
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2017

Exploration of Majority Logic Based Designs for Arithmetic Exploration of Majority Logic Based Designs for Arithmetic

Circuits Circuits

Carson Labrado
University of Kentucky, carson_labrado@hotmail.com
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.147

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Labrado, Carson, "Exploration of Majority Logic Based Designs for Arithmetic Circuits" (2017). Theses and
Dissertations--Electrical and Computer Engineering. 102.
https://uknowledge.uky.edu/ece_etds/102

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Carson Labrado, Student

Dr. Himanshu Thapliyal, Major Professor

Dr. Cai-Cheng Lu, Director of Graduate Studies

EXPLORATION OF MAJORITY LOGIC BASED DESIGNS
FOR ARITHMETIC CIRCUITS

THESIS

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering
in the College of Engineering
at the University of Kentucky

By
Carson Labrado

Lexington, Kentucky
Director: Dr. Himanshu Thapliyal

Lexington, Kentucky
2017

Copyright © Carson Labrado 2017

ABSTRACT OF THESIS

EXPLORATION OF MAJORITY LOGIC BASED DESIGNS

FOR ARITHMETIC CIRCUITS

Since its inception, Moore’s Law has been a reliable predictor of computational

power. This steady increase in computational power has been due to the ability to

fit increasing numbers of transistors in a single chip. A consequence of increasing the

number of transistors is also increasing the power consumption. The physical prop-

erties of CMOS technologies will make this powerwall unavoidable and will result in

severe restrictions to future progress and applications. A potential solution to the

problem of rising power demands is to investigate alternative low power nanotech-

nologies for implementing logic circuits. The intrinsic properties of these emerging

nanotechnologies result in them being low power in nature when compared to current

CMOS technologies. This thesis specifically highlights quantum dot celluar automata

(QCA) and nanomagnetic logic (NML) as just two possible technologies. Designs in

NML and QCA are explored for simple arithmetic units such as full adders and sub-

tractors. A new multilayer 5-input majority gate design is proposed for use in NML.

Designs of reversible adders are proposed which are easily testable for unidirectional

stuck at faults.

KEYWORDS: Nanomagnetic logic, quantum dot cellular automata, reversible

logic

Carson Labrado

May 2, 2017

EXPLORATION OF MAJORITY LOGIC BASED DESIGNS
FOR ARITHMETIC CIRCUITS

By

Carson Labrado

Dr. Himanshu Thapliyal

(Director of Thesis)

Dr. Cai-Cheng Lu

(Director of Graduate Studies)

May 2, 2017

(Date)

Table of Contents

Table of Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Contribution of Thesis . 3

1.2 Outline of Thesis . 4

2 Background 5

2.1 Quantum Dot Cellular Automata . 5

2.2 Nanomagnetic Logic . 9

2.3 Reversible Logic . 11

2.3.1 Conservative Reversible Logic 13

2.3.2 Conservative Reversible Fredkin Gate 13

3 Design of Adder and Subtractor Circuits in QCA 16

3.1 Design of Proposed Full Adder . 17

3.2 Design of Proposed Ripple Carry Adder 19

3.3 Design of Proposed Full Subtractor 20

3.4 Design of Proposed Ripple Borrow Subtractor 21

iii

3.5 Conclusion . 22

4 Proposed 5-Input Majority Gate in NML Computing 28

4.1 Design Verification Framework . 29

4.1.1 NML Generation Program . 29

4.2 Proposed 5-Input Majority Gate . 32

4.2.1 Design Verification . 33

4.3 Design of Proposed Full Adder . 34

4.3.1 Design Verification . 35

4.4 Proposed Full Adder Design Comparisons 35

4.5 Design of Proposed Full Subtractor 36

4.5.1 Design Verification . 37

4.6 Conclusion . 37

5 Design of Testable Adder Circuits for NML Computing 43

5.1 Design Methodology 1 of Proposed Testable Reversible Ripple Carry

Adder . 43

5.2 Design Methodology 2 of Proposed n-bit

Testable Reversible Ripple Carry Adder 47

5.3 Comparison of Proposed n-bit Ripple Carry Adder Design Method-

ologies . 49

5.4 Conclusion . 50

6 Conclusions 51

References 53

Vita 57

iv

List of Figures

1.1 Approaches for maintaining technology scaling by category [1] (© 2015

IEEE). 2

2.1 QCA Logic . 6

2.2 Rotated QCA Logic Cell . 6

2.3 QCA Crosswire . 7

2.4 QCA Cell Code . 8

2.5 QCA Data Propagation . 8

2.6 3-Input Majority Gate . 9

2.7 5-Input Majority Gate . 9

2.8 Logic Values in NML Computing . 10

2.9 NML Cell Alignment . 10

2.10 3-Input Majority Gate . 11

2.11 XOR Gate . 12

2.12 Feynman Gate . 12

2.13 Fredkin Gate . 14

2.14 NML Implementation of Fredkin Gate 15

3.1 Proposed Full Adder . 18

3.2 Simulation of Proposed QCA Full Adder 23

3.3 Proposed 4-bit Ripple Carry Adder QCA Implementation 24

v

3.4 Proposed Full Subtractor . 25

3.5 Simulation of Proposed QCA Full Subtractor 26

3.6 Proposed 4-bit Ripple Borrow Subtractor QCA Implementation . . . 27

4.1 3D 5-Input Majority Gate . 34

4.2 5-Input Majority Gate Simulation . 38

4.3 3D Full Adder . 39

4.4 Full Adder Simulation . 40

4.5 Proposed 3D Full Subtractor . 41

4.6 Full Subtractor Simulation . 42

5.1 CRTB 1 . 45

5.2 CRTB 2 . 45

5.3 CR Full Adder Method 1 . 45

5.4 CR 4-bit Ripple Carry Adder Method 1 47

5.5 CR Full Adder Method 2 . 48

5.6 CR 4-bit Ripple Carry Adder Method 2 48

vi

List of Tables

2.1 A table beside a figure . 12

2.2 Feynman Gate Truth Table . 12

2.3 Fredkin Gate Truth Table . 14

3.1 QCADesigner Simulation Settings . 17

3.2 QCA Values for Proposed Full Adder 19

3.3 QCA Values for Proposed 4-bit Ripple Carry Adder 20

3.4 QCA Values for Proposed Full Subtractor 21

3.5 QCA Values for Proposed 4-bit Ripple Borrow Subtractor 22

4.1 3D Cell Model Color Codes . 32

4.2 Proposed 3D Full Adder Comparison 36

5.1 CRTB 1 Truth Table . 44

5.2 CRTB 2 Truth Table . 44

5.3 Fredkin Cost and Delay Comparison 50

vii

Chapter 1

Introduction

Moore’s Law states that the number of transistors on a chip will double roughly every

two years [2]. This trend has served as a reliable predictor of increases in computa-

tional power. A main driver of this trend has been the ability to continually shrink

the sizes of transistors themselves. Insurmountable physical limitations have caused

this rate to slow as time has gone on. One significant issue facing CMOS technology

is there is a physical limitation to how small a transistor can be. A second major

hurdle is the increase in transistors also results in an increase in power consumption.

This impending powerwall will place severe restrictions on the future progress and

applications of CMOS technology. In the last couple of decades new technology fields

have emerged which require computational power while maintaining strict constrols

on power consumption. The proliferation of mobile devices, the emergence of the In-

ternet of Things (IoT), and the need for large data centers to power the cloud are just

a few of the fields which place a large emphasis on reducing power consumption. The

physical limitations of CMOS technology indicate that future computing paradigms

must move beyond CMOS if they are to continue the trend in increasing computa-

tional power first established by Moore’s Law. Research into moving beyond CMOS

can be divided into three main categories. The first category covers with the creation

1

of new devices whether they be new transistor designs or new materials. The second

category covers the creation of new architectures which could have applications in

existing CMOS technology or in newly proposed devices. The final category covers

the introduction of completely new computing paradigms that are not based around

digital logic. These three categories are not mutually exclusive. Proposed approaches

to maintain the scaling of technology can fall under multiple categories. Figure 1.1

from [1] (© 2015 IEEE) shows just a few of the approaches that have been proposed.

Each axis in the figure corresponds with one of the previously mentioned categories.

Figure 1.1: Approaches for maintaining technology scaling by category [1] (© 2015
IEEE).

The focus of this thesis is on emerging nanotechnologies which would fall under the

category of new devices. Emerging nanotechnologies offer an intriguing alternative as

they are low power in nature. These emerging nanotechnologies tend to be majority

logic based. One such emerging nanotechnology is quantum dot cellular automata

(QCA)[3]. QCA uses field coupled cells to allow the propagation of electrical signals

through a circuit. The signal propagation through magnetic forces is what causes

QCA to be considered low power when compared to conventional CMOS circuits.

2

A second emerging nanotechnology is nanomagnetic logic(NML). NML shares some

similarities with QCA, such as also being majority logic based. NML makes use

of nanomagnetic cells whose polarities correspond with logic states. Arrays of cells

are used to form wires where the signals are able to propagate due to magnetic

forces. Again, this signal propagation property is what makes NML low power in

nature. More in depth information about these technologies will be presented in future

chapters. Emerging technologies such as NML and QCA are majority logic based and

therefore current CMOS designs are not easily reproducible in these technologies. The

basic gates available in these technologies ensures that a straight imitation of CMOS

gates would be inefficient. For that reason completely new design methodologies must

be used to create familiar functional units that are used in CMOS technology. This

thesis explores designs of some basic arithmetic circuits for use in majority logic based

technologies. While NML and QCA are provided as sample technologies for design

implementations, the designs themselves can be expanded to other similar majority

logic based emerging nanotechnologies.

1.1 Contribution of Thesis

This thesis presents arithmetic logic circuit designs for majority logic based tech-

nologies. Specific attention is given to quantum dot cellular automata (QCA) and

nanomagnetic logic (NML).

1. Full adder and ripple carry adder in QCA

2. Full subtractor and ripple borrow subtractor in QCA

3. A multilayer 5-input majority gate in NML

4. Multilayer full adder in NML

5. Multilayer full subtractor in NML

3

6. Two designs of testable reversible adders

1.2 Outline of Thesis

Chapter 2 provides an overview of QCA technology, NML technology, and reversible

logic. Chapter 3 presents designs of a full adder, ripple carry adder, full subtractor,

and ripple borrow subtractor implemented in QCA. Chapter 4 presents designs of

a multilayer 5-input majority, full adder, and full subtractor in NML. Chapter 5

presents two designs for testable reversible adders in NML. Chapter 6 concludes the

thesis. Portions of Chapters 2 and 3 were previously published in [4] (Reproduced by

permission of the Institution of Engineering & Technology). Portions of Chapters 2

and 4 were previously published in [5] (Reproduced by permission of the Institution of

Engineering & Technology). Portions of Chapters 2 and 5 were previously published

in [6] (© 2015 IEEE).

4

Chapter 2

Background

This chapter will cover any background information needed to understand the suc-

cessive chapters. The main focus will be on the operation of Quantum Dot Cellular

Automata (QCA) circuits, the operation of Nanomagnetic Logic (NML) circuits, and

a description of conservative reversible logic.

2.1 Quantum Dot Cellular Automata

Quantum dot cellular automata (QCA) is an emerging field-coupled nanotechnology

that is made of cells containing electrons[3]. The position of the electrons determines

the logic state. Figure 2.1(a) shows the possible electron locations and Figure 2.1(b)

the cell states corresponding to logic 0 and logic 1. Cells in QCA can have their

electron locations rotated by 45°. These rotated cells are shown in Figure 2.2. Despite

the change in electron location, rotated cells have the same operation as normal cells.

Wires are created by placing a series of cells side by side. Signals in wires formed

from normal cells remain constant while wires created from rotated cells will have

the signal invert with each successive cell. These qca wire properties are best demon-

strated by the crosswire shown in Figure 2.3. Note that the signals are allowed to

cross without any interference.

5

(a) (b)

Figure 2.1: QCA Logic
(a) QCA 4 Dots

(b) QCA cell working as logic ’0’ and logic ’1’

Figure 2.2: Rotated QCA Logic Cell

A four-phase clocking system is used to help facilitate the propagation of data

through the logic circuits. The four phases are switch, hold, release, and relax. Cells

in the switch phase are able to transition to their appropriate logic value. Cells in the

hold phase maintain their current logic value. Cells in the release phase are able to

transition back to a neutral state. Cells in the relax phase stay in their neutral state.

The color of a cell corresponds to which clock zone a cell is in. The various types of

cells can be seen in Figure 2.4 and the direction of propagation of data through these

clock zones is shown in Figure 2.5.

The basic logic gates of QCA are the inverter and the 3-input majority gate. The

6

Figure 2.3: QCA Crosswire

output of a majority gate will be equivalent to the majority of its inputs. Figure

2.6 shows the QCA implementation of a 3-input majority gate. If the inputs to

the majority gate are defined as A,B,C, then the equation for its output F can be

expressed by the following equation:

F =MAJ3(A,B,C) (2.1)

F =AB + BC + AC (2.2)

It is possible to create a larger majority gate which has 5 inputs. This larger

majority gate can be seen in Figure 2.7. The 5-input majority gate works in the same

manner as the 3-input majority gate. If you define the inputs as A,B,C,D,E, then

7

Figure 2.4: QCA Cell Code

Figure 2.5: QCA Data Propagation

the equation for its output F can be expressed by the following equation:

F =MAJ5(A,B,C,D,E) (2.3)

F =ABC + ABD + ABE + ACD + ACE (2.4)

+ ADE + BCD + BCE + BDE + CDE (2.5)

8

Figure 2.6: 3-Input Majority Gate

Figure 2.7: 5-Input Majority Gate

2.2 Nanomagnetic Logic

Nanomagnetic logic (NML) is based around nano-scale magnetic cells [7]. The mag-

netic polarization of each cell determines if the cell can be considered logic 0 or logic

1. Polarized up is considered logic 1 and polarized down is considered logic 0. Figure

2.8 shows an example of these polarizations with their corresponding logic values.

Wires in NML can be created by cascading multiple cells. The magnetic properties

of the cells actually allow for two different types of wires. Placing cells end to end will

9

Figure 2.8: Logic Values in NML Computing

result in the signal remaining constant as it travels through the cells. Wires created

by placing side by side will actually have the signal invert as it propagates through

each successive cell. These two types of NML cell alignment are shown in Figure

2.9(a) and Figure 2.9(b), respectively.

(a) Side-by-side (b) End-to-end

Figure 2.9: NML Cell Alignment

The main gates in NML are the majority voter and the inverter. Inverters are

created by simply placing cells side by side as their magnetic properties will cause the

signal to invert. The majority voter is also known as a 3-input majority gate. This

gate is represented by the equation:

F =MAJ3(A,B,C) (2.6)

F =AB + BC + AC (2.7)

where A, B, and C are inputs, and F is the output. This simply means that the

output F will have the same logic value as the majority of the inputs. Figure 2.10

shows an example implementation of a 3-input majority gate. In the example, Inputs

10

A and B are logic 1 while Input C is logic 0. Output F has a value of logic 1 because

a majority of the inputs are logic 1.

Figure 2.10: 3-Input Majority Gate

A three-phase clocking system is employed to control the propagation of informa-

tion through NML circuits. The phases are RESET, SWITCH, and HOLD. Cells in

the RESET phase remain in a neutral state that is neither logic 1 nor logic 0. Cells

in the SWITCH phase are allowed to transition to the correct logic state. Cells in the

HOLD phase maintain their current logic state for the duration of the phase. More in-

formation on the clocking system and NML computing can be found in [7],[8],[9],[10].

2.3 Reversible Logic

Logic gates are considered reversible when there is a one-to-one mapping between

their inputs and their outputs. The one-to-one mapping means there are no repeated

11

output permutations. The fact that all output permutations are unique allows the

associated input value to be determined for any given output value. As an example,

consider a simple two input XOR gate as shown in Figure 2.11.

A B F
0 0 0
0 1 1
1 0 1
1 1 0

Figure 2.11 & Table 2.1: XOR Gate

The truth table shows that it is impossible to determine what the input value was

when given an output value. An output value of 0 could have been caused by an input

of all 0’s or of all 1’s. Similarly, an output of 1 is caused by an input combination

of 1 and 0. Which input is 1 and which input is 0 does not matter. It is possible to

introduce an extra output to the XOR which allows it to maintain its normal behavior

while also maintaining a one-to-one mapping between the inputs and outputs. This

gate is called a Feynman gate and is shown in Figure 2.12.

Figure 2.12: Feynman Gate

Table 2.2: Feynman Gate Truth Table

A B P Q
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

12

Output Q is equivalent to the output of a standard XOR gate. Output P allows

one to differentiate between the input combinations which would result in an output

of 1 in a standard XOR gate and thereby implements the previously described one-

to-one mapping. This property can been seen in the associated truth table in Table

2.2 and shows that the gate is reversible. All of the outputs are unique and as a result

the input value can be immediately determined for any given output value.

2.3.1 Conservative Reversible Logic

Logic gates are considered conservative reversible (CR) when they have a one-to-one

mapping between their inputs and their outputs and also have the same number of

1’s in their output as they have in their input. Functional units constructed from

CR logic gates will maintain their conservative reversible property. Spintronics based

nanomagnetic logic (NML) computing is a promising platform to implement these

types of circuits. There are high error rates associated with nanoscale manufacturing.

For that reason it is important to place a focus on reducing device error rates. CR

logic gates can be easily tested for unidirectional stuck at faults. This is accomplished

by comparing the number of 1’s in the input vectors and output vectors. The CR

nature of the gate guarantees they should be equal. Offline test vectors of all 0’s and

all 1’s would be the only test vectors required to detect unidirectional stuck at faults.

The comprehensive proof of this property can be referred to in [11–13]. This paper

proposes two methodologies for the design of ripple carry adders that only require

test vectors of all 0’s and all 1’s to detect all unidirectional stuck at faults.

2.3.2 Conservative Reversible Fredkin Gate

One type of conservative reversible logic gate is the Fredkin Gate [14] which is shown

in Figure 2.13. Define the inputs as A,B,C and the outputs as P,Q,R. The outputs

can be expressed by the following expressions:

13

Figure 2.13: Fredkin Gate

P = A (2.8)

Q = AB + AC (2.9)

R = AB + AC (2.10)

Table 2.3 contains the truth table for the Fredkin Gate.

Table 2.3: Fredkin Gate Truth Table

A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

The truth table proves the conservative reversible property of the Fredkin gate.

Each output has the same number of 1’s as its corresponding input and there is a

one-to-one mapping between the inputs and the outputs. The benefit of this property

is it allows stuck at faults to be easily detected. Stuck at 1 faults will be detected

when an input vector of all 0’s does not return an output vector of all 0’s. Likewise,

stuck at 0 faults will be detected when an input vector of all 1’s does not return an

14

output vector of all 1’s. Figure 2.14 shows how a Fredkin gate can be implemented in

NML computing. The designs proposed in this chapter are constructed from Fredkin

gates and thus have potential applications in NML computing.

Figure 2.14: NML Implementation of Fredkin Gate

15

Chapter 3

Design of Adder and Subtractor

Circuits in QCA

The implementation of arithmetic logic circuits using QCA is explored in works such

as [15], [16], and [17]. Some existing designs make use of multiple layers to boost

performance. A method to implement single layer QCA designs as multilayer has

been described in [18]. Questions still remain about the feasibility of being able to

manufacture multilayer designs. This fact leaves open the possibility of many designs

being rendered invalid. The designs we are proposing are able to side-step this issue

by being restricted to a single layer. The designs we are proposing are better than

existing single layer designs. In addition, our proposed designs are competitive with

and in most cases better than existing multilayer designs. Our proposed designs make

improvements in the number of cells, circuit area, and the latency of the circuit. The

designs proposed in this chapter consist of a full adder, a 4-bit ripple carry adder,

a full subtractor, and a 4-bit ripple borrow subtractor. QCADesigner was used to

implement and verify all of the proposed designs. The simulation results were only

included for the full adder and full subtractor as the simulation results for the 4-bit

units were much too large to include. All simulations were performed in QCADesigner

16

used the settings outlined in Table 3.1.

Table 3.1: QCADesigner Simulation Settings

Setting Value
Number of Samples 12800
Cell Size 18.0 nm x 18.0 nm
Dot Diameter 5.0 nm x 5.0 nm
Distance Between Cells 2.0 nm
Radius of Effect (nm) 41.0
Relative Permittivity 12.9
Clock High 9.8e-22
Clock Low 3.8e-23
Clock Shift 0.0
Clock Amplitude Factor 2.0
Layer Separation 11.5
Maximum Iterations Per Sample 100

3.1 Design of Proposed Full Adder

Define the inputs as A,B,Cin where A and B are the values being added and Cin is

the input carry value. Define the outputs as Cout, Sum where Sum is the sum of the

three inputs and Cout is the output carry. The equations for the full adder outputs

can be expressed as follows:

Cout = AB + BCin + ACin (3.1)

Sum = A⊕B ⊕ Cin (3.2)

By making use of majority gates, the Cout equation can be rewritten as:

Cout = MAJ3(A,B,Cin) (3.3)

17

where MAJ3 denotes a 3-input majority gate. The equation for Sum can also be

rewritten by using a 5-input majority gate (MAJ5) with the value of the output Cout

also being used as an input. The equation for Sum then becomes:

Sum = MAJ5(A,B,Cin, Cout, Cout) (3.4)

Figure 3.1(a) is the circuit diagram of the proposed full adder. The use of a 5-input

majority gate results in a circuit that is much simpler than designs that use only 3-

input majority gates and inverters. Figure 3.1(b) contains the QCA implementation

of the full adder. A simulation of the circuit using QCADesigner was used to verify

the correct function of the proposed full adder. The results of this simulation can be

seen in Figure 3.2.

(a) (b)

Figure 3.1: Proposed Full Adder
(a) Full Adder Circuit

(b) Full Adder QCA Implementation

Table 3.2 contains a comparison between our proposed full design and some ex-

isting designs. The cost value was determined by the following equation:

Cost = Area ∗ Latency2 (3.5)

18

where Area is the size of the design in umˆ2 and Latency is the number of clock cycles.

Our proposed design is better in all categories than the single layer design from [21].

Table 3.2: QCA Values for Proposed Full Adder

Design Cells Area (umˆ2) Latency Cost
[19]* 86 0.10 0.75 0.056
[20]* 73 0.04 0.75 0.0225
[21] 69 0.07 1 0.07

Proposed 63 0.05 0.75 0.028
*Multilayer design

Our proposed design also competitive with multilayer designs. Our proposed design

requires fewer cells than [20] and has a lower cost than [19]. It should be noted than

better designs exist in [15] and [22]. Both of the full adder designs from those works

were omitted due to being multilayer designs.

3.2 Design of Proposed Ripple Carry Adder

The proposed design of the ripple carry adder is very straightforward. It is simply four

full adders connected in series so that the carry out Cout from one adder gets passed

into the carry in Cin of the next adder. Define the input values as A3, A2, A1, A0 and

B3, B2, B1, B0 and define their sum as S3, S2, S1, S0. Figure 3.3 contains the QCA

implementation of a 4-bit ripple carry adder.

Table 3.3 contains a comparison between our proposed 4-bit ripple carry adder

and existing designs. Our proposed design has the lowest cell count and cost of the

designs compared. [23] has a lower area than our proposed design. The design we

proposed is able to counteract that by having a lower latency.

19

Table 3.3: QCA Values for Proposed 4-bit Ripple Carry Adder

Design Cells Area (umˆ2) Latency Cost
[24]* 651 1.20 4.25 21.68
[19]* 371 0.40 1.50 0.911
[23]* 339 0.25 1.75 0.766

Proposed 295 0.30 1.50 0.675
*Multilayer design

3.3 Design of Proposed Full Subtractor

Define the inputs as X, Y, Z where Y is the value being subtracted from X and Z

is the borrow input. Define the outputs as Diff,B where Diff is the difference of

X−Y −Z and B is the borrow output. The equations for the full subtractor outputs

can be expressed as follows:

Diff = X ⊕ Y ⊕ Z (3.6)

B = X(Y + Z) + Y Z (3.7)

The equation for B can be expanded into:

B = XY + XZ + Y Z (3.8)

Doing so makes it possible to express B as the output of a single 3-input majority

gate.

B = MAJ3(X,Y, Z) (3.9)

By using the same process as for the proposed full adder, the equation for Diff

can be rewritten with a 5-input majority gate (MAJ5). In this case the value of the

20

output B is used as an input.

Diff = MAJ5(X, Y , Z,B,B) (3.10)

Figure 3.4(a) is the circuit diagram of the proposed full subtractor. The use of a 5-

input majority gate results in a circuit that is much simpler than designs that use only

3-input majority gates and inverters. Figure 3.4(b) contains the QCA implementation

of the proposed full subtractor design. A simulation of the circuit using QCADesigner

was used to verify the correct function of the proposed full subtractor. The results of

this simulation can be seen in Figure 3.2.

Table 3.4 contains a comparison between our proposed full subtractor design and

existing designs. Our proposed design is superior in all categories compared to the

existing designs.

Table 3.4: QCA Values for Proposed Full Subtractor

Design Cells Area (umˆ2) Latency Cost
[25]* 186 0.132 2 0.528
[16] 90 0.11 1 0.22

Proposed 63 0.05 0.75 0.028
*Multilayer design

3.4 Design of Proposed Ripple Borrow Subtractor

It is possible to cascade n copies of the proposed full subtractor to create an n-bit

ripple borrow subtractor. This is done by using the borrow output B from one full

subtractor as the barrow input Z of the next full subtractor. By that method a 4-bit

ripple borrow subtractor can be constructed with the inputs defined as X3, X2, X1, X0

and Y3, Y2, Y1, Y0 and the borrow input defined as Z. Their difference can defined as

Diff3, Diff2, Diff1, Diff0 and the borrow input can be defined as B. The design

21

of the proposed 4-bit ripple borrow subtractor is shown in Figure 3.6. Table 3.5

contains a comparison between our proposed 4-bit ripple borrow subtractor design

and existing designs. Our proposed design is better in all categories than the single

layer design presented in [16]. The multilayer design from [26] has the same latency,

but is otherwise worse in all categories than our proposed design.

Table 3.5: QCA Values for Proposed 4-bit Ripple Borrow Subtractor

Design Cells Area (umˆ2) Latency Cost
[16] N/A 0.688 4 11.008
[26]* 410 0.43 1.5 0.968

Proposed 295 0.38 1.5 0.855
*Multilayer design

3.5 Conclusion

In this chapter we have proposed single-layer QCA designs for some basic arithmetic

circuits using 5-input majority gates. Our proposed designs for the full adder, 4-bit

ripple carry adder, full subtractor, and 4-bit ripple borrow subtractor are better than

existing single layer designs according to our evaluation metrics. In addition, our

proposed designs are competitive with existing multilayer designs and are actually

better in some cases.

22

Figure 3.2: Simulation of Proposed QCA Full Adder

23

Figure 3.3: Proposed 4-bit Ripple Carry Adder QCA Implementation

24

(a) (b)

Figure 3.4: Proposed Full Subtractor
(a) Full Subtractor Circuit
(b) Full Subtractor QCA Implementation

25

Figure 3.5: Simulation of Proposed QCA Full Subtractor

26

Figure 3.6: Proposed 4-bit Ripple Borrow Subtractor QCA Implementation

27

Chapter 4

Proposed 5-Input Majority Gate in

NML Computing

Some researchers [27],[28],[29],[30] have proposed using multiple layers to create three

dimensional NML circuits and structures. Specifically [29] and [30] have used the

stacking of multiple layers of NML cells to create circuits. These designs utilize

magnetic vias to allow signals to propagate between logic planes. The logic planes

are essentially identical to normal single layer designs that contain logic gates. A

single NML cell can be used as a via to allow signals to propagate between logic

planes.

Researchers have already proposed some designs for full adders in NML. One such

design [31] requires multiple copies of each input to ensure correct logic function of

the circuit. A separate work [29] contains a full adder NML design that uses multiple

layers to avoid the need for multiple copies of each inputs. By using our proposed

5-input majority gate we are able to improve on the number of cells in the design

from [29] without requiring additional input copies such as in [31]. We wanted our

designs to consist of uniform symmetric cells so other existing designs such as [32],

[27], [28], etc., were not considered in our comparisons. To our knowledge, there are

28

no existing NML designs of a full subtractor.

4.1 Design Verification Framework

Verilog was used to verify the designs proposed in this chapter from a logic standpoint.

An existing MQCA library was modified to allow inputs to any cell from above and

below the cell in addition to the four standard cardinal directions. A module simulates

the behavior of each individual cell in the circuit. The program OpenSCAD was used

to generate 3D models of the circuits themselves to aid in verifying cell placements.

A program was created to speed up the verification process. By doing so the process

of simulating these multilayer circuits has been reduced to specifying the location of

each cell. Simulation of the designs in Verilog was determined to be a better approach

for our purposes instead of using an existing simulation tool such as OOMMF [33].

4.1.1 NML Generation Program

A program was created to aide in the simulation of our proposed NML designs. The

generation program was written in C using the tools lex and yacc to create a lexical

analyzer and parser. The program takes an input file of cell locations and generates

equivalent Verilog and OpenSCAD descriptions. The program itself was not designed

to be robust. It does not perform any error checking of the circuit layout, nor does

the program check syntax. The program works under the assumption that the input

file is completely valid. The cell locations can be visualized as X,Y,Z coordiantes

on a grid. Inputformat.txt is a general example of the input file syntax expected by

the program. The file must contain the following tags in order: module, parameters,

inputs, cells, outputs, end.

29

module

A module name must be given after ”module”. This name will be the name of the

created Verilog module in addition to the actual Verilog and OpenScad files. For that

reason the given module name must be a valid option across each format.

parameters

After ”parameters”, three numbers are used to specify the number of inputs, the

number of outputs, and the number of layers in the desired NML circuit. As an

example, (3,1,3) would denote a circuit with three inputs, one output, and three

layers of NML cells.

inputs

After ”inputs”, each individual circuit input must be specified by its name and posi-

tion. The input name must be a valid input name in Verilog. The position is denoted

by X, Y, and Z coordinates. The range for each coordinate is any whole number from

1 to 127. All inputs are assumed to be in clock zone 0.

cells

After ”cells”, each individual cell must be listed by its X, Y, and Z coordinates and

the clock zone it is in. Each entry can be further modified to denote the center cell

in a majority gate or the location of an inverter. The use of ”m” specifies a majority

gate and ”inv” specifies an inverter. The inverter actually fits four cells into the space

normally occupied by three cells. For that reason there must not be a cell located on

either side of the inverter along its X axis.

30

outputs

After ”outputs”, each individual circuit output must be specified by its name, posi-

tion, and clock zone. The output name must be a valid output name in Verilog. The

position is denoted by X, Y, and Z coordinates. Specifying the outputs is very similar

to the method used to specify the inputs. The only difference is it possible to place

an output in any clock zone.

end

The presence of ”end” denotes the end of the file.

Inputformat

module

module_name

parameters

(number_of_inputs,number_of_outputs,number_of_layers)

//X,Y,Z coordinate range is 1-127

inputs

(Name,X,Y,Z)

(Name,X,Y,Z)

(Name,X,Y,Z)

cells

(X,Y,Z,clock_zone)

//Majority gate

m(X,Y,Z,clock_zone)

31

//Inverter

//No other cells at X-1 and X+1

inv(X,Y,Z,clock_zone)

outputs

(Name,X,Y,Z,clock_zone)

(Name,X,Y,Z,clock_zone)

end

Each cell in the OpenSCAD file is color coded to differentiate between inputs,

outputs, and standard cells. Table 4.1 contains complete explanation of the different

colors.

Table 4.1: 3D Cell Model Color Codes

Cell Color Cell Type
White Input
Black Output
Blue Clock Zone 0
Red Clock Zone 1
Green Clock Zone 2

4.2 Proposed 5-Input Majority Gate

A newer type of majority gate is the 5-input majority gate. It functions in much

the same way as a standard 3-input majority gate. The main difference between the

gates is there are now five inputs instead of three inputs. A 5-input majority gate

32

can be represented by the equation:

F =MAJ5(A,B,C,D,E) (4.1)

F =ABC + ABD + ABE + ACD + ACE (4.2)

+ ADE + BCD + BCE + BDE + CDE (4.3)

where A, B, C, D, and E are inputs and F is the output. The general shape

and magnetic properties of NML cells make it difficult to efficiently implement a

majority gate that has more than 3 inputs. One possible design for a 5-input majority

gate has already been proposed [27]. That design would require the inputs to be

specially designed and fabricated on a circuit-by-circuit basis. Our proposed design

uses multiple layers to eliminate the need for special cells. We are able to achieve this

goal by treating the space above and below a given cell as possible inputs and outputs.

In total there are 5 layers where layers 1, 3, and 5 contain inputs and outputs, and

layers 2 and 4 are vias connecting the inputs and outputs on layers 1 and 5. Figure

4.1 shows a 3D model of this implementation in which the output is located on layer

3.

4.2.1 Design Verification

An exhaustive test was performed on the equivalent Verilog description of the pro-

posed 5-input majority gate. The simulation results are shown in Figure 4.2. The sec-

tions of blue in the waveform for Output F denote high impedance. High impedance

occurs when a cell is in RESET phase. The slight delay in the value of F is due to

the fact that all of the inputs are in clock zone 0 while the output is in clock zone

1. As the signal propagates through the circuit, F first transitions into the RESET

phase before then assuming its proper value. F only shows logic 1 when at least three

of the inputs are also logic 1. The simulation verified that the 5-input majority gate

33

Figure 4.1: 3D 5-Input Majority Gate

follows the correct behavior outlined in the previous equations.

4.3 Design of Proposed Full Adder

The newly proposed 5-input majority gate can be used to construct multilayer circuits.

As an example we have presented the design of a full adder. Define the inputs as A,

B, and Cin where Cin is the input carry and A and B are the values to be added. The

outputs can be defined as Cout and Sum where Cout is the carry output and Sum is

the Sum of the inputs. The outputs of a standard full adder are expressed by the

following equations:

Cout =AB + BCin + ACin (4.4)

Sum =A⊕B ⊕ Cin (4.5)

These equations can be rewritten to make use of the majority gates. Doing so

34

allows the equation for Cout to be rewritten as:

Cout = MAJ3(A,B,Cin) (4.6)

The equation for Sum can be rewritten to make use of the 5-input majority gate.

Doing so requires the value of Cout to be used as an input to the gate. The new

equation for Sum becomes:

Sum = MAJ5(A,B,C,Cout, Cout) (4.7)

A 3D representation of the full adder can be seen in Figure 4.3.

4.3.1 Design Verification

An exhaustive test was performed on the equivalent Verilog description of the pro-

posed full adder. The simulation results are shown in Figure 4.4. Just like with the

simulation for the 5-input majority gate, there is a delay between a change in the

inputs being reflected in the outputs. The inputs A, B, and Cin are in clock zone 0

while the outputs Cout and Sum are in clock zone 2. The simulation verified that the

proposed full adder operated correctly.

4.4 Proposed Full Adder Design Comparisons

Table 4.2 contains a comparison of our proposed design with some existing works.

Percent difference was used to compare the existing designs to our proposed design.

We did not calculate a percent difference in the number of layers used in our proposed

design and the design by [31] due to their original design being only a single layer. By

using multiple layers, our proposed design is able to avoid the need for extra inputs

such as required by the design proposed in [31]. The use of a 5-input majority gate in

35

Table 4.2: Proposed 3D Full Adder Comparison

Metric [31] [29] Proposed % Diff to [31] % Diff to [29]
Inputs 6 3 3 66.7 0
Layers 1 3 5 - 50
Cells 31 90 66 72.2 30.8

our proposed design allows us to use fewer cells than the multilayer design proposed

in [29].

4.5 Design of Proposed Full Subtractor

Define the inputs as X, Y , and Z where Z is the borrow input and Y is the value

being subtracted from X. Define the outputs as B and Diff where B is the borrow

output and Diff is the difference of X − Y − Z. The equations for the outputs can

be expressed as follows:

B =XY + XZ + Y Z (4.8)

Diff =X ⊕ Y ⊕ Z (4.9)

Just like with the full adder, the output equations can be rewritten to make use

of majority gates. Doing so produces the following equations:

B =MAJ3(X,Y, Z) (4.10)

Diff =MAJ5(X, Y , Z,B,B) (4.11)

A 3D representation of the proposed full subtractor can be seen in Figure 4.5.

The proposed design requires 76 cells and only one instance of each input.

36

4.5.1 Design Verification

An exhaustive test was performed on the equivalent Verilog description of the pro-

posed full subtractor. The simulation results are shown in Figure 4.6. Just like with

the previously presented simulations, there is a delay between a change in the inputs

being reflected in the outputs. The inputs X, Y , and Z are in clock zone 0 while the

outputs B and Diff are in clock zone 2. The simulation verified that the proposed

full adder operated correctly.

4.6 Conclusion

In this chapter we proposed a method for implementing a 5-input majority gate in

NML computing. Further, we illustrated the utility of our proposed gate by showing

how it could be used in the design of a full adder and a full subtractor in NML. Verilog

was used to verify the correct operation of the proposd circuits. going forward, this

proposed gate should allow for the implementation of less complex functional units

in NML. The use of identical cells in the proposed five-input majority gate should

somewhat simplify the design process for any functional units that use the gate. The

proposed designs can be expanded to create multi-bit arithmetic circuits.

37

Figure 4.2: 5-Input Majority Gate Simulation

38

Figure 4.3: 3D Full Adder

39

Figure 4.4: Full Adder Simulation

40

Figure 4.5: Proposed 3D Full Subtractor

41

Figure 4.6: Full Subtractor Simulation

42

Chapter 5

Design of Testable Adder Circuits

for NML Computing

This chapter will show how the principles of reversible logic can be applied to the

design of adder circuits in NML computing. Two different design methodologies are

used to create the proposed testable reversible adders.

5.1 Design Methodology 1 of Proposed Testable

Reversible Ripple Carry Adder

This design methodology uses an approach similar to those of the designs proposed

in [34, 35]. Implementing the design using the previously described Fredkin gate

will allow the design to be applicable in NML computing. This design requires the

creation of two smaller functional units. Cascading n copies of both functional units

produces an n-bit adder. In this paper the units will be referred to as conservative

reversible test block 1 (CRTB 1) and conservative reversible test block 2 (CRTB

2). The Fredkin gate based implementations of CRTB 1 and CRTB 2 are shown in

Figures 5.1 and 5.2, respectively. The truth table of CRTB 1 is shown in 5.1 and the

43

truth table of CRTB 2 is shown in 5.2.

Table 5.1: CRTB 1 Truth Table

A B C A⊕B AB + (A⊕B)C AB + (A⊕B)C
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 0 1
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 1 0 1 1

Table 5.2: CRTB 2 Truth Table

A B C AB + BC AB + BC AB + BC
0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 1 0 0
0 1 1 1 0 1
1 0 0 0 0 1
1 0 1 1 1 1
1 1 0 0 1 0
1 1 1 0 1 1

In both logic blocks the primary inputs are defined as A,B,C and the primary

outputs are defined as P,Q,R. The primary outputs of CRTB 1 are expressed by

P = A ⊕ B,Q = AB + (A⊕B)C,R = AB + (A ⊕ B)C and the primary outputs

of CRTB 2 are expressed by P = AB + BC,Q = AB + BC,R = AB + BC. These

inputs and outputs are referred to as primary because they must be connected in a

specific way to create an adder. The use of Fredkin gates introduces a number of

ancilla inputs and garbage outputs. Ancilla inputs are constant inputs. There are

certain Fredkin gate inputs that must be set to a constant logic 0 or logic 1 to produce

the desired behavior. Garbage outputs are outputs that serve no purpose other than

to maintain the one to one mapping in the circuit. These outputs are denoted by a

44

T and serve no purpose beyond testing for universal stuck at faults.

Figure 5.1: CRTB 1

Figure 5.2: CRTB 2

Figure 5.3: CR Full Adder Method 1

Cascading the primary outputs of CRTB 1 into the primary inputs of CRTB 2

produces the full adder shown in Figure 5.3. The inputs are defined as A,B,C. The

outputs are defined as Sum and Cout where Sum is the sum of the inputs A,B,C

and Cout is he carry output of the inputs A,B,C. The output R of CRTB 1 is the

carry output Cout. That value is needed as an input to CRTB 2 in addition to being

an output of the overall adder. An additional Fredkin gate is used to make a copy of

the carry output Cout without introducing fanout.

45

An n-bit reversible full adder can be constructed by cascading n copies of Unit

1 with n copies of Unit 2. The resulting adder maintains the stuck at fault testa-

bility and potential application in NML computing of the full adder because it too

is constructed solely from Fredkin gates. Define the inputs of the n-bit adder as

An−1An−2...A1A0 and Bn−1Bn−2...B1B0 with a carry input Cin. The methodology for

constructing the n-bit adder is explained below.

1. Cascading of CRTB 1

(a) For i=0:

Apply a CRTB 1 such that adder inputs A0, B0, Cin are passed to CRTB

1 inputs A,B,C, respectively.

(b) For i=1 to i=n-1:

Apply a CRTB 1 such that the values passed to CRTB 1 inputs A,B,C

are Ai, Bi, Ri−1, respectively where Ri−1 denotes the R output from the

previous CRTB 1.

(c) Further for i=n-1:

Apply the R output of the previous CRTB 1 to the A input of a Fredkin

gate.

2. Cascading of CRTB 2

(a) For i=n-1:

Apply a CRTB 2 so that the value passed to the CRTB 2 inputs A,B,C

are P (Fredkin), Qn−1, Pn−1(CRTB1), respectively where P (Fredkin) is

the P output of the Fredkin gate that was added to the (n− 1)th CRTB

1 and Qn−1, Pn−1(CRTB1) are outputs of the (n− 1)th CRTB 1.

(b) For i=n-2 to i=0:

Apply a CRTB 2 so that the value passed to the CRTB 2 inputs A,B,C are

Ri, Qi, Pi, respectively where Ri, Qi, Pi are the outputs of the ith CRTB 1.

46

An example of a CR 4-bit adder is shown in Figure 5.4. In the figure define the

values being summed as A3, A2, A1, A0 and B3, B2, B1, B0 with the carry input defined

as Cin. The sum is defined as S3, S2, S1, S0 and the carry output is defined as Cout.

Figure 5.4: CR 4-bit Ripple Carry Adder Method 1

5.2 Design Methodology 2 of Proposed n-bit

Testable Reversible Ripple Carry Adder

The second proposed design methodology uses an approach similar to the one used in

[36] to implement a testable reversible n-bit ripple carry adder. This design method

reduces both the propagation delay and cost in terms of Fredkin gates. Figure 5.5

contains the proposed full adder. The proposed design is made solely from Fredkin

gates which means it is conservative reversible and thus only requires test vectors of

all 0s and all 1s to detect all unidirectional stuck at faults.

As is typical with ripple carry adders, an n-bit ripple carry adder can be con-

structed using n copies of the individual full adder. Creating the n-bit ripple carry

adder requires cascading the full adders so that the carry output Cout of one full adder

47

Figure 5.5: CR Full Adder Method 2

is passed to the carry input Cin of the next full adder. The created n-bit ripple-carry

adder is conservative reversible and therefore only requires test vectors of all 0s and

all 1s to detect all unidirectional stuck at faults. An example of a 4-bit CR ripple

carry adder is shown in Figure 5.6.

Figure 5.6: CR 4-bit Ripple Carry Adder Method 2

48

5.3 Comparison of Proposed n-bit Ripple Carry

Adder Design Methodologies

A comparison of the cost and delay of the proposed design methodologies shows

that our proposed design using method 2 is superior in both categories. The cost

is the number of Fredkin gates required to implement the design and the delay is

the number of Fredkin gates the input vector must propagate through to obtain

the complete output vector. The proposed method 2 design requires fewer Fredkin

gates than the method 1 design. For an n-bit adder the proposed method 2 design

will require n + 1 fewer gates than the method 1 design. In addition, the proposed

method 2 design has less delay than the method 1 design. For an n-bit adder the

delay of the proposed method 2 design will be n+2 lower than in the method 1 design.

In the method 1 design a signal has to propagate from the lowest significant bit to

the most significant and then propagate back to the least significant bit. Another

reason for the reduced delay in the method 2 design is in the design each full adder

allows it to partially calculate its outputs before the carry output from the previous

adder has been calculated. The second and third Fredkin gates in each full adder are

independent of each other and can thus be considered to have a single gate delay.

The carry output of each full adder is calculated before the final Fredkin gate and

therefore only contributes to the overall delay in the final full adder. The delay for

a single bit full adder is only 4 and each additional bit will only increase the overall

propagation delay by 2. Table 5.3 shows a comparison between the cost and delay

of the two design methodologies. All cost and delay values are in terms of Fredkin

gates.

49

Table 5.3: Fredkin Cost and Delay Comparison

Adder
Size

Cost Delay
Method 1 Method 2 Method 1 Method 2

1-bit 7 5 7 4
2-bit 13 10 10 6
3-bit 19 15 13 8
4-bit 25 20 16 10

...
n-bit 6n+1 5n 3n+4 2n+2

Note: All values are in terms of the number of Fredkin gates

5.4 Conclusion

In this chapter we present two possible design methodologies to implement an n-bit

conservative reversible adder in NML computing. Both design methodologies involve

the use of Fredkin gates to make the designs applicable to NML computing. The

first design method involves cascading two separate logic blocks to create ripple carry

adders. The second design method uses the approach of constructing full adders and

then cascading them to form ripple carry adders. The conservative reversible nature

of the adders gives them the testability advantage of only requiring test vectors of all

0s and of all 1s to test for all unidirectional stuck at faults.

50

Chapter 6

Conclusions

In this thesis, multiple designs of arithmetic circuits have been proposed for use in

majority logic based computing. Specific technologies targeted in this thesis were

quantum dot cellular automata (QCA) and nanomagnetic logic (NML). Proposed

designs of the QCA full adder, full subtractor, ripple carry adder, and ripple borrow

subtractor were shown to improve on the number of cells, area, latency, and overall

cost of existing designs by using five input majority gates in the designs. A multilevel

five input majority gate was proposed in NML that was able to be constructed from

identical cells. The merits of this gate were proven by the fact that proposed full

adder design was able to reduce the number of required NML cells without needing

additional copies of the inputs. In addition, a full subtractor NML design was pro-

posed which makes use of the proposed 5-input majority gate. Lastly, the potential

of majority logic for implementing conservative reversible (CR) logic designs was ex-

plored. Two implementations of n-bit adders were proposed. Both of the adders were

created by exclusively using Fredkin gates which are CR in nature. Using only CR

gates to create the adders means that the CR property is passed onto the proposed

designs. The CR property of the adders allows them to be easily tested for all uni-

directional stuck at faults. All of the presented QCA designs were verified through

51

the use of QCADesigner. All of the presented NML designs were verified through

simulations performed on specially created Verilog descriptions.

The designs proposed in this thesis provide a solid foundation for future work. One

such direction would be designing larger adder and subtractor circuits by following

the same principles outlined in this thesis. More complex functional units such as

multipliers, fast Fourier transform (FFT) units, arithmetic logic units (ALUs), and

even an entire majority logic based processor can be designed by taking advantage of

the designs proposed in this thesis. These larger units could also be designed using

conservative reversible logic to make them easily testable for unidirectional stuck at

faults. A potential hurdle to designing these larger and more complex units is the

previously mentioned issue of a suitable CAD tool for NML circuits. That issue can

be somewhat offset by increasing the functionality of program we developed to include

such features as power dissipation or actual circuit dimensions. Another feature could

be increasing user friendliness by adding a GUI that would allow a designer to make

immediate cell location changes instead of having to cross reference the input file and

the openSCAD file.

52

References

[1] John M Shalf and Robert Leland. Computing beyond moore’s law. Computer,
48(12):14–23, 2015. © 2015 IEE Reprinted, with permission.

[2] Gordon E Moore et al. Cramming more components onto integrated circuits.
Proceedings of the IEEE, 86(1):82–85, 1998.

[3] Craig S Lent and P Douglas Tougaw. A device architecture for computing with
quantum dots. Proceedings of the IEEE, 85(4):541–557, 1997.

[4] Carson Labrado and Himanshu Thapliyal. Design of adder and subtractor cir-
cuits in majority logic-based field-coupled qca nanocomputing. Electronics Let-
ters, 52(6):464–466, 2016. Reproduced by permission of the Institution of Engi-
neering & Technology.

[5] Carson Labrado and Himanshu Thapliyal. Design of a multilayer five-input ma-
jority gate and adder/subtractor circuits in nml computing. Electronics Letters,
52(19):1618–1620, 2016. Reproduced by permission of the Institution of Engi-
neering & Technology.

[6] Carson Labrado, Himanshu Thapliyal, and Ronald F Demara. Design of testable
adder circuits for spintronics based nanomagnetic computing. In Nanoelectronic
and Information Systems (iNIS), 2015 IEEE International Symposium on, pages
107–111. IEEE, 2015. (c) 2015 IEE Reprinted, with permission.

[7] Marco Vacca, Mariagrazia Graziano, Juanchi Wang, Fabrizio Cairo, Giovanni
Causapruno, Gianvito Urgese, Andrea Biroli, and Maurizio Zamboni. Nanomag-
net logic: An architectural level overview. Lecture Notes in Computer Science,
pages 223–256, 2014.

[8] Edit Varga, Alexei Orlov, Michael T. Niemier, Xiaobo Sharon Hu, Gary H. Bern-
stein, and Wolfgang Porod. Experimental demonstration of fanout for nanomag-
net logic. IEEE Transactions on Nanotechnology, 9(6):668–670, 2010.

[9] Wolfgang Porod, Gary H Bernstein, György Csaba, Sharon X Hu, Joseph Nahas,
Michael T Niemier, and Alexei Orlov. Nanomagnet logic (nml). In Field-Coupled
Nanocomputing, pages 21–32. Springer, 2014.

[10] Marco Vacca. Emerging Technologies-NanoMagnets Logic (NML). PhD thesis,
Politecnico di Torino, 2013.

53

[11] P. Kartschoke. Implementation issues in conservative logic networks. In M.S.E.E.
Thesis, University of Virginia, Charlottesville VA, 1992.

[12] G. Swaminathan. Concurrent error detection techniques using parity. In
M.S.E.E. Thesis, University of Virginia, Charlottesville VA, 1989.

[13] G. Swaminathan, J. Aylor, and B. Johnson. Concurrent testing of vlsi circuits
using conservative logic. In Proc. International Conference on Computer Design
(ICCD), pages 60–65, Cambridge, MA, September 1990.

[14] E. Fredkin and T Toffoli. Conservative logic. International J. Theor. Physics,
21:219–253, 1982.

[15] Sara Hashemi, Mohammad Tehrani, and Keivan Navi. An efficient quantum-dot
cellular automata full-adder. Scientific Research and Essays, 7(2):177–189, 2012.

[16] Seong-Wan Kim. Design of parallel multipliers and dividers in quantum-dot
cellular automata. 2011.

[17] Weiqiang Liu, Liang Lu, Máire O’Neill, and Earl E Swartzlander Jr. Cost-
efficient decimal adder design in quantum-dot cellular automata. In Circuits and
Systems (ISCAS), 2012 IEEE International Symposium on, pages 1347–1350.
IEEE, 2012.

[18] Aaron Gin, P Douglas Tougaw, and Sara Williams. An alternative geometry for
quantum-dot cellular automata. Journal of Applied Physics, 85(12):8281–8286,
1999.

[19] Heumpil Cho and Earl E Swartzlander Jr. Adder and multiplier design in
quantum-dot cellular automata. Computers, IEEE Transactions on, 58(6):721–
727, 2009.

[20] Keivan Navi, Razieh Farazkish, Samira Sayedsalehi, and Mostafa Rahimi
Azghadi. A new quantum-dot cellular automata full-adder. Microelectronics
Journal, 41(12):820–826, 2010.

[21] Moein Kianpour, Reza Sabbaghi-Nadooshan, and Keivan Navi. A novel design of
8-bit adder/subtractor by quantum-dot cellular automata. Journal of Computer
and System Sciences, 80(7):1404–1414, 2014.

[22] Arman Roohi, Hossein Khademolhosseini, Samira Sayedsalehi, and Keivan Navi.
A symmetric quantum-dot cellular automata design for 5-input majority gate.
Journal of Computational Electronics, 13(3):701–708, 2014.

[23] Vikramkumar Pudi and K Sridharan. Low complexity design of ripple carry and
brent–kung adders in qca. Nanotechnology, IEEE Transactions on, 11(1):105–
119, 2012.

54

[24] Heumpil Cho and Earl E Swartzlander. Adder designs and analyses for quantum-
dot cellular automata. Nanotechnology, IEEE Transactions on, 6(3):374–383,
2007.

[25] S Karthigai Iakshmi, G Athisha, Madurakavi Karthikeyan, and Chidambar
Ganesh. Design of subtractor using nanotechnology based qca. In Communica-
tion Control and Computing Technologies (ICCCCT), 2010 IEEE International
Conference on, pages 384–388. IEEE, 2010.

[26] Vikramkumar Pudi and K Sridharan. Efficient qca design of single-bit and multi-
bit subtractors. In Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference
on, pages 1155–1158. IEEE, 2013.

[27] Stephan Breitkreutz, Irina Eichwald, Josef Kiermaier, Adam Papp, György
Csaba, Michael Niemier, Wolfgang Porod, Doris Schmitt-Landsiedel, and Markus
Becherer. 1-bit full adder in perpendicular nanomagnetic logic using a novel 5-
input majority gate. In EPJ web of conferences, volume 75, page 05001. EDP
Sciences, 2014.

[28] Robert Perricone, X Sharon Hu, Joseph Nahas, and Michael Niemier. Design
of 3d nanomagnetic logic circuits: a full-adder case study. In Proceedings of the
conference on Design, Automation & Test in Europe, page 119. European Design
and Automation Association, 2014.

[29] M Cofano, G Santoro, M Vacca, D Pala, G Causapruno, F Cairo, F Riente,
G Turvani, M Roch, M Zamboni, et al. Logic-in-memory: A nano magnet
logic implementation. In VLSI (ISVLSI), 2015 IEEE Computer Society Annual
Symposium on, pages 286–291. IEEE, 2015.

[30] Irina Eichwald, Stephan Breitkreutz, Grazvydas Ziemys, György Csaba, Wolf-
gang Porod, and Markus Becherer. Majority logic gate for 3d magnetic comput-
ing. Nanotechnology, 25(33):335202, 2014.

[31] Edit Varga, G Csaba, GH Bernstein, and W Porod. Implementation of a nano-
magnetic full adder circuit. In Nanotechnology (IEEE-NANO), 2011 11th IEEE
Conference on, pages 1244–1247. IEEE, 2011.

[32] Edit Varga, Michael T Niemier, Gyorgy Csaba, Gary H Bernstein, and Wolfgang
Porod. Experimental realization of a nanomagnet full adder using slanted-edge
magnets. Magnetics, IEEE Transactions on, 49(7):4452–4455, 2013.

[33] Michael Joseph Donahue and Donald Gene Porter. OOMMF User’s guide. US
Department of Commerce, Technology Administration, National Institute of
Standards and Technology, 1999.

[34] Saurabh Kotiyal, Himanshu Thapliyal, and Nagarajan Ranganathan. Mach-
zehnder interferometer based design of all optical reversible binary adder. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages
721–726. EDA Consortium, 2012.

55

[35] Himanshu Thapliyal, Nagarajan Ranganathan, and Saurabh Kotiyal. Design
of testable reversible sequential circuits. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 21(7):1201–1209, 2013.

[36] J. W. Bruce, M. A. Thornton, L. Shivakumaraiah, P. S. Kokate, and X. Li.
Efficient adder circuits based on a conservative reversible logic gate. In Proc.
IEEE Symposium on VLSI, 2002, pages 83–88, 2002.

56

Vita

Carson Labrado

Education

University of Kentucky
Bachelor of Science in Electrical Engineering, May 2014
Bachelor of Science in Computer Engineering, May 2014
Minors in Computer Science and Mathematics

Experience

Graduate Research Assistant
May 2015-Present
University of Kentucky
Lexington, KY

Teaching Assistant
Fall 2015-Present
University of Kentucky
Lexington, KY

Publications

Carson Labrado and Himanshu Thapliyal. ”Design of a multilayer five-input ma-
jority gate and adder/subtractor circuits in NML computing.” Electronics Letters
52.19 (2016): 1618-1620.
Carson Labrado and Himanshu Thapliyal. ”Design of adder and subtractor circuits
in majority logic-based field-coupled QCA nanocomputing.” Electronics Letters 52.6
(2016): 464-466.
Carson Labrado, Himanshu Thapliyal, and Ronald F. Demara. ”Design of Testable
Adder Circuits for Spintronics Based Nanomagnetic Computing.” 2015 IEEE Inter-
national Symposium on Nanoelectronic and Information Systems. IEEE, 2015.
Himanshu Thapliyal, Carson Labrado, and Ke Chen. ”Design procedures and NML
cost analysis of reversible barrel shifters optimizing garbage and ancilla lines.” The
Journal of Supercomputing 72(3) (2016): 1092-1124.

57

	Exploration of Majority Logic Based Designs for Arithmetic Circuits
	Recommended Citation

	Titlepage
	Abstract
	Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contribution of Thesis
	Outline of Thesis

	Background
	Quantum Dot Cellular Automata
	Nanomagnetic Logic
	Reversible Logic
	Conservative Reversible Logic
	 Conservative Reversible Fredkin Gate

	Design of Adder and Subtractor Circuits in QCA
	Design of Proposed Full Adder
	Design of Proposed Ripple Carry Adder
	Design of Proposed Full Subtractor
	Design of Proposed Ripple Borrow Subtractor
	Conclusion

	Proposed 5-Input Majority Gate in NML Computing
	Design Verification Framework
	NML Generation Program

	Proposed 5-Input Majority Gate
	Design Verification

	Design of Proposed Full Adder
	Design Verification

	Proposed Full Adder Design Comparisons
	Design of Proposed Full Subtractor
	Design Verification

	Conclusion

	Design of Testable Adder Circuits for NML Computing
	 Design Methodology 1 of Proposed Testable Reversible Ripple Carry Adder
	 Design Methodology 2 of Proposed n-bit Testable Reversible Ripple Carry Adder
	 Comparison of Proposed n-bit Ripple Carry Adder Design Methodologies
	 Conclusion

	Conclusions
	References
	Vita

