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ABSTRACT OF THESIS 

 

 
BIOLOGY AND DETECTION OF PREGNANES DURING LATE GESTATION IN 

THE MARE  

  

Progesterone in the mare declines to almost undetectable concentrations in late gestation.  

It’s metabolized into several pregnanes, some circulating at very high concentrations.  

Although the function of many pregnanes remains unclear, 5α-dihydroprogesterone and 

allopregnanolone are bioactive.  Measurements of pregnanes in late gestation are 

typically by immunoassay, although results are confounded by cross-reactivity with 

related pregnanes.  Conversely, liquid chromatography tandem mass spectrometry (LC-

MS/MS) allows differentiation of individual pregnanes.  The purposes of these studies 

were: 1) to evaluate the ability of a 5α-reductase inhibitor, dutasteride, to alter pregnane 

metabolism and pregnancy outcome, 2) to evaluate changes in target pregnanes in late 

gestation by LC-MS/MS in mares with ascending placentitis, and 3) compare 

immunoassay and LC-MS/MS detection of pregnanes in late gestation.  Our findings 

suggest that dutasteride significantly altered pregnane metabolism without effects on 

pregnancy outcome.  Pregnane measurement by LC-MS/MS resulted in a significant 

(p<0.05) increase in pregnanes metabolized in the placenta, but not those coming directly 

from the fetus in mares with placentitis.  Results indicate pregnane profiles of mares with 



 
 

chronic placentitis mirror those of healthy pregnancies prior to parturition.  A comparison 

of immunoassays demonstrated significant (p<0.05) differences in assay results, while 

correlation was observed between immunoassay measurements and actual progesterone 

concentrations by LC-MS/MS.  These studies demonstrate the complexity of pregnane 

metabolism in late gestation in the mare and the necessity of LC-MS/MS to detect 

specific changes that immunoassays cannot differentiate. 
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Chapter One: Introduction and objectives 

Late gestation in the mare is unique in relation to most other mammalian species, which 

rely on progesterone (P4) for pregnancy maintenance throughout gestation [1].  

Progesterone in the latter half of gestation is at concentrations of <1.0 ng/mL in the mare 

[2, 3].  P4 is metabolized into several pregnanes in the placenta [4] which can be 

measured in the periphery of the mare’s circulation. 

Changes in total pregnanes by immunoassay have been studied to indicate possible issues 

with the fetus or placenta [5, 6], and immunoassays have been a useful tool in diagnosing 

pregnancy complications.  However, these assays are most often used in late gestation 

(>300 days) when pregnancy compromise could result in an aborted fetus or 

complications for the mare.  Due to the time in which they are used, cross-reactions are 

problematic [7].  The use of liquid chromatography tandem mass spectrometry (LC-

MS/MS) or gas chromatography mass spectrometry (GC-MS) has allowed the study of 

individual pregnanes throughout gestation in healthy and compromised equine 

pregnancies and assay results cannot give information beyond changes in total pregnane 

concentrations.  Further, multiple P4 antibodies are available for use in assays, and 

discrepancies among results demonstrate a need for a standard method in hormone 

measurement in the mare [8].  

The use of liquid chromatography tandem mass spectrometry (LC-MS/MS) or gas 

chromatography mass spectrometry (GC-MS) has allowed the study of individual 

pregnanes throughout gestation in the healthy and compromised equine pregnancy [9-12].  

In addition to individual pregnane measurement, tissue incubations have demonstrated 
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that at least three pregnanes, 5α-dihydroprogesterone (DHP), 20α-hydroxy-5α-pregnan-3-

one (20α5P), and 5α-pregnane-3β,20α-diol (βα-diol) bind the equine progesterone 

receptor [9, 12, 13].  This suggests their bioactivity in late gestation when P4 is nearly 

undetectable.  Allopregnanolone has also demonstrated bioactivity, acting through 

GABAA receptors to maintain fetal quiescence [14, 15].  Other quantitatively important 

pregnanes include 3β-hydroxy-5α-pregnan-20-one (3β5P) and 5α-pregnane-3β,20β-diol 

(ββ-diol), and these can reach concentrations of approximately 30-300 ng/mL in late 

gestation [11].   

Studies attempting to inhibit enzyme activity, necessary for pregnane metabolism, have 

benefited from the ability to measure specific pregnanes and report changes associated 

with enzyme disruption [16, 17].  Additionally, GC-MS has been used to identify changes 

in individual pregnanes, as they relate to pregnancy disease or other pregnancy 

complications from clinical cases [11].  To date, however, establishment of changes in 

pregnanes which may be associated with a specific pregnancy complication has not been 

reported in a controlled experiment. 

The objectives for the studies in this thesis are as follows; 1) to investigate the effects of a 

type 1 5α-reductase inhibitor (dutasteride) on pregnane metabolism and pregnancy 

outcome in a set of healthy mares in late gestation, 2) to identify changes in a set of target 

pregnanes (P5, P4, DHP, allopregnanolone, 20α5P, 3β5P, βα-diol, and ββ-diol) from 

mares with experimentally induced ascending placentitis compared to a group of mares 

with normal pregnancies 3) to compare results from multiple progesterone immunoassays 

to actual P4 and DHP results by LC-MS/MS, and 4) to evaluate cross-reactions of P4, P5, 

DHP, allopregnanolone, and altrenogest with multiple immunoassays. 
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Chapter two: Literature review 

This review will focus on pregnanes (steroid hormones within the progesterone family) 

and progestogens (21-carbon, steroid hormones that have progesterone-like activity and 

are able to bind progesterone receptors) with an emphasis on normal and abnormal 

profiles in late gestation in the mare. A healthy pregnancy in the mare is dependent on a 

number of factors; one of them being the production and equilibration of steroid 

hormones, including pregnanes [10, 18].  During the typical 340 day gestation (range 

320-360 days) [19], a unique pregnane profile has been characterized in the mare  [10].  

The best known pregnane, progesterone (P4), begins to rise shortly after ovulation [20], 

and continues to rise until approximately 80 days of gestation [10].  However, a healthy 

pregnancy in the mare does not depend upon P4 alone [12, 16].  In fact, P4 levels begin 

to decline around 100 days of gestation and are often undetectable in late gestation [2, 3, 

10].  During this time, other pregnanes increase in concentration, including 5α-

dihydroprogesterone (DHP) and allopregnanolone which are believed to play a role in 

pregnancy maintenance [9, 12, 15].  Production of these pregnanes ultimately depends on 

a number of enzymes in the feto-placental unit [4, 21].  In cases of compromised 

pregnancies, pregnane concentrations may be altered, making progesterone assays a 

possible diagnostic tool [7].  However, the most common P4 assay, the enzyme linked 

immunosorbent assay (ELISA), fails to give specific information on individual pregnanes 

because there is a high incidence of cross-reactivity between different pregnanes within 

these assays [22].  Therefore, results from liquid chromatography tandem mass 

spectrometry (LC-MS/MS) or gas chromatography mass spectrometry (GS/MS) are 
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useful to better understand changes in specific pregnane in both normal and abnormal 

pregnancy [11]. 

Pregnanes in late gestation in healthy pregnancies 

Measurable pregnanes and progestogens in the mare’s blood are the products of a 

complex relationship with the fetus and the utero-placental tissues, commonly called the 

feto-placental unit [4].  Pregnenolone (P5) is the primary precursor for downstream 

pregnanes [23, 24], and P5 is produced by the fetus.  Though some speculation exists 

regarding its exact origin [25], P5 is believed to be primarily synthesized within the fetal 

adrenal cortex with likely contributions from the fetal gonad.  It is known that P5 is 

synthesized from cholesterol by cytochrome P450scc, and immunostaining for P450scc 

in the equine fetal adrenal gland indicated localization in the zona glomerulosa, zona 

reticularis, and zona fasciculata of the adrenal cortex, with increasing abundance through 

gestation [26].  Further evidence for the production of P5 in the fetal adrenal cortex is the 

increase in maternal pregnane concentrations with intra-fetal administration of ACTH 

[27].  Early work from MacArthur et al., suggested the presence of P450scc in the fetal 

gonad by incubating the testis with sodium acetate in vitro, ultimately observing 

androgens dependent on the enzyme [28].  However, studies in which fetal gonads were 

removed during pregnancy did not yield changes to concentrations in maternal pregnanes 

by immunoassay [29], leading to the suggestion that the fetal adrenal gland is the primary 

source for P5 synthesis. 

Pregnenolone concentrations rise steadily from approximately 0.5 ng/mL in week 18, 

peaking at approximately 3.4 ng/mL by week 30 in the mare’s circulation, then steadily 
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decrease [10]. Though concentrations are low in maternal circulation, Ousey et al., 

demonstrated the uptake of P5 into uteroplacental tissue from the fetus by measuring 

blood flow and P5 concentrations to and from the fetus and placenta via the umbilical 

artery and vein [4].  Results indicated concentrations of approximately 5-10 μmol/min 

flowing from the fetus to the uteroplacental tissue, while less than 1 μmol/min of P5 

entered maternal circulation from the uteroplacental tissue, with concentrations rising 

throughout gestation.  This uptake from the utero-placental tissue, with low output into 

the mare’s circulation, suggests P5 is metabolized in the placenta and serves as a 

precursor for downstream pregnanes. 

While the majority of P5 is directed to the placenta for metabolism (Figure 2.1) [3], fetal 

P5 metabolism results in pregnanes such as 3β-hydroxy-5α-pregnan-20-one (3β5P), 5-

pregnene-3β,20β-diol (P5ββ), and 5a-pregnane-3β,20β-diol (ββ-diol) [30].  In vitro work 

showed that the fetal liver possesses the ability to metabolize P5 to P5ββ and ββ-diol by 

the enzyme 20β-reductase [30].  Further work by Schutzer and Holtan also showed 

conversion of P5 to P5ββ and ββ-diol in the fetal liver with tissue incubations, as well as 

conversion of 3β5P to ββ-diol [24].    These pregnanes are preferentially directed to the 

uteroplacental tissue, although they are also present in the mare’s circulation [4], with 

maternal concentrations of 3β5P, P5ββ, and ββ-diol reaching 100 ng/mL, 10 ng/mL, and 

100 ng/mL, respectively, in late gestation (326-350 days) [11].  The fetus is also capable 

of converting placental metabolites, delivered to the fetus by the umbilical vein; 5α-

dihydroprogesterone (DHP) is the progestogen which enters fetal circulation in the 

largest quantities, while P4 has also been shown to do the same but in smaller 

concentrations [4]. 
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Of the metabolites of P5, P4 is the hormone most commonly associated with pregnancy. 

However, the mare possesses a number of progestogens and pregnanes which allow the 

continuation of pregnancy in late gestation in the absence of circulating P4.  Schutzer 

demonstrated evidence of this when he inhibited 3β-hydroxysteroid-dehydrogenase (3β-

HSD) in pregnant mares in mid-gestation.  Three β-hydroxysteroid-dehydrogenase is a 

placental enzyme necessary for the conversion of P5 to P4 in the placenta.  Inhibition of 

3β-HSD increased P5 and the fetal metabolites (3β5P, P5ββ, and ββ-diol), with a 

decrease in P4 metabolites (P4 was unmeasurable in this study).  Inhibition of 3β-HSD 

did not result in abortion with the presumed decrease in P4 production, leading to the 

presumption that other pregnanes must be bioactive in mid to late gestation in the place 

of P4 [16]. 

Progesterone itself begins to decline rather early in gestation.  The peak of P4 

concentrations can be seen by approximately 12 weeks of gestation with peak 

concentrations of approximately 11 ng/mL [10]. Progesterone begins to decline to 

concentrations of ≤1 ng/mL [2, 3, 10] throughout late gestation.  In early pregnancy, P4 is 

essential to maintain myometrial relaxation [1, 31-33] by reducing the number of gap 

junctions and receptors for oxytocin and prostaglandin F2α.  Though circulating P4 can 

be below detectible levels in late gestation, this is not to say it ceases to be produced.  

Production of P4 continues throughout gestation; however, it becomes a major substrate 

for other pregnanes which are metabolized in the placental tissue, and is therefore not 

easily detected in the maternal circulation [4]. 

Perhaps the most notable metabolite of P4 is DHP.  This progestogen is converted by the 

enzyme 5α-reductase, primarily found in the placenta and endometrium of the mare [12, 
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23].  This progestogen increases from approximately 1.5 ng/mL in the early weeks of 

pregnancy and peaks at approximately 37 ng/mL shortly before parturition [10].  It 

parallels P4 concentrations by less than half, then surpasses P4 concentrations by 

approximately fifteen weeks of gestation [10, 12].  Fifteen weeks is also the time that 

marks the luteo-placental shift, in which the primary site of P4 production ceases to be 

the corpus luteum, and placental metabolism takes over [10].  Until relatively recently, 

there was only speculation that DHP was a bioactive progestogen [10, 12].    However, 

work by Scholtz et al., showed that DHP is not only a quantitatively important P4 

metabolite, but also sufficient for the maintenance of pregnancy in the absence of P4 

[12].  DHP binds the progesterone receptor (PR) with similar affinity as P4 [13], 

suggesting that DHP could function in late gestation to maintain myometrial relaxation.  

Administration of DHP to a group of early pregnant mares which had undergone 

luteolysis via administration of PGF2α demonstrated that DHP alone could maintain 

pregnancy with seven of the nine mares with pregnancy maintenance without P4.  This 

work was central to understanding how equine pregnancy can be maintained in late 

gestation when P4 concentrations are often undetectable. 

Other bioactive progestogens include allopregnanolone and potentially 20α-hydroxy-5α-

pregnan-3-one (20α5P) and 5α-pregnane-3β,20α-diol (βα-diol) [9, 14, 15].  

Allopregnanolone, a direct DHP metabolite converted by the enzyme 3α-hydroxysteroid 

dehydrogenase (3αHSD) [14] is neuroactive, having the capability of crossing the blood-

brain barrier and allosterically binding GABAA receptors [14, 29].  This elicits a calming 

response on the central nervous system and is considered a protective hormone [34].  

Allopregnanolone suppression has been linked to cell death in the brain as well as 
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delayed myelination of white matter, [28] indicating its importance to brain development.  

Further, allopregnanolone is credited for suppressing the activation of the hypothalamic-

pituitary-axis (HPA) of the dam and reducing fetal exposure to maternal glucocorticoids 

[35, 36].  In an in-vivo study by Madigan et al., allopregnanolone infusion in a healthy 

foal resulted in behavioral suppression [15].  This gives evidence of the possible role 

allopregnanolone plays in fetal quiescence during mid-to late gestation, when 

concentrations rise.  Allopregnanolone concentrations rise from approximately 1 ng/mL 

in week nine of gestation, to approximately 20 ng/mL near parturition [10]. 

In vitro work has demonstrated the possible bioactivity of 20α5P and βα-diol [9].  

Identified by Holtan in 1991 [3], these metabolites of DHP both reach concentrations 

greater than 200 ng/mL in late gestation. They were found to be able to bind PRs using a 

luciferase reporter assay [9], although they did so at less than half the affinity of P4.  

Potential exists for these metabolites to elicit a response in later gestation; however, they 

are not considered key players in pregnancy maintenance.  Concentrations mirror DHP, 

increasing by 15 weeks to approximately 300 ng/mL for 20α5P  and approximately 480 

ng/mL for βα-diol by week 50 [10]. 

Other quantitatively important pregnanes include 20α-hydroxyprogesterone (20αOH-P4), 

20β-hydroxyprogesterone (20βOH-P4), and 17α-hydroxyprogesterone [10, 11, 18].  With 

the exception of 17α-hydroxyprogesterone, which is a necessary metabolite leading to the 

production of cortisol [37, 38]; little is known about the function of these pregnanes in 

the mare. These P4 metabolites are synthesized in the placenta and available in maternal 

circulation.  Concentrations for these pregnanes vary in the times in which they peak, 
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with  17α-hydroxyprogesterone peaking in week 8 of gestation [10], while 20αOH-P4 

and 20βOH-P4 are not detectible until after 300 days of gestation [11]. 

Parturition in the mare is marked, in part, by a distinct and reliable rise and decline in 

circulating pregnanes, along with production of fetal cortisol [3, 9, 23, 39, 40].  This 

pattern is linked to the activity of the fetal adrenal, the gland responsible for the 

production of P5.  It is thought that activation of the hypothalamic-pituitary axis (HPA) is 

responsible for the surge in circulating pregnanes found in the mare’s circulation [18]. 

Previous studies show that administering ACTH to the fetus results in increased 

pregnanes in the mare’s circulation before 300 days of gestation.  After 300 days, a 

progressive shift from P5 production to cortisol production in the fetal adrenal occurs [41, 

42].  Approximately 4-5 days before parturition, there is a surge in fetal cortisol [18, 43].  

The enzyme necessary for the synthesis of cortisol, P450C17, has been shown to be 

present in the fetal adrenal by immunohistochemistry [26].  More importantly, 

immunohistochemical staining was very limited in early gestation with increases noted 

rapidly prior to parturition.  This shows that the fetal adrenal is likely producing cortisol 

just prior to parturition, in agreement with the surge of cortisol observed.  Thus, with the 

shift in production of cortisol, a decrease in pregnanes can be seen. 

Pregnanes in late gestation in the compromised pregnancy 

Pregnane profiles are frequently used as a diagnostic tool for potentially compromised 

pregnancies in late gestation [6, 7, 44].  When taken in account with other clinical signs, 

these profiles can provide information regarding the health of the fetus and placenta.  As 

has been previously discussed, the fetus and placenta work together to produce pregnanes 
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found in circulating maternal blood.  Therefore, abnormal changes can be attributed to 

disturbances to the normal synthetic pathway for these pregnanes.  Typically, these 

patterns are a measure of total pregnanes by immunoassay, with three main patterns 

common in cases of abnormal pregnancy [5]. 

The first pattern is identified by a rapid decline in total pregnanes.  This pattern is 

typically seen with acute dysfunction resulting in fetal demise, such as uterine torsion, 

colic, maternal stress, or acute cases of placentitis [45-47].  Another potential cause is the 

demise of a single fetus in a twin pregnancy; in this situation, the adjoining area between 

the placentas is already avillous [48], and when the placenta supporting the deceased 

fetus necrotizes, a substantial loss in pregnane metabolism occurs [49].  As the fetus is 

responsible for production of P5, any case in of fetal demise will result in a loss of 

precursor and therefore a decline in measurable pregnanes in the mare’s circulation. 

The second pattern includes cases where pregnanes are relatively high for the given stage 

of gestation.  While such elevated concentrations are typically observed just prior to 

parturition, chronic cases of placentitis, placental edema, and placentas with poorly 

developed or sparse microvilli can result in this pattern of measured pregnanes [5, 6, 50].   

This is believed to be associated with fetal stress which result is an increase in P5 

production from the fetal adrenal, ultimately leading to an increase in total pregnanes [27, 

41].  Though foals born to mares which display this pattern are often born prematurely, 

they tend to fair better than those born prematurely to mares which did not display this 

increase.  This is thought to be due to the increased activation of the HPA axis [5, 51]. 
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The third pattern can be observed when the normal prepartum rise in pregnanes fails to 

occur.  This is most often seen in prolonged gestation caused by ingestion of tall fescue 

containing endophyte fungus [5].  Fescue toxicosis is thought to inhibit fetal cortisol-

releasing hormone (CRH) by the ergot alkaloids present in the fescue, therefore inhibiting 

the normal function of the adrenal gland to produce the cortisol surge and associated 

changes in pregnane metabolism [8]. 

Mass spectrometry, either LC-MS/MS or GC/MS, have been used to better understand 

specific changes related to abnormal pregnancies that would not be discernable with 

immunoassay.  Utilizing GC-MS, Ousey et al., reported changes in ten specific pregnanes 

(P5, P4, 3β5P, P5ββ, ββ-diol, βα-diol, DHP, 20α5P, 20α-hydroxyprogesterone, and 20β-

hydroxy progesterone) from healthy mares compared to a set of mares with clinical issues 

or placental abnormalities.  Mares with pregnancy complications were grouped based 

upon diagnosis; placentitis, placental pathology without placentitis, and non-placental 

problems.  Results for the placentitis group showed increases in all measured pregnanes, 

including P4 and P5.  This suggested an increase in precursors due to fetal stress and 

increased metabolites as a result.  For the group with placental pathology but no 

placentitis, (including placental edema and avillous placenta), an increase in total 

pregnanes was noted with P4, specifically, also increased.  Most of the individual 

pregnanes measured, however, were either in a normal range or decreased.  As this group 

had issues with the placenta, it appears as though the placental function was affected and 

its ability to metabolize pregnanes was reduced.  For the group of mares with problems 

unrelated to the placenta, (including colic, uterine rupture, uterine torsion, laminitis foot 

surgery, and a mare with premature mammary development) the majority had a decrease 
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in total pregnanes.  These mares also showed a decrease in most of the individual 

pregnanes.  These fetuses were significantly compromised or dead, therefore precursor 

was reduced, or non-existent, with downstream metabolites reduced as well [11].  This 

study, coupled with the diagnosis, was useful to understand how differential issues with a 

pregnancy could present as different pregnane profiles.  Further work and use of GC-MS 

or LC-MS/MS in the future may prove beneficial in predicting pregnancy outcome in 

cases of suspected pregnancy compromise.  However, this technology is expensive and 

requires a skillset beyond that required of immunoassays and will unlikely be used 

regularly by clinics in the near future. 

Attempts to better understand the pathogenesis of diseases and to better understand the 

function of certain pregnanes, related to feto-placental metabolism have ranged from 

inducing disease to inhibiting key enzymes.  The most studied disease related to the 

placenta is ascending placentitis, as this represents the major cause of pregnancy loss or 

complication in late gestation [44, 52].  Ascending placentitis can be experimentally 

induced by removing the cervical mucus plug and introducing bacteria into the cervix [6, 

53].  One of the most common causes of ascending placentitis is the bacteria 

Streptococcus equi subspecies zooepidemicus [54], and this bacteria is commonly used in 

cases of experimentally induced placentitis.  The infection establishes itself at the 

cervical star and ascends down the placenta, causing inflammation and placental 

separation [52].  By knowing the interval of time from inoculation to abortion, 

researchers were able to distinguish between acute and chronic pregnane profiles.  Morris 

et al., described a pattern of decreasing plasma pregnanes in cases of  acute induced 

placentitis where the interval from inoculation to abortion was less than seven days; 
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conversely, a pattern of increasing pregnanes was observed in chronic cases (>7 days) 

[6].  Canisso et al., also described this pattern in unpublished reports from experimentally 

induced placentitis [55]. 

Enzyme inhibition studies have also been useful to better understand necessary pathways 

in equine pregnancy.   Work to inhibit 3β-HSD, the enzyme responsible for the 

conversion of P5 to P4, gave evidence that other progestogen or progestogens may be 

responsible for pregnancy maintenance in late gestation besides P4.  Fowden et al., 

attempted to inhibit the action of 3β-HSD with epostane, a competitive 3β-HSD inhibitor.  

Late pregnant mares (292-330 days gestation) received epostane, which resulted in a 

decrease in plasma progesterone concentrations by immunoassay, but no effects on 

gestation length [43].  Schutzer et al., conducted a similar study utilizing trilostane, 

another 3β-HSD inhibitor, during late gestation (277-282 days gestation).  In this study, 

GC-MS was used to measure specific pregnanes.  While P4 was undetectable during the 

study, an increase in P5, ββ-diol, and 3β5P was noted in maternal plasma; while DHP, 

20α5P, and βα-diol were decreased.  Further, trilostane inhibited the conversion of P5 to 

P4 while increasing DHP and 3β5P concentrations when placental tissue was exposed to 

labeled P5 or P4.  Again, there was no effect of 3β-HSD inhibition on gestation length 

[16].  Both studies demonstrated the ability of mares to maintain pregnancies in the face 

of apparent decreases in P4 and its metabolites, as well as emphasizing the unique 

hormone metabolizing ability of the feto-placental unit.  In a third study, Chavatte et al., 

demonstrated the natural inhibition of 3β-HSD activity caused by pregnanes close to term 

with an in vitro study using placentas from pregnancies spanning 250-320 days of 

gestation [21].  These results suggest the possibility of the prepartum rise in pregnanes to 
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inhibit 3β-HSD, thereby affecting pregnane concentrations as they relate to the onset of 

parturition.  These studies, focusing on 3β-HSD activity, demonstrated the importance of 

the enzyme for pregnane metabolism in the pregnant mare, but were unable to 

significantly affect gestational outcome.  This suggests the importance of other enzymes 

present during this time of gestation which work together to maintain pregnancy. 

Schutzer’s work also focused on pregnane synthesis during gestation, and resulted in a 

proposed alternate pathway for metabolism of DHP beyond the 5α-reduction of P4.  

Incubation of labeled P5 showed conversion of P5 to 3β5P in endometrial tissue while 

labeled 3β5P was converted to DHP in placental tissue incubations.  Further, infusion of 

P5 and 3β5P in a pregnant mare both resulted in elevated concentrations of DHP [24].  

This suggested the possibility of 5α-reduction of P5 to 3β5P and then 3-oxidation to 

DHP.  However, recent work disputes this pathway by demonstrating an inability of 5α-

reductase to metabolize P5 [56].  Taken together, these studies highlight the complexity 

of pregnane metabolism in the mare. 

As DHP has been found to be an important progestogen in late gestation, a study 

attempting to inhibit the enzyme responsible for its metabolism, 5α-reductase, was 

conducted.  Utilizing the 5α-reductase inhibitor finasteride, Ousey et al., administered the 

inhibitor to mares beginning at 300 days of gestation with the objective of inhibiting the 

enzyme and monitoring changes to timing of parturition and changes in pregnane 

profiles.  Results indicated that the treated mares had significantly shorter gestation 

lengths than the control mares.  Further, total pregnanes by immunoassay were elevated 

in the peripheral circulation of treated mares and P4 was increased as measured by GC-

MS; however, no change was seen in DHP or other measured pregnanes [57].  This study 



15 
 

demonstrated the possible effects of finasteride in vivo by shortening gestation and 

altering P4 concentrations.  This study also suggested the importance of 5α-reductase in 

late gestation. 

While studies to induce disease and inhibit steroidogenic enzymes have helped us learn 

more about the pathways and how disease can affect pregnane metabolism, there is still a 

significant amount of work needed to fully understand the biosynthesis of pregnanes by 

the equine feto-placental unit. 

Methods of detection 

Assays have been used to identify and quantify hormones for many years.  Despite early 

difficulties, breakthroughs in sensitivity, specificity, automation, and commercialization 

have allowed hormone detection to become easier and more accessible [9-11, 17, 58, 59].  

Radioimmunoassays (RIA), developed in the sixties [60] allowed the researcher to detect 

hormones with greater sensitivity and specificity and with greater ease than previous 

methods.  Prior to RIAs, quantification of hormones was a laborious process which 

required large amounts of sample [61] and were not highly specific [62].   

Radioimmunoassays depend on antibodies raised to an antigen of interest and on 

radioactive signal from a radioisotope, typically iodine-125, which is attached to the 

antigen of interest and competes for the binding site of the antibody used.  A gamma 

counter then detects the amount of free radiolabeled antigen in the supernatant after 

incubation with a sample; serum for example.  During the early stages of RIAs, non-

specificity was a common problem.  This was due, in large part, to lack of standardization 

of reference preparations.  Standardization and development of more specific antibodies 



16 
 

improved agreement [63].  While this offered researchers an easier and more reliable 

form of detection, it came with its own set of issues.  This technology required specific 

equipment and proper disposal of radioactive material.  This assay method is still used 

today, though many labs have stopped using it, in favor of other assay methods. 

Non-isotopic immunoassays are common in many clinics and labs, having taken the place 

of RIAs for hormone detection with no need for special disposal.  Like RIAs, this assay 

method relies on the development of the antibody used to capture the antigen of interest.  

Detection is achieved with color intensity using enzyme linked immunosorbent assays 

(ELISA) [11], intensity of light with electrochemiluminescence (ECL) [59], or intensity 

of fluorescence with enzyme linked fluorescence assays (ELFA) [64] .  Multiple methods 

for detection using the antibodies include: indirect, direct, sandwich, competitive, or 

some combination of methods to optimally capture the antigen of interest [65].  

Measuring pregnanes in the late pregnant mare has been mostly dependent on P4 

immunoassays for their ease of use and cost effectiveness.  Though P4 is low to 

undetectable in late gestation, these assays rely on the ability of the progesterone 

antibody to cross-react with pregnanes that are present in the mare’s blood during this 

time [7, 11].  There are a number of P4 antibodies available, and their ability to cross-

react with other pregnanes varies. 

Polyclonal antibodies (PABs) tend to cross-react to a higher degree than monoclonal 

antibodies which target a single epitope.  An antigen, P4 in this case, is injected into an 

animal and the animal’s immune system produces antibodies to the foreign P4 [63, 66].  

The animal, typically a rabbit, is then bled by exsanguination; however, a larger animal 

may be used if a large volume of antibody is required.  These antibodies tend to be less 
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specific as antibodies to all epitopes of the antigen will have been produced and will be 

present in the blood [67].  Purification and separation of antibodies can be accomplished 

using columns to help eliminate unwanted antibodies [68].  An advantage of PABs is 

they take less time to develop, (4-8 weeks) [66] and can use the cross-reactivity to benefit 

measurements of total pregnanes when certain pregnanes (P4) are in such low 

concentrations [69].  The obvious disadvantage is they tend to have higher cross-

reactions and antibodies will differ from lot to lot. 

Monoclonal antibody (MAB) production is more intensive and takes much longer to 

produce that PABs (3-6 months) [66], but yields a more specific antibody.  In 1975, 

Köhler and Milstein published research that would earn them a Nobel Prize by fusing two 

cells which could ultimately produce an antibody that could be reproduced from that 

same line of fused cells [70].  Like PAB development, an animal is injected with the 

antigen of interest.  These antibodies are typically developed in mice and the spleen is 

harvested, as opposed to blood collection [66].  Antibody-secreting B cells are taken and 

fused with myeloma cells to produce hybridoma cells.  These cells take advantage of the 

proliferation of cancer cells to be able to produce (clone) unlimited amounts of the same 

antibody [63, 67].  Further, as individual cells are separated, selection for antibody 

specificity is possible [67].  These antibodies have the advantage of higher specificity, 

though MABs may be produced with high cross-reactivity [71], and the ability to produce 

unlimited amounts of a single antibody lot.  Polyclonal and monoclonal antibodies can 

cross-react to differing degrees, and while this can be advantageous when analyzing total 

pregnanes, it has potential to cause confusion due to the variations in results. 
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The comparisons of immunoassay results from lab to lab, or clinic to clinic, can cause 

discrepancies in interpretation when two or more different antibodies or assays are used 

to measure target hormones [72, 73].  Further, antibodies used in research are not as 

regulated as antibodies used in human clinical medicine [74].  For this reason, a reference 

range of normal values and thresholds for an assay should be established for a given time 

in gestation when samples would typically be analyzed [75], and interpretations should 

consider the cross-reactivities of the antibody used.  It is also helpful to analyze serial 

samples from a mare in question, as variations in profiles can be seen even in healthy 

pregnancies [76], and single samples have not been shown to be diagnostic [47].  

Immunoassays have become increasingly commercialized and sample results are 

available within the same day [58, 59].  Assays have come a long way since the use of 

bioassays, but an even more reliable method of detection for individual pregnanes can be 

found in mass spectrometry.  Immunoassays will likely continue to dominate as the 

method of choice due to ease of use and cost.  However, GC-MS and LC-MS/MS have 

become the gold standard for analyte detection. 

Unlike immunoassays which depend on the quality and development of the antibody 

used, GC-MS and LC-MS/MS rely on the mass to charge ratio (mass/charge) of the 

analyte of interest.  Pregnanes are quite similar in structure [65] and therefore cross-react 

easily with antibodies, but they differ in their mass/charge, and this is the basis for 

detection with mass spectrometry.   Short and Holtan demonstrated that P4 was actually 

low to undetectable in mid to late gestation [2, 3].  Prior to this finding, immunoassays 

displayed an increase in what was thought to be P4, but what was actually the total 

pregnanes able to cross-react with the antibody. 
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Mass spectrometry requires specialized equipment and expertise to analyze the results 

and is therefore expensive for typical use in diagnosis with pregnancy complications.  

However, its use in research has been important to understand changes in pregnanes 

throughout pregnancy as well as in cases of pregnancy complications [3, 9-12].  Mass 

spectrometry takes advantage of the separation abilities of chromatography and the mass 

detection of the individual analyte with the mass spectrometer.  Whether GC-MS or LC-

MS/MS is used, some basic similarities exist for detection and measurement.  A purified 

sample of analyte is needed for method development and serves as a standard reference.  

Method development includes selection of the mobile phase, selection of the stationary 

phase, temperature and pressure settings, and analysis of peaks generated from a detector.  

The selection of the mobile phase and stationary phase takes into consideration the 

analyte to be measured, possible interactions with the mobile phase (selected gas or 

solvent), and the affinity for the analyte in the column [77]. 

Mass spectrometry, along with gas or liquid chromatography, is beneficial as some 

analytes will have similar retention times (amount of time it takes for the analyte to elute 

from the column), and therefore simple chromatography wouldn’t be adequate for analyte 

identification.  As the analyte enters the mass spectrometer, it encounters an ionization 

source and the analyte is ionized.  The mass of the analyte after ionization will be noted 

and a mass range is selected.  Selection considers mass observed as well as analyte 

properties and possible solvent interactions, and all masses outside of that range will be 

ignored.  Once the analyte is ionized, it travels in a vacuum through the mass 

spectrometer and encounters magnetic or electric fields, typically, which will deflect the 

particles not of interest based on the mass range.  In the case of tandem mass 
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spectrometry, such as LC-MS/MS, a collision cell then fragments the original analyte to 

daughter ions which can help to further differentiate analytes which are very similar in 

mass or structure [65].  Detectors at the end of the spectrometer transforms detected ions 

to interpretable results displayed as peaks of mass to charge ratios.  Once the reference 

standard has been identified, samples can be analyzed and compared to the standard.  

Like other assay methods, a standard curve is generated to allow the quantification of the 

analyte in the sample.  In addition to the ability to distinguish between similar analytes, 

GC-MS and LC-MS/MS allow for detection and quantification of multiple analytes 

within the same sample [9-11], saving time and sample volume. 

The complexity of pregnane metabolism and the changes observed through gestation and 

in cases of pregnancy issues in the late pregnant mare have been brought to light through 

the use of GC-MS and LC-MS/MS. Though GC-MS and LC-MS/MS have increased 

detection specificity and sensitivity, as they can detect concentrations down to 0.1 ng/mL 

[10], they aren’t as affordable or easy to use as immunoassays.  Much has been learned 

through their use, but immunoassays will likely continue to dominate as the method of 

choice for diagnosis with pregnancy issues in the mare.  Reference ranges for individual 

immunoassays and cross-reactivities with the antibody should always be considered, as 

well as the time in gestation of the mare, to interpret assay results. 
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Figure 2.1 Pregnane metabolism in the pregnant mare 

 

 

 

 

 

 

 

 

 

Pregnenolone (P5), progesterone (P4), 5α-dihydroprogesterone (DHP), 3β-hydroxy-5α-
pregnan-20-one (3β5P), 20α-hydroxy-5α-pregnan-3-one (20α5P), 5α-pregnane-3β,20α-
diol (βα-diol), and allopregnanolone. Enzymes include 5α-reductase, 3β-oxioreductase, 3-
oxidase, 3β-hydroxysteroid dehydrogenase (3βHSD), 3α-hydroxysteroidoxidoreductase 
(3αHSOR), 20α-hydroxysteroidoxidoreductase (20αHSOR),3β-
hydroxysteroidoxidoreductase (3βHSOR).  Adapted from Ousey et al., 2003 [4]. 
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Abstract 

In the latter half of gestation in the mare, progesterone (P4) concentrations decline to near 

undetectable levels while other pregnanes are elevated.  Of these, 5α-

dihydroprogesterone (DHP) and allopregnanolone have been reported to have important 

roles in either pregnancy maintenance or fetal quiescence. During this time, the placenta 

is necessary for pregnane metabolism, with the enzyme 5α-reductase being required for 

the conversion of P4 to DHP.  The objectives of this study were to assess the effects of a 

5α-reductase inhibitor, dutasteride, on pregnane metabolism (pregnenolone (P5), P4, 

DHP, 20α-hydroxy-5α-pregnan-3-one (20α5P), 5α-pregnane-3β,20α-diol (βα-diol), and 

allopregnanolone), to determine circulating dutasteride concentrations, and to assess 

effects of dutasteride treatment on gestational parameters.  Pregnant mares (n=5) received 

dutasteride (0.01 mg/kg/day, IM), and control mares (n=4) received vehicle alone from 
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300 to 320 days of gestation or until parturition.  Concentrations of dutasteride, P5, P4, 

DHP, 20α5P, βα-diol, and allopregnanolone were evaluated via liquid chromatography 

tandem mass spectrometry (LC-MS/MS).  Samples were analyzed as both days post 

treatment and as days prepartum, using a random effects mixed model with time, 

treatment, and time by treatment as fixed effects and mare as random effect.  Gestational 

data and neonatal outcome were analyzed with a Wilcoxon signed-rank test.  No 

significant treatment effects were detected in P5, DHP, 20α5P, βα-diol, or 

allopregnanolone for either analysis; however, P4 concentrations were increased (p<0.05) 

in dutasteride-treated mares compared to control mares.  Dutasteride concentrations 

increased in the treated mares, with a significant correlation (p<0.05) between dutasteride 

concentrations and P5 or P4 concentrations.  Gestational length and neonatal outcomes 

were not significantly altered in dutasteride-treated mares; however, placentas from 

treated mares were significantly heavier (p<0.05) than the placentas from control mares.  

Results from this study suggest the ability of dutasteride to inhibit pregnane metabolism 

as P4 concentrations were altered.  Although 5α-reduced metabolites were unchanged, 

these data suggest an accumulation of P4 precursor with inhibition of 5α-reductase. 

Keywords: 5α-reductase, pregnanes, mare, LC-MS/MS 

Introduction 

Progesterone (P4) is the primary hormone for pregnancy maintenance in most 

mammalian species [1].  Acting through the progesterone receptor (PR), P4 maintains 

myometrial quiescence and prevents premature parturition [1, 78].  In contrast to other 

species, the mare has little detectable P4 in peripheral blood after mid-gestation [2-4, 12].  
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Although P4 levels rise dramatically during early pregnancy, analysis via mass 

spectrometry indicates that P4 concentrations begin to decline around 80 days of 

gestation and are undetectable by day 200 [10, 12].  Several pregnanes are present in high 

concentrations at this time, including 5α-dihydroprogesterone (DHP), 20α-hydroxy-5α-

pregnan-3-one (20α5P), 5α-pregnane-3β,20α-diol (βα-diol), and allopregnanolone [4, 9, 

10, 30] (Table 3.1).  Specifically, DHP is a direct metabolite of P4 and is known to bind 

the PR and maintain pregnancy in the absence of P4 [1, 12, 13].  It is believed DHP acts 

through the PR to block myometrial activity, thereby maintaining pregnancy [30, 79]. 

The key enzyme responsible for the conversion of P4 to DHP is 5α-reductase (Figure 

3.1).  Of the two isoforms known to be present in the mare, 5α-reductase type 1 is the 

predominant isoform in the endometrium and chorioallantois [12].  Once 5α-reductase 

has metabolized P4 to DHP, DHP can be further metabolized into other pregnanes 

including allopregnanolone.  This hormone is a neuroactive steroid capable of binding 

GABAA receptors to enhance inhibitory neurotransmission [80] and is believed to have a 

sedative-like effect on the fetus [15].  In humans, horses, and sheep, peripheral 

concentrations of allopregnanolone increase in both the maternal and fetal circulation, 

with levels peaking near term [9, 10, 81, 82].  Other DHP metabolites include 20α5P and 

βα-diol.  The formation of these pregnanes is dependent upon enzyme metabolism within 

the uteroplacental tissue, and relative concentrations increase dramatically in mid to late 

gestation, similar to DHP [10].  These pregnanes are of interest as they have been shown 

to bind PR in vitro [9], and they rely on P4 and DHP as steroidogenic precursors. 

To demonstrate the importance of 5α-reductase on pregnane metabolism and pregnancy 

health, we evaluated the effects of dutasteride, a type-1 5α-reductase inhibitor. 
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Specifically, pregnane metabolism was monitored by measuring concentrations of 

specific pregnanes, and pregnancy outcome was evaluated in mares.  The hypothesis of 

this study was that administration of dutasteride to late pregnant mares would result in a 

decrease in DHP, 20α5P, βα-diol, and allopregnanolone.  With a decrease in these 

bioactive pregnanes, we further hypothesized a reduced gestational length from mares 

administered dutasteride when compared to control mares. The objectives for the current 

study were to assess changes in target pregnanes (P4, P5, DHP, 20α5P, βα-diol, and 

allopregnanolone) and neonatal outcome in pregnant mares treated with dutasteride 

compared to controls.  Concentrations of dutasteride in the maternal and neonatal 

circulation, neonatal and placental weight, and neonatal viability were also determined. 

Materials and Methods 

Animal husbandry 

Nine healthy pregnant mares with a mean age of 9.7 yr. (± 1.2 yr.) were used in this 

study.  Mares were maintained at the Maine Chance Farm, Department of Veterinary 

Science, University of Kentucky, Lexington, KY, and all experimental protocols were 

approved by the Institutional Animal Use and Care committee at the University of 

Kentucky (Protocol #2012-1067).  Gestational age was determined relative to day of 

ovulation (Day 0).  Pregnant mares were maintained on pasture and supplemented with 

grain and water, hay, salt, and trace minerals ad libitum.  When parturition was suspected 

via determination of milk pH [83], mares were moved to individual box stalls for the 

night to monitor parturition. 
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Study design 

Pregnant mares were randomly assigned to treatment (n=5) or (n=4) control groups.  

Beginning on day 298 of gestation, jugular venous blood samples were taken daily in 10-

mL heparinized tubes and 10-mL plain tubes (Becton, Dickinson and Company, Franklin 

Lakes, NJ), and blood sampling continued through two days postpartum.  Blood samples 

were centrifuged at 1,811 × g for ten minutes, and plasma and serum were stored at -20 

°C until analysis. Beginning at day 300 of gestation, treated mares received dutasteride 

(Aurum Pharmaceuticals; Franklin Park, NJ)  at 0.01mg/kg body weight, IM, in an 

ethanol/mygliol (Fisher Scientific, Hampton, NH; Warner Graham Company, 

Cockeysville, MD) vehicle (60:40, ethanol: mygliol), and control mares received vehicle 

alone.  Dutasteride or vehicle control administration continued daily until day 320 of 

gestation, or until parturition.  Upon mammary development, milk samples were 

monitored for pH, to assess impending parturition.  When milk pH neared 7.0, a FOAL 

ALERT sensor (Foalalert. Inc., Acworth, GA) was sutured to the vulva, per 

manufacturer’s instructions.  Immediately after parturition, blood was collected from the 

neonate and mare via jugular venipuncture.  After foaling, weights of the neonate, mare, 

and placenta were recorded. 

Hormone analysis 

Plasma concentrations of P5, P4, DHP, 20α5P, βα-diol, and allopregnanolone were 

determined via liquid chromatography-tandem mass spectrometry (LC/MS-MS).  

Samples were analyzed every other day beginning at day 298 of gestation and then daily 

for nine days prior to parturition.  Pregnane concentrations were determined as previously 
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reported with an accuracy > 90%, precision < 15%, and average limit of quantification of 

0.33 ng/mL [10]. 

Determination of circulating dutasteride concentrations 

Dutasteride concentrations were analyzed at the University of Kentucky Environmental 

Research Training Laboratory, utilizing a modified protocol [84].  In short, dutasteride 

was measured from serum with a Varian 410 auto sampler, Varian ProStar 210 pumps, 

and a Varian 1200L triple quadrupole mass spectrometer (Walnut Creek, CA).  This 

method utilized a Kinetex C18 column (100 x 2.1 mm x 2.6 µm) (Torrance, CA), with 

mobile phase A consisting of water with 0.1% formic acid and mobile phase B consisting 

of methanol with 0.1% formic acid.  Elution gradient (Table 3.2) and the reporting limit, 

quality controls (QC), ions, extraction efficiency, accuracy, and precision (Table 3.3) 

were determined.  The internal standard, dutasteride-13C6 (Clearsynth; Mississauga, ON, 

Canada), was dissolved in methanol at 1mg/mL and diluted to a working concentration of 

100 ng/mL.  Standards were made by dissolving dutasteride (Aurum Pharmaceuticals; 

Franklin Park, NJ) in methanol at 1 mg/mL to give an initial concentration of 100,000 

ng/mL.  Dilutions were made to produce stock standards at 10,000, 1,000, 100, and 10 

ng/mL.  Charcoal stripped gelding serum was used for the standard curve points, QCs, 

and blanks.  Seven standard points at 80, 50, 25, 10, 5, 0.5, and 0.1 ng/mL were used to 

generate the standard curve which had an r2 value of .99.  Quality controls were assessed 

at 35, 15, and 1ng/mL, and triplicates were included of each for the two-batch assays.  

Each sample, QC, and standard point was analyzed utilizing 1.0 mL of serum. 
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Statistical analysis 

Analysis of endocrine data was conducted using two models.  The first model examined 

endocrine changes between treated and control mares from Day 298 to 318.  This model 

excluded two mares (one control and one dutasteride-treated mare) as they foaled prior to 

318 days of gestation, and the biological decline of pregnanes in the three days prior to 

parturition would have confounded the results [10].  In the second model, endocrine data 

were analyzed for the nine days prior to parturition with all mares included in the 

analysis. Endocrine data were analyzed with a random effects mixed model with mare as 

a random effect and time, treatment, and time-by-treatment interactions as fixed effects. 

Data were transformed (square root or log transformation) as required and model validity 

was tested by examination of normal quantile plots of residuals.  Gestational data 

(duration of gestation, neonatal, and placental weights) were analyzed with a Wilcoxon 

signed-rank test.  Dutasteride concentrations were analyzed with regression plots, of drug 

and individual pregnane concentrations.  Analysis was conducted utilizing JMP software 

(JMP®, Version 12. SAS Institute Inc., Cary, NC), and significance was set at p<0.05. 

Data are expressed as mean ± SEM unless otherwise stated. 

Results 

Foaling outcome 

All mares in the study delivered viable foals; however, one of the foals from a control 

mare had a severe omphalophlebitis and a patent urachus and was humanely euthanized 

at 5 days of age.  Gestational lengths, neonatal weight, and neonatal weight as a 

proportion of mare weight were not different between dutasteride-treated and control 
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mares (Table 3.4).  Two of the dutasteride-treated mares retained their placenta beyond 

three hours postpartum.  No control mares retained their placenta.  Placental weights 

were greater in dutasteride-treated mares than in control mares (Table 3.4). 

Peripheral pregnane concentrations 

For the period between 298 to 318 days of gestation, pregnane concentrations were 

evaluated in alternate day samples.  For P4, there was a significant effect of time and a 

time by treatment interaction, and P4 was higher in dutasteride-treated mares at Days 

314, 316 and 318 of gestation (Figure 3.2b).  An effect of time was seen for P5, 20α5P, 

and βα-diol, but there were no time, treatment or time by treatment effects on 

concentrations of DHP or allopregnanolone between Days 298-318 (Figure 3.2).   For the 

nine days preceding parturition, there was a significant time effect on P5, DHP, 20α5P, 

βα-diol, and allopregnanolone with each of these pregnanes decreasing in the three days 

preceding parturition (Figure 3.3).  For P4, there were significant effects of time and a 

time by treatment interaction such that P4 was greater in dutasteride-treated mares at 

Days -7, -6, -5, -4, -3 and -2 prior to parturition (Figure 3.3b).  Neonate pregnane 

concentrations were not different between foals from dutasteride-treated or control mares 

(Table 3.5). 

Dutasteride in circulation 

To assess circulating dutasteride concentrations, samples from treated mares were 

analyzed every four days, beginning from day 298 and continuing through parturition 

(Figure 3.4), along with a single sample from each of the treated foals to determine if 

dutasteride could cross the placenta. Two samples were selected at random from each 
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control mare to include in the analysis. Overall, a time-dependent increase of dutasteride 

continued for the duration of the treatment.  Two mares which foaled after administration 

of the final treatment exhibited a continual increase in dutasteride concentrations beyond 

D320.  No dutasteride was detected in the control mares.  In dutasteride-treated mares, 

there was a positive correlation between dutasteride concentrations and concentrations of 

P5 and P4; however, there was no significant correlation between dutasteride 

concentrations and either DHP or allopregnanolone (Figure 3.5).  Dutasteride 

concentrations were 22.7 ± 6.7 ng/mL for the single sample taken from the foals of 

treated mares at birth. 

Discussion 

Administration of the 5α-reductase inhibitor, dutasteride, to mares in late gestation did 

not alter peripheral concentrations of DHP or its downstream metabolites (20α5P, βα-

diol, and allopregnanolone).  However, administration of dutasteride did increase 

peripheral concentrations of the precursor, P4, in treated mares.  Although metabolism of 

pregnanes was altered with the administration of dutasteride during late gestation, there 

was no effect of dutasteride administration on the length of gestation or neonatal 

outcomes. 

In the mare, a normal prepartum rise in circulating pregnanes occurs approximately 30 

days before parturition, followed by a rapid decline in the days or hours prior to foaling 

[9, 10].  In the current study, changes in measured pregnanes in control and treated mares 

appeared similar to those previously reported [9, 10] with the exception of P4 which 

increased in mares treated with dutasteride.   Ousey et al., reported that administration of 
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the 5α-reductase inhibitor, finasteride, beginning at D300 of gestation also increased 

concentrations of P4 without decreasing concentrations of DHP [57].  In contrast to the 

observations in the current study, Ousey et al., also reported a reduced gestation length in 

mares treated with finasteride. 

Dutasteride is reported to be 100 times as potent at inhibiting the type 1 isoform of 5α-

reductase compared to finasteride in humans [85], therefore dutasteride was expected to 

have a greater effect in this study when compared to Ousey’s study.  Based upon in vitro 

observations using equine epididymis as the source of 5α-reductase type 1, both 

dutasteride and finasteride inhibit the type 1 isoform of this enzyme with equal potency 

and show a resultant block of conversion of P4 to DHP [56].  This is in contrast to 

potency differences reported in humans analyzing the enzyme’s ability to inhibit 

testosterone conversion [85].  A limitation of the current study is that animal numbers 

were small, which may have resulted in our inability to detect treatment effects on 

gestation length.  Further, it is unknown what concentration or duration of administration 

of dutasteride would be required to elicit significant effects on gestation in the mare. 

After intramuscular administration of dutasteride, concentrations of the inhibitor rose 

slowly and continued to rise in mares after cessation of administration at D320.  No data 

on half-life of dutasteride in the horse is available, but in humans the cited half-life is 

approximately 5 weeks [86].  Peak concentrations of dutasteride in serum of mares were 

approximately 86 ng/mL (0.16 μM), well below the published IC50 of dutasteride for 

equine 5α-reductase activity (1.0 μM) [56]. The slow release of dutasteride from the 

mygliol vehicle and the low serum concentrations of dutasteride achieved during the 

treatment period may account for the observed lack of effect of dutasteride on DHP 
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concentrations in treated mares.  Another possible explanation involves the proposed 

alternate pathway to DHP via oxidation of 3β-hydroxy-5α-pregnan-20-one (3β5P) [24].  

However, recent work has refuted this pathway [56], and this explanation remains 

speculative. 

Though dutasteride is typically prescribed for the inhibition of testosterone conversion to 

5α-dihydrotestosterone in humans [85], dutasteride significantly reduced conversion of 

P4 to DHP in both mice (in vivo) and humans (in vitro) [87, 88].  In human breast tissue, 

dutasteride resulted in not only a reduction of 5α-reductase activity, but also a significant 

increase in expression of the enzymes 3α-hydroxysteroid oxidoreductase (3αHSOR) and 

20α-hydroxysteroid oxidoreductase (20αHSOR) [88], which are two enzymes necessary 

for metabolism of DHP to allopregnanolone and 20α5P (Figure 3.1).  This suggests 

dutasteride would decrease the levels of DHP and other downstream metabolites in 

treated mares, and also potentially increase 20α5P, βα-diol, and allopregnanolone 

concentrations.  However, in the current study, concentrations of these 5α-reduced 

pregnanes remained unchanged after administration of dutasteride.  There was, however, 

a significant increase in P4 in dutasteride-treated mares that was likely due to a buildup 

of substrate when the enzyme was inhibited.  The significant correlation observed in 

dutasteride and P5 or P4 concentrations further suggests a buildup of substrate with 

inhibition.  Supporting data for this includes the ability of dutasteride to significantly 

increase testosterone concentration in treated men when compared to the placebo group 

[89, 90] when inhibiting 5α-reductase in men with benign prostatic hyperplasia. 
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Conclusions 

Based upon the increase in P4 noted in dutasteride-treated mares during late gestation, 

dutasteride did inhibit 5α-reductase activity in mares.  Although precursor (P4) increased, 

there were no changes detected in 5α-reduced pregnanes (DHP, 20α5P, βα-diol or 

allopregnanolone).  Results suggest that while a higher dose may have had a greater 

affect, a possible alternate metabolic pathway may yet be involved in the complex steroid 

metabolism during late gestation in the mare. 
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Abbreviation Chemical name Trivial name Alternative 
abbreviation 

P5 pregn-5-ene-3β-ol,20-one (a) pregnenolone  
 3β-hydroxy-5α-pregnen-20-one (b)   

 3β-hydroxy-5-pregnen-20-one (c,d)   
P4 pregn-4-ene-3,20-dione (a) progesterone  
 4-pregnene-3,20-dione (b,c,d)   
DHP 5α-pregnan-3,20-dione (5α)dihydroprogesterone 5αDHP 
20αDHP (a) 5α-pregnan-20α-ol-3one (a) 20α-hydroxy DHP (a) 20α5P (b,c) 
 20α-hydroxy-5α-pregnan-3-one (b,c,d)  20α5α (d) 
3β,20αDHP (a) 5α-pregnan-3β,20α-diol (a) 3β,20α-dihydroxy DHP (a) βα-diol (b,c,d) 

 5α-pregnane-3β,20α-diol (b,c,d)   
 

Table 3.1: Pregnanes referenced in this paper along with a comparison of pregnane identifications among published articles. 
a) Legacki et al., [10]  b) Ousey et al., [11]  c) Chavatte et al., [21]  d) Schutzer et al., [24] 
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Time %A %B Flow 

0:00 50 50 0.2 

0:30 50 50 0.2 

7:00 5 95 0.2 

9:00 5 95 0.2 

10:00 50 50 0.2 

18:00 50 50 0.2 
 

Table 3.2 Elution gradient, with mobile phase A consisting of water with 0.1% formic acid, and B consisting of methanol with 
0.1% formic acid. Flow rate was 0.2 mL/min.
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Compound Rt Precursor 
Ion 

Daughter 
Ions 

Reporting   
Limit 

QCH                
%CV/%Acc 

QCM                 
%CV/%Acc 

QCL       
%CV/%Acc %EE 

Dutasteride 7.8 529 461, 264, 187   0.1 4.8/97.8 5.9/97.6 4/109.7 83.6 

Dutasteride 13C6 7.8 535 467, 270, 187   0.1 NA NA NA 86.7 

 
Table 3.3 Compounds listed with retention time (Rt) in minutes, precursor ions, daughter ions, 
reporting limit, precision (%CV) and accuracy (%Acc) of quality controls (QCH, QCM, and QCL), and extraction efficiency 
(%EE).  Daughter ions are listed in order of abundance, with the ion of quantification bolded.  Reporting limit is listed in ng/mL 
and was determined by the lowest standard visible with a linear curve.  Precision and accuracy for QCH, QCM, and QCL were 
determined by two runs containing triplicates of each QC. Percent accuracy was assessed by dividing the average QC values by 
the actual values and multiplying by 100. Extraction efficiency was calculated by dividing the area of the peak with extraction for 
dutasteride by the area of the peak without extraction for dutasteride and multiplied by 100. 

 
 

 

Group Gestation length 
(days) 

Neonatal weight 
(kg) 

Neonatal/mare weight  
(%) 

Placental weight 
(kg) 

Dutasteride 323 (318, 335) 51 (42, 55) 0.085 (0.073, 0.090) 4.7 (4.5, 5)* 

Control 337 (321, 352) 40 (37, 62) 0.071 (0.062, 0.086) 3.1 (2.3, 3.8)* 

 
Table 3.4 Gestational length and neonatal outcome. Data represent the median with the 25th and 75th quartile indicated in 
parenthesis. Asterisks indicate significant differences between groups (p<0.05) 
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Group Neonatal 
Pregnenolone 

Neonatal 
Progesterone 

Neonatal 
 DHP 

Neonatal 
Allopregnanolone 

Neonatal 
Dutasteride 

Dutasteride 725.5 (±140.2) 3.3 (±0.6) 21.8 (±2.4) 3.8 (±1.4) 22.7 (±6.7) 

Control 834.0 (±308.6) 2.5 (±0.7) 24.6 (±8.7) 4.0 (±1.9) 0 

 
Table 3.5 Concentrations of pregnane and dutasteride concentrations (ng/mL) in neonatal foals born to dutasteride-treated and 
control mares. No significant differences were observed between groups.  Data are mean ± s.e.m. 
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Figure 3.1 Pregnane metabolism in the pregnant mare 

 

 

 

 

 

 

 

 

 

Pregnenolone (P5), progesterone (P4), 5α-dihydroprogesterone (DHP), 3β-hydroxy-5α-
pregnan-20-one (3β5P), 20α-hydroxy-5α-pregnan-3-one (20α5P), 5α-pregnane-3β,20α-
diol (βα-diol), and allopregnanolone. Enzymes include 5α-reductase, 3β-oxioreductase, 3-
oxidase, 3β-hydroxysteroid dehydrogenase (3βHSD), 3α-hydroxysteroidoxidoreductase 
(3αHSOR), 20α-hydroxysteroidoxidoreductase (20αHSOR), and 3β-
hydroxysteroidoxidoreductase (3βHSOR). Adapted from Ousey et al., 2003 [4]. 
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Figure 3.2 Plasma pregnane concentrations in control mares (dashed line) and 
dutasteride-treated mares (solid line) from 298 – 318 days of gestation. 
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e) 

 

f) 
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All graphs show days of gestation on the x-axis, with treatment beginning on day 300.  
Data represent ± 1 SEM. 
Fig. a) Mean pregnenolone (P5) concentrations. No difference noted between groups. 
Fig. b) Mean progesterone (P4) concentrations. Significant differences, indicated with 
asterisks (p<0.05), noted between groups on days 314, 316, and 318. 
Fig. c) Mean 5α-dihydroprogesterone (DHP) concentrations. No differences noted 
between groups. 
Fig. d) Mean 20α-hydroxy-5α-pregnan-3-one (20α5P) concentrations. No difference 
noted between groups. 
Fig. e) Mean 5α-pregnane-3β,20α-diol (βα-diol) concentrations. No differences noted 
between groups. 
Fig. f) Mean allopregnanolone concentrations. No difference noted between groups. 
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Figures 3.3 Plasma pregnane concentrations in control mares (grey) and dutasteride-
treated mares (black) for the last nine days of gestation. 
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All graphs show days preceding parturition on the x-axis.  Data represent ± 1 SEM. 
Fig. a) Mean pregnenolone (P5) concentrations. No differences noted between groups. 
Fig. b) Mean progesterone (P4) concentrations. Significant differences, indicated with 
asterisks (p<0.05), noted between groups for days -7, -6, -5, -4, -3, and -2 preceding 
parturition. 
Fig. c) Mean 5α-dihydroprogesterone (DHP) concentrations. No differences noted 
between groups. 
Fig. d) Mean 20α-hydroxy-5α-pregnan-3-one (20α5P) concentrations. No differences 
noted between groups. 
Fig. e) Mean 5α-pregnane-3β,20α-diol (βα-diol) concentrations. No differences noted 
between groups. 
Fig. f) Mean allopregnanolone concentrations. No differences noted between groups 
 

 

 

Figure 3.4 Dutasteride concentrations in treated mares, showing the increase in 
dutasteride concentration during and post treatment.  Days of gestation are indicated on 
the x-axis with the last day of treatment on day 320, and concentrations of dutasteride are 
shown along the y-axis in ng/mL.  Individual mare identification is listed above the 
graphs.  Mares A8 and C4 foaled prior to the end of treatment. 
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Figures 3.5 Regression plots for pregnanes and dutasteride concentrations in mares 
treated with dutasteride from 298-320 days of gestation. 
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For each graph, pregnane concentration is indicated along the y-axis in ng/mL and 
dutasteride concentration along the x-axis in ng/mL.   Slope, intercept, and coefficient of 
determination (R2) can be seen in the upper left corner of each graph. 
Fig. a) Pregnenolone (P5) concentrations were significantly (p<0.05) and positively 
associated with dutasteride concentrations. 
Fig. b) Progesterone (P4) concentrations were significantly (p<0.05) and positively 
associated with dutasteride concentrations. 
Fig. c) 5α-dihydroprogesterone (DHP) concentrations were not significantly associated 
with dutasteride concentrations. 
Fig. d) Allopregnanolone concentrations were not significantly associated with 
dutasteride concentrations. 
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Abstract 

Endocrine biomarkers, such as pregnanes, are commonly measured to help diagnose 

compromised pregnancies in mares in late gestation.  Interpretation of pregnane 

concentrations are complicated during late gestation as multiple pregnanes are found in 

high concentrations and may variably cross-react in immunoassays.  Therefore, 

immunoassay results are assay dependent when attempting to quantify pregnanes in late 

gestation.  Several pregnanes are thought to be important in late gestation, based on either 

their concentration or bioactivity, but cannot be specifically measured by immunoassay.  

For this reason, quantification of progesterone and other pregnanes has been conducted 

with gas chromatography mass spectrometry (GC-MS) or liquid chromatography tandem 

mass spectrometry (LC-MS/MS) in order to better identify changes in pregnanes of 

interest.  This study’s objective was to measure via LC-MS/MS specific pregnanes in 

mares with experimentally induced ascending placentitis (n = 7) and to observe changes 

in these target hormones when compared to a group of gestationally age matched control 
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mares (n = 8).  Target analytes were measured for days -8, -6, -4, -3, -2, -1, and 0 days 

preceding abortion in the treated mares, and for the matched days of gestation for the 

control mares by LC-MS/MS and by immunoassay.  Measured analytes included 

pregnenolone (P5), progesterone (P4), 5α-dihydroprogesterone (DHP), allopregnanolone, 

3β-hydroxy-5α-pregnan-20-one (3β5P), 20α-hydroxy-5α-pregnan-3-one (20α5P), 5α-

pregnan-3β,20α-diol (βα-diol), and 5α-pregnan-3β,20β-diol (ββ-diol).  Data was analyzed 

with a random effects mixed model with time, treatment, and time × treatment interaction 

as fixed effects and mare as random effect.  For total pregnanes by immunoassay and P4, 

20α5P, and βα-diol by LC-MS/MS, a significant effect (p<0.05) of time, treatment, and 

time × treatment interaction was detected.  A time and time × treatment interaction was 

observed for DHP, allopregnanolone, and 3β5P, but no significant effects were detected 

for P5 or ββ-diol.  Inoculated mares demonstrated a significant increase in measured 

pregnanes when compared to the control mares.  This premature rise in pregnanes in the 

inoculated mares mirrors that of the normal change in pregnanes seen in healthy 

pregnancies just prior to parturition. 

Keywords: equine, pregnancy, LC-MS/MS, pregnanes, placentitis 

Introduction 

The endocrine profile of pregnanes in the mare in late gestation is complex and unique.  

Unlike many other mammals [1], progesterone (P4) concentrations in pregnant mares 

decline around mid-gestation and remain low or undetectable (<1 ng/mL) [2, 3, 10, 12] 

throughout late gestation until the time of parturition, when a slight rise in P4 

concentrations has been identified [1, 10].  As P4 is considered critical for pregnancy 
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maintenance, these low concentrations of P4 in mid to late gestation represent a 

somewhat unusual aspect of reproductive biology in the horse.  However, the mare is 

known to produce a number of other pregnanes and progestogens during this time which 

may be bioactive and thereby serve important functions in pregnancy maintenance [10, 

12]. 

The metabolism of these pregnanes is complex, requiring contributions from the fetus, 

placenta and endometrium of the pregnant mare [4, 16] (Figure 4.1).  Several pregnanes 

have gained attention for their abundance or possible bioactivity in late gestation. These 

include: 5α-dihydroprogesterone (DHP), allopregnanolone, 3β-hydroxy-5α-pregnan-20-

one (3β5P), 20α-hydroxy-5α-pregnan-3-one (20α5P), 5α-pregnane-3β,20α-diol (βα-diol), 

and 5α-pregnane-3β,20β-diol (ββ-diol) [3, 10].  Of these, 20α5P and βα-diol are the most 

quantitatively important, reaching concentrations of >300ng/mL in late gestation [3, 11].  

Others, (DHP, 3β5P, and ββ-diol), have been shown to increase to concentrations of >30 

ng/mL during late gestation [4, 10].  While the bioactivity of certain pregnanes have been 

evaluated in-vivo [9, 12], the bioactivity of many pregnanes in the mare remains 

unknown, despite their high concentrations in late gestation [3, 9, 10].  Of the pregnanes 

evaluated for possible bioactivity, P5, P4, DHP, and allopregnanolone are considered 

important for their bioactive role or as necessary precursors for bioactive progestogens 

[4, 12, 14, 15]. 

The role of P4 during pregnancy is well documented, having the ability to bind 

progesterone receptors (PR), maintain myometrial relaxation, and serve as a precursor for 

further metabolites [1, 4, 10].  Progesterone is a metabolite of pregnenolone (P5) which 

may originate from the fetal adrenal cortex [4], and possibly the fetal gonads [24, 28], 
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and P5 is metabolized in the placental tissue by 3β-hydroxysteroid-dehydrogenase 

(3βHSD; Figure 4.1) [91].  Progesterone is then converted to DHP via 5α-reductase in the 

placenta [4].  5α-dihydroprogesterone can be metabolized to other hormones or serve its 

proposed function in binding PRs and maintaining myometrial quiescence [4, 12, 24].  

Allopregnanolone is an important metabolite of DHP and a potent neurosteroid, known 

for binding GABAA receptors [80]. Allopregnanolone helps maintain fetal sleep and fetal 

quiescence in utero [14, 15]. 

Immunoassays, specifically P4 immunoassays, have been traditionally used to evaluate 

changes in pregnane concentrations which could be indicative of diseased states or 

abnormal pregnancy in mares.  Chronic disease involving the placenta, such as 

placentitis, show a gradual increase in pregnanes, while acute disease, such as fetal 

demise, result in an abrupt decline in pregnanes [5, 6, 50].  Attempts to study pregnane 

concentrations as a predictive tool have been reported with pregnane measurements by 

immunoassay prior to 308 days of gestation, indicating placental dysfunction in mares 

with differing chronicity of placentitis [50].  Because these observations were made in 

mares with spontaneous clinical placentitis, gestational ages, sample number, causative 

organism, and pregnancy outcomes varied. 

Unlike immunoassays, which report all pregnanes able to cross-react with the antibody, 

analysis by mass spectrometry is able to report concentrations of specific pregnanes in 

late gestation.  Ousey et al., used gas chromatography mass spectrometry (GC-MS) to 

describe notable changes in profiles of specific pregnanes in mares with abnormal 

pregnancies compared to a group of mares with healthy pregnancies.  Within the cases 

reported, mares with placentitis had serum concentrations of 20α5P, βα-diol, and ββ-diol 
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which were markedly increased when compared to the control mares (above 99.8% 

confidence limits).  Concentrations of DHP and 3β5P increased, but to different degrees 

with different causes of placentitis (placentitis, fungal placentitis, focal placentitis).  

Changes in P5 ranged from highly decreased to highly increased among the differing 

cases of placentitis [11]. While these changes gave important information about the 

measured precursor or specific metabolites and how they related to fetal or placental 

function, the samples were generated from clinical cases where gestational ages, sample 

number, causative organism, and pregnancy outcomes varied.  Therefore, analysis by 

mass spectrometry from a controlled study with serial samples from mares with a known 

diagnosis may better define target pregnane profiles.  The purpose of this study was to 

investigate the effects of experimentally induced ascending placentitis on a set of target 

pregnanes (P5, P4, DHP, allopregnanolone, 3β5P, 20α5P, βα-diol, and ββ-diol), 

measured by LC-MS/MS, compared to gestationally age matched control mares. 

Materials and Method 

All plasma samples used in this study were generated from previous experiments in 

which placentitis was induced via intracervical inoculation of Streptococcus equi spp. 

zooepidemicus in mares between 260-280 days of gestation [53, 92].  Samples from 

inoculated mares (n = 7) in which the interval from inoculation to abortion was ≥ 8 days 

were selected for analysis as a previous report indicated that this interval was associated 

with elevations in plasma progestins [50].  Plasma samples from gestationally age 

matched mares (n = 8) were used as controls.  In inoculated mares, the interval from 

inoculation to abortion was 13.4 ± 6.4 days (mean ± sd).  Blood samples were drawn 

daily via jugular venipuncture into 10-mL heparinized tubes (Becton, Dickinson and 
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Company, Franklin Lakes, NJ).  Immediately following collection, blood was centrifuged 

at 600 × g for ten min.  Plasma was then frozen at -20˚C until time of analysis. Samples 

were analyzed for days -8, -6, -4, -3, -2,    -1, and 0 days preceding abortion for the 

treated mares and for the matched days of gestation for the control mares. 

LC-MS/MS 

Standards and solutions 

Standards for the hormones (Table 4.1.) examined in this study were purchased from 

Steraloids (Newport, RI, USA): P5, P4, DHP, allopregnanolone, 3β5P, 20α5P, βα-diol, 

ββ-diol, and d9-P4.  A master stock solution of each analyte in methanol (Fisher 

Scientific, Hampton, NH) at an initial concentration of 100,000 ng/mL was used to 

produce working solutions at concentrations of 10,000, 1,000, 100, and 10 ng/mL.   An 

internal standard of d9-P4 (IS) at an initial concentration of 100,000 ng/mL in methanol 

was diluted to a working concentration of 100 ng/mL. 

Sample preparation and extraction 

One milliliter of serum was added to a 13x100 mm glass screw-top tube and 100 μL of 

working IS was added and briefly vortexed.  Standard curve points (ranging from 0.01-

1000 ng/mL) and quality control samples (high (QCH): 300 ng/mL, and low (QCL): 30 

ng/mL) were simultaneously prepared by the addition of 100 μL of working IS and the 

corresponding volume of working solutions to one milliliter of charcoal stripped gelding 

serum and briefly vortexed.  Five milliliters of diethyl ether, (Fisher Scientific, Hampton, 

NH) was added to each sample and mixed for 15 min on a rotating rack.  Samples were 

centrifuged at 3000 x g for five minutes.  Tubes were held in liquid nitrogen for 45 sec, 
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until the serum was frozen, and the supernatant was decanted into a 12x75 mm glass 

tube.  Samples were dried under a steady stream of nitrogen gas using a drying rack 

(Pierce Reacti-Therm Heating Module) until ~0.5 mL remained, at which time a glass 

pipette was used to rinse the sides of the tube with 0.5 mL diethyl ether, and the samples 

were allowed to dry completely under nitrogen gas.  Samples were reconstituted with 150 

μL of methanol and vortexed for 15 sec.  Standard curve points were generated at the 

beginning of each assay, with a repeat analysis of the 100 ng/mL standard at the end of 

the assay to assess possible assay drift.  Quality control samples were included in every 

assay.  The IS was selected based on its close resemblance to the analytes of interest. 

LC-MS/MS analysis 

LC-MS/MS analysis of samples was achieved with the use of a Varian 410 auto sampler, 

Varian ProStar 210 pumps, and a Varian 1200L triple quadrupole mass spectrometer 

(Walnut Creek, CA) with argon as the collision gas.  This method utilized a C18 column 

(100 x 2.1 mm x 2.6 µm) (Kinetex; Torrance, CA), with mobile phase A consisting of 

water with 0.1% formic acid and mobile phase B consisting of methanol with 0.1% 

formic acid.  An elution gradient for this method can be seen in Table 4.2.  Injection 

volume was 25 μL with a flow rate of 0.20 mL per minute.  Ionization was achieved with 

an atmospheric-pressure chemical ionization (APCI) box in positive mode.  Extraction 

efficiency was assessed by comparing recovery peaks of each analyte at equal amounts of 

working solution from non-extracted and extracted samples.  Efficiencies were found to 

be >87% for each analyte, with an average of 92%.  Accuracy was found by dividing the 

QC results from seven runs by the predicted value and multiplying by 100.  Average 

accuracy was 98.1%.  Precision was evaluated with coefficients of variation (CV) using 
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the QCs across seven assays, with an average CV of 9.4%.  The reporting limit for each 

analyte was found by assessing the lowest linear standard point on the curve which could 

be clearly identified.  Extraction efficiencies, details of analyte identification, and QC 

data can be seen in Table 4.3. 

Sample preparation, extraction, and analysis by immunoassay 

Sample analysis by immunoassay was conducted with P4 antibody R4859 (Clinical 

Endocrinology Laboratory, University of California, Davis, CA) utilizing a modified 

protocol [93].  Ten microliters of serum was mixed with 0.5 mL of petroleum ether 

(Fisher Scientific, Hampton, NH) in a glass tube and vortexed for 45 seconds.  Serum 

was frozen by holding the tube in liquid nitrogen, and the ether was decanted into a clean 

glass tube and dried overnight under a fume hood.  Samples were reconstituted with 100 

µL of phosphate buffered saline with 0.1% bovine serum albumen (Sigma, St. Louis, 

MO) and HRP conjugated with P4 (Clinical Endocrinology Laboratory, University of 

California, Davis, CA) at 1:45,000.  Progesterone standard was purchased from 

Steraloids (Newport, RI).  Progesterone dissolved in methanol (Fisher Scientific, 

Hampton, NH) was used to generate a standard curve with nine standard points, ranging 

from 2.5 - 2500 ng/mL.  Standard points were made by pipetting appropriate amounts of 

solution into glass tubes and allowing to dry, then reconstituting with 2 mL of HRP-

conjugated buffer. 

For the standard plate and separate sample plates, 50 µL of HRP-conjugated buffer was 

pipetted across a 96-well plate, previously coated with antibody.  The standard curve was 

generated by adding 50 µL of each standard in replicates of eight across the plate.  
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Curves were linear with correlation coefficients of >0.99.  Samples were pipetted on 

separate plates in duplicate at 50 µL.  High (300 ng/mL) and low (9ng/mL) controls were 

included in duplicate on each plate.  After two hours of incubation, the plate was washed 

three times and substrate (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) 

(ABTS) in citric acid (Sigma, St. Louis, MO)) was pipetted across the plate at 100 

µL/well.  After a second incubation of 1.5 hours, 100 µL of stop solution (EDTA in 

hydrofluoric acid (Sigma, St. Louis, MO)) was added to each well and the plates were 

read with an Epoch microplate spectrometer (BioTek, Winooski, VT).  All samples were 

analyzed in a single assay with an intra-assay CV of 8.4%. 

Statistical analysis 

Pregnane concentrations were analyzed with a random effects mixed model with mare as 

a random effect and time, treatment, and time × treatment interactions as fixed effects.  

Data were log transformed, and model validity was assessed by examination of normal 

quantile plots of residuals for the mixed model.  For P4 and P5, censored data (below the 

LOD of the assay) were substituted using LOD/sqrt 2 as the estimate for values below 

LOD [94].  Pairwise comparisons were made using preplanned comparisons in the test-

slice function of JMP.  Analysis was conducted utilizing JMP software (JMP®, Version 

12. SAS Institute Inc., Cary, NC, 1989-2007.), and significance was set at p<0.05. Data 

are expressed as the mean ± SEM. 

Results 

There were significant time, treatment, and time × treatment interactions for P4, 20α5P, 

and βα-diol by LC-MS/MS, and total pregnanes by immunoassay.  Likewise, there were 
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significant time and time × treatment interactions for DHP, allopregnanolone and 3β5P.  

There were no significant time, treatment or time × treatment interactions for P5 or ββ-

diol.  Significant increases in target pregnanes (excluding P5 or ββ-diol) were detected in 

the eight days leading to abortion in the mares with experimental placentitis when 

compared to the matched controls (Figure 4.2).   In contrast, there were no significant 

changes in measured pregnane concentrations over the eight days sampled in control 

mares. 

Discussion 

To the authors’ knowledge, this is the first report to examine changes in maternal 

concentrations of pregnanes measured by LC-MS/MS in a controlled study of mares with 

experimentally induced ascending placentitis.  Control mares with normal pregnancies 

maintained concentrations of target and total pregnanes comparable to results previously 

established for their gestational age, and these concentrations did not vary significantly 

during the period under study [9, 10].  Changes in the pregnanes measured in the 

inoculated mares were as expected for the disease state, which affects the function of the 

placenta and presumably the fetal adrenal gland [5].  This study demonstrated that 

profiles of pregnanes in mares with experimentally induced ascending placentitis mirror 

those of normal pregnancies, just prior to parturition. 

In healthy mares, pregnane profiles have been well established utilizing immunoassays 

[3, 7], with variations expected with the P4 antibody used.  However, research utilizing 

LC-MS/MS or GC-MS has allowed the measurement of individual pregnanes in late 

gestation, which would not be possible with immunoassays.  Control mares from this 
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study ranged in gestational age from 260-280 days, and displayed total pregnane profiles 

by immunoassay typical for the given time in gestation.  Target pregnanes measured in 

the control mares by LC-MS/MS in this study are similar to those previously reported by 

LC-MS/MS or GC-MS [4, 9, 10]. 

In contrast to normal pregnant mares, total pregnanes determined by immunoassay were 

significantly elevated in the eight days preceding abortion in mares with experimentally 

induced ascending placentitis.  This is consistent with reports of elevated pregnanes by 

immunoassay in cases of chronic placentitis, defined by an interval of 8 or more days 

from inoculation to abortion in experimental cases [6].  Profiles of specific pregnanes by 

mass spectrometry in mares with late pregnancy complications have not been well 

defined.  However, the inoculated mares in this study had significantly higher 

concentrations of most of the target pregnanes.  Maximum fold changes were highest for 

20α5P (4.6x) and βα-diol (3.6x), with 3β5P, allopregnanolone, and DHP each increasing 

approximately two-fold.  Concentrations of P4 were also significantly increased with a 

maximum fold change of 3.2 after adjusting for concentrations below the LOD, although 

P4 concentrations remained relatively low (<2 ng/ml) even in mares with placentitis.  

Concentrations of P5 and ββ-diol did not demonstrate significant changes in mares with 

placentitis. 

Of the target pregnanes measured by LC-MS/MS in this study, all pregnanes which were 

significantly increased in the induced mares are pregnanes metabolized in the utero-

placental tissue.  A healthy feto-placental unit metabolizes almost all precursor (P5) 

coming from the fetus to produce the pregnanes measurable in the periphery of the late 

pregnant mare [4].  Previous reports indicate an increase in pregnane concentrations at 
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the end of gestation, just prior to a marked decrease which occurs approximately three 

days prior to parturition [9, 10].  The increase is thought to be the result of activation of 

the fetal hypothalamic-pituitary-adrenal axis (HPA) axis [18] and the fetal adrenal, not 

yet able to produce cortisol [26], is stimulated and produces more P5.  Evidence of this 

can be seen when maternal pregnanes increase in response to fetal administration of 

ACTH [41].  The decrease is thought to occur when the enzyme necessary for cortisol 

production, P450C17, is expressed in the fetal adrenal gland [26].  With a shift in synthesis 

to cortisol, pregnane concentrations decline. 

Similarly, cases of placental compromise or other pregnancy insults can lead to increases 

in P5 concentrations, and therefore, elevated concentrations of metabolized pregnanes 

[11].  This excess in production of P5 is thought to be a response from the fetus to stress 

from the disease [44].  Concentrations of P4, 20α5P, βα-diol, DHP, allopregnanolone, 

3β5P, P4 and immunoreactive pregnanes appeared to decline in mares with placentitis in 

the two days preceding abortion (Figure 4.2), mirroring what would be seen in a healthy 

pregnancy just prior to parturition. 

Of the target pregnanes in this study, DHP, 20α5P, and βα-diol are the ones most 

commonly discussed in previous reports as they are found in the highest concentrations in 

maternal serum during late gestation.  The significant increase in concentrations of these 

pregnanes with disease was not surprising, as this has been previously observed and 

reported [11].  While not commonly discussed in many other studies, 3β5P showed a 

significant increase in this study.  Ousey et al. reported changes in concentrations of 3β5P 

from compromised pregnancies in clinical cases, with differences in changes 
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corresponding to the diagnosis [11].  However, this is the first study to report increases in 

this pregnane in a controlled experiment of mares with ascending placentitis. 

Interestingly, measured concentrations of P5 and ββ-diol, which are directly derived from 

the fetus [24, 26], were not different in inoculated mares compared to the control group.  

Knowing that P5 is the precursor to the downstream pregnanes measured in this study, it 

was curious that P5 was not significantly increased in the inoculated mares, when 

placental pregnanes were significantly elevated.  It is possible that P5 metabolism was 

such that, if excess precursor was generated by the fetal adrenal, it was quickly 

metabolized before any excess was available for maternal circulation.  5α-pregnane-

3β,20β-diol (ββ-diol) is a pregnane thought to be metabolized in the fetal liver from P5 or 

a P5 metabolite (DHP or 3β5P) [24].  Despite the possibility of metabolism of ββ-diol via 

DHP or 3β5P, a lack of increased P5 may have also resulted in a lack of increase in ββ-

diol for this study.  It may also be possible that a lack of increase in P5 or ββ-diol is 

associated with ascending placentitis, specifically.  However, further work would be 

necessary to confirm this. 

A comparison of mass spectrometry results from this study and Ousey’s study show 

similarities in dramatic increases in total pregnanes, 20α5P, and  βα-diol from mares with 

placentitis when compared to a control group [11].  Ousey also reported significant 

increases for P4, DHP, and 3β5P, as did the current study.  However, Ousey reported 

changes from multiple placentitis diagnosis, and the increases in these three pregnanes 

were not consistent across the diagnosis. Perhaps the most interesting comparison 

between these two studies is the results for P5 and ββ-diol.  In contrast to Ousey’s results, 

this study found no increase in P5 or ββ-diol.  The complication in making this 
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comparison between studies potentially lies in the variations of sampling.  Ousey’s study 

utilized samples from mares with various diagnoses, times in gestation, and sample 

numbers.  Additionally, as these were mares in a clinical setting, results may have been 

confounded by any treatments the mares were receiving.  Conversely, parameters in this 

current study were well controlled, and the induced mares received no treatments. 

Conclusion 

Results from this study demonstrate a significant increase in total pregnanes by 

immunoassay as well as pregnanes (determined by LC-MS/MS) that are metabolized in 

the placenta (P4, DHP, allopregnanolone, 3β5P, 20α5P, and βα-diol) in mares with 

induced ascending placentitis.  This study demonstrates that in a controlled experiment, 

mares induced with ascending placentitis had a similar pregnane profile preceding 

abortion to that of mares with normal pregnancies preceding normal parturition.  

However, no significant increase by LC-MS/MS was noted for the two pregnanes coming 

directly from the fetus (P5 and ββ-diol).  The similarities noted between pregnane 

profiles from induced mares in this study and those of healthy mares just prior to 

parturition suggest a common mechanism which leads to these changes. 
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Steroid Analyzed Chemical Name Abbreviation CAS# 
Pregnenolone 5-Pregnen-3β-ol-20-one P5 145-13-1 

Progesterone 4-Pregnen-3,20-dione P4 57-83-0 

5α-dihydroprogesterone 5α-Pregnan-3,20-dione DHP 566-65-4 

 3β-hydroxy-5α-pregnan-20-one 3β5P 516-55-2 

 20α-hydroxy-5α-pregnan-3-one 20α5P 516-59-6 

 5α-pregnan-3β,20α-diol βα-diol 566-56-3 

 5α-pregnan-3β,20β-diol ββ-diol 516-53-0 

Allopregnanolone 5α-Pregnan-3α-ol-20-one  516-54-1 

Deuterated Progesterone 4-Pregnen-3,20-dione-2,2,4,6,6,17α,21,21,21-d9 dp-P4 57-83-0 

 
 

Table 4.1 Steroids analyzed with common name (if available), chemical name, common abbreviation used in the text, and CAS 
number. 
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Time %A %B Flow 

0:00 50 50 0.2 

0:30 50 50 0.2 

1:30 40 60 0.2 

21:00 15 85 0.2 

23:00 15 85 0.2 

24:00 50 50 0.2 

32:00 50 50 0.2 

 
 

Table 4.2 Elution gradient, with mobile phase A consisting of water with 0.1% formic acid, and B consisting of methanol with 
0.1% formic acid. Flow rate was 0.2 mL/min. 
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Compound Rt Precursor  
ion 

Daughter 
 ions 

Reporting          
limit 

QCH                         
%CV/%Acc 

QCL                      
%CV/%Acc %EE 

P5 11.2 299 281, 159, 131 1 8.5 / 92.9 9.1 / 99.1 91.1 

P4 8.7 315 97, 109, 297 0.5 8.9 / 96.4 10.7 / 104.5 94.6 

DHP 11.7 317 281, 189, 241 1 10.9 / 89.2 14.5 / 97.9 92.9 

3β5P 12.5 301 283, 189, 135 1 11.6 / 89.7 7.8 / 98.1 93.8 

20α5P 11.5 319 283, 161, 175 1 7.9 / 94.6 9.6 / 107.2 88.2 

βα-diol 11.3 285 135, 175, 189 2.5 8.2 / 95.3 10.1 / 106.9 92.4 

ββ-diol 14.2 285 135, 175, 189 1 8.1 / 93.9 12.5 / 104.3 96.8 

Allopregnanolone 14.1 301 283, 189, 135 0.5 10.1 / 92.3 8.2 / 98.6 92.7 

d9-P4 8.5 324 100, 113, 306 NA NA NA NA 

 
 

Table 4.3 Compounds listed with retention time (Rt) in minutes, precursor ions, daughter ions, reporting limit, precision (%CV) 
and accuracy (%Acc) of QCH and QCL, and extraction efficiency (%EE).  Daughter ions are listed in order of abundance, with 
the ion of quantification bolded.  Reporting limit is listed in ng/mL.  Precision and accuracy for QCH and QCL were determined 
by seven runs, one for each batch of samples. Percent accuracy was assessed by dividing the average QC values by the predicted 
values and multiplying by 100. Extraction efficiency was calculated by dividing the area of the peak with extraction for each 
analyte by the area of the peak without extraction for each analyte and multiplied by 100. 
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Figure 4.1 Pathway of hormones of interest, including proposed alternate pathways. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hormones of interest: pregnenolone (P5), 4-Pregnen-3,20-dione (P4), 5α-
dihydroprogesterone (DHP), 3β-hydroxy-5α-pregnan-20-one (3β5P), 5α-pregnan-3β,20β-
diol (ββ-diol), allopregnanolone, 20α-hydroxy-5α-pregnan-3-one (20α5P), 5α-pregnan-
3β,20α-diol (βα-diol).  Adapted from Ousey et al., 2004 [95]. 
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Figure 4.2 Measured pregnanes by LC-MS/MS 
 
a) 

 
 
b) 
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c) 
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i) 

 
 

Each graph shows results for treated mares (black) and control mares (grey). 
Concentrations in ng/mL are reported along the y-axis for each graph and the days 
preceding abortion for the treated mares shown along the x-axis.  Control mares were 
matched based upon relative days of gestation.  Each graph includes error bars 
representing ± 1 SEM.  a) 20α-hydroxy-5α-pregnan-3-one (20α5P). b) 3β-hydroxy-5α-
pregnan-20-one (3β5P). c) 5α-pregnan-3β,20α-diol (βα-diol). d) 5α-dihydroprogesterone 
(DHP). e) Allopregnanolone. f) Progesterone (P4).  g) Progesterone (P4) immunoassay 
(total pregnanes).  h) 5α-pregnan-3β,20β-diol (ββ-diol).  i) Pregnenolone (P5).  For all 
analysis excluding results for ββ-diol and P5, a significant difference was observed 
between groups. Asterisks indicate significant difference between groups (p<0.05). 
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Abstract 

During the latter half of gestation in mares, there is a complex milieu of pregnanes 

detectable in peripheral circulation.  Pregnane concentrations are often measured during 

late gestation to assess pregnancy well-being by immunoassay.  However, interpretation 

of these results is complicated by the numerous pregnanes present in high concentrations 

during late gestation in the mare and by the cross-reactivity of immunoassays with these 

pregnanes.  Further, many mares are supplemented with an exogenous progestin, 

altrenogest, which may also cross-react with existing assays.  Therefore, the first 

objective of this study was to compare assay results from four immunoassays (mini 

VIDAS®, Immulite 1000, and two in-house ELISAs; antibody R4859 and CL425) to P4 

and DHP concentrations measured with liquid chromatography tandem mass 
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spectrometry (LC-MS/MS).  The second objective was to assess the cross-reactivity of 

pregnenolone, P4, DHP, allopregnanolone, and altrenogest in these four immunoassays, 

as these pregnanes are important in late gestation.  Blood samples from four healthy 

mares in late gestation were evaluated by immunoassays and LC-MS/MS, with the data 

analyzed by regression and Bland-Altman analyses.  Results indicate actual 

concentrations of P4 (via LC-MS/MS) correlated best to results by Immulite 1000, while 

DHP concentrations correlated best to mini VIDAS® results.  Cross-reactivity findings 

resulted in no cross-reaction of altrenogest with any immunoassay, but varying degrees of 

cross-reactivity with other pregnanes analyzed.  Results from Bland-Altman analysis 

indicate considerable variations in method results, with all methods significantly different 

than the P4 concentrations found with LC-MS/MS.  These data confirm pregnane 

determination by immunoassay during late gestation varies depending upon the assay 

used and the cross-reactivity to other pregnanes present in late gestation, although the 

synthetic progestin altrenogest did not affect the results of any immunoassay tested.  

Though high correlation is observed in results from the immunoassays tested and P4 by 

LC-MS/MS, each assay reported poor agreement in measurement methods when 

compared to LC-MS/MS. 

Keywords: Immunoassay, cross-reactivity, pregnanes, LC-MS/MS, equine, pregnancy 

 

Introduction 

Maintenance of pregnancy is largely attributed to progesterone (P4); however, other 

progestogenic hormones are quantitatively more important in pregnancy maintenance 
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during the latter half of gestation in the mare.  For the first 80 days of gestation, P4 is 

considered the primary progestogen (steroid hormone that is able to bind the progesterone 

receptor) and is produced by the primary and secondary corpora lutea [3, 10, 96].   

However, a luteo-placental shift occurs in the latter half of gestation, at which time P4 

concentrations drop to low or undetectable levels (< 1ng/mL) and the primary site for 

pregnane (steroid hormones in the progesterone family, not necessarily bioactive) 

production shifts from the ovaries to the feto-placental unit [2-4, 10].  Specifically, the 

feto-placental unit initiates production of a number of pregnanes, originating from the 

precursor pregnenolone (P5), synthesized by the fetus [4, 23, 24].  These pregnanes are 

believed to play a role in maintenance of pregnancy in the latter half of gestation, and are 

present in concentrations ranging from 10 to >400 ng/mL [3, 9, 10, 24, 30].  Though the 

bioactivity of most of these pregnanes remains unknown, 5α-dihydroprogesterone (DHP) 

is bioactive in the mare and is able to bind the equine progesterone receptor with equal 

affinity as P4 [12, 13].  Additionally, DHP is able to maintain pregnancy in the absence 

of P4 [12].  A derivative of DHP, allopregnanolone, is also active in late gestation.  

Working through GABAA receptors, allopregnanolone elicits a suppressive response on 

the nervous system [34], and may play a role in maintaining fetal quiescence in late 

gestation [15]. While the biological function of other pregnanes is currently unclear, they 

are present in high concentrations in late gestation [9, 10, 95] and frequently cross-react 

with antibodies used in P4 immunoassays [7]. 

Determination of progesterone concentrations by immunoassay in late gestation is 

commonly carried out to help diagnose issues with the pregnancy such as placentitis [5, 

6, 54].  In placentitis, acute disease typically results in a rapid decrease in total pregnanes 
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whereas chronic disease is associated with increase in total pregnane concentrations [5, 

6].  In both situations, interpretation of peripheral progesterone concentrations is 

complicated by the variable cross-reactivity inherent with immunoassays [7], as well as 

the high concentrations of pregnanes present in maternal circulation during late gestation 

which are structurally similar (Figure 5.1).  Further, comparisons of results from lab to 

lab can be difficult as assays will report different concentrations, depending upon the 

antibody used.  Due to these complications, a gold standard in detection has become 

liquid chromatography tandem mass spectrometry (LC-MS/MS).  The use of LC-MS/MS 

has resulted in the ability to specifically identify and quantify individual pregnanes in late 

gestation.  By being able to measure specific pregnanes, researchers have been better able 

to understand how certain pregnancy complications in late gestation can affect the feto-

placental unit, and unique patterns of target pregnanes are associated with certain 

pathologies [11].  However, limitations exist due to the high cost and expertise required 

for LC-MS/MS analysis.  Conversely, immunoassays are far more affordable and more 

readily available.  Therefore, immunoassays continue to be the preferred method for 

pregnane detection in late gestation. 

Another potentially confounding variable is the widespread supplementation of pregnant 

broodmares with the synthetic progestin, altrenogest. Beyond its typical prophylactic use, 

altrenogest is also supplemented in suspected cases of placental dysfunction, such as 

placentitis, to counteract the release of PGF2α [97] and to minimize myometrial 

contractility.  Due to the similarities in structure between altrenogest and pregnanes 

(Figure 5.1), the possibility of cross-reaction in immunoassays exists, potentially leading 

to confounding results. Currently, the preferred method to specifically measure 
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altrenogest concentrations is liquid chromatography-tandem mass spectrometry (LC-

MS/MS) [98-100]. 

Differences in results between immunoassays as well as differences in results from mass 

spectrometry when compared to immunoassays have been reported [11, 72, 73, 75].  This 

demonstrates the difficulty of trying to make comparisons across immunoassays or to 

quantify a targeted hormone in late gestation in the mare.  The objectives of this study 

were: 1) to compare differences in pregnane concentrations determined with four 

immunoassays compared to LC-MS/MS and 2) to assess cross-reactivity observed with 

the same immunoassays, specifically considering P4, P5, DHP, allopregnanolone, and 

altrenogest. 

Materials and Methods 

Animal husbandry 

Four healthy pregnant mares used in this study were maintained at the Maine Chance 

Farm, Department of Veterinary Science, University of Kentucky, Lexington, Ky.  All 

mares were maintained on pasture and supplemented with grain and water, hay, salt, and 

trace minerals ad libitum. Experimental protocols were approved by the Institutional 

Animal Use and Care committee at the University of Kentucky (Project #2012-1067). 

Study design 

Beginning on day 298 of gestation (Day 0 = ovulation), jugular venous blood samples 

were taken daily (10-mL plain VACUTAINER), with sampling continued through 
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parturition.  Following collection, blood was allowed to clot, samples were centrifuged at 

1,811 × g for ten minutes, and serum was stored at -20oC until analysis. 

Hormone Analysis 

To allow for consistent sampling intervals, due to variations in gestation length, samples 

were analyzed for 17, 13, 9, 5, 3, and 1 day preceding parturition and also for the day of 

parturition.  Pregnane concentrations were determined by two in-house ELISAs, with P4 

antibodies R4859 and CL425 (Clinical Endocrinology Laboratory, University of 

California, Davis, CA) and by two commercial, automated immunoassay platforms: mini-

VIDAS® (mini-VIDAS®; Biomérieux, Boston, MA) and Immulite 1000 (Siemens 

Healthcare Diagnostic Products, Ltd., Malvern, PA).  Each assay was performed 

according to the manufacturer’s recommended protocol, or as described below.  Aliquots 

of the same samples were sent to the University of California, Davis and analyzed via 

LC-MS/MS following an established protocol [10] (see below) to determine P4 and DHP 

concentrations, specifically. Details for each assay can be seen in Table 5.1. Intra- and 

inter-assay coefficients of variation (%CVs) for each assay can be seen in Table 5.2. 

Analysis by antibodies R4859 and CL425 

Ten microliters of serum was mixed with 0.5 mL of petroleum ether (Fisher Scientific, 

Hampton, NH) in a glass tube and vortexed for 45 s.  Serum was frozen by holding the 

tube in liquid nitrogen, and the ether was decanted into a clean glass tube and dried 

overnight under a fume hood.  Samples were reconstituted with 100 µL of phosphate 

buffered saline with 0.1% bovine serum albumin (Sigma, St. Louis, MO) and HRP 

conjugated with P4 (Clinical Endocrinology Laboratory, University of California, Davis, 
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CA) at 1:45,000.  Progesterone standard was purchased from Steraloids (Newport, RI).  

Progesterone dissolved in methanol (Fisher Scientific, Hampton, NH) was used to 

generate a standard curve with nine standard points, ranging from 2.5 - 2500 ng/mL.  

Standard points were made by pipetting appropriate amounts of solution into glass tubes 

and allowed to dry, then reconstituted with 2 mL of HRP-conjugated buffer. 

For the standard plate and separate sample plates, 50 µL of HRP-conjugated buffer was 

pipetted across a 96-well plate, previously coated with antibody.  The standard curve was 

generated by adding 50 µL of each standard in replicates of eight across the plate.  

Curves were linear with correlation coefficients of >0.99.  Samples were pipetted on 

separate plates in duplicate at 50 µL.  High (300 ng/mL) and low (9ng/mL) controls were 

included in duplicate on each plate.  After two hours of incubation, the plate was washed 

three times and substrate (2, 2'-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid 

(ABTS) in citric acid (Sigma, St. Louis, MO)) was pipetted across the plate at 100 

µL/well.  After a second incubation of 1.5 hours, 100 µL of stop solution (EDTA in 

hydrofluoric acid (Sigma, St. Louis, MO)) was added to each well and the plates were 

read with an Epoch microplate spectrometer (BioTek, Winooski, VT). 

Analysis by LC–MS/MS 

Standards were purchased from Steraloids: DHP, P4, and d9-progesterone. A master mix 

of all reference standards was prepared and diluted in methanol (10, 1, 0.1 and 0.01 

ng/mL). Methanol and water were of HPLC grade and obtained from Burdick and 

Jackson (Muskegon, MI, USA). Formic acid and methyl tert-butyl ether were of ACS 

grade and obtained from EMD (Gibbstown, NJ, USA). 
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Samples were extracted according to the method developed and described by Legacki et 

al., [10].  Inter- and intra-accuracy and precision were assessed at four QC concentrations 

(0.6, 1.5, 20, and 80 ng/mL) for P4 and DHP using six replicates. The analytes were 

measured with ≤15% deviation from the expected concentrations for the three highest QC 

concentrations and %CV of ≤15%. The analytes had a percent accuracy >90% and a 

precision <15%. Curves were linear with correlation coefficients of >0.99. 

Cross-reactivity: Standards and solutions 

Standards were prepared to determine possible cross-reactions across the immunoassays 

for a subset of pregnanes present during equine pregnancy. The following steroids were 

obtained from Steraloids: P4, DHP, P5, allopregnanolone, and altrenogest. All steroids 

were purchased as crystalline powder and were dissolved in methanol at an initial 

concentration of 100,000 ng/mL. Phosphate buffered saline with 0.1% bovine serum 

albumen served as the matrix for the standards.  Control buffer was tested for matrix 

effects on each assay prior to any sample analysis, with no effect noted. 

Sample preparation and evaluation 

Serial dilutions of each steroid were made at concentrations of 50, 20, 10, 2, 1, 0.5, 0.2, 

and 0.1 ng/mL by first drying the stock solution in methanol under air, then reconstituting 

with buffer.  These concentrations constituted the standard curve for each steroid, and 

were used in each immunoassay.  Results were transformed using B/B0, with B 

representing treatment, and B0 representing the buffer control.  Curves were generated 

utilizing Gen 5 software (BioTek Instruments, Inc.), with cross-reactions calculated using 

the fifty percent binding found for each steroid. (Brown et al., 2003).  Specifically, we 
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identified the x-value (concentration) where the curve for each pregnane or altrenogest 

crossed 50% binding. The value for P4 was then divided by the value for each steroid and 

multiplied by 100 to obtain cross-reactivity estimates. 

Statistics  

To compare assay results, data were analyzed by linear regression analysis using data 

from LC-MS/MS as the x-value and the tested immunoassay as the y-value in the 

regression.  Data were also analyzed using a Bland-Altman plot (pregnane concentration 

measured by LC-MS/MS minus concentration by immunoassay vs. pregnane 

concentration measured by LC-MS/MS plus concentration measured by immunoassay / 

2).  Data were analyzed utilizing JMP software (JMP®, Version 12. SAS Institute Inc., 

Cary, NC, 1989-2007.).  Significance was set at p<0.05. 

Results 

Pregnane analysis via LC-MS/MS 

All mares in this study had normal pregnancies and delivered live foals with a mean 

gestational age of 329 ± 5.2 d.  Average P4 and DHP concentrations peaked at three days 

prior to parturition with P4 concentrations of 1.8 ng/mL and DHP concentrations of 79.8 

ng/mL (Figure 5.2). 

Pregnane analysis via immunoassay 

Based upon Bland-Altman analysis, all four immunoassays evaluated gave higher (P < 

0.0001) measured concentrations of progesterone than did LC-MS/MS (Figure 5.3).  

Mean differences between measurements of pregnanes between LC-MS/MS and 
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immunoassay methods were lowest for the Immulite 1000 platform and greatest for the 

immunoassay based upon monoclonal antibody CL425 (Table 5.3).  Similarly, regression 

slopes for pregnane concentrations for immunoassays were positive (P<0.001) with the 

Immulite 1000 assay having the lowest slope and the immunoassay based upon 

monoclonal antibody CL425 having the greatest slope (Table 5.3).  For each 

immunoassay, measured pregnane concentrations were moderately to strongly correlated 

(P < 0.001) with measured P4 concentrations determined by LC-MS/MS (Table 5.3).  

Linear regression analysis for concentrations of DHP measured by LC-MS/MS versus 

pregnane concentrations determined by immunoassay revealed significant positive slopes 

for all immunoasays and y-intercepts were greater than zero for both the Immulite 1000 

and mini VIDAS® (Table 5.3). 

Cross-reactivity 

Estimates for cross-reactivity (50% binding (B/Bo) of each measured steroid compared to 

progesterone) varied across target pregnanes and immunoassay (Table 5.4 and Figure 

5.4).  In general, reported and measured cross reactivities against DHP for antibodies 

R4859 and CL425 appeared much greater than the automated commercial progesterone 

assays (mini VIDAS® and Immulite 1000).  None of the assays in this study cross-

reacted with altrenogest. 

Discussion 

Results from this study demonstrate the complications of using immunoassays in late 

gestation in the mare.  While identical samples were analyzed, variations in cross-

reactivity with the antibody used in each assay resulted in large differences in reported 
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concentrations.  Immunoassay results from each of the four assays tested did show a 

positive and linear correlation with P4 and DHP by LC-MS/MS.  However, when 

comparing methods, results indicate poor agreement of each immunoassay to P4 

concentrations by LC-MS/MS.  Each assay cross-reacted with the tested hormones to a 

different degree than reported, indicating an additional complication in interpreting assay 

result in late gestation.  The synthetic progestin, altrenogest, had not been previously 

tested for cross-reactions on any of the four assays and reported no cross-reactions in this 

study. 

High concentrations of circulating pregnanes in late gestation in the mare can create 

difficulties in interpretation of immunoassay results due to the various immunoassays 

available and the cross-reactions that can occur with the antibodies. Previous work with 

mass spectrometry has analyzed healthy and compromised equine pregnancies in late 

gestation [9-11], with unique profiles of specific pregnanes observed in clinical diagnosis 

from mares with compromised pregnancies [11].  While this method of analysis is the 

superior choice, demand has not yet warranted this technology in most labs.  Until then, 

immunoassays will remain the dominate method of hormone quantification.  As this 

study has demonstrated, an emphasis should be placed in understanding a particular P4 

assay when analyzing blood samples from mares in late gestation.  Being familiar with 

the reported cross-reactions and the gestational stage when the sample was taken can 

greatly assist the clinician in understanding assay results.  However, the clinician should 

be aware that differential cross-reactions are possible, even if not reported.  An additional 

complication in comparing reported cross-reactivities of antibodies is the lack of 

standardization in nomenclature (Table 5.5). 
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Although it is widely believed that monoclonal antibodies are more specific than 

polyclonal antibodies, this is still dependent on the individual antibody.  Within this 

study, we utilized a monoclonal antibody with very high levels of cross-reactivity (P4 

antibody CL425), as well as a polyclonal antibody with minimal cross-reactivity 

(Immulite 1000) (Tables 5.1 and 5.5).  All assays in this study demonstrated a positive, 

linear correlation to P4 and DHP concentrations, despite the variations in reported 

concentrations.  This was expected, as pregnanes in the mare increase with time leading 

up to parturition [3, 9-11].  Further, all assays resulted in better correlation to DHP results 

than P4.  Again, this is expected as P4 concentrations are negligible in late gestation, 

while DHP can reach concentrations of approximately 30-100 ng/mL [9, 10]. 

When considering each assay individually, the cross-reactivities (Table 5.4 and Table 

5.5) help to explain the correlation results (Table 5.3).  The Immulite 1000 had the 

greatest correlation to P4 by LC-MS/MS.  The reported cross-reactivities are very low, 

and this platform is the most specific for P4 of the immunoassays tested.  The study 

results indicated no cross-reactivity with the target pregnanes; however, this did not agree 

with the reported values.  We speculate that lengthening the curve with additional 

standard points at higher concentrations would have resulted in cross-reactions for P5, 

DHP, and allopregnanolone (Figure 5.4). 

The mini VIDAS® had the best correlation with DHP by LC-MS/MS.  Again, when 

considering the cross-reactivity rates, this assay is reported to cross-react with DHP but 

little else.  Study results for cross-reactions indicate possible cross-reactions with DHP 

and P5, which was not reported to cross-react, but not to allopregnanolone or altrenogest.  
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Similar to the Immulite 1000, it appears as though additional standard points in higher 

concentrations would have resulted in a cross-reaction for allopregnanolone (Figure 5.4). 

Antibodies R4859 and CL425 exhibited the highest cross-reactivity in terms of number of 

pregnanes/hormones and percent of possible cross-reactions (Table 5.4 and 5.5).  

Therefore, it is no surprise that they had the poorest correlations of the assays tested with 

P4 and DHP concentrations by LC-MS/MS.  Results from cross-reactions tested indicate 

differential degrees of cross-reactivity, and an additional cross-reaction not previously 

reported (allopregnanolone with antibody R4859).  Similar to the previous assays, 

altrenogest did not cross-react with either antibody, and in contrast to the pregnanes, it 

does not appear that additional standard points in higher concentrations would have 

affected the results for any of the assays tested (Figure 5.4).  Reported cross-reactions and 

tested cross-reactions (besides those for P4) were different in each assay.  Possible 

differences in reagents, lab techniques, and human error may explain these variances. 

Analysis with Bland-Altman plots were included to showcase the vast differences in 

results that can be seen in differing P4 assays during late gestation in the mare.  Several 

P4 immunoassays are available, but the reported concentrations will be different from 

assay to assay, and certainly different from concentrations found using mass 

spectrometry.  Previous work has shown that while results from different methods may 

strongly correlate, poor agreement can exist when comparing methods [101].  In this 

study, each P4 immunoassay significantly correlated to P4 concentrations by LC-MS/MS 

as discussed previously; however, poor agreement was observed in each immunoassay 

when compared to LC-MS/MS as immunoassays report results from all possible cross-

reactions and actual P4 is negligible at this time in gestation. 
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As stated previously, earlier studies have demonstrated variations in immunoassay 

results.  However, to the author’s knowledge, possible cross-reactions with altrenogest 

have not been evaluated with current immunoassays.  A previous report showed no cross-

reaction with altrenogest by radioimmunoassay [102], but this updated analyses may be 

useful in cases when a mare is supplemented and the owner or veterinarian may be 

concerned with possible cross-reactions.  If altrenogest did cross-react with the chosen 

immunoassay, it could lead to confusion with the diagnosis or a missed diagnosis.  

However, the assays tested in this study indicated that altrenogest did not alter 

immunoassay results. 

Conclusion 

High concentrations of circulating pregnanes in late gestation in the mare create 

difficulties in measuring concentrations of specific pregnanes.  Adding to this, large 

differences between immunoassays are present due to the variable levels of cross-

reactivity within individual antibodies.  Immunoassay results consistently correlated more 

strongly with DHP values than P4 in the late pregnant mare, as measured by LC-MS/MS; 

however, all immunoassays showed poor agreement to concentrations of P4 by LC-

MS/MS.  When cross-reactivity levels were analyzed, significant levels of cross-

reactivity were seen with targeted pregnanes, but not with altrenogest.  Overall, this study 

demonstrates the importance of gaining familiarity with your selected immunoassay 

when analyzing pregnane concentrations in the late pregnant mare. 
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 Immulite 1000 mini VIDAS® R4859 CL 425 
Antibody Description 
 

Polyclonal Monoclonal Polyclonal Monoclonal 

Sensitivity/Limit  
of Detection 
 

0.20 ng/mL 0.25 ng/mL 0.02 ng/mL 0.04 ng/mL 

Reportable Range: 0.20-40 ng/mL 0.25-80.0 ng/mL 0.02-200 ng/ml 0.04-200 ng/mL 

 
 
Table 5.1 Assay details for each of the immunoassays used. Table indicates the type of antibody used, the sensitivity or limit of 
detection, the reportable range, and reported cross-reactivity for each assay. 

 
 
 

 
 
 
 
 

 
 

Table 5.2 Average coefficients of variation (%CV) for each assay.  Coefficients of variation for immunoassays R4859 and CL425 
were calculated by assaying all samples and controls in duplicate.  No inter-assay CV was calculated for either of these assays as 
all samples were ran in one assay. For the mini VIDAS®, a control and calibration standards are included in each new kit and 
assayed prior to samples, with the %CVs reported from the manufacturer.  Similarly, the %CVs for the Immulite 1000 are 
reported from the manufacturer and high and low controls are assayed in two week intervals. 

 
 
 
 

 R4859 CL425 mini VIDAS® Immulite 1000 

Intra-assay %CV 8.4  11.7 6.3 7.4 

Inter-assay %CV NA   NA 8.2 8 
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Table 5.3 Results from regression analysis showing correlation coefficients (r), slopes of the curves, and y-intercepts.  Also 
showing mean difference by Bland-Altman and 95% confidence intervals (CI) by for each immunoassay platform when 
comparing results of P4 or DHP by LC-MS/MS. 
*Values for slope and intercept differ from zero (p<0.05). 
**Mean difference in Bland-Altman differs from zero (P < 0.01) 
 

 
 
 
 
 
 

  r Slope y-intercept 
Bland-Altman  
mean 
difference  

95% CI 

P4 by  
LC-MS/MS 
 

          

CL425 0.69 182.6* 59 211.4** 171-297.8 
R4859 0.68 73.3* 42.2* 99.8** 85.4-136.3 
mini VIDAS® 0.72 20.5* 22.1* 38.4** 35-48.4 
Immulite 1000 0.76 3.4* 2.5* 4.5** 4-5.9 
DHP by  
LC-MS/MS 
 

          

CL425 0.88 4.1* -12.1     
R4859 0.9 1.7* 11.5   
mini VIDAS® 0.88 0.4* 15.3*   
Immulite 1000 0.86 0.1* 1.8*     



 

 
 

89 

 
Table 5.4 Reported cross-reactivities and cross-reactivities found from this study for each compound, across each assay tested 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 R4859 CL425 mini VIDAS® Immulite 1000 

Steroid Reported  
% 

Study 
results  
% 

Reported 
 % 

Study 
results 
 % 

Reported  
% 

Study 
results 
 % 

Reported  
% 

Study 
results 
 % 

Progesterone 100 100 100 100 100 100 100 100 

DHP 12.2 29.3 55 30.6 13 8.6 1 0 

P5 0.1 14.5 12.5 18.8 not tested 2.7 0.6 0 

Allopregnanolone 0 10.9 64 10 not tested 0 not tested 0 

Altrenogest not tested 0 not tested 0 not tested 0 not tested 0 
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Immulite 1000    mini VIDAS®   R4859   CL 425   

Steroid %                                        
 Steroid % 

 Steroid %         
 Steroid %         

 
Progesterone 100 Progesterone 100 Progesterone 100 4-Pregnen-3α-ol-3.20-

dione 
188 

5β-Dihydro-
progesterone 

6.6 5β-
dihydroxyprogesterone 

17.39 11α-OH-Progesterone 40 4-Pregnen-3β-ol-20-one 172 

Corticosterone 1.9 5α-
dihydroxyprogesterone 

12.95 5α-Pregnane-3,20-
dione 

12.19 4-Pregnen-11α-ol-3,20-
dione 

147 

20α-Dihydro-
progesterone 

1.0 17α-hydroxyprogesterone 1.18 17α-OH-Progesterone 0.38 Progesterone 100 

11-Deoxy-
corticosterone 

0.8 Deoxycorticosterone 1.15 20α-OH-Progesterone 0.13 5α-Pregnan-3β-ol-20-
one 

94 

Pregnenolone 0.6 6β-hydroxyprogesterone 0.29 20β-OH-Progesterone 0.13 Allopregnanolone 64 
17α-Hydroxy-
progesterone 

0.6 16α-hydroxyprogesterone 0.2 Pregnenolone 0.12 5α-Pregnan-3,  
20-dione 

55 

Testosterone 0.1 Corticosterone 0.09 Cortisol <0.04 5β-Pregnan-3b-ol- 
20-one 

12.5 

  20α-hydroxyprogesterone 0.03 Pregnanediol <0.01 5β-Pregnan-3,20-dione 8 
  Testosterone 0.01 Estradiol 17β <0.01 4-Pregnen-11β-ol-3,20-

dione 
2.7 

  Estrone 0.01 Estrone <0.01 5β-Pregnan-3α-ol-20-
one 

2.5 

  Estradiol <0.01 Testosterone <0.01 5α-Pregnan-3α,20β-diol <0.1 
      Pregnanediol <0.1 
      Androstenedione <0.1 
      Corticosterone <0.1 

 
Table 5.5 Reported cross-reactivities from each assay 
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Figure 5.1 Structures of progesterone (P4), pregnenolone (P5), 5α-dihydroprogesterone 
DHP), allopregnanolone, and altrenogest. 
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Figure 5.2 Average pregnane concentrations by four immunoassays and LC-MS/MS 
 

 
 

 
Average pregnane concentrations (ng/mL) measured in pregnant mare serum (n=4) in 
days prior to parturition from antibody CL425 (grey triangles), antibody R4859 (grey 
circles), mini VIDAS (grey squares), and the Immulite 1000 (grey diamond).  
Concentrations of P4 (black circles) and DHP (black line) measured with LC-MS/MS.  
The y-axis was log-transformed to separate the curves.  Date represent mean ± S.E.M. 
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Figure 5.3 Bland-Altman plots 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bland Altman plots showing differences in results for each immunoassay compared to 
progesterone values found with LC-MS/MS. The difference between a paired set of 
measures is plotted on the y-axis, with the mean of the two plotted along the x-axis.  
Solid lines indicate mean difference, with dotted lines indicating the upper and lower 
95% confidence levels. 
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Figure 5.4 Cross reactivity graphs 
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Cross-reactivity graphs.  The y-axis for each graph shows %B/B0 values (defined as 
signal from a sample divided by the maximum intensity of signal), and the x-axis is 
shown as pregnane concentration (ng/mL). Correlation coefficients (r) are given for each 
compound on each assay platform.  Cross-reactivities were determined at 50% B/B0. 
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Chapter six: Summary and conclusions 

Pregnane profiles are complex in the late pregnant mare, as the relationship between the 

fetus and placenta is essential in pregnane metabolism.  Of the numerous pregnanes that 

have been identified, only P4, DHP, allopregnanolone, and potentially 20α5P and βα-diol 

have demonstrated bioactivity.  While the function of the remaining pregnanes is 

currently not understood, we can speculate that they hold some importance due to their 

elevated concentrations at this time in gestation.  Measurement of specific pregnanes with 

compromised pregnancies has demonstrated significant changes in pregnane profiles.  

However, these key changes cannot be detected by immunoassay due to high incidences 

of cross-reactions.  Future work utilizing LC-MS/MS or GC-MS will allow a better 

understanding of changes in pregnanes as they relate to healthy or compromised 

pregnancies. 

The work in this thesis has demonstrated that attempts to significantly alter pregnancy 

outcome by enzyme inhibition is not an easy task.  Inhibition of 5α-reductase did not 

have a significant effect on gestation length or concentrations of DHP.  It did 

significantly increase P4 concentrations in the treated mares, indicating its activity by 

producing an increase in a precursor to 5α-reductase.  Although concentrations of 

dutasteride were seen to increase even beyond the cessation of treatment, the overall lack 

of response suggests that a higher dose or longer treatment period is necessary to elicit a 

reliable and significant change in pregnancy outcome or DHP concentrations. 

Changes in pregnane concentrations as they relate to pregnancy complications in the 

mare have been previously studied.  Although immunoassays offer a cost-effective means 
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of measurement, the high incidences of cross-reactions make interpretation of assay 

results difficult.  For this reason, we utilized LC-MS/MS to measure changes in P5, P4, 

DHP, allopregnanolone, 20α5P, 3β5P, ββ-diol, and βα-diol, specifically, in a group of 

mares with induced ascending placentitis.  Concentrations of pregnanes metabolized in 

the placenta (P4, DHP, allopregnanolone, 20α5P, 3β5P, and βα-diol) were significantly 

increased in the inoculated mares.  Changes in pregnane profiles of inoculated mares just 

prior to abortion closely mirrored those observed in healthy pregnancies just prior to 

parturition, indicating a common mechanism at the end of gestation. 

As stated previously, immunoassay results are challenging to interpret in late gestation.  

To demonstrate this difficulty, a comparison of four P4 immunoassays was made against 

P4 and DHP concentrations by LC-MS/MS.  Significant correlations were observed with 

all immunoassay results when compared to actual P4 or DHP concentrations, as would be 

expected with the natural rise in pregnanes in late gestation.  However, making 

comparisons across assays is nearly impossible in late gestation with the variations in 

antibodies resulting in significant differences in assay results. 

In conclusion, the measurement and interpretation of pregnane concentrations is currently 

taking place at a tipping point in technology.  Although immunoassays provide a cost-

effective means of measurement, mass spectrometry is currently the only way to measure 

changes in specific pregnanes in late gestation.  Alterations to important enzymes through 

either naturally occurring disease in pregnancy or in controlled studies will result in 

certain changes in pregnanes.  These changes, measured by mass spectrometry, will lead 

to a better understanding of fetal and placental health and function in late gestation in the 

mare, ultimately resulting in improved diagnostic abilities for compromised pregnancies. 
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