
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Electrical and 
Computer Engineering Electrical and Computer Engineering 

2017 

IoT DEVELOPMENT FOR HEALTHY INDEPENDENT LIVING IoT DEVELOPMENT FOR HEALTHY INDEPENDENT LIVING 

Shalom Greene 
Univeristy of Kentucky, sgr238@uky.edu 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.200 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Greene, Shalom, "IoT DEVELOPMENT FOR HEALTHY INDEPENDENT LIVING" (2017). Theses and 
Dissertations--Electrical and Computer Engineering. 103. 
https://uknowledge.uky.edu/ece_etds/103 

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by 
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232577482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Shalom Greene, Student 

Dr. Himanshu Thapliyal, Major Professor 

Dr. Caicheng Lu, Director of Graduate Studies 



IoT DEVELOPMENT FOR HEALTHY INDEPENDENT LIVING

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering
in the College of Engineering
at the University of Kentucky

By

Shalom Greene

University of Kentucky

Lexington, Kentucky

Director: Dr. Himanshu Thapliyal, Professor of Electrical and Computer Engineering

University of Kentucky

Lexington, Kentucky

2017
Copyright c© Shalom Greene 2017



ABSTRACT OF THESIS

IoT DEVELOPMENT FOR HEALTHY INDEPENDENT LIVING

The rise of internet connected devices has enabled the home with a vast amount of

enhancements to make life more convenient. These internet connected devices can be used

to form a community of devices known as the internet of things (IoT). There is great value

in IoT devices to promote healthy independent living for older adults.

Fall-related injuries has been one of the leading causes of death in older adults. For

example, every year more than a third of people over 65 in the U.S. experience a fall, of

which up to 30 percent result in moderate to severe injury. Therefore, this thesis proposes

an IoT-based fall detection system for smart home environments that not only to send out

alerts, but also launches interaction models, such as voice assistance and camera monitoring.

Such connectivity could allow older adults to interact with the system without concern of

a learning curve. The proposed IoT-based fall detection system will enable family and

caregivers to be immediately notified of the event and remotely monitor the individual.

Integrated within a smart home environment, the proposed IoT-based fall detection system

can improve the quality of life among older adults.

Along with the physical concerns of health, psychological stress is also a great concern

among older adults. Stress has been linked to emotional and physical conditions such

as depression, anxiety, heart attacks, stroke, etc. Increased susceptibility to stress may

accelerate cognitive decline resulting in conversion of cognitively normal older adults to

MCI (Mild Cognitive Impairment), and MCI to dementia. Thus, if stress can be measured,

there can be countermeasures put in place to reduce stress and its negative effects on the

psychological and physical health of older adults. This thesis presents a framework that

can be used to collect and pre-process physiological data for the purpose of validating

galvanic skin response (GSR), heart rate (HR), and emotional valence (EV) measurements

against the cortisol and self-reporting benchmarks for stress detection. The results of this

framework can be used for feature extraction to feed into a regression model for validating

each combination of physiological measurement. Also, the potential of this framework to

automate stress protocols like the Trier Social Stress Test (TSST) could pave the way for

an IoT-based platform for automated stress detection and management.
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Chapter 1

Introduction

The internet of things has been consistently growing for the past decade and is foreseeable

to continue its growth in capabilities and connectivity. IoT devices and networks have

gained much of their popularity from the convenience of wireless automation. This sort

of convenience is applicable to almost all industries, and it comes to no surprise that the

health industry can benefit from advances in this area as well. Since the birth of the

modern medical industry, medical professionals have looked to technologist to aid in the

care of their patients. Technological advances in the medical field have contributed to the

saving of millions of lives, which are the very technologies that have become the backbone

of healthcare. Without the advent of technologies such as the pacemaker, ventilator, ECG,

and the systems managing them, healthcare would not be as effective as we now know it to

be today.

In effort to continue this push in advancement toward the benefit of healthcare, the

research undergone for this thesis involves the use of wireless devices equipped with sensors

for the purpose of detecting health-related events. In particular, a framework has been

designed and developed to collect physiological data for detection of psychological stress.

Additionally, an IoT-based infrastructure has been developed to detect fall events. Although

fall detection devices and systems are not at all new, a new layer of interaction has been
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added to integrate a fall detection device within a smart environment. Namely, this is a voice

interface which has been put in place to extend the capabilities of a fall detector by means of

allowing actions to be taken based on verbal command. The same voice interface is employed

for the aspect of the framework that collects physiological data. Physiological data collected

by the framework includes galvanic skin response (a measurement of skin conductivity),

heart rate, and valence (overall sentiment, such as positive, negative, or neutral) via facial

expression. The framework is able to collect data from sensors simultaneously, while also

being able to communicate health-related events across the connected network.

1.1 Motivation

A longstanding concern for older adults living independently has been their safety within

the home and accessibility to help in case of accidental injuries. As people begin to age,

physical challenges incur that either impede ability or put older adults at risk of greater

health decline. Fall-related injuries have been one of the leading causes of death in older

adults [1, 2]. For example, every year more than a third of people over 65 in the U.S.

experience a fall, of which up to 30 percent result in moderate to severe injury [6]. Many of

these injuries happen within the home [6] and the risk of major health decline due to falls

can be reduced through home aid assistance technology.

The advancement of the fall detection device in its effectiveness is of utmost impor-

tance, which includes the usability of the device. An IoT-based fall detection system can

be integrated within smart home environments and smart facilities to increase safety and

quality of life of older adults [7, 8]. The use of smart devices such as smart cameras, smart

wristbands and voice activated devices can greatly enhance the convenience and effective-

ness of a fall monitoring system.
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However, as sophistication grows in the development of aid devices, there is also a

growing demand in the ease of use for these devices by the end user. Rapid growth of

technology has created a gap between younger and older populations in understanding how

to use the technology. Therefore, a significant portion of this research involves the use of

voice as a controller. Voice is a natural interface that is common to most people. There is

very little learning curve involved in the use of speech as a tool to invoke activity. A major

goal of this research is to leverage voice to help lessen the gap between the complexity of

technological design and its simplicity of use when considering health related technology.

Thus, an IoT infrastructure and stress detection framework have been developed throughout

the course of this research to help close this gap. These developments aim to offer some

complexity in design while also providing a more natural and non-invasive, health-centered

interface than what has been traditionally in use.

Along with the physical concerns of aging, there is also growing concern for psycho-

logical health. Regarding normal young and middle-aged adults, psychological health is of

great concern when considering demanding tasks at work, at school, and other social set-

tings. Also, as multitasking has risen to be a norm, juggling tasks left and right, stress has

also risen along with it. Concerning aging populations, psychological decline with age has

been tied to serious illnesses such as Alzheimers disease and and other forms of dementia [3].

Though these illnesses are aggressive and no definite cure has yet been discovered, there is

a precursory state between normal aging and dementia that has risen more in concern due

to possible prevention of its progression into a more serious illness. This intermediate state

is called Mild Cognitive Impairment (MCI), which involves complications in executive func-

tions such as memory, language, thinking, and judgment. Studies have shown that those

with MCI who undergo a lot of psychological stress have a greater chance of developing
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dementia [3]. Thus, if stress can be measured, there can be countermeasures put in place

to reduce stress and its negative effects on psychological and physical health. So, it is a

motivation of this research to produce a framework that can aid in collecting measurements

of the physiological manifestations of psychological stress, as well as aid in paving way for

launching intervention based on detected stress.

Not many systems are in place to effectively detect a persons stress level in a non-

invasive manner. However, much research has taken place in the technology that can be used

for detecting stress. An entire field of computing, affective computing, has been dedicated

to the use of biological sensors to determine emotion. The same technologies employed for

detecting emotions, which are products of psychological state based on a given stimulus

that affects physiological, behavioral and cognitive change, can be applied to the detection

of stress as a psychological state.

Additionally, this research captures personal interest for me because of my experience

working in a nursing home. Witnessing firsthand the difficulties that older adults face as

they age has influenced me to dedicate my thesis to aiding in the development of systems

for their benefit.

1.2 Contribution & Significance

The objective of this thesis is to address the following issues:

. Usability of technology for the elderly and those not technologically savvy

. Integration of fall detection within a smart facility

. Automation of Trier Social Stress Test (TSST) protocol for assessing stress

. Automated stress detection for stress intervention
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This thesis places specific emphasis on the use of voice as a tool for command and

automation. This is quite significant in its impact on usability, especially as it pertains

to those who are not technically savvy. Allowing for a voice interface to be used as an

abstraction layer for automation gives the user greater confidence in interacting with the

system by lessening the complexity of operation. Also, by adding voice automation a

natural interaction model is able to be adapted to fit the needs of the user. Most fall-

detection systems currently available are not voice controlled which can result in significant

amount of learning curve, does not allow remote monitoring, and can generate significant

false positive calls to the primary caregivers.

♦ The first contribution of this thesis is to overcome some of the limitations of existing

fall detection systems by proposing an infrastructure surrounding IoT-based fall detec-

tion for smart environments that not only sends out alerts, but also employs voice as

the primary controller for invoking action. Such connectivity could allow older adults

to interact with the system without concern of a learning curve.

♦ This second contribution of this thesis is the integration of fall detection within a larger

IoT infrastructure which allows for automated actions based on detected falls. Fall

detection can invoke crucial functions in security and communication such as camera

monitoring, phone calling, and texting. The proposed infrastructure for IoT-based fall

detection will enable family and caregivers to be immediately notified of the event and

remotely monitor the individual. Integrated within a smart home environment, the

proposed IoT-based fall detection system can improve the quality of life among older

adults.

The non-biological, and perhaps first, benchmark for stress testing has been self-

reporting. As it is possible for someone to be misleading about their psychological stress

state, perhaps due to confusion, another more definitive measure is demanded, which is

why many modern stress tests use biological measurement for discerning stress. Many

stress tests of the past couple decades rely on biological samples such as saliva or serum
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(blood) sampling for cortisol measurements. These biological means of measurement have

long been the benchmarks for gathering information on stress; however, they are invasive

in nature. A goal of this research was to create a framework that could be used to pave

way toward a non-invasive method of determining psychological stress. So, instead of the

cortisol measurements, a non-invasive physiological approach is taken to obtaining stress

measurements via electrodermal activity, cardiac activity, and facial expression analysis.

♦ Another contribution of this research is the potential of this framework to be used to

automate, or even replace, stress protocols like the Trier Social Stress Test (TSST)

[4]. This thesis presents a framework that can be used to collect and pre-process

physiological data for the purpose of validating galvanic skin response (GSR), heart

rate (HR), and emotional valence (EV) measurements against the cortisol and self-

reporting benchmarks. The results of this framework can be used for feature extraction

to feed into a regression model for validating each combination of physiological mea-

surements.

Traditionally, the TSST Protocol, which is the benchmark protocol for measuring

psychological stress, relies on saliva cortisol measurements [4]. Unfortunately, cortisol mea-

surements have an average 20-25 min delay in response from stimuli to presence in saliva

[5]. Hence, also considering the time involved in analyzing the salivary sample, no foresee-

able real-time solution can be built off of salivary cortisol measurements. Also, automation

would be slightly more complicated for assessing such a biological measurement. Providing

such a real-time solution allows for smoother automation of responses to stress as detected

by physiological measurements.

♦ The final contribution of this thesis is to offer a means of real-time response to psycho-

logical stress. In addition to providing pre-processed data for regression analysis, the

framework presented here also provides a means for real-time response to stress based

on GSR, heart rate, and emotional valence. This research paves a way for generat-
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ing real-time intervention to psychological stress based on non-invasive physiological

measurements.

1.3 Outline of Thesis

The remaining chapters of this thesis is organized in the following fashion: Chapter 2 as

a discussion on background information; Chapter 3 as a discussion of the IoT infrastructure

for promoting health independent living; Chapter 4 as a discussion on the framework as

it pertains to stress detection; and Chapter 5 as a conclusion. Chapter 2 provides some

background information necessary in understanding the technology used in this research.

This includes information on how physiology relates to emotion and stress, and an expla-

nation as to why certain biosensors were chosen for this research. Chapter 3 discusses the

infrastructure put in place for voice automated IoT-based fall detection. This is the basis

for the physical health portion of the framework. Chapter 5 discusses the larger scale of the

framework that is based on physiological measurements for psychological stress detection.

This forms the basis for the psychological health portion of the framework. Chapter 5 then

concludes with the impact of the presented framework and how it contributes to further

research in the physical and psychological health domain.
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Chapter 2

Background and Related Work

2.1 Background on IoT-Based Fall Detection

This section will explore the major components of the IoT-based fall detection system

developed for this thesis. This includes background information on accelerometers, Amazon

Echo and the Alexa Voice Service, and the Raspberry Pi used for this research.

2.1.1 Sensing Acceleration via ADXL345 Accelerometer

The core of most common fall detection systems is the use of accelerometers to determine

the acceleration of an object. Acceleration is the measure of change in velocity over a period

of time. Velocity is measured in meters per second (m/s), including the direction of mo-

tion. Hence, acceleration is measured in meters per second squared (m/s2). Accelerometers

measure acceleration in one of two modes: statically or dynamically [81]. Static accelera-

tion is acceleration due to gravity which is primarily used for tilt and orientation sensing.

Dynamic acceleration is acceleration due to active movement. Typically, fall detectors pri-

marily focus on dynamic movement, as this is most evident in sensing falls. However, static

acceleration is often used to determine orientation of the device wearer to understand if

the wearer is standing, sitting upright, reclining, or laying down [79]. This information,
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combined with the dynamic acceleration, can be useful in determining whether the device

wearer has sustained an injurious fall.

Accelerometers use whats called MEMS (microelectromechanical) technology to sense

acceleration via electromechanical sense circuitry. This circuitry usually surrounds either

capacitive or piezoelectric elements. Capacitive accelerometers use differential capacitors

that sense voltage changes between capacitive plates. Piezoelectric accelerometers oper-

ate based on the transduction properties of piezoelectric materials. Piezolelectric material

used in accelerometers are typically crystalline structured ceramic (commonly Lead zir-

conate titanate aka PZT) that convert mechanical energy into electrical energy [82]. This

transference of energy allows for the accelerometer to sense movement. In both types of

MEMS accelerometer, the voltage sensed is converted to units of g-force (force of gravity)

for acceleration [81].

In addition to sensing acceleration and orientation, accelerometers also can be used

to measure rotation, shock and vibration. The sensor used in this research is a 3-axis

accelerometer that is capable of sensing all five of the mentioned modes of sensing. However,

only two (acceleration and shock) are employed in the development of the fall detector used

in the proposed system. The fact that the sensor is 3-axis, means that the sensor can detect

acceleration along the x -, y-, and z -axes in both directions. This is helpful in determining

the direction of fall. It is very typical to use more than just the acceleration to determine

falls. Hence, features like rotation, orientation, and shock are also employed to help increase

the accuracy of fall detection. This is evident in many research studies (see section Related

Research in Fall Detection for examples).
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2.1.2 Voice Command via Amazon Echo and Alexa Voice Service

The IoT-based fall detection system presented in this research employs the use of a voice

interface enabled by the Amazon Echo and Alexa Skill Kit. The Amazon Echo is a personal

aid device that is capable of listening and responding to voice commands. The device is

primarily a housing for a speaker system and microphone array, with a small processing

unit for wireless communication. The Amazon Echo is wirelessly connected via Wi-Fi and

Bluetooth. Bluetooth is used to initially pair your smartphone to the Echo via the Alexa

App, in which the user must then use that connection to establish an internet connection

over the nearby Wi-Fi network. Additionally, the Bluetooth connection allows for direct

audio streaming and voice control to connected smartphones [83]. Though the Amazon Echo

can handle voice input and output, the actual voice recognition is handled by Alexa Voice

Service (AVS), which is a cloud-based voice recognition software [84]. Voice commands are

created via the Alexa Skill Kit (ASK), which grants access to APIs, tools, documentation,

and code samples pertinent to AVS.

The Alexa Skill Kit allows developers to create skills (voice activated actions) via

the development of three major components: intent schema, Lambda function, and sample

utterances. The intent schema is a JSON formatted file that defines each intent used in the

skill. An intent is composed of an identifier (name) and any slots that possibly belong to

the intent. Slots are any variables (number, text, or custom datatype) that are expected

to be interpreted from voice and used as values within a Lambda function. A Lambda

function is a collection of files that describe how intents are handled; directing any actions

taking place based on those intents and their associated slots. The last component, sample

utterances, is just a text list of intent names with associated utterances that can be used

for invoking each intent. Once these three components are in place, the Alexa Skill Kit can
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invoke AVS to connect voice commands to their intended action.

2.1.3 HTTP Servicing via Raspberry Pi

Another major component of the IoT infrastructure for fall detection is the connectivity

of devices using HTTP communication. HTTP (hypertext transfer protocol) is an internet

protocol commonly used for webpages for servicing web requests. Each HTTP request is

handled as either a GET or POST request. A GET request simply asks the hosting server

for information, in which the server would provide a response containing the requested data.

Instead of requesting data from the server, a POST request is used to provide the server

with data, in which a simple response of success or failure of data reception is provided

back to the requester. Simple HTTP networks are composed of a host server that has a list

of URL (uniform resource locator) paths, which represent the possible resources that can

be accessed, and endpoints that connect to the server for request posting.

HTTP servers can be implemented on any computer machine that has access to

the internet and the software means of programing a HTTP connection. Programming

languages such as Javascript, NodeJS, Python, and C++ can be used for programming such

a server. For this research a Raspberry Pi running NodeJS was used for creating the HTTP

server. The Raspberry Pi is a low-cost, full-functioning miniature computer that leverages

Python programming language as its official programming language. However, this does not

mean that Python is the only language that can be used. In fact, the Raspbian operating

system (official operating system of Raspberry Pi) is largely based on the Debian version

of Linux, which is heavily based on C language programming. The actual programming

language used for programming the server was NodeJS, which is a language heavily used

for web based programming.
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2.2 Related Research in Fall Detection [86]

Medical home alert systems developed to assist older adults within their own home date

as far back as the early 1970s with the advent of the first personal emergency response

system (PERS) created by German inventor Wilhelm Hormann [9]. The medical home

alert system was a dedicated phone line for the sick and elderly to contact someone for

help. Hormann called the system Hausnotruf, which translates to home alert in English.

This idea was shortly thereafter improved upon by California based company American

International Telephone Company who created the Emergency Dialer, which added more

portability via a pendent that is worn around the neck [9].

Several interesting contributions in the area of fall detection have added to medical

home alert systems since t he advent of Hausnotruf. Several illustrative examples from

the past 20 years are discussed in this section. The examples illustrated here are not a

comprehensive list of fall detection system within the last 20 years, however, we choose to

review these systems based on their relevance to the research undergone for this thesis.

For example, in 2004, a combined effort between InfraRed Integrated Systems, Ltd.

(IRISys) and the University of Liverpool developed a smart, non-contact sensor for fall

detection [10]. The system used infrared imaging to detect activity and inactivity. What

was good about the system was that it did not require the person to wear any special

equipment. However, the detection was non-specific to who was in the room and was in

need of care in the case of a fall. A larger issue in the system was that it had a high false

negative rate, missing 64.3% of the falls that should have been detected.

In 2006, a European Community driven project with collaboration between univer-

sities in Spain, France, and Greece produced an automated fall detection system with a

reported 90% confidence in reliability [11]. This system is accelerometer based, in which
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activity data is constantly recorded and reported to a call center in 24 hour intervals. The

system also included GPS and GSM (Global System for Mobile communications), a Euro-

pean mobile voice and data service, to establish user localization and communication with

a community call center. The system reportedly performs well. However, it does not have

any integration within a smart home environment, nor does it integrate a means of voice

communication.

In 2009, a cohort of researchers from UCLA designed a smart fall detection system

called SmartFall based on a previously designed SmartCane fall detector [12]. This system,

unlike most fall detection systems at the time, uses a subsequence matching algorithm to

detect falls. This means that the system detects pre-fall, impact, and post-fall activity in

order to correctly identify a fall. The SmartCane incorporates multiple low cost sensors,

such as pressure sensors on the grip and bottom of the cane and wireless inertial sensors (3D

accelerometer and 3D gyroscope) located at the crook of the cane. These allow for wireless

and non-wearable, unobtrusive fall detection. This falls into a category known as Pervasive

yet Non-Invasive (PNI) sensing. Results from the testing of the system range from 93.3%

to 100% based on fall type. Free-fall and forward fall exhibited the best performance of

30 falls per trial from three individuals ranging in ages 25 to 35 (in which there was one

individual per trial). Results from backward and side falls only suffered a cumulative three

failures for fall detection among all trial participants. However, the system relies primarily

on the use of the SmartCane which is inaccessible while in the shower and in the case of

falling from a sitting or lying (bed) position.

In 2014, researchers from the Institute of Biomedical Engineering at the National

Yang-Ming University published their work on improving elderly telecare (automatic and

remote monitoring of real-time emergencies), which primarily focused on fall detection [13].
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An interesting feature that this system offers is the use of Received Signal Strength Indicator

(RSSI) on ZigBee devices to determine faller position. Additional to this feature, the system

is actually geared toward integration into a smart home environment. The system uses

ZigBee devices (which are RF based wireless devices) placed in several areas around the

home to calculate position based on which device is closest to the wearable fall detector.

According to the reported results, the fall detection algorithm employed has an accuracy

of 88.62%, precision of 88.6%, sensitivity of 95.63%, and specificity of 73.5%. The system

appears to distinguish well between falls and activities of daily living (ADLs). ADLs are

normal activities such as walking, sitting, and lying down.

Also in 2014, research primarily out of Nanjing University of Information Science &

Technology in China produced an enhanced fall detection system for elderly people [15].

The system detects falls by employing an accelerometer and a cardiotachometer to record

acceleration, tilt position and heart rate. It utilizes consumer home networks such as IEEE

802.11, Bluetooth and ZigBee to communicate between devices on a mesh network. Sensor

nodes (i.e. accelerometer, cardiotachometer, etc.) communicate either to a base station or

fixed access point. Fixed access points are in place to relay signals to a base station. Base

stations are used to communicate to the outside world for alerting caregivers, relatives and

the ambulance in case of a dire fall. This fall detection system achieved a high accuracy

of 97.5%, a sensitivity of 96.8% and a specificity of 98.1%. However, the limitation of the

system appears to be in the heavy reliance on ZigBee communication. Although ZigBee

is a very low power transmission protocol, it cannot transmit signals through standard

construction walls. Therefore, multiple access points and base stations are needed to deploy

a multiple room setup, which adds a great deal to the number of components within the

system.
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Most recently in 2016, collaboration between Beijing University of Technology and

Beijing Engineering Research Center for IoT Software and Systems has brought about

an automated fall detection system based on inertial sensors (3D accelerometer and 3D

gyroscope) geared toward older adults [15]. In addition to the inertial sensors, the system

included software running on a smartphone which connected via Bluetooth to the inertial

sensors and used 3G wireless data to provide call and SMS messaging. Using a smartphone

also allows the leverage of its GPS service. The system was able to obtain accuracy in

fall detection ranging from 94 to 100 percent based on the four fall experiments that were

conducted across 15 adults ranging from ages 20 to 45. Although the results from the

Beijing research proved very well, the system largely relies on the smartphone as its center

of processing. This is a potential issue as many older adults above 65 may not know how to

operate a smartphone and as a result may not keep track of the phone. Further, allowing

the phone to run out of battery power disables the entire system.

All of these systems mentioned have some level of integration of sensing and wireless

technology. However, none offer a solution for an IoT enabled smart facility, particularly

with a voice interface. The novelty of the proposed solution for fall detection in this paper

will be to provide modularity and a voice interface in addition to internet connectivity for

a fall detector within a smart home environment.

2.3 Background on Stress Detection [87]

Managing stress is a major health concern for populations around the world. Stress exists

in two main forms: acute and chronic. Everyone experiences stress at some point in their

life, most commonly as acute stress. Per the American Psychological Association, acute

stress is the result of demands and pressures of recent past, as well as those anticipated in
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the near future [16]. This can come from instances such as athletic challenges, test taking,

or anxiety from meeting new people. Chronic stress, on the other hand, is due to long-

standing pressures and demands such as those experienced due to socioeconomic conditions,

difficulties in interpersonal relationships, or an unsatisfying career [16]. If left unmanaged, it

can have detrimental consequences to those experiencing it. Psychophysiological stress can

manifest into physical and physiological symptoms that can affect one’s health if the stress

becomes chronic [16, 17]. These symptoms can be measurably observed in numerous ways,

that this survey will explore. Much focus is put on acute stress as this allows researchers

to study the short term effects of stress which are more easily observable. Also, due to the

short-lived nature of acute stress, there is an expected lower risk to the research participant

when stress is induced for the purpose of research [16]. However, extrapolating from current

data, more needs to be discerned to look at the effects of long term stress.

Stress, whether chronic or acute, has effects on physical condition. In acute stress,

symptoms may include emotional distress, muscular ache and tension, digestive tract issues,

and over-arousal [16]. The more serious of these concerns relate to over-arousal, which can

lead to heart attacks, arrhythmias, and possible sudden death in those with pre-existing

heart conditions [18]. Less serious concerns include headache, back pain, heartburn, stomach

ache, elevated blood pressure, and rapid heartbeat [16]. Chronic stress can exhibit the same

symptoms as acute stress, but with more extensive damage. Chronic stress is identified as

a risk factor for hypertension and coronary disease [18, 19], irritable bowel syndrome (IBS)

and gastroesophageal reflux disease (GERD) [20], as well as generalized anxiety disorder

and depression [21]. If chronic stress is allowed to proliferate, the ongoing symptoms may

reduce the quality of life of those experiencing this stress.

Early stress detection methods relied heavily on self-reports in response to a stan-
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dardized list of questions. Examples of these early methods include the Perceived Stress

Scale (PSS-10 or PSS-14) and the Depression Anxiety and Stress Scale (DASS-21), which

were based on questionnaires regarding life events [22]. Even though these methods have

been validated, there is still the concern of subjective response bias from the individual

that may introduce additional skewness into the assessment of stress. Hence, there is a

need for objective measures with basis in physical and physiological domains. Since stress

also presents itself via biomarkers and physical expression it can be measured objectively

and observed.

The classic standard for physiological measure of stress has been assessment of cortisol

levels produced by the hypothalamic-pituitary- adrenocortical (HPA) axis. This assessment

involved cortisol extractions from various sources: hair, saliva, blood (serum), and urine

sampling. These measurements were invasive and/or involved a laborious process for anal-

ysis [23, 24]. Hence, discovery of alternative means of measurement via wearable, as well as

non-contact, sensors has been developed and are now more commonly used. Predominant

traditional methods of measuring stress include the use of electrocardiography (ECG) and

electroencephalography (EEG). However, the current trend in affective computing, partic-

ularly in stress detection, is leaning more toward non-invasive methods of measurement

dealing with skin conductance and photoplethysmography (optical sensing).

2.4 Background on Stress-Based Affective Computing [87]

Affective computing is a rising field of interest as more and more people are becoming

aware of the association between health and emotional states. Affective computing is the

use of both hardware and software technology to detect the affective state of a person. It

is an active research area that has seen much growth in technology geared toward affective
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state analysis. Its origin is accredited to Dr. Rosalind Picard of MIT when she published her

1995 paper on affective computing [25]. It has since become a modern branch of computer

science for human-computer interfaces (HCI) [26, 27]. This stem of computer science has

two main veins: (1) detection and recognition of emotional information and (2) simulation

of emotion in computational devices. The focus of the current survey will be the detection

and recognition of emotions as affective states.

Affective states are psychophysiological constructs that influence behavior. These

constructs are generally divided into three categories: arousal, valence, and motivational

intensity [28]. Most technology related research in affective computing surrounds arousal

because of its objective measurement of physiological activity. Arousal is directly tied to

the autonomic nervous system (ANS) for which it can be measured in numerous ways

via physiological sensors. Measuring arousal enables the assessment of both valence and

motivational intensity of emotions to influence human behavior. Valence is the rating of

positive, negative or neutral affect, while motivational intensity is the measure of how likely

an affect will elicit activity in response to the stimuli presented to the individual.

The technology used in affective computing exploits both physiological and physical

manifestations of one’s affective state to determine their current emotion. There are six basic

emotional states deduced in affective computing: joy, anger, surprise, disgust, sadness, and

fear. Other affects such as frustration and stress can also be computed from these six basic

emotional states.

The physiological measures of stress and their corresponding technologies can be

classified as follows:

. Brain activity → Electroencepholography (EEG)

. Heart activity → Electroencephalography (ECG)
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. Skin Response → Galvanic Skin Response (GSR)/electrodermal activity(EDA)

. Blood activity → Photoplethysmography (PPG)

. Muscle activity → Electromyography (EMG)

. Respiratory Response → Piezoelectricity / Electromagnetic generation

Physical measures of stress and their corresponding technologies can be classified as

follows:

. Facial expression → Automated facial expression analysis (AFEA)

. Eye Activity → Infrared (IR) eye tracking

. Body Gesture → Automated gesture analysis (leveraging AFEA)

2.5 Physiological Stress-Based Affective Computing [87]

There are several indicators that provide physiological measures of stress. The most

prevalent include: heart activity (ECG), brain activity (EEG), skin response (GSR/EDA),

blood activity (PPG), respiratory response (piezoelectricity & electromagnetic generation)

and muscle activity (EMG). Each of these will be examined more closely in the following

sections.

2.5.1 Heart Activity & Electrocardiography

1) Heart Activity

A predominate factor examined for stress across many studies involve heart rate and

heart rate variability. When stress is induced in an individual, their heart rate is elevated.

This is all in part of the fight-or-flight response that is often referenced to high stress

situations. Heart rate variability (HRV) provides additional information than heart rate
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alone. HRV is the measure of standard deviation in inter-beat intervals of successive R

waves in a heartbeat [29]. A typical heart beat consists of four main components: the

baseline, P wave, QRS complex, and T wave. The R spike of the QRS complex is most

commonly used for evaluation of HRV as it is the most predominant spike in the waveform

[30].

In stress situations heart rate variability is a product of change in autonomic nerve

activity which is composed of sympathetic and parasympathetic modulation. The function

of the sympathetic nervous system (SNS) as it relates to the heart is to speed the heart

rate to provide an increase in blood supply to the body. This queues the fight-or-flight

rush that comes with stress. After the stressor has been removed, the parasympathetic

nervous system (PNS) begins to slow the heart rate. Examining the relationship of these

two nervous systems provides insight on the stress state of an individual [29, 31]. HRV

provides such insight. The waveform of a heart captures both activity and HRV further

enables the analysis of the activity across multiple heart beats. This allows for monitoring

of how quickly the body responds to stress, how long the stress response lingers after the

stimulus, and how rapidly the PNS can act to reduce stress. When combined with other

methods of stress assessment, HRV can pinpoint corresponding physiological and physical

markers associated with stress in an individual.

2) Electrocardiography (ECG/EKG)

One of the most heavily used stress detection methods employs the use of ECG

(alternatively appearing as EKG) for heart activity such as heart rate (HR) and heart rate

variability (HRV). ECG units use electrodes that are strategically placed on the body to

measure electrical signals produced by the depolarization and repolarization of the heart
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[32]. There are a few different configurations of this set up based on ECG lead polarity

and electrode placement. The most common configuration is the standard limb, bipolar

lead setup illustrated in Figure 2.1(a). Figure 2.1(b) shows the Eithoven Triangle that

translates the lead placements to axial references in the electrical signals being recorded by

each electrode.

Figure 2.1: ECG Instrumentation. (a) ECG standard limb, bipolar lead setup instrumen-

tation; (b) Einthoven’s Triangle & ECG Axial Reference [32]. RA = Right Arm (negative

node), LA = Left Arm (bipolar node), LL = Left Leg (positive node), RL = Right Leg

(ground reference)
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The HRV data extracted from ECG measurements can be filtered by frequency content

and then analyzed. The frequency content is generally broken down into 2 bands: low-

frequency (LF) vs high-frequency (HF), with LF being 0.04-0.15 Hz and HF being 0.15-

0.4 Hz [33]. It also may be common to see three frequency bands in which there is a

low-frequency (0-0.08 Hz), mid-frequency (0.08-0.15 Hz), and high-frequency (0.15-0.5 Hz)

[34]. Alternatively, these may be labeled as very low-frequency (VLF), low-frequency (LF),

and high-frequency (HF), respectively. This separation of frequency content is useful since

sympathetic (SNS) activity is associated with low frequency content, while parasympathetic

(PNS) activity is associated with high-frequency content [33]. The analysis involved in

assessing HRV lies in the energy ratio of low-frequency to high-frequency content. Or in

other words, the ratio of sympathetic to parasympathetic activity. This is usually modeled

as

PowerRatioECG =
PowerLF
PowerHF

[34].

The power values are typically extracted from power-spectral density (PSD) which

employ fast-fourier transforms (FFT) to convert time domain data into frequency domain

data [33]. Alternatively, power densities may be normalized to total power using the fol-

lowing models:

TotalPowerLF =
PowerLF

PowerHF + PowerLF
× 100

and

TotalPowerHF =
PowerHF

PowerHF + PowerLF
× 100

[33].

ECG is the current golden standard for monitoring heart activity.
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2.5.2 Brain Activity & Electroencephalography

1) Brain Activity

The brain is the epicenter of all nerve stimuli. Thus, monitoring brain activity is com-

plimentary to detecting stress response. Stress response originates in the amygdala, which

communicates with the hypothalamus to initiate the autonomic nervous system (ANS) re-

sponse [35]. This stimulation of the ANS provokes subsequent physiological and physical

manifestations of stress. Evoked potentials at the cerebral cortex correspond to the signals

sent between the amygdala and hypothalamus, which allows recording of brain activity at

the scalp [36]. Specifically, the frontal cortex is examined, usually by means of electroen-

cephalography (EEG).

2) Electroencephalography (EEG)

For direct brain activity, there are several different technologies used for measure-

ments, including positron emission tomography (PET), functional magnetic resonance imag-

ing (fMRI) and electroencephalography (EEG). PET and fMRI both use blood flow as in-

dicators of brain activity, whereas EEG uses electrical potentials. Though both PET and

fMRI are effective means for measuring brain activity with high spatial resolution, both are

very slow in response and involve expensive equipment [37]. Therefore, our focus here will

be on EEG technology.

EEG measurements involve a matrix of electrodes placed on the head that record

event related potentials (ERPs) upon the occurrence of brain stimulation. These electrodes

are most commonly fitted into a cap according to the international 10/20 system. This

system is based on 19 electrode placements spaced at 10 and 20 percent intervals across

the cranium. Each percentage is of the total length of the cranium either front-to-back or
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ear-to-ear. The Nasion (bridge of the nose) and Inion (occipital protuberance) are used as

the boundary markers for the perimeter of the electrode system. [38]. The system is used to

allow comparison of results from research conducted all over the world [37-38]. Figure 2.2

shows the top view of the 10/20 system. Also, see the caption for more details on electrode

labeling.

Figure 2.2: Top view of the 10/20 system EEG electrode placement.

Electrode Lobe Mapping: F = Frontal1, T = Temporal, C = Central2, P = Parietal, O =

Occipital. Boundary references include the Nasion (N) and Inion (I). Odd numbers corre-

spond to the left hemisphere, while even numbers correspond to the right hemisphere. The

’z’ markings represent zero reference points. The lighter colored arcs between electrodes

represent additional placements that are typically added to the standard 19 electrode sys-

tem.
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Similar to the ECG analysis, measurements are filtered into frequency bands and

can be analyzed according to power spectrum. This is called the power spectrum ratio

technique. The extracted frequency bands are categorized across a range of about 30 Hz, as

Delta band (δ, 0.5-4 Hz), Theta band (θ, 4-8 Hz), Alpha band (α, 8-13 Hz) and Beta band

(β, 13-30 Hz) [39]. When using the power spectrum ratio technique for accessing EEG data,

the filtered measurements are then translated to power spectrum density (PSD) via Fast

Fourier Transform. An energy spectrum density (ESD) can then be calculated by dividing

the PSD area of each band by the respective frequency range of each band [39].

2.5.3 Skin Conductance & Galvanic Skin Response

1) Skin Conductance

More recent research focuses on skin measurements for stress detection as it provides

for an easy interface for instrumentation. The skin response primarily focused on is electro-

dermal activity (EDA), or more commonly known as galvanic skin response (GSR), which

measures skin conductance. Skin conductance is the susceptibility of the skin to conduct

electricity. This conductivity is based on sweat gland activity which often activates in

response to high stress, or fight-or-flight, situations [40]. During increased stress perspiration

increases causing resistance to current flow to drop, inversely affecting the conductivity of

skin. This relationship is why conductance is used opposed to resistance. Conductance has

a directly proportional relationship to increase in perspiration, and furthermore indicative

of increased stress. Though GSR has been used to detect stress, it is also worthwhile to

note that GSR, like other biomarkers, is a response to arousal, which could be positive

1Fp is used to identify forehead placements. Not to be confused with Frontal-Parietal Lobe, which does

not exist.
2The Central Lobe is used for identification purposes only. [38]
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(“elation”) or negative (“fight-or-flight”) [41].

2) Galvanic Skin Response (GSR)

Galvanic skin response relies on the conductivity of skin in response to stimuli. GSR

measures a skin conductance level, while monitoring the change in activity. Skin con-

ductance naturally increases over time (especially in humid environments), so transient

increases are targeted for electrodermal activity [42]. The natural rise in conductance is

called a tonic skin response. This should be noted for reference points, but is generally

not used for marking significant activity. Instead phasic responses are targeted. These are

the rapid transient peaks that occur due to stimuli such as a stressor. Recorded values are

typically in the range of micro Siemens (µS), though often units of resistance (kΩ-MΩ) are

referred to both in measurement and in defining a range of sensing [40].

GSR measurements have become a more popular form of stress detection as it gener-

ally requires a less cumbersome setup opposed to EEG and ECG setups. GSR measurements

are typically taken at the finger, but some research has measured GSR at the wrist with

good correlation to finger measurements [43, 44], making wrist measurements a viable al-

ternative to increase wearability. Another convenience factor is that finger and wrist worn

GSR electrodes, unlike those of EEG and ECG, do not always require gels for conductively.

Although there are systems that recommend them based on the type of electrode used, it is

not always necessary, especially if the subject wearing it has moist skin. Dry GSR electrodes

can be placed directly to skin while still being able to measure electrodermal activity [43].

2.5.4 Blood Activity & Photoplethysmography

1) Blood Activity
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Inherent in the change of heart rate and heart rate variability is a change in blood

volume and blood pressure. Blood volume pulse (BVP) is the phasic change in blood

volume that corresponds to each heart beat interval [45]. Furthermore, BVP is also used to

determine changes in blood pressure in correspondence with blood volume. Variability in

blood pressure is due to vasodilation and vasoconstriction of arteries, capillaries and other

vasculature which can be discerned by BVP measurements [45]. These fluctuations of blood

pressure and blood volume are direct products of heart activity. Therefore, another means

of stress measurement is made available by way of blood volume pulse.

2) Photoplethysmography (PPG)

Photoplethysmography (PPG) is a low-cost, non-invasive optical technique that is

commonly used to detect blood volume changes in microvasculature [46]. A PPG sensor

simply uses an optical pulse generated by a red or near-infrared (NIR) light source (typically

an LED), with a closely placed photodetector acting as the receiver of reflected light. The

amount of light received back at the photodetector gives insight to the amount of blood

volume in the area being illuminated. The less light received by the photodetector means

that more light was absorbed at the sight of illumination, which directly corresponds to

a higher blood volume [46]. When pulsed at a high enough rate, blood volume pulse

(BVP) can be determined with this optical approach. From this, heart rate and heart

rate variability can be deduced [47]. Hence, PPG provides a cheaper alternative to ECG

measurements. Several studies have been conducted to test the validity of PPG sensor data

compared the ECG standard and have shown that PPG sensors provide comparable results

[48–51].
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2.5.5 Other Physiological Measures of Stress

1) Muscle Activity & EMG

Neural activity leading to involuntary muscle control is another byproduct of SNS

activation. Muscle action potentials have been used in studies to identify stress response.

A study conducted in 1994 by Lundberg, et al, shows that trapezoid muscle action potentials

highly correlate to perceived stress scores and blood pressure response to stress [52]. EMG

sensor usage in affective computing has seemed to decline in recent years due to the more

popular sensors (i.e. PPG, EDA). Many of the afore mentioned companies offer reliable

EMG sensors for sensor fusion (simultaneous sensing) along with the more commonly used

sensors. The technology involved in EMG sensing is similar to ECG and EEG in the fact

that it uses electrodes to detect potential spikes. However, the source of the targeted

potential is from the skeletal muscles which produce a range of less than 50 µV up to 30

mV [53]. An issue with this is that the recordings are extremely localized and quality is

dependent on the muscle tone of the individual being tested. Lipid layers covering muscle

greatly impede the measurement of EMG signals.

2) Respiratory Response, Piezoelectricity, & Electromagnetic Generation

Respiratory activity has been another physiological feature that has been used to in-

dicate stress. Ventilation has been proven to be a result of the autonomic nervous system in

response to mental and physical stress [54]. Hyperventilation in particular has been associ-

ated with stress. In the process of hyperventilation more CO2 leaves the body than can be

produced by metabolic processes, which may result in a host of physiological consequences.

These include reductions in cerebral and myocardial perfusion and O2 delivery, ECG and

EEG changes, withdrawal of cardiac vagal tone, muscle spasms and tetanus [54, 55]. Since
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the changes that occur due to respiratory changes can be sensed from other sources directly

(ECG and EEG), those sources are more likely used. A study by Jennifer Healey and

Rosalind Picard show that heart activity and skin conductance show greater correlation to

stress than both respiration and EMG [34]. However, the technology involved is usually

in the form of a piezoelectric transducer which changes linearly in response to longitudi-

nal pull. Piezoelectric transducers are ceramic material that provide electrical response to

physical changes. This transducer is often placed on a belt and clipped on to an individual

around their chest so that the transducer provides respective output as their chest expands

and contracts. Alternatively, electromagnetics can be used in place of the piezo material.

A study by Bryson Padasdao and Olga Boric-Lubecke exhibit a way to use a servo motor

in place of the piezo transducer [56].

2.6 Physical Stress-Based Affective Computing [87]

The following will discuss the physical manifestations of stress, which include facial fea-

tures and behavioral traits of individuals experiencing stress. These modes of measurement

utilize automated facial expression analysis software and body tracking to identify affective

states.

2.6.1 Facial Features

1) Facial Expression Analysis

Documentation dating back to the late 1800s, such as Charles Darwin’s book The Ex-

pression of the Emotions in Man and Animals, correlate facial expression to emotional state.

Studies in the late 1900s and early 2000s have confirmed this connection of facial expres-

sion to specific emotional states via the study of the hypothlamic-pituitary-adrenocortical
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(HPA) axis and cardiovascular responses to stress [57]. A more recent study conducted

by J. S. Lerner et al. has identified a positive association of fear with cardiovascular and

cortisol stress response, whereas a negative association of these responses was identified for

indignation (anger and disgust) [57]. This same study also showed that the facial expres-

sion analysis correlated with biological markers of stress better than self-reported emotional

states.

A rising mode of affective computing is in the advancement of automated facial ex-

pression analysis (AFEA) algorithms. Facial expression analysis is a technique that many

people have used organically to detect when someone is feeling sad, upset, happy, etc. It

has also played an essential role in detecting deceit [58]. Many facial expression recognition

systems are based on a protocol called FACS (Facial Action Code System) published by

Paul Ekman and Wallace Friesen in 1978, later updated in 1992, and then again in 2002

[59, 60]. This system objectively measures the frequency and intensity of facial expressions

and deduces what is referred to as an action unit (AU). Action units are the smallest dis-

criminable movements detectable in a facial expression [59]. FACS is separate from emotion

in nature, yet its AUs are significantly appreciated in detecting emotional state based on

facial expression. AUs dealing with eye constriction, lip, cheek and brow arrangement are

essential in facial expression recognition software for computing affective state.

This “rule-based” coding approach of FACS is employed as a part of the analytical

class of automated face recognition. There are in fact two major classes of automated

face recognition: analytical and holistic. The difference between the two classes is in the

template references. The analytical class focuses on geometrical feature extraction, while

the holistic class focuses on usage of a feature vector to represent an entire facial template

[61]. Facial expression recognition systems such as FACS have enabled the possibility for
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automated facial expression analysis. Lien et al. have demonstrated an AFEA system based

on FACS with up to 93% accuracy [62]. Other commonly used methods for facial expression

recognition include Hidden Markov Models (HMMs), contour models, principle component

analysis (PCA), and artificial neural networks (ANNs) [62, 63].

Leaders in affective computing include Affectiva, Inc. and Emotient, Inc. Affectiva,

like Empatica, Inc., was formed out of MIT’s Media Lab and co-founded by Professor, and

founder/director of the Affective Computing Research Group, Rosalind Picard [64]. Affec-

tiva produces a FACS-based AFEA called Affdex, which employs advanced computer vision

and machine learning within a scalable cloud based structure to perform facial analysis

given any standard webcam [65]. The system intends to extend beyond the basic emotions

(anger, joy, surprise, disgust, sadness, and fear) to provide better real-world assessment of

multimedia [65]. Though the forefront goal of the Affdex software is to assess user response

to commercial content, the core of the system assesses user emotion and has great potential

for other applications such as the assessment of pain, depression, and helping individuals

in the autism spectrum [66].

Emotient, Inc. is an AFEA company that has produced software for commercial ap-

plications, now under the authority of Apple due to an early 2016 acquisition. The company

started out of the University of California, San Diego (UCSD) where the original platform

Computer Expression Recognition Toolbox (CERT) was created. The group who innovated

the FACS based system later converted the AFEA platform into Emotient in 2012 and com-

mercially offered the software under the name FACET (FACial Expression Toolkit). The

FACET software has been evaluated in research against a Speech-based Emotion Recogni-

tion system for analyzing job interview videos [67]. It has also been assessed in applications

of automated detection of driver fatigue and automated teaching systems [68]. These are
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only a few of the applications. Many more application have been speculated within the

medical, educational, safety, and security fields.

2) Eye Tracking

Eye activity, specifically pupil dilation and blink rate, has been used in some stress

studies to correlate with physiological measures under stress [69, 70]. The study done by

Haak et al. shows a strong relationship between eye blink frequency and emotional stress

via correlation with EEG measurements. This study used driving simulations to assess

blink rate under stress and non-stress conditions. The study shows that eye blink frequency

tends to increase positively with stress [70]. Pupil dilation has proved to be quite useful in

increasing confidence of stress detection. A study conducted by Barreto et al. shows that

inclusion of pupil dilation in the analysis of stress increases accuracy of detection [69]. This

assessment of pupil dilation was based on a study from Partala & Surakka in 2002 which

shows a distinct pattern of eye dilation associated with emotional arousal [71].

Alternative to total face assessment, studies have also isolated eye activity for evalua-

tion in affective computing [72, 73]. When looking at eye activity alone there are a multitude

of eye tracker systems that can fit the need of extracting important information regarding

eye placement and movement. Two systems in particular are the Tobii X120 series and

The Eye Tribe ET1000 eye trackers. The Tobii X120 has been used in affective computing

research for assessing emotional state during visual stimuli among a normal population (via

video) [80], as well as among an Autistic population (via virtual reality environment) [74].

Both studies have shown the Tobii X120 to be effective in tracking and extracting valuable

eye activity. The Tobii X120 has since been replaced by the Tobii Pro X3-120, which has

the same performance in a smaller form factor.
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2.6.2 Behavior & Gesturing

Due to the physical and physiological manifestations of stress in an individual, there is

also a behavioral component that accompanies these symptoms. This could include fist or

jaw clenching, body stiffness, crossing of arms, pacing, jittering, and a number of other

behavior [75, 76]. Behavior and gesture analysis has been employed for studies regarding

those in the Autism spectrum [77]. Visual sensors like those used for facial features can be

used for discerning stress behavior via posture and movement sensing. The study carried

out by Piana et al. utilizes an Xbox Kinect to capture gesture features for analysis of the

emotional state in Autistic children [77]. Automated gesture analysis systems utilize the

same visual processing algorithms as used in AFEA and eye tracker systems (HMM, ANNs,

PCA, etc.) [61]. Hence, a similar system could potentially be used for aiding in stress

detection of non-Autistic individuals.

2.7 Selected Measures of Stress & Instrumentation

Due to the cost efficiency, easy of instrumentation, non-invasive nature, and reliability

of their corresponding sensors, the following measures of stress were chosen for this thesis:

GSR, facial expression, and heart rate. A two-electrode system for GSR measurements was

used. The specific device used was the Shimmer GSR+ which was developed by Shimmer

Sensing [78]. It is a Bluetooth enabled device that houses EDA and PPG sensors capable

of measuring GSR and heart rate simultaneously. Hence, the same device was used to

collect heart rate information. For measurements, this module is to be strapped around the

wrist, with the GSR electrodes placed either at the proximal phalanx (base) or intermediate

phalanx (middle section) of the middle and ring fingers. The PPG sensor is then strapped
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at the distal phalanx (fingertip) of the index finger. These placements are to be set on the

non-dominant hand of the respondent (person undergoing measurements), in which there

should be minimum movement to ensure the best quality signals for measurement. As for the

facial expression analysis, a software package (FACET) provided by Emotient was used to

detect distinct emotional valence. In addition to the FACET software, this instrumentation

requires only a camera and significant lighting. Both the Emotient FACET software and

the Shimmer GSR+ module were integrated with the iMotions platform to provide for a

common conduit to feed into the framework presented in this thesis. Within the iMotions

platform stimuli can be queued to invoke psychological reaction by a respondent, while also

measuring their physical and physiological response.
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Chapter 3

Developing an IoT Infrastructure
for Fall Detection [86]

This chapter discusses the details of a proposed IoT infrastructure for voice activated fall

detection. The system layout, its components, and their function will be explored as well.

A large emphasis is placed on the voice interaction model for the system, in which its

operation is discussed in full detail.
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3.1 IoT Infrastructure

Figure 3.1: System diagram for IoT-based fall detection. Blocks in red represent compo-

nents of the system’s voice interface. Blocks in purple represent all components physically

connected to the server/hub. Blue shapes represent wireless components of system. Blue

arrows represent two-way communication, while purple arrows represent one-way commu-

nication.

The goal of this system is to integrate fall detection into a smart home environment in ef-

forts to create a more robust intervention and safety model to aid older adults. This system

would work primarily from a local Wi-Fi network. Like most IoT systems this system is

designed with a central hub for communication that will perform data processing, decision

making, and relay of messages. This central hub will act as an intermediary between all

components of the system. The components of the system include the following (See Figure

3.1 for the layout of the system components):
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. HTTP Server/hub

. Fall detection device

. Amazon Echo/Alexa

. Speaker

. Webcam

A Raspberry Pi Model B+ is being used as the central hub of the system, which

hosts an HTTP server that communicates with all the wireless components of the system.

The peripheral components of the system comprise of a Tiva C Launchpad equipped with

a Wi-Fi expansion board and an accelerometer to act as the fall detection device, a wired

speaker, an Amazon Echo accessing the Alexa Voice Services (AVS) to act as the voice

processing unit, and a Logitech c920 webcam. The Tiva C Launchpad houses the fall

detection algorithm for the system and communicates a detected fall to the central hub via

HTTP request. Upon this detection, the hub acts appropriately to launch the interaction

model via text-to-speech broadcasted through a wired speaker. This interaction model is

later detailed in the section System Interaction Model. The Amazon Echo is capable of voice

recognition and determining actions based on verbal input by accessing Alexa, Amazons

cloud based voice services. The added value of the Amazon Echo and AVS is two-fold: (1)

it adds a level of convenience in the sense that the user does not have to press anything,

and (2) it allows for further confirmation of a detected fall. To the point of the first benefit,

the use of the user’s voice provides a natural interface to the home assistance system. It

bypasses the need for pressing buttons or touch anything at all. To the point of the second

benefit, it aids in the overall efficiency of the fall detection algorithm as it allows the user

to confirm an actual fall prior to advancing to help options. This can potentially further

reduce the false positive rate of the system when considering the launch of intervention.
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3.2 Fall Detection

Figure 3.2: Simple algorithm for fall
detection

The goal of this infrastructure is to provide a proof

of concept for an IoT integrated fall detector within a

smart home environment. By developing an internet

connected device capable of detecting falls, a smart

home is enabled to become a critical part of home

aid assistance. Due to the statistics on fall-related

deaths and other health decline [1, 2, 6], enabling a

smart home with an IoT fall detector can be revolu-

tionary in terms of the longevity of older adults liv-

ing at home. The main objective is to add a layer of

safety to a home environment that allows the older

adult to live more independently, while also easing

the concerns of caregivers and loved ones when they

are away.

In strides to develop such a device, a common development board, the Tiva C Launch-

pad, was used as the starting platform. Via an extension board, an accelerometer has been

attached to the Tiva C Launchpad to perform acceleration measurements. These accel-

eration measurements sense the motion and speed of the device. The ADXL345 3-axis

accelerometer was used for this purpose.

For the device to work properly as a fall detector, the device must implement an

algorithm that can detect a fall. The fall detection algorithm in our work is based on the

algorithm proposed in [79]. The algorithm works via the use of threshold based interrupts.

Two thresholds are set for free fall: an acceleration threshold and a free fall duration
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threshold. When an acceleration greater than the threshold is reached for a time longer

than that of the free fall duration, an interrupt is generated. The interrupt service routine

then sends an HTTP request to the central hub of the IoT system. This is illustrated in

Figure 3.2. The fall detection algorithm initiates the interaction model discussed in the

following section System Interaction Model.

3.3 System Interaction Model

One large hurdle with fall detection algorithms is the balance between specificity and

sensitivity. Specificity is the measure of how many true negatives are avoided by the system,

while sensitivity is the measure of true positives detected. An ideal system would have

very high specificity and sensitivity. However, naturally, high sensitivity brings about false

positives, which further brings about an annoyance to the system’s users. Though our

system is not specifically geared toward producing the most efficient fall detector, it will

add a layer of confirmation to reduce false positives. This layer of confirmation is supported

by the Amazon Echo through an interaction model. Amazon Echo helps to guide the course

of action to be taken once the fall detector has alerted that a fall event has taken place.

The current interaction model in place responds verbally to detected falls. The system

uses an Amazon Echo as its central voice processor. Amazon echo responds to the detected

fall by asking the wearer of the fall detection device if they have fallen. Upon this posed

question, there are provisions made for three possible responses:

1. Positive response (confirmation of fall)

2. Negative response (decline of fall)

3. No response
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These responses are detailed below and illustrated in Fig. 3.3.

Figure 3.3: System Interaction Model

3.3.1 Positive Response

If the user verbally confirms the fall, the system then asks if they would like to call for

assistance. If that question is then answered positively, then the primary caregiver on

record is contacted with an automated message that alerts them regarding the fall. Along
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with this verbal message, a SMS text message will be delivered for the primary caregiver to

review. If the primary caregiver is not available (i.e. call is missed) then a SMS text message

and voicemail message are left on the primary caregiver’s phone. The SMS text message

will contain a link to a live video feed of the user so that the primary caregiver can visually

identify their state and provide more information on what next step to take (i.e. call to

check in on the user or call for an ambulance in the case of emergency). Following a missed

call and the sending of these messages, the system will also ask the user if they would like

to contact 911 directly. If a positive response is given, then an automated distress message

with the user’s information (full name, address, and phone number) would be relayed to

911. Once this occurs, another SMS text message is sent to the primary caregiver to let

them know that 911 was contacted. The user is also notified verbally that help has been

contacted. For lab testing, 911 has not actually been called to avoid unwarranted calls to

emergency call centers. Instead, a phone number of a secondary caregiver was used.

3.3.2 Negative Response

If the user denies the fall then a verbal message is communicated to the user to confirm

acknowledgment of the response and no further action is taken. However, if the user confirms

the fall, but declines the need for help, then an SMS text message is sent to the primary

caregiver to relay that a fall was detected and confirmed. This message also contains a

link to the live video feed of the user for monitoring of their condition. Finally, the system

responds verbally to the user to make them aware that it acknowledged their response and

that a message has been sent to the primary caregiver. It’s important to note here that

despite a negative response to needing help after a fall, the primary caregiver is still notified

of the incident. Although one in three older adults 65 and older fall each year, less than
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half actually report the incident to their doctor [2]. So, this feature gives the caregiver

the opportunity to report the incident on the behalf of the user. Such a provision could

potentially afford the older person the opportunity to receive proper care in a timely fashion

despite their initial assessment of the fall.

3.3.3 No Response

If no response is detected, then this scenario is treated as an emergency condition (i.e. user

is unconscious or conscious but unable to speak). This bypasses the decision blocks for

responses and directly contacts the primary caregiver. As an act of precaution to reduce

unnecessary calls to local authorities regarding the incident, the call to 911 is omitted and

the decision of action to take is left to the primary caregiver. The interaction model is

designed with convenience in mind, since it shouldn’t be expected for older adults to know

how to setup or operate complicated software/hardware for the system. The interface is

primarily audio based. However, in the case of the user being conscious but unable to speak

(or speak loud enough), it is optional to have a button input that can provide the same

confirmation of yes or no.
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Chapter 4

Developing a Framework for
Stress Detection

A goal of this research was to create a framework that could be used to pave way toward

a non-invasive method of determining psychological stress. The proposed framework can

be used to collect and pre-process physiological data for the purpose of validating galvanic

skin response (GSR), heart rate (HR), and emotional valence (EV) measurements against

the cortisol and self-reporting benchmarks for stress detection. The framework allows for

real-time processing of GSR, the measurement of skin conductance, and EV, the overall

emotional state (positive, negative, or neutral), while also saving data for post-processing.

Furthermore, the framework can be used to enhance the TSST protocol via automation and

IoT connectivity.

4.1 Stress Detection Framework

The proposed stress detection framework consists of four distinct phases:

. Phase I: Raw data collection from sensors

. Phase II: Parameter setting for GSR peak detection, and data routing

. Phase III: GSR peak detection, emotional valence detection for facial expression, and

storage for post-processing

. Phase IV: Stress Recognition, Data Reporting and Visualization
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Figure 4.1: Stress Detection Framework (all phases). Each phase has its own inputs and

outputs.
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4.1.1 Phase I: Raw Data Collection from Sensors

Figure 4.2: Phase I of Stress Detection Framework. Raw GSR, HR, and video data are

collected from sensors. GSR, HR and affect data are then forwarded to Phase II.

Initial data collection is handled by a biosensor platform called iMotions [80], which

allows for data from multiple biosensors to be collected simultaneously. The platform has its

own analysis software for processing biosensor data like GSR, PPG, and facial expressions.

Though this platform contains many features for data collection and analysis, the platform
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is not suited to address stress specifically; nor does it provide real-time analysis of critical

features chosen for this research, namely GSR peak detection and valence thresholding.

Hence, the framework designed for this thesis presents a means for real-time GSR peak

detection and valence thresholding, as well as post-processed sensor fusion, directed for

psychological stress.

The Shimmer GSR+ device provides GSR and heart rate data wirelessly to iMotions

to be rerouted and processed later. Similarly, live video feed producing emotion and valence

data is collected and rerouted to Phase II. All data collected in Phase I is funneled to Phase

II for parameter setting and data routing.
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4.1.2 Phase II: Parameter Setting for GSR Peak Detection, and Data

Routing

Figure 4.3: Phase II of Stress Detection Framework. GSR, HR, and affect data are routed

from Phase I to Phase III. Optionally, data can be rerouted to a server or file for later

processing.

Phase II of the framework has two main functions: (1) setting up parameters for data

processing and (2) data routing. The setup parameters are primarily for defining how GSR

data will be processed, but also sets up routing and logging options for the framework. GSR

parameters include critical features for GSR peak detection, such as data window sizing and
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amplitude thresholds. These parameters will be more thoroughly discussed in Section 4.2

(GSR Data Processing). As far as routing, this phase provides three forms of redirection:

(1) to dump file in unprocessed format, (2) to a local server in unprocessed format, and (3)

to Phase III for data processing.

The first option for redirection is merely for test purposes. It allows for data to

be captured and saved for later processing. This is useful for offline situations such as

when no internet connect is available and data has to be collected until a connection is

available again. This is also useful for testing data sets using different algorithms during

the data processing phase. Data processing can be set up in a modular fashion, so as to

perform different algorithms on the same set of data for comparison in performance. So,

appropriately, this phase can be configured to either accept data from a live stream or from

a dumped file previously streamed and captured. The second option for redirection of data

is to provide an outlet for cloud computing if ever warranted. This rerouting option allows

for off-board processing in which Phase III can take place either by a remote version of the

original framework design or by a third-party software entirely. Currently, these possibilities

are not being leveraged. Yet, the feature is provided for future adaptation if ever warranted.

While the first two forms of data rerouting are optional features, the third is essential

to the core of the frameworks design. Phase II is responsible for initializing Phase III

and starting it as a separate process with a queue structure for communicating data back

and forth. When data is routed directly to Phase III, it is first slightly pre-processed by

dynamically dividing the data stream into discrete lines of sensor data. As this is being

done, each discrete line of data is placed on the queue for pipelining to the data processing

phase. This process of data reception, slight-parsing, and pushing to Phase III is continued

until either all data is collected or operation of the framework is manually terminated.
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4.1.3 Phase III: GSR Peak Detection, Emotional Valence Detection for

Facial Expression, and Storage for Post-processing

Figure 4.4: Phase III of Stress Detection Framework. GSR, HR, and affect data from Phase

II are processed then forwarded to Phase IV. Events are logged and alerts are sent to server.

Phase III is the data processing core of the framework. For the scope of this thesis, Phase

III incorporates the following functionality: time and data extraction (data parsing and

timestamp tracking), GSR processing (peak detection, and binarization), emotional valence

processing (thresholding and binarization), heart rate tracking, and event logging.

After data on the queue passes from Phase II the discrete lines of data are parsed to
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extract time and sensor data from the stream prior to individual data processing. Times-

tamps are appended to each set of data for accurate processing in the time domain. A parsed

line of data can contain GSR and heart rate data (together), emotion and valence data, or

metadata for the incoming sensor data. Based on the contents of the parsed data, data is

processed accordingly. For parsed data containing GSR and heart rate both timestamped

data samples are added to a stream to be dumped to a file for logging. Additionally, the

incoming GSR data is added to a buffering window for peak detection. Once the buffer-

ing window meets the parameterized size specified in Phase II, peak detection algorithm

is applied to the window of data. This process continues upon receipt of each GSR data,

discarding the oldest data point and effectively forming a moving window of data. The

actual algorithm applied for peak detection will be examined more closely in a designated

section (GSR Data Processing) later. Then, once GSR data run through peak detection.

Parsed data containing emotion and valence data is further reduced to valence only and a

threshold is applied. This will be further examined later as well. Data streams containing

metadata will be used for data logging and reporting in Phases III and IV, respectively.

Additional to the data processing taking place in Phase III, channels of communication

are maintained for passing of data. This is done in three ways: (1) logging to file for

reporting and post-processing, (2) communication to a local server for detected GSR peaks,

(3) transport of processed data to Phase IV. Regarding the first channel of communication,

parsed data streams logged to file are used for representing stress during post-processing.

Also, metadata passed from Phases I and II are combined with processed data to form real-

time event logging based on the introduction of new stimuli to the framework, as well as any

GSR peaks found during data processing. Along with this event logging, this phase of the

framework posts GSR peak events as a HTTP requests to a local server, which forms the
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second channel of communication. This allows for real-time response to GSR peaks, which

signify peaks of arousal. These events communicated to a server can be further propagated

to activate other features within the connected IoT network. This could include actions such

as sending a SMS message, making a phone call, or launching some sort of intervention,

like music or video. This outlet allows for further expansion of the framework into a more

encompassing solution to stress management. Lastly, processed data is placed onto a queue

for reporting and plotting in Phase IV. This reporting and plotting will be detailed in the

following section.
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4.1.4 Phase IV: Stress Recognition, Data Reporting and Visualization

Figure 4.5: Phase IV of Stress Detection Framework. Processed data is reported in a log

and graphs are generated for visualization.
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After the real-time data has been processed and logged, Phase IV is tasked with further

processing the data to better represent stress according to the sensor output. One of the

post-processing tasks is binarization of GSR data, which is done quantify both the frequency

and ranges of time in which GSR peaks were found. Also, binarization is quite useful when

analyzing an aggregate of individuals exposed to the same stimuli for statistical purposes.

This binarization and aggregation processes will be further detailed in the following section,

GSR Processing. Another form of post-processing taking place within this phase is an

application of binarized valence data to be used along with the binarized GSR peaks for

representing psychological stress. Modules are also put in place to perform calculations

for representing psychological stress based on heart rate as well. Potential approaches

to representing psychological stress using binary thresholding will be explored further in

section Quantifying Stress Via Sensor Fusion. In regards to data reporting, statistical data

produced in post processing is appended to the event log started during Phase III. The final

function of Phase IV is to generate visual plots of processed data, which illustrate heart

rate, GSR peaks, and statistics formed from any applied representation of psychological

stress. These data sets are automated to plot immediately once all data has been received

and processed, allowing an examiner to graphically view the respondents response to the

presented stimuli.

4.2 GSR Data Processing

In processing GSR data there are three main operations taking place: (1) peak detection,

(2) binarization, and (3) aggregation of binarized peaks. While only peak detection is

done in real-time, the remaining two are performed in post-processing. Binarization and

aggregation of binarized peaks can be used for statistical modelling of psychological stress
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in response to stimuli across a population of respondents. Each GSR operation and their

significance will be detailed in the following sections.

4.2.1 Peak Detection

The critical feature of galvanic skin response is its electrical response to sympathetic nervous

system (SNS) activity. The SNS is responsible for facilitating immediate motor action,

which is readily sensed at the skins surface [80]. Hence, measuring drastic spikes in skin

conductance allows for some insight into what the body is currently experiencing. These

drastic spikes form peaks in measured skin conductance, which correspond to psychological

arousal. Psychological arousal in its nature can be either good or bad, representing anxiety

due to excitement or fright, pleasure or stress. Thus, it is an aim of this research to extract

these spike events as identifiers of arousal for later cross-validation and regression against

other representations of stress.

GSR signals are composed of two main conductance levels: tonic level and phasic

response. A tonic skin conductance level is the slow response due to environmental changes

such as temperature and humidity. Because of these environmental changes, overall skin

conductance is always changing, however, at a slow rate. Phasic skin response, on the other

hand, is a direct product of SNS response so it will exhibit very quick responses. This phasic

skin conductance level superimposes the tonic level and forms the level of interest for peak

detection. So, in order to analyze the phasic response, while also disregarding the tonic

level, a series of computations must occur. First, the tonic level must be removed from the

data. This is done by collecting a window of data (which is typically 4 to 8 seconds worth

of samples) then computing the median of the data set and removing the median from the

center point to reveal the phasic response. This process is done as a moving window to
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produce phasic data from the center of the window upon receipt of each new GSR data

point. This means that phasic data has a lag in response of half the window size.

Figure 4.6: Sample GSR Data. Plotted GSR data was originally collected in iMotions

(2016). [80]

Once a phasic level is established, peak detection begins by searching for a series of

thresholds. The first threshold is an onset threshold, which is the minimum detection level

for a rising peak. If the onset threshold is crossed, a second threshold for the peak offset

is then searched. Upon finding the peak offset threshold, the peak value is obtained by

finding the maximum value between the onset and offset thresholds. Additionally, during

the search for a peak onsets and offsets, there is a maximum threshold for jumps between

samples. This is a safe guard which helps to remove noise in GSR data by ensuring that the

difference between two discrete samples isnt too large. Then, the final step for qualifying

the GSR peak is comparing the maximum phasic value found with a minimum peak thresh-

old. Each of these thresholds can be specified as parameters in Phase II of the framework.
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Figure 4.7 illustrates phasic data undergoing peak detection given the following parameters:

peak onset = 0.01 uS, peak offset = 0 uS, minimum peak threshold (min) = 0.005 uS, jump

threshold = 0.01 uS, window size = 8 secs.

Figure 4.7: Phasic data showing GSR peaks. Original GSR data was originally collected

in iMotions (2016) [80]. Phasic data was analyzed by custom software designed for this

framework.

4.2.2 Binarization & Aggregation

As the first procedure in post-processing of GSR peaks, the GSR data goes through a bi-

narization process. This process applies an overlapping window of a parameterized length

to the data in order to identify ranges of time in which peaks were found. Binarization of

data comes into effect in the manner of presence versus absence of any peaks within a given

window frame of time. Presence of any peaks are assigned a value of ‘1’, while any frame

of data without any detected peaks is assigned ‘0’. Hence, a binarized window containing

3 peaks would produce the same output as one containing only a single peak, essentially

hiding the fact that there were multiple peaks found during that time frame. However, if
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the window is set small enough, this binarization can be used to quantify the number of

discrete GSR peaks found in the data set. Additionally, the overlapping of windows allows

for smoothing of data in the sense that a peak found at a border of window frames will be

registered as binarized peaks for both windows. This data, once binarized in Phase III, is

then interpreted graphically in Phase IV.

Figure 4.8: Illustration of a binarized GSR peak output, with corresponding measured heart

rat. Green denotes presence of GSR peak, while grey represents its absence. Original sensor

data was collected in iMotions (2016) [80]. Processing and produced output was performed

by the stress framework presented in this thesis.

For statistics on GSR peaks per population, these binarized peaks can be combined

across respondents undergoing the same stimuli to make assumptions about a larger popu-

lation undergoing the same stimuli. For the scope of this thesis, aggregation is merely used

for illustrating how many respondents experienced GSR peaks during a given window of

time. Aggregated GSR peaks are represented by demographic groups (i.e. age range and
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sex), which is apparent in Figure 4.9. This data is entirely computed in Phase IV, as it

is hinged upon having a complete set of GSR peak data from all respondents of interest

undergoing a particular stimuli.

Figure 4.9: Illustration of GSR Peak statistics generated in Phase IV of the Stress Frame-

work. Sample data used for plotting was originally provided by iMotions (2016) [80].

4.3 Automated Facial Expression Analysis

Facial Expression Analysis performed in this thesis is primarily provided by means of

Emotients AFEA software which is available as a plug-in for iMotions platform. This soft-

ware uses a validated set of microexpressions called FACS (Facial Action Code System) to

discern different emotions based on facial expression presented in a live video. The software

produces confidence levels for each basic emotion (joy, anger, surprise, disgust, sadness,

fear), as well as overall emotional valence (positive, negative, neutral), based on the FACS.

For the scope of this thesis, only overall valences were extracted from the software. Though
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there is software to provide confidence levels on emotion, the software does not inherently

give any information about psychologically stress. Hence, the framework designed here aims

to utilize the emotion information for the specific purpose of identifying facial expressions

related to stress. Because GSR peaks represent arousal of any kind, positive or negative,

valence information is also extracted to help correlate negative arousal with negative emo-

tion. This combination represents a relatable understanding of psychological stress. So, in

order to help discern which valence is dominant, the confidence levels of each valence level

are compared in the following manner:

IF negative > max(positive, neutral) THEN valence = negative

ELSE IF positive > max(negative, neutral) THEN valence = positive

ELSE valence = neutral

This conditional chain of logic applies a form of thresholding that ensures that the

dominant of the valences prevails overall. Valences received by Phase II of the framework are

in logarithmic form and converted to a base ten float form in Phase III prior to evaluation

by this conditional chain. Because we are only interested in negative valence, valences that

evaluate to positive or neutral are discarded for the purpose of presenting stress markers.

This is done by binarizing the data such that overall negative valences are assigned 1 and

all else are assigned ‘0’.

4.4 Quantifying Stress via Sensor Fusion

Moving toward sensor fusion for the purpose of representing stress, any combination of

sensor data can be used to represent stress. To aid this process, sensor data is provided
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in both float and binary. For data such as GSR, HR, and valence, parsed and slightly

processed forms of the data are dumped to file during Phase III. Phase IV then provides

further processing via binarization of GSR peaks, heart rate, and emotional valence. Bit

streams of each data set are initialized during Phase III, then modified appropriately during

Phase IV of the framework. The following figures are logic circuits that illustrate how bit

values are set for GSR, valence, and heart rate, respectively.

Figure 4.10: Logic circuit representation for binarizing arousal based on GSR peaks

Figure 4.10 illustrates arousal based on GSR peaks using a comparator that evaluates

the presence of GSR peaks to produce an output that signifies arousal. If a GSR peak is

present, the arousal output will be set to ‘1’; whereas an absence of a GSR peak would

produce an output of ‘0’.
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Figure 4.11: Logic circuit representation for binarizing stress based on emotional valence

Figure 4.11 illustrates stress valence based on emotional valence using comparators

to evaluate the presence of negative valence. The first comparator outputs the maximum

value between the detected positive and negative valences. If the negative valence is greater

than the maximum value produced by the first comparator, the stress valence output will be

set to ‘1’. However, if the detected positive or neutral valence is greater than the negative

valence, the stress valence output will be set to ‘0’.
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Figure 4.12: Logic circuit representation for binarizing stress based on heart activity (heart

rate)

Figure 4.12 illustrates stress based on heart rate using a comparator that evaluates

the presence of elevated heart activity. The stress logic takes in consideration two thresholds

for heart activity: elevated heart rate and duration of elevated heart rate. These thresholds

could be set for each respondent based on some training and knowledge of their normal

resting heart activity. Using this logic, a stress output would only be set high (‘1’) if heart

rate is elevated for a specified minimum period of time. All other cases would result in a

low (‘0’) stress output.

Such logical circuit representation can be used as building blocks for forming larger

logical circuits for representing stress. This application of what we are deeming “stress
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logic” can prove very useful in fusing sensor sources that have already been pre-processed.

New stress logic circuits can be produced to represent different combinations of the sensor

data collected and processed by the framework. Some examples are illustrated here.

Figure 4.13: Illustration of stress logic combining emotional valence and GSR peaks
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Figure 4.14: Illustration of stress logic combining heart rate and GSR peaks
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Figure 4.15: Illustration of stress logic combining heart rate and emotional valence
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Figure 4.16: Illustration of stress logic combining heart rate, emotional valence and GSR

peaks
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Figure 4.17: Illustration of stress logic combining heart rate, emotional valence and GSR

peaks strictly using logical ANDs. This is a scenario when all sensor sources must produce

positive outputs in order to generate a high (‘1’) stress output.

Based on these stress logic circuits, or some other means of data interpretation, stress

scoring can then be developed. The following figure illustrates a stress score computed by
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the stress framework. It scores stress based on the percentage of bits designated high for

presence of stress using the stress logic presented in Figure 4.13 to interpret stress.

Figure 4.18: Illustration of quantified stress using binarized stress values. Sample data

used was originally provided by iMotions (2016) [80], then plotted using custom software

designed for this framework.

Alternatively, one could rate stress on a scale of 0 to 5, zero being no presence of

stress (10 percent or less) and five being a very high level of stress (50 percent or higher).
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The following logic could possibly be used for computing stress according to this scale based

on the percentage of bits found high for stress:

IF %BITSHIGH > 60 THEN stressscore = 5

ELSE stressscore = floor(%BITSHIGH/10)

4.5 Paving Way toward an Automated TSST Protocol

Pulling this stress framework together with the aforementioned infrastructure for IoT-

based fall detection is the connectedness of an HTTP network and voice automation pro-

vided by Amazon Alexa [84]. Though the core of the presented stress framework does not

inherently require these two features, they allow for further automation of the framework

and connectedness within a larger system geared toward health. Work toward such automa-

tion and connectedness has begun with integration of Amazon Alexa into the framework

via a skill that automates the start of data collection within iMotions [80]. This Alexa skill

was developed to utilize the external command protocol provided by the iMotions platform

which allows for automation of certain actions such as starting data collection, advancing

through stimuli presented to a respondent, and termination of data collection. At the time

of this thesis only the initiation of data collection has been automated via Amazon Alexa

and the HTTP server designed for the IoT-based infrastructure. As voice is commanded

and interpreted through Alexa, HTTP requests are propagated from the Alexa skill to the

HTTP server, then to iMotions to initiate sensor data collection and activation of the stress

framework presented here. This is the start to development of a complete automation of

the TSST protocol.
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The TSST protocol is regarded as one of the most useful and appropriate standardized

protocol for studies of stress hormone reactivity [4]. It employs several methods of measure-

ments including heart rate, salivary cortisol, and self-reporting to assess stress. However, it

is not limited to these three means of measurement. Other physiological and physical means

of measurement such as ECG, EEG, EMG, GSR, AFEA, eye tracking and pupil dilation can

be employed as well. The defining features of the TSST protocol, aside from physiological

and physical measurements, is the timing and sequence of events for conducting a stress

test. The protocol consists of four main portions: initial waiting period, pre-stress period,

TSST core, and recovery. Stress measurements are taken at the beginning and end of the

initial waiting period which form a baseline prior to any presentation of stimuli. Then a

short pre-stress period is given as a buffer between the waiting period and TSST core. The

TSST core consists of an anticipatory period immediately followed by speech and math

tasks. The anticipatory period is meant to build up anxiety prior to performing psycholog-

ically stressful tasks such as presenting a speech and performing a series of difficult math

problems. Stress measurements are taken during this time and specifically marked at the

end of the TSST core as a reference point to compare against significant points of interest.

The TSST core is then followed by two recovery periods in which no stimuli is presented

and the respondent is allowed to relax. Stress measurements are taken at the end of each

recovery period. An illustration of this protocol can be viewed in Figure 4.19 below.
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Figure 4.19: Illustration of the TSST Protocol. Trier Social Stress Test (TSST); State Trait

Anxiety Inventory (STAI); 5-minute Pre-Stress period (PS); 10-minute Anticipatory Stress

period (speech preparation) (AS); 5-minute Speech period (S); 5-minute Math period (M)

[4]

With sufficient validation of sensor fusion against established benchmarks for deter-

mining stress, such as cortisol measurements and self-reporting, the combination of the

iMotions platform with the IoT infrastructure and stress framework presented in this the-

sis can be used to form a new standard of assessing psychological stress in a non-invasive,

automated manner.
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Chapter 5

Conclusion and Future Work

Although recent advances in technology may seem to widen the gap between the young

and the old, much of it can be used to benefit all ages. The internet of things has great

potential to be of much more utility to older adults. With about 75% of older adults 45

and older wanting to stay at home as they age [85], the demand for home aid assistance is

high. This is a perfect opportunity for smart home technology to fulfill some of the needs

of this aging in place population.

As a smart fall detection system, the system described in this work has the potential

to significantly improve the quality of life of millions of older adults who wish to live more

independently within their own homes. The work presented in this paper provides a modular

approach to fall detection that can be applied to a smart home environment. Hence, one of

the extensions of the proposed work is to integrate this fall detection system into a smart

home or facility. In addition to the modularity of the system, the incorporation of natural

language adds a unique layer to fall detection. By allowing the user to communicate via

voice to confirm falls and help direct a course of action, ease of use is allotted to the user.

There is no need to press buttons or learn to use any associated software application. For

this reason employing the use of natural language is ideal for older populations who may

not be tech savvy.
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The stress detection framework presented in this thesis can provide a non-invasive

alternative to cortisol-based methods for stress detection using computing technologies such

as GSR and facial expression analysis. The proposed work has the potential to automate

stress protocols like the Trier Social Stress Test (TSST), as well as identify stress levels.

With this in mind, the proposed framework can be used to run human trials to validate

stress detection and management methodologies. At the composition of this thesis, an

IRB (Institutional Review Board) is evaluating a proposal for human subject trials for this

research, which will aim to accomplish such validation. Once these trials are conducted,

the collected data could be analyzed and run through regressions to better understand

correlation of quantified stress via the framework to that of golden standards (i.e. cortisol,

STAI self-reporting). Once stress detection is established, the framework could aid in

developing intervention components for stress management.

Moving toward further integration, these two developments can be modified to better

complement one another. A possible scenario would be to use the stress detection framework

as a predictor for falls, in which an older adult may exhibit signs of stress prior to a fall.

This could potentially enhance the proposed fall detection infrastructure by adding a layer of

prevention to the already established alert and monitoring system. Additionally, the stress

detection framework could potentially be used for post assessment of falls via collection of

physiological data. This may allow for a better understanding of post-fall behavior of the

fallen respondent. Adding such provision for pre- and post-fall events could create a full

solution system for fall prevention, monitoring, and post-assessment.
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