for both the general and 

specific dimensions to parse out common variance at the item level: this process allows 

determination of how representative an item is of the general and specific factors (see, Stucky & 

Edelen, 2015, Equation 9.17).  The extension of the IECV to assess representation of the specific 

trait was introduced by Toland et al. (2017, Equation 16).   
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Stage 3 of the data analysis involves taking the decided upon polytomous MIRT model 

and breaking it down into separate unidimensional IRT models to allow for the examination of 

item properties by dimension.  As prior research has traditionally used each defined subscale to 

construct separate construct scores for inclusion in analysis, an understanding of the items 

properties by subscale may prove fruitful to future researchers.  The two part process outlined 

below will be repeated for each identified subscale from the prior MIRT analysis. 

Using the IRT model, item properties such as slope and threshold values will be 

examined.  Item slope parameters will first be checked for validity by assessing whether the range 

of item slopes includes extreme values that may indicate artificial inflation.  Slope parameters 

will also be used to determine which items are the most and least informative in relation to the 

construct of interest.  The range of item thresholds as well as the size of the gap between item 

thresholds will be used to determine both whether the scale is functioning as desired and if the 

thresholds appear to represent a valuable shift along the theta continuum. 

After item properties have been reviewed, information functions at both the item and the 

test level will be used to further examine the properties of the individual items and the subscale as 

a whole in its current iteration.  Item information functions (IIFs) will be used to examine the 

range for which each item provides information across the scale and the location at which the 

item is most appropriate at discriminating person theta level.  The ability to overlay these IIFs in a 

single chart allows for the discernment of potentially redundant items as well as the identification 

of the most and least informative items on the subscale.  The test information function (TIF) is a 

summation of all of the IIFs for the scale and allows for the assessment of scale precision at 

different points along the latent continuum.  The TIF will be used for identification of possible 

gaps in information across the theta continuum and the range of ability levels which for which the 

theta scores are most precisely estimated. 

  The final stage of the data analysis involves using an independent sample to validate the 

prior data conclusions.  As such the polytomous MIRT model determined as the optimal model in 
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stages 1 and 2 of the data analysis will be applied to a different sample and assessed for fit using 

the same procedures outlined in stages 1 and 3.  To assess whether the dimensionality is 

appropriate, the empirical data will be examined with the following process: 1) the data will be 

evaluated for conformance to MIRT assumptions with the standardized LD 𝜒2 statistic and a 

review of the item thresholds; 2) item-model fit will be assessed using the generalized S-𝜒2 item-

fit statistic; and 3) model-fit statistics will be reviewed for plausibility.  The MIRT model will 

then be broken down into distinct subscales based on dimensionality and reanalyzed by separate 

unidimensional IRT models to assess item properties.  In assessing item properties, slope 

estimates, item thresholds, IIFs, and the TIF will be used in tandem to suggest future directions 

for each subscale’s possible revision as well as to provide a description of each subscale’s current 

state. 
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Table 3.1.  

Sample Characteristics Split by Sample. 

 

Item Category  Sample A  Sample B 

   Student ‘N’ Percentage  Student ‘N’ Percentage 

Ethnicity:        

 African American  149 12.7  414 23.5 

 Asian  82 7.0  43 2.4 

 Hispanic  40 3.4  97 5.5 

 White  688 58.5  1057 59.9 

 Other  74 6.3  105 5.9 

 Missing  144 12.2  49 2.8 

 Total:  1177 100.0  1765 100.0 

Gender:        

 Female  508 43.2  885 50.1 

 Male  491 41.7  790 44.8 

 Missing  178 15.1  90 5.1 

 Total:  1177 100.0  1765 100.0 

School Grade:        

 Nine  337 28.6  619 35.1 

 Ten  329 28.0  467 26.5 

 Eleven  259 22.0  393 22.3 

 Twelve  128 10.9  281 15.9 

 Missing  124 10.5  5 0.3 

 Total:  1177 100.0  1765 100.0 
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Table 3.2.  

Response Counts and Percentages for the 14-Item Classroom Goal Structures PALS Scale Split by School 

 

 

 

 
 

 Response Label 

Item Sample Statement 
Not at all 

true 

A little bit 

true 

Somewhat 

true 

Quite a bit 

true 
Very true Missing 

Mastery1 ALL 

Trying hard is important. 

135 (4.6%) 177 (6.0%) 465 (15.8%) 804 (27.3%) 1269 (43.1%) 92 (3.1%) 

 A 53 (4.5%) 64 (5.4%) 189 (16.1%) 326 (27.7%) 523 (44.4%) 22 (1.9%) 

 B 82 (4.6%) 113 (6.4%) 276 (15.6%) 478 (27.1%) 746 (42.3%) 70 (4.0%) 

Mastery2 ALL 

How much you improve is really important. 

109 (3.7%) 260 (8.8%) 622 (21.1%) 899 (30.6%) 959 (32.6%) 93 (3.2%) 

 A 42 (3.6%) 107 (9.1%) 261 (22.2%) 364 (30.9%) 382 (32.5%) 21 (1.8%) 

 B 67 (3.8%) 153 (8.7%) 361 (20.5%) 535 (30.3%) 577 (32.7%) 72 (4.1%) 

Mastery3 ALL 
Really understanding the material is the 

main goal. 

127 (4.3%) 235 (8.0%) 594 (20.2%) 874 (29.7%) 1004 (34.1%) 108 (3.7%) 

 A 47 (4.0%) 103 (8.8%) 243 (20.6%) 359 (30.5%) 400 (34.0%) 25 (2.1%) 

 B 80 (4.5%) 132 (7.5%) 351 (19.9%) 515 (29.2%) 604 (34.2%) 83 (4.7%) 

Mastery4 ALL 
It’s important to understand the work, not 

just memorize it. 

142 (4.8%) 249 (8.5%) 612 (20.8%) 870 (29.6%) 949 (32.3%) 120 (4.1%) 

 A 59 (5.0%) 100 (8.5%) 265 (22.5%) 366 (31.1%) 360 (30.6%) 27 (2.3%) 

 B 83 (4.7%) 149 (8.4%) 347 (19.7%) 504 (28.6%) 589 (33.4%) 93 (5.3%) 

Mastery5 ALL 
Learning new ideas and concepts is very 

important. 

123 (4.2%) 262 (8.9%) 719 (24.4%) 912 (31.0%) 804 (27.3%) 122 (4.1%) 

 A 47 (4.0%) 97 (8.2%) 272 (23.1%) 389 (33.1%) 343 (29.1%) 29 (2.5%) 

 B 76 (4.3%) 165 (9.3%) 447 (25.3%) 523 (29.6%) 461 (26.1%) 93 (5.3%) 

Mastery6 ALL 
It’s OK to make mistakes so long as you are 

learning. 

180 (6.1%) 231 (7.9%) 639 (21.7%) 837 (28.5%) 921 (31.3%) 134 (4.6%) 

 A 73 (6.2%) 85 (7.2%) 269 (22.9%) 338 (28.7%) 379 (32.2%) 33 (2.8%) 

 B 107 (6.1%) 146 (8.3%) 370 (21.0%) 499 (28.3%) 542 (30.7%) 101 (5.7%) 
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Table 3.2 continued 

 

 

   Response Label 

Item Sample Statement 
Not at all 

true 

A little bit 

true 

Somewhat 

true 

Quite a bit 

true 
Very true Missing 

Papp1 ALL 

Getting good grades is the main goal. 

73 (2.5%) 188 (6.4%) 439 (14.9%) 780 (26.5%) 1372 (46.6%) 90 (3.1%) 

 A 23 (2.0%) 74 (6.3%) 177 (15.0%) 317 (26.9%) 566 (48.1%) 20 (1.7%) 

 B 50 (2.8%) 114 (6.5%) 262 (14.8%) 463 (26.2%) 806 (45.7%) 70 (4.0%) 

Papp2 ALL 

Getting right answers is very important. 

101 (3.4%) 222 (7.5%) 634 (21.5%) 956 (32.5%) 929 (31.6%) 100 (3.4%) 

 A 38 (3.2%) 87 (7.4%) 242 (20.6%) 391 (33.2%) 395 (33.6%) 24 (2.0%) 

 B 63 (3.6%) 135 (7.6%) 392 (22.2%) 565 (32.0%) 534 (30.3%) 76 (4.3%) 

Papp3 ALL 

It’s important to get high scores on tests. 

107 (3.6%) 185 (6.3%) 502 (17.1%) 871 (29.6%) 1170 (39.8%) 107 (3.6%) 

 A 41 (3.5%) 69 (5.9%) 199 (16.9%) 377 (32.0%) 467 (39.7%) 24 (2.0%) 

 B 66 (3.7%) 116 (6.6%) 303 (17.2%) 494 (28.0%) 703 (39.8%) 83 (4.7%) 

Pavoid1 ALL 
Showing others that you are not bad at class 

work is really important. 

381 (13.0%) 497 (16.9%) 859 (29.2%) 628 (21.3%) 432 (14.7%) 145 (4.9%) 

 A 145 (12.3%) 187 (15.9%) 361 (30.7%) 273 (23.2%) 175 (14.9%) 36 (3.1%) 

 B 236 (13.4%) 310 (17.6%) 498 (28.2%) 355 (20.1%) 257 (14.6%) 109 (6.2%) 

Pavoid2 ALL 
It’s important that you don’t make mistakes 

in front of everyone. 

512 (17.4%) 577 (19.6%) 787 (26.8%) 522 (17.7%) 419 (14.2%) 125 (4.2%) 

 A 183 (15.5%) 227 (19.3%) 326 (27.7%) 232 (19.7%) 178 (15.1%) 31 (2.6%) 

 B 329 (18.6%) 350 (19.8%) 461 (26.1%) 290 (16.4%) 241 (13.7%) 94 (5.3%) 

Pavoid3 ALL 
It’s important not to do worse than other 

students. 

353 (12.0%) 506 (17.2%) 868 (29.5%) 665 (22.6%) 416 (14.1%) 134 (4.6%) 

 A 129 (11.0%) 204 (17.3%) 355 (30.2%) 273 (23.2%) 180 (15.3%) 36 (3.1%) 

 B 224 (12.7%) 302 (17.1%) 513 (29.1%) 392 (22.2%) 236 (13.4%) 98 (5.6%) 

Pavoid4 ALL 

It’s very important not to look dumb. 

434 (14.8%) 525 (17.8%) 730 (24.8%) 565 (19.2%) 561 (19.1%) 127 (4.3%) 

 A 167 (14.2%) 211 (17.9%) 317 (26.9%) 235 (20.0%) 216 (18.4%) 31 (2.6%) 

 B 267 (15.1%) 314 (17.8%) 413 (23.4%) 330 (18.7%) 345 (19.5%) 96 (5.4%) 

Pavoid5 ALL 
One of the main goals is to avoid looking 

like you can’t do the work. 

533 (18.1%) 536 (18.2%) 794 (27.0%) 535 (18.2%) 413 (14.0%) 131 (4.5%) 

 A 199 (16.9%) 214 (18.2%) 345 (29.3%) 224 (19.0%) 163 (13.8%) 32 (2.7%) 

 B 334 (18.9%) 322 (18.2%) 449 (25.4%) 311 (17.6%) 250 (14.2%) 99 (5.6%) 
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Chapter 4: Results 

 The overall intent of this analysis is to expand our understanding of the PALS classroom 

goal structure questionnaire using MIRT models to explore the relationship between items and 

dimensionality.  This analysis will provide information about: 1) the best correlated trait model 

for representing this data with these samples, 2) sources of multidimensionality for this 

questionnaire, 3) the level of information and precision provided by each subscales, and 4) 

potential shortcomings of this scale. 

Initial Analyses: Sample A 

 The correlated traits models, when compared to the bifactor models, provide optimal 

representation of the classroom goal structure construct as per prior research and development of 

the questionnaire; thus, the correlated traits models are the main focus of this analysis with the 

bifactor models providing additional insight by estimating the general and specific factors 

simultaneously.  This simultaneous estimation process provides insight into item function by 

allowing for within item multidimensionality rather than forcing multidimensionality to exist 

between items.  For a refresher on the models being examined, see Figures 2.5 through 2.11. 

Correlated Traits Models (Models A through D) 

 Analysis begins by fitting sample A to a unidimensional IRT model, Model A, to provide 

a baseline.  Although the unidimensional model is not anticipated to provide adequate 

representation of the data, it has utility as a comparison model.  Models B and D provide 

alternative two dimensional correlated trait models with Model B providing a historical 

representation of the data, where both performance avoid and performance approach items are 

grouped onto a single performance dimension, while Model D offers an alternative 

representation, where mastery and performance approach are grouped onto a single approach 

dimension.  Model C is the currently accepted three dimensional correlated traits model with 

separate dimensions for mastery, performance approach, and performance avoid. 
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Assumptions: Evaluation of conditional independence. Conditional independence, a 

critical assumption in MIRT, is based on the notion that all of the covariance between item 

responses is explained by the underlying modelled dimensionality; thus, an individual’s response 

to an item is due solely to his or her ability on the underlying dimension being measured.  This 

assumption was assessed for veracity using Chen and Thissen’s (1997) standardized LD 𝜒2 

statistic.  Absolute values of this statistic greater than 10 are considered large and potentially 

problematic (see, Steinberg & Thissen, 2013, p. 342).  As is common on self-report 

questionnaires, negative LD is a prevalent issue across the unidimensional and correlated trait 

models (see Table 4.1 for a count of positive and negative LD pairs flagged as large by each 

model).  None of these four models had fewer than 50% of the item pairs flagged for negative LD 

issues.  Model C had the fewest negative LD pairs flagged with a count of 48 (57%) problematic 

negative LD pairs whereas Model B had the largest number of negative LD pairs with 55 (65%) 

of the item pairs being flagged for problematic negative LD.   

 Positive LD presents a greater threat in terms of parameter estimate inflation (slope 

values), inflation in information (reliability) estimates, and deflated estimates of measurement 

precision around scores, which can lead a researcher to believe that more information is present in 

a score than actually exists.  Such inflation can artificially suggest improved accuracy and lead to 

the discovery of relationships that are not truly present (see Toland, 2014).  Because LD can 

reflect un-modeled dimensions, inappropriately specified dimensionality, item order effects or 

item wording effects, or item content overlap, examining the pattern of positive LD across models 

can provide insight into model misspecification (see Table 4.2).  Although models A, C, and D 

seem to demonstrate item-based issues when looking at the pattern of positive LD, model B 

presents a different story.  Model B, which combines performance approach and performance 

avoid items into one dimension, evidences a positive LD problem across the entire block of 

performance approach items: this pattern lends support to the theoretical decision to parse 

performance into the two dimensions of performance approach and performance avoid.  The 
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disappearance of this block pattern in models C and D suggests that model B is misspecified (see 

Table 4.3).   

 Although, items could be dropped at this time in an attempt to eliminate positive LD 

issues, the intent of this initial analysis is to gain insight on the appropriate dimensionality of the 

instrument as a whole.  Retaining all items allows for both a better understanding of the 

instrument as traditionally used in applied research as well as a comparison between nested 

models using the -2LL (Deviance) using a likelihood ration test (LRT) that is chi-square 

distributed with df  being the difference in number of parameters between two nested models.  

When unidimensional subscales are being analyzed, reduced item models to eliminate positive 

LD issues will be considered. 

Assumptions: Evaluation of functional form. The functional form assumption of MIRT 

models follows the same logic as the functional form assumption in unidimensional IRT models – 

the data is assumed to match the specified form.  Due to the complexity of the multidimensional 

surface of item response functions, the veracity of this assumption is assessed at a unidimensional 

level and assumed to hold in the multidimensional format when dimensions are appropriately 

specified.  To assess this assumption the initial and validation samples are used in tandem, with 

the initial sample being used for parameter estimation (calibration) and the validation sample 

being used to provide empirical item response data.  In a way, the second sample is acting as a 

cross-validation sample using sample 1’s item parameters.  The empirical data is then able to be 

compared to the estimated parameters, using MODFIT, to heuristically assess whether the graded 

response logistic model accurately models the empirical response pattern (Stark, 2001).  An 

examination of each of the three subscales individually suggested that the functional form 

assumption is tenable. 

Comparing models: Assessing item-level model-data fit. Item-level model-data fit is 

an index of accurate response prediction at the item level by comparing observed item responses 

to modelled predictions (Orlando & Thissen, 2003).  This was assessed using the Orlando-



 

71 
 

Thissen-Bjorner item-fit S-𝜒2 statistic as implemented for polytomous item response data in 

flexMIRT® version 3.0.3 (Cai, 2015).  This statistic was evaluated at the .01 level to correct for 

potential Type I error inflation.  As can be seen in Table 4.1 none of the MIRT models performed 

well with the unidimensional Model A showing only 1 item as demonstrating acceptable fit 

whereas models C and D performed the best with 3 of the 14 items demonstrating acceptable fit.  

Model B performed only slightly better than model A with 2 of the 14 items showing adequate fit 

to the model.  Because the accuracy of the item fit statistic depends upon correct specification of 

the latent model in terms of dimensionality, more emphasis should be ascribed to models C and D 

where the pattern of positive LD did not suggest model misspecification (Toland et al., 2017). 

Comparing models: Global model-data fit. Despite the issues in item level fit, global 

measures of model-data fit can be cautiously used as an additional source of information when 

comparing alternative models (see Table 4.1 for fit indices across models).  As expected, Model 

A demonstrates the worst global fit across all indices with the largest AIC, BIC, and -2LL values.  

Model A also shows poor fit when using the RMSEA associated with the C2 statistic (RMSEA = 

.18).  Although demonstrating poor global fit, Model A is still useful as a baseline model for 

comparison. 

When assessing Models B through D, it is important to note that Model A is nested 

within both Models B and D and Models B and D are both nested within Model C; however, 

Models B and D cannot be placed in any sort of nested structure to each other.  Thus, the 

deviance statistic (-2LL) will only be pertinent for model comparison in some cases (comparing 

models A to B to C or models A to D to C).  Comparisons between Models B and D will be 

rooted in the AIC, BIC and the RMSEA associated with the C2 statistic.  When using these 

comparative indices, smaller values demonstrate improved global model-data fit.   

The additional dimension specified for Model B shows significant improvement in global 

fit over the unidimensional Model A based on a difference in each models deviance statistic or 

what is known as a LRT, χ2(1) = 503.58, p < .001.  Model B continues to show evidence of 
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improved fit when comparing the AIC, BIC, and RMSEA to Model A; however, Model B still 

demonstrated less than adequate global fit with an RMSEA value of .17. 

Model D presents an alternative two dimensional correlated traits model in which 

mastery and performance approach were combined into a single approach dimension while 

performance avoid was specified as a separate dimension.  Similar to Model B, Model D shows 

improvement in global fit over Model A based on both the LRT (χ2[1] = 1394.58, p < .001) and 

all other fit indices (AIC, BIC, RMSEA).  Although Model D and Model B cannot be compared 

using a LRT, a comparison of the global fit indices suggests that Model D demonstrates improved 

fit over Model B; furthermore, Model D has an associated RMSEA value of .09, indicating 

marginal global fit of this model. 

Model C, the three factor correlated traits model that represents the current theoretical 

perspective on the PALS classroom goal orientation scale, shows the best fit out of all tested 

correlated traits models across all comparative indicators.  The addition of a separate dimension 

for the performance approach items significantly improves global fit when compared to both 

Model B (χ2[2] = 1102.54, p < .001) and Model D (χ2[2] = 211.54, p < .001).  Model C also 

demonstrates the smallest values for the AIC, BIC, and RMSEA (.07).  Despite relatively poor 

item-model fit across all three correlated trait models, Model C demonstrates the best overall fit 

to the data out of the estimated correlated trait models. 

Bifactor Models (Models E through G) 

The bifactor models provide a complement to the correlated traits models: by estimating 

orthogonal general and specific dimensions situated at equivalent levels (non-hierarchical), the 

bifactor model allows multidimensional relationships to be parsed at the item level.  Thus the 

multidimensionality is able to be examined on an item by item basis rather than as an overall 

relationship between the latent dimensions.  Models E through G provide insight into the driving 

impetus behind the latent trait correlations shown in models B through D. 
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 As expected, the bifactor models demonstrate improved fit over the correlated traits 

models as evidenced by fewer positive LD issues flagged, reduced deviance statistic, reduced 

AIC and BIC, and improved model fit based on the RMSEA value.  The bifactor is designed to 

account for LD by allowing for the modeling of within-item multidimensionality, so improved fit 

is expected (Toland et al., 2017).  When ECV is computed and discussed within the context of the 

bifactor models, it will become apparent that despite the bifactor models evidencing improved fit, 

the existence of an underlying general dimension for these subscales is not tenable. 

In-depth glance at our comparison model: Model A. When discussing the bifactor 

model, a strong focus is on the way that within-item multidimensionality is being parsed and the 

effect of this multidimensionality on slope parameters.  A comparison of the general dimension to 

the specific dimensions within the bifactor model is augmented by a comparison to a model 

where one single underlying dimension is being fit to the entire set of items with no option of 

parsing the multidimensionality, Model A.  An in-depth discussion of Model A slopes will 

facilitate further comparisons with the subsequent bifactor models. 

 As discussed previously, Model A exhibited issues with positive LD and poor overall fit; 

however, the pattern in the positive LD provides insight into the reason for the poor model-data 

fit.  Positive LD existed for every item pair within the performance avoidance subset of items, 

which means that more covariance exists within this subset of items than is predicted by the 

unidimensional model (see Table 4.4).  Next, slope parameters are examined to determine 

possible dominant item subsets.  Using Table 4.4, it is apparent that both mastery (average slope 

= 2.00) and performance approach (average slope = 1.98) items dominate the factor structure 

when a unidimensional solution is applied.  The sharp drop in slopes for the performance 

avoidance items (average slope = 0.77) when combined with the positive LD issues suggest that a 

distinct construct is being tapped with the avoidance items.  This information will be used as a 

comparative base when examining the bifactor models.   
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Model E: Bifactor with specific mastery and specific performance. Model E is the 

complement to Model B, representing the historic proposed dimensionality of the goal orientation 

scales where mastery is contrasted with performance (inclusive of both an approach and avoid 

dimension).  Model E is able to provide insight into the workings of Model B through comparison 

with the unidimensional model (see Table 4.5 for Model B parameter estimates, Table 4.6 for 

Model B factor intercorrelations, and Table 4.11 for Model E parameter estimates).  For a 

comparison of these models to be valid, marginal slopes are calculated which remove the 

conditional relationship between the general and specific factors, placing the slopes of the 

bifactor onto a unidimensional metric (Stucky & Edelen, 2015).   

The unidimensional model (Model A) suggested that if there were a single dimension 

representing all items, that dimension would be driven by mastery items closely followed by 

performance approach items; in contrast, the bifactor Model E flips this relationship, estimating 

that the general dimension is driven primarily by performance approach items, with performance 

approach item 1 being the primary representative (‘Getting good grades is the main goal’).  The 

domination of the general dimension by the performance approach items left minimal unique 

variance available for the performance approach items to load onto the specific dimension (or for 

the specific factor loadings).  

Despite minimal variance being attributed to the specific dimension (*aS2, Table 4.11) for 

the performance approach items, the specific performance dimension explains enough of the item 

response variance to be considered a distinct dimension (due to the contribution of the 

performance avoid items).  The ECV for the performance dimension has a value of .28 suggesting 

that this is a unique construct for this sample and these items.  Further look at the IECVs for the 

performance dimension suggest that this dimension is primarily representing the performance 

avoid items with IECV values ranging from .66 to .92.  In contrast, the performance approach 

items have IECV values that range from .00 to .02 on this same dimension.  A further comparison 

of the IECVs on the general and specific dimension shows that IECVs are unilaterally higher on 
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the specific dimension for the avoidance items, adding credence to the idea that the avoidance 

items represent a unique dimension. 

Using Model E to supplement Model B, stronger conclusions can be made about the 

misspecification of Model B.  Examining the pattern of large positive LD values evidenced in 

Model B, the two-factor correlated traits model appears to be showing an excess of unmodeled 

covariation between the performance approach and mastery items as well as within the 

performance approach block (see Table 4.2).  The performance dimension in Model B was being 

driven by the performance avoid items.  This pattern led to decreased slopes for the performance 

approach items when these items were forced onto the same dimension as the performance avoid 

items as well as an inflation of the correlation between the two dimensions (.60) due to the 

unaccounted for relationship between mastery and performance approach items.  From these two 

models (Models B and E), it can be concluded that performance approach should not be grouped 

with performance avoid onto a single dimension.   

Model F: Bifactor with specific mastery, performance approach, and performance 

avoid. Model F is the complement to Model C, representing the current proposed dimensionality 

of the goal orientation scales where mastery, performance approach, and performance avoid are 

each considered unique dimensions (for Model C parameters, see Table 4.7).  When examining 

the output of Model C, the estimated correlations between the latent variables show a story which 

will be emphasized by the results of the bifactor analysis in Model F.  Model C shows a strong 

correlation between Mastery and Performance Approach with an estimated value of .82 (see 

Table 4.8).  Performance Avoid shows a weaker relationship to the other subscales with a 

correlation of .34 with Mastery and .49 with Performance Approach.  Positive LD in Model C did 

not show a strong pattern, suggesting no obvious dimensional misspecification. 

 Examining marginal slopes on the general factor for complementary bifactor Model F, 

performance approach items still appear as the driving force (for Model F parameters, see Table 

4.12).  However, this model allows each subscale a distinct specific factor, consequently altering 
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the patterns of marginal slopes in the model.  Separating the performance approach and avoid 

items into two distinct specific factors allows the performance approach items to parse within 

item variance in a more theoretically appropriate manner.  Consequently, we see some of the 

mastery items joining the performance approach items in driving the general factor.  Most notable 

amongst the mastery items is Mastery1, “Trying hard is important.”  Nevertheless, the majority of 

the mastery items show relatively large marginal slopes (loadings) on the specific trait suggesting 

these items form a unique construct (ECVmastery = .12).  

 As mentioned, the performance approach items tend to dominate the general trait, leaving 

little unique (or residual) variance for estimating the specific performance approach dimension.  

Steinberg and Thissen (2013, p. 362) caution that encountering a specific factor with reduced 

loadings should not prevent the conclusion that a scale is best represented by a multidimensional 

model.  They also state that the loading pattern should not be overinterpreted substantively.  

Other samples may show a different set of items driving the general trait. 

 The performance avoid items again show evidence of functioning as a distinct construct.  

This is expected based on the low estimated latent trait correlation between performance avoid 

and the other latent dimensions in Model C (see Table 4.8).  Unlike the mastery and performance 

approach items, the performance avoid items consistently show larger marginal slopes (loadings) 

on the specific dimension (*aS3 or *S3) compared to the general dimension (*aG or *G, see Table 

4.12).  With an overall ECV of .26, Performance Avoid can be considered a unique construct, 

distinct from Mastery and Performance Approach.  Overall, bifactor Model F, estimating three 

specific dimensions, supports a three-factor correlated traits model. 

Model G: Bifactor with specific approach and avoid. The two-factor correlated traits 

Model D is complemented by the bifactor Model G, which groups performance approach items 

with mastery items onto a single specific approach dimension and performance avoid items onto a 

separate specific dimension (for Model D parameters, see Table 4.9; for Model D inter-factor 

correlations, see Table 4.10; for Model G parameters, see Table 4.13). 
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The pattern of this bifactor model is remarkably similar to the pattern seen when looking 

at bifactor Model E.  Marginal slopes (loadings) on the general dimension (*aG or *G, 

respectively) indicate the driving impetus of the general dimension is the performance approach 

items.  Similar to the other bifactor models, the minimal available unique variance for the 

performance approach items after estimation of the general dimension renders small marginal 

slopes on the specific approach factor (*aS1 or *S1).  However, the specific approach dimension 

remains representative of a unique construct with an ECV value of .17.  Examination of IECVs 

suggests that this specific dimension is largely representative of the mastery items (IECVs range 

from .12 to .58) rather than the performance approach items (IECVs range from .00 to .01).  The 

performance avoid items again show larger marginal slopes on the specific avoid dimension when 

compared to the general dimension, suggesting that these items form a unique construct 

(ECVpavoid = .25).  Despite the apparent within item multidimensionality present for the mastery 

items, this model also suggests that a three-factor correlated traits model is the best representation 

of this data.  

Unidimensional Subscales 

With both the bifactor and correlated traits models suggesting the supremacy of the three-

factor correlated traits model for this data, each subscale will be broken down separately using 

unidimensional IRT models.  This empirical result, combined with theoretical support, also serves 

to satisfy the first critical assumption of unidimensional IRT, appropriate dimensionality.  In 

order to evaluate the subscales using IRT, the assumptions of functional form and local 

independence will also need to be satisfied. 

The functional form assumption was also assessed prior to the confirmatory MIRT 

models using MODFIT, a program designed to compare empirical response patterns from a 

validation sample to the parameters estimated from an initial sample heuristically (Stark, 2001).  

As mentioned previously, this heuristic approach suggested that item response patterns were well 
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represented by the graded response logistic representation used for each of the three subscales.  A 

third assumption, local independence will be assessed for each scale separately. 

The following subscale breakdowns will start by assessing the remaining assumption of 

the IRT framework, namely local independence, continue with analyzing model-data fit through 

both item- and model-level fit, and finish by providing a more in-depth look at the utility of the 

scale for producing informative scores across the continuum.  Examining the utility of the scale 

will involve a discussion of factor loadings and slopes as well as an overview of the most 

informative range of the overall subscale.  This breakdown will allow for a better understanding 

of how each individual subscale functions as well as suggestions for revision in the discussion 

section. 

Mastery subscale of the PALS classroom goal structures scale. The mastery subscale 

consists of 6 items with response choices on a 5-point likert-type scale ranging from ‘not at all 

true of me’ to ‘very true of me.’ When initially fitting these 6 items to a unidimensional IRT 

model, mastery1 and mastery2 show evidence of positive local dependence using the Chen and 

Thissen’s (1997) standardized localized dependency (LD) 𝜒2 statistic with a cutoff value of 

greater than |10| as suggested by Cai, du Toit, and Thissen (2011, p.77).  Results need careful 

consideration as this statistic has been shown to be overly sensitive to LD violations when the 

number of items is small, which has been previously defined as 10 items (Chen & Thissen, 1997, 

p. 288).  To assess the magnitude of this issue with this small number of items, a sensitivity 

calibration was conducted of the subscale.  The process for a sensitivity calibration is as follows: 

1) drop mastery1 and calibrate the subscale, 2) drop mastery2 and calibrate the subscale, 3) 

compare the effect of this calibration on item parameters from the full set of items.  This 

sensitivity calibration process supported the idea that the positive LD was distorting item 

parameters as evidenced by a shift in parameter magnitude and order between the reduced 

models.  A closer examination of the slope parameters suggest that the presence of mastery1 is 
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the source of the distortion5.  Considering that mastery1 was shown to be strongly related to the 

performance approach items across all bifactor analyses and is also estimated as the least 

discriminating item in this unidimensional calibration, mastery1 was selected for removal.  All 

following analyses will use the reduced 5-item mastery subscale with mastery1 removed (for 

parameters of the reduced mastery subscale, see Table 4.14). 

Item level fit used the same S-χ2 statistic as was used when analyzing the MIRT models 

(Orlando & Thissen, 2000, 2003).  An important caveat to this statistic is that simulation studies 

have been performed under dichotomous response conditions with individual item misfit 

(Orlando & Thissen, 2003) and under polytomous conditions where the entire dataset is generated 

under a different IRT model (Kang & Chen, 2008), but analysis of individual item misfit under 

polytomous data conditions has not yet been studied.  Although the S-χ2 statistic indicated that 

none of the items fit, the heuristic approach of comparing empirical response data to item 

parameters as implemented in MODFIT showed minimal aberrations.  With the understudied 

performance of the statistical approach in detecting individual item fit under polytomous data 

conditions, the heuristic approach was relied upon in this instance and item level fit was deemed 

acceptable.  Model level fit was assessed using the C2 statistic with more emphasis placed on the 

associated RMSEA value due to the assumption in the C2 statistic of perfect model data fit (Cai & 

Monroe, 2014).  For the mastery subscale, model level fit was indicated as acceptable, C2(5) = 

24.46, p < .001, RMSEA = .06.  

Table 4.14 presents the estimated parameters for the mastery subscale.  The subscale 

showed acceptable parameter estimation with item slopes ranging from 1.44 (mastery6) to 2.59 

(mastery4) and threshold estimates ranging from -2.41 (mastery6 and mastery2, b1) to .66 

(mastery6, b4).  Mastery4, ‘it’s important to understand the work, not just memorize it,’ is the 

                                                           
5 Slope parameter order remained the same in the full model and the reduced model with 

mastery2 dropped; however, removing mastery1 (and adding back in mastery2) caused a shift in 

slope parameter order.  This suggests that the presence of mastery1 was unduly influencing the 

parameter estimation. 
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most discriminating item, showing the strongest relationship to the underlying latent trait of 

perceived classroom mastery (λ=.84) while mastery6, ‘it’s OK to make mistakes so long as you 

are learning,’ is the least discriminating item, showing the weakest relationship to the underlying 

latent trait of perceived classroom mastery (λ=.65).  The threshold estimates convey additional 

information about the range of optimal scale efficacy.  Despite a marginal reliability, interpreted 

much as traditional reliability in the CTT framework, of .83 for the entire scale, the thresholds 

suggest that this reliability is only applicable to a subset of this range.  Outside of the range of 

these thresholds, limited information is provided to discriminate between individuals, reducing 

the accuracy of latent trait estimates for those who have a score greater than half a standard 

deviation above average.  In CTT terms, the conditional reliability would be reduced for those 

much above the average latent trait estimate for the group. 

To better convey this, IIFs and a TIF can be created.  The IIF aids visualization of some 

key components of IRT, such as the notion that precision of an estimated latent trait score 

depends on location along the continuum.  Rather than estimate one reliability score for an entire 

scale, information estimates based on theta location can translate to standard errors of the 

estimate (standard error of the estimate ≅ 1/√Information ).  This relationship allows for the 

construction of a TIF, consisting of a summation of each individual item information function, 

which displays the range of the continuum for which score accuracy is greatest.  Figure 4.1 

displays the individual IIFs for mastery items 2 through 6.  Figure 4.1 graphically displays the 

relationship of slopes and thresholds to item information: mastery6, found to be the least 

discriminating can be seen to provide the least information across the continuum while mastery3 

and mastery4 provide the most information, reflecting higher estimated slopes (and factor 

loadings).  Small peaks in this information curve represent the threshold values which show when 

an individual with an equivalent latent trait estimate has an equal chance of choosing either 

category.   
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When these IIFs are summed, a TIF for the scale is created.  Figure 4.2 shows the TIF for 

the perceived classroom mastery scale where the maximum precision, a combination of large 

information and reduced standard error of the estimate, is found for latent traits estimated 

between a theta of -2 to +.5.  Comparing this to a histogram of estimated thetas for this sample, 

approximately 70.35% (n=828) of people are well targeted by this scale, with 1.7% (n=20) 

scoring lower than the optimal information area and 27.95% (n=329) scoring better than the 

optimal information area (see Figure 4.3).  Overall, this scale appears to be slightly easier than 

needed to effectively differentiate between individuals with higher latent trait estimates. 

Performance approach subscale of the PALS classroom goal structures scale. The 

performance approach subscale consists of 3 items with response choices on a 5-point likert-type 

scale ranging from ‘not at all true of me’ to ‘very true of me.’ Initially fitting these 3 items to a 

unidimensional IRT model led to no identified issues of positive local dependency with all (LD) 

𝜒2 values being negative.  Item level fit using the S-χ2 statistic indicated lack of adequate fit for 

all items; however, keeping in mind the caveats to this statistic mentioned during analysis of the 

mastery subscale, the heuristic approach as implemented in MODFIT was re-examined.  Once 

again, visual examination of the empirical data plotted against estimated item parameters 

suggested adequate fit.  Model level fit was assessed using a full information fit statistic, G2, due 

to issues in estimating the traditional limited information fit statistic, C2 , when less than 4 items 

compose a scale (Cai &Monroe, 2014).  For the performance approach subscale, model level fit 

was indicated as acceptable through the RMSEA value, G2(80) = 300.84, p < .001, RMSEA = 

.05.  

Table 4.15 presents the estimated parameters for the performance approach subscale.  

This subscale showed acceptable parameter estimation with item slopes ranging from 2.04 

(papp1) to 2.96 (papp3) and threshold estimates ranging from -2.75 (papp1, b1) to .51 (papp2, b4).  

Papp3, ‘it’s important to get high scores on tests,’ is the most discriminating item, showing the 

strongest relationship to the underlying latent trait of perceived classroom performance approach 
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(λ=.87) while papp1, ‘getting good grades is the main goal,’ is the least discriminating item, 

showing the weakest relationship to the underlying latent trait of perceived classroom 

performance approach (λ=.77).  Marginal reliability of the perceived classroom performance 

approach scale is .76, but this value would only be reflective of the true reliability if the 

distribution of information were uniform across the scale. 

Visual examination of the IIFs show that papp3, ‘it’s important to get high scores on 

tests’, is providing the majority of the information for this subscale with perfapp1 and perfapp2 

providing approximately equivalent information (see Figure 4.4).  All three items show similar 

patterns of information in terms of the range of the latent trait distribution covered.  The TIF 

provides a simpler representation of overall available information about the estimated latent trait 

(see Figure 4.5).  The TIF for performance approach mimics the pattern found in the mastery TIF 

with greatest precision being found towards the lower estimated latent trait values, specifically 

between a theta of -2 to +.25.  Comparing this to a histogram of estimated theta values, only 

60.15% (n=708) of respondents in this sample have estimated thetas that fall within the optimal 

range of precision (see Figure 4.6).  Respondents who are poorly targeted by this scale are mostly 

those scoring higher on the latent trait of classroom performance approach with 38.57% of this 

sample (n=454) exceeding the optimal precision range of the items; in contrast, only 1.27% 

(n=15) of respondents score below the optimal target range of these items.  Once again, this scale 

would need items that are more difficult to agree with to increase the precision of the scale for 

almost half of the respondents. 

Performance Avoid subscale of the PALS classroom goal structures scale. The 

performance avoid subscale consists of 5 items with response choices on a 5-point likert-type 

scale ranging from ‘not at all true of me’ to ‘very true of me.’ When initially fitting these 5 items 

to a unidimensional IRT model, pavoid1 and pavoid5 show evidence of positive local dependence 

using the Chen and Thissen’s (1997) standardized localized dependency (LD) 𝜒2 statistic with a 

value of + 20.2.  To assess the magnitude of this issue, sensitivity calibration was conducted for 
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this subscale.  Calibration using all items and the two abbreviated calibrations showed very 

similar results.  Order of magnitude of the slope parameters remained the same no matter which 

item was dropped, but the actual magnitude of the slope parameters differed.  By dropping either 

pavoid1 or pavoid5, the estimated slope values for pavoid4 and pavoid2 increased, suggesting 

that the local dependence between pavoid1 and pavoid5 was essentially creating a super-item.  

This dependency could distort the meaning of the latent dimension towards the cause of the local 

dependency rather than the intended construct.  In turn, this appears to be non-trivial dependency 

that necessitates the dropping of one of the two problematic items.  Since these items have 

comparable slope magnitudes and thresholds, no strong empirical rationale exists for determining 

which item to drop.  Instead, an examination of the item stems suggests that pavoid5 may be 

more difficult to understand due to the inclusion of two negative terms in the item stem (‘one of 

the main goals is to avoid looking like you can’t do the work’).  All subsequent analyses will be 

performed on the limited 4-item perceived performance avoid classroom goal orientation scale.  

Using the modified performance avoid scale, no positive LD issues were identified. 

Item level fit used the same S-χ2 statistic again suggested poor item fit; however the 

heuristic graphical MODFIT approach supports the notion that adequate fit is an acceptable 

assumption.  Model level fit was again analyzed using the C2 statistic with emphasis placed on 

the associated RMSEA value (Cai & Monroe, 2014).  For the performance avoid subscale, model 

level fit was indicated as acceptable based on the RMSEA value, C2(2) = 7.22, p < .001, RMSEA 

= .05.  

Table 4.16 presents the estimated parameters for the performance avoid subscale.  The 

subscale showed acceptable parameter estimation with item slopes ranging from 1.44 (pavoid1) 

to 2.77 (pavoid4) and threshold estimates ranging from -1.77 (pavoid1, b1) to 1.60 (pavoid1, b4).  

Pavoid4, ‘it’s very important not to look dumb,’ is the most discriminating item, showing the 

strongest relationship to the underlying latent trait of perceived classroom performance avoid 

(λ=.85) while pavoid1, ‘showing others that you are not bad at classwork is really important,’ is 
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the least discriminating item, showing the weakest relationship to the underlying latent trait of 

perceived classroom performance avoid (λ=.64).   

Unlike the previous subscales, the performance avoid subscale demonstrates a more 

balanced distribution of item information in relation to the latent ability distribution, rendering the 

marginal reliability of .81 more accurate across the spectrum of the latent trait distribution.  This 

relationship is reflected graphically in the IIFs (see Figure 4.7) and in the summative display of 

the TIF for the scale (see Figure 4.8).  The TIF shows that the maximum precision is between -1.2 

and +1 for this subscale.  When compared to the estimated latent trait scores for this sample, 

77.66% (n = 914) of respondents are well-targeted by this scale, with 13.42% (n = 158) of 

respondents scoring above the area of maximum precision and 8.92% (n = 105) of respondents 

scoring below the area of maximum precision (see Figure 4.9).  Although this scale covers the 

central area of respondents relatively well, other items which better target the ends of the 

spectrum would improve precision. 

Cross-Validation Sample 

 Although the initial intent was to restrict the validation analyses to the optimal correlated 

traits model and a breakdown of the unidimensional subscales, analysis on the initial sample 

revealed some potential problems that need further investigation in the confirmatory sample: 

namely, problematic LD and difficulties with item fit.  To address this, the full series of analyses 

will be performed on the confirmatory sample to assess the stability of the results. 

Correlated Traits Models (Models A through G) 

 This correlated traits models will be analyzed comparably to the initial sample with a 

focus on result consistency across the two samples.  Data anomalies that consistently occur across 

this second validation sample may be indicative of information worthy of interpretation.  

Particular attention will be given to: the potential persistence of negative LD issues as a possible 

indicator of item redundancy, overall item fit as a potential indicator of scale stability, and the fit 

of Models C and D. 
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Assumptions: Evaluation of conditional independence. In the initial sample, negative 

LD was highly prevalent across all models, positive LD helped reveal the issues with Model B 

specification, and positive LD problems persisted at the individual item level across all correlated 

trait models.  For the validation sample, the assumption of conditional independence was again 

assessed for veracity using Chen and Thissen’s (1997) standardized LD 𝜒2 statistic with absolute 

values in excess of 10 being flagged as potentially problematic.  Once again, positive LD is 

particularly concerning due to the possibility of inflating item parameters, thus suggesting more 

precision in the scale than is actually present (e.g., Toland, 2014).   

In the validation sample, negative LD continues to be prevalent.  Specifically, negative 

LD occurs in slightly less than 50% for models A, C, and D while model B demonstrates negative 

LD in approximately 57% of item pairs (see Table 4.17).  The pattern of positive LD, which 

provides information about model misspecification, follows a pattern consistent with the initial 

sample but with slightly clearer implications (see Table 4.18).  Model A, our unidimensional 

model, shows a more cohesive pattern of positive LD on the diagonals suggesting that item 

interrelationships within each of the three subscales is greater than predicted when estimated with 

a unidimensional model.  Model B, which estimates two correlated constructs of Mastery and 

Performance (both approach and avoid), displays a pattern of positive LD within both the 

performance approach and performance avoid block suggesting that these constructs should be 

split.  Model D, which estimates two correlated constructs of approach (both mastery and 

performance) and avoid, shows a pattern of positive LD in the performance approach block 

suggesting that this construct should be separated from mastery as a distinct construct.  Model C, 

the three construct correlated traits model, demonstrates item issues rather than distinct patterns 

suggestive of dimension misspecification.  All items will be kept in for model comparison in 

order to maintain consistency with the prior analysis. 

Comparing models: Assessing fit. Item-level model-data fit showed marked 

improvement for the validation sample with Models A and B each estimating 4 items as fitting 
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and Models C and D each estimating 7 items as fitting (see Table 4.17).  This difference may be 

attributable to sample size differences (n=1765 in the validation sample compared to n=1177 in 

the initial sample). 

Global model-data fit was analyzed comparably to procedures described in the initial 

sample with comparable results.  Models A and B showed poor global fit and markedly poorer 

performance when compared to Model C (see Table 4.17).  Both Models C and D demonstrated 

acceptable global fit when using the RMSEA associated with the C2 statistic (RMSEA=.06 for the 

former and .08 for the latter); however, Model C showed significant improvement in global fit 

based on the deviance statistic (χ2(2) = 276.15, p < .001).  Model C best represents the data in the 

validation sample. 

Bifactor Models (Models E through G) 

The bifactor models show the same patterns and relationships described in the initial 

analysis (to view the results and compare to the correlated traits models, see Tables 4.19 through 

4.28).  Overall, parsing the models by within-item multidimensionality rather than between 

subscale multidimensionality has a few consistent components worthy of note.  First, the 

performance avoid items appear to be a distinct construct with minimal overlap with mastery and 

performance approach items.  Specific ECV for the performance avoid items ranged from .26 to 

.27 across all bifactor models suggesting that approximately 26% of the common variance is 

being explained by this specific trait.  A second result consistent across the two samples is that 

there is a great deal of overlap in the approach constructs (mastery and performance approach) 

despite the mastery items representing a distinct construct (ECVmastery ≈ .15).  Of particular note is 

Mastery1, ‘trying hard is important,’ which tends to load strongly on the general factor driven by 

performance approach items and weakly on the mastery specific factor across all models.  A final 

conclusion is that the three-factor correlated traits model is suggested as optimal across all 

bifactor models, with the general trait only ever explaining between 53% and 58% of the common 
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variance.  Stucky and Edelen (2015) suggest values of .85 or higher are necessary for a measure 

to be considered unidimensional in nature. 

Unidimensional Subscales 

 A breakdown of the three subscales separately allows for an assessment of whether items 

identified as problematic in the initial analysis continue to show LD issues using the validation 

sample.  Focus will also be placed on whether negative LD issues persist and the theta range 

identified as providing maximum precision for each subscale. 

Mastery subscale of the PALS classroom goal structures scale. Fitting the mastery 

items with a unidimensional IRT model presented some concerns with positive LD between item 

pairs.  As was found in the initial sample, mastery1 and mastery2 showed evidence of positive 

LD (χ2 = +15.9).  An additional item pair, mastery4 and mastery6 also showed evidence of 

concerning positive LD (χ2 = +16.6).  Because the local dependency issue between mastery1 and 

mastery2 was identified in both the initial and validation samples, these two items were selected 

for sensitivity analysis.   

Dropping mastery1 eliminated all positive LD issues between items and led to parameter 

shifts in slopes, which suggest that mastery1 may have been distorting parameter estimates.  

Removal of mastery2 did not solve the positive LD issues between item pairs: all subsequent 

analysis uses the same reduced item mastery subscale as was analyzed with the initial sample. 

Using the reduced mastery subscale, slope parameters appear consistent with the initial 

sample.  Both magnitude and order of slopes was consistent with mastery4 indicated as the most 

discriminating item and mastery6 indicated as the least discriminating item (see Table 4.29).  

Threshold estimates indicate that the validation sample shows similar coverage of the latent 

mastery continuum, with the subscale still demonstrating a lack of precision for those who are 

estimated as high in perceived classroom mastery.   

Performance approach subscale of the PALS classroom goal structures scale. 

Similar to the initial calibration, the performance approach subscale calibrated on the validation 
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sample showed no positive LD issues, but exhibited some negative LD issues that suggest 

potential item redundancy (even with only three items).  Although overall model fit, optimal 

precision range, and item fit remained consistent from the initial to the validation sample, the 

slope parameter estimates shifted slightly (see Table 4.30).  Papp3 remained the most 

discriminating item but the order of Papp1 and Papp2 shifted.  Papp2, ‘getting right answers is 

most important,’ was estimated as the least discriminating item for the performance approach 

subscale in the validation sample.  The performance approach scale may be suffering from too 

few items, causing a lack of stability in item estimates. 

Performance avoid subscale of the PALS classroom goal structures scale. Fitting the 

unidimensional performance avoid scale on the validation sample resulted in positive LD issues 

between items that needed to be handled.  Pavoid1 and pavoid5 showed positive LD issues as 

were found in the initial sample, but the validation sample also exhibited positive LD between 

pavoid2 and pavoid5.  Because the former pair of items showed consistent LD problems across 

both samples, these were selected for a sensitivity analysis.  Dropping either pavoid1 or pavoid5 

eliminated all positive LD item pair issues.  For consistency with the initial sample, pavoid5 was 

dropped for the remaining analysis.   

Further analysis on the modified 4-item performance avoid subscale agreed with the 

results found with the initial sample (see Table 4.31).  Slope magnitude and order remained the 

same suggesting that results found in this sample may be applicable in other implementations of 

this subscale.  The scale continued to perform the best of the three subscales in terms of optimally 

matching estimating theta ranges of respondents, with the scale encompassing the same optimal 

range of precision based on the TIF.  
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Table 4.1  

Results from the Uni-GR, Multi-GR, and Bifac-GR Models fit to the 14-Item PALS Classroom Goal Structures Scale 

 Uni-GR  Multi-GR  Bifac-GR 

Index Model A  Model B Model C Model D  Model E Model F Model G 

# positive LD pairs flagged 18  27 14 17  11 10 9 

# negative LD pairs flagged 51  55 48 51  52 54 55 

# of items fit by model 1  2 3 3  3 3 3 

# of parameters 70  71 73 71  84 84 84 

-2LL 41706.91  41203.33 40100.79 40312.33  39940.78 39940.13 39952.84 

AIC 41846.91  41345.33 40246.79 40454.33  40108.78 40108.13 40120.84 

BIC 42201.86  41705.35 40616.95 40814.35  40534.72 40534.07 40546.78 

C2(df) 2975.97(77)  2769.42(76) 496.82(74) 753.63(76)  339.21(63) 335.19(63) 354.60(63) 

RMSEA based on C2 .18  .17 .07 .09  .06 .06 .06 

Note. -2LL = -2 log likelihood or deviance statistic; AIC = Akaike information criterion; BIC = Bayesian information criterion; C2 = Cai and 

Monroe’s (2014) limited-information goodness-of-fit statistic for ordinal response data; RMSEA based on C2 = root mean square error of 

approximation based on C2.  91 total LD pairs possible.  
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Table 4.2  

Positive LD values for MIRT models A through D 

  Mastery Performance Approach Performance Avoid 

 Item 1 2 3 4 5 6 7 8 9 10 11 12 13 

Mastery 1              

2              

3              

4   A,D           

5   A A,D          

6   A A,B,C,D          

Performance 

Approach 

7 A,B,C,D B B B B B        

8 B,C B,C B B B B B       

9 B B B B B B B A,B,D      

Performance 

Avoid 

10  C,D C,D C,D C,D C  D      

11        A,D  A    

12        C,D D A A,B   

13     C   D D A A,B,C,D A,B  

14  C        A,B,C,D A,B A A,B 

Note. As is common in survey instruments, there was an excessive amount of negative LD (Toland, 2014); thus, for simplicity, only positive LD 

values of 10 or greater are displayed in this table; A = Model A [unidimensional]; B = Model B [mastery versus performance (approach and 

avoid)]; C = Model C [mastery, performance approach, performance avoid]; D = Model D [approach (mastery and performance approach) versus 

avoid (performance avoid)]. 
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Table 4.3  

Positive LD values for MIRT models C-D 

  Mastery Performance Approach Performance Avoid 

 Item 1 2 3 4 5 6 7 8 9 10 11 12 13 

Mastery 1              

2              

3              

4   D           

5    D          

6    C,D          

Performance 

Approach 

7 C,D             

8 C C            

9        D      

Performance 

Avoid 

10  C,D C,D C,D C,D C  D      

11        D      

12        C,D D     

13     C   D D  C,D   

14  C        C,D    

Note. As is common in survey instruments, there was an excessive amount of negative LD (Toland, 2014); thus, for simplicity, only positive LD 

values of 10 or greater are displayed in this table; C = Model C [mastery, performance approach, performance avoid]; D = Model D [approach 

(mastery and performance approach) versus avoid (performance avoid)]. 
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Table 4.4  

Unidimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale 

 Factor Loading Slope Intercept 

Item λ a c1 c2 c3 c4 

Mastery1 0.79 2.21 4.70 3.52 1.70 -0.31 

Mastery2 0.79 2.19 4.99 3.11 1.05 -1.15 

Mastery3 0.79 2.20 4.91 3.09 1.11 -1.04 

Mastery4 0.75 1.95 4.25 2.82 0.90 -1.19 

Mastery5 0.79 2.21 4.83 3.12 0.98 -1.40 

Mastery6 0.58 1.23 3.27 2.27 0.66 -0.88 

Papp1 0.76 2.00 5.52 3.56 1.81 -0.06 

Papp2 0.75 1.96 4.84 3.12 1.19 -0.99 

Papp3 0.76 1.97 4.75 3.32 1.53 -0.59 

PAvoid1 0.50 0.98 2.25 1.10 -0.45 -1.98 

PAvoid2 0.32 0.57 1.78 0.67 -0.57 -1.77 

PAvoid3 0.44 0.84 2.30 1.04 -0.42 -1.86 

PAvoid4 0.42 0.78 1.98 0.85 -0.43 -1.60 

PAvoid5 0.36 0.66 1.70 0.67 -0.68 -1.92 

Note. λ = full information factor loadings; a = slope; c1-c4 = intercepts. 
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Table 4.5  

2-Dimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance) 

 Factor loading Slope Intercept 

Item λ1 λ2 a1 a2 c1 c2 c3 c4 

Mastery1 0.75  1.93  4.40 3.28 1.58 -0.31 

Mastery2 0.79  2.22  5.09 3.18 1.05 -1.21 

Mastery3 0.83  2.53  5.37 3.41 1.23 -1.17 

Mastery4 0.81  2.39  4.83 3.23 1.03 -1.39 

Mastery5 0.83  2.54  5.31 3.46 1.08 -1.58 

Mastery6 0.63  1.40  3.43 2.40 0.70 -0.94 

Papp1  0.60  1.26 4.59 2.91 1.46 -0.06 

Papp2  0.65  1.45 4.22 2.71 1.03 -0.86 

Papp3  0.63  1.39 4.07 2.83 1.32 -0.49 

PAvoid1  0.71  1.71 2.73 1.33 -0.60 -2.47 

PAvoid2  0.65  1.44 2.22 0.87 -0.70 -2.23 

PAvoid3  0.71  1.72 2.89 1.34 -0.55 -2.41 

PAvoid4  0.73  1.82 2.6 1.14 -0.58 -2.16 

PAvoid5  0.63  1.38 2.03 0.80 -0.85 -2.35 

Note. λ1- λ2 = full information factor loadings; a1-a2 = MIRT slopes; c1-c4 = intercepts. 

 

Table 4.6  

Inter-factor Correlations for the 2-Dimensional Model (Mastery, Performance) 

 Factor 1 Factor 2 

Factor 1 1.00  
Factor 2 0.60 1.00 

Note. Factor 1 = Mastery; factor 2 = Performance. 
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Table 4.7  

3-Dimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance Approach, 

Performance Avoid) 

 Factor loading Slope Intercept 

Item λ1 λ2 λ3 a1 a2 a3 c1 c2 c3 c4 

Mastery1 0.77   2.07   4.57 3.42 1.65 -0.32 

Mastery2 0.79   2.22   5.08 3.19 1.06 -1.21 

Mastery3 0.83   2.52   5.35 3.41 1.23 -1.18 

Mastery4 0.80   2.29   4.69 3.14 1.00 -1.35 

Mastery5 0.82   2.42   5.14 3.36 1.04 -1.55 

Mastery6 0.64   1.41   3.44 2.42 0.71 -0.95 

Papp1  0.80   2.25  5.94 3.87 1.98 -0.06 

Papp2  0.81   2.33  5.36 3.51 1.36 -1.12 

Papp3  0.83   2.57  5.60 3.98 1.86 -0.70 

PAvoid1   0.71   1.73 2.76 1.29 -0.66 -2.49 

PAvoid2   0.77   2.02 2.64 1.01 -0.87 -2.65 

PAvoid3   0.75   1.92 3.09 1.39 -0.64 -2.57 

PAvoid4   0.83   2.54 3.2 1.34 -0.78 -2.66 

PAvoid5   0.70   1.68 2.22 0.84 -0.97 -2.57 

Note. λ1- λ3 = full information factor loadings; a1-a3 = MIRT slopes; c1-c4 = intercepts. 

 

Table 4.8  

Inter-factor Correlations for the 3-Dimensional Model (Mastery, Performance Approach, Performance Avoid) 

 Factor 1 Factor 2 Factor 3 

Factor 1 1.00   
Factor 2 0.82 1.00  
Factor 3 0.34 0.49 1.00 

Note. Factor 1 = Mastery; factor 2 = Performance Approach; factor 3 = Performance Avoid. 
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Table 4.9  

2-Dimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Approach, Avoid) 

 Factor loading Slope Intercept 

Item λ1 λ2 a1 a2 c1 c2 c3 c4 

Mastery1 0.79  2.22  4.76 3.57 1.72 -0.33 

Mastery2 0.79  2.19  5.05 3.16 1.05 -1.19 

Mastery3 0.81  2.33  5.10 3.23 1.15 -1.11 

Mastery4 0.77  2.05  4.41 2.94 0.93 -1.26 

Mastery5 0.80  2.24  4.91 3.19 0.99 -1.46 

Mastery6 0.62  1.33  3.37 2.35 0.68 -0.92 

Papp1 0.75  1.92  5.45 3.51 1.78 -0.08 

Papp2 0.73  1.82  4.70 3.04 1.14 -0.99 

Papp3 0.74  1.88  4.67 3.26 1.48 -0.61 

PAvoid1  0.72  1.74 2.77 1.29 -0.67 -2.50 

PAvoid2  0.76  2.02 2.64 1.01 -0.87 -2.65 

PAvoid3  0.74  1.90 3.08 1.38 -0.63 -2.56 

PAvoid4  0.83  2.52 3.19 1.34 -0.78 -2.65 

PAvoid5  0.71  1.70 2.24 0.85 -0.98 -2.59 

Note. λ1- λ2 = full information factor loadings; a1-a2 = MIRT slopes; c1-c4 = intercepts. 

 

Table 4.10  

Inter-factor Correlations for the 2-Dimensional Model (Approach, Avoid) 

 Factor 1 Factor 2 

Factor 1 1.00  
Factor 2 0.41 1.00 

Note. Factor 1 = Approach; Factor 2 = Avoid. 
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Table 4.11  

Bifactor Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance) 

  Conditional slope Intercept Marginal factor loading      Marginal slope 

Item aG aS1 aS2 c1 c2 c3 c4 *G *S1 *S2 IECVG IECVS1 IECVS2 *aG *aS1 *aS2 

Mastery1 2.19 0.55  4.82 3.61 1.75 -0.33 0.77 0.19  0.94 0.06  2.08 0.34  
Mastery2 1.93 0.97  5.00 3.13 1.04 -1.18 0.70 0.35  0.80 0.20  1.68 0.64  
Mastery3 2.08 1.52  5.43 3.47 1.25 -1.19 0.67 0.49  0.65 0.35  1.55 0.96  
Mastery4 1.88 1.82  5.12 3.44 1.10 -1.48 0.60 0.58  0.52 0.48  1.28 1.22  
Mastery5 1.98 1.60  5.31 3.47 1.08 -1.60 0.65 0.52  0.60 0.40  1.44 1.04  
Mastery6 1.13 0.90  3.47 2.43 0.71 -0.96 0.51 0.40  0.61 0.39  1.00 0.75  
Papp1 2.51  0.04 6.36 4.18 2.13 -0.07 0.83  0.01 1.00  0.00 2.51  0.02 

Papp2 2.22  0.32 5.24 3.43 1.33 -1.10 0.79  0.11 0.98  0.02 2.18  0.19 

Papp3 2.32  0.21 5.26 3.73 1.74 -0.66 0.80  0.07 0.99  0.01 2.30  0.12 

PAvoid1 1.01  1.41 2.75 1.31 -0.64 -2.49 0.42  0.58 0.34  0.66 0.78  1.21 

PAvoid2 0.63  2.12 2.79 1.05 -0.95 -2.80 0.23  0.76 0.08  0.92 0.39  1.99 

PAvoid3 0.96  1.65 3.07 1.39 -0.62 -2.56 0.38  0.65 0.25  0.75 0.69  1.44 

PAvoid4 1.00  2.38 3.24 1.35 -0.80 -2.70 0.32  0.77 0.15  0.85 0.58  2.05 

PAvoid5 0.60  1.54 2.22 0.83 -0.98 -2.56 0.25  0.65 0.13  0.87 0.44  1.45 

ECV    
    0.59 0.14 0.28  

 
    

Note. G = general PALS trait; S1 = specific trait 1 – Mastery; S2 = specific trait 2 – Performance (approach and avoid);  

aG = conditional slopes for the general trait; aS1 – aS2 = conditional slopes for specific traits 1-2; c1-c4 = intercepts; ECV = explained common 

variance by factor; IECVG = item explained common variance for the general trait; IECVS1 –IECVS2= item explained common variance for specific 

traits 1-2; ECV values do not sum to 1 due to rounding error; *aG = marginal slope for general trait; *aS1 - *aS2 = marginal slopes for specific traits 

1-2.  
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Table 4.12  

Bifactor Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance Approach, Performance 

Avoid) 

  Conditional slope Intercept Marginal factor loading  
  

 Marginal slope 

Item aG aS1 aS2 aS3 c1 c2 c3 c4 *G *S1 *S2 *S3 IECVG IECVS1 IECVS2 IECVS3 *aG *aS1 *aS2 *aS3 

Mastery1 2.34 0.44   4.96 3.73 1.81 -0.33 0.80 0.15   0.97 0.03 
 

 2.27 0.26   

Mastery2 2.01 0.89   5.04 3.16 1.05 -1.19 0.72 0.32   0.84 0.16 
 

 1.78 0.57   

Mastery3 2.10 1.49   5.43 3.47 1.25 -1.19 0.68 0.48   0.67 0.33 
 

 1.58 0.94   

Mastery4 1.92 1.80   5.15 3.46 1.11 -1.49 0.61 0.57   0.53 0.47 
 

 1.32 1.19   

Mastery5 2.02 1.53   5.30 3.47 1.08 -1.59 0.66 0.50   0.64 0.36 
 

 1.50 0.99   

Mastery6 1.14 0.88   3.47 2.43 0.71 -0.95 0.51 0.39   0.63 0.37 
 

 1.01 0.73   

Papp1 2.46  0.25  6.29 4.12 2.10 -0.07 0.82  0.08  0.99 
 

0.01  2.43  0.14  

Papp2 2.13  0.61  5.18 3.40 1.32 -1.10 0.76  0.22  0.92 
 

0.08  2.00  0.38  

Papp3 3.18  2.22  7.64 5.50 2.60 -0.97 0.75  0.52  0.67 
 

0.33  1.93  1.05  

PAvoid1 1.09   1.37 2.76 1.31 -0.64 -2.50 0.45   0.56 0.39 
  

0.61 0.85   1.15 

PAvoid2 0.72   2.08 2.78 1.04 -0.95 -2.79 0.26   0.75 0.11 
  

0.89 0.46   1.92 

PAvoid3 1.03   1.60 3.07 1.39 -0.62 -2.56 0.40   0.63 0.29 
  

0.71 0.75   1.37 

PAvoid4 1.11   2.33 3.24 1.35 -0.80 -2.70 0.36   0.75 0.18 
  

0.82 0.65   1.95 

PAvoid5 0.69   1.52 2.22 0.83 -0.98 -2.57 0.29   0.64 0.17 
  

0.83 0.51   1.41 

ECV     
    

0.58 0.12 0.04 0.26  
  

     

Note. G = general PALS trait; S1 = specific trait 1 – Mastery; S2 = specific trait 2 – Performance Approach; S3 = specific trait 3 – Performance 

Avoid; aG = conditional slopes for the general trait; aS1 – aS3 = conditional slopes for specific traits 1-3; c1-c4 = intercepts; ECV = explained 

common variance by factor; IECVG = item explained common variance for the general trait;  IECVS1 –IECVS3= item explained common variance 

for specific traits 1-3; ECV values do not sum to 1 due to rounding error; *aG = marginal slope for general trait; *aS1 - *aS3 = marginal slopes for 

specific traits 1-3.  
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Table 4.13  

Bifactor Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Approach, Avoid) 

 Conditional slope Intercept Marginal factor loading  
 

 Marginal slope 

Item aG aS1 aS2 c1 c2 c3 c4 *G *S1 *S2 IECVG IECVS1 IECVS2 *aG *aS1 *aS2 

Mastery1 2.10 0.76  4.77 3.58 1.73 -0.32 0.75 0.27  0.88 0.12  1.92 0.48  
Mastery2 1.84 1.14  5.01 3.13 1.04 -1.18 0.67 0.41  0.72 0.28  1.53 0.77  
Mastery3 1.93 1.70  5.42 3.46 1.25 -1.19 0.63 0.55  0.56 0.44  1.36 1.12  
Mastery4 1.71 1.99  5.13 3.44 1.11 -1.48 0.55 0.64  0.42 0.58  1.11 1.4  
Mastery5 1.84 1.73  5.29 3.46 1.08 -1.59 0.60 0.57  0.53 0.47  1.29 1.17  
Mastery6 1.02 1.03  3.48 2.44 0.72 -0.96 0.46 0.46  0.50 0.50  0.87 0.88  
Papp1 2.48 0.16  6.31 4.14 2.11 -0.07 0.82 0.05  1.00 0.00  2.47 0.09  
Papp2 2.25 0.19  5.26 3.45 1.33 -1.11 0.80 0.07  0.99 0.01  2.24 0.11  
Papp3 2.34 0.21  5.29 3.76 1.75 -0.67 0.81 0.07  0.99 0.01  2.32 0.12  
PAvoid1 1.10  1.35 2.75 1.31 -0.64 -2.49 0.45  0.55 0.40  0.60 0.86  1.13 

PAvoid2 0.78  2.04 2.77 1.04 -0.94 -2.78 0.28  0.74 0.13  0.87 0.50  1.85 

PAvoid3 1.08  1.57 3.07 1.39 -0.62 -2.56 0.42  0.61 0.32  0.68 0.79  1.33 

PAvoid4 1.17  2.30 3.24 1.35 -0.80 -2.69 0.38  0.74 0.21  0.79 0.70  1.89 

PAvoid5 0.70  1.52 2.23 0.83 -0.99 -2.58 0.29  0.64 0.17  0.83 0.52  1.41 

ECV    
    0.57 0.17 0.25  

 
    

Note. G = general PALS trait; S1 = specific trait 1 – Approach (Mastery and Performance Approach); S2 = specific trait 2 – Performance Avoid; aG 

= conditional slopes for the general trait; aS1 – aS2 = conditional slopes for specific traits 1-2; c1-c4 = intercepts; ECV = explained common variance 

by factor; IECVG = item explained common variance for the general trait;  IECVS1 –IECVS2= item explained common variance for specific traits 1-

2; ECV values do not sum to 1 due to rounding error; *aG = marginal slope for general trait; *aS1 - *aS2 = marginal slopes for specific traits 1-2. 
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Table 4.14  

Unidimensional Model Item Parameter Estimates for the Reduced 5-item Mastery Subscale of the PALS Classroom Goal Structures Scale 

(Mastery1 removed) 

 Factor Loading  Slope  Threshold  Item-fit Statistics 

Item Λ  a  b1 b2 b3 b4  S-χ2 p 

Mastery2 0.76 (.03)  2.00 (.11)  -2.41 (.13) -1.50 (.08) -0.50 (.05) 0.56 (.05)  70.30 .0307 

Mastery3 0.83 (.02)  2.58 (.15)  -2.12 (.10) -1.36 (.07) -0.49 (.05) 0.46 (.05)  99.20 <.0001 

Mastery4 0.84 (.02)  2.59 (.14)  -1.97 (.10) -1.32 (.07) -0.43 (.05) 0.56 (.05)  98.50 <.0001 

Mastery5 0.83 (.02)  2.53 (.14)  -2.11 (.10) -1.38 (.07) -0.43 (.05) 0.63 (.05)  113.2 <.0001 

Mastery6 0.65 (.04)  1.44 (.08)  -2.41 (.14) -1.69 (.10) -0.50 (.06) 0.66 (.07)  111.4 <.0001 

Note. λ = full information factor loadings; a = item slope (discrimination); b1-b4 = thresholds, S-χ2  = item-fit statistic, p = p value associated with 

the item-fit statistic.  Values in parentheses are standard error estimates. Mastery1 was removed due to positive LD issues with Matery2. 

 

 

 

 

Table 4.15  

Unidimensional Model Item Parameter Estimates for the 3-item Performance Approach Subscale of the PALS Classroom Goal Structures Scale 

 Factor Loading  Slope  Threshold  Item-fit Statistics 

Item Λ  a  b1 b2 b3 b4  S-χ2 p 

Papp1 0.77 (.03)  2.04 (.13)  -2.75 (.16) -1.81 (.09) -0.93 (.06) 0.04 (.05)  69.6 <.0001 

Papp2 0.79 (.03)  2.17 (.13)  -2.38 (.13) -1.58 (.08) -0.62 (.05) 0.51 (.05)  92.8 <.0001 

Papp3 0.87 (.03)  2.96 (.25)  -2.10 (.11) -1.51 (.07) -0.72 (.05) 0.27 (.04)  58.7 <.0001 

Note. λ = full information factor loadings; a = item slope (discrimination); b1-b4 = thresholds, S-χ2  = item-fit statistic, p = p value associated with 

the item-fit statistic.  Values in parentheses are standard error estimates. 
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Table 4.16  

Unidimensional Model Item Parameter Estimates for the Reduced 4-item Performance Avoid Subscale of the PALS Classroom Goal Structures 

Scale (Pavoid5 is dropped due to LD issues) 

 Factor Loading  Slope  Threshold  Item-fit Statistics 

Item Λ  a  b1 b2 b3 b4  S-χ2 p 

Pavoid1 0.64 (.04)  1.44 (.08)  -1.77 (.10) -0.82 (.07) 0.43 (.06) 1.6 (.10)  138.9 <.0001 

Pavoid2 0.79 (.03)  2.21 (.12)  -1.27 (.07) -0.48 (.05) 0.43 (.05) 1.28 (.07)  162.9 <.0001 

Pavoid3 0.74 (.03)  1.85 (.10)  -1.66 (.09) -0.74 (.06) 0.35 (.05) 1.37 (.08)  151.1 <.0001 

Pavoid4 0.85 (.02)  2.77 (.17)  -1.24 (.06) -0.51 (.05) 0.31 (.04) 1.03 (.06)  127.2 <.0001 

Note. λ = full information factor loadings; a = item slope (discrimination); b1-b4 = thresholds, S-χ2  = item-fit statistic, p = p value associated with 

the item-fit statistic. Values in parentheses are standard error estimates. Pavoid5 was dropped due to positive LD issues with Pavoid2. 
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Table 4.17  

Cross-Validation Results from the Uni-GR, Multi-GR, and Bifac-GR Models fit to the 14-Item PALS Classroom Goal Structures Scale 

 Uni-GR  Multi-GR  Bifac-GR 

Index Model A  Model B Model C Model D  Model E Model F Model G 

# positive LD pairs flagged 21  25 18 24  15 13 18 

# negative LD pairs flagged 42  52 42 40  45 48 44 

# of items fit by model 4  4 7 7  7 7 7 

# of parameters 70  71 73 71  84 84 84 

-2LL 61854.08  61251.90 59677.12 59953.27  59456.19 59468.85 59460.62 

AIC 61994.08  61393.90 59823.12 60095.27  59624.19 59636.85 59628.62 

BIC 62377.40  61782.69 60222.86 60484.06  60084.16 60096.82 60088.60 

C2(df) 3926.75(77)  4055.56(76) 606.70(74) 855.24(76)  397.08(63) 395.16(63) 400.23(63) 

RMSEA based on C2 0.17  0.17 0.06 0.08  0.05 0.05 0.06 

Note. -2LL = -2 log likelihood or deviance statistic; AIC = Akaike information criterion; BIC = Bayesian information criterion; C2 = Cai and 

Monroe’s (2014) limited-information goodness-of-fit statistic for ordinal response data; RMSEA based on C2 = root mean square error of 

approximation based on C2. 91 total LD pairs possible. All cross-validation analyses are run on Sample B.  
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Table 4.18  

Positive LD values for MIRT models A-D 

  Mastery Performance Approach Performance Avoid 

 Item 1 2 3 4 5 6 7 8 9 10 11 12 13 

Mastery 1              

2              

3              

4  A A,C,D           

5   A,D A,D          

6    A,B,C,D A,D         

Performance 

Approach 

7 A,B,C,D B B           

8 B B,C B  B  A,B,D       

9 B B  B B  A,B,D A,B,D      

Performance 

Avoid 

10  C,D C C,D C,D   D D     

11        A,D  A,B    

12  C   C,D   C,D C,D A,B A,B   

13  C,D      D D A,B A,B,C,D A,B  

14 C C   C,D     A,B,C,D A,B A,B A,B 

Note. As is common in survey instruments, there was an excessive amount of negative LD (Toland, 2014); thus, for simplicity, only positive LD 

values greater than 10 are displayed in this table; A = Model A [unidimensional]; B = Model B [mastery versus performance (approach and 

avoid)]; C = Model C [mastery, performance approach, performance avoid]; D = Model D [approach (mastery and performance approach) versus 

avoid (performance avoid)]. 
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Table 4.19  

Cross-Validation Unidimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale 

 Factor Loading Slope Intercept 

Item Λ a c1 c2 c3 c4 

Mastery1 0.79 2.17 4.62 3.30 1.59 -0.40 

Mastery2 0.79 2.16 4.85 3.06 1.12 -1.08 

Mastery3 0.78 2.11 4.57 3.07 1.11 -0.97 

Mastery4 0.74 1.88 4.23 2.75 1.02 -0.91 

Mastery5 0.74 1.85 4.32 2.64 0.58 -1.44 

Mastery6 0.60 1.28 3.32 2.18 0.67 -0.94 

Papp1 0.76 1.98 5.03 3.36 1.69 -0.16 

Papp2 0.74 1.85 4.56 2.94 0.96 -1.15 

Papp3 0.75 1.95 4.64 3.16 1.39 -0.52 

PAvoid1 0.46 0.87 2.06 0.87 -0.55 -1.90 

PAvoid2 0.27 0.48 1.49 0.42 -0.77 -1.84 

PAvoid3 0.41 0.78 2.08 0.91 -0.52 -1.98 

PAvoid4 0.39 0.72 1.84 0.74 -0.38 -1.46 

PAvoid5 0.36 0.65 1.52 0.52 -0.69 -1.85 

Note. λ = full information factor loadings; a = slope; c1-c4 = intercepts. 
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Table 4.20  

Cross-Validation 2-Dimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance) 

 Factor loading Slope Intercept 

Item λ1 λ2 a1 a2 c1 c2 c3 c4 

Mastery1 0.76  1.98  4.39 3.14 1.52 -0.39 

Mastery2 0.79  2.20  4.91 3.11 1.14 -1.11 

Mastery3 0.82  2.44  4.98 3.39 1.25 -1.07 

Mastery4 0.80  2.27  4.70 3.09 1.17 -1.02 

Mastery5 0.78  2.09  4.60 2.85 0.64 -1.56 

Mastery6 0.66  1.49  3.51 2.33 0.72 -1.01 

Papp1  0.71  1.73 4.68 3.11 1.57 -0.14 

Papp2  0.73  1.84 4.53 2.93 0.97 -1.14 

Papp3  0.74  1.86 4.50 3.07 1.38 -0.48 

PAvoid1  0.62  1.36 2.32 0.99 -0.66 -2.21 

PAvoid2  0.49  0.95 1.66 0.49 -0.85 -2.04 

PAvoid3  0.62  1.33 2.39 1.06 -0.62 -2.33 

PAvoid4  0.59  1.23 2.09 0.86 -0.44 -1.69 

PAvoid5  0.54  1.09 1.69 0.58 -0.79 -2.09 

Note. λ1- λ2 = full information factor loadings; a1-a2 = MIRT slopes; c1-c4 = intercepts. 

 

Table 4.21  

Inter-factor Correlations for the 2-Dimensional Model (Mastery, Performance) 

 Mastery Performance 

Mastery 1.00  
Performance 0.70 1.00 

Note. Mastery = Mastery items; Performance = Performance Approach and Performance Avoid items. 
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Table 4.22  

Cross-Validation Bifactor Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance) 

 Conditional slope Intercept Marginal factor loading    Marginal slope 

Item aG aS1 aS2 c1 c2 c3 c4 *G *S1 *S2 IECVG IECVS1 IECVS2 *aG *aS1 *aS2 

Mastery1 2.19 0.55  4.76 3.39 1.62 -0.43 0.77 0.19  0.94 0.06  2.08 0.33  

Mastery2 1.93 0.97  4.83 3.05 1.12 -1.1 0.7 0.35  0.8 0.2  1.65 0.64  

Mastery3 2.08 1.52  4.97 3.38 1.24 -1.08 0.66 0.48  0.65 0.35  1.5 0.94  

Mastery4 1.88 1.82  5.12 3.39 1.29 -1.13 0.58 0.6  0.49 0.51  1.22 1.28  

Mastery5 1.98 1.6  4.61 2.86 0.64 -1.58 0.6 0.5  0.59 0.41  1.26 0.98  

Mastery6 1.13 0.9  3.65 2.44 0.76 -1.05 0.48 0.49  0.49 0.51  0.94 0.96  

Papp1 2.51  0.04 6.04 4.08 2.06 -0.21 0.84  -0.01 1  0 2.64  -0.02 

Papp2 2.22  0.32 4.9 3.17 1.04 -1.25 0.77  0.1 0.98  0.02 2.04  0.18 

Papp3 2.32  0.21 5.06 3.46 1.53 -0.58 0.8  0.05 1  0 2.23  0.09 

PAvoid1 1.01  1.41 2.65 1.08 -0.81 -2.54 0.37  0.63 0.25  0.75 0.67  1.39 

PAvoid2 0.63  2.12 2.17 0.63 -1.14 -2.65 0.19  0.71 0.07  0.93 0.34  1.72 

PAvoid3 0.96  1.65 2.75 1.19 -0.75 -2.69 0.35  0.64 0.23  0.77 0.64  1.42 

PAvoid4 1  2.38 2.74 1.08 -0.64 -2.23 0.3  0.72 0.15  0.85 0.54  1.78 

PAvoid5 0.6  1.54 2.05 0.66 -1.01 -2.53 0.25  0.67 0.13  0.87 0.45  1.54 

ECV        0.58 0.15 0.27       
Note. G = general PALS trait; S1 = specific trait 1 – Mastery; S2 = specific trait 2 – Performance (approach and avoid); aG = conditional slopes for 

the general trait; aS1 – aS2 = conditional slopes for specific traits 1-2; c1-c4 = intercepts; ECV = explained common variance by factor; IECVG = 

item explained common variance for the general trait; IECVS1 –IECVS2= item explained common variance for specific traits 1-2; ECV values may 

not sum to 1 due to rounding error; *aG = marginal slope for general trait; *aS1 - *aS2 = marginal slopes for specific traits 1-2.  
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Table 4.23  

Cross-Validation 3-Dimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance 

Approach, Performance Avoid) 

 Factor loading Slope Intercept 

Item λ1 λ2 λ3 a1 a2 a3 c1 c2 c3 c4 

Mastery1 0.78   2.09   4.53 3.24 1.56 -0.41 

Mastery2 0.79   2.19   4.90 3.10 1.14 -1.12 

Mastery3 0.82   2.43   4.98 3.37 1.24 -1.08 

Mastery4 0.79   2.19   4.61 3.03 1.14 -1.01 

Mastery5 0.77   2.02   4.53 2.80 0.62 -1.54 

Mastery6 0.66   1.50   3.52 2.34 0.72 -1.01 

Papp1  0.81   2.32  5.54 3.73 1.88 -0.19 

Papp2  0.79   2.19  5.05 3.27 1.07 -1.29 

Papp3  0.82   2.41  5.29 3.62 1.60 -0.60 

PAvoid1   0.74   1.87 2.69 1.08 -0.84 -2.57 

PAvoid2   0.71   1.72 2.09 0.61 -1.09 -2.55 

PAvoid3   0.73   1.84 2.76 1.19 -0.76 -2.70 

PAvoid4   0.78   2.11 2.71 1.07 -0.63 -2.20 

PAvoid5   0.72   1.76 2.06 0.67 -1.01 -2.54 

Note. λ1- λ3 = full information factor loadings; a1-a3 = MIRT slopes; c1-c4 = intercepts. 

 

Table 4.24  

Inter-factor Correlations for the 3-Dimensional Model (Mastery, Performance Approach, Performance Avoid) 

 Mastery Papp PAvoid 

Mastery 1.00   
Papp 0.83 1.00  
PAvoid 0.32 0.46 1.00 

Note. Mastery = Mastery items; Papp = Performance Approach items; PAvoid = Performance Avoid items.  
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Table 4.25  

Cross-Validation Bifactor Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Mastery, Performance 

Approach, Performance Avoid) 

 Conditional slope Intercept Marginal factor loading     Marginal slope 

Item aG aS1 aS2 aS3 c1 c2 c3 c4 *G *S1 *S2 *S3 IECVG IECVS1 IECVS2 IECVS3 *aG *aS1 *aS2 *aS3 

Mastery1 2.18 0.56   4.76 3.4 1.63 -0.43 0.77 0.2   0.94 0.06   2.07 0.34   

Mastery2 1.90 0.98   4.84 3.06 1.12 -1.10 0.70 0.36   0.79 0.21   1.65 0.65   

Mastery3 1.95 1.46   4.97 3.37 1.24 -1.08 0.66 0.49   0.64 0.36   1.48 0.96   

Mastery4 1.8 1.89   5.12 3.39 1.29 -1.13 0.58 0.61   0.48 0.52   1.20 1.30   

Mastery5 1.60 1.36   4.61 2.86 0.64 -1.58 0.59 0.50   0.58 0.42   1.25 0.99   

Mastery6 1.12 1.19   3.65 2.44 0.76 -1.05 0.47 0.50   0.47 0.53   0.92 0.99   

Papp1 2.73  -0.18  6.18 4.18 2.11 -0.21 0.85  -0.06  1.00  0.00  2.71  -0.10  

Papp2 2.13  0.53  5.06 3.28 1.07 -1.30 0.77  0.19  0.94  0.06  2.03  0.33  

Papp3 2.33  0.60  5.28 3.61 1.6 -0.60 0.79  0.20  0.94  0.06  2.20  0.35  

PAvoid1 0.98   1.55 2.66 1.08 -0.82 -2.55 0.39   0.62 0.29   0.71 0.72   1.34 

PAvoid2 0.55   1.76 2.16 0.62 -1.14 -2.64 0.22   0.70 0.09   0.91 0.38   1.67 

PAvoid3 0.93   1.55 2.73 1.19 -0.75 -2.68 0.37   0.62 0.26   0.74 0.69   1.36 

PAvoid4 0.91   1.95 2.74 1.08 -0.64 -2.23 0.33   0.71 0.18   0.82 0.60   1.72 

PAvoid5 0.68   1.63 2.06 0.66 -1.02 -2.55 0.28   0.66 0.15   0.85 0.49   1.51 

ECV         0.58 0.15 0.01 0.26         

Note. G = general PALS trait; S1 = specific trait 1 – Mastery; S2 = specific trait 2 – Performance Approach; S3 = specific trait 3 – Performance 

Avoid; aG = conditional slopes for the general trait; aS1 – aS3 = conditional slopes for specific traits 1-3; c1-c4 = intercepts; ECV = explained 

common variance by factor; IECVG = item explained common variance for the general trait;  IECVS1 –IECVS3= item explained common variance 

for specific traits 1-3; ECV values may not sum to 1 due to rounding error; *aG = marginal slope for general trait; *aS1 - *aS3 = marginal slopes for 

specific traits 1-3.  
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Table 4.26  

Cross-Validation 2-Dimensional Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Approach, Avoid) 

 Factor loading Slope Intercept 

Item λ1 λ2 a1 a2 c1 c2 c3 c4 

Mastery1 0.79  2.20  4.68 3.34 1.60 -0.43 

Mastery2 0.79  2.16  4.88 3.08 1.12 -1.11 

Mastery3 0.80  2.24  4.76 3.20 1.15 -1.03 

Mastery4 0.76  1.97  4.36 2.84 1.05 -0.95 

Mastery5 0.74  1.90  4.39 2.69 0.58 -1.48 

Mastery6 0.63  1.38  3.41 2.26 0.69 -0.97 

Papp1 0.75  1.92  4.99 3.33 1.67 -0.17 

Papp2 0.72  1.75  4.48 2.88 0.93 -1.13 

Papp3 0.74  1.86  4.56 3.10 1.35 -0.53 

PAvoid1  0.74  1.88 2.70 1.08 -0.84 -2.58 

PAvoid2  0.71  1.72 2.08 0.61 -1.09 -2.54 

PAvoid3  0.73  1.81 2.73 1.18 -0.75 -2.67 

PAvoid4  0.78  2.12 2.71 1.07 -0.63 -2.21 

PAvoid5  0.72  1.78 2.07 0.67 -1.02 -2.56 

Note. λ1- λ2 = full information factor loadings; a1-a2 = MIRT slopes; c1-c4 = intercepts. 

 

Table 4.27  

Inter-factor Correlations for the 2-Dimensional Model (Approach, Avoid) 

 Approach Avoid 

Approach 1.00  
Avoid 0.38 1.00 

Note. Approach = Mastery and Performance Approach items; Avoid = Performance Avoid items. 
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Table 4.28  

Cross-Validation of Bifactor Model Item Parameter Estimates for the 14-item PALS Classroom Goal Structures Scale (Approach, Avoid) 

 Conditional slope Intercept Marginal factor loading  
 

 Marginal slope 

Item aG aS1 aS2 c1 c2 c3 c4 *G *S1 *S2 IECVG IECVS1 IECVS2 *aG *aS1 *aS2 

Mastery1 2.11 0.8  4.76 3.40 1.63 -0.43 0.75 0.28  0.87 0.13  1.91 0.50   

Mastery2 1.76 1.21  4.84 3.06 1.12 -1.10 0.64 0.44  0.68 0.32  1.43 0.84   

Mastery3 1.75 1.68  4.96 3.36 1.24 -1.07 0.59 0.57  0.52 0.48  1.24 1.17   

Mastery4 1.55 2.13  5.16 3.42 1.30 -1.14 0.49 0.68  0.35 0.65  0.97 1.57   

Mastery5 1.41 1.56  4.61 2.86 0.64 -1.58 0.52 0.58  0.45 0.55  1.04 1.20   

Mastery6 0.96 1.33  3.66 2.44 0.76 -1.05 0.41 0.56  0.34 0.66  0.76 1.16   

Papp1 2.82 0.16  6.33 4.28 2.16 -0.21 0.86 0.05  1.00 0  2.81 0.08   

Papp2 1.99 0.37  4.83 3.12 1.02 -1.23 0.75 0.14  0.97 0.03  1.94 0.24   

Papp3 2.13 0.43  4.96 3.38 1.49 -0.57 0.77 0.16  0.96 0.04  2.06 0.27   

PAvoid1 1.00  1.54 2.66 1.08 -0.82 -2.55 0.4  0.62 0.30  0.7 0.74  1.33 

PAvoid2 0.59  1.74 2.16 0.62 -1.14 -2.64 0.24  0.70 0.10  0.9 0.41  1.64 

PAvoid3 0.97  1.53 2.73 1.19 -0.75 -2.68 0.39  0.62 0.29  0.71 0.72  1.33 

PAvoid4 0.94  1.94 2.74 1.08 -0.64 -2.23 0.34  0.71 0.19  0.81 0.62  1.70 

PAvoid5 0.7  1.62 2.06 0.66 -1.02 -2.55 0.29   0.66 0.16  0.84 0.51   1.50 

ECV    
    0.53 0.21 0.26       

Note. G = general PALS trait; S1 = specific trait 1 – Approach (Mastery and Performance Approach); S2 = specific trait 2 – Performance Avoid; aG 

= conditional slopes for the general trait; aS1 – aS2 = conditional slopes for specific traits 1-2; c1-c4 = intercepts; ECV = explained common variance 

by factor; IECVG = item explained common variance for the general trait;  IECVS1 –IECVS2= item explained common variance for specific traits 1-

2; ECV values may not sum to 1 due to rounding error; *aG = marginal slope for general trait; *aS1 - *aS2 = marginal slopes for specific traits 1-2. 
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Table 4.29  

Cross-Validation of Unidimensional Model Item Parameter Estimates for the 5-item Mastery Subscale of the PALS Classroom Goal Structures 

Scale (Mastery1 removed) 

 Factor loading  Slope  Threshold  Item-fit statistic 

Item Λ  A  b1 b2 b3 b4  S-χ2 p 

Mastery2 0.75 (.03)  1.95 (.09)  -2.35 (.11) -1.49 (.07) -0.54 (.04) 0.53 (.05)  117.4 <.0001 

Mastery3 0.81 (.02)  2.38 (.11)  -2.05 (.08) -1.40 (.06) -0.53 (.04) 0.44 (.04)  109.6 <.0001 

Mastery4 0.84 (.02)  2.67 (.13)  -1.95 (.08) -1.29 (.05) -0.49 (.04) 0.42 (.04)  98.5 <.0001 

Mastery5 0.78 (.02)  2.12 (.09)  -2.18 (.10) -1.36 (.06) -0.31 (.04) 0.75 (.05)  126.8 <.0001 

Mastery6 0.69 (.03)  1.61 (.08)  -2.25 (.11) -1.50 (.07) -0.47 (.05) 0.65 (.05)  108.7 <.0001 

Note. λ = full information factor loadings; a = item slope (discrimination); b1-b4 = thresholds, S-χ2  = item-fit statistic, p = p value associated with 

the item-fit statistic. Values in parentheses are standard error estimates. 

 

 

 

 

 

Table 4.30  

Cross-Validation of Unidimensional Model Item Parameter Estimates for the 3-item Performance Approach Subscale of the PALS Classroom 

Goal Structures Scale 

 Factor loading  Slope  Threshold  Item-fit statistic 

Item Λ  A  b1 b2 b3 b4  S-χ2 p 

Papp1 0.80 (.03)  2.25 (.13)  -2.43 (.11) -1.64 (.07) -0.83 (.05) 0.08 (.04)  51.9 .0039 

Papp2 0.78 (.03)  2.10 (.11)  -2.36 (.10) -1.54 (.07) -0.50 (.04) 0.61 (.04)  102.1 <.0001 

Papp3 0.83 (.03)  2.53 (.15)  -2.17 (.09) -1.49 (.06) -0.67 (.04) 0.25 (.04)  86.7 <.0001 

Note. λ = full information factor loadings; a = item slope (discrimination); b1-b4 = thresholds, S-χ2  = item-fit statistic, p = p value associated with 

the item-fit statistic. Values in parentheses are standard error estimates. 
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Table 4.31  

Cross-Validation of Unidimensional Model Item Parameter Estimates for the 4-item Performance Avoid Subscale of the PALS Classroom Goal 

Structures Scale (Pavoid5 is dropped due to LD issues) 

 Factor loading  Slope  Threshold  Item-fit statistic 

Item Λ  A  b1 b2 b3 b4  S-χ2 p 

Pavoid1 0.70 (.03)  1.67 (.10)  -1.61 (.09) -0.65 (.06) 0.44 (.06) 1.40 (.09)  74.3 .0021 

Pavoid2 0.75 (.03)  1.96 (.11)  -1.15 (.07) -0.32 (.05) 0.58 (.05) 1.34 (.08)  94.7 <.0001 

Pavoid3 0.73 (.03)  1.84 (.10)  -1.51 (.09) -0.62 (.06) 0.41 (.05) 1.39 (.08)  97.1 <.0001 

Pavoid4 0.82 (.03)  2.43 (.07)  -1.24 (.07) -0.52 (.05) 0.23 (.05) 0.93 (.06)  70.6 .0020 

Note. λ = full information factor loadings; a = item slope (discrimination); b1-b4 = thresholds, S-χ2  = item-fit statistic, p = p value associated with 

the item-fit statistic. Values in parentheses are standard error estimates. 
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Figure 4.1. Item information functions for the 5 items composing the reduced unidimensional 

Mastery subscale of the PALS perceived classroom goal structures scale (Mastery1 was dropped 

due to positive LD issues with Mastery2). 

Note. Each function represents the amount of information available from a given item across the 

potential range of thetas. 
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Figure 4.2. Total information function and expected standard error of the estimate [SEE] function 

for the reduced unidimensional Mastery subscale of the PALS perceived classroom goal 

structures scale.  

Note. The SEE and information functions are related in that SEE is approximately equivalent to 1 

divided by the square root of the Information at any given point on the latent trait continuum. 
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Figure 4.3. Frequency of people in sample A by estimated latent trait level on the reduced 

unidimensional mastery subscale of the PALS perceived classroom goal structures scale.  
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Figure 4.4. Item information functions for the 3 items composing the unidimensional 

Performance Approach subscale of the PALS perceived classroom goal structures scale.  

Note. Each function represents the amount of information available from a given item across the 

potential range of thetas. 
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Figure 4.5. Total information function and expected standard error of the estimate [SEE] function 

for the unidimensional Performance Approach subscale of the PALS perceived classroom goal 

structures scale.  

Note. The SEE and information functions are related in that SEE is approximately equivalent to 1 

divided by the square root of the Information at any given point on the latent trait continuum. 
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Figure 4.6. Frequency of people in Sample A by estimated latent trait level on the unidimensional 

perceived classroom Performance Approach subscale of the PALS perceived classroom goal 

structures scale. 
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Figure 4.7. Item information functions for the 4 items composing the reduced unidimensional 

Performance Avoid subscale of the PALS perceived classroom goal structures scale (PAvoid5 

was dropped due to positive LD issues with PAvoid1).  

Note. Each function represents the amount of information available from a given item across the 

potential range of thetas. 
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Figure 4.8. Total information function and expected standard error of the estimate [SEE] function 

for the reduced unidimensional Performance Avoid subscale of the PALS perceived classroom 

goal structures scale.  

Note. The SEE and information functions are related in that SEE is approximately equivalent to 1 

divided by the square root of the Information at any given point on the latent trait continuum. 
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Figure 4.9. Frequency of people by estimated latent trait level on the reduced unidimensional 

perceived classroom Performance Avoid subscale of the PALS perceived classroom goal 

structures scale.  

Note. Sample A was used to construct this figure. 
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Chapter Five: Discussion 

Based on results from the initial and validation samples, a three dimensional correlated 

trait structure in line with current theory showed the best fit out of the plausible models.  

Although demonstrating best overall fit, the high construct intercorrelations displayed in the 

MIRT models and the within item multidimensionality apparent in the bifactor models are 

suggestive of problems that need addressing.  The following discussion will first address the 

practical implications of the results found before moving to broader speculation on potential 

causes and implications of these research findings. 

Practical Implications for the Classroom Goal Structures Scales  

The drill-down method of moving from correlated traits, to bifactor, to unidimensional 

models allowed for more insight into both the functioning of individual items on these scales as 

well as the relationships between these scales.  One of the clearest conclusions is that the 

performance approach and mastery subscales, while not tapping the same construct, possess a 

great deal of overlap.  Model C, the three-factor correlated traits model estimated a correlation of 

approximately .82 between the latent traits for both samples.  Although a correlation of this 

magnitude is possible while constructs remain distinct, the bifactor models suggest that within 

item multidimensionality is present.  Particularly, mastery1, ‘trying hard is important,’ showed a 

strong relationship to the performance approach construct which helped to drive the general 

factor in the bifactor models.  This same mastery item showed positive LD issues in both 

samples, suggesting that the item itself may be problematic.  It seems plausible that ‘trying hard’ 

could be seen as a component of getting good grades as well as attempting to understand the 

material, thus tapping both mastery and performance approach latent traits.   

Whether this item is dropped in future revisions to this scale or not, researchers using the 

scale in its current instantiation should prepare to handle this issue.  One method would be 

including both performance approach and mastery scales in a study even if the hypothesis being 
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tested is only referencing one of the two subscales.  Much as socio-economic status is frequently 

used as a control for academic performance, performance approach and mastery need to both be 

assessed so that the analysis can partial out the influence of one construct when attempting to 

assess the independent influence of the other construct.  Although the latent traits of performance 

approach and performance avoid had an estimated correlation of .46 in the initial sample and .49 

in the validation sample, the bifactor models showed minimal and ignorable within-item 

multidimensionality.  Performance avoid showed consistently stronger loadings on the specific 

factor across both samples.  Thus, the inclusion of performance avoid as a control for either 

performance approach or mastery appears to be less essential. 

Drilling down from overall construct level to item level revealed some further concerns 

with the overall scales.  Although it is difficult to get reliable estimates of a construct with small 

item numbers, some tentative conclusions can be reached.  Negative LD was prevalent between 

item pairs across all models, frequently occurring in more than 50% of item pairs in any given 

model.  This pattern may be suggestive of item redundancy, or at least interpretation of the items 

by respondents as querying overly similar attitudes.  Whether this can be remedied depends on 

whether the construct is broad enough to allow development of more unique items aligned with 

the construct of interest.  It is plausible that the current similarity of items is due to development 

from a CTT perspective which rewards selecting items that have similar proportion of agreement 

through increased coefficient alpha values (Reise, Horan, & Blanchard, 2011).  With IRT, scale 

construction is based on intended use through the utilization of item slopes and threshold values.  

If a scale is intended to provide precision across the full range of the latent trait spectrum, items 

are selected which have large discriminations (factor loadings) but target different areas of the 

latent trait spectrum.  If a scale is intended to provide maximum precision at a desired cut score, 

items are selected with large discriminations, which target the same area of the latent trait 

spectrum to ensure maximum information at that point.  The more common construction for 

attitudinal measures would be to create a uniform precision range across the theta spectrum 
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(Embretson & Reise, 2000).  A revision to the perceived classroom goal structures scales, using 

IRT and expanding the number of items intended to tap each construct, could facilitate better 

coverage of the theta spectrum. 

In terms of precision, two of the three scales were composed of items too easy to agree 

with for a large portion of respondents.  Both of the approach scales, performance approach and 

mastery, showed optimal precision for those respondents who were average or below average on 

the latent trait.  With the current structure of the subscales, a researcher could attempt to 

dichotomize respondents into categories based on the latent trait; however, any attempts to 

differentiate individuals who score towards the top of the spectrum on these motivational 

constructs would be potentially fraught with a lack of precision, making it difficult to detect 

effects which may exist.  In order to increase confidence in score differentiations for those above 

average on these latent traits, items that are harder to agree will need to be added.  One example 

of a harder item for the mastery subscale could be as follows: In this class, it is important to 

continue working on a problem even after getting a good score to ensure understanding of the 

solution.  Although this item risks assessing an excess of mastery orientation when compared to 

performance orientation, such a juxtaposition may be needed to create items that are difficult to 

agree with. 

Potential Implications for Classroom Goal Structures 

  Although the previous section details the specifics about handling the statistical and 

measurement issues inherent in the current scale, the theoretical implications of this research are 

also worth discussing.  The large overlap in variance between mastery and performance approach 

could be symptomatic of several potential scenarios, including: 1) these constructs are truly 

distinct but the current scale is not reflective of this, 2) these constructs were once distinct, but are 

no longer distinct, or 3) these constructs never were distinct in a high school population.  These 

scenarios will be examined in order followed by some final thoughts on the approach/avoid 

distinction and potential item phrasing effects. 
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 Mastery and performance approach subscales at the classroom level may be truly distinct, 

but fail to reflect this distinction due to previously identified issues such as ceiling effects with 

the items being too easy to differentiate amongst high school students in this sample.  A common 

ceiling effect present in both of these subscales could be masking differences that would be 

discernible if harder items were implemented, causing artificially inflated correlations and 

apparent within item multidimensionality.  Another potential cause of shared variance that could 

distort the findings is social desirability.  The main dimensionality validation of these scales was 

performed on sixth graders while this sample consisted of high school students (Midgley et al., 

2000).  High school students may have an enhanced awareness that both mastering a problem and 

achieving good grades is expected in school environments, exacerbating any social desirability 

effects found when beginning sixth grade. 

 Another plausible reason for the current overlap in variance found between mastery and 

performance approach is that these constructs were once distinct but are no longer perceived to be 

separate.  Seventeen years have passed since publication of this version of the PALS scales and 

thirty years have passed since the inception of this theory.  In this time period, we have seen 

classrooms attempt to integrate mastery-style frameworks while the Federal government has 

emphasized testing and performance with the No Child Left Behind Act (e.g., Ames, 1992).  The 

emphasis on mastery while in classrooms may have been only a background shadow to the idea 

that the most important representation of learning is passing the test.  These dual forces may have 

led to an intertwining of these two classroom goal structures that was not present at the inception 

of the theory.    

A related possibility is that these constructs may never have been orthogonal by the time 

a student entered high school.  High school students are probably aware that the decisive indicator 

of success is high school completion and potentially college acceptance, two goals which are 

ultimately determined by performance.  Once a student reaches this point in his academic career, 

mastery may typically be the penultimate goal, serving as an intermediary to ensure strong test 
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performance.  Engaging with high school students on the reasons that they select different goal 

orientations may shed light on this process. 

Another possibility is that the approach and avoid dimensions are more prominent than 

the mastery and performance dimensions.  The results of the bifactor analyses show the strong 

possibility of an approach dimension which encompasses both mastery and performance 

approach.  As mentioned previously, the approach/avoid dimension was added to the scale to 

clarify some of the common confusion found when researching performance goal orientations, 

which related to a host of both positive and negative outcomes depending on the research study 

and scales used; however, it has yet to be seriously contemplated whether the approach/avoid 

dimension is more potent at the classroom level than the initial theory it is being used to clarify.  

One component of goal orientations is affect in the form of transitory emotions, but selection of 

personal goal orientations or perception of classroom goal structures may be partially attributable 

to mood, a more stable and global emotional state. Mood, inherently a long-term version of 

affect, has been related to many of the same correlates encompassed within goal orientations such 

as behaviors, embodied through individual goal selection and persistence, and cognitions, 

embodied through working memory capacity and perceived self-efficacy (Langens, 2009).  At the 

classroom level, a student may perceive an environment in which one is either approaching 

success or avoiding failure rather than selecting what success in that environment entails.  This is 

a potential avenue for further research with implications for both classroom environment and 

practice.   

A final possibility is that the variance overlap between mastery and performance 

approach is an artifact of item construction. Both mastery and performance approach items 

consist of positive statements whereas performance avoid items consist of negative statements.  

Previous research has suggested that positive and negative phrasing can alter the psychometric 

properties of an instrument: it is indeterminate whether this is because the construct is being 

tapped differently through phrasing, the actual construct being tapped through negative 
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statements is different, or because people interpret the term “not” in a unique fashion (Benson & 

Hocevar, 1985; Spector, Van Katwyk, Brannick, & Chen, 1997).  One option is to rephrase some 

performance avoid items in a positive fashion. For example, Pavoid5 could be modified to 

positive phrasing as follows: in this class, one of the main goals is to looking like you can do the 

work.  Pavoid 3 could also be readily modified as follows: in this class, it’s important to do as 

well as other students.  Future research can explore whether the dimensionality found in this 

study is replicated when items have been modified to address phrasing issues.  If the results hold 

even when phrasing effects have been eliminated, then the theoretical structure of classroom goal 

structures may need revisiting. 

Future Measurement Directions 

 Overall, these scales performed in line with theory in terms of the three subscales being 

plausibly distinct.  However, the high factor correlations and the potential within item 

multidimensionality revealed through the bifactor analyses suggest a need for further study.  

Using a cross-sectional snapshot of students as found in this sample allows one to determine that 

excess covariance is found between dimensions, but not the root cause.  Multiple potential causes 

have been discussed and potential avenues for future research suggested to clarify the reason for 

this within item multidimensionality. 

A caveat to the discussion thus far is the limitations of this study, by both data collection 

and currently available techniques.  A multilevel IRT model would have been desirable to model 

the nature of students being nested within classrooms; however, the information linking students 

to classrooms was lacking in the data used for this analysis.  Future research is needed to account 

for this potential nesting.  It is possible that incorporating a multi-level model may shed light on 

the LD issues and suggest alternative revision directions or even that minimal revision is needed 

for these scales.  Another future direction suggested by this study entails research into 

performance of the S-χ2 statistic for item-fit (Orlando & Thissen, 2000).  Simulation studies 

frequently focus on dichotomous items and ability testing, limiting the generalizability to 
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polytomous attitudinal measures where guessing is not a plausible scenario (eg, Orlando & 

Thissen, 2003).  With the passage of the Every Student Succeeds Act, it seems likely that 

attitudinal measures will become increasingly high-stakes and demand strong psychometric 

evaluation. 

Final Conclusions 

There are some definitive avenues for exploration and more psychometric analysis seems 

necessary to determine the reason for the dimensionality results found in this study.  Ultimately, 

classroom goal orientations does not currently perform in the expected fashion.  Further 

investigation is needed to determine whether the previously described high dimension 

correlations and within-item multidimensionality should be attributed to item issues or theoretical 

issues.  Further research is necessary to clarify the questions raised in this analysis. 
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Appendix A: Glossary of Terms 

AGQ:  Achievement Goal Questionnaire 

AIC: Akaike Information Criteria 

 

BIC:  Bayesian Information Criteria 

 

CFA:  confirmatory factor analysis 

CFI:  Comparative Fit Index 

CTT:  classical test theory 

 

ECV:  explained common variance 

EFA:  exploratory factor analysis 

 

FA:  factor analysis or factor analytic 

 

GFI:  Goodness of Fit Index 

GR:  graded response (model) 

 

IECV:  item-based explained common variance 

IFA:  item factor analysis 

IIF:  item information function 

IRF:  item response function 

IRT:  item response theory 

 

LD:  local dependency 

LI:  local (or conditional) independence 

 

LRT:  likelihood ration test 

 

MIRT:  Multidimensional Item Response Theory 

 

PALS:  Patterns of Adaptive Learning Scales 

PCA:  principal components analysis 

PL:  parameter logistic 

 

RMSEA: Root Mean Square of Error Approximation 

 

SEM:  structural equation modeling 

 

TIF:  total information function 

TLI:  Tucker-Lewis Index 
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