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Subsurface data derived from ~388 ft of drill core from Martin County (TX) were used to 
understand the depositional setting of the Wolfcamp-D, a petroleum producing interval in 
the Midland Basin. Elemental geochemistry collected via x-ray fluorescence revealed a 
highly variable depositional history marked by the deposition of diverse siliciclastic and 
carbonate lithofacies. Integration of multiple datasets resulted in the interpretation of nine 
lithofacies, whose deposition appears cyclical. Correlations between molybdenum and 
total organic carbon indicate slow recharge of bottom waters and 
anoxic/euxinicconditions within the basin. The presence of phosphatic nodules coinciding 
with siliceous black mudrocks suggested high levels of primary productivity driven by 
upwelling. High-frequency sea level variability, driven by far-field glaciation and 
regional paleoclimate, were key controls on both the chemostratigraphy and lithofacies. 
Along-strike variability is seen throughout the basin due to paleobathymetry, proximity 
and connections to paleochannels, and localized structures. Rhenium-osmium (Re/Os) 
geochronology was conducted on siliceous mudrocks with high total organic carbon. A 
depositional age of 300 ± 18 Ma was obtained, partially confirming previous correlations 
to shelf biostratigraphic data. Scatter in the Re/Os data is likely due to mixing in the basin 
or non-hydrogenous Os incorporated into the analysis due to the method of preparation.  
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CHAPTER ONE: INTRODUCTION 

 The Midland Basin is the eastern sub-basin of the Greater Permian Basin (GPB) 

located in western Texas, and it has experienced a resurgence in attention for its potential 

as an unconventional petroleum province (Frenzel et al., 1988; Waite and Reed, 2014). 

Early oil exploration interest within the Midland Basin, and to a further extent the GPB, 

was focused on conventional plays in the Spraberry and Strawn Formations, which 

consist of sandstone and platform carbonate reservoir rocks with high porosity (Saller et 

al., 1994; Hamlin and Baumgardner, 2012). Advances in horizontal drilling technologies 

and fracturing fluids have resulted in historic production of petroleum from previously 

unattainable unconventional reservoirs in the Midland Basin (Jacobs, 2013; Gaswirth et 

al., 2016). By drilling horizontally through intervals of interest and stimulating fractures 

by injecting fluids under high pressure, permeability can be artificially created in tight 

shale horizons, and hydrocarbons can be driven to the well bore and extracted to the 

surface (Fisher and Warpinski, 2012). Unconventional target zones of interest in the 

Midland Basin are the petroleum source rocks of Pennsylvanian and Permian age, with 

technically recoverable quantities of ~20 billion barrels of oil and ~16 trillion cubic feet 

of gas (Gaswirth et al., 2016). Interestingly enough, even with the recognition that 

unconventional resources of the Midland Basin are economically comparable to those of 

the Bakken and Three Forks Formations (Williston Basin, North Dakota), there is a 

paucity of literature in the public domain describing the Paleozoic geology of this 

depositional system (Jarvie et al., 2007; Gaswirth et al., 2013). This can be explained by 

two factors: (1) the deeper sections of Paleozoic strata, including the Wolfcamp interval, 

are poorly exposed in outcrop and this inhibits field studies; and (2) subsurface data sets 
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are proprietary and held closely by oil and gas companies. Time-equivalent strata outcrop 

in the Sacramento and Guadalupe Mountains (Texas), but these rocks typically consist of 

platform carbonates (Soreghan, 1994; Soreghan and Giles, 1999). Because this study 

focuses on subsurface data, it provides an excellent opportunity to expand the current 

understanding of the depositional history of the Midland Basin. This aims of this thesis 

are threefold: (1) to integrate petrophysical, geochemical, and stratigraphic datasets, in an 

effort to better characterize the unconventional reservoir potential of the lower Wolfcamp 

(also known as the Wolfcamp-D); (2) to describe a depositional model for the Wolfcamp-

D that can be integrated with prior studies at the University of Kentucky (UK) and 

elsewhere; and (3) to use the Re-Os geochronometer to place initial radioisotopic 

constraints on the depositional age of the Wolfcamp-D.  

 A recent publication by the U.S. Geological Survey assessed the technically 

recoverable resources in place for the Wolfcamp Formation (Gaswirth et al., 2016). This 

report split the formation into the Wolfcamp A, B, C, and D sub-intervals. Basal deposits 

of the Wolfcamp interval are mainly siliciclastic mudrocks interlayered with calcareous 

beds, but become more calcareous mudrocks interbedded with carbonates moving up-

section (Hamlin and Baumgardner, 2012). Estimated recoverable resources for the 

Wolfcamp-D are in the range of ~4,000 billion cubic feet of gas, ~5,000 million barrels 

of oil, and ~400 million barrels of natural gas liquids (Gaswirth et al., 2016). 

Hydrocarbon recovery for the GPB has increased during the last several years, with 

production predominantly coming out of the Spraberry, Wolfcamp, and Bone Spring 

Formations. Production was initially at ~140,000 barrels per day (bbl/d) in 2007, but it 

has since increased to ~600,000 bbl/d in 2013 (Budzik and Perrin, 2014). Recent 
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advancements in completion technologies have allowed operators to increase productivity 

in wells despite a reduction in new wells being drilled and a decline in the peak 

commodity price experienced in the so-called “shale boom” (Energy Information 

Administration, 2016).  

 This study focuses on the Wolfcamp-D (WC-D) of the Midland Basin, the deepest 

and presumably oldest sub-interval of the Wolfcamp Formation. Shale reservoirs in the 

A, B, and C intervals are distinctly thicker than those of the WC-D, and hydrocarbon 

production from those units has been significant; more information exists on those 

younger Wolfcamp intervals in the public domain.  Evidence presented by Horak (1985) 

suggests that the upper Wolfcamp intervals were deposited during a time period of high 

rates of basin subsidence (Horak, 1985). Even though there is little information available 

on the WC-D, the few completed studies provide preliminary insights on the stratigraphy 

and sedimentology of this interval. The WC-D forms a wedge of mostly siliciclastic 

sediment, thinning to the north and west. The dominant sources of detrital sediment are 

located to the south and east of the Midland Basin (Figure 1.1; Frenzel et al., 1988). The 

stratigraphy of the WC-D is variable depending on the location in the basin. Siliciclastic 

mudrocks are located within the deepest parts of the basin axis, whereas carbonates are 

more prevalent along the distal fringes and margins (Hamlin and Baumgardner, 2012). 

Yet very little else is known about the WC-D. 

An important unanswered question relates to the effect of sea level change on the 

depositional history of the WC-D. The WC-D is thought to be Late Pennsylvanian (299-

309 Ma) in age, based on regional correlations made to shelf fusulinid biostratigraphy 

and limited conodont biofacies data (Waite et al., 2015; Kohn et al., 2016). During the 
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late Pennsylvanian, high-frequency sea level change was ubiquitous (Isbell et al., 2012; 

Montañez and Poulsen, 2013). If the WC-D is ~299-309 Ma, how did the varying sea 

level influence depositional patterns and stratigraphy? Late Pennsylvanian strata of North 

America and Europe are well known for cyclical patterns of deposition within sediments 

(“cyclothems”), and has focused on platform carbonates or mixed siliciclastic/carbonate 

ramps (Saller et al., 1999; Heckel, 2008; Eros et al., 2012), but this research focuses on 

the potential of the WC-D to contain deep basin cyclothems. Building off of the previous 

work of Baldwin (2016) and Ryan (2016), this study aims to test how stratal patterns vary 

along the strike of the Midland Basin, as well as how stacking patterns differ moving up 

section.  

 The primary hypothesis motivating this study is that the stratigraphy of the WC-D 

interval from Martin County (TX) was primarily dictated by glacioeustatic sea level 

change and global climate conditions of the Late Pennsylvanian. The analytical effort 

needed to test this hypothesis was diverse and integrative.  Lithostratigraphic, 

petrophysical, geochemical, and sedimentological analyses were completed, in order to 

develop a broad spectrum of data. Combining these datasets resulted in the interpretation 

of unique lithofacies types based on physical sedimentological and geochemical 

characteristics. After lithofacies were identified, stacking patterns and vertical changes in 

facies abundances were interpreted for the WC-D. The variability in lithofacies through 

time provides clues on the effects of environmental gradients (e.g., climate, sea level) on 

deposition. Further insights were made available through inorganic geochemical 

analyses, which can be used to infer bottom water redox conditions and recharge rates of 

the Midland Basin seaway during deposition, an important consideration in resolving the 



5 
 

depositional environment and the characterization of potential unconventional petroleum 

reservoirs. Previous studies (Waite et al., 2015) have inferred that the WC-D was 

deposited during the Late Pennsylvanian based on well log correlations to shelf 

fusulinids. This study aims to test this hypothesis regarding the age of the WC-D using 

the Re-Os geochronometer. Cyclothems across North America have been studied 

extensively (Heckel, 1986; Veevers and Powell, 1987; Ettensohn et al., 1988; Boardman 

and Heckel, 1989; West et al., 1997), but the expression of deep basinal cyclothems 

remains only partly understood. By using this holistic approach, a better understanding of 

the stratigraphic development within the WC-D of the Midland Basin can be developed. 

This knowledge is then applied to the unconventional reservoir characterization of the 

Martin County core. Pioneer Natural Resources, as well as other petroleum exploration 

companies, is interested in the possibility of developing the WC-D as an unconventional 

play (Jacobs, 2013; Waite et al., 2015). Comprehensive knowledge of the WC-D will 

assist in the exploration and production of this interval.  

  



6 
 

 

Figure 1.1. Schematic map of the Midland Basin. 
Regional conceptual map showing the locations of drill cores donated by Pioneer Natural 
Resources, as well as geologic features that may have impacted deposition of the WC-D 
interval. Important features in the basin include the Central Basin Platform, Horseshoe 
Atoll, Eastern Shelf, and Ozona Arch. The Midland Basin is connected to the Delaware 
Basin and the rest of the Greater Permian Basin via the Sheffield and Hovey Channels.  
The focus of this study is the Martin County core, located in the northern axis of the 
basin. Blue bricks, carbonate environments. Brown shading, mixed siliciclastic 
environments.  
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CHAPTER TWO: BACKGROUND 

2.1 Tectonic Setting 

 The extent of the Greater Permian Basin is approximately 297,000 km2, and it is 

situated in the southwestern part of the North American craton, straddling west Texas and 

southeastern New Mexico (Galley, 1958; Frenzel et al., 1988; Yang and Dorobek, 1995).  

It consists of the relatively deeply subsided Delaware Basin to the west and the shallower 

Midland Basin to the east. The two sub-basins are separated by the Central Basin Uplift, 

a carbonate reef system that later evolved into the Central Basin Platform (CBP) (Figure 

1.1). The Permian Basin is bordered by the Marathon-Ouachita Foldbelt along its 

southern margin. The Bend Arch marks the eastern boundary of the Permian Basin and 

extends northwards from the Llano Uplift, a Precambrian dome structure (Frenzel et al., 

1988). The western edge of the Permian Basin is delineated by the Diablo Platform. The 

Midland Basin is connected to the Delaware Basin via the Sheffield Channel, just south 

of the Central Basin Platform. The Hovey Channel connects the Delaware Basin to the 

Panthalassic Ocean (Galley, 1958; Frenzel et al., 1988).  Underneath the Permian Basin 

lies the relict Tobosa Basin, a semi-circular structural sag that formed during the 

Precambrian (Frenzel et al., 1988).  

 The Midland Basin is situated on the eastern side of the Permian Basin (Figure 

1.1). It exhibits an asymmetric basin morphology, with the broad Eastern Shelf to the east 

and a steeper margin formed by the Central Basin Platform to the west. The Horseshoe 

Atoll, a positive-relief carbonate bioherm, is found at the northern end of the basin 

(Figure 1.1). The elongate basin is approximately 305 km long in the strike direction and 

110 km along the dip orientation (Hamlin and Baumgardner, 2012). The Matador Arch 
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and Palo Duro Basin bound the Midland Basin along its northern border (Mazzullo and 

Reid, 1989). The Eastern Shelf is comprised of prograding deltaic fan complexes 

interbedded with carbonate platform lithologies (Frenzel et al., 1988; Mazzullo and Reid, 

1989). The southern border of the Midland Basin is bounded by the Ozona Arch, a site of 

active carbonate deposition during the Late Pennsylvanian-Early Permian (Shumaker, 

1992). The Ozona Arch and the Central Basin Platform were both reef-topped carbonate 

platform uplifts that formed as a result of the Ouachita-Marathon orogeny during the Late 

Mississippian (Shumaker, 1992). 

  The Midland Basin, and to a larger extent the Greater Permian Basin, has 

undergone multiple periods of uplift and subsidence throughout its history (Horak, 1985; 

Frenzel et al., 1988; Shumaker, 1992). Figure 2.1 shows the timing and movement of 

Precambrian strata relative to modern-day sea level (Horak, 1985; Ryan, 2016). From the 

Late Proterozoic to the Mississippian, the Tobosa Basin existed as a shallow sag that 

underwent passive subsidence (Frenzel et al., 1988; Atchley et al., 1999). During the Late 

Mississippian, the Marathon-Ouachita Orogeny resulted in the differentiation of the 

Tobosa Basin into the Midland and Delaware Basins. The reactivation of Early Paleozoic 

basement faults created positive relief structures such as the Central Basin Platform and 

the Ozona Arch, which split the Tobosa Basin into its constituent sub-basins (Frenzel et 

al., 1988; Shumaker, 1992).  

 The Laramide Orogeny occurred after an extended period of passive tectonism 

towards the end of the Mesozoic (Frenzel et a., 1988). After the Permian, tectonism did 

not alter the structure of the Midland Basin significantly, but deformational processes did 

result in uplift that would expose Paleozoic strata to the west above sea level. The 
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intervals of “Volcanic” and “Basin and Range” deformation during the Cenozoic would 

supply additional heat flow to the southwestern portion of the GPB region (Horak, 1985; 

Atchley et al., 1999). Faulting associated with the Laramide Orogeny exposed GPB strata 

at the surface in the Guadalupe and Sacramento Mountains (Horak, 1985; Atchley et al., 

1999).  

2.2 Depositional History 

 Strata within the Tobosa Basin consist primarily of fine-grained sandstones and 

carbonates. Deposition began in the Late Cambrian with the Hickory Sandstone Member 

(Frenzel et al., 1988). Stratal accumulation was discontinuous over the next ~160 Ma 

(Galley, 1958; Frenzel et al., 1988).  By the Late Devonian, the Tobosa Basin was no 

longer tectonically active. This period is marked by the deposition of the Woodford black 

shale, an important petroleum source rock in the region (Frenzel et al., 1988).  The 

Tobosa Basin was completely filled and no longer existed as a separate depositional basin 

by the Mississippian.  

 The Precambrian geology of the Tobosa Basin is poorly constrained, due to a lack 

of both drilling and geophysical data. Many drill cores have reached the Proterozoic 

rocks, but have only penetrated a few meters. The little data available suggest that the 

Precambrian rocks consist of igneous, volcanic, and metasedimentary rocks (Frenzel et 

al., 1988). One deep drill hole on the Central Basin Platform penetrated through 4,400 m 

of layered gabbro underneath Permian sedimentary rocks (Keller et al., 1989). Few age 

constraints for these Proterozoic rocks are available, but the data suggest that there was 

an orogenic event approximately 1.0 to 1.3 Ga, due to arc-continent and continent-
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continent collision along the southern margin of Laurentia (Mosher, 1998). This collision 

resulted in the emplacement of a mafic layered intrusion underneath the Central Basin 

Platform (Mosher, 1998). 

 As a result of post-Grenville uplift and exhumation, the depocenter for the Tobosa 

Basin was potentially above sea level until the deposition of the Late Cambrian Hickory 

Sandstone Member of the Riley Formation. This hiatus in deposition is reflected by the 

complete absence of Early and Middle Cambrian strata within the Permian Basin region. 

Late Cambrian strata include sandy, glauconitic limestones that underlie the Lower 

Ordovician Ellenburger Group. The dominant lithology of the Ellenburger Group is 

calcitic limestones, with some dolomitic members. During the Middle Ordovician, the 

Simpson Group was deposited on top of the Ellenburger Group. The Simpson Group 

consists of interlayered limestones, sandstones, and dark green shales. Overlying the 

Simpson Group is the Late Ordovician Montoya Formation. This formation is composed 

of fine, crystalline calcitic and dolomitic limestones. Siluran-Devonian strata are coarsely 

crystalline limestones interbedded with green shales and occasional anhydrite beds. 

Capping the Silurian-Devonian lithologies is the Late Devonian Woodford Shale, an 

organic rich, highly fossiliferous black shale. With the deposition of Early Mississippian 

strata and the burial of the Woodford Shale, the Tobosa Basin was filled and ceased to 

exist as a depocenter. 

 The Mississippian marked a new period of tectonic activity for the Permian Basin. 

Tectonic activity within the Permian Basin shifted from a relatively stable configuration 

to uplifted platforms and arches. By the Late Mississippian-Early Pennsylvanian, the 

Permian Basin was differentiated into the Midland and Delaware Basins by the Matador 
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Uplift to the north, the Diablo Uplift to the east, and the Central Basin Uplift along the 

mid-basin axis.  Pennsylvanian strata within the Midland Basin are dominated by black-

to-gray mudrocks in the basin center, with beds of carbonates and silts more common 

along the margins. Strata along the eastern and western boundaries of the basin are less 

than 300 m thick, thinning to less than 200 m towards the center (Hamlin and 

Baumgardner, 2012). During the Pennsylvanian period, the Midland Basin was 

tectonically stable, with the Mississippian-Pennsylvanian contact dipping slightly to the 

west. The depth to the base of the Pennsylvanian is roughly 3,000-3,500 m below the 

surface (Frenzel et al., 1988). In the northern part of the Midland Basin is the Horseshoe 

Atoll, a semicircular carbonate bioherm that contains significant oil accumulations within 

Pennsylvanian-age reservoirs (Frenzel et al., 1988). The atoll is composed of Strawn, 

Canyon, Cisco, and Wolfcamp carbonates and associated talus, ~309-284 Ma in age 

(Figure 2.3; Waite and Reed, 2014).  

 The Dean Sandstone was deposited during the Leonardian, roughly equivalent to 

the Kungurian epoch (279.3-272.3 Ma). This is the lowermost Leonardian formation in 

the Midland Basin, and it consists of fine grained siltstones and sandstones. The Dean 

Sandstone is overlain by the Spraberry Formation, which consists of gray shales and 

limestones interbedded with sandstones and siltstones. These two formations form the 

Spraberry Trend oil field, a highly productive play that has produced over 585 million 

barrels of oil (Frenzel et al., 1988). The evaporites of the overlying Salado Formation 

constitute the seal for the hydrocarbon systems of the Midland Basin. These salts were 

deposited during the Ochoan Period, and by the Late Ochoan the entire Permian Basin 

became a large evaporite basin. 
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2.3 Paleoenvironment and Paleoceanography 

 Based on fusulinid biostratigraphy and correlations to shelf strata, the basinal 

WC-D was deposited in the Late Pennsylvanian during icehouse climate conditions 

known as the Late Paleozoic Ice Age (LPIA), which lasted ~70 million years (Soreghan, 

1994; Cleal and Thomas, 2008; Montañez and Poulson, 2013). Montañez and Poulsen 

(2013) reviewed the various environmental proxies that have been used to trace glaciation 

through time (Figure 2.2). The causes of this ice age are not well known, but climatic 

forcing took place over timescales equivalent to tectonic change (106-107 yrs) (Tabor and 

Poulsen, 2008). Initially thought to be a single, global glaciation event, evidence now 

suggests that the LPIA is actually a series of discrete glacial and interglacial periods. 

Recently, the presence of periglacial and glacial sediments have been recognized within 

the stratigraphic record in depocenters across Gondwana (Fielding et al., 2008a, 2008b; 

Isbell et al., 2012). The effects of glacial eustatic sea level change on coastal and shallow 

marine environments have been studied extensively, and repetitive, cyclic vertical facies 

patterns (cyclothems) are a common depositional motif in many localities (Boardman and 

Heckel, 1989; Rasbury et al., 1998; Saller et al., 1999a; Heckel, 2008; Greb et al., 2009; 

Eros et al., 2012; Belt et al., 2015).  

 The WC-D is believed to have been deposited during the Desmoinesian, 

Missourian, and Virgilian (North American) stages, concomitant with the high-frequency, 

high-amplitude eustatic sea level change associated with the LPIA (Figure 2.3) (Ross and 

Ross, 1987; Rygel et al., 2008; Eros et al., 2012; Montanez and Poulsen, 2013; Waite et 

al., 2014). Absolute dating of individual glacial-interglacial cycles during this time period 

has been impeded due to the uncertainty of the impact of local ice sheets, the diachronous 
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nature of glaciation, and finally the problem of dating multiple lithologies from the Late 

Paleozoic (Tabor and Poulsen, 2008; Isbell et al., 2012). During the LPIA, the Central 

Basin Platform (CBP) was subaerially exposed multiple times during sea level lowstands. 

Approximately 87 cycles were identified by Saller et al. (1994, 1999a, 1999b) on the 

CBP, most of which are bounded by exposure surfaces. These cycles are equivalent to the 

Strawn, Cisco, Canyon, and Wolfcamp Formations. Radiometic (U-Pb) age dates 

calculated from pedogenic carbonates suggest that cycle lengths are 143 ± 64 ka, 

mirroring the Milankovitch-style eccentricity cycles of the Pleistocene (Rasbury et al., 

1998). 

The Late Pennsylvanian-Early Permian was a period of dynamic climate change 

due to the formation of the Pangaean supercontinent, which significantly impacted 

atmospheric circulation patterns (Tabor and Poulsen, 2008; Horton et al., 2012; Heavens 

et al., 2015). Tabor and Poulsen (2008) used climate-sensitive lithologic proxies plotted 

on paleo-reconstruction maps to determine the changes in the position of the Inter-

tropical Convergence Zone (ITCZ) through the interglacial and glacial intervals. During 

glacial events, the ITCZ contracts in width, resulting in the subtropical and arid belts 

migrating towards the equator (Soreghan, 1994; Tabor and Poulsen, 2008). The exact 

latitudinal location of the Midland Basin during this time period is not well constrained, 

but it believed to have been positioned at approximately 0-10° N (Algeo and Heckel, 

2008; Blakey, 2011). At this latitude, the climate of the Midland Basin during glacial 

periods is believed to have been relatively cool (Tabor and Poulsen, 2008; Montanez and 

Poulsen, 2013; Heavens et al., 2015). In addition, the position of the Midland Basin may 

have experienced a monsoonal climate, due to differential heating of the Panthalassic 
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Ocean and Pangaea, potentially impacting sedimentation by affecting wind directions and 

rates of runoff from the continent, as well as driving winds that affected water column 

stratification and stability (Algeo and Heckel, 2008; Montanez and Poulsen, 2013).  

Precipitation into the Midland Basin was most likely controlled by a weak or 

discontinuous monsoon pattern, and not strongly impacted by high-altitude, alpine 

glaciers (Heavens et al., 2015). Alpine glaciation of the Ancestral Rocky Mountains has 

been documented for the Early Permian, but it is lacking highly precise age control 

(Soreghan, 2014). The Late Pennsylvanian is characterized as a relatively temperate 

interval, after which glaciation reached the maximum extent during the Late Paleozoic. 

Therefore, it is unlikely that high-altitude glaciation was a key factor in the precipitation 

budget for the Midland Basin during the deposition of the WC-D (Montanez and Poulsen, 

2013; Soreghan, 2014; Heavens, 2015). Instead, since deposition occurred during a more 

temperate interval, the amplitude of sea level variability is believed to have been a more 

significant control. This results in more moisture availability and stronger monsoons due 

to the surface area of available water increasing during sea level highstands (Heavens, et 

al., 2015).  

It is probable that the precipitation of the Midland Basin was seasonal, as a result 

of the monsoonal climate and proximity to the equator (Figure 2.4; Blakey, 2011). Large 

seasonal swings in the amount of precipitation are anticipated to cause erosion of 

sediment from high relief areas into the basin or other storage areas along the transport 

network. The Late Pennsylvanian Midcontinent Sea (LPMS) was an epeiric sea that 

spanned the North American midcontintent and was connected to the Panthalassic Ocean 

via the Greater Permian Basin Seaway. Variations in the sea level of the LPMS resulted 
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in the deposition of cyclothems across the U.S. Midwest (Algeo and Heckel, 2008). 

Continental runoff into the LPMS resulted in a surface layer of water with reduced 

salinity, albeit close to normal marine salinity due to good mixing with open ocean 

waters (Algeo and Heckel, 2008). This contributed to the establishment of a strong 

pycnocline within the Midland Basin, driven by both the temperature and salinity 

differences between terrestrial run-off and the pre-conditioned bottom waters of the 

Panthalassic Ocean (Algeo et al., 2008; Algeo and Heckel, 2008). The bottom waters 

were pre-conditioned in such a way that they were denitrified and oxygen poor, due to 

primary productivity occurring in equatorial Panthalassa (Algeo et al., 2008; Algeo and 

Heckel, 2008). Pervasive benthic anoxia of the LPMS is demonstrated by widespread 

deposition of black shales on the Kansas shelf during sea level highstands (Algeo and 

Heckel, 2008). A type of pseudo-estuarine circulation was established with freshwater 

inputs on the eastern end of the LPMS and saline open ocean water on the west end. 

Waters of the LPMS were recharged via a circuitous path that passed through the GPB 

and connected with the Panthalassic Ocean (Algeo et al., 2008; Algeo and Heckel, 2008). 
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Figure 2.1. Tectonic History of the Greater Permian Basin 
The subsidence profiles delineate the top of the Precambrian basement relative to modern 
day sea level for features of the GPB. The Midland Basin is represented by the thick 
black line. The CBP, Eastern Shelf, and Delaware Basin are the dark grey lines. Timing 
of tectonic phases are shown by the gray rectangles. The Pennsylvanian is shown in the 
light gray rectangle, concurrent with the Hercynian Collision. (Horak, 1985; Ryan, 2016).  
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Figure 2.2: Summary of Late Paleozoic Ice Age conditions.  
This figure summarizes multiple review papers centered on describing the climate 
conditions of the Mississippian to the Pennsylvanian, inferred from geological proxies. 
The present study is concerned with the Desmoinesian to Virgilian North American 
stages (~299-309 Ma). This period is characterized by short, high-frequency interglacial-
glacial cycles superimposed over a longer warming trend. The icehouse conditions 
persisted through the Pennsylvanian and into the Early Permian, until the climate shifted 
to a long, global greenhouse period (from Montanez and Poulsen, 2013). 
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Figure 2.3: Stratigraphy of the Midland Basin (modified from Waite and Reed, 2014). 
The chronostratigraphy, sequences, and eustatic sea level curve for the Midland Basin 
were produced in prior research (Sloss, 1969; Ross and Ross, 1987). The interval of 
interest includes the Lower Absaroka 1.3 to 1.4, contemporaneous to the Desmoinesian 
through the Virgilian stages. The Strawn, Canyon, and Cisco Formations are the time-
equivalent strata of the Wolfcamp-D, found on the Central Basin Platform and Eastern 
Shelf. 
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Figure 2.4. Paleogeographic reconstruction of the southwest and midcontinent of North 
America from the Late Pennsylvanian, approximately 300 Ma ago (modified from 
Blakey, 2013).  The black rectangle shows the location of the Greater Permian Basin, 
with the Midland Basin situated on the eastern side. The Midland Basin is interconnected 
with the Panthalassic Ocean to the west and the Late Pennsylvanian Midcontinent Sea to 
the north and east. Figure 1.1 shows a more detailed description of geologic structures 
within the Midland Basin. 
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CHAPTER THREE: METHODS 

 An integrated approach was taken to characterize and describe subsurface drill 

core for this study, combining both chemostratigraphic and lithostratigraphic analyses. 

Pioneer Natural Resources donated the two-thirds working section of a four-inch 

diameter core from Martin County, which measured approximately ~388 ft long and 

consisted of alternating layers of mudrocks and carbonates. The cored interval extends 

from the top of the Strawn Formation, through the WC-D, and into the WC-2. The 

location from which the core was collected is the northern part of the Midland Basin, 

approximately 20 km down dip from the Horseshoe Atoll. The core was received in good 

condition; most intervals were intact, while only a few minor spots were marked by 

heavy fragmentation. Some sections of core that were reduced to rubble may have been 

impacted by the recovery process itself, due to the contrasting hardness between clayey 

mudrocks and dense carbonates. Decompression fractures are prevalent throughout the 

core, reducing the quality in some sections (Figure 3.1). Some sections (approximately 

7%) were missing due to sub-sampling by Pioneer Natural Resources prior to delivery. 

The amount of missing section was determined by comparing the number of missing X-

ray fluorescence (XRF) points and dividing that by the expected number of points for a 

whole core, 2168 points compared to a theoretical 2331 points if the core were 

continuous.  

 Lithostratigraphic description of the core followed the methodology described by 

Campbell (1967), Bohacs (1990), and Bohacs et al. (2014).  Characterization of grain 

size, mineralogy, texture, sedimentary structures, bedding, fossil content, and color was 

used to provide information on the environment of deposition and sedimentary processes. 
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Lithology (especially carbonate content) was inferred by the reaction of the core to dilute 

hydrochloric acid. Carbonates were classified using Dunham’s scheme when appropriate 

(Dunham, 1962; Flügel, 2004). Hand sample observations were complemented with a 

petrographic thin section report produced by CoreLab, provided to the project by Pioneer 

Natural Resources (Pioneer Natural Resources 2013, personal communication). The 

lithostratigraphic observations were tabulated in a MS Excel® table, and sequentially 

moved to a master, Adobe Illustrator® file to produce a composite lithologic log.  

 Two-inch intervals were marked on the face of the core for chemical analysis via 

a handheld, energy dispersive XRF gun (Bruker Tracer IV-SD™), following a modified 

procedure developed after Rowe et al. (2012) (Figure 3.2). Orange stickers were used to 

mark the intervals for scanning, and prior to each analysis, the sample was washed in 

distilled water and dried with compressed air.  The XRF gun is fitted with a 40 keV and 

60 μA x-ray tube. Chemical data were collected over 90 seconds in order to maximize the 

signal-to-noise ratio. Marked sample points were analyzed twice, once each for major and 

trace element chemistry, respectively. Major elements, with atomic number 11-26, were 

collected at 15 keV and 35 μA under vacuum conditions of 9 torr. Trace elements, with 

atomic number 20-51, were collected at 40 keV and 15 μA without a vacuum. The rock 

chosen as a reference material was SARM-41, a shale standard from South Africa (Ring, 

1993). SARM-41 was run at the beginning and end of each three-foot core box, in order 

to determine stability and reproducibility of the ED-XRF. Raw counts collected by the 

gun were calibrated and converted to elemental weight percentages using Bruker 

proprietary software and the empirical calibrations of Rowe et al. (2012). The detection 

limits of the major and trace elements are listed in Tables 1 and 2, respectively. The 
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calibrations of Rowe et al. (2012) were determined by comparing results of various 

analytical measurements (e.g., ICP-MS and WD-XRF) to the compositions of a suite of 

90 mudrocks. Accuracy of the measurements decreases for lighter elements, such as 

sodium and magnesium. This is an important consideration, due to the significance of Mg 

in the formation of some carbonate lithologies. The geochemical cutoffs used for 

differentiating facies types are an interpretive guide used in conjunction with the 

lithostratigraphy, following the approach outlined by Baldwin (2016) and Ryan (2016).  

 Organic geochemistry datasets (organic carbon) were provided by Pioneer Natural 

Resources to supplement our analysis. Additional subsampling and analyses was 

conducted at the University of Kentucky in order to augment the dataset. Pioneer Natural 

Resources delivered LECO-derived total organic carbon (TOC) values. An additional 36 

samples were crushed, powered, sieved, and shipped to the University of Utah Stable 

Isotope Ratio Facility for Environmental Research (SIRFER). Elemental and isotopic 

data was obtained by leaching powered samples with hydrochloric acid, until the mixture 

contained no carbonate. The slurry was then washed using distilled water (Connin et al., 

1997).  Analysis was performed using an elemental analyzer coupled to an isotope ratio 

mass spectrometer calibrated for carbon and nitrogen (EA-IRMS-CN). Stable isotope 

ratios for carbon (δ13CORG ‰) and nitrogen (δ15NORG ‰), TOC, total nitrogen, and carbon 

to nitrogen ratios (C:N) were provided by the analysis. Stable isotope data are presented 

using the standard delta (δ) notation, which represents the difference between the sample 

and internationally accepted standard, in per-mille (‰) units. This is calculated using the 

formula: 
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	δ( ) = ( ) − ( )( ) × 1000 

Where R(sa) is the sample isotopic ratio (13C/12C or 15N/14N), and R(st) is the isotopic ratio 

of the appropriate standard, the Vienna Pee Dee Belemnite (VPDB) and atmospheric air 

(AIR) for carbon and nitrogen, respectively (Bowen, 1991).  

 Abundance and variation of maceral types within the black mudrocks of the 

Martin County core were determined via petrographic point counts. Organic petrography 

was used in order to help determine the source of organic matter in the samples. 

Subsamples (n=19) for maceral analysis were crushed and sieved to 850 μm (Ting, 

1978). The coarse fraction was mixed into epoxy and allowed to settle and dry in ring 

molds. After the epoxy set, the pucks were cut, polished, and oiled. Point counting was 

conducted under white and fluorescent light using a reflected light microscope at the 

Kentucky Geological Survey (Ting, 1978; Chapman et al., 2015).  

 An absolute age for the black mudrocks within the core was calculated using the 

rhenium-osmium (Re/Os) geochronometer, based on the decay of rhenium-187, which 

yields osmium-187. Rhenium naturally occurs as two isotopes, 185Re (37.4% atomic) and 

187Re (62.6% atomic) (Shirey and Walker, 1998). Rhenium-187 undergoes beta decay by 

the emission of an election, resulting in osmium-187. The decay constant of 1.666 x 10-11 

for 187Re-187Os has been calculated using high resolution isochrons generated from iron 

meteorites (Shirey and Walker, 1998 and references therein). Both Re and Os are known 

to be incorporated into black mudrocks either by redox reactions at the sediment-water 

interface, or into the organic fraction (Kendall et al., 2004). The ratio of 187Os/188Os, a 

measure of the Os composition of seawater, is composed of radiogenic Os derived from 
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continental weathering and unradiogenic Os produced from hydrothermal alteration of 

oceanic crust (Cohen et al., 1999). Therefore, measurements of Os can actually record 

changes in ocean chemistry on timescales shorter than those records by Sr, because the 

residence time for Os is ~40 ka (Cohen et al., 1999). Mudrocks with both high TOC and 

sulfide content were selected for Re-Os measurements, as these samples were most likely 

to have measureable Re and Os abundances. Samples were collected from the three cores 

delivered by Pioneer Natural Resources (Martin County, Midland County, and Upton 

County cores; Baldwin, 2016; Ryan, 2016) at depths believed to be coeval.  

The Re-Os analysis took place in the TIMS laboratory at Miami University of 

Ohio using the following procedure. Spikes of known rhenium and osmium isotopic 

composition were added to a 15 mL jar. The black mudrock sample was ground to a fine 

powder in a ceramic disc mill in order to avoid metal contamination, weighed out to 0.1 

g, and added to a Carius tube (CT). The CT was placed in an ethanol-water ice bath. A 

mixture of hydrochloric and nitric acid, with a molar ratio of 1:3, was added to the CT in 

the ice bath. The CT was then sealed with a blow torch, allowed to warm up to room 

temperature, and then placed in an oven at 240 °C for at least 72 hrs. After 72 hrs had 

passed, the mixture in the CT was poured into a 15 mL beaker on a hot plate set to 115 

°C for osmium distillation. The beaker was connected via tubing to a 30 mL beaker 

containing HBr, in a water ice bath (Figure 3.3). The gas flow was adjusted such that the 

bubbling rate was approximately 1-2 bubbles per second. This distillation process 

separates the osmium from the rhenium. After 2.5 hrs, the tubing was disassembled and 

the residues containing both the rhenium and osmium were dried down at 90 °C. Osmium 

was then further concentrated via microdistillation and evaporated down to 1-2 μL. 
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Rhenium was separated from the rest of the sample via an anion exchange column using 

AG1-8X resin, and then dried down. Once both the osmium and rhenium were dried, 

samples were loaded into a Thermo Finnigan Triton™ negative-ion TIMS (thermal 

ionization mass spectrometry) for analysis of isotopic ratios and concentrations. The 

osmium can be analyzed on a standard rhenium filament, but the rhenium must be 

sampled using a platinum filament to prevent interference. Osmium isotopic ratios were 

corrected for mass fractionation using the ratio 192Os/188Os = 3.0826. Oxygen isotope 

corrections for rhenium and osmium used the values of Neir (1950). The age was 

calculated with Isoplot ver. 4.15, a Microsoft Excel™ add-in, using the Model 1 fit for 

the regression (Ludwig, 2003).  
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Mudrock Major Calibration (MA1.cfz) 

Element Symbol 
Atomic 
No. Minimum Maximum 

Sodium Na 11 964 ppm 8606 ppm 
Magnesium Mg 12 2412 ppm 10.25% 
Aluminum Al 13 9103 ppm 13.07% 
Silica Si 14 3.75% 38.20% 
Phosphorous P 15 87 ppm 9819 ppm 
Sulfur S 16 200 ppm 5.35% 
Potassium K 19 1411 ppm 4.30% 
Calcium Ca 20 786 ppm 34.66% 
Titanium Ti 22 479 ppm 5336 ppm 
Vanadium V 23 22 ppm 1720 ppm 
Chrome Cr 24 10 ppm 295 ppm 
Manganese Mn 25 77 ppm 1239 ppm 
Iron Fe 26 4267 ppm 6.53% 
Cobalt Co 27 1.4 ppm 46.8 ppm 
Nickel Ni 28 14 ppm 302 ppm 
Copper Cu 29 5 ppm 429 ppm 
Zinc Zn 30 20 ppm 836 ppm 

Barium Ba 56 30 ppm 1.50% 
Table 3.1 Major Element Calibration Limits 
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Mudrock Trace calibration (TR2.cfz)  

Element Symbol Atomic No. Minimum Maximum
Calcium Ca 20 786 ppm 34.66%
Titanium Ti 22 479 ppm 5336 ppm
Chrome Cr 24 10 ppm 295 ppm
Manganese Mn 25 77 ppm 1239 ppm
Iron Fe 26 4267 ppm 6.53%
Cobalt Co 27 1.4 ppm 46.8 ppm
Nickel Ni 28 14 ppm 302 ppm
Copper Cu 29 5 ppm 429 ppm
Zinc Zn 30 20 ppm 836 ppm
Arsenic As 33 <1 ppm 69 ppm
Rubidium Rb 37 6 ppm 224 ppm
Strontium Sr 38 39 ppm 869 ppm
Yttrium Y 39 6 ppm 62 ppm
Zirconium Zr 40 17 ppm 338 ppm
Niobium Nb 41 2 ppm 16 ppm
Molybdenum Mo 42 <1 ppm 166 ppm
Tin Sn 50 <1 ppm 14 ppm
Antimony Sb 51 <1 ppm 47.1 ppm
Barium Ba 56 30 ppm 1.50%
Lead Pb 82 <1 ppm 28 ppm
Thorium Th 90 2 ppm 14 ppm

Uranium U 92 1 ppm 51 ppm
Table 3.2 Trace Element Calibration Limits 
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Figure 3.1: High-resolution photo of the one-thirds archived section of Martin County 
core. 
Vertical decompression fractures of the core can be observed; these formed as the core 
was extracted from depth. Horizontal fracturing (“poker chips” or “biscuiting”) may be 
characteristic of the rocks at reservoir depths (Sarkar, 2017 personal communication) 
Intervals of missing core are indicated with foam spacers (not shown). 
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Figure 3.2: Energy Dispersive X-ray Fluorescence. 
Energy dispersive X-ray fluorescence (ED-XRF) setup for the elemental analysis of the 
two-thirds working section of the core. The Plexiglas® shield was used to support 
heavier sections of core as protection for the device. The white puck is the SARM-41 
standard used to calibrate the instrument. 
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Figure 3.3. Distillation and Separation of rhenium/osmium from samples 
The sample and aqua regia (nitric and hydrochloric acid) mixture is placed into a hot 
block (left). Tubing is connected to plastic beakers placed into an ice bath. The osmium 
travels through the tubing and is condensed in the beakers on the right while the rhenium 
stays in the beakers on the left.  
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CHAPTER FOUR: RESULTS 

4.1 Lithofacies Results 

 Nine different lithofacies were identified in the WC-D and WC-C2 intervals of 

the Martin County core; these facies consist of a variety of siliciclastics and carbonates. 

The frequency and distribution of facies types changes vertically through the stratigraphic 

section (Figure 4.1). The facies present include three types of siliciclastic mudrocks, four 

types of carbonates, one minor heterolithic facies, and one diagenetic type. The three 

siliciclastic facies include two variations of black mudrock (BMR-1 and BMR-2) and a 

gray mudrock (GMR). Carbonate facies are represented by a collection of wackestones, 

packstones, grainstones, and dolostones (WKST, PKST, GRST, and DOL, respectively). 

Lastly, there are heterolithic beds of siliciclastic and carbonate lithologies (MIXED). The 

most prevalent facies within the WC-D interval is the GMR. Percent abundances for the 

WC-C2 were calculated, and BMR-2 facies dominates, but it remains unclear if this is 

truly representative of the full WC-C2 section.  

 Two types of black mudrock can be distinguished within the Martin County core, 

Black Mudrock 1 (BMR-1) and Black Mudrock 2 (BMR-2). The bedding of BMR-1 and 

BMR-2 is typically massive, with occasional continuous to discontinuous sub-parallel 

laminations of silt (either siliceous or calcareous), and clay. In hand sample, the color of 

both black mudrocks is dark gray to black. An important sedimentological characteristic 

that is diagnostic of BMR-1 are large, dense nodules absent of internal structure, which at 

times disrupted bedding. While frequently indistinguishable macroscopically, the two 

facies are geochemically distinct. XRF analysis revealed that BMR-1 is characterized by 

low relative amounts of aluminum (<6%) and high percentages of silicon (>26%). Total 
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organic carbon (TOC) in BMR-1 ranges from 1.19% to 7.66%, with an average value of 

4.17%. Trace metal abundances (e.g., molybdenum and chromium) are relatively high in 

BMR-1 (Supplemental Table 1). Analysis via XRF revealed that the nodules in BMR-1 

are composed of either pyrite or phosphatic minerals. Pyrite occurs as disseminated 

crystals, framboids, or replacing organic matter. The variability in pyrite morphologies 

found within BMR-1 rocks implies that pyrite formed early during diagenesis (Scott and 

Lyons, 2012). Framboidal pyrite tends to form first, with the smaller, euhedral crystals 

developing secondarily (Scott and Lyons, 2012). Body fossil content of BMR-1 facies is 

very low to absent.  In thin section, BMR-1 fabrics occasionally show a preferred 

orientation of particles (Figure 4.2). The elongate, white particles are compacted algal 

cysts (Tasmanites) that were filled with silica, most likely associated with the dissolution 

of sponge spicules and radiolarians during burial and subsequent heating (Schieber, 1996; 

Schieber et al., 2000). The prevalence of biogenic silica indicates that surface waters at 

the time of deposition were productive. This is consistent with high TOC and phosphate 

nodule content of BMR-1 rocks. Both the relatively high abundances of TOC and pyrite 

suggest that bottom water conditions during deposition were anoxic and potentially even 

euxinic (Scheiber, 1996; Bohacs, 1998; Scott and Lyons, 2012). The ratio of 

molybdenum to TOC is ~4.01 (Figure 4.3).  

The BMR-1 facies type is interpreted to have been deposited by pelagic fallout in 

a basin marked by low rates of sediment accumulation that was potentially influenced by 

upwelling. The bottom water chemistry is inferred to be anoxic to euxinic due to the high 

TOC, pyrite content, and abundances of trace metals (Mo and Cr) of BMR-1 intervals. 

Processes that affect trace metals tend to operate more efficiently under anoxic and 
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euxinic conditions. Reduced valence states of trace metals are more easily bonded to 

organic complexes, precipitated as insoluble oxides, or incorporated in solid state 

solutions of sulfides (Algeo and Maynard, 2004). Low bottom water oxygen content 

allows for the preservation of organic matter that would otherwise be consumed by 

microbial respiration processes. The evidence for upwelling comes from the presence of 

the phosphate nodules and lenses, as well as the flattened Tasmanites cysts. Upwelling 

currents bring nutrient-rich bottom waters to the surface, increasing primary production 

in the photic zone (Algeo et al., 2008). Most beds of BMR-1 are massive, with 

laminations occurring infrequently. Fissile intervals are absent, resulting in this facies 

type being designated as a mudrock instead of a shale. Classic shales, such as the Ohio 

Shale from the Devonian, contain ubiquitous laminations and are highly fissile 

(Ettensohn et al., 1988; Potter et al., 2005). Even though the compressed Tasmanites 

casings align parallel to bedding planes, there is no indication that this affects the degree 

of fissility in BMR-1 beds. However, these silca filled cysts, which raise the overall %Si 

of BMR-1 to highest of the dataset, are very important to the brittleness and hardness of 

these rocks (O’Dell et al., in prep). 

 The second black mudrock facies, BMR-2, resembles BMR-1 in hand sample, but 

has a different geochemical signature. Like BMR-1, the fabric of BMR-2 is typically 

massive, with rare continuous to discontinuous sub-parallel laminations (Fig. 4.2). Fossils 

are more prevalent in BMR-2 compared to BMR-1 and occasionally show replacement of 

bioclasts with pyrite. Bioturbation, in the form of horizontal and vertical burrows, are 

present within BMR-2 and frequently exhibit pyritization. In thin section, BMR-2 shows 

disrupted fabrics due to these burrows, as well as compaction surrounding fossil 
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fragments. Phosphatic nodules are rare to absent in BMR-2. Pyrite is relatively common 

in the mineral matrix, either forming in situ or replacing organic matter. Most fossil 

fragments in thin section show evidence of complete replacement by silica or plagioclase 

(Pioneer Natural Resources, 2013 personal communication). Some fossils show no 

replacement, whereas others show silica replacement along the edge of the fossil. 

Tasmanites is present in BMR-2, but these cysts are dispersed in the matrix and do not 

form discrete laminations, as in BMR-1. The geochemical signature of BMR-2 is 

characterized by high relative aluminum content (>6%) and low silicon content (<26%) 

(Supplemental Table 1). Black mudrock 2 beds are markedly thicker than BMR-1 beds, 

with BMR-2 thicknesses ranging up to 5 ft. The TOC content of BMR-2 ranges from 

0.47% to 4.99%, with an average of 1.81%.  

We interpret BMR-2 to have been deposited by a similar mechanism as BMR-1, 

suspension fallout in a marine environment characterized by elevated primary 

productivity.  However, we interpret several distinct environmental differences that help 

to explain the different chemistry of these black mudrock facies. Anoxia is interpreted to 

be less pervasive during deposition of BMR-2 intervals. Evidence for this lies in TOC 

and trace metal (Mo, Cr) content, which are significantly reduced in BMR-2 beds 

compared to BMR-1. Bioturbation is likely the cause of the discontinuous bedding fabric, 

and is an indication for the presence of benthic fauna (Hoffman et al., 1998). The 

existence of bioturbating fauna implies that oxygen was more available on the sea floor 

during the deposition of BMR-2. The preservation of organic matter is linked to oxygen 

content. As oxygen content increases, the rate of bacterial degradation and consumption 

of organic matter increases, thus decreasing the organic matter that is preserved. This is 
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reflected in the decrease in TOC seen in BMR-2 facies. Furthermore, the TOC content of 

BMR-2 is further diluted by an increase in clastic detritus, as shown by the increase in 

%Al content of BMR-2, relative to BMR-1. While productivity levels may not change, a 

decrease in the preservation potential and an increase in the dilution results in the lower 

average TOC content. These findings corroborate the findings of Ryan (2016) and 

Baldwin (2016) in two cores from the WC-D collected from Midland and Upton counties, 

respectively. 

 The third mudrock facies type is a gray mudrock (GMR). This facies type is 

characterized macroscopically by its gray color. The gray color is the result of an increase 

in the proportion of carbonate silt and sand. This is reflected in the inorganic 

geochemistry, which shows on average lower silicon, highrelative aluminum, and a 

significant increase in the calcium abundance compared to the BMR-1 and BMR-2 

(Supplemental Table 1). The TOC of GMR is less than that of BMR-2, with an average 

value of 1.47% and discrete values ranging from 0.26% to 3.45%. Bedding is typically 

massive, with occasional laminations comprised of silt-sizedfossil fragments or 

siliciclastic detritus.  Bioturbation and evidence of burrowing is prevalent throughout this 

facies, disrupting bedding fabrics in most instances; burrows are distinguishable based on 

sedimentological differences between the burrow wall and surrounding rock matrix 

(Figure 4.2). Scour marks are present and easily identified due to abundant fossiliferous 

material that is aligned to bedding planes directly above sharp basal contacts (Figure 4.2). 

Thin section analysis reveals that the matrix varies from siliciclastic clay and silt to lime 

mud. Fossiliferous debris is much more common compared to BMR-1 and BMR-2 facies, 

and it consists of whole intact fossils, skeletal fragments, or unidentifiable fossil hash. 
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Pyrite replacement of fossils is present, but less abundant compared to that found within 

BMR-2 facies.  

 Gray mudrock intervals are inferred to be deposited by a mixture of both 

suspension settling and weak turbidity flows. Normally graded beds of GMR vary in 

thickness from inches to over a foot thick. Gray mudrock beds also contain more 

fossiliferous material on average, occurring as both shell fragments and finer muds, 

which are probably derived from the Horseshoe Atoll and the Central Basin Platform. 

Elements that are indicative of terrestrial minerals (%Al, %K, and %Ti) are lower in 

GMR compared to BMR-1 and BMR-2. This is a result of the geographic location of the 

core location and its proximity to the Horseshoe Atoll, as flushing of shelf carbonates 

through turbidity currents would dilute the signature of material shed from continental 

rocks.  

 Carbonate lithofacies, WKST, PKST, GRST, and DOL, respectively, are 

represented within the Martin County core. The WKST and PKST beds tend to be 

thicker, on the foot scale, compared to GRST beds, which are on the order of one to five 

inches. The inorganic chemical composition of the carbonate facies is high in calcium 

(μ=29.14%) and low in both silicon and aluminum (μ=6.83% and μ=0.84%, 

respectively). Grainstone beds are bereft of identifiable fossiliferous material, but fine 

shell hash is abundant in this facies. Wackestone and PKST facies fossil assemblages 

include echinoderms, bivalves, ostracodes, gastropods, foraminifera, brachiopods, 

bryozoans, trilobites, ammonites, and algae. Both contain allochthonous material in the 

form of carbonate and siliciclastic intraclasts, which are on the order of 0.5-8 mm. 

Whole-fossil size is typically <1 mm, but can reach up to 750 mm; preservation was 
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variable but in some instances excellent, implying the potential for minimal post-mortem 

transport. The beds of PKST and WKST are massive, with neither preferred bedding 

fabrics nor scoured bases observable in hand specimens. Occasionally, reverse grading is 

present, with floating intraclasts of variable composition becoming larger towards the 

tops of beds (Figure 4.2). Intraclasts can be found within the PKST, typically composed 

of spiculitic mudstone, cemented algae, or other skeletal WKST or PKST with variable 

grain composition.  Diagenetic alteration of carbonates is evident in thin section, with 

multiple examples throughout the core of silicification of fossil material, euhedral 

dolomite rhombohedra, and calcite infill of fossil void space (Figure 4.2).  

 Wackestone and PKST facies types are interpreted to be deposited during debris 

flows (Shanmugam and Benedict, 1987; Esposito and King, 1987; Benson, 1988). Within 

a single interval, PKST may gradually transition into WKST. These deposits are 

characterized by a lack of internal bedding and occasional reverse grading, both of which 

are traits common in these lithofacies types (Posamentier and Walker, 2006). Some of the 

interpreted WKST and PKST intervals do not feature reverse grading, but instead are 

relatively homogenous in grain size while lacking preferred organization. Projected clasts 

are present along basal layers of WKST and PKST, whereas erosional basal scour and 

clast sorting are absent (Shanmugam and Benedict, 1987; Loucks and Sarg, 1993). The 

source of calcareous material for these deposits likely comes from up-dip on the 

Horeshoe Atoll. Some of the allochems present within WKST and PKST beds are readily 

identifiable, but this is not always the case. This varying degree of preservation and 

taphonomic alteration may indicate multiple sources of allochem material. 
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 Grainstones within the Martin County core occur as thin beds up to 6 inches thick. 

These beds are marked by scoured basal contacts, and can exhibit variable sedimentary 

structures including cross or massive bedding and normal grading. The tops of GRST 

beds are typically mottled, showing evidence of bioturbation or burrowing of fauna. 

Analysis of the grain size using the Dino-Lite handheld microscope reveals that the 

average size of allochems within this facies type is larger than 62.5 μm in diameter 

(Baldwin, 2016). These allochems exist as a carbonate sand derived from the abrasion of 

skeletal material. The degree of erosion of the sand impedes identification of the parent 

fossil material. Occasional laminations of siliciclastic clay and silt and pyrite can be 

found within GRST beds.  

 In contrast to WKST, PKST, and DOL, the GRST typically feature basal scour 

marks, normal grading, and uniformly small allochem grain size. As a result, GRST are 

interpreted to be deposited by turbidity currents. Allochthonous material derived from the 

Central Basin Platform and Horseshoe Atoll comprised the calcareous component of 

these facies. Beds with normal grading and scoured basal surfaces follow those of the 

Bouma sequence model, which describes low-concentration turbidity currents 

(Shanmugam, 1997). The erosive, turbulent flow scours out the sea floor as the gravity 

flow moves downslope, generating an irregular base and normal grading as flow velocity 

declines. 

 Carbonates with elevated magnesium and calcium content were interpreted as the 

DOL facies. This facies type has average calcium and magnesium content of 21.41% and 

4.11%, respectively (n=36). Internally, beds of DOL are massive, with a cryptocrystalline 

texture.  X-ray diffraction measurements supplied by Core Laboratories reveal that some 
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intervals contain up to ~68% dolomitized matrix.  The matrix of a DOL from the Martin 

County core is predominantly ferroan dolomite, with residual calcite and a few pyrite 

crystals. Fossil fragments are occasionally present, but widely scattered throughout the 

crystalline matrix. Most fossils within the DOL show evidence of replacement by 

diagenetic silica. Some thin sections of DOL contain burrows that have been filled in 

with remineralized euhedral or subeuhedral ferroan dolomite. Several grains of 

glauconite were found across two thin sections, too. Vertical fractures, some containing 

secondary mineralization, are representative of the DOL facies type.  

 Dolostone intervals are inferred to be hardgrounds that form during periods of 

slow sediment accumulation, when the basin floor is starved of inputs. Seawater 

circulating through sediments results in cements precipitating out of the water column 

and lithifying the underlying sediment (Flügel, 2004). Cements commonly found in 

hardgrounds include high magnesium calcite and aragonite, which can be diagenetically 

altered to dolomite and calcite, respectively. Diagenesis during burial can impact the 

alteration of the matrix to dolomite. Alternatively, expulsion of seawater enriched in 

Mg2+ (during the conversion of smectite to illite) from pore spaces can result in 

dolomitization as burial depth and temperature increases; however, this model may 

require rapid burial. Other models for dolomite formation typically include the mixing of 

chemically distinct fluids, such as meteoric water-seawater mixing or evaporitic brines 

permeating carbonates. These models require hydraulic head, which then drives the 

movement of fluids. Burial dolomitization is interpreted to be the model that best fits this 

environment, where Mg2+ is supplied by clay alteration and transported by advecting pore 

water into a substrate absent of active sediment accumulation (Flügel, 2004). 
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 There are two minor facies types present with the Midland Basin, Diagenetic 

Mineralized Beds, or “DMB” and a “Mixed” facies type. These are less pervasive within 

the Martin County core compared to the Upton County core (Baldwin, 2016). The beds of 

DMB in Upton County are typically very thin, on the order of less than 6 inches thick, 

and finely interlayered with BMR beds. Key characteristics of the DMB lithofacies type 

include pervasive dispersed or peloidal pyrite, phosphate nodules, and to a lesser extent, 

glauconite. The DMB facies type is absent in the Martin County core. 

 The Mixed facies type was first described by Baldwin (2016) in the Upton County 

core from the southern Midland Basin. This facies type is characterized by convolute, 

intercalated beds of mudrocks and carbonates. Within the Martin County core, carbonate 

sands and intraclasts are intermixed with a BMR-2 matrix. The chemical composition 

resembles that of BMR-2, with variable concentrations of Al, K, Ti, and Ca, all of which 

are dependent on the spot that the analysis was performed. There are three examples of 

this facies type in the Martin county core. The thicknesses range up to 2 ft.  Trace 

element concentrations show no aberrations in enrichment or depletion in comparison to 

other facies types. 

 Other authors (Hobson et al., 1985) have found deposits similar to the Mixed 

facies type. Carbonates with allochthonous allochems were interpreted to have been 

deposited via soft-sediment deformation, but no mechanism was explicitly proposed. 

Multiple mechanisms exist for the explanation of soft-sediment deformation, including 

slope instability, seismic shaking, dewatering, or pore pressure changes due to 

regressions (Silva and Booth, 1984; Alves, 2015). However, identification of the exact 

mechanism likely requires either outcrops or 3D seismic data (Silva and Booth, 1985; 
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Alves, 2015). Slumping may be a possible explanation for mechanism, given the 

propensity of this environment for debris flows and turbidites (Figure 4.6). Another 

explanation for deformation is thrusting due to the creep of up-dip sediments (Schlager 

and Reijmer, 2009).  

 

4.2 Lithostratigraphy 

 Formations tops were supplied with the Midland Basin data package delivered to 

UK by Pioneer Natural Resources. These were used in conjunction with petrophysical 

data to separate the Wolfcamp core into two basic formations, the Wolfcamp D (WC-D) 

and Wolfcamp C-2 (WC-C2). Other cores acquired from the Midland Basin included part 

of the underlying Strawn Formation, but the Martin County core was collected from just 

above the Wolfcamp D-Strawn boundary and only 6 inches of Strawn was delivered to 

UK. Since very little of the Strawn was provided, no interpretations will be attempted on 

its character and history.  The WC-D is separated into three subdivisions, the Lower, 

Middle, and Upper WC-D, based on variations in vertical variability in facies stacking 

patterns and bulk geochemistry.  

 The Lower Wolfcamp D is ~143.5 ft thick (387.6 – 244.1 ft). It is predominantly 

composed of the GMR and BMR-2 facies types, with normalized abundances of 48.6% 

and 30.4%, respectively (Figure 4.1). Carbonates (PKST, WKST, and GRST) are poorly 

represented, with total abundances reaching 13.1%. These facies are mostly concentrated 

at the top of the Lower WC-D, where there are relatively thick packages of carbonates 

compared to the rest of this interval. Occurrences lower in the core are expressed as thin 

beds <6 in thick. The Mixed facies type is present only once, and thus has an abundance 
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of 1.4%. Gray mudrocks of the Lower WC-D are typically greater than 5 ft thick, or they 

occur as thin beds that are interlayered between BMR-1 and BMR-2 beds (Supplemental 

Figure 2). As previously mentioned, the transition from the Lower WC-D into the Middle 

WC-D is marked by a significant increase in the thickness of PKST and WKST, moving 

vertically up section.  

 The Middle Wolfcamp D is ~133 ft. thick, located between ~111.1 and 244.1 ft. 

in the core. This interval of the WC-D contains the highest degree of facies variability 

and stacking patterns of the whole core. Abundances of GMR decrease concomitant with 

an increase in BMR-1 (Figure 4.1).  Packstones and WKST beds are markedly thicker 

than those of the Lower WC-D, ranging up to 0.3 m thick. Beds of the DMB facies 

appear only twice in the whole core, with both occurrences in the Middle WC-D. 

Dolostones occur in this interval for the first time as well. We interpret a repetitive 

(cyclic) vertical facies stacking pattern in the Middle WC-D. The ideal cycle ranges from 

25 – 39 ft thick. Each cycle begins with BMR-1, which is overlain by successive BMR-2 

and GMR beds.  Moving up-section, the GMR beds are interbedded with PKST, WKST, 

GRST, and DOL facies types, typically < 3 ft thick, and bracketed by BMR-2 on the tops 

and bottoms. Not every succession contains a DOL bed, but there is always some form of 

carbonate facies type present. Within the Middle WC-D, there are four of these cycles; 

only one lacks a DOL interval. The high variability of facies within this section of the 

core is a key characteristic of the Middle WC-D for the Martin County core; no other 

interval shows as much variation.  

 The Upper WC-D is marked by an absence of DOL beds, as well as a significant 

increase in BMR-1 facies. It is approximately 68 ft long (111.1-43.3 ft) and has the 



43 
 

highest proportion of BMR-1 (34.5%) in the entire Martin County core (Figure 4.1). The 

abundance of the GMR facies is significantly lower compared to the Lower and Middle 

WC-D (~11%). This is concomitant with an increase in BMR-2, which constitutes 

~36.1% of the Upper WC-D. The proportion of carbonate facies types shifts in Upper 

WC-D, such that WKST are essentially absent (0.26%) and the abundance of PKST and 

GRST has increased to 9.5% and 5.3% respectively. The Upper WC-D contains the 

largest amount of the MIX facies, ~2.9% of the sub-interval. Three cycles are identified 

in the Upper WC-D. The carbonates that are intercalated with BMR-2, and to a lesser 

extent GMR, beds are typically thin-bedded GRST.  Packstones within the Upper WC-D 

are thicker than those found in underlying intervals, typically on the order of 1-2 ft. The 

Upper WC-D transitions into the WC-C2 at 43.4 ft, where the dominant facies type shifts 

to BMR-2. 

 The WC-C2 interval of the Martin County core is 43.3 ft in length. While not as 

much section is available with which to study the WC-C2, it is clear from the core that 

BMR-2 is the principal facies present, with an abundance of ~69.2% (Figure 4.1). Black 

Mudrock 1 and GMR are also present, but at significantly lower amounts (~12% each). 

Where carbonates are present, they are thinly bedded GRST; thick packages of WKST or 

PKST like those present within the WC-D are absent. Dolostone beds are represented, 

with three occurrences towards the top of the section. While more core would be required 

in order to make a detailed interpretation, a basic generalization of the vertical stacking 

patterns of the WC-C2 can be made here. Within the 43.3 ft. of core supplied, the 

increase of BMR-2 and the vertical succession of facies suggests that BMR-2 beds 
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replace those of GMR within the WC-D as the layers that are intercalcated with 

carbonates.  

 The WC-D can be described and partitioned into sub-intervals based on variations 

in the abundances of facies types, as well as changes in the vertical stacking patterns. The 

dominant facies type of the Lower WC-D is GMR. This trend shifts moving vertically 

through the core until BMR-2 becomes the prevailing facies of the Upper WC-D (Fig. 1). 

While the WC-C2 has the most BMR-2, it is also the thinnest sub-interval present within 

the core and thus harder to accurately describe. Assuming that the stacking trends 

observed prevailed through the WC-C2, then it can be said that BMR-2 is the dominant 

facies type. The Upper WC-D contains the highest proportion of BMR-1 and the Middle 

WC-D exhibits the largest variation in facies stacking patterns.  

 

4.3 Inorganic Geochemistry 

 Geochemical analysis of the Martin County core at the 2-in scale resulted in a 

high-resolution dataset of 2,169 sample points and 4,338 total major and trace elemental 

analyses. This approach assisted in the fine-scale determination of facies variability, as 

macroscopic examination alone could lead to the misidentification of a facies type. 

Comparison of the gamma ray log and lithologic descriptions to the geochemical data 

showed consensus and good correlation among the datasets.  

 The major elements of interest were silicon, aluminum, calcium, potassium, 

titanium, magnesium, sulfur, and iron. These elements are indicative of the main rock 

forming minerals such as quartz, clays, feldspars, calcite, dolomite, pyrite, and 

ferromagnesian silicates. Trace elements of concern include molybdenum and chromium; 
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these are affected by changes in the redox conditions (Tribovillard et al., 2006; Algeo and 

Rowe, 2012) in the Midland seaway during the deposition of WC-D and WC-C2.  

 The chemostratigraphic plots generated with XRF data illustrate the high-

frequency facies variability that characterizes within the Martin County core 

(Supplemental Figure 1). The sub-interval with the least amount of chemical variability 

occurs from 0 – 43.5 ft, which is the WC-C2 interval. The Middle WC-D shows the 

highest degree of variation in the chemostratigraphic plots, reflecting that the Middle 

WC-D contains the most variable facies stacking patterns. 

 Within the Lower WC-D, several trends can be identified. Aluminum, potassium, 

and titanium wt. % strongly covary moving up-section. Any deflections toward lower 

values are directly related to the presence of interbedded carbonates within thicker beds 

of GMR. Calcium values in the Lower WC-D are highly variable, due to the wide range 

in composition for GMR beds. There are no obvious long term trends for %Si through the 

Lower WC-D, but %Ca gradually decreases over time. Towards the top of the Lower 

WC-D (281 – 273 ft.), %Al and %Ti covary, but %K does not. In this interval %Al and 

%Ti increase slightly, decrease slightly, and then spike upwards. Molybdenum and 

chromium concentrations covary within the BMR-1 facies, and the gamma ray log also 

tracks these trace metals.  

 The Middle WC-D show the highest degree of variability of geochemical data in 

the Martin County core. Long term trends are harder to distinguish within this sub-

interval due to the effect of the high frequency shifts in the geochemistry, reflecting the 

cyclicity in the lithofacies.  However, the most apparent long term trend lies in %Ca 

values, which decrease slightly moving toward the top of the Middle WC-D. In general, 
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%Al, %K, and %Ti covary within the Middle WC-D. However, the concentration of 

these elements declines in the BMR-1 facies, which exhibits higher %Si. In BMR-2 and 

GMR, %Si will covary in step with %Al, %K, and %Ti. Spikes in %Ca, and to a lesser 

extent %Mg, can be traced to the interbedded WKST, PKST, GRST, and DOL intervals, 

although beds of GMR typically show only slightly elevated %Ca relative to the other 

mudrocks, due in part to aluminum-rich clays contributing to the mineral matrix.  

 The transition from the Middle to Upper WC-D marks a shift in the %Ca curve. 

While the Middle WC-D contained high frequency variation in the geochemical data, the 

Upper WC-D shows relatively low %Ca, if the abrupt spikes caused by carbonate beds 

are ignored. The covarying trends among %Al, %K, and %Ti continues in the Upper 

WC-D, as well as the subtle inverse relationship for %Si with respect to BMR-1 

composition. The lower half of the Upper WC-D shows a slight decrease in %Al, %K, 

and %Ti, followed by a slight increase. The %Si curve shows the opposite trend, shifting 

to higher then lower values (Supplemental Figure 1). Approximately halfway through the 

Upper WC-D, the curve for %Si stabilizes and the degree of variability decreases. 

Variability in %Mo and %Cr also decreases up-section in the Upper WC-D. The curve 

for %Mg shows no long-term trends, with very few spikes that align with DOL beds.  

 

4.4 Organic Geochemistry 

 Stable isotope data collected from the Martin County core is presented as a cross 

plot of a ratio of carbon to nitrogen (C:N) against δ13C ‰, separated by facies type 

(Figure 4.4). A majority of the samples (~61%) have C:N values less than 10, an 

indication that most of the organic matter is derived from marine sources (Meyers, 1997). 
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Carbonate facies types (WKST, PKST, and GRST) were grouped and are represented as 

CARB on Figure 4.4. Black Mudrock 1 facies have molar C:N ratios above 10 and have 

δ13C values of ~-27 to -26‰. Values for BMR-2 are more varied, with δ13C values 

ranging from -25 to -27.5‰ and average C:N ratios of ~8 (n=14). Gray mudrocks are 

similar to BMR-2, with δ13C values ranging from -25 to -28‰. The C:N data for GMR 

have an average value of 9.9 (n=12). These trends may suggest that organic material in 

BMR-1 facies is derived from more terrigenous sources, in comparison to BMR-2, GMR, 

and CARB facies. Alternatively, denitrification of organic material results in higher C:N,  

due to microbial processes converting available nitrogen into molecular nitrogen (N2), a 

process known to take place in anoxic, marine environments (Algeo et al., 2008). The 

variability in BMR-2 and GMR C:N values indicates that these facies have a higher 

proportion of marine-derived (algal) organic material.  

 The dominant maceral type found throughout the WC-D and WC-C2 is alginite, 

reflecting the marine origins of the organic matter (Chapman et al., 2015). No trend was 

found between higher TOC intervals and changes in maceral type composition, thus 

suggesting that BMR-1 facies does indeed contain abundant algal organic matter and that 

denitrification may be impacting C:N. Other factors influencing C:N ratios may include 

detrital organic matter being flushed into the basin due to runoff. This plays a role later, 

specifically with regards to the Re-Os geochronology discussed later.  

 Principle component analysis (PCA) was conducted on the XRF dataset in order 

to determine the variance in the data. The first (PC1) and second (PC2) components 

account for ~80% of the total variance, with PC1 and PC2 accounting for 59.4% and 

20.6% of the variance, respectively (Figure 4.5). Principle component 1 loads strongly 
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positive for the major elements %Si, %Al, %K, and %Ti, with weaker positive loadings 

for %S, %Fe, %Mo, and %Cr. Calcium shows a strong negative loading for PC1. This 

leads to the interpretation that PC1 is a relative proxy for mineralogy, where positive 

scores indicate siliciclastic rocks and negative score reflect carbonates. The second 

principle component shows a strong positive loading with elements associated with 

bottom water redox conditions (%Mo, %Cr, %S, and %Fe), a negative relationship with 

elements indicative of terrigenous inputs %Al, %K, and %Ti), and a weakly positive 

loading for %Ca. As a result, PC2 is interpreted to represent the variation in redox 

conditions (positive values reflect a strongly reducing environment) during deposition. 

 The frequency and magnitude of shifts in the PC1 curve demonstrate changes in 

lithofacies, due to PC1 representing variance in the major elements that constitute 

minerology. Strong peaks where positive values of PC1 and PC2 align are associated 

with BMR-1 packages. Black mudrock 2 facies are represented by lower PC1 values and 

PC2 values near zero, compared to BMR-1. This is interpreted to be a reflection of the 

different redox and bottom water oxygen content within conditions under which the 

BMR-1 and BMR-2 facies were deposited. Carbonate facies (WKST, PKST, GRST, and 

DOL) are associated with negative PC1 and PC2 values. The GMR facies is characterized 

by either slightly negative values or score of zero for both PC1 and PC2 (Supplemental 

Figure 3). Throughout the Lower WC-D, the PC1 curve is slightly positive, with 

occasional deviations due to the presence of thinly bedded carbonates. Principle 

component 2 in the Lower WC-D is typically zero or negative, with occasional positive 

excursions due to interbedded BMR-1 facies. This is due to the high proportion of BMR-

2 and GMR lithofacies types. The Middle WC-D is represented by high frequency 
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deflections in the PC1 curve, reflecting the greater variability in lithofacies found in this 

interval. The plot of PC2 through the Middle WC-D is more “sawtooth” in shape, with 

positive values occurring during BMR-1 intervals and PC2 values decreasing through the 

cycle until the next BMR-1 bed (Supplemental Figure 3). Principle component 1 values 

for the Upper WC-D are similar to those found in the Middle WC-D, in that the values 

are on average more positive with deflections caused by the occasional CARB or GMR 

bed, and PC2 values show narrow peaks with broad descending limbs and local minima 

corresponding with stratal cycles.  

 

4.5 Re-Os Geochronology 

 The measured Re and Os concentrations and isotopic ratios (187Re/188Os and 

187Os/188Os) are shown in Table 1. Osmium abundances taken from the three cores range 

from 1.095-1.293 ppb, and Re values vary from 68.9-139.9 ppb. These values are larger 

than present day Re and Os concentrations of the upper crust, which are 0.39 ppb and 

0.05 ppb, respectively (Esser and Turekian, 1993). The calculated isotopic ratios for 

187Re/188Os vary from 377-835, all of which are greater than the current 187Re/188Os ratio 

for present day continental crust, which ranges from 42-48. The average 187Os/188Os 

value for present day continental crust is approximately 1.26 (Esser and Turekian, 1993), 

significantly lower than the range of 187Os/188Os values for the cores (2.61-4.85). Whole 

rock ages calculated from the BMR-1 samples analyzed yield an absolute age of 300 ± 18 

Ma (MSWD = 63) and an initial 187Os/188Os value of 0.66 ± 01.15 (Figure 4.7). 
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Figure 4.1. Normalized Facies Abundances for the Wolfcamp D and C2 subintervals.  
The normalized distribution of facies types for each subinterval. Quantities were 
calculated using facies designations assigned to each XRF data point. Wackestones, 
packstones, and grainstones are grouped into “CARB” for simplicity. A) Wolfcamp-C2, 
B) Upper WC-D, C) Middle WC-D, D) Lower WC-D.  
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Figure 4.2. Major Lithofacies in Hand Sample and Thin Section 
Photographs of the major facies types present in the Martin County core. Top photos are 
high-resolution photographs of slabbed core, bottom photographs are of thin sections. 
From left to right the lithofacies are BMR-1, BMR-2, GMR, WKST/PKST, GRST, and 
DOL. Thin section photographs were supplied by CoreLab. 
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Figure 4.3. Total Organic Carbon versus Molybdenum. 
Cross plot of Mo and TOC, with linear regression, for the WC-C2 and WC-D of the 
Martin County core. The regression includes all facies types. Wackestones, packstones, 
and grainstones are grouped into the “CARB” category.  
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Figure 4.4. δ13C ‰ versus C:N. 
Stable isotope data separated by lithofacies, and includes data taken from the whole 
length of the core. Marine-derived organic material typically has a C:N value less than 
10. Terrigenous sources yield ratios <15. Ratios in between 10-15 indicate either mixing 
of organic matter from different sources or diagenetic alteration (Meyers, 1997).
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Figure 4.5. Principle Component Analysis Loadings 
Plots of loading coefficients by variable (chemical elements) for the first two principle 
components. A) Principle component 1 (PC1) loads positively with the key constituents 
of mudrocks (Si, Al, K, Ti) and trace metals (Mo, and Cr), but negatively with Ca. 
Principle component 2 (PC2) loads positively on elements sensitive to redox conditions 
(Fe, S, Cr, and Mo), and negatively with those associated with terrigenous material, (Si, 
Al, K, Ti). This suggest that periods of anoxia correspond with less runoff. 
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Figure 4.6 Mixed Facies type 
Photograph of the 1/3 slab of  core, showing the convoluted structure of the Mixed facies 
type. Disrupted bedding could potentially be caused by slumping and thrusting caused by 
up-dip creep. 
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Table 4.1. Re-Os isotopic data 
Five samples were collected from the donated cores, 3 from the Martin County core, and 1 
each from the Midland and Upton County cores, respectively. Samples were prepared and 
run on a Thermofischer Triton multicollector following Rasoazanamparany et al. (2016).  
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Figure 4.7. Re-Os Isochron for Martin, Midland, and Upton County cores 
The samples run result in a depositional age of 300 ± 18 Ma. Error bars were significantly 
enlarged in order to be visible. The MSWD = 63 may be due to detrital Os (see text for 
further details). 
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CHAPTER FIVE: DISCUSSION 

5.1 Depositional Controls on Lithofacies 

 The nine lithofacies types identified in the Martin County core were deposited by 

either a specific mechanism or a series of linked processes. During the Late 

Pennsylvanian, the influence of global climate on glacioeustatic sea-level is hypothesized 

to impact depositional mechanisms in marine basins. In addition, understanding how 

marine facies develop in the Midland Basin has important implications for petroleum 

resources, particularly source rocks.  Accordingly, a key focus of this study is to ascertain 

the paleoenvironmental conditions that may have been responsible for the development 

of organic-rich lithologies. Passey et al. (2010) noted that production, preservation, and 

dilution are critical processes that control the deposition of petroleum source rocks.  Prior 

research in the Midland Basin (e.g., Baldwin, 2016; Ryan, 2016) made linkages between 

stratigraphic and geochemical cycles identified in sub-surface datasets and global sea 

level curves (e.g., Ross and Ross, 1987). We used the framework of Ryan (2016) to 

interpret lithofacies in Martin County in the context of sea level fluctuations. Figure 5.1 is 

a “type cycle” interpreted from the Middle WC-D paired with an individual, hypothetical 

eustatic sea level cycle. Lithofacies were matched to corresponding parts of an idealized 

sea level curve. Interpreted depositional mechanisms and environments for each 

lithofacies are shown in Figure 5.2. These inferences were then applied to the rest of the 

core, and a relative Midland Basin sea level curve was interpreted and applied, as shown 

in Supplemental Figure 3.  
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 Sea level lowstands are interpreted to reflect accumulation in a restricted, anoxic 

basin which provided the necessary conditions for the deposition of the BMR-1. 

Molybdenum (Mo) has previously been used in combination with total organic carbon 

(TOC) as a proxy for bottom water recharge rates in modern oceanic basins (Algeo and 

Rowe, 2012). In oxygenated waters, Mo is conservative and stays in solution within the 

water column. Anoxic conditions result in the reduction and removal of Mo, where it is 

then incorporated into organic matter and the sulfide fraction of fine-grained pelagic 

sediment (Vorlicek et al., 2004). Therefore, in an anoxic environment marked by limited 

bottom water circulation, Mo and TOC tend to be positively correlated (Algeo and 

Maynard, 2004; Algeo and Rowe, 2012). The slope of the regression between Mo and 

TOC data can be used to infer the redox conditions and recharge rate of the basin (Algeo 

and Maynard, 2004; Algeo and Rowe, 2012). Basins with higher rates of bottom water 

recharge have higher Mo-TOC ratios, since higher rates bring more Mo from the open 

ocean into the basin, which can be stored in the sediment (Algeo and Rowe, 2012). 

Conversely, restricted basins have lower capacity for Mo recharge and Mo-TOC ratios 

are much lower. The Martin County core shows a positive correlation between Mo and 

TOC, where the slope of the regression equals ~4.01 (Figure 4.3). The slope of the 

regression line is similar to that of the Black Sea, a modern day silled basin that is anoxic 

and euxinic (Algeo and Rowe, 2012). Correlation coefficients for the Upton and Midland 

County cores are markedly higher compared to the Martin County core, likely the result 

of changing redox conditions moving along the strike of the basin from south to north 

(Baldwin, 2016; Ryan, 2016).  Algeo and Heckel (2008) published values for Late 

Pennsylvanian black shales deposited on the Kansas Shelf during transgressions that 
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imply a strong connection existed between the LPMS shelf and Panthalassa, and this 

water source likely advected through the Midland Basin. Bottom water redox conditions 

are a key environmental factor impacting deposition, as these conditions dictate the 

preservation of organic matter in BMR-1 during lowstand intervals. Along strike 

variability within the basin is apparent, based on the interpretations of Baldwin (2016) 

and Ryan (2016). This is likely due to the proximity to channels, paleobathymetry, and 

proximity to the Horseshoe Atoll. The Upton County core was proximal to the Hovey 

Channel which connected the southern part of the Midland Basin to the Delaware Basin, 

as well as the Panthalassic Ocean (Algeo and Heckel, 2008). The Midland County core is 

situated more towards the basin depocenter, and as such records fewer grainstone 

turbidites (Ryan, 2016). Interestingly, the Upper WC-D for the Martin County core 

contains the highest abundances of BMR-1 throughout the section, whereas the Upton 

and Midland County cores do not record this trend (Baldwin, 2016; Ryan, 2016). Instead, 

BMR-1 peaks in the Lower WC-D for the Upton County core, and in the Middle WC-D 

for the Midland County core (Figure 4.1; Baldwin, 2016; Ryan, 2016). This trend is 

different than what is seen in the Midcontinent cyclothems of Kansas, when core black 

shales are deposited during transgressions of sea level. Upwelling during lowstands is 

interpreted to produce highly productive surface waters within the Midland Basin, which 

resulted in the deposition of high TOC sediments. Black Mudrock 1 facies contains 

phosphatic nodules and lenses and silicified Tasmanites cysts (Supplemental Table 1). 

Petrographic analysis revealed these algal cysts are likely the source of the high %Si 

content of the BMR-1 facies type (Baldwin, 2016). Schieber (1998) found that during 
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diagenesis, dissolved biogenic silica from radiolarians is re-precipitated into algal cysts, 

which can become a source of biogenic quartz silt and sand in shales and mudstones.  

The BMR-1 facies type is also characterized by low %Al, %Ti, and %K content, 

elements which are interpreted as indicators of terrigenous flux, due to their common 

association in detrital clay minerals. Lower precipitations rates during lowstands are 

consistent with the reductions in the amount of terrigenous minerals found in BMR-1 

facies. Lowstands occur concomitantly with local maxima of the PC2 curve, as PC2 loads 

negatively with Al, K, and Ti, which are indicative of terrigenous inputs and a proxy for 

continental runoff rates. Global circulations models of equatorial western Pangaea predict 

that precipitation rates would be primarily impacted moisture availability and surface 

temperatures (Heavens et al., 2015). Monsoonal circulation patterns created by the 

establishment of Pangaea would be suppressed by the decrease in differential heating 

between Pangaea and Panthalassa during glacial intervals. The reduction of monsoon 

strength would in turn be exacerbated by high-altitude glaciation of the Ancentral 

Rockies or Central Pangaean Mountains (Soreghan et al., 2014; Heavens et al., 2015). 

Pervasive aridity during glacial intervals occurs due to the narrowing of the Inter-

Tropical Convergence Zone (ITCZ), as a result of the expansion of ice sheets (Soreghan, 

1994). Taken together, higher levels of aridity and lower precipitation should create an 

environment marked by limited sediment transport from the continents to the ocean. 

Organic enrichment in sedimentary rocks is determined by three influences: production, 

dilution, and destruction (Passey et al., 2010). With the relatively low values of Al, Ti, 

and K in BMR-1 facies, a reduction in terrigenous inputs indicate a low probability of 

organic matter dilution at the Martin County core site.  Lower fluxes of terrigenous 
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material from the continent would reduce the impact of dilution in this depositional 

environment.  In addition, high rates of runoff would favor a strong pycnocline, inhibiting 

the efficacy of upwelling currents to deliver nutrients. The TOC and phosphate content of 

BMR-1 are not consistent with these conditions however. Rather, less continental runoff 

should favor a reduction in water column stratification, allowing for erosion of 

pycnoclines and more upwelling of limiting nutrients which allow photosynthetic 

plankton to thrive (Jaminski et al., 1998). Upwelling in the Midland Basin drives primary 

productivity, increasing the production of organic material, which is indicated by the 

presence of phosphate nodules and lenses. As runoff rates begin to increase at transition 

points on the sea level curve (e.g., tracking the switch from BMR-1 to BMR-2 

deposition), phosphate nodules disappear; this is consistent with the influence of rainfall 

and wind on upwelling. This does not mean, however, that upwelling occurred 

everywhere equally throughout the Midland Basin; internal circulation can distribute 

nutrients in elongate aquatic basins. Additional subsurface datasets may help to resolve 

spatial variability in the upwelling signal. 

Using the lowstand enrichment model as a base, the relative timing of deposition 

on the sea level curve for other lithofacies was determined (Ryan, 2016). Principle 

component 2 data shows a cyclical pattern, with BMR-1 facies coinciding with high PC2 

values, which we interpret as sea level lowstands and a highly anoxic sea floor that aided 

in organic matter preservation. As the PC2 curve declines from maximum values, the 

proportion of BMR-2 increases. Gray mudrocks and carbonate intervals fit within minima 

within a PC2 cycle. The cyclical nature of the PC2 data reflects the changes in redox 

conditions that are associated with the progression of a sea level cycle as we interpret it. 
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Black Mudrock 1 is gradationally bounded above and below by beds of BMR-2 facies.  

Somewhat similar depositional conditions for BMR-2 prevailed for BMR-1, albeit with 

some important differences. Lower TOC in BMR-2 are attributed to several 

environmental and oceanographic factors, including lower rates of primary production, 

bacterial degradation of organic matter and bioturbation on the sea floor, and dilution by 

the influx of clay minerals. Dilution is believed to be linked to changes in continental 

runoff during BMR-2 deposition.  For example, continental runoff is interpreted to have 

been higher during BMR-2 deposition, due to higher %Al, %Ti, and %K. An increase in 

precipitation is anticipated during times of transgression. However, during regressions it 

is expected that as sea level drops, incised valleys transport more terrigenous material. 

Black Mudrock 2 facies have lower average TOC values compared to BMR-1, but the 

maximum values are nearly equivalent (Supplemental Table 1). This is potentially caused 

by variable decomposition of organic matter due to bacteria, a process that is far less 

efficient in anoxic waters (Sageman et al., 2003). Photomicrographs of thin sections 

taken from BMR-2 facies show disrupted fabrics, potentially signifying bioturbation 

(Figure 4.2). These data are consistent with higher oxygen content on the sea floor during 

BMR-2 deposition, which partially explains the lower average TOC. High PC1 and low 

PC2 values are consistent with this process. Higher rates of continental runoff during 

early rising and late falling stages would also increase water column stratification, 

hampering organic enrichment of BMR-2. Phosphate nodules and lenses, a common 

indicator of BMR-1 intervals, are absent BMR-2 facies.  These lines of evidence suggest 

that there was a reduction in primary productivity associated with upwelling.  
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 Dolostone (DOL) intervals are interpreted to form as cement grounds in situ, 

during periods of maximum sea level rise and low sedimentation rates in the deep furrow 

of the basin. Interactions between bottom waters and pore fluids result in the precipitation 

of high-magnesium calcite and aragonite, forming a cement ground (Flügel, 2004). The 

formation of dolomite with respect to sea level change is debated in the literature. Most 

models that describe the formation of dolomite place an emphasis on subaerial exposure 

and circulation of meteoric water through carbonate platforms; this model and its setting 

are not applicable to the Martin County core site (Flügel, 2004; Al-Awadi et al., 2009).  

The diagenetic transition of smectite to illite can release Mg2+ into pore waters, which is 

then dolomitize carbonates during burial (Flügel, 2004). This burial model may explain 

how some DOL formed within the Martin County core. Not all carbonate facies are 

dolomitized, so there may be other environmental factors that result in some intervals 

being preferentially altered over others. More research is required to answer this question, 

as well as if DOL can be used as regional marker beds.  

 Facies deposited during sea level highstands include GMR, WKST, PKST, and 

GRST, corresponding to interglacial intervals. At these times, the prevailing mechanism 

of deposition was export of terrigenous material with respect to GMR. Transport of 

carbonate sediment occurred due to highstand shedding of allochems from the 

surrounding platforms and bioherms (Figure 1.1). Transitions between mudrock facies 

types are gradual and bed boundaries are commonly diffuse.  This suggests progressive, 

rather than abrupt, changes in environmental conditions (bottom water redox, runoff, 

mass wasting), particularly between BMR-2 and GMR.   In contrast to BMR-1, the GMR 

facies type contain low TOC content (μ=1.47%). This is explained by a decrease in 
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productivity, the presence of oxygenated bottom waters, and increased dilution from both 

terrigenous clays (represented chemically by %Al, %K, and %Ti) and lime mud, finely 

abraded shells, and macrofossil content, which are reflected in higher %Ca 

(Supplemental Figure 2). During interglacial periods, precipitation rates increased, 

leading to greater rates of runoff from the continents. A pulse of freshwater from the 

continents is interpreted to strengthen stratification in the Midland Sea, as this low 

density water mass floats above highly concentrated marine water, separated by a sharp 

halocline (Algeo and Heckel, 2008). Coupled with a strengthened halocline, sea surface 

temperatures would also be high, establishing a thermocline which would inhibit 

upwelling. Evidence of bioturbation in GMR facies is prevalent through most of the 

intervals, indicating that fauna were present and that bottom waters were at least partially 

oxygenated (Sageman et al., 2003). Oxygenated bottom waters contribute to the bacterial 

and faunal degradation of organic matter, thus reducing the organic preservation of GMR 

and resulting in these facies having low TOC content. Increases in continental runoff, as 

well as highstand shedding, during the deposition of GMR results in a higher flux of 

clays and carbonate allochems into the basin, diluting the organic content within GMR 

beds. This is supported by GMR facies having lower PC2 values as a result of GMR 

having less S, Fe, Mo, and Cr which load strongly positive, with regards to PC2 scores, 

and strongly negative in terms of Al, K, and Ti (Figure 4.5). 

 Carbonate facies types (WKST, PKST, and GRST) are closely associated with 

GMR in stacking patterns, implying some connection. Downslope transport of 

allocthonous carbonate material from basin-margin platforms is well-described in the 

carbonate stratigraphy literature (Schlager, 2005). Carbonate factories during highstand 
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intervals are active and platforms grow vertically into the photic zone, in order to 

facilitate photosynthesis for reef-building organisms. Erosion of the reef front and slope 

by wave action as sea level rises and floods the platform serves to transport calcareous 

detritus downslope, into adjacent basins (Schlager et al., 1994; Saller et al., 1999; Flügel, 

2004). Highstand shedding of carbonate material into the adjacent basins by turbidity 

currents has been observed on the platforms of the Caribbean, Indian Ocean, and Great 

Barrier Reef (see Schlager, 2005, and references therein). Wackstones, PKST and GRST 

found in the Martin County core are interpreted to have been deposited via gravity flows, 

with WKST and PKST transported by debris flows and GRST by turbidity currents. 

Packstones and WKST lack erosive basal contacts, which are characteristic of laminar 

flow along the bottom of a sediment-rich, gravity driven flow. Other features of WKST 

and PKST that are shared with debris flows include projected clasts, inverse grading, and 

poorly sorted clasts (Shanmugam and Benedict, 1978). The lack of an erosional contact 

between these facies and overlying mudrock facies may imply that these deposits are 

transported during low velocity events. The size of the allochems present also suggests 

that these deposits are not transported long distances (Shanmugam and Benedict, 1978). 

The fine-grained debrites tend to be thicker and lack internal structure, compared to 

GRST facies which typically feature incomplete Bouma sequences. Grainstone facies 

also exhibit erosional scour surfaces at the base, as well as finer grains compared to 

WKST and PKST facies. The gravity flows represented by WKST and PKST likely 

reflected highstand shedding of carbonate reef material into the basin. During highstands, 

carbonate production in reef complexes would be active, resulting in the production of 

large volumes of material (Loucks and Sarg, 1983). This sediment would be predisposed 
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to erosion and transport via wave action and currents, leading to the transport of material 

during mass wasting events and gravitational flows. These debris flows interrupt 

background sedimentation, but do not necessarily erode previously deposited sediment 

(Loucks and Sarg, 1983). In contrast, GRST facies present indicate that the depositional 

process was a low-density turbidity current. This is inferred based on the presence of 

basal scour marks, a uniform sand-size sediment, and occasionally plane parallel laminae 

(Sanders, 1960). Dolostone facies, where present, are usually found stratigraphically 

below WKST, PKST, and GRST facies. This supports the notion that GRST are 

indicative of sea level highstand intervals, and DOL represent times of maximum sea 

level rise. In cases where this hypothesis does not seem valid, shorter or incomplete 

cycles may be present.  

5.2 Stratigraphic Development 

 Deposition of cyclothems during the Late Paleozoic Ice Age (LPIA), and climate 

variability, has been studied in a number of basins across the globe (Boardman and 

Heckel, 1989; Rasbury et al., 1998; Saller et al., 1999; Feilding et al., 2008a, 2008b; 

Heckel, 2008; Greb et al., 2009; Eros et al., 2012; Isbell et al., 2012; Montañez and 

Poulsen, 2013; van den Belt et al., 2015). Understanding changes in global ice volume is 

key, as it is intrinsically tied to eustatic sea level change. The interpretation of the WC-D 

provided here was developed using current literature on the LPIA and cyclothems 

deposited during this time period (Montañez and Poulsen, 2013).  The Wolfcamp D is 

interpreted to be equivalent to the Strawn, Canyon, and Cisco Formations found on the 

shelf. This is supported by biostratigraphic correlation of fusulinids to shelf strata, as well 

as basin-wide well log correlations completed by Pioneer Natural Resources (Waite et al., 
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2015). A total of 13 sea level cycles were interpreted for the Martin County core, with 11 

cycles contained within the WC-D (Supplemental Figure 3). Relevant studies for 

establishing a framework for WC-D deposition typically lack accurate age control, 

especially within the narrow time period (~10 Ma) that this study is concerned with.  

 Due to the paucity of literature that covers the Late Pennsylvanian stratigraphy of 

the Midland Basin, studies discussing contemporaneous horizons with precise ages 

provide the context required to develop an understanding of the WC-D. A relevant study 

for understanding late Pennsylvanian sea level change in the Permian Basin comes from 

the carbonate stratigraphy of the Central Basin Platform (CBP).  Dating techniques 

applied to rocks collected from the CBP analyses indicate that deposition took place 

during the Desmoinesian to Virgilian (309-299 Ma) (Waite and Reed, 2014). Saller et al. 

(1999) used well log data, thin section analysis, and lithostratigraphy from the CBP to 

interpret 87 sea level cycles on the CBP; cycle boundaries were identified based on 

sedimentological clues of subaerial exposure (e.g., karstification, paleosol development, 

etc.). Radiometric dating of paleosol horizons collected from a CBP core established a 

mean cycle length of 143 ± 64 ka, similar to the duration of the eccentricity Milankovitch 

cycle (Rasbury et al., 1998). This high resolution age dating allows for the correlation of 

CBP cyclothems to other basinal cycles of the Demoinesian, Missourian, and Virgilian 

(309-299 Ma). Northern hemisphere glaciation of the Pleistocene has been shown to be 

connected to the eccentricity cycle of ~100 ka (Clark et al., 1999). Changes in the 

eccentricity cycle result in a substantial change in the global climate (Clark et al., 1999). 

Therefore, the 100 ka cycle is an important driver of high-frequency, glacioeustatic sea 

level change and deposition, not just within the Midland Basin, but across the globe.  
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This climate forcing due to eccentricity is seen in other contemporaneous basins that have 

robust age control (Saller et al., 1999; Eros et al., 2012). 

Another useful study that provides context for sea level change in the late 

Pennsylvanian comes from the Donets Basin of Ukraine (Eros et al., 2012). Stratigraphic 

analysis of limestones and coals coupled with U-Pb measurements of tonsteins resulted in 

an onlap-offlap curve for the Donets Basin (Eros et al., 2012). Cycles in the Donets Basin 

were found to have three periodicities: ~140 ka, ~400 ka, and ~1.6 ma. The Donets Basin 

experienced relatively uniform subsidence during the Late Pennsylvanian, allowing for 

the correlation between its onlap curve and the 12 North American cyclothems described 

from the Midcontinent region (Heckel, 2008; Eros et al., 2012). The sea level curve 

produced by Ross and Ross (1987) for North America is commonly used as a reference in 

studies concerning the LPIA (Waite, 2015). The sea level curves presented from the US 

Midcontinent, the Donets Basin, and our interpretation of the Midland Basin shares 

several features in common, including:1) the Late Desmoinesian into the Missourian is 

characterized by  a long-term transgression; 2) a long-term highstand during the 

Missourian, coupled with the highest frequency of sea level variability; and 3) a sea level 

regression into the Virgilian, leading to a reversal in the WC-C2 and decrease in 

variability (Ross and Ross, 1987; Saller et al., 1999; Eros et al., 2012).  

 The Lower WC-D is interpreted to record a long-term transgression with four 

high-frequency sea level cycles superimposed upon the longer trend. The four cycles 

(cycles #10-13) were interpreted based on the presence of thin-bedded carbonates 

(WKST, PKST, and GRST) intercalcated with GMR facies, and BMR-2 packages. Facies 

abundances of the Lower WC-D agree with this interpretation, and are consistent with a 
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long-term sea level rise absent of deep and sustained lowstands. The Lower WC-D is 

predominantly composed of GMR with some accessory BMR-2, facies that are 

interpreted to be indicative of highstand and initial transgressive-regressive intervals, 

respectively. This is likely representative of a relatively deepwater conditions in the 

basin, as well as more continental runoff and shedding of carbonate allochems from the 

surrounding platforms. Within the Lower WC-D, the proportion of BMR-1 relative to 

other facies type is at the lowest. Bed thicknesses decrease moving up-section through the 

Lower WC-D, which is consistent with a change in stacking patterns transitioning into 

the Middle WC-D. This trend is similar to those seen in the Midcontinent, the Central 

Basin Platform, and the Donets Basin onlap-offlap curves, where bed and cycle thickness 

decrease moving out of Lower WC-D time (Ross and Ross, 1987; Saller et al., 1999; Eros 

et al., 2012). 

 The published literature has established that the Missourian stage of the Late 

Pennsylvanian exhibits the largest variability in sea level magnitude and frequency (Eros 

et al., 2012; Waite, 2015). This stage is interpreted to be time-equivalent to the Middle 

WC-D, based on the high frequency variability observed in facies abundances (Figure 

4.1). The Middle WC-D also demonstrates the most repetition in terms of cyclic 

lithofacies stacking patterns. Four cycles were interpreted within the Middle WC-D 

(Cycles #6-9, Supplemental Figure 3). Three of the cycles (#6, #7, and #9) include DOL 

facies, but in cycle #8 DOL is absent. All of the cycles in the Middle WC-D feature either 

WKST, PKST, or GRST facies types. The high variability of facies present in this 

interval indicates that the Middle WC-D contains the best representation of true cyclicity 

within the Martin County core.  
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 The Upper WC-D is represented by three cycles (Cycles #3-5, Supplemental 

Figure 3). Facies stacking within this interval is characterized by a significant increase in 

BMR-1 and BMR-2 (Figure 4.1). Other changes in stacking patterns include the absence 

of DOL, and a shift from the deposition of WKST, PKST, and GRST to solely GRST 

facies. This change in depositional mechanisms, from debris flows and turbidites to 

predominantly turbidites may indicate the beginning of sea level regression. As sea level 

drops, the abundance of highstand carbonate (WKST and PKST) should decrease.  The 

increase in both BMR-1 and BMR-2 may indicate a gradual long-wavelength regression 

moving through the Upper WC-D. This interpretation is consistent with the change in 

facies stacking patterns and is corroborated by the Ross and Ross (1987) and Donets 

Basin sea level curves, both of which suggest a regression towards the end of the 

Pennsylvanian (Figure 2.2) (Eros et al., 2012). The Wolfcamp C2 (WC-C2) is 

represented by only ~40 feet of core, but some generalizations may be made about this 

section using the Ross and Ross (1987) sea level curve. The dominant facies type of the 

WC-C2 in the Martin County core is BMR-2. The Ross and Ross (1987) curve depicts a 

relatively small transgressive-regressive cycle moving through the Virgilian into the 

Nealian stage (Montanez and Poulsen, 2013). While not all of the WC-C2 was recovered 

and delivered to UK, an increase in BMR-2 is consistent with relatively high long-

wavelength sea levels. The frequency of short-wavelength sea level change also 

decreases moving through the WC-C2, explaining the change in distribution of facies. 

The eleven cycles interpreted from the Wolfcamp D generally agree with the findings of 

previous studies (Heckel, 2008; Eros et al., 2012) in which twelve cycles were interpreted 

for the midcontinent and the Donets Basin.  



72 
 

5.3 Re-Os Geochronology 

 A Re-Os date  must meet certain criteria if it is to be interpreted as a reliable age 

estimate, including: 1) the 187Os/188Os values of organic-rich shales within the same time 

frame are similar; 2) the Re-Os system must be closed at or soon after deposition; (3) a 

wide enough range of 187Re/188Os ratios is required in order to generate an equivalent 

range of present day 187Os/188Os; and (4) the Re and Os within the sample are 

hydrogenous in origin. The MSWD calculated from the regression data is greater than 

unity. This may be the result of the 187Os/188Os ratios of contemporaneous samples were 

not similar, or that the Re-Os system was not closed at the time of deposition. Regardless, 

some first-order interpretations can be made using these data. The biostratigraphic age 

determined via the correlation of shelf fusulinids (299-309 Ma; Waite et al., 2015) to 

basinal deposits falls within the error of the Re-Os age (300 ± 18 Ma). The initial 

187Os/188Os value of 0.66 calculated from the regression is significantly lower than the 

187Os/188Os value for present day seawater, and likely reflects the 187Os/188Os ratio of the 

seawater at the time of deposition. The high MSWD is a key constraint on the precision 

of the Re-Os data, and indicates scatter due to geologic processes. Molybdenum 

enrichment factors within the Midland Basin suggest that there was a redox gradient 

along strike during the Late Pennsylvanian from north to south. Different rates of 

recharge or mixing could potentially affect the initial 187Os/188Os ratio such that 

contemporaneous samples do not have identical values. Other causes that may alter the 

187Os/188Os ratio include thermal maturation of hydrocarbons, metamorphism of the black 

mudrock, and meteoritic/detrital sources of Os (Cohen et al., 1999; Creaser et al., 2003; 

Kendall et al., 2004). 
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Measurements of the temperature at depth recorded during drilling reached a 

maximum of 172 oF, which is too low for fractionation of Re and Os to occur (Kendall et 

al., 2004). This is also supported by the observation that no evidence of metamorphism 

was found within the core. Even if metamorphism had occurred, the data collected could 

still potentially be used. Black shales from Western Canada that had undergone chlorite 

grade metamorphism, ~300-400 oC, were dated geochronologically using the Re-Os 

system (Kendall et al., 2004). It was determined that perturbation of Re-Os systematics 

due to metamorphism was either not detected, or unobservable at the scale that samples 

were collected. It is therefore interpreted that alteration of the Re and Os composition due 

to metamorphism is not a valid explanation for the large MSWD.  

Cosmogenic osmium from meteorites could induce error into the age 

measurement as a non-hydrogenous Os. Unfortunately, no quantitative measurements of 

the meteoritic flux during the Pennsylvanian have been conducted. If the flux is 

comparable to that during the Cenozoic, then it can be assumed that its impact is 

negligible (Cohen et al., 1999; Kendall et al., 2004). Peucker-Ehrenbrink (1996) 

calculated the Cenozoic flux of Os by studying pelagic sediments collected from the 

Pacific Ocean. If the meteoritic input is approximately 3.7 x 104 T/yr, and a chondritic 

meteorite has an Os abundance of 486 ppb, a sediment accumulation rate of 50 m/Ma 

yields a cosmogenic Os flux of 0.28 x 10-12 g Os/g (Peucker-Ehrenbrink, 1996; Cohen et 

al., 1999; Kendall et al., 2004). The average Os concentration of the Midland Basin 

samples is 1.172 ppb (n=5). Assuming that the meteoritic flux from the Cenozoic is 

similar to the flux during the Pennsylvanian, then cosmogenic Os accounts for ~0.023% 
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of the total Os budget and can therefore be also be discounted as a potentially 

confounding factor in the age determination   (Cohen et al., 1999; Kendall et al., 2004).  

Detrital osmium is a potential source of error within the Re-Os dates. Mixing 

detrital Os with hydrogenous Os components could result in an age that is not indicative 

of the depositional age. Detrital Os has been shown to impact Re-Os age dates in black 

shales from the Exshaw Formation in Alberta, Canada (Selby and Creaser, 2003). Small 

variations were found in the ages when using two different methods for preparing the 

samples for analysis, inverse aqua regia and CrO3-H2SO4 digestions. Both calculated ages 

fall within the known stratigraphic ages of the formation (634 ± 57 Ma, MSWD=65; and 

607.8 ± 4.7 Ma. MSWD=1.2, respectively) (Kendall et al., 2004). However, the date 

obtained via the inverse aqua regia has a larger error and higher MSWD compared to the 

CrO3-H2SO4 method (Figure 5.3). Those authors attributed this discrepancy to the inverse 

aqua regia method dissolving detrital (non-hydrogenous) Os. This can be a significant 

factor in determining the depositional age of a black shale, as the presence of detrital Os 

has been proven to affect the Re-Os systematics within black shales (Selby and Creaser, 

2003; Kendall et al., 2004).  Kendall et al. (2004) suggested that if the input of detrital 

osmium into the system is constant, then the effect would be stronger in black shales with 

low TOC content, approximately < 2.0%. This is due to low TOC shales containing 

relatively low concentrations of Re and Os as well. While the C:N ratios demonstrate that 

most of the organic matter is composed of alginite, and therefore hydrogenous in origin, 

Selby and Creaser (2003) suggest that >60% detrital Os is required to affect the Re-Os 

systematics. The proportion of unradiogenic (non-hydrogenous) Os relative to radiogenic 

Os is unknown. The samples selected for the Re-Os analysis all contain greater than 5% 
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TOC (6.06%, 8.95%, and 5.05%, for Martin, Midland, and Upton counties,  respectively), 

and the abundances of Re and Os are in the range of parts per billion (ppb) each, while 

other studies report Re in ppb and Os in parts per trillion (ppt). Therefore, by this criteria, 

the abundances of Re and Os from Midland Basin are more than adequate for dating via 

the Re-Os geochronometer. The age calculated using the Re-Os geochronometer is 

interpretable as an absolute age, as it is in agreement with previous biostratigraphic 

correlations. However, we suggest that more study is needed before deterministically 

assigning the age to the WC-D due to the high MSWD from either non-hydrogenous Os 

or mixing within the basin. 

 

5.4 Petroleum Geology 

 Understanding the depositional history WC-D is key to determining its potential 

as an unconventional petroleum play. While depositional history is not the only variable 

in defining the reservoir quality, knowledge of the inorganic and organic geochemistry 

and the stratigraphy can provide great insight. Key horizons that would provide the best 

hydrocarbon recovery are based on organic content, elemental geochemistry, and 

thickness, all of which are factors in determining the response an interval may have to 

hydraulic fracturing. Hydrocarbon reservoir potential is directly impacted by the organic 

enrichment of the interval in question, and the fracability is impacted by the inorganic 

geochemistry (Passey et al., 2010; Sone and Zoback, 2013). Black Mudrock 1 is 

interpreted to be the facies with the highest potential as an unconventional hydrocarbon 

reservoir in the WC-D, because of its high %Si, low %Al, and high TOC. Black Mudrock 

2 contains higher %Al and %K, with lower TOC on average, potentially driving more 
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plastic/ductile behavior under induced stress compared to BMR-1 (Passey et al., 2010; 

Sone and Zoback, 2013). These differences in geochemistry result in BMR-1 to likely be 

the superior choice for target horizons. One complication is that BMR-1 beds are 

typically sandwiched between thicker BMR-2 packages, thus potentially making 

horizontal well completions more difficult. 

  Analyses conducted by Fischer and Warpinski (2013) determined that hydraulic 

fractures grow parallel to the direction of maximum stress and perpendicular to the 

direction of minimum stress. Micro-deformation measurements illustrate that at depths 

below 4,000 ft, the majority of fractures that propagate are vertical, and above 4,000 ft 

fractures are predominantly horizontal. Interlayering of strong and weak layers of varying 

lithology can hinder fracture propagation, preventing larger vertical fractures forming 

across complex stratigraphy (Fischer and Warpinski, 2013). As a result, fractures of the 

WC-D will most likely propagate vertically until reaching a change in lithology. This is 

an important consideration, due to the WC-D exhibiting high variability in lithology 

within some intervals, for example in the Middle WC-D.  

 Keeping these considerations in mind, two potential intervals for exploration of 

BMR-1 beds have been identified. The Upper WC-D contains the highest proportion of 

BMR-1 facies in the Martin County core. There are three potential horizons, but they are 

not continuous and separated by GMR and GRST facies. The Middle WC-D is the 

second, most abundant interval with respect to BMR-1 facies. Issues may stem from 

drilling the Middle WC-D, as it is also the interval with the highest variability in facies 

types. If BMR-2 facies are deemed acceptable targets for horizontal drilling, more 

options become available. The Lower WC-D contains a thick interval of BMR-2 
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interbedded with thin GMR beds. The WC-C2 is dominated by BMR-2 facies, but these 

horizons are finely interbedded with GMR, BMR-1, and GRST layers. The trade-off 

between targeting continuous beds of low TOC BMR-2 versus isolated BMR-1 intervals 

that are interlayered with variable facies requires additional research.   
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Figure 5.1 Type cycle for the Middle WC-D.  
Cycles start from the base of a BMR-1 bed to the base of the next BMR-1 bed. Thin 
occurrences of BMR-1 are discounted as either the beginning or end of a cycle. Facies are 
tied to intervals of the sea level curve: BMR-1 represent maximum lowstand; BMR-2 for 
rising sea level; DOL are indicative of maximum rate of sea level rise; GMR and 
limestones represent highstands and early falling stage; BMR-2 for late stage regressions. 
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Figure 5.2 Schematic Depositional Model for the Wolfcamp D 
(A) Lowstand deposition of BMR-1 facies during lowstand. Organic enrichment is driven 
by primary productivity due to upwelling. (B) BMR-2 deposition records a modest sea 
level rise and increase in continental runoff, reducing the impact of anoxia. (C) DOL 
deposition indicates maximum rate of sea level rise, sedimentation is at its lowest. (D) 
Shedding of siliciclastics and carbonate allochems due to increases runoff and high sea 
level shedding result in the deposition of GMR and CARB facies. Freshwater runoff 
strengthens stratification of the water column. 
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Figure 5.3 Comparison of inverse aqua regia and CrO3-H2SO4 mudrock digestion 
methods. The open ellipses are analyses performed using the inverse aqua regia; the 
regression of these data is the dashed isochron line. CrO3-H2SO4 analyses are indicated 
by closed ellipses and the solid regression line. The inset graph shows the deviation of 
each point from the CrO3-H2SO4 regression (from Kendall et al., 2004). 

  



81 
 

CHAPTER SIX: CONCLUSIONS 

•  The integrated approach adopted for this study resulted in a new 

understanding of the relationship between the environmental and oceanographic changes 

that impacted the deposition of the WC-D in Martin County. This thesis aimed to test the 

hypothesis that the stratigraphic development of the WC-D was strongly influenced by 

glacioeustatic sea level change, as well as to test the hypothesis that the depositional age 

of the WC-D is Late Pennsylvanian by using Re-Os geochronology. The Re-Os date of 

300 ± 18 Ma (MSWD = 63) holds several assumptions if the date is interpreted to be 

geologically significant: (1) the initial 187Os/188Os values of BMR-1 samples are similar; 

(2) the Re-Os system was closed at or subsequently following deposition; (3) a wide 

enough range of 187Re/188Os ratios is required in order to generate an appropriate range of 

current 187Os/188Os values; and (4) the Re and Os within the sample are hydrogenous in 

origin. Reasons for why the MSWD is above unity are potentially tied to the first 

assumption. Detrital osmium is most likely a source of error within the Re-Os 

measurement. The aqua regia method of acid dissolution can dissolve detrital organic 

matter, thereby releasing Os of varying ages. This may explain why the MSWD is much 

greater than unity.  

• The nine facies were identified based on geochemical, sedimentological, and 

petrographic properties, all which are tied to depositional processes.  Three are varying 

types of mudrocks with differences in geochemistry: (1) Black Mudrock 1 (BMR-1); 

Black Mudrock 2 (BMR-2); and (3) Gray Mudrock (GMR). Four consist of carbonate 

lithologies: (1) Wackestones (WKST); (2) Packstones (PKST); (3) Grainstones (GRST); 

and (4) Dolomitized cement grounds (DOL). The eighth and ninth facies, mixed and 
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diagenetic mineral types, were was also identified but do not represent a large volume of 

core compared to the Upton County core (Baldwin, 2016). 

• We interpret depositional cycles linked to sea level change in the Martin County 

core. Type cycles in the Martin County core consists of (moving up-section): BMR-1; 

BMR-2; GMR (+/- WKST, PKST, GNST, DOL); BMR-2; and BMR-1. While not all 

cycles exhibit every facies type, this general pattern is repetitive throughout the core. 

Long term trends can be seen in the stacking patterns, facies abundances, and 

geochemistry, moving from stratigraphically low to high. These shifts are likely the result 

of sea level fluctuating during the Late Pennsylvanian, and allow for the separation of the 

WC-D into the three subintervals: Lower, Middle, and Upper WC-D.  

• Within the three intervals of the WC-D, there are multiple sea level cycles 

based on the changes in facies stacking patterns. Eleven sea level cycles were interpreted 

for the WC-D. Other studies with high resolution age control have demonstrated by using 

time series analysis that cyclothem development is largely driven by the Earth’s 

eccentricity (Rasbury et al., 1988; van den Belt et al., 2015). Most studies of cyclothems 

were conducted in either shelf environments (the U.S. Midcontinent) or in transitional 

marine environments with high terrigenous inputs (eastern Kentucky). This study is 

among the first of its kind to identify cyclothems in a restricted basin environment. 

• The high organic content and petroleum source rock potential of BMR-1 

facies is likely a function of: (a) high primary productivity, perhaps influenced by 

upwelling; (b) favorable preservation of organic matter on the sea floor due to redox 

conditions; and (c) limited siliciclastic or carbonate dilution. This interpretation is 

supported by elevated %Si content, which petrography has revealed to be biogenic in 
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origin, filling Tasmanites cysts. Low Mo/TOC ratios suggest that bottom water recharge 

rates were low and anoxia was pervasive during deposition. Molar carbon-to-nitrogen 

ratios imply that most of the organic matter within the WC-D is derived from marine 

sources, with average values within the range of 10-15. The predominant maceral type is 

alginite, which is consistent with the C:N ratio interpretation of the organic matter being 

marine in origin. Carbon-to-nitrogen molar ratios greater than 10-15 are potentially the 

result of denitrification in anoxic marine environments (Algeo et al., 2008). 

• Classic models of sequence stratigraphy for mixed siliciclastic and 

carbonate systems predict that the shedding of allocthonous carbonate materials towards 

the basin center occurs during sea level highstands. Gray mudrock packages, along with 

WKST, PKST, and GRST intervals, represent an increase in carbonate allochems 

transported from up-dip via gravity flows. Dolomitized cement grounds formed in situ 

when sea level rise was at its maximum rate and the basin was starved in siliciclastic 

sediment. Black Mudrock 2 facies are interpreted to be a transitional facies, between 

BMR-1 and GMR facies types, and indicate times of early sea level transgression or late-

stage sea level regression.  

• The goal of developing an unconventional reservoir is to artificially induce 

fractures and recover hydrocarbons. High TOC, optimal interval thickness, brittleness, 

and formation integrity are important characteristics of potential horizontal landing 

zones. We interpret that BMR-1 facies has strong potential as an unconventional 

petroleum source rock, due to its high TOC content and high %Si, which could make it 

amenable to hydraulic fracturing. The results of this study indicate that unlike Upton and 

Midland counties, Upper WC-D is a strong potential target for WC-D wells, with the 
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Middle WC-D as a secondary objective. This is due to the relatively high abundance of 

organic-rich BMR-1 within the Upper WC-D.  
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