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Rare earth mineral recovery from alternative resources such as coal and coal byproducts 

is increasingly important to provide an opportunity for economic recovery from U.S. 

sources. Currently, China produces the majority of the 149,000 tons of rare earth 

elements used annually worldwide of which the U.S. imports 11% or around 16,000 

tons. There are no significant mining operations producing rare earth elements in the 

U.S.  However, there are many U.S. sources containing rare earth minerals such as 

monazite including heavy mineral sand and phosphate operations. Monazite mineral 

particles of a few microns have also been detected in Fire Clay seam coal. Preliminary 

attempts to concentrate the rare earth mineral using flotation test results indicated that 

monazite was floated together with carbonate minerals. The flotation chemistry of a 

monazite-carbonate mineral system has received limited attention by researchers. As 

such, a systematic study of monazite flotation chemistry was conducted and the results 

reported in this dissertation.  

The surface charging mechanisms of monazite in aqueous systems were studied using 

electrokinetic tests, solution equilibrium calculation, crystal structure analysis, and 

electrostatic model prediction. The surface charge of monazite was found to be 

developed by protonation/deprotonation reactions. In other words, the hydrogen and 

hydroxyl ions were potential determining ions instead of the lattice ions of monazite. 

Electrokinetic tests of natural monazite mineral showed that the isoelectric point (IEP) 

occurred at pH 6.0. Solution equilibrium calculation and electrostatic model predictions 

of cerium monazite (CePO4) yielded an IEP of pH 7.2. The discrepancy between the 

two IEP values may be due to the different REE composition and/or the amount of 

carbon dioxide dissolved in solution.  

A common collector used to produce a hydrophobic monazite surface is 

octanohydroxamic acid. Adsorption studies found multilayer formation of 

octanohydroxamic acid on monazite surfaces at pH values of 3.0, 6.0, and 9.0. A kinetic 

study showed that the maximum adsorption density and rate for below monolayer 

coverage occurred at a solution pH value of 9.0, which was attributed to the chemical 

reaction between octanohydroxamate species and surface active sites (e.g., REE(OH)2+). 

ABSTRACT OF DISSERTATION 
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COAL REFUSE SYSTEMS 



 
 

For beyond multilayer adsorption, maximum adsorption occurred at pH 11.0 due to the 

abundance of hydroxyl ions in solution. The contributing effect of hydroxyl ions was 

proven by titration tests and FTIR analyses.  

When calcium ions existed in solution, specific adsorption of Ca(OH)+ on monazite 

surfaces occurred in both neutral and basic environments as indicated by the 

electrokinetic results. At low concentrations, Ca(OH)+ competed with 

octanohydroxamic acid for P-OH sites. However, higher dosages of Ca(OH)+ served as 

active sites for octanohydroxamic acid. The monazite floatability was negatively 

affected by the hydration of the adsorbed calcium species. The calcium ion dissolved 

from calcite mineral surfaces, which exist in the coal sources, provided an explanation 

for the depression of monazite in the combined systems.  

Single mineral flotation of monazite and calcite showed that sodium silicate and sodium 

hexametaphosphate efficiently depressed calcite while providing minimal effects on 

monazite recovery. However, in the monazite-calcite combined system, both monazite 

and calcite were depressed using the two regulators. Electrokinetic data and solution 

equilibrium calculations indicated that hydrolyzed species of calcium such as Ca(OH)+ 

interacted with silicates and formed a compact hydrophilic layer on monazite surfaces 

by hydrogen bonding and surface reaction. The compact layer decreased collector 

adsorption due to steric hindrance. Using 6×10-5 M EDTA together with 2.5×10-4 M 

octanohydroxamic acid and 0.05 g/L sodium silicate, monazite recovery of more than 

90% was achieved while only recovering 20% of calcite. Based on the fundamental 

study, rare earth concentrates with 4700 ppm of REEs were produced from the Fire 

Clay fine coal refuse using column flotation.  

KEYWORDS: Flotation, Monazite, Calcite, Surface Charge, Octanohydroxamic Acid, 

Adsorption Mechanisms   
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CHAPTER 1. INTRODUCTION 

 1.1 BACKGROUND 

Rare earth elements (REEs) including the lanthanide elements plus yttrium and 

scandium have been widely used as raw materials for catalysts, alloys, ceramics, 

polishing, etc. The latest U.S. Geological Survey (USGS) data indicates that the U.S. 

has a total REE reserve of 1,400,000 metric tons which only accounts for 1.16% of 

global REE reserve (120,000,000 metric tons) (USGS, 2017). Only one rare earth mine, 

i.e., Mountain Pass, was operated intermittently during the last five years and domestic 

REE consumption of the U.S. relies heavily on imports. As such, exploration of 

alternative REE source materials is critically important. The U.S. Department of Energy 

(DOE) selected several projects to enhance the research into recovery of REEs from 

coal and coal byproducts.  

The total REE content in world coal is about 61.33 Mt and the annually produced coal 

and coal byproducts contain enough REEs to meet current U.S. demand (Zhang et al., 

2015; Honaker et al., 2017). REEs in coal and coal byproducts mainly exist as minerals, 

ion-exchanged elements associated with clays, and chemically bonded elements with 

the organic matrix. Monazite particles have been detected in coal and fine refuse using 

Scanning Electron Microscopy – Energy Dispersive X-ray Spectrometer (SEM-EDX) 

(Honaker et al., 2014; Zhang et al., 2017a).  

Flotation is a fine-particle mineral processing technique and efficient separation is 

normally achieved using appropriate collectors and depressants to maximize the surface 

hydrophobicity differences between valuable and gangue minerals. Flotation has been 

widely used to separate fine monazite from heavy-sand minerals such as hematite, rutile, 

zircon, ilmenite, etc. Previous studies by Zhang et al. (2016, 2017 a, 2017 b) also proved 

that satisfactory concentration of monazite from coal and coal byproducts was achieved 

using octanohydroxamic acid as the collector. Calcite was found to be the floated 

together with monazite into the concentrate. However, the fundamental study of 

monazite-calcite flotation separation is limited.  
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The current study focused on the flotation chemistry involved in the monazite-calcite 

system when using octanohydroxamic acid as the collector. Surface charging 

mechanisms of monazite in aqueous systems were studied using electrokinetic tests, 

solution equilibrium calculation, and electrostatic model prediction. Adsorption 

mechanisms of octanohydroxamic acid on monazite surfaces were studied using 

adsorption kinetic, isotherm, thermodynamic, and titration tests. Surface chemical 

changes were characterized using zeta potential measurement and Fourier transform 

infrared spectroscopy (FTIR) analyses. Effects of calcium ions dissolved from calcite 

surfaces on octanohydroxamic acid and depressant adsorption on monazite surfaces 

were studied using adsorption and electrokinetic tests. Attempts to eliminate the 

calcium ion effects using chelating reagents such as citric acid and EDTA were 

conducted. An appropriate reagent scheme was proposed for rare earth recovery from 

coal and coal byproducts. Finally, conventional cell flotation and batch flotation tests 

were conducted to concentrate rare earth minerals from coal and coal byproducts.  

1.2 OBJECTIVES 

The overall objective of the current study was to understand the fundamental aspects 

involved in the monazite-calcite flotation system, which provides some guidelines for 

monazite recovery from coal and coal byproducts. The specific objectives included: 

(1) Review the fundamentals regarding collector adsorption, monazite flotation, and 

solution species effects on flotation. 

(2) Study the surface charging mechanisms of monazite in aqueous systems and 

determine the role of lattice ions, hydrogen, and hydroxyl ions. 

(3) Study the adsorption mechanisms of octanohydroxamic acid on monazite surfaces 

at different solution pH values and collector dosages. Determine the difference 

between monazite-octanohydroxamic acid system and other systems such as 

bastnaesite-octanohydroxamic acid. 

(4) Evaluate flotation behavior of pure and mixed minerals of monazite and calcite 

using micro-flotation apparatus and octanohydroxamic acid. Evaluate effects of 
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lattice ions dissolved from calcite surfaces on monazite flotation. 

(5) Evaluate the effects of solution ions on the adsorption of octanohydroxamic acid on 

monazite surfaces and propose an appropriate mechanism to explain the effects. 

(6) Select appropriate depressants and chelating reagents to depress calcite and 

eliminate dissolved ion effects on monazite flotation. Understand the fundamentals 

regarding the depressing and/or activation effects of these reagents. 

(7) Concentrate rare earth minerals from coal and coal byproducts.   

1.3 ORGANIZATION 

The dissertation is organized into nine chapters. The first chapter is a brief introduction 

of the background and objectives of the current study. The second chapter gives a 

comprehensive review of collector adsorption mechanisms for various minerals, 

including monazite and bastnaesite. Effects of solution species on mineral flotation are 

also reviewed in this chapter for a better understanding of flotation chemistry.  

The third chapter introduces experimental details including material, chemicals, micro-

flotation apparatus and procedures, electrokinetic measurement, Fourier transform 

infrared spectroscopy (FTIR) characterization, adsorption apparatus, and procedures, 

etc. A case study of solution equilibrium calculation is also provided to explain how the 

calculation is conducted in the research dissertation. The corresponding test and 

calculation results as well as discussion are provided in the subsequent three chapters. 

Specifically, charging mechanisms of monazite, adsorption mechanisms of 

octanohydroxamic acid on monazite surfaces, and monazite-calcite separation studies 

are provided in the fourth, fifth, and sixth chapter, respectively. Concentration of rare 

earth minerals from coal and coal byproducts is also introduced in the seventh chapter.  

The main conclusion of the dissertation are recapitulated in the eighth chapter. 

Suggestions for future study are attached to the last chapter, which is also the ninth 

chapter.  
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CHAPTER 2. LITERATURE REVIEW AND THEORETICAL PRINCIPLES 

2.1 RARE EARTH IN COAL 

Rare earth elements (REEs) are a group of 15 lanthanide elements (atomic numbers 57-

71) and two transition metal elements (scandium and yttrium) (Binnemans et al., 2013). 

There is a consistently high demand for REEs due to their applications in automotive 

catalytic converters, glass polishing and ceramics, metallurgical additives and alloys, 

petroleum refining catalysts, rare-earth phosphors for lighting, televisions, computer, 

radar, X-ray intensifying film, and permanent magnets, etc.  

The world reserve of REEs was estimated to be 130 Mt. Most of the reserve is 

distributed in China (42.30%), Brazil (16.92%), Australia (2.46%), Malaysia (2.38%), 

and U.S.A. (1.38%) (Zhang et al., 2015). More than 95% of all consumed REEs were 

supplied by China in 2014. However, the export/production ratio of REEs for China 

steadily decreased from 64% in 2000 to 19% in 2010 due to China’s steadily growing 

domestic needs for REEs. The U.S. Department of Energy (DOE) identified 

neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy), and yttrium (Y) as 

the five most critical REEs (Binnemans et al., 2013).  

The average REE content of world coal is 69 ppm on whole coal basis, and Chinese 

and American coals contain 138 ppm and 62 ppm, respectively (Seredin and Dai, 2012). 

The total amount of REEs in coal was estimated to be 50 million tons which equate to 

nearly 50% of the REE reserve of traditional rare earth bearing minerals sources (Zhang 

et al., 2015). Significant economic potential may be realized if the REEs in coal can be 

recovered or even partially recovered. Furthermore, there are many well-known coal 

beds with extremely high REE content such as those in the Far East coalfields in Russia 

(300-1000 ppm REEs), Fire Clay coal bed in eastern USA (500-4000 ppm REEs), and 

the Sydney Basin in Nova Scotia, Canada (72-483 ppm REEs) ( Hower et al., 1999; 

Seredin, 1996). 

Significant work has been conducted at the University of Kentucky since 2014 to assess 

the feasibility of REE recovery from the Fire Clay coal bed (Honaker et al., 2014). 
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Middling and fine refuse were collected from a preparation plant which uses the Fire 

Clay coal as feedstock. Mineralogical and preliminary separation tests were conducted. 

Size analyses of fine refuse, with carbon removed, show that nearly 70% of particles 

are smaller than 25 microns and contained 70% of total REEs. As shown in Figure 2.1, 

enrichment ratio of 2 could be achieved using appropriate collectors. Multi-stage 

flotation test including rougher, cleaner, and re-cleaner indicated that a gradual 

enrichment of REEs was achieved. X-ray diffraction results showed that clay minerals 

(mainly kaolinite, montmorillonite, and illite), carbonate minerals (mainly calcite and 

dolomite), and quartz were the main mineral phases. Meanwhile, carbonate minerals 

were enriched significantly together with REEs during the multi-stage flotation (Figure 

2.2). 

 

Figure 2. 1. Flotation performance of fine refuse with different collectors at neutral 

pH. 
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Figure 2. 2. XRD patterns of the products obtained from multi-stage flotation (A-

Anatase, C- Calcite, D- Dolomite, I- Illite, K- Kaolinite, M-Montmorillonite, Q-

Quartz, V-Vermiculite). 

2.2 COLLECTOR ADSORPTION MECHANISMS 

Since Sulman and Picard’s first patent on the use of air bubbles for flotation in 1905, 

flotation had been widely used in mineral processing area, especially for minerals of 

small particle size (Fuerstenau et al., 2006). Significant work has been done in terms of 
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the fundamental aspects of flotation, such as flotation solution chemistry, 

electrochemistry, thermodynamics, flotation reagents (e.g., collectors and regulators), 

adsorption, etc. Collectors can selectively adsorb on mineral surfaces and induce 

hydrophobicity differences, which is the premise of flotation separation. Therefore, 

fundamental studies of collectors’ adsorption are crucial. As proposed by Fuerstenau 

and Somasundaran (Ananthapadmanabhan and Somasundaran, 1985; Pradip and 

Fuerstenau, 1983), the interaction between collectors and mineral surfaces can be 

classified as follows: 

Physisorption. Adsorption of reagent on mineral surface involving physical 

interactions, such as electrostatic force, Van der Waals force, etc.  

Chemisorption. Adsorption of reagent on mineral surface involving chemical 

reactions with metal atoms (ions) located in the mineral lattice sites; adsorption is 

generally limited to a monolayer (Figure 2.3(a)). 

Surface reaction. Interaction of reagent with mineral surface together with 

movement of metal atoms from their lattice sites; multilayers of reaction product 

may form (Figure 2.3(b)).  

Surface precipitation. Adsorption of reagent on mineral surface involving the 

formation of precipitates at the interfacial region between mineral and liquid.  

Bulk precipitation. Interaction of metal ions and reagent away from the surface out 

in the bulk solution. The precipitates produced in the bulk solution re-adsorb on 

mineral surface (Figure 2.3(c)).  
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Figure 2. 3. Collector adsorption mechanisms, EDL means electrical double layer. (a) 

Chemisorption; (b) Surface reaction; (c) Bulk precipitation. (Fuerstenau et al., 2007) 

Generally the interaction between collector and mineral surface involves several of the 

mechanisms listed above. The adsorption mechanism also changes with respect to 

dosages, pH, temperature, etc.  

2.2.1 Physical Adsorption 

Collectors physically adsorb onto mineral surfaces via electrostatic force, van der Waals 

force, hydrophobic force, and hydrophilic bonding. Physical adsorption was observed 

mainly in the flotation of strong hydrophilic minerals such as silicates, alumina, and 

hematite by using ammonium or sulfonate collectors. The adsorption of ammonium and 

sulfonate collectors has been extensively studied by the electro-kinetic, surface force, 

contact angle, micro-flotation, spectroscopic characterization, etc.  

Gaudin and Fuerstenau (1955) suggested that electrostatic and hydrophobic interactions 

contribute to the flotation of silica by using dodecylammonium (RNH2) as collector. In 

dilute solution dedecyammonium ions are held to the silica surface by electrostatic 

attraction, while, at higher concentrations the adsorbed collector ions begin to associate 
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into patches of ions, called hemi-micelles (Figure 2.4, 2.5, 2.6 and 2.7). The hemi-

micelles are actually two dimensional (2D) aggregates. Iwasaki et al. (1960) studied 

the flotation of hematite using several different collectors such as dodecylammonium 

chloride (C12H25NH3Cl), octadecylammonium chloride (C18H37NH3Cl), sodium 

dodecylsufate (C12H25SO4Na), and sodium octadecylsulfate (C18H37SO4Na). As shown 

in Figure 2.7, besides electrostatic interaction, carbon chain length also played 

significant role, which is related to the lateral interaction of hydrocarbon chains. 

Somasundaran and Fuerstenau (1966) suggested a similar adsorption mechanism of 

alkyl sulfonate (RSO4H) at the alumina-water interface, i.e., at a certain critical 

concentration or critical pH sulfonate ions are adsorbed individually as counter ions in 

the electrical double layer at low sulfonate concentrations due to the hindrance between 

the interacting hydrocarbon chains and electrostatic repulsion between the charged 

amino groups. The actual concentration of amine near the quartz surface becomes 

higher than the critical micelle concentration (CMC), adsorption increases rapidly 

through the formation of two-dimensional aggregates of the surfactant ions for hemi-

micelles at the solid –solution interface.  

The adsorption isotherm explained by hemi-micelle (HM) model can be divided into 

four distinct regions when plotted on a log-log scale, therefore, the HM model is also 

called the four-region model (Chandar et al., 1987; Fan et al., 1997; Somasundaran and 

Fuerstenau, 1966). The four-region model is as follows: 

Region I – Surfactants adsorb electrostatically as individually ions; 

Region II – The individual ions associate into hemi-micelles. In the hemi-micelles, 

the surfactants are oriented with their charged head groups toward the solid surface, 

while the hydrocarbon chains protrude into the aqueous phase, thus forming 

hydrophobic patches on the surface. Further adsorption results in an increasing 

number of surfactant aggregates, with molecules adsorbing in an opposite 

orientation once the surface is neutralized by the oppositely charged surfactant; 

Region III – Adsorption occurs through the growth of aggregates already formed 
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in region II without an increase in the number of aggregates; 

Region IV – Adsorbed layer exhibits the structure of a bilayer.   

 

Figure 2. 4. Zeta potential of quartz in solutions of dodecylammonium acetate and 

sodium chloride at several different pH values. (Gaudin and Fuerstenau, 1955) 

 

Figure 2. 5. Structure of the double layer and the distribution of potential in the 

double layer. (a) Conditions below those under which hemi-micelles form; (b) 

Conditions which give rise to hemi-micelle; (c) Multilayer adsorption. (Gaudin and 

Fuerstenau, 1955)  
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Figure 2. 6. (a) Adsorption of dodecyl sulfonate ions on alumina and the 

electrophoretic mobility of alumina as a function of the concentration at pH 6.9; (b) 

Illustration of adsorption of adsorption regions for surfactant adsorption on mineral 

oxide surfaces. (Somasundaran and Fuerstenau, 1966) 

 

Figure 2. 7. (a) Electrophoretic mobility of hematite as a function of pH; (b) Flotation of 

hematite with 10-4 M dodecylammonium chloride and sodium dodecylsulfate; (c) Flotation of 

hematite with 10-4 M octadecylammonium chloride and sodium octadecylsulfate.(Iwasaki et 

al., 1960) 

(a) 
(b) 
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Scamehorn et al. (1982) performed testing on the adsorption of alkylbenzene sulfonates 

on alumina and kaolinite and proposed a patchwise adosorption model, which 

incorporates bilayer adsorption, lateral interactions, and two-dimensional phase 

transitions (Figure 2.8 and 2.9). The patchwise adsorption model assumes that the 

surface is composed of patches with different adsorption energies, with the adsorption 

energy of each site within a given patch being uniform. The first layer and second layer 

of adsorption were assumed to be forming simultaneously, but for the region I, the 

second layer of adsorption is negligible. At region II, densely adsorbed phase is present 

on a patch at concentrations at or above that corresponding to the phase transition. After 

a phase transition occurred at most energetic patches at region II, the less energetic 

patches undergo phase transitions in region III. Above the CMC (region IV), the 

monomer concentration is constant and is the only adsorbed species (pseudo-phase 

separation model), therefore, increasing concentration has no influence on adsorption. 

 

Figure 2. 8. Patchwise adsorption model. (Scamehorn et al., 1982) 
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Figure 2. 9. Experimental and theoretical prediction results. (Scamehorn et al., 1982)  

Instead of the HM model, the more comprehensive patchwise adsorption model 

includes both the hydrophobic effect, surface aggregation, and surface heterogeneities. 

However, the nature of the surface and the counter ions was not taken into consideration. 

The pseudo phase separation model (PS) proposed by Harwell et al. (1984) took all of 

the above effects into consideration. The concept of admicelle was introduced in the PS 

model. The basic assumptions of the PS model are that surfactant aggregates forming 

at the solid/solution interface form locally on the surface because of surface 

heterogeneity and that these local aggregates, which are pictured as bilayered and are 

called admicelles, can be treated as pseudophase.  

Chernyshova et al. (2000) proposed a mechanism of the successive 2D and 3D 

precipitation (2D-3DP) of alkyamines on quartz (see Figure 2.10). In the 2D-3DP model, 

the adsorption characteristics were split into three regions. At amine concentration 

𝐶𝑏 < 𝐶𝐻𝐶 (critical hemimicelle concentration), surface silanol groups interact with 

ammonium head groups through H-bonds (see Eq. 2.1), while the hydrocarbon chains 

have chaotical orientation. At 𝐶𝐻𝐶 ≤ 𝐶𝑏 < 𝐶𝑝𝑟  (precipitation concentration), the 

content of the adsorbed layer qualitatively changes: instead of species shown in Eq. 2.1, 

molecular amine H-bonded to surface silanol and protonated amine coordinated to 

deprotonated silanol oxygen (see Eq. 2.2) appear at the quartz surface. Adsorption 
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steeply increases and the hydrocarbon chains become highly organized. At 𝐶𝑏 ≥ 𝐶𝑝𝑟 

bulk amine precipitation takes place. Vidyadhar et al. (2002) used the 2D-3DP model 

to explain the promotion effect of alcohol to alkyl ammine adsorption on silica. In this 

case, the primary adsorption species are alkyl ammonium-water-alcohol complex, 

which is formed via hydrophobic interaction and H-bonding. 

                   NH3

+
R Si  OH                     (Eq. 2.1) 

           NH3

+
R Si  O

-
R NH2 Si  OH            (Eq. 2.2) 

 

Figure 2. 10. Adsorption according to the 2D-3D precipitation mechanism. 

(Chernyshova et al., 2000) 

2.2.2 Chemical Adsorption-Carboxylic Acids 

Carboxylic collector and their salts such as oleic acid and sodium oleate have been 

widely used in the flotation of ilmenite (FeTiO3), cassiterite (SnO2), hematite (Fe2O3), 

spodumene (LiAl(SiO3)2), alunite (KAl3(SO4)2(OH)6), etc. Chemical reaction between 

surface active sites (cations) and oleic acid species is considered to be the main 

adsorption mechanism in spite that physical interaction also occurs.  

Two types of active sites exist on ilmenite, i.e., titanium and iron. However, only one 

kind of active site contributes to the adsorption at certain pH vales, therefore, ilmenite 
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displays poor floatability (Fan et al., 2009; Fan and Rowson, 2000; Mehdilo et al., 

2015). In strong acidic solutions (pH < 3), most of the ferrous ions were dissolved from 

the ilmenite surface and the remaining metallic ions were mainly titanium ions in the 

forms Ti(OH)3+ and Ti(OH)2+. In weakly acidic or weakly alkaline solutions (pH=5-8), 

titanium ions mainly existed in the form of Ti(OH)4, while ferrous ions existed in the 

forms of Fe2+ and FeOH+ function as active site (see Figure 2.11). Fe2+ can be 

converted to Fe3+ after microwave treatment, which more readily reacts with oleate 

(Fan et al., 2009; Fan and Rowson, 2000). The solubility products for ferrous oleate 

and ferric oleate are 10-15.5 and 10-29.7 respectively.  

 

Figure 2. 11. (a) Flotation recovery of ilmenite samples as a function of pH (IL-F, IL-

Q and IL-K indicate ilmenite samples of different sources) ; (b) Distribution diagram 

of surface species on ilmenite as a function of pH. (Fan et al., 2009; Mehdilo et al., 

2015) 

The adsorption interaction of oleate collector on spodumene is chemisorption that 

involves the chemical reaction between the anionic carboxylate functional group in 

oleate collector and cationic Al surface sites on spodumene (Figure 2.12) (Moon and 

Fuerstenau, 2003). The surface Al on the {110} cleavage plane of spodumene was 

found to be the most favorable site for the selective chemisorption of oleate, while 

those in other aluminosilicates are buried deep inside the crystallographic unit cells of 

the minerals, making them unavailable for oleate adsorption (Figure 2.13) (Yu et al., 

2015).  

(a) (b) 
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Figure 2. 12. Infrared spectra of surface oleate-aluminum foil treated in 10-4 M 

sodium oleate solution, for spodumene treated in 10-4 M sodium oleate solution and 

for bulk aluminum oleate. (Moon and Fuerstenau, 2003) 

 

Figure 2. 13. Molecular model of ionic-molecular complexes of oleic acid adsorbing 

on spodumene surface (color: Pink-Al, Violet-Li, Red-O, and Yellow-Si). (Yu et al., 

2015) 

Previous studies of oleate adsorption on monazite involves some specific interactions. 

Several publications have reported that the maximum flotation recovery and adsorption 

of sodium oleate on monazite occurred at pH 8.0-9.0 (Abeidu, 1972; Cheng et al., 1993; 

Dixit and Biswas, 1969; Pavez and Peres, 1993). Monazite usually carries negative 
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charge in this pH range. Dixit and Biswas (1969) believed that oleate ion concentration 

(COL-) and hydroxyl ion (COH-) concentration contribute to this flotation and adsorption 

behaviors. Oleate ions is the activating species, while hydroxyl ions have depressing 

effect due to competitive adsorption. An equation of the type: 

Γ = 𝐾1𝐶𝑂𝐿−
𝑛1 𝐾2𝐶𝑂𝐻−

𝑛2 𝐶𝑂𝐿−
𝑛3⁄               (Eq. 2.3) 

was proposed to account for the experimental data. 

Cheng et al. (1993) provided three reasons for the appearance of maximum recovery 

in pH 8.0-9.0, i.e., hydrolyzed rare earth ions such as REE(OH)2+ and REE(OH)2
+, 

acid-soap species ((Ol)2H
-), and “bubble transfer hypothesis”. Figure 2.14 shows 

monazite flotation results and species diagram of cerium phosphate (CePO4) in water. 

Figure 2.15 shows the species diagram of sodium oleate. Accordingly, the maximum 

concentrations of hydrolyzed rare earth ions Ce(OH)2+ and acid soap (Ol)2H
- occur in 

the neutral pH range.  

However, the detailed information about the adsorption of sodium oleate on monazite 

surfaces such as adsorption mechanisms, adsorption isotherms, adsorption kinetics, 

adsorption thermodynamics, effects of temperature, and configuration of collector 

molecules on the monazite surface and in the interfacial region have not been studied.  

 

Figure 2. 14. Monazite flotation results and species diagram. (a) Flotation results; (b) 

Species diagram of monazite at 10-5 M total solution concentration. (Cheng et al., 

1993) 

(a) (b) 
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Figure 2. 15. Solution specie diagram of sodium oleate. (a) Changes with pH; (b) 

Changes of pH values corresponding to maximum acid-soap concentration with 

different total oleate concentration. 

2.2.3 Chemical Adsorption-Hydroxamate Collectors 

Chelates are metal complexes formed by a chelating agent and characterized by a ring 

structure with the metal as the central atom surrounded by the donor atoms of the 

chelating agent (Nagaraj, 1988). Donors, or donor atoms or ligand atoms, are those that 

bond directly to the central metal atom. Ligands are the functional groups containing 

the donor atom on the chelating agent that participate in bond formation with metals. 

Functional groups are a well-organized group of atoms on the chelating agent and 

contain the donor atoms. Acceptors are atoms or groups of atoms that accept electrons 

from donors. A metal is the acceptor in most instances (Nagaraj, 1988). 

Chelating agents are a special class of metal complex-forming compounds (Nagaraj, 

1988). They may be organic or inorganic molecules; the only requirement is that their 

complexes be characterized by a ring structure, such as the compound shown in Figure 

2.16. For the complex shown in Figure 2.16, the metal platinum is coordinated with, or 

simply bonded to, two molecules of ethylene diamine. Platinum is actually bonded to 

four nitrogen atoms in such a way that two rings are formed. There are no restrictions 

on the nature of the bonds. Two of the bonds are ionic and the remaining two are 

coordinate covalent (Nagaraj, 1988).  
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Figure 2. 16. Structure of a metal complex. 

Literature, reviewed below, has reported the applications of chelating reagents in the 

flotation of chrysocolla ((Cu,Al)2H2Si2O5(OH)4·nH2O), goethite (FeO(OH)), hematite 

(Fe2O3), manganese dioxide (MnO2), bastnaesite ((Ce,La,Y)CO3F), malachite 

(Cu2CO3(OH)2), cassiterite (SnO2), phosphate minerals, oxidized copper, etc. The 

chelating reagents used include n-nitroso-n-phenylhydroxylamine salts, hydroxamate, 

dimethylglyoxime, benzoin oxime, benzohydroxamate, etc. 

Peterson et al. (1965) found that with the addition of 3.3×10-4 M of potassium 

hydroxamate, complete flotation of 3 g of chrysocolla in 130 ml of deionized water was 

obatined at pH 6.0 and recovery was noted to decrease markedly above and below this 

pH. Peterson et al. (1965) proposed three possible reasons, i.e., hydrolysis of 

hydroxamate to hydroxamic acid, dissolution of chrysocolla, and lack of chemisorbed 

hydroxyl ions at the surface. The reaction mechanism proposed by Peterson et al. (1965) 

is shown in Figure 2.17.  
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Figure 2. 17. Chemisorption of hydroxamate collector on chrysocolla surface. 

(Peterson et al., 1965) 

Fuerstenau et al. (1967) found similar flotation behavior for goethite with 

octanohydroxamate to that of chrysocolla, i.e., maximum flotation occurred at pH 

values corresponding to the maximum content of hydrolysis products of metal ions (see 

Figure 2.18). The reaction between goethite and hydroxamate is similar to that of 

https://en.wikipedia.org/wiki/Copper
https://en.wikipedia.org/wiki/Carbonate
https://en.wikipedia.org/wiki/Carbonate
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chrysocolla. The possible reasons for the lower recovery of goethite at acidic conditions 

are the hydrolysis of hydroxamate to hydroxamic acid or the lack of chemisorbed 

hydroxyl ions on the goethite surface.  

 

Figure 2. 18. Relationship between flotation recovery of goethite and pH. (a) 

Chrysocolla; (b) Goethite. (Fuerstenau et al., 1967; Peterson et al., 1965) 

Fuerstenau et al. (1970) used potassium octanohydroxamate to float hematite and found 

that the maximum recovery occurred at pH 8 to 8.5, which corresponds to the maximum 

concentration of hydrolysis products of iron (see Figure 2.19). Based on micro-flotation 

and FTIR tests, basic salts of metal collector are involved in the chemisorption process. 

Longer conditioning time enables more iron to dissolve from the mineral, therefore, 

flotation recovery is increased.  

 

Figure 2. 19. Flotation of hematite with hydroxamate. (a) Relationship between pH 

and recovery; (b) Concentration of iron (III)-bearing species in equilibrium with solid 

hematite as a function of pH. (Fuerstenau et al., 1970) 

(a) (b) 
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Raghavan and Fuerstenau (1975) studied the adsorption of octanohydroxamate on 

synthetic hematite. As shown in Figure 2.20, the results indicate that maximum 

adsorption occurs around pH 8.7, which corresponds to the PZC of the material, and 

increases in temperature significantly increased the adsorption. The pKa of octyl 

hydroxamate is around 9; at pH 5.5 most of the hydroxamate should be in the form of 

hydroxamic acid. As such, the hydroxamic acid is considered to be the active species. 

A combination adsorption/surface reaction model is proposed (see Figure 2.21). Before 

monolayer adsorption, the reaction between surface –FeOH and hydroxamic acid 

occurs. After monolayer adsorption, the physical adsorption via hydrogen bonding or 

hydrophobic bonding between molecules occurs. When temperature is increased, the 

surface chelate formed has a greater tendency to displace iron from the surface sites 

and then interact with hydroxamic acid molecules in the vicinity of the surface to form 

1:2 and 1:3 complexes. The increased adsorption at high temperature may also be due 

to the increased dissolution of the iron species, forming positively charged hydrolysis 

products which are likely to interact with hydroxamic acid and form basic ferric 

hydroxamates. Natarajan and Fuerstenau (1983) studied the adsorption of 

octanohydroxamate on manganese dioxide, and similar conclusions were proposed.  

 

Figure 2. 20. (a) Adsorption isotherm at 20oC; (b) Adsorption isotherms at 60, 41, and 

20oC. (Raghavan and Fuerstenau, 1975) 

(a) (b) 
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Figure 2. 21. Adsorption of hydroxamate on synthetic hematite surface. (a) 

Concentration below monolayer coverage; (b) Concentration over monolayer 

coverage; (c) At higher temperatures 60oC. 

Pradip and Fuerstenau (1983, 1985) systematically studied the adsorption of 

hydroxamate on semi-soluble minerals, including bastnaesite, calcite, and barite, and a 

surface reaction/chemisorption mechanism was proposed (Figure 2.22). Hydroxylation 

of the cations on the mineral surface assist surface reaction phenomena through first 

providing some surface atom movement. Re-adsorption of hydrolyzed species 

participate in surface reactions. Chemisorption occurs on the mineral surface through 

reaction between atoms coordinated in the surface crystal lattice and hydroxamate 

species. The reaction model is shown in Figure 2.23. Adsorption at elevated 

temperature exhibits increased uptake of potassium octanohydroxamate with 

temperature on barite, calcite, and bastnaesite.     
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Figure 2. 22. Adsorption isotherm of hydroxamate on bastnaesite, calcite, and barite. 

(Pradip and Fuerstenau, 1983) 
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Figure 2. 23. Surface reaction/chemisorption model. (Pradip and Fuerstenau, 1985) 

Assis et al. (1996) studied the floatability of apatite, barite, quartz, gorceixite, micas, 

magnetite, limonite/goethite, calcite, and hematite using hydroxamate collector. The 

relative floatability of minerals was hematite < apatite, anatase < apatite, apatite < 

calcite, apatite < fluorite, siderite < calcite. The stability constants of 

metal/hydroxamate at 20 oC is Ca2+ 2.4, Fe3+ 11.4, Fe2+ 4.8; the solubility was hematite 

< apatite, anatase < apatite, apatite < siderite < fluorite < calcite. Therefore, the 

selectivity of minerals floated with hydroxamates depends on a balance between the 
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solubility of the mineral and the stability of the complex formed with the cations in the 

lattice.  

Miller et al. (2001a, 2001b, 2011c) found that Cytec’s collector Aero6493, a 30% 

alcoholic solution of hydroxamic acid, performs much better than traditional phosphate 

collectors (e.g., fatty acid/fuel oil). However, the reason for the improved efficiency has 

not been studied. A possible reason proposed is that the insoluble hydroxamic acid 

collectors selectively wet the mineral surface, while, specific chelation phenomena is 

not involved.  

Hydroxamate collectors are also used together with xanthate to float mixed minerals of 

sulfide and oxide copper (Hanson and Fuerstenau, 1987; Fuerstenau et al., 2000; Lee 

et al., 2009; Hope et al., 2012). Studies by Hanson and Fuerstenau (1987) indicated that 

octanohydroxamate, which strongly chelates copper ions in solution, will not adsorb on 

chalcocite (Cu2S) unless the system is sufficiently oxidized to provide cupric ions at the 

mineral surface. Fuerstenau et al. (2000) assessed five different types of bidentate 

chelating reagents (N-O, O-O, S-N, S-S, and N-N) as collectors for both copper oxide 

and sulfide through contact angle measurements. The results indicated that potassium 

octanohydroxamate exhibits unusual potential for the flotation of copper oxide minerals. 

Lee et al. (2009) used n-octyl hydroxamate in conjunction with traditional sulfide 

collectors to float a blend of 70% sulphide ore and 30% oxide ore, the rougher 

scavenger copper recovery was as high as 95.5%.  

Recently, studies pertaining to the adsorption of hydroxamate collectors on mineral 

surfaces via X-ray photoelectron spectroscopy, vibrational spectroscopy, Raman 

spectroscopy, and TOF-SIMS imaging have been reported (Cui et al., 2012; Hope et al., 

2012; Ni and Liu, 2012; Buckley and Parker, 2013). Cui et al. (2012) found that 

hydroxamate treatment of Nd2O3 can form multilayers of Nd hydroxamate, but only 

after a conditioning time much longer than those used in flotation. Hope et al. (2012) 

studied the interaction of octanohydroxamate with chrysocolla and oxide copper 

surfaces by using vibrational spectroscopy and X-ray photoelectron spectroscopy, and 
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found that at low collector coverages, copper hydroxamate was formed at the 

mineral/collector interface. Multilayers were formed at higher concentrations, probably 

with minor (~15%) co-adsorption of hydroxamic acid. Ni and Liu (2012) found that 

octanohydroxamic acid adsorbs on calcite through weaker physical adsorption, while, 

strong chemisorption of the octanohydroxamic acid onto pyrochlore leads to a vertical 

head-on orientation. Buckley and Parker (2013) proposed that for hydroxamate 

adsorption onto iron oxide, the major chemisorbed species was bidentate hydroxamate, 

but at higher coverages, monodentate hydroxamate was also chemisorbed (see Figure 

2.24).  

Fe

O O

N

O O

CH3

CH3

Fe

O O

N

OH O

CH3

CH3

Fe

O O

N

O OH

CH3

Fe

O O

NH

O O

CH3

O

CH3

NH

OH

(a) (b)

(c) (d)

 

Figure 2. 24. Schematic structures of hydroxamate chemisorbed to Fe in oxide 

surface. (a) Bidentate; (b) Monodentate via O bonded to C; (c) Monodentate via O 

bonded to N; (d) Bidentate with co-adsorbed acid in keto form. (Buckley and Parker, 

2013) 

2.2.4 Surface and Bulk Precipitation 

The precipitation reaction occurs when cations and anions in aqueous solution combine 

to form an insoluble ionic solid called a precipitate. For surface precipitation, the 

cations and anions involved in the reaction are in the interfacial region. The reaction is 

follows: 
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                𝑀𝑛𝐴𝑚  ↔  𝑛𝑀𝑚+  + 𝑚𝐴𝑛−  𝐾𝑠𝑝 = [𝑀𝑚+]𝑛[𝐴𝑛−]𝑚    (Eq. 2.3) 

where 𝑀𝑚+ and 𝐴𝑛−  mean the cationic and anionic ions forming the precipitate 

𝑀𝑛𝐴𝑚; 𝐾𝑠𝑝 the solubility product of the precipitate.  

The existence of an electrical potential at the solid-liquid interface will lead to 

preferential partitioning of oppositely charged counter-ions in the interfacial region. In 

such systems, under electrochemical equilibrium conditions, the activity in the 

interfacial region is related to that in the bulk by the equation (Ananthapadmanabhan 

and Somasundaran, 1985): 

𝑎𝑖−𝑠 = 𝑎𝑖−𝑏𝑒𝑥𝑝
𝜇𝑖−𝑠

0 −𝜇𝑖−𝑏
0

𝑅𝑇
                (Eq. 2.4) 

where 𝑎𝑖−𝑠  and 𝑎𝑖−𝑏  represent the activities of species i in the surface and bulk 

regions, respectively; and 𝜇𝑖−𝑠
0  and 𝜇𝑖−𝑏

0  represent the standard electrochemical 

potential of species i in the surface and bulk regions, respectively. The activity of a 

species can be higher in the interfacial region than in the bulk solution if favorable free 

energy changes accompany such a redistribution. Surface precipitation may 

predominate if the kinetics of release of metallic species are relatively slow.  

It is difficult to distinguish bulk and surface precipitation. Generally, if active species 

accumulate in the interfacial region due to some favorable adsorption forces, surface 

precipitation will occur, otherwise, bulk precipitation will occur. In the absence of any 

favorable forces, both surface and bulk precipitation may occur simultaneously 

(Ananthapadmanabhan and Somasundaran, 1985; Pradip and Fuerstenau, 1983; 

Fuerstenau et al., 2000).  

A classic example of bulk precipitation is the anionic collector flotation of semi-soluble 

minerals such as using oleic acid to float calcite (CaCO3). Fuerstenau and Miller (1967) 

believed that the mechanism of fatty acid adsorption involves a specific chemical 

reaction between the collector and the surface, as follows: 

    𝐶𝑎𝐶𝑂3(𝑠) + 2 𝑅𝐶𝑂𝑂−  ⇄ 𝐶𝑎(𝑅𝐶𝑂𝑂)2(𝑠) +  𝐶𝑂3
2−   (Eq. 2.5)         
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where 𝑅𝐶𝑂𝑂− means the anions of fatty acid 𝑅𝐶𝑂𝑂𝐻. 

Somasundaran (1969) proposed that below the PZC of calcite, oleate electrostatically 

adsorbed on calcite surfaces, while, above the PZC, oleate chemically adsorbed onto 

calcite surfaces. Bulk precipitation of calcium oleate was also be considered as a 

possibility, but only above about 4×10-5 M oleate (Figure 2.25).  

 

Figure 2. 25. Zeta potential of calcite as a function of sodium oleate concentration 

(initial) in solutions containing 10-3 M potassium nitrate as supporting electrolyte. 

(Somasundaran, 1969) 

Antti and Forssberg (1989) used FTIR to study the adsorption of oleate onto calcite and 

found that at monolayer coverage a 1:1 calcium-oleate complex is formed via ion-

exchange. Bulk precipitation of calcium oleate occurred after monolayer formation at 

pH 9, 10, and 11. Rao and Forssberg (1991) also obtained a similar conclusion. The 

ion-exchange reaction is as follows: 

−CaOH +  RCOO−  ⇄  −Ca+ −OOCR +  OH−          (Eq. 2.6) 

Young and Miller (2000) used in-situ Fourier infrared/internal reflection spectroscopy 

(FT-IR/IRS) with reactive internal elements (IREs) to study oleate adsorption at a 

calcite surface. Similar conclusions were obtained as in previous studies, i.e., 
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chemisorption occurred at low oleate concentrations, while at higher oleate 

concentrations, surface precipitation of calcium dioleate predominated (Figure 2.26). 

In this case, the adsorption densities decreased with the increases in temperature due to 

surface passivation and increased solubility of calcium dioleate at 60 oC.  

 

Figure 2. 26. Adsorption isotherms for oleate on calcite. (Young and Miller, 2000) 

Overall, bulk precipitation occurred when the active metal atoms are pulled out of the 

crystal lattice via hydrolysis, and these hydrolysis species are readily released to the 

solution from the interfacial region.  

The classical example of surface precipitation is the adsorption of multi-valent metal 

ions on silica. Figure 2.27 shows the adsorption of Co2+ at the silica surface as well as 

the species distribution of Co2+ in solution. Accordingly, in narrow pH ranges, Co2+ 

adsorption increases sharply, and near the pH ranges, the concentration of Co2+ reaches 

maximum. But these two ranges do not exactly coincide. Therefore, the adsorption 

cannot be simply explained with the “adsorption and hydrolysis” mechanism.  
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Figure 2. 27. Experimental adsorption isotherm for Co2+ adsorption at 1.2×10-4 M and 

1.2×10-6 M on silica at 25oC. Computed hydrolysis data for this concentration are also 

shown as the percentage of each aquo complex as a function of pH. (James and Healy, 

1972) 

Figure 2.28 shows a typical zeta potential dependence on pH and three charge reversals 

were observed. The first charge reversal pH (CRl) corresponds to the point of zero 

charge of the mineral oxide. The second charge reversal occurs around the pH where 

the “adsorption” exhibits its sharp increase. The second charge-reversal point (CR2) 

corresponds to the onset of surface precipitation of the adsorbate hydroxide on the 

original oxide surface. The third charge-reversal point (CR3) corresponds to the point 

of zero charge of the adsorbate hydroxide (Mackenzie and O’Brien, 1969; James and 

Healy, 1972a, 1972b, 1972c; Ananthapadmanabhan and Somasundaran, 1985). Before 

the onset of surface precipitation, electrostatic forces and hydrogen bonding induce the 

adsorption of metallic or hydrolyzed metallic ions (see Figure 2.29). James and Healy 

(1972c) reported that because of the quadratic dependence of solvation energy changes 

on the charge of the ion, this term decreases the adsorption of highly charges species. 

Due to the existence of electrical field in the interfacial region, the interfacial solubility 

product Kc’ is smaller than the bulk solubility product Kc, therefore, surface 

precipitation occurs at lower pH values than bulk precipitation (James and Healy, 

1972b). The equations describing the surface precipitation are as follows: 

log (𝐾𝑐 𝐾𝑐
′⁄ ) = (𝐺𝐶𝑜2+

′ + 𝐺𝑂𝐻−
′ )/2.3𝑅𝑇                (Eq. 2.7) 

where 𝐺′ represents the excess free energy of the ions in a medium where the electric 

field is not zero. The excess energy in joule/mole is: 

(a) 
(b) 
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𝐺′ =
(𝑧𝑒)2𝑁

8𝜋(𝑟𝑖𝑜𝑛+2𝑟𝑤)𝜖0
∙ (

1

𝜖𝑖
−

1

𝜖𝑏
) ∙ 𝑔(𝜃)                 (Eq. 2.8) 

where 𝑧 is the charge on the ion; 𝑟𝑖𝑜𝑛 is the radius of ion; 𝑟𝑤 is the radius of water; 

𝜖𝑖 and 𝜖𝑏 are the dielectric constants of material in the interface and in bulk solution 

respectively; and 𝑔(𝜃) is the geometrical function.  

 

Figure 2. 28. Effects of multivalent species on zeta potential of silica. 

(Ananthapadmanabhan and Somasundaran, 1985) 
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Figure 2. 29. Hydrogen bonding between hydrolyzed species of Ni and silica surfaces. 

(Mackenzie and O’Brien, 1969)  

2.3 EFFECTS OF SOLUTION SPECIES ON FLOTATION 

Effects of solution species such as Ca2+ on flotation separation have been realized for 

many minerals such as silica, feldspar, pyrite, Cu-Zn sulfide, spodumene, etc. Both 

activation and depression effects of these solution species have been reported, which is 

dependent on the mineral characteristics, electrolyte concentration, pH, etc. The effects 

of solution species on monazite flotation have not been extensively studied. Ren et al. 
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(2000) observed significant depression of monazite in presence of 5×10-4 M potassium 

alum, which is attributed to the specific adsorption of hydrolyzed aluminum species.  

Arnold and Aplan (1986) found that ions (e.g. Ca2+, Mg2+, Na+, Cl-, SO4
2-) in the 

flotation pulp increase coal flotation recovery in the neutral pH range by thinning the 

hydrated layers around the surfaces of coal particles. Ca2+ and Mg2+ may also increase 

coal recovery by tying up the surface oxygen groups, rendering them less hydrophilic. 

However, Celik and Somasundaran (1986) found that Ca2+, Fe3+, and Al3+ depress coal 

flotation in the pH region corresponding to the formation of metal hydroxide 

precipitates (Figure 2.30). Surface precipitation and hydroxyl complex specific 

adsorption were considered as the adsorption mechanism. Li and Somasundaran (1993) 

reported that coal flotation was depressed at low NaCl concentrations (< 0.1 M), while, 

beyond that concentration, coal flotation was activated. Hydrophobicity of coal and 

attraction between coal and bubbles control coal flotation at low and high NaCl 

concentrations, respectively. Kurniawan et al. (2011) and Ozdemir et al. (2009) also 

found similar results at high salt concentrations and in addition to surface chemistry 

aspects, the increased recovery is also attributed to decreased bubble coalesce.  

  

Figure 2. 30. (a) Abstraction of calcium and aluminum from coal; (b) Flotation of coal 

as a function of equilibrium pH in the presence of FeCl3 and AlCl3. (Celik and 

Somasundaran, 1986) 

The activation effects of Ca2+, Mg2+, and Fe3+ on the flotation of spodumene 

(LiAl(SiO3)2) have been reported (Wang et al., 2007; Jie et al., 2014; Liu et al., 2015;). 

As shown in Figure 2.31, the spodumene recovery increased from around 20% to more 

(a) (b) 

https://en.wikipedia.org/wiki/Lithium
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https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Silicon
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than 60% with the increases in Fe3+ concentration from 6×10-5 M to 1.6×10-4 M. The 

maximum flotation occurred at pH 7.1. X-ray electron spectrometer studies indicated 

that the Fe3+ could be adsorbed on the surface of spodumene in the form of iron oleate. 

Liu et al. (2015) proposed that chemisorption of oleate ions (RCOO- and R(COO)2
2-) 

on the spodumene surface occurred via the formation of calcium and magnesium oleate 

with unsaturated Ca2+ and Mg2+ ions on the mineral surfaces. 

 

Figure 2. 31. (a) Flotation recovery of spodumene, albite, and quartz as a function of 

pH with 1.5×10-4 M Fe3+ and 2.0×10-4 M sodium oleate; (b) Flotation recovery as a 

function of Fe3+ concentration using 2.0×10-4 M sodium oleate at pH 6-7. (Jie et al., 

2014) 

 

 

 

 

 

 

 

 

 

(a) (b) 
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CHAPTER 3. MATERIAL AND METHODS 

3.1 MATERIAL 

3.1.1 Pure Minerals 

Monazite pre-concentrate samples collected from a rare earth mine in China was 

purified using a shaking table and a high-gradient magnet. A monazite concentrate with 

high purity was obtained as determined by inductively coupled plasma mass 

spectrometry (ICP-MS) (Table 3.1). The X-ray diffraction Analyses indicated that 

monazite is the only major mineral in the sample (Figure 3.1). The 0.15x0.30 mm 

fraction of the concentrate was screened out and used for micro-flotation tests. A part 

of the concentrate was also ground into fine powder and used for electrokinetic and 

adsorption tests.   

Table 3. 1 Elemental composition of the purified monazite sample. 

Element Ce La Nd Th Pr Y P 

Content (%) 28.05 9.46 13.18 6.09 3.04 1.12 11.48 

 

Figure 3. 1. XRD pattern of the purified monazite sample. 
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Chunk samples of calcite collected from a limestone mine located in Kentucky, USA, 

were crushed and ground to minus 300 μm. X-ray diffraction Analyses showed that 

calcite content in the sample was more than 95 % and, thus, it is directly used as a pure 

mineral. The pure minerals were used for micro-flotation, electrokinetic, adsorption and 

FTIR tests. 

 

Figure 3. 2. XRD pattern of calcite (C) sample.  

3.1.2 Chemicals 

In the current study, octanohydroxamic acid was used as the monazite and calcite 

flotation collector. Hydroxamic acid is a typical kind of chelating reagent which can 

form stable chelates with metallic cations. Figure 3.3 shows the structure of an 

octanohydroxamic acid molecule. Methyl isobutyl carbinol (MIBC) was used as the 

flotation frother. Hydrochloric acid and sodium hydroxide solutions of appropriate 

concentrations were used as pH regulators. Potassium chloride solution of 1 mM was 

used as a supporting electrolyte for zeta potential measurement. Calcium chloride and 

sodium carbonate were used to study the effects of calcium and carbonate ions on 

octanohydroxamic acid D adsorption on monazite surfaces. Cerium chloride and 

phosphoric acid were used to study the role monazite lattice ions played in surface 
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charge development. Sodium silicate, sodium hexametaphosphate, citric acid, and 

ethylenediaminetetraacetic acid (EDTA) were used as regulators for monazite-calcite 

flotation separation. Details of the chemicals used in the present study are listed in Table 

3.2. 

 

Figure 3. 3. Molecular structure of octanohydroxamic acid.  

Table 3. 2 Details of the chemical used in the current study.  

Chemical Formula 

Molecular 

Weight 

(g/mol) 

Purity (%) Source 

Octanohydroxamic acid C8H17NO2 159.23 ≥95% TCI America 

Methyl Isobutyl Carbinol 

(MIBC) 
C6H14O 102.17 ≥99% Fisher 

Hydrochloric acid HCl 36.46 
38.0% 

(w/w) 

Fisher 

Scientific 

Sodium hydroxide NaOH 40.00 ≥97% 
Fisher 

Scientific 

Potassium chloride KCl 39.10 ≥99% 
Fisher 

Scientific 

Calcium chloride 

dihydrate 
CaCl2·H2O 146.98 ≥99% VWR 

Sodium carbonate Na2CO3 106.00 ≥99% VWR 

Iron (III) chloride 

hexahydrate 
FeCl3·6H2O 270.20 ≥98% 

Sigma-

Aldrich 

Cerium chloride 

heptahydrate 
CeCl3·7H2O 372.48 ≥99% VWR 

Phosphoric acid H3PO4 98.00 ≥85% 
Fisher 

Scientific 

Sodium silicate solution Na2O·nSiO2 NA Technical 
Fisher 

Scientific 

Sodium 

hexametaphosphate 
(NaPO3)6 611.77 Reagent 

Fisher 

Scientific 

Citric acid C6H8O7 192.12 ≥99% VWR 

EDTA C10H16N2O8 292.24 ≥99% VWR 
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3.2 EXPERIMENTAL DETAILS 

3.2.1 Micro-flotation Tests 

A 50 ml volume micro-flotation cell was used for the flotation tests (Fig. 3.4 and 3.5). 

Suspension of the particles was achieved using a magnetic stirrer. To reduce 

interference of carbon dioxide, air bubbles were produced by passing pure nitrogen 

through a porous frit. Conditioning was conducted in a glass beaker with one gram of 

pure minerals in a 50 ml solution. For combined mineral flotation tests, monazite was 

mixed with calcite with a mass ratio of 1:1. Solution pH values were initially adjusted 

followed by sequential addition of metallic cations, regulators, depressants, and 

collector with each conditioned for 5 min. Frother was added sequentially followed by 

1 minute of conditioning. The solution pH values were measured and adjusted every 

2.5 min during conditioning. Given that majority of the material was floated within the 

first 30 seconds, the initial pH values were considered to be more representative of the 

flotation conditions and reported in the present study. Difference in the pH values 

measured before and after each flotation test was typically 0.2 pH units.   

During the flotation tests, the nitrogen flow rate was maintained at 55 ml/min while 

froth products were continuously removed over a period of 4 min. The concentrate and 

tailing samples were dried in an oven for 12 h and then cooled in a desiccator. Finally, 

flotation recovery values were calculated based on the product weights. For the mixed 

mineral flotation tests, monazite and calcite recovery values were calculated by using 

the assay values obtained from acid digestion. Three repeat tests were conducted under 

the same condition and the experiment error measured from the recovery data indicated 

a standard deviation value of 1.10 %. 
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Figure 3. 4. Schematic diagram of the micro-flotation apparatus.  

 

Figure 3. 5. Micro-flotation apparatus used for flotation tests.  

3.2.2 Adsorption Tests 

The purified monazite concentrate was ground to a mean diameter (d50) of 3.50 μm 

(BET surface area 2.2513 m2/g) using a mortar and pestle. The ground sample was used 

for the adsorption tests. The adsorption of octanohydroxamic acid on monazite under 

different conditions was evaluated by the abstraction from solution method, i.e., 

 



38 
 

measuring the concentration difference of the collector in solution before and after 

adding the monazite powders. Adsorption tests were conducted in 50 ml homopolymer 

polypropylene bottles. For each test, monazite powder of 0.05 g was added into the 

bottle which contained 10 ml of collector solutions. pH value of the system was adjusted 

by adding hydrochloric acid and/or sodium hydroxide. After pH regulation, the slurry 

together with a magnetic stirring bar were sealed tightly in the bottle. Suspension of 

solid particles in the slurry was achieved by using magnetic stirrer with a constant 

rotating speed. After adsorption, the slurry was transferred into a centrifuge tube and 

centrifuged in an IEC Clinical centrifuge at 3175 rpm for 10 min. Octanohydroxamic 

acid concentration of the supernatant was determined using a Shimadzu 1280 UV-Vis 

spectrophotometer based on the ferric hydroxamate method and a calibration 

measurement of 503 nm (Natarajan and Fuerstenau, 1983; Raghavan and Fuerstenau, 

1974). The overall adsorption test can be represented by Figure 3.6. 

 

Figure 3. 6. Adsorption test procedures.  

Feasibility of using the UV-Vis measurement to determine octanohydroxamic acid 

concentration in solution was also evaluated. Figure 3.7(a) shows that very good 

linearity existed between the absorbance and octanohydroxamic acid concentration in 

0.1-1.0 mM range. To evaluate pH effects, absorbance of solutions with constant 

octanohydroxamic acid concentrations was measured at pH 3.0, 6.0, 9.0, and 11.0, 

respectively. As shown in Figure 3.7 (b), for a solution with less than 1 mM 
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octanohydroxamic acid, the effects of pH are minor, while the difference expands for 

higher concentrations. As such, when octanohydroxamic acid concentration is larger 

than 1 mM, dilution is needed to ensure the concentration is in 0.1-1.0 mM range.  

 

 

Figure 3. 7. Feasibility evaluation of using UV-Vis to determine octanohydroxamic 

acid concentration in solution: (a) linear regression of absorbance versus 

octanohydroxamic acid concentration; (b) absolute difference for the absorbance 

measured at different pH values and concentrations. (Absolute difference means the 

difference between absorbance measure at different pH values and the average value.) 
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The adsorption density (Γ, mg g-1) of hydroxamic acid on monazite was calculated using 

the following equation: 

Γ =  
(𝐶𝑖− 𝐶𝑓)∗𝑉

𝑊
,                                              (Eq. 3.1) 

where 𝐶𝑖  and 𝐶𝑓  represent the initial and final concentrations (mg L-1) of 

octanohydroxamic acid in solution, respectively. 𝑉 and 𝑊 are the volume (L) of the 

solution and the weight (g) of monazite, with values of 0.01 L and 0.05 g, respectively. 

Three tests were conducted under the same condition and a standard deviation value of 

0.11 mg g-1 was obtained.   

3.2.3 Electrokinetic Tests 

The mechanisms which give rise to the spontaneous separation of charge between two 

phases in contact are: 

a. differences in the affinity of the two phases for electrons; 

b. differences in the affinity of the two phases for ions of one charge or the other; 

c. ionization of surface groups; 

d. physical entrapment of non-mobile charge in one phase. 

Mechanisms b and c are the main charging mechanisms of minerals in solution, which 

is classified in detail as follows: 

a. preferential dissociation, such as silver iodide (AgI) in water, i.e., the dissociation 

of silver ion (Ag+) to water is larger than that of iodide ion (I-), and AgI surface 

carries negative charge; 

b. preferential adsorption, such as scheelite in solution with an excessive amount of 

calcium (Ca2+), i.e., scheelite surfaces will adsorb Ca2+ and carry a positive 

charge;  

c. adsorption and ionization, such as silica in water; 

d. crystal lattice ion displacement, such as clays, i.e., aluminum (Al3+) displaced by 

Ca2+ and carries negative charge. 

When mineral particles are put in water, the arrangement of charges on and near the 
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mineral surface is referred as the electrical double layer (EDL). The models used to 

depict the EDL include Holmholtz, Gouy-Chapman, Stern, etc. Figure 3.8 shows the 

Stern EDL model. As shown in the figure, the Stern layer is a compact region near the 

solid surface where adsorbed counter ions interact with the surface, while the diffuse 

layer, next to the Stern layer, is where remaining excess counter ions are distributed 

according to the Boltzmann distribution. The particles in the solution can be induced to 

move by applying an electric field across the system, which is called electrophoresis. 

The plane with which charges move together with the particle is called slipping plane. 

The potential at the slipping plane is referred to as zeta potential.  

 

Figure 3. 8. Electrical double layer.  

Within the EDL, indifferent ions electrically interact with particle surface. However, in 

addition to electrically interaction, specific interactions such as chemical adsorption 

and hydrocarbon chain association exist for some components. In this case, the potential 

distribution at the interface will change (see Figure 3.9). Therefore, electrokinetic 

studies are a good tool to investigate the interaction between chemicals and mineral 

surfaces. 
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Figure 3. 9. Potential distribution within the EDL. (a) Particle surface without specific 

adsorption; (b) Specific adsorption of components carrying the same electrical sign; 

(c) Specific adsorption of components carrying the opposite electrical sign.  

Samples used for the electrokinetic tests were the same as those used for the adsorption 

tests. For each experimental measurement, ground material in the amount of 0.02 g was 

mixed with 40 mL of supporting electrolyte solution (10-3 M KCl) in a 50 mL glass 

beaker. The suspension was placed into an ultrasonic bath for 1 min for particle 

dispersion. NaOH and HCl were used for regulating the solution pH to a predetermined 

value. After 5 min of conditioning, chemicals such as CeCl3·7H2O or phosphoric acid 

(H3PO4) of predetermined concentration were added based on the test purposes. The 

conditioning was conducted at 25 oC using a magnetic stirrer at constant rotating speed. 

Solution pH values were monitored during the process and the final pH values were 

reported in the current study. After conditioning, the suspension was collected and used 

for zeta potential measurement. Zeta potential was measured by using a ZetaPlus 

analyzer made by Brookhaven Instruments Corporation, which uses electrophoretic 

light scattering and the Laser Doppler Velocimetry method to determine particle 

electromobility (Figure 3.10). For the same condition, three times of measurement were 

conducted and the standard deviation was less than 1.5 mV.  
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Figure 3. 10. Zetaplus zeta potential analyzer. (a) Equipment photo; (b) Schematic 

diagram.  

3.2.4 Fourier Transform Infrared Spectroscopy (FTIR) Analyses 

Fourier transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared 

spectrum of adsorption, emission, photoconductivity, and Raman scattering of a solid, 

liquid, or gas. In infrared spectroscopy, infrared radiation is passed through a sample. 

Some of the infrared radiation is adsorbed by the sample and some of it is transmitted. 

The resulting spectrum represents the molecular adsorption and transmission. Each 

functional group has its unique adsorption peaks. For example, the characteristic peaks 

(a) 

(b) 
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of octyl hydroxamate are at 1650 cm-1 (amide I band), 3000 cm-1 (C-H stretching), 3250 

cm-1 (N-H stretching), 1570 cm-1 (amide II band), 1000 cm-1 (C-H out of plane 

vibration), and 980 cm-1 (N-O stretching) (Fuerstenau et al., 1970). Therefore, FTIR is 

useful to detect the mineral surface chemistry changes.  

FTIR characterization was used for the following studies: i) adsorption mechanism of 

octanohydroxamic acid on monazite surfaces; ii) effects of calcium ions on 

octanohydroxamic acid adsorption on monazite surfaces. Pure monazite samples were 

ground to minus 2 μm using a mortar and pestle for FTIR tests to reduce light scattering. 

Conditioning procedures were similar to that used for adsorption tests. Based on the 

purposes of studies, corresponding chemicals were added during conditioning. After 

conditioning, the sample was centrifuged and supernatant was decanted followed by 

three stages of rinsing to remove any residual or physically-adsorbed collectors. Based 

on the fact that cerium is the main rare earth elements in monazite, cerium 

octanohydroxamate was synthesized by mixing cerium chloride with 

octanohydroxamic acid (1:3 molar ratio) in an acidic environment. Cerium oxide was 

synthesized by increasing the pH value of cerium chloride solution. FTIR analyses were 

conducted by using a Varian 7000e spectrometer which is based on the attenuated total 

reflection (ATR) method. The ATR crystal material used in the system is diamond. A 

few milligrams of mineral powders was placed directly on the optic window. The 

Analyses was conducted from 4000 to 700 cm-1 using 32 scans with a resolution of 4 

cm-1. The FTIR results were analyzed using the drawing and peak fitting tools of the 

Original software.  

3.2.5 Titration Tests 

The reaction between cerium and octanohydroxamic acid in solution was studied using 

titration tests which were conducted in a 100 mL beaker. Solutions of 50 mL and 

predetermined ingredients were first transferred into the beaker. The solution pH values 

were adjusted to 3.0 by using hydrochloric acid (25% v/w). Sodium hydroxide solution 

(10% w/w) was added into the solution to adjust the solution acidic/basic environment 
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and titration was stopped when solution pH value of 11.0 was reached. Mixing was 

achieved using a magnetic stirrer. The pH values corresponding to the amount of 

hydroxyl ions added were recorded continuously. 

3.2.6 Batch Flotation Tests 

Conventional flotation tests were conducted using a bench-top Denver flotation 

machine equipped with cells of different volumes. Slurry with 10% solid concentration 

was agitated for 1 min in the cell first to make it mixed thoroughly. Slurry pH values 

were adjusted using sodium hydroxide and hydrochloric acid. Octanohydroxamic acid 

(1.5 kg/ton) and MIBC (50 ppm) were added afterward followed by 5 min and 1 min 

of agitation, respectively. After conditioning, concentrate was floated for 20 min. The 

conditioning procedures for column flotation tests were same as that used for 

conventional flotation tests. The column flotation tests were conducted using a lab-scale 

column that was 2.5 m length and 5 cm diameter (Figure 3.11). Instead of running 

continuously, the tailings was reported back to the sump. Feed rate of 100 ml/min was 

used to get 60 min residence time for flotation. Froth zone depth of 15 cm was used to 

reduce the hydraulic entrainment. To produce concentrates with high REE content, 

multi-stages of flotation were tested using the flowsheet shown in Figure 3.12.  

 

Figure 3. 11 Schematic diagram of the flotation column system used for REE 

recovery form Fire Clay fine refuse. 
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Figure 3. 12. Multi-stages column flotation test flowsheet for REE recovery from the 

Fire Clay fine refuse. 

3.3 SOLUTION EQUILIBRIUM CALCULATION 

A series of reactions including dissolution, precipitation, dissociation, association, and 

hydrolysis, etc., may occur when minerals and/or collectors are put in solution. In each 

reaction, distribution of the reactants and products can be described using the 

thermodynamic reaction constant. The overall system is also controlled by the mass 

conservation and the charge conservation laws. As such, activities and/or 

concentrations of all the species in a given system can be calculated.  

In the current study, the solution equilibrium calculation is frequently used in different 

chapters for different purposes such as studying the surface charging mechanisms of 

monazite in aqueous solutions and the adsorption mechanism of octanohydroxamic acid 

on monazite surfaces. It is redundant to list all the details regarding those calculations. 

An example of solution equilibrium calculation is provided in this section. When Ce3+ 

is put in deionized water, a series of hydrolysis reactions will occur as described by the 

following equations: 

𝐶𝑒3+ + 𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)2+ + 𝐻+              (Eq. 3.2) 

𝐶𝑒3+ + 2𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)2
+ + 2𝐻+             (Eq. 3.3) 
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𝐶𝑒3+ + 3𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)3(𝑎𝑞) + 3𝐻+          (Eq. 3.4) 

𝐶𝑒3+ + 4𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)4
− + 4𝐻+            (Eq. 3.5) 

For each reaction, equilibrium was controlled by the reaction constant: 

𝛽1 =  
[𝐶𝑒(𝑂𝐻)2+][𝐻+]

[𝐶𝑒3+]
=  10−8.1                 (Eq. 3.6) 

𝛽2 =  
[𝐶𝑒(𝑂𝐻)2

+][𝐻+]2

[𝐶𝑒3+]
=  10−16.3                (Eq. 3.7) 

𝛽3 =  
[𝐶𝑒(𝑂𝐻)3(𝑎𝑞)][𝐻+]3

[𝐶𝑒3+]
=  10−26.0              (Eq. 3.8) 

𝛽4 =  
[𝐶𝑒(𝑂𝐻)4

−][𝐻+]4

[𝐶𝑒3+]
=  10−38.0                (Eq. 3.9) 

As such, concentration of the hydrolyzed species can be expressed as: 

[𝐶𝑒(𝑂𝐻)2+] =  
𝛽1[𝐶𝑒3+]

[𝐻+]
                  (Eq. 3.10) 

[Ce(OH)2
+] =  

𝛽2[𝐶𝑒3+]

[𝐻+]2                    (Eq. 3.11) 

[𝐶𝑒(𝑂𝐻)3(𝑎𝑞)]  =  
𝛽3[𝐶𝑒3+]

[𝐻+]3                  (Eq. 3.12) 

[𝐶𝑒(𝑂𝐻)4
−]  =  

𝛽4[𝐶𝑒3+]

[𝐻+]4                  (Eq. 3.13) 

The overall cerium concentration can be calculated using the following equation: 

𝐶𝑡𝑜𝑡𝑎𝑙 =  [𝐶𝑒3+] +  [𝐶𝑒(𝑂𝐻)2+] +  [Ce(OH)2
+] +  [𝐶𝑒(𝑂𝐻)3(𝑎𝑞)]  +  [𝐶𝑒(𝑂𝐻)4

−] 

    =  [𝐶𝑒3+] + 𝛽1[𝐶𝑒3+] [𝐻+]⁄ +  𝛽2[𝐶𝑒3+] [𝐻+]2⁄ +  𝛽3[𝐶𝑒3+] [𝐻+]3⁄  

+ 𝛽4[𝐶𝑒3+] [𝐻+]4⁄                                    (Eq. 3.14) 

As such, the concentration of Ce3+ can be calculated based on the total cerium 

concentration using the following equation: 

[𝐶𝑒3+] =  
𝐶𝑡𝑜𝑡𝑎𝑙

1+ 𝛽1 [𝐻+]⁄ + 𝛽2 [𝐻+]2⁄ + 𝛽3 [𝐻+]3+ 𝛽4 [𝐻+]4⁄⁄
      (Eq. 3.15) 
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Cerium hydroxide precipitate may form based on  

𝐶𝑒(𝑂𝐻)3(𝑠) ⇆  𝐶𝑒3+ + 3𝑂𝐻−              (Eq. 3.16) 

when the [𝐶𝑒3+]  reaches 1020.1[𝐻+]3. In other words, the [𝐶𝑒3+] is controlled by 

the solution pH values instead of total cerium concentration when precipitation occurs. 

Figure 3.13 shows the speciation diagram of Ce3+-H2O system with 0.1 mM total 

cerium concentration. As shown in the figure, cerium hydroxide precipitate out at pH 

8.23, causing decreases in the concentrations of hydrolyzed cerium species such as 

Ce(OH)2+ and Ce(OH)2
+.  

 

Figure 3. 13. Speciation diagram of 0.1 mM total cerium in H2O.  
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CHAPTER 4. SURFACE CHARGES OF MONAZITE IN AQUEOUS 

SYSTEMS 

4.1 ELECTROKINETIC TESTS  

Hydroxyl and hydrogen ions can change surface charges by controlling surface group 

dissociation or surface hydrolysis (Parks, 1965; Quast et al., 1987). Information about 

variations of surface charges with respect to pH values can be used to determine 

whether dissociation or hydrolysis occurs on the surface. The findings of the 

electrokinetic study revealed that the zeta potential of the monazite surface decreased 

by almost 60 mV when the solution pH value was increased from 3.0 to 9.5 (Figure 

4.1), indicating that hydroxyl and hydrogen ions are potential determining ions for 

monazite surfaces. The IEP of monazite occurred at pH 6.0, which agreed with reported 

values in literature (Cheng, 1993).  

 

Figure 4. 1. Effects of pH on the electrokinetic properties of monazite using different 

concentrations of supporting electrolyte. 

For some ionic minerals, especially those with high solubility, hydration of the surface 

ions may occur due to an ion-dipole interaction. When the total free energy changes for 

the lattice cations and anions are negative and different, preferential dissolution occurs 

and a surface charge is generated (Somasundaran, 1967; Bowden et al., 1977; 
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Veeramasuneni et al., 1997). In this case, the surface charge can be regulated by adding 

lattice ions into solution.  

Figure 4.2 shows the effects of adding Ce3+ and PO4
3− on the zeta potential of monazite. 

At pH 6.0 and 9.0, the surface charge were increased significantly by 40 mV with an 

increase in the Ce3+ concentration from 0 M to 10-4 M. However, zeta potential 

remained relatively unchanged in a solution having a pH value of 3.0 for Ce3+ 

concentrations up to 10-4 M. Under a solution pH of 9.0, concentrations exceeding 10-4 

M resulted in the formation of precipitates which varied the changing pattern of the zeta 

potential. At pH 6.0 and pH 3.0, decreases in the zeta potential at high concentration 

(10-2 M) were due to the increased electrolyte strength and the double layer compression. 

Relative to Ce3+, the effects of the phosphoric species were minor (Figure 4.2(b)). 

Under the solution pH values studied, the changes in zeta potential were generally a 

slight reduction by an amount between 10 to 20 mV and the polarity remains unchanged.  

 

Cppt 

(a) 
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Figure 4. 2. Effect of Ce3+ and PO4
3− concentration on the zeta potential of monazite 

at different pH values: (a) Ce3+ effects; (b) PO4
3− effects.  

The Ce3+ and PO4
3− ions hydrolyze in solution and the different hydrolyzed species 

have different affinities for monazite surfaces. Figures 4.3(a) and 4.3(b) show the 

speciation diagrams of cerium and phosphate, respectively, at a concentration of 1×10-

4 M in water. In basic and acidic environments, Ce(OH)3(s) and Ce3+ were dominant 

species, respectively. The concentrations of Ce(OH)2+ and Ce(OH)2
+ increased with 

pH and reached a maximum at around pH 8.0 before decreasing due to the precipitation 

of cerium ions. Based on the fact that significant charge changes were observed at 

higher pH values (e.g., 6.0 and 9.0), the possibility that Ce3+ regulated monazite surface 

charges through selective adsorption was excluded since more Ce3+ existed in solution 

at low pH values (Figure 4.3(a)). 

Figure 4.2 (a) shows that when the cerium concentration increased from 0 M to 10-4 M, 

same zeta potential changes (about 40 mV) occurred for pH 6.0 and pH 9.0. As such, 

total charges carried by cerium species adsorbed onto monazite surfaces should be the 

same for the two pH values. The adsorption density (Γ) of chemicals on particle surfaces 

is positively correlated to the chemical concentration (𝐶) in bulk solution, which can be 

represented using the following equation [Paria and Khilar, 2004]: 

(b) 
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Γ = 𝑟𝐶𝑒𝑥𝑝 (
−𝛥𝐺𝑎𝑑𝑠

0

𝑅𝑇
)                  (Eq. 4.1) 

where 𝑟 is the radius of the adsorbed ion. The charges (Γ𝜎) achieved by monazite via 

adsorption can be calculated using the following equation: 

Γ𝜎  = 𝑟 ∑ 𝐶𝑖𝑧𝑖𝑖 𝑒𝑥𝑝 (
−𝛥𝐺𝑎𝑑𝑠

0

𝑅𝑇
)               (Eq. 4.2) 

where 𝐶𝑖 and 𝑧𝑖 represent the concentration and charge of species i in bulk solution. 

Speciation diagram shows that Ce(OH)2+ has the same concentration at pH 6.0 and 9.0 

(Figure 4.3(a)). As such, it can be concluded that the effects of Ce3+ on the electrokinetic 

properties of monazite were due to its hydrolyzed species Ce(OH)2+. Hydrolyzed 

products of the multi-valent cations were more likely to be adsorbed on the mineral 

surfaces due to smaller secondary solvation energies (Fuerstenau et al., 1965; James 

and Healy, 1972a, 1972b, 1972c). For the phosphate group, the dominant species over 

the solution pH values studied are mainly HPO4 and H2PO4
−. Given that the hydrolyzed 

species are dominant, the possibility that cerium and phosphate ions are adsorbed onto 

the monazite surface and embedded in their lattice sites can be eliminated.  

(a) 
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Figure 4. 3. Speciation diagrams of 0.1 mM (a) Ce3+ and (b) PO4
3− in water.  

4.2 SOLUTION EQUILIBRIUM CALCULATION 

A solution equilibrium calculation was conducted for cerium monazite (CePO4) -water 

in both closed (under vacuum) and open (under atmospheric pressure) systems. In the 

open system, the partial pressure used for carbon dioxide (CO2) was 10-3.5 atm. In the 

closed system, the effect of carbon dioxide was not considered. Reaction constants used 

for the solution equilibrium calculation are shown in Table 4.1. The concentrations of 

solution species were calculated based on the solubility of monazite and mass 

conservation principle.  

 

 

 

 

 

(b) 
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Table 4. 1 Reactions and reaction constants used for solution equilibrium calculation. 
Reactions Reaction Constants 

𝐶𝑒𝑃𝑂4 ⇆  𝐶𝑒3+ + 𝑃𝑂4
3− 10−24.3 

𝐶𝑒3+ + 𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)2+ + 𝐻+ 10−8.1 

𝐶𝑒3+ + 2𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)2
+ + 2𝐻+ 10−16.3 

𝐶𝑒3+ + 3𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)3(𝑎𝑞) + 3𝐻+ 10−26.0 

𝐶𝑒3+ + 4𝐻2𝑂 ⇆  𝐶𝑒(𝑂𝐻)4
− + 4𝐻+ 10−38.0 

𝐶𝑒(𝑂𝐻)3(𝑠) ⇆  𝐶𝑒3+ + 3𝑂𝐻− 10−21.9 

𝐶𝑒3+ + 𝑃𝑂4
3− ⇆  𝐶𝑒𝑃𝑂4(𝑎𝑞) 1011.35 

𝐶𝑒3+ + 2𝑃𝑂4
3− ⇆  𝐶𝑒(𝑃𝑂4)2

3− 1018.48 

𝐶𝑒3+ + 𝐻𝑃𝑂4
2− ⇆  𝐶𝑒(𝐻𝑃𝑂4)+ 104.32 

𝐶𝑒3+ + 2𝐻𝑃𝑂4
2− ⇆  𝐶𝑒(𝐻𝑃𝑂4)2

− 107.25 

𝐶𝑒3+ + 𝐻2𝑃𝑂4
− ⇆  𝐶𝑒(𝐻2𝑃𝑂4)2+ 101.92 

𝐶𝑒3+ + 𝐶𝑂3
2− ⇆  𝐶𝑒(𝐶𝑂3)+ 107.56 

𝐶𝑒3+ + 2𝐶𝑂3
2− ⇆  𝐶𝑒(𝐶𝑂3)2

− 1012.19 

𝐶𝑒3+ + 𝐻𝐶𝑂3
− ⇆ 𝐶𝑒(𝐻𝐶𝑂3)2+ 102.44 

𝐶𝑂2(𝑔) + 𝐻2𝑂 ⇆ 𝐻2𝐶𝑂3 10−1.47 

𝐻2𝐶𝑂3 ⇆ 𝐻𝐶𝑂3
− + 𝐻+ 10−6.35 

𝐻𝐶𝑂3
− ⇆ 𝐶𝑂3

2− + 𝐻+ 10−10.33 

𝐻3𝑃𝑂4(𝑎𝑞) ⇆ 𝑃𝑂4
3− + 3𝐻+ 10−21.72 

𝐻3𝑃𝑂4(𝑎𝑞) ⇆ 𝐻𝑃𝑂4
2− + 2𝐻+ 10−9.38 

𝐻3𝑃𝑂4(𝑎𝑞) ⇆ 𝐻2𝑃𝑂4
− + 𝐻+ 10−2.17 

𝐻𝑂𝑙(𝑙) ⇆  𝐻𝑂𝑙(𝑎𝑞) 10−7.6 

𝐻𝑂𝑙(𝑎𝑞) ⇆  𝐻+ + 𝑂𝑙− 10−4.95 

Data sources: Kragten et al.1978, 1987; Lee et al. 1992; Cetiner et al. 2005. 

The isoelectric point (IEP) calculation using solubility methods has been reported in 

literature (Parks and Bruyn, 1962; Somasundaran, 1967; Somasundaran et al., 1985; 

Cheng, 2000). Based on the Poisson-Boltzmann equation, the electrostatic potential 

changes monotonously with respect to the distance from a plane near the particle 

surface to locations in the bulk solution when specific adsorption does not occurred 

(Hunter, 2013). Therefore, when the electrostatic potential at the slip plane equals zero, 

it is zero at any location in the region from the slipping plane to the bulk solution. The 

volume charge densities in all of these locations are zero, which means the total 
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concentrations of negative and positive charges are equal. The IEP value determined 

using this method usually corresponds to pH values under which the solubility of the 

solid was minimum (Beck, 1954; Parks and Bruyn, 1962; Somasundaran, 1967; 

Somasundaran et al., 1985).  

Figure 4.4 shows changes of positive and negative charge concentrations with respect 

to pH values in both closed (under vacuum) and open (under atmospheric pressure) 

systems. The pH value corresponding to an equal amount of positive and negative 

charges occurred at 7.2 and 4.5 in the closed and open system, respectively. Therefore, 

when measured under atmospheric pressure at 25 oC, the IEP of monazite is between 

pH 4.5 and pH 7.2. The lower IEP value obtained in the open system is mainly due to 

the appearance of HCO3
−  and CO3

2−  species. The dissolution of carbon dioxide 

depends on conditioning time, temperature, and pressure, etc. Therefore, the IEP value 

measured in the lab can vary in the range between pH 4.5 and pH 7.2 and, thus, partially 

explains the inconsistency of the data reported in literature and the discrepancy between 

the solution equilibrium calculation and the electrokinetc tests (pH 7.2 versus pH 6.0) 

Minimum solubility of monazite was calculated to be between pH 7.0 and 9.0 in both 

closed and open systems (Figure 4.5). In the closed system, pH values corresponding 

to minimum solubility were close to the IEP of the bulk solution. However, in the open 

system, this agreement did not exist due to the effects of carbon dioxide dissolved in 

water. Oelkers and Poitrasson (2002) reported that the dissolution rate of natural 

monazite is around 10-18 ~ 10-17 mol/cm2/s at 70 oC. Therefore, nearly 10-10 M of total 

cerium species is expected in solution when conditioning monazite in deionized water 

for 5 min in a closed system. The electrokinetic results indicated that the zeta potential 

of monazite was nearly constant at this concentration (see Figure 4.2(a)). Therefore, 

specific adsorption does not occur in this system and the point of zero charge (PZC) of 

monazite surface is pH 7.2.  
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Figure 4. 4. Total concentration of positive and negative charges in bulk solution in 

closed and open systems at 25 oC.  

 

Figure 4. 5. The solubility of monazite at different pH values in both open and close 

systems at 25 oC.  

The establishment of the surface charges of some minerals such as hematite and calcite 



57 
 

can be explained by the adsorption of the hydrolyzed species from solution (Parks and 

Bruyn, 1962; Somasundaran, 1967; Degen and Kosec, 2000). For example, the IEP of 

calcite is around pH 8.2, as determined using the speciation diagram of calcite in water. 

At pH 8.2, the concentration of the dominant species Ca2+ is close to that of HCO3
−. 

Somasundaran and Agar (1967) concluded that Ca2+ and HCO3
−  are potential 

determining ions for calcite together with H+ and OH-. The surface charge of calcite is 

developed through preferential hydrolysis of surface ions or the adsorption at the 

interface of the complexes formed in solution.  

Figure 4.6 showed the speciation diagram of monazite-water in a closed system. At pH 

7.2 corresponding to the IEP, Ce3+, HPO4
2− and H2PO4

− are the dominant species which 

seem to behave like potential determining ions. However, based on the fact that the 

electrokinetic properties remained constant after the addition of 10-8 M of cerium or 

phosphate, the role of the Ce3+, HPO4
2−, and H2PO4

− in determining surface charges 

onto the surface is barely detectable.  

 

Figure 4. 6. The speciation diagram of monazite-water in the closed systems.  
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4.3 CRYSTAL STRUCTURE OF MONAZITE 

An analysis of the crystal structure of monazite was conducted to identify the plane of 

weakness that will be exposed at the surface upon particle breakage. The monazite 

crystal occurs in the monoclinic space group with P21/n settings. The rare earth atoms 

in monazite are surrounded by nine-coordinated oxygen atoms forming a polyhedral 

structure. The phosphate atoms are coordinated with four oxygen atoms forming a 

distorted tetrahedral structure. The polyhedral structures are connected by phosphate 

tetrahedrons forming polyhedron-tetrahedron chains. The chains are connected laterally 

by sharing polyhedral edges as shown in Figure 4.7 (Beall et al., 1981; Mullica et al., 

1984; Ni et al., 1995).  

 

Figure 4. 7. Ball and stick structure of two conjoint polyhedral – tetrahedron chains.  

All of the RE-O bonds are ionic dominated while the covalent fractions of P-O bonds 

are very high, namely, 29%-43% [Li et al., 2007, 2009]. The lattice energies of the P-

O bonds are nearly an order of magnitude larger than those of RE-O bonds. For example, 

in the CePO4 crystal, the lattice energy of the P-O bond is around 6105 kJ/mole, while 

the Ce-O bond is only 591 kJ/mole. Therefore, when the crystal is crushed under 

pressure, minimum deformation of the P-O bond will occur while preferential breakage 

is likely along the Ce-O bond (Li et al., 2007, 2009).  

According to the crystal structure data, the cleavage planes occur either parallel to the 
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polyhedron-tetrahedron chains or across the polyhedrons. The tetrahedron plane is 

difficult to damage due to the strength of the P-O bond. Parker et al. (1937) statistically 

analyzed the persistence of the forms on monazite. Their findings indicate that the (100) 

plane has an unusually high persistence number of 97, indicating that cleavages are 

more likely to occur at the (100) plane. The (100) plane in the monazite crystal is 

parallel to the polyhedron-tetrehedron chain, which agrees with the crystalline data 

reported by (Li et al., 2007, 2009).  

Figure 4.8 shows the ball-stick and space fill model of the cleavage surface occurring 

at the (100) plane. Two types of Ce-O-P arrangements exist on the surface, which were 

labelled as Type-A and Type-B in Figure 4.8. For the Type-A, two Ce-O bonds of Ce 

atoms that are broken along with two O atoms connected with P are oriented outside 

each with one O-Ce broken bond. Type-B involves a Ce-O bond where the Ce is broken 

and one of the O atoms is connected with P oriented outside with one broken O-Ce 

bond. The schematic diagrams of the two arrangements were shown in Figure 4.9.   

Figure 4. 8. The cleavage surface of monazite along the (100) plane. 

 

 

 

Type-A Type-B 
Ce 

O 

P 
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Figure 4. 9. The arrangement of surface atoms on the cleavage occurring on (100) 

plane (left sides represent bulk minerals).  

4.4 ELECTROSTATIC MODEL PREDICTION OF (100) PLANE PZC 

Surface hydration - amphoteric dissociation model has been used widely to explain the 

origin of the surface charge for oxides and hydroxides, including some complex oxides 

such as kaolinite and zircon (Parks and Bruyn, 1962; Yopps and Fuerstenau, 1964; 

Parks, 1965; Yoon et al., 1979; Sverjensky, 1994). When oxide or hydroxide minerals 

are dispersed in water, surface hydroxides will form due to the unsaturated electronic 

charge of atoms with broken bonds. When the activity of the hydrogen ions (H+) near 

the surface changes, either protonation or deprotonation can occur, i.e., 

               ≡ SOH +  H+  ⇄ ≡ SOH2
+                (Eq. 4.3) 

≡ SOH ⇄ ≡ SO−  +  H+                (Eq. 4.4) 

where ≡ SOH, ≡ SOH2
+, and ≡ SO− represent species. The combined form of the 

above equation is 

≡ SO− +  2H+  ⇄ ≡ SOH2
+               (Eq. 4.5) 

and the surface charge of oxides and hydroxides is controlled by the degree of 

protonation of surface species ≡ SO−. The intrinsic constant of the above reaction is 

𝐾𝑖𝑛𝑡.,𝐻+,𝑘   =  
[SOH2

+]

[SO−][H+]2                 (Eq. 4.6) 

Surface Bulk Surface Bulk 
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The [SOH2
+] equals [SO−] when the surface charge equals zero and the above 

equation could be rearranged as  

𝐾𝑖𝑛𝑡.,𝐻+,𝑘   =  [𝐻+]−2                 (Eq. 4.7) 

The relationship between PZC and intrinsic constant can be written as 

𝑃𝑍𝐶 = 0.5  log 𝐾𝑖𝑛𝑡.,𝐻+,𝑘                (Eq. 4.8) 

When the cleavage (100) plane is placed into water, both the cerium oxygen and 

phosphate oxygen sites will be hydrated. The number of hydroxyl groups connected 

to cerium is determined by the number of broken bonds. The information about the 

hydrated species and site densities on the surface are listed in Table 2. Electrical 

charges of cerium cations with broken bonds were calculated using Paulings’ bond 

valence theory. Because 40% of the P-O bonds are covalent, the charges of the 

oxygen anions connected to phosphate and cerium are difficult to determine.  

Table 4. 2 The hydrolyzed surface species and site densities on the cleavage occurring 

on (100) plane. 

Hydrolyzed surface species Site density (sites/nm2) 

≡ Ce
2
3

+O2−H 4.41 

≡ Ce
1
3

+O2−H 2.20 

≡ Ce
2
3

+PO𝑥−H 2.20 

≡ Ce
2
3

+Ce
1
3

+PO𝑥−H 2.20 

≡ Ce
1
3

+PO𝑥−H 2.20 

For the cerium oxygen sites, the point of zero charge, which is corresponds to the 

solution pH value providing an equal number of positive and negative surface sites, can 

be calculated via the electrostatic-based approach. Kossiakoff and Harker (1938) 

suggested that, in the ionization process of inorganic acids, the free energy changes (∆G) 

associated with the removal of H+ ions from acid molecules to a water molecule can 

be divided into several steps, i.e., 1) broken O-H bond in the acid molecule (∆G1), 2) 

formation of the O-H bond in H3O
+ ( ∆G2 ), 3) removal of the proton from the 



62 
 

electrostatic field of the anion (∆G3), 4) reorientation of the water molecules (∆G4) and 

5) compression of the water molecules (∆G5). Based on the fact that ∆G1, ∆G2, and 

∆G5  are constant, and ∆G3  and ∆G4  are included in the potential change 

accompanying the proton transfer, the ∆G is given as  

∆G =  ∆G𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + ∆G𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,            (Eq. 4.9) 

The protonation of the surface species ≡ SO− can be regarded as the reverse process 

of ionization, i.e., two H+ ions are removed from a H3O
+ to the surface. For simple 

oxides, Parks and Bruyn (1962) developed the following expression:  

PZC = A − B (
𝑍𝑆

𝑅
)                  (Eq. 4.10) 

A =  
2𝑒2

2.3𝑘𝑇𝜖𝑟2
 −  

∆G𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

4.6𝑘𝑇
                (Eq. 4.11) 

B =  
𝑒2

2.3𝑘𝑇𝜖
                      (Eq. 4.12) 

Yoon et al. (1979) replaced the formal charge of cation in the equation by Pauling’ bond 

valence and obtained another form of the equation:  

PZC = A − B (
𝑠

𝑅
) − 0.5𝑙𝑜𝑔

2−𝑠

𝑠
            (Eq. 4.13) 

where 𝑠 and 𝑅 mean the bond valence of metallic cation and the distance between 

metallic cation and hydrogen ion. The bonds in the Al2O3 and MgO crystals are 

considered to be completely ionic bonding. Both of them obtained constant values of A 

and B using the information of these two crystals. Therefore, these equations are limited 

to the crystal involving covalent bonding such as silica, which requires crystal field 

corrections. However, for monazite crystals, cerium oxygen sites are completely ionic 

bonds, and the free energy changes of their amphoteric dissociation are similar to that 

of Al2O3 and MgO. Therefore, the following equation applies: 

PZC
Ce

2
3

+
O2−H

= 18.43 − 53.12 (
2

3
×

1

3.55
) − 0.5 𝑙𝑜𝑔

2−2 3⁄

2 3⁄
=  8.30  (Eq. 4.14) 

PZC
Ce

1
3

+
O2−H

= 18.43 − 53.12 (
1

3
×

1

3.55
) − 0.5 𝑙𝑜𝑔

2−1 3⁄

1 3⁄
=  13.09  (Eq. 4.15) 
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The combined PZC of cerium oxygen sites can be calculated based on the atomic 

fraction on the surface, 

PZCCeOH =  
2

3
× 8.30 +  

1

3
× 13.09 =  9.90         (Eq. 4.16) 

It’s difficult to apply this approach to the phosphate oxygen sites due to their covalent 

bond characteristics. Regil et al. (2003) measured the intrinsic constant (log 𝐾𝑖𝑛𝑡.,𝐻+,𝑘) 

of phosphate oxygen sites hydration using potentiometric titrations and the value was 

found to be equal to 9.0. Therefore, the PZC of the phosphate oxygen sites equals 4.5. 

The amount of phosphate oxygen sites equals the cerium oxygen sites based on the 

structure of the (100) plane. Therefore, the overall PZC of the cleavage along (100) 

plane equals 7.20 (= [4.5 + 9.9]/2), which agrees with the electrokinetic tests and 

solubility calculations.     

4.5. CONCLUSIONS 

This chapter provided a systematic and fundamental study of monazite charging 

mechanisms in aqueous systems. Electrokinetic tests, solution equilibrium calculations, 

crystal structure analyses, and electrostatic model predictions were used. The results 

indicated that charges on monazite in water were developed by 

protonation/deprotonation reactions. Hydrogen and hydroxyl ions were potential 

determining ions for monazite. The specific findings of this chapter included: 

(1) Electrokinetic measurements of the natural monazite showed that its isoelectric 

point (IEP) occurred at pH 6.0. 

(2) When cerium chloride was added into solution, significant changes of monazite zeta 

potential were observed in both neutral and basic environments, which was ascribed 

to the specific adsorption of Ce(OH)2+ on monazite surfaces via hydrogen bonding. 

(3) When phosphoric acid was added into solution, monazite zeta potential changed 

slightly and no charge reversal was observed. The possibility that Ce3+ and PO4
3− 

regulated monazite surface charges through preferential liberation and/or 

adsorption was excluded.  
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(4) Solution equilibrium calculation indicated that the IEP of cerium monazite (CePO4) 

occurred at pH 7.2 and pH 4.5 in closed and open systems, respectively. The 

dissolution of carbon dioxide in solution increased total negative charges, which 

required more acidic condition to neutral the charges. 

(5) Crystal structure analyses and electrostatic model predictions showed that IEP of 

monazite (100) plane occurred at pH 7.2, which agreed with the solution 

equilibrium calculation results.   
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CHAPTER 5. ADSORPTION OF OCTANOHYDROXAMIC ACID ON 

MONAZITE SURFACES 

5.1 ADSORPTION KINETIC, ISOTHERM AND THERMODYNAMIC 

MODELS 

5.1.1 Kinetic Models 

Kinetic tests were used to measure the rate (k) at which collector adsorption takes place 

in the solid/solution system. Kinetic studies provided critical information such as the 

time (t) required for reaching equilibrium and the equilibrium collector concentration 

(Qe) on the solid surface. Kinetic studies of octanohydroxamate adsorption on minerals 

such as ferric oxide, manganese dioxide, barite, calcite, and bastnaesite have been 

reported in literature (Raghavan and Fuerstenau, 1975; Natarajan and Fuerstenau, 1983; 

Pradip and Fuerstenau, 1983). However, few of these studies attempted to fit the results 

with kinetic models. In the current study, the pseudo-first-order and pseudo-second-

order models were used to analyze the kinetic results. These models have been 

successfully applied to other systems such as fatty acid-fluorite, fatty acid-hematite, 

xanthate-zinc sulfide, xanthate-lead sulfide, etc. (Free and Miller, 1997; Fredriksson 

and Holmgren, 2008, 2007, 2006). The pseudo-first-order model is generally 

represented in the form: 

ln(𝑄𝑒 −  𝑄𝑡) =  −𝑘1𝑡 + ln 𝑄𝑒                                  (Eq. 5.1) 

where 𝑄𝑒  (mg g-1) and  𝑄𝑡  (mg g-1) are the amount of collector adsorbed at 

equilibrium and at time t (h), respectively, and 𝑘1 (h-1) the rate constant of pseudo-

first-order equation. 

The pseudo-second-order equation is expressed as:  

𝑡

𝑄𝑡
=  

1

ℎ
+  

𝑡

𝑄𝑒
                                                    (Eq. 5.2) 

where h equals 𝑘2𝑄𝑒
2 and represents the initial sorption rate while 𝑘2 (g mg-1h-1) is 

the rate constant of pseudo-second-order equation (Jazi et al., 2014; Peng et al., 2014). 
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5.1.2 Isotherm Models 

Systematic adsorption isotherm studies provided critical information, such as the 

amount of surfactant adsorbed per unit area or mass of solid, surfactant concentration 

in the solution, the extent of the adsorption (monolayer or multilayer), and the 

orientation of the adsorbed molecules relative to the surface and solution (Raghavan 

and Fuerstenau, 1975; Natarajan and Fuerstenau, 1983; Pradip and Fuerstenau, 1983; 

Ni and Liu, 2012). Batch adsorption results were analyzed using appropriate models 

such as the Langmuir, Freundlich, and Fowler-Guggenheim models. These models have 

been used to describe the adsorption of surfactants on mineral surfaces and the 

Langmuir and Freundlich models were the most often applied (Yehia et al., 1993; Aktas 

and Woodburn, 1994; Rath, 1997; Ofor and Anusiem, 1999; Beattie et al., 2006; Tekin 

and Ates, 2012; Qu et al., 2016). The Langmuir, Freundlich, and Fowler-Guggenheim 

models were used to fit the adsorption data in this study.  

5.1.2.1 Langmuir model 

The Langmuir equation is based on a kinetic approach and assumes a homogeneous 

surface, a single layer of adsorbed material, constant temperature, and no lateral 

interaction among adsorbed molecules (Langmuir, 1918; Ng et al., 2002; Oguz, 2005; 

Hamdaoui and Naffrechoux, 2007; Memon, 2009; Peng et al., 2014; Idris, 2015). The 

Langmuir equation is expressed as: 

𝑄𝑒 =  
𝑄𝑚𝑘𝐿𝐶𝑒

1+𝑘𝐿𝐶𝑒
                                                    (Eq. 5.3) 

where 𝑄𝑒  is the amount of collector adsorbed at equilibrium (mg g-1), and 𝐶𝑒  the 

equilibrium concentration of the collector in the bulk solution (mg L-1), 𝑄𝑚  the 

maximum adsorption capacity (mg g-1), and 𝑘𝐿 the constant related to free energy of 

adsorption (L mg-1). When monolayer coverage is achieved, the maximum adsorption 

capacity is calculated using the molecular size and surface area. The surface coverage 

can be described by: 

θ = 𝑄𝑒 𝑄𝑚⁄                                                       (Eq. 5.4) 
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and, thus, the Langmuir equation can be written as: 

𝜃

1−𝜃
=  𝑘𝐿𝐶𝑒                                                 (Eq. 5.5) 

The 𝑘𝐿 value was calculated from the intercept and slope of the linear plot of Q𝑒
−1 

versus C𝑒
−1. However, when the maximum surface coverage is not known, 𝑄𝑚 and 

𝑘𝐿 values can be calculated using the following equation: 

1

𝑄𝑒
=  

1

𝑘𝐿𝑄𝑚

1

𝐶𝑒
+  

1

𝑄𝑚
                                           (Eq. 5.6) 

5.1.2.2 Freundlich model  

The Freundlich model is an empirical equation which assumes 1) adsorption of the 

molecules on a heterogeneous surface, 2) interactions between adsorbed molecules, and 

3) multilayer adsorption (Freundlich, 1907; Rath and Subramanian, 1997; Ng et al., 

2002; Hamdaouiand and Naffrechoux, 2007; Jazi, 2014; Mobasherpour et al., 2014;). 

The Freundlich model can be written as:  

𝑄𝑒 =  𝑘𝐹𝐶𝑒
1/𝑛

                                                (Eq. 5.7) 

where 𝑘𝐹  (mg1-(1/n) L1/n g-1) and n are constants indicating the relative adsorption 

capacity of the adsorbent and the intensity of the adsorption, respectively. A higher 

value for 1/n means a larger change in effectiveness over different equilibrium 

concentrations. The linear form of Freundlich model is:  

ln𝑄𝑒 = ln 𝑘𝐹 +  
1

𝑛
ln 𝐶𝑒                                      (Eq. 5.8) 

The values for 𝑘𝐹 and n are calculated from the intercept and slope of the linear plot of 

ln𝑄𝑒 versus ln 𝐶𝑒.  

5.1.2.3 Fowler-Guggenheim model 

The Fowler-Guggenheim isotherm takes into account the localized adsorption with 

lateral interaction and can be written as (Fowler and Guggenheim, 1939; Khelifa et al., 

2004; Hamdaoui and Naffrechoux, 2007): 
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𝑘𝐹𝐺𝐶𝑒 =  
𝜃

1−𝜃
exp (

2𝜃𝑊

𝑅𝑇
)                                    (Eq. 5.9) 

where 𝑘𝐹𝐺  is the equilibrium constant (L mg-1), 𝜃 the fractional coverage, 𝑅 the gas 

constant (8.314×10-3 kJ mol-1 K-1), T the temperature (K), and 𝑊  the interaction 

energy between adsorbed molecules. Positive and negative values of 𝑊  represent 

attractive and repulsive interactions among adsorbed molecules, respectively. Eq. 5.9 

can be linearized to the following equation: 

ln [
𝐶𝑒(1−𝜃)

𝜃
] =  − ln 𝑘𝐹𝐺 + 

2𝑊𝜃

𝑅𝑇
                            (Eq. 5.10) 

5.1.3 Thermodynamic Models 

The Gibbs free energy (∆G𝑎𝑑𝑠
0 ), enthalpy (∆H𝑎𝑑𝑠

0 ) as well as entropy (∆S𝑎𝑑𝑠
0 ) were 

calculated using the isotherm data at different temperatures based on the following 

equations: 

𝜃

1−𝜃
=  

𝐶𝑒

55.5
exp (

−𝛥𝐺𝑎𝑑𝑠
0

𝑅𝑇
)                                   (Eq. 5.11) 

∆H𝑎𝑑𝑠
0 =

∆𝐺𝑎𝑑𝑠,1
0 𝑇1−⁄ ∆𝐺𝑎𝑑𝑠,2

0 𝑇2⁄

(1 𝑇1−⁄ 1 𝑇2⁄ )
                             (Eq. 5.12)  

∆S𝑎𝑑𝑠
0 =

∆𝐺𝑎𝑑𝑠,1
0 −∆𝐺𝑎𝑑𝑠,2

0

(𝑇2−𝑇1)
                                   (Eq. 5.13) 

where ∆𝐺𝑎𝑑𝑠,1
0  and ∆𝐺𝑎𝑑𝑠,2

0  are the standard free energies of adsorption at two 

different temperatures 𝑇1  and 𝑇2 , respectively. Eq. 5.11 is the Stern-Langmuir 

equation where 𝜃 is surface coverage, 𝐶𝑒 equilibrium concentration of collectors in 

solution (M), Δ𝐺𝑎𝑑𝑠
0  standard free energy of adsorption (kJ mol-1) at temperature T (K), 

and the constant 55.55 is the molarity of water. This equation has been used in several 

hydroxamate adsorption studies (Pradip and Fuerstenau, 1985, 1983; Raghavan and 

Fuerstenau, 1975). The free energy of adsorption can be divided into different 

contributions, i.e., chemical interaction, electrostatic interaction, hydrophobic bonding, 

solvation effects, etc. 
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5.2 ADSORPTION KINETICS 

Adsorption kinetics were used to evaluate the efficiency of octanohydroxamic acid 

adsorption on monazite at different pH values. The adsorption of octanohydroxamic 

acid on monazite as a function of time for different pH values is shown in Figure 5.1. 

Adsorption reached equilibrium after 48 h of interaction for all of the studied pH values. 

Therefore, an adsorption time of 48 h was used for the isotherm and thermodynamic 

studies.  

 

Figure 5. 1 Adsorption kinetics of octanohydroxamic acid on monazite at different pH 

values using 160 mg L-1 initial octanohydroxamic acid concentration. 

The vertically and horizontally oriented monolayer adsorption densities of the 

octanohydroxamic acid was estimated to be 2.90 mg g-1 and 1.08 mg g-1 assuming the 

cross sectional area of the octanohydroxamic acid to be 20.5 Å2 and 55 Å2, respectively. 

Therefore, monolayer adsorption was achieved for all of the studied pH values. 

Furthermore, the collector adsorption rates associated with partial monolayer coverage 

were larger than the rates observed under conditions that resulted in adsorption above 

monolayer coverage. As such, the kinetic data were divided into two parts, i.e., partial 

coverage and multilayer coverage, and simulated using kinetic models separately. The 

Vertical Monolayer 
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modelling results of below and above monolayer adsorptions are shown in Figure 5.2 

and Table 5.1, Figure 5.3, and Table 5.2, respectively.   

 

 

Figure 5. 2. Modelling of adsorption data below monolayer coverage using (a) 

pseudo-first-order and (b) pseudo-second-order equations.  

(a) 

(b) 



71 
 

 

 

Figure 5. 3. Modelling of adsorption data for greater than monolayer coverage using 

(a) pseudo-first-order and (b) pseudo-second-order equations.  

 

 

(a) 

(b) 
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Table 5. 1. Kinetic parameters for the adsorption of octanohydroxamic acid on 

monazite under conditions provided less than a monolayer coverage. 

pH 

Pseudo-first-order  Pseudo-second order 

𝑘1 𝑄𝑒,𝑐𝑎𝑙 𝑅𝑎𝑑𝑗
2   𝑘2 𝑄𝑒,𝑐𝑎𝑙 ℎ 𝑅𝑎𝑑𝑗

2  

h-1 mg g-1   g mg-1h-1 mg g-1 mg g-1 h-1  

3.0 0.53 2.85 0.9256  9.84 0.62 3.78 0.9656 

6.0 1.39 2.65 0.7737  14.01 1.16 18.74 0.9803 

9.0 5.48 2.50 0.9599  4.05 2.94 34.99 0.9843 

11.0 0.69 2.70 0.5049  75.29 0.58 25.32 0.9293 

Table 5. 2. Kinetic parameters for the adsorption of octanohydroxamic acid on 

monazite under conditions provided more than a monolayer coverage. 

pH 

Pseudo-first-order  Pseudo-second order 

𝑘1 𝑄𝑒,𝑐𝑎𝑙 𝑅𝑎𝑑𝑗
2   𝑘2 𝑄𝑒,𝑐𝑎𝑙 𝑅𝑎𝑑𝑗

2  

h-1 mg g-1   g mg-1 h-1 mg g-1  

3.0 0.11 2.25 0.8471  0.13 4.16 0.9997 

6.0 0.10 6.50 0.9641  0.03 9.54 0.9976 

9.0 0.09 8.43 0.9658  0.02 11.39 0.9936 

11.0 7.55 7.55 0.9937  0.01 9.89 0.9997 

For both the below and beyond monolayer adsorption stages, adsorption can be 

accurately modelled by the pseudo-second order model with 𝑅𝑎𝑑𝑗
2  larger than 0.92, 

which indicates the rate of surface reaction (i.e., direct adsorption/desorption process) 

controls the overall sorption kinetics (Ho and McKay, 1999; Plazinski et al., 2009; Yan 

et al., 2015). For the below monolayer stage, both the maximum initial adsorption rate 

(h) and equilibrium adsorption (𝑄𝑒,𝑐𝑎𝑙) occurred at pH 9.0 indicating a higher affinity 

of octanohydroxamate species for the monazite surfaces. The higher affinity may be 

due to the presence of more active sites on the monazite surfaces at pH 9.0. A speciation 

diagram of both cerium and lanthanum indicated that maximum concentrations of 

hydrolyzed species, i.e., Ce(OH)2+, Ce(OH)2
+, La(OH)2+, and La(OH)2

+, occurred 

around pH 9.0 and the hydrolyzed species are surface active sites (Figure 5.4). The 
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speciation of octanohydroxamic acid may have minor contribution to the maximum h 

and 𝑄𝑒,𝑐𝑎𝑙 values based on the fact that a nearly equal amount of octanohydroxamic 

acid molecules (RCONHOH) and octanohydroxamate anions (RCONHO-) existed in 

solution at pH 9.0 (Figure 5.4(c)).  

For the beyond monolayer adsorption stage, both the 𝑘1 and 𝑘2 values indicate that 

the adsorption rate of octanohydroxamic acid on monazite decreased with an increase 

in solution pH values from 3.0 to 11.0. Based on the fact that the 𝑅𝑎𝑑𝑗
2  values for all 

pH conditions are larger than 0.99 when modelled by pseudo-second-order equation, it 

is reasonable to exclude the possibilities that processes such as transport of solute in the 

bulk solution and diffusion of solute across the liquid film control the adsorption 

kinetics. Furthermore, the concentration of surface active sites are symmetrically 

distributed around pH 9.0. Therefore, the decreases of adsorption rate with increases in 

pH values were not relevant to the concentrations of active species.   
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Figure 5. 4. Speciation diagrams of (a) cerium, (b) lanthanum, and (c) 

octanohydroxamic acid in solution. (Thermodynamic constants used for speciation 

calculation were referred from Kragten and Decnop-Weever, 1987, 1978).  

La3+ 
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5.3 ADSORPTION ISOTHERMS 

The adsorption isotherm reveals the distribution of the adsorption molecules in liquid 

phase and solid phase when the adsorption reaches an equilibrium. Figure 5.5 shows 

the adsorption isotherm of octanohydroxamic acid on monazite at 20 oC and different 

pH values. Multilayer adsorption was achieved with higher collector dosages for each 

of the pH values studied. The isotherms were divided into two parts when fitting test 

results with three adsorption models, i.e., 1) concentrations below monalayer coverage 

and 2) concentrations above monalayer coverage. The division of the isotherms into 

two components was validated by the kinetic results.  

 

Figure 5. 5. Adsorption isotherms at 20 oC for different solution pH values.  

The Langmuir, Freundlich, and Fowler-Guggenheim models were used to model 

adsorption data for conditions providing less than a monolayer coverage. The values of 

the three isotherm model parameters and associated adjusted coefficient of 

determination (Radj
2 ) values are listed in Tables 5.3 and 5.4. Octanohydroxamic acid 

adsorption on monazite was not well described by the Langmuir model using either 

theoretical maximum adsorption density or the value calculated directly from the model. 
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Both Fowler-Guggenheim and Freundlich sufficiently describe the adsorption 

experimental data. The interaction energies between adsorbed molecules (W) were 

negative for all of the studied pH values indicating the existence of lateral interaction, 

which explained the ineffectiveness of Langmuir model. The free energies of adsorption 

with respect to different equilibrium octanohydroxamic acid concentrations were 

calculated using Eq. (5.11) and shown in Figure 5.6. Sharp increases of negative Δ𝐺𝑎𝑑𝑠
0  

values were observed for all pH values studied at specific collector dosages 

corresponding to a surface coverage of around 0.2, at which lateral interaction between 

adsorbed molecules starts playing a role.  

Table 5. 3. Langmuir and Fowler-Guggenheim parameters for octanohydroxamic acid 

adsorption on monazite surfaces in case of below monolayer. 

pH 

Langmuir 1  Langmuir 2  Fowler-Guggenheim 

kL Qm Radj
2   kL Qm Radj

2   kFG W Radj
2  

L mg-1 mg g-1   L mg-1 mg g-1   L mg-1 kJ mol-1  

3.0 0.22 2.90 0.1459  -0.01 -0.19 0.8912  0.00 -7.50 0.9048 

6.0 0.19 2.90 0.6237  -0.02 -3.73 0.9217  0.02 -4.34 0.9582 

9.0 0.20 2.90 0.6418  -0.03 -3.28 0.9738  0.02 -3.62 0.9727 

11.0 0.03 2.90 0.8765  -0.02 -1.74 0.9575  0.01 -3.31 0.9195 

Table 5. 4. Freundlich parameters for octanohydroxamic acid adsorption on monazite 

in the cases of surface coverage below and above monolayer formation. 

pH 

Below monolayer  Above monolayer 

kF 1 n⁄  Radj
2   kF 1 n⁄  Radj

2  

mg1-(1/n) L1/n g-1    mg1-(1/n) L1/n g-1   

3.0 9.72×10-9 4.02 0.9383  0.12 0.66 0.9371 

6.0 0.056 1.32 0.9579  1.94 0.30 0.9119 

9.0 0.07 1.22 0.9714  1.02 0.45 0.9287 

11.0 0.02 1.33 0.9493  0.63 0.58 0.9610 
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Figure 5. 6. Standard free energy and surface coverage for adsorption below 

monolayer coverage as a function of equilibrium concentration. (a) Standard free 

energy; (b) surface coverage.  

(a) 

(b) 
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The free energies of adsorption at 10% of surface coverage (Δ=0.1) at pH 3.0, 6.0, 9.0, 

and 12.0 are -24.14, -31.02, -31.48, and -29.08 kJ mol-1, respectively, which is close to 

the number reported by Free and Miller (1997) where chemisorption was suggested to 

occur between oleate and fluorite surfaces. As such, chemisorption occurred for all the 

studied pH values when partial coverage was achieved, while octanohydroxamic acid 

has a stronger affinity for monazite surfaces at high pH values. After about three layers 

of adsorption (100 mg L-1 equilibrium concentration), the adsorption density gradually 

leveled off for solution pH values of 6.0 and 9.0 as shown in Figure 5.5, which indicates 

that the rates of adsorption and desorption became equal and adsorption equilibrium 

was achieved. However, for a pH value of 11.0, adsorption densities continued to 

increase after a plateau at 200 mg L-1 and, thus, equilibrium was not achieved within 

the studied dosage range. This finding indicated the occurrence of surface precipitation 

(Pradip and Fuerstenau, 1985; Rao et al., 1989; Kellar et al., 1991, 1992). At higher 

concentrations, the adsorption advantage of pH 9.0 due to more surface active sites (see 

Figure 5.5) disappeared as adsorption continued with an increase in the pH value, i.e., 

hydroxyl ion concentrations.  

5.4 ADSORPTION THERMODYNAMICS 

The effect of temperature on octanohydroxamate adsorption has been investigated in 

several mineral systems and higher selectivity could be achieved in industrial minerals 

flotation via increasing temperature (Raghavan and Fuerstenau, 1975; Natarajan and 

Fuerstenau, 1983; Pradip and Fuerstenau, 1985; Kellar et al., 1991, 1992; Sreenivas 

and Padmanabhan, 2002). In this study, the adsorption of octanohydroxamic acid on 

monazite for pH 9.0 was examinated at 20 oC, 40 oC, and 60 oC. Test results are shown 

in Figure 5.7. The isotherms were divided into two regions I and II which correspond 

to partial coverage and multilayer coverage, respectively.  
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Figure 5. 7. Isotherms at pH 9.0 for the adsorption obtained at different conditioning 

temperatures.  

The free energies of adsorption corresponding to 50% surface coverage calculated using 

Eq. (5.11) are listed in Table 5.5 along with enthalpy and entropy changes. A free energy 

difference of only -0.88 kJ mol-1 occurred as the temperature was increased from 20 oC 

to 60 oC. The adsorption process below monolayer coverage is entropically driven since 

the enthalpy change is negative and adsorpiton increased with increase in temperatures. 

Negative changes of enthalpy indicate the adsorption process was exothermic which is 

contrary to the findings of studies performed on other systems, such as iron oxide, 

calcite, barite, and bastnaesite in which it was found that hydroxamate adsorption was 

endothermic (Raghavan and Fuerstenau, 1975; Pradip and Fuerstenau, 1985, 1983). 

The postive entropy change is caused by the disordering of water molecules bonded 

with the mineral surfaces. Furthermore, water molecules around carbon chains of 

collector molecules in solution are also ordered and collector adsorption may break the 

orderly structure, thus, increasing the entropy.  
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Table 5. 5. Thermodynamic parameters for octanohydroxamate adsorption on 

monazite. 
Temperature (oC) Δ𝐺𝑎𝑑𝑠

0  (kJ mol-1) Δ𝐻𝑎𝑑𝑠 (kJ mol-1) Δ𝑆𝑎𝑑𝑠 (kJ mol-1 K-1) 

20 -33.76 

-27.31 0.022 40 -34.23 

60 -34.64 

Table 5.6 shows the solubilies of different minerals and the enthalpy changes of 

octanohydroxamic acid adsorption on these minerals. Minerals with higher solubilities 

usually expect postive ∆𝐻𝑎𝑑𝑠
0  values, while for insoluble minerals such as monazite 

and cassiterite ∆𝐻𝑎𝑑𝑠
0  values are negative. Raghavan and Fuerstenau (1975) proposed 

that hydroxamate-metal cations precipitation reaction is an endothermic process which 

is also true for surface precipitation. As such, for adsorption below monolayer coverage, 

octanohydroxamic acid adsorbs on semisoluble minerals through endothermic surface 

precipitation, while on minerals with low solubilities the adosrption occurs through 

exothermic chemisorption. Changes of region I to region II with increases in 

concentrations in octanohydroxamic acid-monazite system correspond to the 

transformation from chemisorption to surface precipitation. The similar kind of 

transformation was also observed in fluorite-oleate system by Kellar et al. (1991, 1992) 

using insitu-FTIR.  

Table 5. 6. Mineral solubility and enthalpy changes of octanohydroxamic acid 

adsorption onto these minerals.  

Mineral Dissolution Reaction log Ksp 
ΔHads  

(kJ mol-1) 

Δ𝑆𝑎𝑑𝑠  

(kJ mol-1 K-1) 

Surface 

Coverage 

Calcite CaCO3(s) = Ca2+ + CO3
2− -8.48 45 0.250 0.5 

Barite BaSO4(s) = Ba2+ + SO4
2− -10.05 20 0.157 0.5 

Bastnaesite REEFCO3(s) = REE3+ + F− + CO3
2− -16.00 187 0.830 0.5 

Monazite CePO4(s) = Ce3+ + PO4
3− -26.27 -27.31 0.022 0.5 

Monazite CePO4(s) = Ce3+ + PO4
3− -26.27 -7.74 0.101 0.9 

Cassiterite SnO2(s) + 2H2O = Sn4+ + 4OH− -63.39 -36.8 NA 0.1 

Xenotime YPO4(s) = Y3+ + PO4
3− -25.00 14.25 0.114 NA 

(Data sources: Plummer and Busenberg, 1982; Monnin and Galinier, 1988; Cetiner et 

al., 2005; Rai et al., 2011; Zhang, 2016) 

Values of ∆𝐻𝑎𝑑𝑠
0  for octanohydroxamic acid adsorpiton on monazite changed from -
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27.31 kJ mol-1 to -7.74 kJ mol-1 with increases in surface coverage from 0.5 to 0.9 (see 

Table 5.6). Sreenivas and Padmanabhan (2002) also reported similar findings for 

octanohydroxamic acid adsrption on cassiterite, i.e.,  ∆𝐻𝑎𝑑𝑠
0  values varied between -

36.8 kJ mol-1 obtianed at octanohydroxamic acid concentration of 1×10-3 M and 5.2 

kJ mol-1 obtained at a surfactant concentration of 1×10-3 M. The changes of ∆𝐻𝑎𝑑𝑠
0  

values from negative to positive prove the transformation from chemisorption to surface 

precipitation. This transforamtion explains the relationships between minerals’ flotation 

recoveries and solubilities when using hydroxamic acids as collectors as reported by 

Assis et al. (1996).     

5.5 REACTION BETWEEN CERIUM AND OCTANOHYDROXAMIC ACID IN 

AQUEOUS SOLUTION 

Adsorption is a process that occurrs at the liquid-mineral interface which could lead to 

complete monolayer or multi-layer coverage of the collector. Similarites exist between 

the reactions that occur at the liquid-mineral interfaces and bulk solution. Titration tests 

are widely used to study reactions in solutions that involve hydroxyl ions. In the current 

study, the reactions between cerium and octanohydroxamic acid in an aqueous system 

were studied using titration tests.  

For the solutions containing 1) cerium only, 2) octanohydroxamic acid only, and 3) a 

cerium and octanohydroxamic acid mixture, more hydroxyl ions were needed to obtain 

the same pH values compared to a solution of deionized water, which indicated the 

occurrence of reactions resulting in the consumption of hydroxyl ions (Fig. 5.8). For a 

1×10-3 M cerium solution, pH values were decreased gradually from 7.2 to 6.2 with an 

increase in OH− concentration from 3×10-5 mole to 1.6×10-4 mole after which the pH 

value increased rapidly resulting in the precipitation of cerium hydroxide. For the 

solution containing both 1×10-3 M cerium and 3×10-3 M octanohydroxamic acid, pH 

values increased slowly from 4.0 to 5.0 with an increase in OH−  concentration 

between 5×10-5 and 1.4×10-4 mole, after which the solution pH value increased rapidly 

and precipitation of cerium octanohydroxamate occurred as shown by the brown color 
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solids in Fig. 5.9. With the increase in pH values, precipitates of brown color were 

gradually fomed, which indicates that hydroxyl ions contribute to the reaction between 

cerium and octanohydroxamic acid. The effects of hydroxyl ions are due to the 

formation of basic cerium octanohydroxamates, which can be described by the 

following equations (Raghavan and Fuerstenau, 1975): 

(RCONHO)Ce2+ +  OH−  →  (RCONHO)Ce(OH)+     (Eq. 5.14) 

(RCONHO)Ce(OH)+ +  OH−  →  (RCONHO)Ce(OH)2    (Eq. 5.15) 

(RCONHO)2Ce+ +  OH−  →  (RCONHO)2Ce(OH)      (Eq. 5.16) 

The basic cerium octanohydroxamates exhit a tendency to polymerize and form 

precipitates. The same reaction mechanism was suggested to occur on a monazite 

surface at pH 11.0 with high collector concentrations.  

 

Figure 5. 8. Solution pH values as a function of hydroxyl ion addition in solutions of 

i) Type I deionized water, ii) cerium only, iii) octanohydroxamic acid only, and iv) 

cerium and octanohydroxamic acid mixture. 
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Figure 5. 9. The appearance of solution containing 1×10-3 M Ce3+ and 3×10-3 M 

hydroxamic acid at different pH values.  

5.6 FTIR CHARACTERIZATION 

FTIR analyses were used to detect the surface chemistry changes with respect to pH 

values and temperature. The IR spectrums of monazite, octanohydroxamic acid, cerium 

oxide, and cerium octanohydroxamate are shown in Figure 5.10. Peaks at 964 cm-1 and 

988 cm-1 were assigned to cerium oxygen and phosphate oxygen bonds. Based on 

octanohydroxamic acid structure the carbonyl oxygen will serve as a donor center in 

the metal chelates. As a consequence, there will be electron withdrawal from the 

carbonyl group which, in turn, will increase the electron density in the C-N bond. The 

electron withdrawal will cause decreases in C=O bond frequency and increases in C-N 

bond frequency (Chatterjee, 1978). As shown in Figure 5.10, the C=O bond frequency 

at 1659 cm-1 and C-N bond frequency at 1330 cm-1 were shifted to 1604 cm-1 and 1378 

cm-1, respectively. As such, cerium chelates with a ring structure were suggested to 

form.    

pH 
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Figure 5. 10. FTIR Spectrum of (a) monazite, (b) octanohydroxamic acid, (c) cerium 

oxide, and (d) cerium octanohydroxamate.Notes: for spectrum (b) and (d), ↑ means C-

H or C-C-C stretch, ↑ means N-O stretch, N-O-H in place bend, or N-H stretch, ↑ 

means C-O or C=O stretch, ↑ means C-N stretch or N-H bend. 

FTIR analyses were conducted for monazite conditioned in 800 mg L-1 

octanohydroxamic acid for 48 hours. As shown in Figure 5.11, octanohydroxamate 

functional groups were detected on monazite surfaces with rinsing after conditioning 

for all the studied pH values. As such, chemical interaction occurred for all the studied 

pH values. Furthermore, the peak at 1604 cm-1 (the C=O stretch) became more 

significant with an increase in pH value from 3.0 to 11.0, which indicates a stronger 

interaction in the basic environment which agreed with the adsorption data (Fig. 5.5). 

An elevation in temperature from 20 oC to 60 oC increased the strength of the peaks at 

1604 cm-1, indicating a rise in collector adsorption with temperature. The same C=O 

peak position (1604 cm-1) for all the studied pH values indicates rare earth-

octanohydroxamate chelates were formed for all of these conditions. 
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Figure 5. 11. FTIR spectrum of monazite conditioned in 800 mg L-1 

octanohydroxamic acid for 48 hours: (a) pH 3.0 at 20 oC; (b) pH 6.0 at 20 oC; (c) pH 

9.0 at 20 oC; (d) pH 11.0 at 20 oC; (e) pH 9.0 at 60 oC. 

Band position of the asymmetric -CH2 bond occurred at 2924 cm-1 for pH 3.0, while 

for the other pH values the band shifted to 2920 cm-1. Similar shift was also observed 

by Kellar et al. (1991, 1992) in the fluorite-oleate system where frequencies of -CH2 

gradually decreased with increases in adsorption density. Kellar et al. (1991, 1992) 

suggested that the oleate adsorbed onto fluorite surfaces changes from a gauche state to 

a more rigid trans state. For the monazite-octanohydroxamte system, similar reactions 

were suggested to occur. Despite the fact that rare earth-octanohydroxamate chelates 

were formed for all of the studied pH values, the alky chains were in a more mobile and 

disordered form at pH 3.0 while for the other studied pH values, the alky chains were 

in a rigid state. Namely, chemisorption and surface precipitation occurred at lower and 

higher pH values, respectively. Furthermore, the band positon of -CH2 of cerium 

octanohydroxamate also occurred at 2920 cm-1, which also proves the occurrence of 

surface precipitation. Adsorption isotherm study indicates that multilayer adsorption 
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was achieved for all the studied pH values when using 800 mg L-1 octanohydroxamic 

acid and conditioning for 48 h. As such, physisorption via hydrophobic bonding 

following chemisorption was likely occur at pH 3.0.        

5.7 MICRO-FLOTATION TESTS 

Collector adsorption on mineral surfaces improves the degree of surface hydrophobicity 

and allows the material to be recovered by a froth flotation process at a rate that is 

economically viable. As shown in Figure 5.12, the maximum recovery of monazite 

occurred around pH 9.0 for all collector concentrations evaluated while nearly 100% 

flotation was achieved using a collector dosage of 40 mg L-1 and 5 min of conditioning 

as opposed to the 48 hours used to establish equilibrium. More surface active sites 

existed at pH 9.0 as indicated by the adsorption kinetic data (Table 5.1). As a result, 

adsorption rates and capacity were high which resulted in the higher flotation recovery 

values. As shown in Fig. 5.12(b), an increase in the conditioning temperature elevated 

monazite recovery which was due to improved adsorption densities as indicated by the 

thermodynamic and FTIR studies. 
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Figure 5. 12. Micro-flotation results of monazite using octanohydroxamic acid. (a) 

Effect of pH at 20 oC for three octanohydroxamic acid concentrations; (b) effect of 

conditioning temperature at pH 9.0 over a range of octanohydroxamic acid 

concentrations. 

(b)  

(a) 
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5.8 CONCLUSIONS 

This chapter systematically studied the adsorption mechanisms of octanohydroxamic 

acid on monazite surfaces by adsorption kinetic, isotherm and thermodynamic tests, 

FTIR analyses, titration tests, and micro-flotation tests. Chemical adsorption of the 

collector on monazite surfaces was proven, while at different adsorption stages and pH 

values, the adsorption mechanisms were different. The specific findings were as follows: 

(1) Adsorption equilibrium was achieved after 48 hours of interaction between 1×10-3 

M octanohydroxamic acid and monazite surfaces. Adsorption kinetic data could be 

effectively described by the pseudo-second-order kinetic model with 𝑅𝑎𝑑𝑗
2  values 

larger than 0.92;  

(2) Multilayer adsorption of the collector on monazite surfaces occurred at pH values 

of 3.0, 6.0, 9.0, and 11.0. Adsorption free energies for below monolayer coverages 

were less than -20 kJ mol-1 at all the pH values, indicating the occurrence of 

chemical adsorption; 

(3) For below monolayer adsorption, maximum adsorption rate and density occurred at 

pH 9.0, which was due to the chemical reaction between the collector and surface 

active sites such as REE(OH)2+. For beyond monolayer adsorption, maximum 

adsorption density occurred at pH 11.0 due to the abundance of hydroxyl ions in 

solution, which was proven by titration tests;  

(4) Adsorption density increased with the increases in temperature. The enthalpy (∆H) 

and entropy (∆S) changes were -27.31 kJ mol-1 and 0.022 J mol-1 K-1, respectively, 

which indicated that the adsorption was an exothermic and entropy increase process;  

(5) Based on the thermodynamic parameters of different mineral systems, 

transformation from chemisorption to surface precipitation and/or reaction with the 

increases in the collector dosages and/or solution pH values was suggested. The 

changes of the asymmetric –CH2 bonds from 2920 cm-1 to 2924 cm-1 with the 

increases in pH values proved the transformation. 
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CHAPTER 6. MONAZITE-CALCITE FLOTATION SEPARATION 

6.1 MICRO-FLOTATION TESTS 

Mineral floatability is closely related to solution pH values, which influences the 

solution species of collectors and ions present in solution. Figure 6.1 shows the flotation 

recovery results obtained when monazite and calcite were floated separately in single-

mineral flotation tests using a collector dosage of 1×10-4 M. A maximum recovery of 

around 90 % was obtained for monazite at pH 9.0 while calcite recovery at the same 

pH value was only around 22 %. Maximum calcite recovery was realized at pH 10.0. 

The results imply that an effective separation could be realized using octanohydroxamic 

acid at a solution pH of 9.0. However, test results obtained when mixing the two 

minerals at a 1:1 ratio provided a different outcome.  

 

Figure 6. 1. Effects of pH values on monazite and calcite flotation when using 1×10-4 

M octanohydroxamic acid. 

While maintaining the solution pH at a value of 9.0, octanohydroxamic acid dosage was 

varied in tests involving both single-mineral and mixed-mineral flotation systems. As 

shown in Figure 6.2, the presence of calcite suppresses the flotation of monazite when 
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using octanohydroxamic acid dosages less than 2.5×10-4 M. Furthermore, the recovery 

of calcite reached values approaching 100 % at high collector dosage levels. As such, 

selectivity was significantly lower in the mixed-mineral system and declined 

substantially with an increase in octanohydroxamic acid concentration. At the dosage 

of 1×10-4 M as used in the pH experiments (Figure 6.1), the monazite recovery in the 

mixed-mineral system was only around 40 % compared to the 90 % value obtained 

from the single-mineral tests while the calcite recovery remained relatively unchanged. 

 

Figure 6. 2. Effects of octanohydroxamic acid concentration on monazite and calcite 

flotation at pH 9.0. 

Calcite is a sparingly soluble mineral and crystal ions will dissolve from its surfaces in 

water. As previously discussed, the influence of calcium and carbonate ions on flotation 

have been reported in literature. Figure 6.3 shows the effects of calcium and carbonate 

ions on monazite flotation. Monazite recovery values decreased exponentially with the 

increases in calcium ions concentration while carbonate ions showed negligible effects. 

Therefore, depression in monazite recovery in the presence of calcite shown in Figure 

6.2 may be attributed to the dissolution of calcium ions from the calcite surfaces. 
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Figure 6. 3. Effects of calcium and carbonate ions on the flotation of monazite using 

1×10-4 M octanohydroxamic acid.  

6.2 ADSORPTION TESTS 

In an effort to develop a fundamental understanding of flotation results, adsorption 

density was measured over a range of solution pH values and calcium ion 

concentrations. As shown in Fig. 6.4, maximum adsorption density values for the 

monazite and calcite were obtained at pH 9.0 and 10.0, respectively, which agreed well 

with the optimum recovery values obtained from the micro-flotation tests (Figure 6.1). 

The vertically-oriented monolayer adsorption density of the octanohydroxamic acid 

was estimated to be 8.1 μM/m2 assuming the cross sectional area of the 

octanohydroxamic acid molecule to be 20.5 Å2 (the number of adsorbed monolayers = 

molecular size (m2) × adsorption density (M/m2) × Avogadro number (6.02×1023)) (Ni 

and Liu, 2012). As such, 75 % of the monazite surface was covered by 

octanohydroxamic acid at pH 9.0 when the bulk concentration was 1×10-3 M.  

Micro-flotation tests indicated that calcium ions decreased monazite recovery, most 

likely due to a negative effect on the surface hydrophobicity. To better understand the 

effect, the adsorption of calcium ions onto the monazite surfaces and the corresponding 
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impact on octanohydroxamic acid adsorption were also evaluated. The adsorption 

density of octanohydroxamic acid decreased initially with an increase in calcium 

concentration before reaching a minimum at a concentration of 5×10-6 M (Figure 6.5). 

The adsorption density of the calcium ions increased slightly from 1.5 to 2.1 μM/m2 

with an elevation in the calcium concentrations from 5×10-5 to 5×10-3 M (2 to 200 ppm). 

For concentrations below 5×10-5 M, adsorption tests were not conducted due to the 

lower limits of the ICP-OES analyzer. However, it is reasonable to assume that the 

adsorption density was below 1.5 μM/m2 for the lower calcium ion concentrations. 

Monolayer coverage of bare dehydrated Ca2+ ions corresponds to an adsorption density 

of 52.9 μM/m2. However, James and Healy (1972a) found that inner hydration sheaths 

of metallic cations remain adsorbed on a silica surface. The radius used for monolayer 

coverage calculations was the radius of bare cations plus the diameter of a water 

molecule. In this case, the monolayer coverage of calcium corresponds to 3.76 μM/m2. 

Using this value, only half of the monazite surface was covered by calcium ions at pH 

9.0 within the studied calcium concentrations.  

 

Figure 6. 4. Effect of pH on the adsorption of octanohydroxamic acid on monazite and 

calcite.  
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Figure 6. 5. Effects of initial concentration of calcium ions on the adsorption of 1×10-3 

M octanohydroxamic acid and calcium ions on monazite surface at pH 9.0.  

6.3 ELECTROKINETIC TESTS 

The adsorption mechanism was investigated using electro-kinetic tests based on the fact 

that the isoelectric point (IEP) of mineral particles typically shift when specific 

adsorption occurs in the Stern layer. As shown in Figure 6.6, the IEP of pure monazite 

was located at a solution pH value of 6.5 which agreed with values reported in literature 

(Cheng et al., 1993; Cheng, 2000). The zeta potential of monazite is pH sensitive which 

indicates that hydrogen and hydroxyl ions are potential determining ions for monazite. 

The influence of calcium ions on the electro-kinetic properties of monazite was more 

evident in basic solutions. For a calcium concentration of 1×10-6 M, the effect was 

negligible. However, with the addition of 1×10-5 M and 1×10-4 M calcium ions, the 

absolute charges of monazite decreased when pH values were larger than 8.2 and 7.0, 

respectively. Since the concentrations of calcium ions were much smaller than that of 

the supporting electrolyte (1 mM KCl), compression of electrical double layer was 

minor and specific adsorption of the calcium ions on monazite was expected to occur. 

When the calcium ion concentration was increased to 1×10-3 M and 5×10-3 M, the 
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IEP of the monazite was significantly shifted to the right side, providing evidence of 

strong specific adsorption.  

 

Figure 6. 6. Effects of calcium ions on the electro-kinetic properties of monazite at 

different pH values.  

6.4 FTIR ANALYSES 

FTIR analyses were conducted to evaluate the surface chemical changes of monazite 

after the adsorption of octanohydroxamic acid. Fig. 6.7 shows the spectrum of 

octanohydroxamic acid, monazite, and monazite conditioned in octanohydroxamic acid. 

Assignments of selected FTIR bands of solid octanohydroxamic acid are shown in 

Table 6.1. The bands of monazite at 945 cm-1 and 982 cm-1 were assigned to rare earth 

oxygen and phosphate oxygen bonds. After adsorption of octanohydroxamic acid, new 

bands at 1604 cm-1 appeared, indicating the occurrence of chemical adsorption. 

Octanohydroxamic acid showed two peaks around 1609 cm-1, i.e., 1562 cm-1 and 1620 

cm-1, representing the C-N stretch/N-H bend and C=O stretch, respectively. Therefore, 

it is reasonable to suggest that the chemical reaction which occurred between 

octanohydroxamic acid and monazite involved the C-N, N-H, and C=O groups.  
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Figure 6. 7. FTIR spectrum of monazite and octanohydroxamic acid. (a) 

octanohydroxamic acid; (b) monazite conditioned in water at pH 9.0; (c) monazite 

conditioned in 1×10-3 M octanohydroxamic acid at pH 9.0; (d) monazite conditioned 

in 3×10-3 M octanohydroxamic acid at pH 9.0. 
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Table 6. 1. Assignments of selected FTIR bands from solid octanohydroxamic acid. 
FTIR cm-1 Assignment FTIR cm-1 Assignment 

895 C-C-C skeletal stretch 1562 C-N stretch, N-H bend 

968 N-O stretch 1620 C=O stretch 

1030 C-O stretch 1659 C=O stretch 

1076 C-C-C stretch 2747 O-H stretch 

1119 C-H symmetric deformation 2847 C-H symmetric stretch for CH2/CH3 

1292 (CH2)n wag 2916 C-H symmetric stretch for CH2/CH3 

1331 CH3 deformation 2943 C-H antisymmetric stretch for CH2/CH3 

1389 -OH bend of N-O-H 2954 C-H antisymmetric stretch for CH2/CH3 

1420 N-O-H in place bend 3063 Fermi resonance of C-N stretch and N-H 

bend 

1466 C-N stretch 3248 N-H stretch 

For the calcite system, no new peaks appeared after conditioning with 1×10-3 M 

octanohydroxamic acid as shown in Figure 6.8, which indicates weak adsorption at the 

lower collector dosage level. When the dosage was increased to 5×10-3 M 

octanohydroxamic acid, adsorption peaks occurred at 1608, 2855, 2924, and 2954 cm-

1 which existed even after rinsing. As such, evidence indicates the existence of strong 

chemical adsorption of the collector onto the calcite surfaces at the higher collector 

concentration. The similar peaks (1604 cm-1 for monazite and 1608 cm-1 for calcite) 

indicate a nearly identical chemical adsorption mechanism given that the 4 cm-1 shift 

may be due to the difference in active sites.  

As shown in Figure 6.2 and 6.3, the presence of calcium ions has a negative effect on 

monazite flotation recovery which is likely due to the impact on collector adsorption. 

When Ca2+ was added to the monazite system, the FTIR adsorption peak for monazite 

conditioned in octanohydroxamic acid solution shifted from 1604 cm-1 to 1607 cm-1, 

and to 1608 cm-1 (Figure 6.9). Therefore, in terms of octanohydroxamic acid adsorption, 

the surface characteristics of monazite gradually transformed to that of calcite when 

calcium concentration was increased in solution. Monazite conditioned in 5×10-3 M 
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Ca2+ and 3×10-3 M and octanohydroxamic acid showed very strong adsorption peaks at 

1608, 2855, 2924, and 2954 cm-1, which did not occur for monazite and calcite 

conditioned in the same dosage of collector without the addition of Ca2+. It is reasonable 

to suggest that precipitation occurred in the monazite-calcium-octanohydroxamic acid 

system. A titration test of a solution containing 5×10-3 M Ca2+ and 3 ×10-3 M 

octanohydroxamic acid showed that precipitates of white color started forming at pH 

8.1.  
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Figure 6. 8. FTIR spectrum of calcite (a) conditioned in water at pH 9.0; (b) 

conditioned in 1×10-3 M hydroxamic acid at pH 9.0; (c) conditioned in 5×10-3 M 

hydroxamic acid at pH 9.0 without rinsing; (d) conditioned in 5 × 10-3 M hydroxamic 

acid at pH 9.0 with rinsing. 
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Fig. 6. 9. Effect of Ca2+ on the adsorption of octanohydroxamic acid on monazite: (a) 

monazite conditioned in 1×10-3 M hydroxamic acid at pH 9.0; (b) monazite conditioned in 

1×10-3 M Ca2+ and 1×10-3 M hydroxamic acid; (c) monazite conditioned in 5×10-3 M Ca2+ and 

3 × 10-3 M hydroxamic acid. 

6.5 DEPRESSION MECHANISM OF Ca2+ FOR MONAZITE FLOTATION 

6.5.1 Crystal Characteristics of Monazite 

Monazite crystal occurs in monoclinic space group with P21/n settings. Cleavages 

usually occur along (100) planes (Figure 6.10). The rare earth and oxygen atoms 

exposed on the fresh surface are unsaturated. When placed in water, hydrolysis occurs 

due to electrical compensation leaving the surface sites divided into two different types, 

i.e., rare earth oxygen (REE-OH) and phosphate oxygen (P-OH) sites.  



99 
 

 

Figure 6. 10. Ball and stick model of the cleavage of monazite (CePO4) occurring on 

(100) plane.  

The dissolution rate of monazite at 25 °C and pH 9.0 is less than 10-17 mol/cm2/s 

(Oelkers and Poitrasson, 2002). Therefore, the dissolution of rare earth and phosphate 

atoms is minimal thereby eliminating the possibility of specific adsorption for the pure 

mineral-water systems used in this study. As such, the isoelectric point (IEP) and the 

point-of-zero charge (PZC) are equal with a value of about 6.5 as shown in Figure 6.6.  

The surface charge of monazite can be represented by the single site surface protonation 

reactions, i.e., 

≡ SO− + ≡ H+ ⇌ ≡ SOH                (Eq. 6.1) 

≡ SOH + ≡ H+ ⇌ ≡ SOH2
+               (Eq. 6.2) 

where ≡ SO− , ≡ SOH , and ≡ SOH2
+  represent surface species, i.e., rare earth – 

oxygen and phosphate – oxygen sites, and ≡ H+ represents the hydrogen ion near the 

charged surface (Parks, 1965; Somasundaran and Agar, 1967; Yoon et al., 1979). The 

surface charge was controlled by the equilibrium of the above equations. At the pH > 

6.5, more surface sites were deprotonated and ≡ SO− was dominant. 

6.5.2 Adsorption of Calcium Ions on Monazite 

Concentrations of different calcium species in solution are controlled by the following 

reversible reactions (Somasundaran and Agar, 1967): 
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Ca2+ + OH−  ⇌ CaOH+, 𝐾1 = 101.40,           (Eq. 6.3) 

Ca(OH)+ + OH−  ⇌ Ca(OH)2(𝑎𝑞), 𝐾2 = 101.37,       (Eq. 6.4) 

Ca(OH)2(𝑎𝑞) ⇌ Ca(OH)2(𝑠), 𝐾2 = 102.45.         (Eq. 6.5) 

The equilibrium concentrations of Ca2+, CaOH+, and Ca(OH)2(aq) in a solution 

containing 5×10-3 M of total calcium ions were calculated and are shown in Figure 6.11. 

Ca2+ ion is the dominant species in the pH range of 3-12 while concentrations of 

hydrolyzed species of calcium, i.e., CaOH+, increase with a rise in the solution pH value. 

Electro-kinetic tests (Figure 6.6) indicate that adsorption of calcium onto the monazite 

surface occurred more readily in the basic pH environment, which coincided with the 

pH range where hydrolysis of calcium ions occurred. Based on these findings, the 

solution species resulting in the specific adsorption was mainly Ca(OH)+.  

 

Figure 6. 9. Specification diagram of calcium ions in solution.  

The precipitation of calcium hydroxide occurs at pH > 13.1. As such, at pH 9.0, the 

adsorption of octanohydroxamic acid by calcium hydroxide forms in solution does not 

need to be considered. As previously presented in this dissertation (section 5.3), the 

adsorption study indicated that calcium adsorption on monazite was less than a 

2+ 
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monolayer. The adsorption occurred within the Stern layer and thickness of the 

adsorbed layer was the radius of calcium ions plus the diameter of a hydroxyl group, 

i.e., 1.00 Å plus 2.66 Å. With the addition of 1×10-4 M Ca2+, the adsorption density of 

the calcium ions onto monazite surfaces is around 1.5 μM/m2. Based on the adsorption 

layer thickness, adsorption density, and dissociation reactions of calcium in solution, 

the Ca(OH)+ concentration and pH value corresponding to calcium precipitation near 

monazite surface were calculated to be 1.5 M and 11.30, respectively. Hydroxyl ions 

were likely repelled from the surface due to electrostatic repulsion, which means pH > 

11.30 in bulk solution is required for the occurrence of surface precipitation. Therefore, 

at pH 9.0, calcium ions were adsorbed as hydrolyzed species (CaOH+) on the monazite 

surfaces, which is also true for the higher concentrations investigated in the current 

study.  

The adsorption of CaOH+ on monazite is more likely to occur on the neutralized and 

deprotonated rare earth oxygen and phosphate oxygen sites via hydrogen bonding and 

electrostatic interactions, respectively, which could be represented by the following 

equations: 

≡ REEOH + CaOH+  ⇌ ≡ REEOH ⋯ OHCa+         (Eq. 6.6) 

≡ REEO− +  CaOH+  ⇄ ≡ REEOCaOH            (Eq. 6.7) 

≡ POH +  CaOH+  ⇄ ≡ POH ⋯ OHCa+           (Eq. 6.8) 

≡ PO− +  CaOH+  ⇄ ≡ POCaOH              (Eq. 6.9) 

6.5.3 Effects of Calcium on the Adsorption of Octanohydroxamic Acid on Monazite 

Surface hydrolysis has been proven necessary for octanohydroxamic acid adsorption 

on minerals (Peterson et al., 1965; Fuerstenau et al., 1967, 1970; Nararajan and 

Fuerstenau, 1983; Pradip and Fuerstenau, 1983, 1985; Nagaraj, 1988). In the current 

study, the importance of surface hydrolysis was also observed, i.e., optimum flotation 

and adsorption occurred at pH 9.0 where concentrations of rare earth hydrolyzed 

species reached maximum. 

Based on the fact that octanohydroxamic acid is strongly complexed with the rare earth 
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atoms, the effects of CaOH+ on the adsorption of octanohydroxamic acid on rare earth 

oxygen sites may be ignored. However, for the phosphate oxygen sites, both CaOH+ 

and octanohydroxamic acid adsorbed via hydrogen bonding and competitive adsorption 

was expected to occur, which explains the decreases of hydroxamate adsorption when 

a small dosage of calcium ions was added.  

Adsorption density of octanohydroxamic acid was increased with the addition of a 

higher dosage of calcium ions (see Figure 6.5). It was reasonable to suggest that the 

phosphate oxygen sites were covered with a layer of Ca(OH)+ attached via hydrogen 

bonding or electrostatic attraction. The electrostatically adsorbed CaOH+ with the 

hydroxyl group oriented away from the solid surface provides alternative active sites 

for octanohydroxamic acid adsorption, which agrees with the fact that the hydrolysis of 

metal atoms on minerals is required for formation of chelates with octanohydroxamic 

acid (Fuerstenau et al., 1970, 1967; Nararajan and Fuerstenau, 1983; Peterson et al., 

1965; Pradip and Fuerstenau, 1983, 1985). The shifts of the adsorption peaks (1604, 

1607, 1608 cm-1) of monazite which interacted with both calcium and 

octanohydroxamic acid also suggested the formation of calcium-hydroxamate chelates 

on monazite surfaces.   

The primary hydration sheath of CaOH+ adsorbed via hydrogen bonding increased the 

surface hydrophilicity. The combined effects were that stronger surface hydrophobicity 

was not observed with the addition of calcium ions despite the adsorption of additional 

octanohydroxamic acid. The interaction model between monazite, octanohydroxamic 

acid, and calcium ions was shown in Figure 6.11. However, surface and bulk 

precipitation of calcium hydroxamate occurred with the addition of higher dosages of 

calcium and octanohydroxamic acid, i.e., 5×10-3 M of Ca2+ and 3×10-3 M 

octanohydroxamic acid in the current study.  
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Figure 6. 10. Model of interaction among monazite, calcium ions, and 

octanohydroxamic acid.  

6.6 Effects of Depressants on Flotation Selectivity 

6.6.1 Micro-flotation Tests 

Selective flotation is normally obtained by selecting appropriate depressant types and 

dosages. In the current study, sodium silicate and sodium hexametaphosphate (SHMP) 

were used as depressants. Effects of depressant dosages on monazite and calcite 

flotation in both single and combined systems were investigated. Zhang et al. (2017b) 

showed that maximum flotation recovery of monazite using 1×10-4 M 

octanohydroxamic acid occurred at pH 9.0. As such, all the micro-flotation tests were 

conducted at pH 9.0. As shown in Figure 6.12 and 6.13, both sodium silicate and SHMP 

provided minor effects on the floatability of monazite in single mineral tests. However, 

calcite recovery values were decreased significantly with the increases in depressant 

dosages, i.e., complete depression occurred using either 5×10-6 M SHMP or 0.025 g/L 

sodium silicate. As such, both SHMP and sodium silicate seem to be promising 

depressants for monazite-calcite flotation separation. 

However, when flotation tests were conducted in monazite-calcite combined systems, 

depression of monazite occurred for both SHMP and sodium silicate (Figure 6.12 and 

6.13). Efficient separation of monazite and calcite at pH 9.0 when using SHMP and 

2.5×10-4 M octanohydroxamic acid was impossible based on the fact that monazite was 

depressed simultaneously with calcite. However, with a small dosage (i.e., 0.01 g/L) of 
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sodium silicate, monazite recovery of nearly 90% was obtained while only recovered 

30% of calcite. The reason might be that SHMP can form stable chelates with calcium 

ions on monazite surfaces and prevent the collector adsorption (Hong et al., 2012; 

Zhang et al., 2014).  

 

Figure 6. 11. Effects of sodium silicate on single mineral and mixed monazite and 

calcite flotation when using 2.5×10-4 M octanohydroxamic acid at pH 9.0.  
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Figure 6. 12. Effects of sodium hexametaphosphate on single mineral and combined 

flotation of monazite and calcite when using 2.5 × 10-4 M octanohydroxamic acid at 

pH 9.0.  

Calcite is a semi-soluble mineral and calcium ions will be dissolved from its surfaces. 

The dissolved calcium ions will re-adsorb onto monazite surfaces, which may explain 

the depression of monazite in the combined system. Figure 6.14 and 6.15 show the 

effects of sodium silicate and SHMP on monazite floatability when calcium ions were 

added into the single mineral system. The flotation recovery was sensitive to calcium 

concentration when calcium ions and sodium silicate or SHMP co-existed in the system. 

For example, with the addition of 0.05 g/L sodium silicate, the recovery values 

decreased from nearly 85% to less than 10% with the increases in calcium concentration 

from 1×10-4 to 2.5×10-4 M. The depression effect might be due to the co-adsorption of 

calcium and depressants on monazite surfaces.  

Flotation results with addition of sodium silicate and SHMP prior to calcium ions were 

also shown in Figure 6.14 and 6.15, respectively. As shown in the figures, the adding 

sequence did not make a significant difference, indicating that instead of an ordered 
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structure with calcium immediately above monazite surfaces and depressant next to the 

calcium layers, the co-adsorbed species were more likely form a disordered compact 

layer around monazite surfaces. Both the single and combined mineral flotation tests 

indicated that sodium silicate perform better than SHMP due to the existence of calcium 

ions. As such, in the following study, sodium silicate was selected as the depressant for 

calcite. 

 

Figure 6. 13. Effects of calcium ions and sodium silicate on monazite single mineral 

flotation (the dash line means sodium silicate was added before calcium ions).  
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Figure 6. 14. Effects of calcium ions and SHMP on monazite single mineral flotation 

(the dash line means SHMP was added before calcium ions). 

To achieve efficient separation of monazite from calcite, the negative effects of calcium 

ions need to be removed using appropriate regulators. In the current study, two chelating 

reagents, i.e., citric acid and EDTA, were used to clean monazite surfaces. Figure 6.16 

shows the effects of the two regulators on pure monazite and calcite floatability. As 

shown in the figure, both monazite and calcite recoveries were decreased with the 

increases in regulator dosages. Citric acid had stronger depression effects compared 

with EDTA, thus, calcite was more likely to be depressed when using citric acid as the 

regulator. Depression was not expected based on the fact that the purpose is to remove 

calcium from monazite surfaces. However, when using less than 5×10-4 M regulators, 

the depression effect was negligible. 
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Figure 6. 15. Effects of citric acid and EDTA on single mineral flotation of monazite 

and calcite.  

To evaluate the efficiency of citric acid and EDTA regarding calcium removal from 

monazite surfaces, flotation tests were conducted with sequential addition of calcium 

ions, regulators, and sodium silicate. As shown in Figure 6.17, flotation recovery of 

monazite increased from 10% to about 85% and 90% using citric acid and EDTA as 

regulators, respectively. As such, both of them can eliminate the negative effects of 

calcium ions by preventing the co-adsorption of sodium silicate and calcium ions on 

monazite surfaces. However, flotation recovery was decreased with higher dosages of 

regulators, which agreed with the pure mineral flotation results shown in Figure 6.17 

and might be due to the adsorption of excessive citric acid and EDTA on monazite 

surfaces.  
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Figure 6. 16. Effects of citric acid and EDTA dosages on monazite flotation with the 

addition of 2.5×10-4 M Ca2+ and 0.05 g/L sodium silicate  

Combined mineral flotation tests were conducted to evaluate the effects of citric acid 

and EDTA on the separation performance. As shown in Figure 6.18, both citric acid and 

EDTA could effectively improve monazite recovery from 60% to about 90%, while 

they had minor effects on calcite recovery. As such, the negative effects of calcium ions 

on monazite-calcite flotation separation can be eliminated using appropriate regulators 

such as citric acid and EDTA. Furthermore, EDTA performed better than citric acid, 

which agreed with previous tests and might be due to the stronger depression effects of 

citric acid.  
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Figure 6. 17. Effects of citric acid and EDTA dosages on monazite and calcite 

combined mineral flotation separation using 0.05 g/L sodium silicate and 2.5×10-4 M 

octanohydroxamic acid. 

6.6.2 Electrokinetic Tests 

Adsorption of chemicals on mineral surfaces may change the electrokinetic properties 

such as isoelectric point (IEP) and potential distribution of mineral particles. As such, 

electrokinetic tests were conducted to evaluate the adsorption of calcium, sodium 

silicate, citric acid and EDTA on monazite surfaces. Figure 6.19 shows the effects of 1 

mM Ca2+ and/or 0.05 g/L sodium silicate on monazite surface potential. As shown in 

the figure, the IEP of monazite occurred at pH 5.5, which agrees with the data reported 

by Cheng et al. (2000) and Zhang et al. (2017a). Larger zeta potential changes were 

observed in basic environments with the addition of 0.1 mM Ca2+, which might be due 

to the specific adsorption of the hydrolyzed calcium species. Strong specific adsorption 

of sodium silicate on monazite surfaces occurred, as indicated by the left shift of IEP. 

Based on the fact that sodium silicate has no effects on monazite flotation when using 

octanohydroxamic acid as the collector (Figure 6.12), octanohydroxamic acid has 
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higher affinity for monazite than sodium silicate. For pH values less than 5.5, the 

addition of sodium silicate together with calcium is similar to the addition of solely 

sodium silicate regarding the zeta potential changes. However, for pH values above 5.5, 

zeta potential of monazite conditioned with both sodium silicate and calcium ions 

gradually increased with the increases in pH values. As such, co-adsorption of calcium 

and sodium silicate occurred on monazite surfaces when pH values exceeded 5.5.  

 

Figure 6. 18. Effects of calcium and/or sodium silicate on monazite zeta potential.  

IEP of the calcite used in current study occurred at about pH 10.5 (Figure 6.21). 

Decreases in zeta potential and left shits of IEP were observed when adding sodium 

silicate, citric acid, or EDTA, which indicates the occurrence of specific adsorption. 

Furthermore, octanohydroxamic acid adsorption on calcite surfaces is pretty weak due 

to the lower stability of the hydroxamate-calcium complex. As such, the sodium silicate, 

citric acid, or EDTA competes with octanohydroxamic acid for calcite surfaces and 

results in depression.  
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Figure 6. 19. Effects of sodium silicate, citric acid and EDTA on calcite zeta potential.  

IEP of monazite decreased significantly when conditioned with 0.1 mM citric acid or 

EDTA, indicating the occurrence of specific adsorption (Figure 6.21). Both citric acid 

and EDTA of 0.1 mM had minor effects on monazite floatability when using 2.5×10-4 

M octanohydroxamic acid as the collector, which indicated stronger interaction 

between the collector and monazite surfaces. Furthermore, as shown in Figure 6.21, 

citric acid made monazite surfaces carry more negative charges than EDTA when using 

the same dosage, which agreed with the fact that citric acid provides stronger depression 

effects on monazite floatability than EDTA.  

When calcium ions were added together with regulators, the zeta potentials are between 

the values observed for monazite conditioned with regulators and unconditioned 

monazite. For low pH values, the zeta potentials are close to the former, which is due 

to the lack of hydrolyzed calcium species. For high pH values, hydrolyzed calcium 

species such as Ca(OH)+ specifically adsorb onto monazite surfaces. In addition, both 

citric acid and EDTA can form soluble complexes and clean monazite surfaces. As such, 
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when calcium was added together with citric acid and/or EDTA, the zeta potential of 

monazite was expected to remain unchanged. Figure 6.21 shows that for high pH values, 

the zeta potential of monazite conditioned with both calcium and regulators especially 

EDTA was close to unconditioned monazite, proving the surface cleaning function.  

 

Figure 6. 20. Effects of calcium, citric acid and EDTA on monazite zeta potential. 

6.6.3 Solution Chemistry Study 

The electrokinetic study showed that the hydrolyzed calcium species (e.g. Ca(OH)+) 

which have higher concentration in basic environment co-adsorbed with sodium silicate 

on monazite surfaces, and thus reducing collector adsorption as well as flotation 

recovery. Both citric acid and EDTA can be used as regulators to eliminate the negative 

effects caused by calcium ions. To better understand the role of different solution 

species involved in monazite-calcite flotation system, solution chemistry calculation 

was conducted. The reactions and reaction constants used for calculation were listed in 

Table 6.2. 
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Table 6. 2. Reactions and constants for solution chemistry calculation. 
Reactions Reaction Constants 

𝐻2𝑂 ⇆  𝐻+ +  𝑂𝐻− 10−14 

𝐶𝑎2+ + 𝑂𝐻−  ⇆  𝐶𝑎(𝑂𝐻)+ 101.4 

𝐶𝑎2+ + 2𝑂𝐻−  ⇆  𝐶𝑎(𝑂𝐻)2(𝑎𝑞) 102.77 

𝐶𝑎2+ + 2𝑂𝐻−  ⇆  𝐶𝑎(𝑂𝐻)2(𝑠) 105.22 

𝑆𝑖𝑂2(𝑠) + 2𝐻2𝑂 ⇆  𝑆𝑖(𝑂𝐻)4(𝑎𝑞) 10−2.64 

𝑆𝑖(𝑂𝐻)4 + 𝑂𝐻−  ⇆  𝑆𝑖𝑂(𝑂𝐻)3
− + 𝐻2𝑂 104.29 

 𝑆𝑖𝑂(𝑂𝐻)3
− + 𝑂𝐻−  ⇆  𝑆𝑖𝑂2(𝑂𝐻)2

2− + 𝐻2𝑂 100.99 

 4𝑆𝑖(𝑂𝐻)4 + 2𝑂𝐻−  ⇆  𝑆𝑖4𝑂6(𝑂𝐻)6
2− + 6𝐻2𝑂 1015.03 

𝐻+ + 𝐶𝑖𝑡3−  ⇆  𝐶𝑖𝑡𝐻2− 106.33 

2𝐻+ + 𝐶𝑖𝑡3−  ⇆  𝐶𝑖𝑡𝐻2
− 1011.05 

3𝐻+ + 𝐶𝑖𝑡3−  ⇆  𝐶𝑖𝑡𝐻3 1014.18 

𝐶𝑎2+ + 𝐶𝑖𝑡3−  ⇆  𝐶𝑎𝐶𝑖𝑡− 1011.35 

𝐶𝑎2+ + 𝐶𝑖𝑡3− +  𝐻+ ⇆  𝐶𝑎𝐶𝑖𝑡𝐻 1018.48 

𝐻+ + 𝐸𝑑𝑡𝑎4−  ⇆  𝐸𝑑𝑡𝑎𝐻3− 109.96 

2𝐻+ + 𝐸𝑑𝑡𝑎4−  ⇆  𝐸𝑑𝑡𝑎𝐻2
2− 1016.61 

3𝐻+ + 𝐸𝑑𝑡𝑎4−  ⇆  𝐸𝑑𝑡𝑎𝐻3
− 1018.86 

4𝐻+ + 𝐸𝑑𝑡𝑎4−  ⇆  𝐸𝑑𝑡𝑎𝐻4 1020.93 

5𝐻+ + 𝐸𝑑𝑡𝑎4−  ⇆  𝐸𝑑𝑡𝑎𝐻5
+ 1023.464 

𝐶𝑎2+ + 𝐸𝑑𝑡𝑎4−  ⇆  𝐶𝑎𝐸𝑑𝑡𝑎2− 1012.4 

𝐶𝑎2+ + 𝐸𝑑𝑡𝑎4− +  𝐻+  ⇆  𝐶𝑎𝐸𝑑𝑡𝑎𝐻− 1016 

(Data sources: Marinakis and Shergold, 1985; Westin and Rasmuson, 2005; Zhang et 

al., 2017b. Note: CitH and Edta represent citric acid and EDTA, respectively.) 

Sodium silicate of 0.05 g/L which was used for the flotation and electrokinetic tests 

contains 8.33×10-4 M of silica assuming the SiO2 content was 100%. As such, 

speciation diagram of 1×10-3 M silica was calculated (Figure 6.22). As shown in the 

figure, Si(OH)4  and SiO(OH)3
−  were dominant species for pH values below and 

above 9.8, respectively. Both of the two species have hydroxyl groups, which explains 

the specific adsorption of sodium silicate on monazite and calcite surfaces via hydrogen 

bonding. Hydrolyzed calcium species such as Ca(OH)+ also carry hydroxyl groups. As 
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such, the co-adsorption of Ca(OH)+  and Si(OH)4  as well as SiO(OH)3
−  around 

monazite surfaces is possible due to the existence of hydrogen bonding. The compact 

layer of calcium and silica around monazite surfaces is hydrophilic and may introduce 

steric hindrance for octanohydroxamic acid adsorption, thus, reducing the flotation 

recovery (Figure 6.12).  

In addition to hydrogen bonding, surface reaction was also suggested to occur between 

calcium and silicate on calcite surfaces (Mishra, 1982; Marinakis and Shergold, 1985; 

Rao et al., 1988, 1990; Rao, 1989; Feng et al., 2015). The surface reaction were 

represented as follows: 

Ca(surf)
2+ + SiO(OH)3

−  ⇄  Ca2+ − SiO(OH)3(surf)       (Eq. 6.10) 

Ca2+ − OH(surf) + SiO(OH)4  ⇄  Ca2+ − OSi(OH)3(surf) + H2O  (Eq. 6.11) 

Based on the above discussion, the possible adsorption mechanisms were presented in 

Figure 6.23. The interactions presented in the figure include specific adsorption 

of  Ca(OH)+ , SiO(OH)3
− , and Ca(OH)+  on monazite surfaces; hydrogen bonding 

among the above three species; and surface reaction between calcium and silicate 

species.  
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Figure 6. 21. Speciation diagram of silicate in water with a total concentration of 

1×10-3 M.  

 

Figure 6. 22. Schematic diagram representing the co-adsorption of calcium and 

silicate on monazite surfaces.  

The speciation diagrams of two different systems, i.e., calcium-citric acid-water and 

calcium-EDTA-water, were shown in Figure 6.24. As shown in the figure, instead of 

Ca2+ or Ca(OH)+, CaCit- and CaEdta2- were the dominant species when calcium was 
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mixed with citric acid and EDTA, respectively. The CaCit- and CaEdta2- chelates were 

more soluble in water and more calcium will stay in solution instead of monazite 

surfaces. As such, the negative effects of calcium species were removed. Furthermore, 

compared with citric acid, EDTA was more efficient to reduce the Ca(OH)+ 

concentration, which explained its better performance for the mixed mineral micro-

flotation (Figure 6.18).  

  

(a) 



118 
 

  

Figure 6. 23. Speciation diagrams: (a) 1×10-4 M Ca2+ and 1×10-4 M M citric acid in 

water; (b) 1×10-4 M Ca2+ and 1×10-4 M EDTA in water. (Dash line means the Ca(OH)+ 

concentration of 1×10-4 M calcium-water system).  

The speciation diagrams of two systems (0.1 mM Ca2+ plus 0.1 mM citric acid; 0.1 mM 

Ca2+ plus 0.1 mM EDTA) were shown in Figure 6.20. As shown in the figure, instead 

of Ca2+ or Ca(OH)+, CaCit- and CaEdta2- are the dominant species when calcium was 

mixed with citric acid and EDTA, respectively.  

6.7. CONCLUSIONS 

Systematic studies of the problems involved in monazite-calcite flotation systems were 

reported in this chapter. Hydrolyzed species of calcium ions dissolved from calcite 

surfaces were adsorbed onto monazite surface, which depressed monazite floatability. 

In addition, the hydrolyzed calcium species could be co-adsorbed onto monazite 

surfaces with silicates by hydrogen bonding and/or surface reaction. The co-adsorbed 

species formed a compact hydrophilic layer on monazite surfaces, which reduced the 

collector adsorption due to steric hindrance and made the depressants nonselective. 

Using appropriate chelating reagents such as EDTA, the negative effects of calcium 

(b) 
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species were eliminated. The detailed findings of this chapter included: 

(1) Monazite recovery decreased from 90% to 40% using 1×10-4 M octanohydroxamic 

acid when floated together with calcite. With the increases in calcium concentration 

from 0 to 1×10-3 M, monazite recovery in single-mineral flotation tests decreased 

from 90% to less than 20%. As such, depression of monazite in the combined 

system was due to the calcium ions dissolved from calcite surfaces. 

(2) Maximum adsorption density of octanohydroxamic acid on monazite and calcite 

surfaces occurred at pH 9.0 and 10.0, respectively. The adsorption density of 

octanohydroxamic acid decreased initially with an increase in calcium 

concentration before reaching a minimum at a concentration of 5×10-6 M. Further 

increases in calcium concentration increased the collector adsorption. 

(3) Electrokinetic tests indicated that monazite zeta potential became less negative in 

weak acidic and basic environments, which was due to the specific adsorption of 

hydrolyzed calcium species on monazite surfaces. When calcium ions existed in the 

system, the FTIR bands corresponding to the metallic hydroxamate chelates 

changed from 1604 cm-1 to 1608 cm-1, indicating that calcium ions served as new 

active sites for octanohydroxamic acid adsorption. 

(4) It was conclude that with low calcium concentration, Ca(OH)+ competed with the 

collector for P-OH surface sites, while with high calcium concentration, Ca(OH)+ 

served as new active sites. However, monazite floatability was depressed due to the 

hydration of Ca(OH)+ on monazite surfaces. 

(5) Single-mineral flotation results indicated that calcite was intensively depressed 

using sodium silicate, while providing minimal effect on monazite recovery. 

However, in combined systems, monazite recovery was decreased from 90% to 40% 

with the increases in sodium silicate concentration from 0 to 0.1 g/L. 

(6) In single-mineral flotation systems, monazite was depressed by sodium silicate 

when calcium ions were added, indicating that the depression observed in the 
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combined systems was due to the calcium ions dissolved from calcite surfaces. 

Electrokinetic tests proved the co-adsorption of Ca(OH)+ and silicate species on 

monazite surfaces.  

(7) In the combined system, monazite recovery increased from 60% to 90% and 80% 

using EDTA and citric acid, respectively. The relative inefficiency of citric acid was 

due to its weaker chelating ability with calcium ions. 
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CHAPTER 7. CONCENTRATION OF RARE EARTH MINERALS FROM 

COAL BY FROTH FLOTATION 

7.1 RELEASE TESTS 

Flotation release tests provided an estimate of the ultimate separation performance 

achievable under a given set of conditions for the Fire Clay thickener underflow 

material. As shown in Figure 7.1, the selectivity achieved by flotation of the sample 

was excellent which produced a clean coal concentrate containing 10% ash-forming 

minerals while recovering 85% of the combustible material. The results indicated the 

potential of significant economic gains from the recovery of coal prior to the 

concentration stages needed for REE recovery. 

 

Figure 7. 1. Release test results of Fire Clay coal fine refuse. 

The release analyses samples were analyzed for REE content and the results plotted in 

Figure 7.2 on a dry whole mass basis and dry ash basis. Products with low ash contents 

contained higher REE values on an ash basis but lower values on whole coal basis, a 

consequence of organic dilution. After the organic matter was burned, the REE 

associated with the organic matter reported to the residual ash. As such, a higher REE 
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content in the residual ash is expected as a result of organic matter through an organic 

affinity with humic acids or micro-dispersed as minerals or mineral associations. 

However, the amount of total REEs (TREEs) in the organic matrix is relatively small 

in total weight.  

The maximum REE content on a whole sample basis occurred in flotation products 

containing 80% ash. Above this value, the TREE content was reduced to the dilution 

effect caused by the presence of low TREE content rock.   

 

Figure 7. 2. REE content on both whole mass basis and ash basis as a function of the 

ash content.  

The more valuable heavy REEs was found to be concentrated in the low ash content 

products as shown by the increase in the HREE/LREE ratio in Figure 7.3. The affinity 

of the HREEs may be associated with their 3+ valence and high ionic charge density. 

After transfer of the REEs into the coal bed by geothermal fluids and/or exposure to 

volcanic ash, it is hypothesized that humic acid chelates with the HREEs and, as the 

humic acid content decreases, associates with the clays that fill the micro-cracks 

existing within the coal (Hower et al., 1999; Dai et al., 2016).  
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Figure 7. 3. HREE/LREE ratio as a function of the ash content.  

7.2 MINERALOGICAL STUDIES 

Ash materials liberated at different particle sizes might have different mineral 

compositions, which contributes to the understanding of the association characteristics 

of REEs. Figure 7.4 shows the XRD patterns of the tailings obtained from different 

stages of the REE release tests. Mineral compositions of the coarse tailings are more 

complicated than the fine tailings. Namely, in addition to the major minerals such as 

kaolinite, illite, and quartz, the coarse tailings also contain small amounts of calcite, 

dolomite, pyrite, and rutile. The changes in mineralogy of the tailings might represent 

the variances in the sources of ash materials from coal seams, i.e., ultra-fine ash 

materials completely came from the coal organic matrix while coarse materials were 

mainly from the partings, roofs, floors, and out of seam segments.  

Kaolinite contents of the liberated ash materials gradually increased with the decreases 

in particle sizes and kaolinite became the dominate material in the final tailings (T7). 

Based on the fact that REEs are more concentrated in the ultra-fine tailings, it is possible 

that REEs are closely associated with the clay minerals that are dispersed in coal organic 
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matrix, which has also been reported by other researchers (Eskenazy, 1987; Seredin, 

1996; Birk and White, 1999; Hower et al., 1999) 

 

Figure 7. 4. XRD patterns of rare earth release test samples (C-calcite; D-dolomite; I-

illite; K-kaolinite; P-pyrite; Q-quartz; R-rutile; T1-T7 means the liberated ash 

materials from the Fire Clay middlings).  

To get more detailed information of REE mineralogy in the Fire Clay middlings, SEM-

EDX characterization was conducted. Figure 7.5 shows the SEM pictures of the tailing 

materials produced from the rare earth release tests. Five particles labelled in the Figure 

7.5 have more than 1% of total REEs and the particles are of irregular shapes with less 

than 1μm particle size. (Table 7.1 and Figure 7.5). Instead of existing as separate 
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particles, all of the six particles were associated with parent particles which are mainly 

aluminosilicates. This finding agrees with the rare earth mineral release test and XRD 

characterization results, i.e., REEs are more enriched in the ultra-fine kaolinite 

dispersed in the coal organic matrix. The association of rare earth phosphate minerals 

with clay minerals has also been found for coals from other deposits, such as the 

Russian Far East and the Sydney deposits (Seredin, 1996; Birk and White, 1991). 

As shown in Table 7.2, REEs were strongly correlated with phosphorous contents with 

a correlation coefficient factor of 0.94, which suggested that REEs mainly existed as 

rare earth phosphates. Heavy REEs were not detected in the samples using SEM-EDX, 

which might due to a couple reasons: 1) the concentrations of heavy REEs in those 

particles were out of EDX detection limit; 2) heavy REEs were associated with nano-

scale particles which require higher magnification equipment to characterize. Based on 

the fact that HREE/LREE ratios of rare earth release test tailings gradually increased 

with the decreases in particle sizes, HREE phosphate minerals are finer than the LREE 

phosphate minerals.  

 

Figure 7. 5. SEM pictures of the Fire Clay middlings and locations of spectra with 
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high REE content.  

Table 7. 1. EDX elemental composition of spectra marked in Figure 7.5. 
Spectrum O Al Si Fe Ca Ti P S Ce La Nd Y TREE 

1 70.7 9.4 8.6 1.0 0.9 0.6 4.2 1.9 1.5 0.3 0.8 0.0 2.6 

2 67.4 13.2 13.2 0.9 0.8 0.2 2.9 0.0 0.9 0.3 0.0 0.0 1.2 

3 69.2 7.3 13.3 2.0 2.4 0.3 1.6 3.0 0.3 0.5 0.1 0.1 1.0 

4 71.0 8.8 16.0 0.5 1.3 0.0 1.4 0.0 0.3 0.2 0.0 0.0 0.5 

5 74.2 10.2 10.2 0.4 0.5 0.5 0.9 1.7 0.1 0.0 0.1 0.0 0.2 

6 72.6 11.8 12.3 0.2 0.1 0.0 1.3 0.2 0.5 0.2 0.3 0.1 1.1 

Table 7. 2. Pearson correlation coefficient for elements as % of locations shown in 

Figure 7.5 with high REE contents. 

 O Al Si Fe Ca Ti P S TREE 

O 1.00 -0.11 -0.34 -0.62 -0.50 0.13 -0.52 0.05 -0.58 

Al -0.11 1.00 -0.09 -0.56 -0.76 -0.23 0.14 -0.70 0.09 

Si -0.34 -0.09 1.00 0.03 0.36 -0.84 -0.47 -0.45 -0.38 

Fe -0.62 -0.56 0.03 1.00 0.89 0.30 0.27 0.73 0.38 

Ca -0.50 -0.76 0.36 0.89 1.00 0.07 0.01 0.60 0.09 

Ti 0.13 -0.23 -0.84 0.30 0.07 1.00 0.48 0.69 0.31 

P -0.52 0.14 -0.47 0.27 0.01 0.48 1.00 0.08 0.94 

S 0.05 -0.70 -0.45 0.73 0.60 0.69 0.08 1.00 0.12 

TREE -0.58 0.09 -0.38 0.38 0.09 0.31 0.94 0.12 1.00 

SEM-EDX scanning was conducted to characterize the particles with high REE content.  

A particle with high REE content is shown in Figure 7.6 (a). A small portion of the 

particle was enriched in REEs, which means the REE mineral was not liberated, thereby 

indicating the need for grinding to liberate the mineral for an effective REE recovery 

process. A focused ion beam (FIB) unit was used to mill out the high REE content grain 

which measured to be around 2 m. Figure 7.6 (b) shows the SEM image of one lamella 

together with the transmission electron microsocpy-Fourier transformation (TEM-FFT) 

image. The fraction with a high REE content had an irregular shape and was embedded 

into the parent particle. The TEM-FFT images shows that the fraction was well 
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crystallized and the compositon of the grain was pure rare earth phosphate ((La, Ce, Nd, 

Sm, Th)PO4), thereby indicating that the REEs were present in the form of monazite. 

 

 

(a) 

REE rich area 

Parent particle 

(b) 
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Figure 7. 6. SED, TEM, EDX Analyses of rare earth minerals in Fire Clay fine coal 

refuse: (a) SEM-EDX map; (b) lamella with high REE concentration milled using 

focused ion beam (FIB) and the TEM-FFT images of specific area with high REE 

concentration; (c) EDX images of the area selected from (b). 

7.3 FLOTATION TESTS 

Solution pH values and grinding time were the two critical parameters evaluated to 

improve the selectivity of the REE flotation tests. Figure 7.7 shows the effects of pH 

and particle size on the enrichment ratio, i.e., the REE concentration in the concentrate 

divided by the concentration in the feed. As shown in Figure 7.7 (a), maximum 

enrichment ratio occurred at pH 9, which agreed with previous findings reported in 

chapter five. Maximum surface active sites (REE(OH)+ and REE(OH)2+) exist on 

monazite surfaces at pH 9.0 and, as such, higher adsorption kinetic rates and maximum 

adsorption capacity occurs. Figure 7.7 (b) shows that a particle size of 2.76 μm (D50) 

produced by 60 minutes of grinding in an attrition mill provided the highest enrichment 

ratio. 

Multiple stages of flotation were conducted using a batch-type conventional cell and 

continuous flotation column in separate test programs. Figure 7.8 (a) shows the 

cumulative REE content in the products as a function the cumulative REE recovery. 

For recovery values below 20%, column flotation was more efficient than the 

conventional flotation, i.e., the REE contents in the column flotation products were two 

times higher than the products obtained using conventional flotation. Column flotation 

produced a concentrate containing around 4700 ppm of TREEs from a feed containing 

431 ppm of TREEs on an ash basis which equates to an enrichment ratio of over 10:1. 

(c) 
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The improved selectivity provided by column flotation was due to the ability to 

minimize hydraulic entrainment and maximize recovery of the ultrafine REE 

containing particles as a result of the plug-flow environment. As shown in Figure 7.7 

(b), LREEs were preferentially recovered using flotation methods based on a decrease 

in the HREE/LREE ratio with an increase in product REE content, which agrees with 

the fact that rare earth minerals such as monazite are more enriched in LREEs.   

 

 

Figure 7. 7. Effects of pH and particle size on the rare earth flotation separation: (a) 

pH effects; (b) particle size effects.  
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Figure 7. 8. A comparison of the REE recovery performances achieved through 

multiple cleaning stages using conventional and column flotation cells: (a) REE 

content on an ash basis as a function of cumulative recovery; (b) HREE/LREE ratio as 

a function of REE content on an ash basis. 

7.4 CONCLUSIONS 

The mineralogy of REEs in a Fire Clay fine coal refuse sample was studied using the 

SEM-EDX analysis. Unliberated monazite particles with an REE content of around 60% 

were discovered having a particle sizes less than two microns. Results from a flotation 
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release analysis found that heavy rare earth elements were likely associated with finely 

dispersed ash materials within the organic matrix. Furthermore, due to the organic and 

inorganic dilutions, maximum REE content occurred in particles with an ash content of 

around 80%. The TREE content decreased for particles containing greater amounts of 

ash due to the dilution effect caused by low TREE content rock particles.  

Optimum flotation of rare earth minerals from the coal refuse material occurred using 

a pH value of 9.0 and grinding time of 60 min. Column flotation was found to be more 

effective than conventional flotation due to the effects of hydraulic entrainment and 

hydrodynamic conditions. A final concentrate containing around 4700 ppm of REEs 

was obtained using column flotation and multiple cleaning stages. Due to the 

concentration of monazite, the light REES were preferentially recovered in the flotation 

product.   
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CHAPTER 8. CONCLUSIONS 

Systematic study of monazite flotation chemistry was conducted in the current research 

dissertation. Specifically, the charging mechanisms of monazite in aqueous systems 

were studied using electrokinetic tests, solution equilibrium calculation, crystal 

structure analysis, and electrostatic model prediction. Adsorption mechanisms of 

octanohydroxamic acid on monazite surfaces were investigated using adsorption tests, 

FTIR analysis, titration, and micro-flotation tests. Effects of calcium ions dissolved 

from calcite surfaces on monazite flotation were studied in detailed using micro-

flotation and electrokinetic tests as well as FTIR analysis and solution chemistry 

calculation. Selective depression of calcite flotation in the monazite-calcite system was 

achieved using a combination of sodium silicate and chelating reagents such as EDTA. 

The chemistry aspects involved in the selective depression were systematically studied. 

Finally, concentration of rare earth minerals from coal fine refuse was performed using 

both conventional flotation cell and column flotation. The detailed findings of the 

present research dissertation were listed as follows: 

(1)  Monazite surface charges were developed through protonation/deprotonation 

reactions and the potential determining ions were hydrogen and hydroxyl ions. 

Lattice ions such as Ce3+ and PO4
3− provided minor effects on monazite surface 

charges. 

(2) Electrokinetic results indicated that the IEP of the natural monazite sample used in 

the current study occurred at about pH 6.0. Solution equilibrium calculation for 

cerium monazite (CePO4) showed that equal amounts of positive and negative 

charges were achieved at pH 7.2 and 4.5 in open and closed systems, respectively. 

As such, an IEP value of pH 7.2 was obtained based on equilibrium calculation.  

(3) Electrostatic prediction of the cleavage surface on (100) plane based on surface 

composition indicated that the PZC of the surface occurred at pH 7.2, which agreed 

with the solution equilibrium calculation. The discrepancy between the electrostatic 

predictions and the electrokinetic results was attributed to two factors: i) different 
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rare earth atoms might play distinct roles in surface charge development; ii) carbon 

dioxide dissolved in solution might decrease the IEP values.  

(4)  Multilayer adsorption of octanohydroxamic acid on monazite surfaces occurred at 

pH 3.0, 6.0, 9.0, and 11.0. For low pH values and/or low collector dosages, the 

adsorption was achieved via an exothermic chemisorption interaction, while for 

high pH values and/or high collector dosages, the adsorption was achieved via a 

surface reaction and/or surface precipitation reaction.  

(5) The chemisorption was accomplished by the chemical reaction between surface 

active sites, i.e., hydrolyzed rare earth species (e.g., REE(OH)2+), which had 

maximum concentrations at pH 9.0. As such, for below monolayer coverages, 

maximum adsorption rate and density occurred at pH 9.0. 

(6) Hydroxyl ions contribute to the surface precipitation reaction, which might be due 

to the formation of basic rare earth hydroxamate salts on monazite surfaces. As such, 

for beyond monolayer coverages, maximum adsorption density occurred at pH 11.0.  

(7) Depression of monazite occurred in the monazite-calcite combined system, which 

was due to the dissolved calcium ions from calcite surfaces. Hydrolyzed species of 

calcium, i.e., Ca(OH)+, specifically adsorbed onto monazite surfaces, which was 

proven by electrostatic and micro-flotation tests.  

(8) For low calcium concentrations, the adsorption of octanohydroxamic acid on 

monazite surfaces was decreased due to the competitive adsorption on P-OH sites. 

For high calcium concentration, the collector adsorption was increased due to the 

fact that Ca(OH)+ served as new surface active sites. However, the floatability of 

monazite was decreased resulting from the hydration of the Ca(OH)+ on monazite 

surfaces.  

(9) In single mineral flotation systems, sodium silicate could efficiently depress calcite 

while providing minimal effects on monazite floatability. However, in the monazite-

calcite combined system, depression of monazite flotation occurred when using 
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sodium silicate as a depressant. Micro-flotation and electrokinetic tests as well as 

solution chemistry study indicated that hydrolyzed calcium species, i.e., Ca(OH)+, 

co-adsorbed onto monazite surfaces with silicates, which formed a hydrophilic 

layer by hydrogen bonding and/or surface reaction. The collector adsorption was 

decreased due to steric hindrance, and thus monazite floatability was impaired. 

(10) Reagents such as citric acid and EDTA formed soluble chelates with calcium ion 

solution. As such, the negative effects of calcium species were eliminated. Using 

6×10-5 M EDTA together with 2.5×10-4 M octanohydroxamic acid and 0.05 g/L 

sodium silicate, monazite recovery of more than 90% was achieved while only 

recovering 20% of calcite.  

(11) EDTA performed better than citric acid due to two reasons: i) EDTA has a stronger 

chelating ability with calcium ions; ii) citric acid was more likely depress monazite 

due to a stronger affinity.  

(12) Maximum rare earth concentration occurred at pH 9.0 for the Fire Clay fine coal 

refuse. Column flotation works better than the conventional flotation due to the low 

entrainment, smaller particle size limits, and better hydrodynamic condition. A 

product with 4700 ppm of total REEs was finally produced.  
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CHAPTER 9. SUGGESTIONS FOR FUTURE STUDY 

The current research dissertation has accomplished a systematic study of monazite 

flotation chemistry in coal refuse systems. However, due to the complexity of the 

fundamental aspects and the mineralogy of coal refuse, efforts should be continuously 

devoted to get more in-depth understanding of the monazite surface chemistry and 

achieve more efficient concentration of rare earth minerals from coal refuses. 

Suggestions for future study were provided as follows: 

(1) The present study investigated the nature monazite charging mechanisms. However, 

based on the fact that REE composition changes for monazite samples from 

different deposits, it is suggested to synthesize pure single REE monazite (e.g., 

lanthanum monazite LaPO4) and pure artificially combined monazite (e.g., 

lanthanum lutetium monazite La0.5Lu0.5PO4). Systematic study of the synthesized 

monazite samples will significantly contribute to the monazite surface and crystal 

chemistry.  

(2) Previous electrostatic models for surface charge calculation could effectively 

predict the PZCs of pure ionic crystals such as Al2O3, MgO, La2O3, Fe2O3, etc. 

However, the models cannot correctly predict the PZCs when crystal filed effects 

(CFEs) exist. For example, in monazite crystal the REE-O is completely ionic bond, 

which means the CFEs can be neglected. However, the P-O bond has some covalent 

fraction, which means in addition to electrostatic interaction, the CFEs also need to 

be considered. The calculation for the hydrogen bonded to P-O based on 

electrostatic model is ineffective. The quantum chemistry calculation is becoming 

more and more important in recent years, which allows to perform first-principles 

quantum mechanics calculations. Using this kind of calculation, both the 

electrostatic and CFE effects can be considered for attachment of H to surface sites.  

(3) Current research dissertation proposed that the chemisorption and surface 

precipitation or surface reaction of octanohydroxamic acid on mineral surfaces 

could be distinguished by the enthalpy changes. However, the effect of 
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displacement of surface active sites was not studied and elucidated. The surface site 

displacement is also a vague concept in flotation chemistry. Literature only reported 

its existence, while the quantitative study has not been achieved. It is suggested to 

use systematic solid and solution chemistry calculation and simulation to do this 

kind of research in future.  

(4) The influence of calcium species in monazite flotation systems was systematically 

studied in the current research. However, the effect on other heavy sand minerals 

such as zircon and rutile has not been studied and reported yet. As such, it is 

suggested to do a systematic study of calcium effects on heavy sand mineral 

flotation. Furthermore, utilization of metallic cations to selectively depress some 

minerals might be an approach to improve flotation performance in some specific 

systems.  

(5) More efforts need to be devoted to overcome the low particle size limit of flotation 

for rare earth mineral recovery from fine coal refuses. On the premise of 

economically feasible, it is suggested to perform selective agglomeration to 

increase rare earth mineral apparent particle size and nanobubble flotation which 

has been reported to be efficient for fine particle separation.   
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