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ABSTRACT OF DISSERTATION 

 

 

EXPLORING PREDATOR-PREY INTERACTIONS IN AGROECOSYSTEMS 
THROUGH MOLECULAR GUT-CONTENT ANALYSIS 

 
Generalist predators can contribute to vital ecosystem services by potentially 

inducing trophic cascades as natural enemies of pests in agroecosystems. As the human 
population of the world gets larger, we need to produce more food on ever-smaller 
swaths of available land relying on ecosystem services, in the form of pest control, that 
may contribute to agricultural sustainability. Teasing apart the exact trophic linkages 
between predators and prey is a vital first step and essential to uncovering which 
predators are inducing trophic cascades and should be enhanced through conservation 
biological control.  

Combined with ecological experimentation, the main tool used throughout my 
research to identify trophic linkages is molecular gut-content analysis. I began by 
investigating mass sampling techniques and found they do not cause contamination in 
gut-content analysis and may be a simple method for collecting large numbers of cryptic 
predators for use in determining trophic linkages. Additionally, my research uncovered 
trophic interactions between stink bugs and generalist predators at multiple scales. 
Overall, I successfully designed molecular methods to investigate relationships between 
agricultural pests and generalist predators. A multi-year field study uncovered low 
predation on stink bug pests in contrast to previous research suggesting that generalist 
predators were contributing highly to biological control. This research highlights the need 
for replicated studies before making broad conservation biological control decisions. 
Although generalist predators were not consuming stink bugs in large numbers, my field 
cage study showed evidence of superfluous killing by spiders on adult stink bugs, 
highlighting the need to combine ecological studies with molecular methods to 
understand consumptive and non-consumptive effects on prey items. Gut-content analysis 
showed no evidence of consumption, but the field cage study allowed me to uncover the 
complicated relationships between spiders and stink bugs. In addition, I showed an 
invasive species can be detected in new areas through molecular gut-content analysis of 
predators before other sampling methods.  
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Chapter 1: Introduction 

1.1 Role of generalist predators in trophic cascades in agroecosystems 

Predator prey interactions are affected by many abiotic and biotic factors. In 

agricultural systems, the interplay between weather, habitat structures, pesticides, harvest 

cycle, non-crop vegetation, pests, natural enemies and other arthropods combine to form 

complex interaction webs of organisms (Welch and Harwood 2014). The species in these 

webs can have both direct and indirect effects on each other and other organisms in their 

community (Eubanks and Finke 2014, Welch and Harwood 2014).  

Predators can indirectly affect lower trophic levels through trophic cascades 

(Paine 1980, Carpenter et al. 1985) occurring when predators consume prey (e.g., 

herbivores), thus indirectly benefiting the resource base of their prey (e.g., plants as 

primary producers). Generally, trophic cascades occur when there are at least two links in 

a trophic chain and reduction in abundance or biomass at one level results in an increase 

in abundance or biomass at a different level. For example, when a predator reduces the 

abundance of a prey item or alters its behavior and the next trophic level down, a plant, 

increases in biomass (Beckerman et al. 1997, Schmitz and Suttle 2001). In a four-level 

system, a top predator could prey on a mesopredator and cause an herbivore to increase in 

abundance thereby decreasing the abundance of the plant the herbivore is feeding on 

(Whitehouse et al. 2011). In a multiple predator system, several species may experience 

cascading effects at lower trophic levels corresponding with the most prolific predator in 

the system (Nyström et al. 2001). These cascades are common (Pace et al. 1999, Schmitz 

et al. 2000, Halaj and Wise 2001, Shurin et al. 2002, Estes et al. 2011) and modified by 
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many factors such as habitat type, food quality, intraguild predation (Hatcher et al. 2006) 

and predator-prey body size ratios (Shurin et al. 2002, Grabowski 2004, Borer et al. 2005, 

Preisser et al. 2005, Shurin et al. 2006).  

In agroecosystems, trophic cascades caused by biological control are the goal of 

interactions between generalist predators and herbivorous pests and have been 

demonstrated with various predator taxa (Riechert and Bishop 1990, Carter and Rypstra 

1995, Snyder and Wise 1999, Colfer and Rosenheim 2001, Snyder and Wise 2001, Halaj 

and Wise 2002, Cardinale et al. 2003, Rypstra and Marshall 2005, Finke and Denno 

2006, Costamagna et al. 2007). In most cases, more than one predator contributed to 

these trophic cascades. Groups of predators, in general, are more effective at controlling 

prey than a single predator species (Chiverton 1987, Riechert and Lawrence 1997, 

Cardinale et al. 2006, Letourneau et al. 2009). This control occurs when positive 

interactions among natural enemies, such as resource partitioning, are stronger than 

negative interactions, such as intraguild predation (Letourneau et al. 2009). Positive 

interactions can include, facilitation of prey capture for another predator (e.g., aphid 

dropping behavior elicited by a foliar predator resulting in consumption of aphid by a 

ground predator (Losey and Denno 1998)), resource partitioning among natural enemies 

increasing overall pest control (Finke and Snyder 2008), and overall higher pest 

suppression (Northfield et al. 2014). 

Generalist predators may be ideal candidates for inducing trophic cascades 

through biological control as they can maintain high population levels in agroecosystems 

by exploiting non-pest prey when specialists cannot (Symondson et al. 2002, Welch et al. 

2012, Welch and Harwood 2014). Generalist predators can maintain populations in 
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agricultural fields, subsisting on alternative prey resources, until the pests first arrive, 

thereby having a greater overall impact on the pest population, resulting in trophic 

cascades with net benefits for plants (Welch and Harwood 2014, Athey et al. 2016). 

Trophic cascades can result in benefits that people obtain from ecosystems, 

referred to as ecosystem services (MEA 2005). Generalist predators contribute to vital 

ecosystem services by inducing trophic cascades as natural enemies of pests. These 

ecosystem services, though important, are often sacrificed through agricultural 

intensification (Tilman et al. 2002, Foresight 2011). As the human population of the 

world gets larger and larger, we are tasked with producing more food on ever-smaller 

swaths of available land (MEA 2005). We need to utilize sustainable farming practices 

where high yields can be maintained, farms can withstand major change and have 

acceptable environmental impacts (Conway 1997). Relying on ecosystem services, in the 

form of pest control, may pave the way for more sustainable agricultural practices. 

Research has shown biological control is an important ecosystem service in 

agroecosystems and can aid in promoting and implementing sustainable agricultural 

practices (Landis et al. 2000, Losey and Vaughan 2006, Isaacs et al. 2009, Ragsdale et al. 

2011). 

Conservation biological control can enable predator populations to be enhanced 

through management of the local flora and fauna. Habitat manipulation enables the 

enhancement of natural enemy populations through provisioning of resources typically 

lacking in agricultural fields (Landis et al. 2000), and can strengthen top-down control of 

insect pests (Costamagna et al. 2007, Holland et al. 2012). These provisions include 

extra-floral nectaries (Edwards et al. 1979, Baggen and Gurr 1998, Heil 2015), refugia 
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for predators (Halaj 2000, Knapp and Rezac 2015), and alternative prey (Gurr et al. 2004, 

Landis et al. 2005). For example, field margins provide alternative prey for natural 

enemies (Thomas and Marshall 1999, Frank et al. 2009, Bickerton and Hamilton 2012), 

act as a trap for pests (Deol and Rataul 1978, Fereres 2000, Mitchell et al. 2000, Hooks 

and Fereres 2006), and may ultimately reduce damage to the crop (Balzan and Moonen 

2013). In addition, providing refugia increases spider abundance, spider species richness 

in soybeans increased by 60% with a concomitant 33% reduction in damage to seedlings 

in manipulated plots (Halaj 2000). Moreover, in cropping systems with aphid pests, strip-

planting with ryegrass may replace at least one insecticide application per season, which 

has long-term economic and environmental benefits (Dong et al. 2012). Studies of 

multiple predators on pest species are important to help understand what role enemy 

biodiversity plays in biological control and if it can influence trophic cascades 

(Costamagna et al. 2007). Teasing apart the exact trophic linkages between predators and 

prey is essential to uncover which predators are inducing trophic cascades and should be 

enhanced through conservation biological control and is a vital first step. The main tool 

used throughout this dissertation to identify trophic linkages is molecular gut-content 

analysis. 

1.2 Molecular gut-content analysis 

1.2.1 Uses for molecular gut-content analysis 

One of the major advances in food web ecology and biological control is the use 

of molecular tools to verify trophic connections within hypothesized interaction webs. 

Molecular gut-content analysis is useful for screening diverse predators in a short amount 

of time for a given prey item. For vertebrates, visually screening feces can reveal trophic 
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linkages but the majority (≥ 79%) of terrestrial arthropod predators feed by liquid 

ingestion following extra-oral digestion (Cohen 1995), with visual inspection of gut-

contents revealing nothing other than if the predator had eaten recently.  

  The detection of prey-associated molecules such as proteins (enzyme-linked 

immunosorbent assay (ELISA)) or DNA (polymerase chain reaction (PCR)) in the guts of 

predators provides insight into trophic connections structuring food webs (Sheppard and 

Harwood 2005, Juen and Traugott 2007, King et al. 2008, Weber and Lundgren 2009, 

Hagler 2011, Hagler and Blackmer 2013, Furlong 2015, Hagler et al. 2015). Molecular 

gut-content analysis employing PCR is a popular tool for characterizing trophic linkages 

across a variety of habitats, including vegetables (Balmer et al. 2013, Schmidt et al. 

2014), row crops (Agustí et al. 2003, Hagler and Blackmer 2013, Lundgren and Fergen 

2014), forage crops (Welch et al. 2014), fruit (Boreau de Roincé et al. 2013, Mollot et al. 

2014)), forest systems (Schoeller et al. 2012, Heidemann et al. 2014, Jelaska et al. 2014), 

and soil (Lundgren and Fergen 2014, Wallinger et al. 2014). 

1.2.2 Limitations to molecular gut-content analysis 

As with any technique, there are limitations to estimating consumption patterns 

with molecular gut-content analysis. For example, if decay rates of gut-contents are high, 

predation can be under-estimated as there is a very short detection window (Greenstone 

et al. 2014b). Variables such as predator identity, prey identity, sex, and temperature 

influence the rates of decay and the detection window size (Hagler and Naranjo 1997, 

Greenstone et al. 2014b), making it difficult to determine the predation rates. In addition, 

scavenging and secondary predation (consumption of another predator that had consumed 

the target prey itself) cannot be separated from primary predation and may inflate trophic 
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linkage estimates. For instance, von Berg et al. (2012) found that 26-41% of predator 

species tested consumed dead aphids when offered both live and dead aphids. Similarly, 

cannibalism cannot be detected using PCR as this method cannot distinguish between 

individuals (Gagnon et al. 2011). Additionally, molecular gut-content analysis is only a 

qualitative measure of predation unless controlled feeding trials and statistical analyses 

using Bayesian or other non-parametric methods are used in tandem to determine relative 

predation levels (Greenstone et al. 2010, Welch et al. 2014).  

Undetected contamination could also lead to higher gut-content positives. A 

major advantage of molecular gut-content analysis utilizing specific primers is their 

sensitivity; well-designed primers can detect trace amounts of prey DNA. However, the 

sensitivity of polymerase chain reaction (PCR) makes it susceptible to contamination by 

minute concentrations of DNA from various sources (Sheppard and Harwood 2005, King 

et al. 2008). Several studies have attempted to quantify this contamination (Chapman et 

al. 2010, Greenstone et al. 2011, Greenstone et al. 2012, King et al. 2012, O'Rorke et al. 

2013). For example, Greenstone et al. (2011) explored whether a rough collecting 

method, beat sheeting followed by mass collecting via an aspirator, would cause gut 

contamination. The authors found that 31% of the predators in the rough treatment had 

cross-contamination. In contrast, Chapman et al. (2010) tested vacuum sampling for 

molecular gut-content analysis and found no evidence of cross contamination. With 

various techniques having opposite outcomes, contamination during the sampling and 

storage process needs further testing and in Chapter 2, I investigated possible 

contamination resulting from a common collection method (pitfall traps) and mass 

storage of specimens destined for molecular gut-content analysis.  
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Molecular gut-content analysis is also incapable of uncovering non-consumptive 

effects and these effects have been well documented to alter pest behavior, survival, and 

reproduction. For instance, superfluous killing (Maupin and Riechert 2001), could result 

in mortality for a prey item without consumption by the predator. Many groups of 

animals, including tardigrades, (Hohberg and Traunspurger 2009), mammals, (Short et al. 

2002), insects (Johnson et al. 1975, Lang and Gsodl 2003, Lounibos et al. 2008) and 

spiders (Riechert and Maupin 1998, Maupin and Riechert 2001, Trubl et al. 2011) exhibit 

this behavior. Predator-induced behavioral changes (decreased feeding rates and 

reproduction) can also negatively affect prey populations without consumption by the 

predator (Schmitz et al. 1997, Brown et al. 1999, Preisser et al. 2005, Preisser and 

Bolnick 2008, Sitvarin et al. 2016).  In Chapter 3, I investigated possible non-

consumptive and consumptive effects between a generalist predator and agricultural pest 

by combining a field cage study with molecular gut-content analysis. 

Despite its limitations, molecular gut-content analysis is a useful tool for 

visualizing food web linkages especially when coupled with pest and predator abundance 

data (Furlong 2015). Although these approaches allow reliable post-mortem identification 

of prey items contained in the gut of the predator, they do not alone quantify biological 

control. Combining molecular gut-content analysis with ecological experimentation can 

provide a more complete understanding of predator-prey interactions. In this dissertation, 

I combined molecular gut-content analysis with a field cage experiment (Chapter 3) and a 

two-year field study across three locations in two crops (Chapters 4 and 5). 
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1.3 Stink bugs and relatives as pests in agroecosystems 

Much of this dissertation (Chapters 3-5) focuses on combining ecological 

experimentation and molecular gut-content analysis to investigate predator effects on 

stink bugs and kudzu bugs in ecosystems of economic importance. Stink bugs 

(Hemiptera: Pentatomidae) are significant pests in soybean (Turnipseed and Kogan 1976, 

Panizzi and Slansky 1985) and cotton (Greene et al. 2001, Williams 2013) in the United 

States. Stink bugs are not affected by Bt (Bacillus thuringiensis Berliner) (Bacillales: 

Bacillaceae) containing plants or sprays. The widespread adoption of Bt cotton and the 

boll weevil eradication program has led to decreased broad-spectrum insecticide use in 

the southern United States (Ruberson et al. 2012) and allowed stink bugs to become 

significant pests in crop systems (Turnipseed et al. 1995, Greene et al. 1999). 

Stink bugs are a monophyletic, cosmopolitan group of phytophagous and 

predaceous species (McPherson and McPherson 2000). Stink bugs emit a foul smell from 

their dorsal abdominal glands when disturbed. It has been suggested that one of the main 

functions of these secretions is predator avoidance (Pavis et al. 1994). Aggregation is 

common in all life stages and both sexes (Inkley 2012, Reay-Jones 2014), in response to 

pheromones released by adult males, likely for resource identification (Weber et al. 

2014). Second through fifth instar nymphs are highly responsive to these pheromones and 

will aggregate in response to them (Khrimian et al. 2014, Lee et al. 2014, Leskey et al. 

2015). First instar nymphs produce unique secretions, remain together on the egg mass 

until they molt, and do not feed (Simmons and Yeargan 1988, Todd 1989, Borges and 

Aldrich 1992, McPherson and McPherson 2000). Many members of Pentatomoidea are 

agricultural pests; the most economically important in North America being the southern 



9 
 

green stink bug (Nezara viridula (L.)); the green stink bug (Chinavia hilaris (Say)); 

brown stink bug (Euschistus servus (Say)); rice stink bug (Oebalus pugnax (Fab.)); one-

spotted stink bug (Euschistus variolarius (Palisot de Beauvois)); the brown marmorated 

stink bug (Halyomorpha halys (Stål)), and the kudzu bug (Megacopta cribraria (F.)). The 

focus of research in this dissertation were trophic linkages between generalist predators 

and H. halys (Chapter 3); N. viridula, C. hilaris, and E. servus (Chapter 4); and M. 

cribraria (Chapter 5). 

1.3.1 Brown Marmorated Stink Bug 

The brown marmorated stink bug (Halyomorpha halys (Stål)) is an invasive 

species native to China, Korea and Japan, that was accidentally introduced into the 

United States in 1996 in Allentown, PA (Hoebeke and Carter 2003).  It is a pest of many 

important crops as well as a household nuisance because it tends to enter homes to 

overwinter (Hoebeke and Carter 2003). Since its entrance into the United States, H. halys 

has spread quickly and is currently found in 43 states (StopBMSB 2017). As of January 

2017, H. halys is considered a severe agricultural and nuisance pest in nine states, and a 

nuisance and agricultural pest in an additional ten states (StopBMSB 2017).  

Halyomorpha halys is a strong flier and will easily hitch a ride on vehicles aiding its 

spread immensely (UMD Entomology, 2010). 

A female can lay eggs for nearly half her life span when she has only mated once. 

Fecundity decreases in relation to age, but with multiple matings, fecundity and the 

period of egg laying increases (Hoebeke and Carter 2003). In the greenhouse, egg masses 

with a median of 28 eggs are laid on the underside of leaves, with a mean lifetime total of 



10 
 

212 eggs (Nielsen et al. 2008). Halyomorpha halys are univoltine through most of their 

native range (Zhang 1993). In a survey near Allentown, PA, H. halys was the dominant 

stink bug species on the plants sampled (Nielsen and Hamilton 2009). H. halys is also not 

innocuous in its native range and is a pest on several crops including peach (Prunus 

persica (L.) Batsch), cherry (Prunus spp.), apple (Malus pumila Miller), plum (Prunus 

spp.), fig (Ficus carica L.), persimmon (Diosphyros kaki L.f.), orange (Citrus x sinensis 

(L.) Osbeck), grape (Vitis spp.), mulberry (Morus spp.), and soybean (Kobayashi 1967, 

Funayama 2004, UMD Entomology 2010).   

1.3.2 Southern Green Stink Bug 

Southern green stink bug, Nezara viridula, (L.), most likely a native of Ethiopia 

(Kavar et al. 2006), has a cosmopolitan distribution (Todd 1989) and is one of the most 

important stink bug pests in soybean in the southern United States (McPherson et al. 

1979, McPherson and McPherson 2000). Nezara viridula is polyphagous, attacking over 

30 species of plants (Todd 1989, Panizzi 2000, Panizzi et al. 2000).  They have three to 

four generations per year in temperate climates (Smith et al. 1986) and overwinter in 

protected areas, such as under litter or bark (Jones and Sullivan 1981). Overwintering 

adults are active and feed, greatly enhancing their survival (Todd 1989). Nezara viridula 

prefers to feed on plants during fruit formation (McPherson and McPherson 2000) and 

development from egg to adult takes about 35 days in summer, depending on temperature 

(Todd 1989).  

1.3.3 Green Stink Bug 

Green stink bug, Chinavia hilaris (Say) is native to North and South America. 

Chinavia hilaris overwinters as an adult in leaf litter in deciduous woods (Jones and 
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Sullivan 1981, Javahery 1990), is univoltine (Javahery 1990, McPherson and McPherson 

2000), or bivoltine under favorable climate conditions (Wilde 1969, Jones and Sullivan 

1981, McPherson and Tecic 1997). In the field, female C. hilaris lays 14-56 eggs per 

cluster with an average fecundity of 134 eggs in her lifetime (Javahery 1990) and can 

consume many host plants but prefers woody plants over herbaceous annuals (Jones and 

Sullivan 1982). Per Jones and Sullivan (1982), C. hilaris can utilize up to 16 different 

host plants including, Photinia sp., American holly (Ilex opaca Aiton), Chinese privet 

(Ligustrum sinense Lour.), trumpet-creeper (Campsis radicans Seem.), black cherry 

(Prunus serotina Ehrh.), elderberry (Sambucus spp.), peach and soybean.  

1.3.4 Brown Stink Bug 

Brown stink bug, Euschistus servus (Say), is polyphagous and prefer to feed on 

plants during fruit formation. Euschistus servus can affect the yield of soybean, wheat 

(Triticum spp.), alfalfa (Medicago sativa L.), corn (Zea mays L.), tomato (Solanum 

lycopersicum L.), peach, pear (Pyrus spp.), apple and pecan (Carya illinoinensis 

(Wangenh.) K.Koch) (McPherson 1982). Early in the season, adults have been found on 

crimson clover (Trifolium incarnatum L.), vetch (Vicia spp.) wheat, sowthistle (Sonchus 

oleraceous L.) and peppergrass (Lepidium virginicum L.) (Jones and Sullivan 1982). 

Adults overwinter in protected shelters such as leaf litter and crop residue with two 

generations per year in the United States (McPherson and McPherson 2000).  

1.3.5 Kudzu Bug 

Kudzu bug (Megacopta cribraria (F.)) (Hemiptera: Plataspidae) is native to Asia 

and was discovered in the United States in 2009 in northeast Georgia (Eger et al. 2010). It 

is the first member of the family Plataspidae in North America and was reported from 
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several locations in Georgia and found in large numbers on houses near fields of kudzu, 

Pueraria montana (Lour.) Merr. (Fabales: Fabaceae). Megacopta cribraria develops on 

kudzu and moves to houses to overwinter. Large numbers of M. cribraria were also 

found on vehicles in the area which could be a potential avenue of spread (Eger et al. 

2010). Megacopta cribraria can withstand wind speeds of 100 km/h if attached to cloth 

and 40 km/h if attached to glass suggesting that they could easily attach themselves to 

vehicles aiding in range expansion (Takano and Takasu 2016). In seven years, M. 

cribraria has spread to 13 states (KudzuBug 2017). 

Megacopta cribraria has been reported on a variety of plants, including cotton 

(Srinivasaperumal et al. 1992) but various experiments have confirmed relatively few 

primary reproductive hosts: kudzu, soybean, pigeon pea (Cajanus cajan L.), black eye 

pea (Vigna sinensis L.), lima bean (Phaseolus lunatas L.) and pinto bean (Phaseolus 

vulgaris L.) in the southeastern United States (Zhang et al. 2012, Del Pozo-Valdivia and 

Reisig 2013, Medal et al. 2013, Ruberson et al. 2013). In greenhouse choice tests M. 

cribraria lay the majority of eggs on soybean and kudzu (Medal et al. 2016). In no choice 

greenhouse experiements, females deposited eggs in soybeans in masses with an average 

of 18 eggs and development time is 45 -50 days (Del Pozo-Valdivia and Reisig 2013). 

Megacopta cribraria affects the growth of kudzu, one of the most serious invasive weeds 

in the southeast United States (Myers and Bazely 2003, Forseth and Innis 2004), causing 

a 33% decrease in kudzu growth in controlled field plots (Zhang et al. 2012). M. 

cribraria also removed 80% of the kudzu aboveground biomass over a period of three 

years in open field observations (Gardner and Olson 2016). Megacopta cribraria feeding 
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can also significantly reduce soybean yield (Seiter et al. 2013), making this insect both a 

potential biological control agent and a pest.  

Megacopta cribraria also may have a specialized bacterial symbiont that allows 

them to be pestiferous. Initially investigated in another Megacopta species, M. 

punctatissima, when the symbiont capsule was heat treated, nymphs had developmental 

delays, abnormal coloring, and abnormal body shape (Fukatsu and Hosokawa 2002). 

Several species within the family Plataspidae produce symbiont capsules that the female 

lays under the egg mass. The hatchlings acquire the symbiont orally following eclosion. 

When deprived of the symbiont adult emergence was reduced, with 50% of nymphs 

dying during development in both M. cribraria and M. punctatissima (Hosokawa et al. 

2006). This symbiont may also confer pest status to M. cribraria allowing it to exploit 

soybean (Brown et al. 2014). In their native range, M. punctatissima is a pest in soybeans 

and contains the same symbiont as M. cribraria contains in the United States. In the 

native range, M. cribraria does not contain this symbiont and it is not a pest (Brown et al. 

2014). 

1.4 Objectives 

The overall objective for this dissertation was to elucidate predator prey 

interactions in selected agroecosystems using molecular gut-content analysis. Molecular 

gut-content analysis is a powerful tool for detecting trophic interactions between 

cryptically feeding predators and their prey. One of the drawbacks to this method is its 

susceptibility to false positives because of contamination. My first experiment explored 

sampling and storage techniques that had been reported to cause contamination, but were 
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not previously tested (Chapter 2). Specifically, I tested whether fluid-filled pitfall traps 

would cause gut contamination in predators that were collected within them and if storing 

two specimens together in ethanol would cause surface contamination.  

For the second objective, I combined a field cage experiment with molecular gut-

content analysis to explore predator impacts on an invasive stink bug species in soybeans 

(Chapter 3). In this study, I examined if non-consumptive effects, such as superfluous 

killing, and/or consumptive effects reduced stink bug densities.  

My third objective documented trophic linkages between stink bug pests and 

generalist predators in soybean and cotton fields (Chapter 4). I identified predators that 

ate stink bugs in cotton and soybean agroecosystems. This was a two-year experiment in 

three different locations and represents a multi-year exploration of stink bug trophic 

connections using molecular gut-content analysis.  

The fourth objective was to assess predation of a newly invasive pest, kudzu bug 

in soybean crops. I determined the impact of generalist predators on kudzu bug in open 

field conditions (Chapter 5). In addition, I determined that kudzu bug could be detected 

using molecular gut-content analysis in areas where traditional sampling methods, such 

as sweep sampling and visual surveys, had not yet detected this pest. This proof of 

concept provides the basis for molecular tools to be used for invasive species monitoring 

in terrestrial ecosystems.  
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Chapter 2: Investigating cross contamination of liquid storage methods in molecular 

gut-content analysis 

Chapter contents published in Athey, K.J., Chapman, E.G., Harwood, J.D. 2017. A tale of 

two fluids: does storing specimens together in liquid preservative cause DNA cross-

contamination in molecular gut-content studies? Entomologia Experimentalis et 

Applicata. 

2.1 Summary 

 The study of food webs and trophic interactions increasingly relies on PCR-based 

molecular gut-content analysis. However, this technique may be prone to error from 

contamination of minute quantities of DNA; i.e., simply storing specimens together in a 

liquid medium may lead to cross-contamination. In this study, we used PCR to determine 

the contamination rate when (1) specimens were stored together in 95% ethanol for 

various time periods, and (2) predators fall into ethylene glycol-filled pitfall traps where 

the dying predator may inadvertently consume prey DNA-contaminated liquid. We 

designed experiments and PCR primers to quantify the risk of contamination for both 

situations and found no contamination by storing specimens together in 95% ethanol. 

Furthermore, zero predators contained prey DNA in their gut-contents from imbibing 

prey DNA-contaminated ethylene glycol. These results support the use of mass sampling 

techniques, like wet pitfall traps, for molecular gut-content analysis.  

2.2 Introduction 

Molecular-based gut-content analyses are now widely used to study food webs (e.g., 

Hagler and Blackmer 2013, Jelaska et al. 2014, Lundgren and Fergen 2014, Raso et al. 

2014, Schmidt et al. 2014). These techniques detect trophic interactions and facilitate the 
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screening of hundreds or thousands of specimens in a short period of time. Furthermore, 

the majority (>79%) of terrestrial arthropod predators feed by liquid ingestion following 

extra-oral digestion (Cohen 1995), thereby rendering visual inspection of the gut-contents 

pointless. The major advantage of these techniques lies in their sensitivity; well-designed 

primers can detect trace amounts of prey DNA. However, the sensitivity of polymerase 

chain reaction (PCR) makes it susceptible to contamination by minute concentrations of 

DNA from various sources (Sheppard and Harwood 2005, King et al. 2008), leading to a 

number of studies that attempt to quantify the significance of such contamination 

(Greenstone et al. 2011, Greenstone et al. 2012, King et al. 2012, O'Rorke et al. 2013).  

One source of contamination may be the insect specimen storage liquid. Shokralla 

et al. (2010) demonstrated that DNA from insect specimens stored in 95% ethanol 

contaminated the ethanol after a short period of time. They isolated and sequenced DNA 

from samples of ethanol in which individual insects and plant clippings were stored for 

24 h, obtaining mitochondrial, nuclear, and chloroplast gene sequences matching those of 

their respective specimens. In cases where many specimens are placed in the same 

collection vial in the field, such as mass collecting with an aspirator or malaise traps, the 

possibility exists that contamination could falsely inflate DNA-based measurements of 

food web connections. These concerns led King et al. (2008) to recommend collecting 

predators for DNA testing into individual tubes in the field as a best practice, but the 

possibility of contamination was never directly tested.  

Passive mass-sampling techniques, such as pitfall traps and Malaise traps, collect 

specimens in a manner whereby cross-species mixing in preservative is unavoidable. The 

study by Shokralla et al. (2010) highlights concerns regarding the validity of using these 
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traps for molecular food web reconstruction. Pitfall traps filled with ethylene glycol to 

preserve DNA and collect predator and prey specimens (Leal-Klevezas et al. 2000, 

Rubink et al. 2003, Vink et al. 2005) have been used to study the food habits of ground 

predators (Lundgren et al. 2009). It is possible that a prey falling into a pitfall trap may 

contaminate the ethylene glycol with its DNA. If a predator subsequently falls into the 

trap, it could imbibe contaminated ethylene glycol or, if whole-body extractions of 

predators are undertaken, surface-contaminate the specimens. It has been recommended 

that when using pitfall traps where the specimens are screened for molecular gut-content 

analysis, dry pitfall traps be used to decrease the potential risk of contamination. These 

traps must be checked very frequently and predators may consume other organisms that 

have fallen into the pitfall trap before the researcher can empty it, thereby leading to false 

positives (King et al. 2012). With wet pitfall traps, the risk of consumption within the 

pitfall trap is much lower, as the ethylene glycol kills arthropods quickly. Still, the 

recommended best practice is to use dry pitfall traps to avoid the risk of cross-

contamination, although this has not been directly tested (King et al. 2008). 

To assess the likelihood that DNA-contamination of preservative fluids leads to 

false-positive trophic connections when predators are screened by molecular gut-content 

analysis, we designed two experiments. The first experiment tested the hypothesis that 

storing predator and prey specimens together in ethanol would cause surface 

contamination, thus resulting in false-positive molecular ‘gut-content’ detection. The 

second experiment tested the hypothesis that predators collected from pitfall traps filled 

with ethylene glycol and subsequently gut-dissected would test positive for prey items 

that were found concurrently in the pitfall trap, without predation having occurred. 
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Upholding either hypothesis would have important implications for molecular gut-

content analysis. 

2.3 Materials and methods 

2.3.1 Surface contamination 

Specimens of parasitoid wasps [Campoletis spec. (Hymenoptera: Ichneumonidae)] 

and fruit flies [Drosophila melanogaster Meigen (Diptera: Drosophilidae)] were reared in 

separate laboratories in the Department of Entomology at the University of Kentucky 

(Lexington, KY, USA). Wasps were reared on Heliothis virescens (Fabricius) 

(Lepidoptera: Noctuidae) as previously described (Krell et al. 1982). Fruit flies were 

reared at room temperature. These taxa were chosen because we had prior knowledge of 

their diet and knew they could not have consumed each other, eliminating the possibility 

of gut-content amplification. 

To quantify the likelihood of false-positive detection due to surface contamination 

caused by storing specimens together in ethanol, we stored one freshly frozen wasp and 

one freshly frozen fruit fly in an autoclaved 1.5-ml microcentrifuge tube filled with 95% 

ethanol at -20 °C for 1, 3, 5, 8, 10, 15, 20, 30, 45, 60, 90, or 120 days (n = 20 per time 

period). After the allotted time, specimens were separated with forceps into individual, 

autoclaved 1.5 ml microcentrifuge tubes filled with 95% ethanol and stored at -20 °C 

until DNA extraction.  

2.3.2 Gut contamination 

Slugs [Megapallifera wetherbyi (Binney) and Philomycus spp. (Gastropoda: 

Philomycidae)] were hand-collected from Berea College Experimental Forest (Berea, 

KY, USA; 37.5717°N, 84.2187°W). Live ground beetles [Harpalus spp. (Coleoptera: 
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Carabidae)] were collected by black light and pitfall trapping at the University of 

Kentucky Spindletop Research Farm, Lexington (38.1300°N, 84.5080°W). Beetles were 

maintained in an environmental chamber under controlled conditions (24 °C, L16:D8 

photoperiod).  

To quantify false positives due to gut contamination following collection into 

pitfall traps, slugs and ground beetles were placed in ethylene glycol and stored together 

for 0, 2, 4, 8, 12, or 24 h. We chose these taxa because both are very abundant, slugs are a 

prey item for ground beetles (Harper et al. 2005, Hatteland et al. 2011), and slugs exude 

large quantities of mucus that could lead to contamination. To determine whether the 

amount of preservative affected the rates of contamination, we added 50, 100, or 150 ml 

of ethylene glycol to a 250-ml container. A logistic regression (SAS Institute, Cary, NC, 

USA) was performed to determine whether volume had an effect on detection of target 

DNA. It did not (Wald χ2 = 2.029, Pr> χ2 = 0.36), so samples were pooled across 

volumes, giving n = 3 for each time period. One live slug was placed in each container 

and stored at 24 °C for 24 h, after which live ground beetles (starved ≥5 days) were added 

to each container. Multiple beetles (n = 20) were added to each container to simulate the 

most extreme field conditions for a pitfall trap left overnight (Winder et al. 2001). At 0 

(at death), 2, 4, 8, 12, and 24 h, all beetles were removed from one container of each 

volume. The beetles were then surface cleaned with washes of deionized water and 

ethanol, transferred into individual 1.5-ml microcentrifuge tubes containing 95% ethanol, 

and stored at -20 °C.  

Additionally, to test whether slug DNA could be amplified directly from the 

ethylene glycol after 24 h exposure, we sampled and extracted ethylene glycol from slug 
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containers prior to the addition of carabids. As each slug was removed from the jar, a 

small amount of ethylene glycol dripped off of the body. We refer to these as ‘slug 

adjacent samples’. From these slug adjacent samples we collected subsamples of 2 and 10 

µl. Once all specimens had been removed from the containers, three ethylene glycol 

samples of differing volumes (5, 10, and 20 µl) were collected. These we refer to as ‘slug 

container samples’. Different volumes of ethylene glycol were collected to ensure 

sufficient liquid was available for use in DNA extraction and thereby allowing for the 

amplification of DNA, if present.  

2.3.3 Sequencing for primer design 

To obtain sequences for primer design and generate total DNA for detecting 

contamination, DNA was extracted using DNeasy Blood and Tissue Kits (Qiagen, 

Valencia, CA, USA) following standard animal tissue protocols. Wasps and fruit flies 

were whole-body extracted for primer design and contamination testing. Ground beetle 

midguts were removed with sterilized forceps and dissecting scissors, and extracted for 

contamination testing. Negative-control ground beetles, which had been deprived of food 

for 48 h, were included to make sure the dissection did not cross-contaminate (n = 5). 

Approximately 0.02 g of slug tissue was extracted for primer design and contamination 

testing. Differing volumes of ethylene glycol (2, 5, 10, and 20 µl) were extracted for 

contamination testing. One negative control extraction was performed with beetles to 

make sure that extraction did not cross-contaminate. 

DNA for primer design was amplified using general COI primers LCO-1490 

(Folmer et al. 1994) and HCO-700ME (Breton et al. 2006). PCRs (25 μl) consisted of 1× 

Takara buffer (Takara Bio, Shiga, Japan), 0.2 mM of each dNTP, 0.2 mM of each primer, 
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1.25 U Takara Ex Taq, and template DNA (1 μl of total DNA). PCRs were carried out in 

Bio-Rad PTC-200 and C1000 thermal cyclers (Bio-Rad Laboratories, Hercules, CA, 

USA). The PCR cycling protocol was 94 °C for 1 min followed by 35 cycles of 94 °C for 

50 s, 45 °C for 45 s, 72 °C for 45 s, and a final extension of 72 °C for 5 min. PCRs 

included a positive and a negative control. The negative control consisted of all reagents 

without the addition of DNA. Reaction success was determined by electrophoresis of 10 

μl of PCR product in 2% SeaKem agarose (Lonza, Rockland, ME, USA) pre-stained with 

GelRed nucleic acid gel stain (1×; Biotium, Hayward, CA, USA). DNA sequencing was 

carried out at the Advanced Genomics Technologies Center (University of Kentucky, 

Lexington). Sequences were submitted to GenBank (accession numbers JN544697-

JN544700).  

Species identifications were confirmed by comparing sequences from our 

specimens to those available through the Identification Engine at the Barcode of Life 

Database (BOLD; (Ratnasingham and Hebert 2007)). Significant matches to all species 

were found except for Campoletis spec., which was identified by an ichneumonid 

taxonomist as a currently undescribed species (David Wahl, American Entomological 

Institute, pers. comm.). 

2.3.4 Primer design 

To design wasp and fruit fly primers, we constructed a matrix containing sequences 

from each species. Using Primer3 (Rozen and Skaletsky 2000), we designed wasp-

specific primers (Camp-360-F and Camp-567-R) and fruit fly-specific primers (Dros-18-

F and Dros-237-R) (Table 2-1). All reaction conditions were identical to the COI 

protocol, except the cycling conditions were 94 °C for 1 min, followed by 35 cycles of 94 
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°C for 1 min, 60 °C (wasp primers) or 61 °C (fruit fly primers) for 45 s, and 72 °C for 30 

s. Primers were designed only to distinguish these two taxa and were not tested for cross-

amplification with other species. To design slug primers, we generated a matrix of COI 

sequences. Slug-specific primers (Phylo-32-F and Phylo-332-R; Table 1) only 

differentiated slugs from the focal ground beetles. Reaction conditions and cycling 

protocol were identical to the wasp protocol. All samples of ethylene glycol were 

screened with these primers to determine whether the storage liquid was directly 

contaminated. 

Primer sensitivity for all primer pairs was determined by testing dilutions of target 

DNA for amplification. DNA concentration from the original extractions was determined 

using a CLARIOstar microplate reader (BMG Labtech, Ortenberg, Germany) adjusted to 

5 000 pg µl-1 and two-fold serially diluted. The serially diluted target DNA was used as a 

template for each primer pair at concentrations of 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 

0.78, 0.39, 0.20, 0.10, 0.05, and 0.025 pg µl-1 of target DNA. Finally, to confirm 

extraction success, all ground beetles were tested with the general COI primers, and all 

wasp and fruit fly extractions were tested with the primers designed specifically to 

amplify their respective taxa.  

 

2.4 Results 

2.4.1 Primer functionality  

All primer pairs amplified 100% of targets and 0% of non-targets. All primers 

designed here are specific to this project and may not be of utility outside of this limited 

scope without extensive non-target testing for which they were not optimized. The 
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sensitivity of the primer pairs varied with the lowest concentration amplifiable listed in 

Table 2-1 ranging from 0.05 pg µl-1 for the slug primers to 6.25 pg µl-1 for the fruit fly 

primers. 

2.4.2 Surface contamination  

A total of 238 wasps were tested for fruit fly DNA (two extractions failed and were 

discarded), and zero tested positive for fruit fly DNA. In total 239 fruit flies were tested 

for wasp DNA (one extraction failed), and zero tested positive for wasp DNA. 

2.4.3 Gut contamination 

Eighteen cups containing beetles and slugs were tested for gut contamination. None 

of these cups contained ground beetles (n = 360) testing positive for slug DNA. The slug 

primers were used to amplify two types of extracted ethylene glycol samples prior to the 

addition of carabids (slug adjacent samples; slug container samples). Slug DNA was 

amplified in 17 of 18 slug adjacent samples, and 0 out of 18 slug container samples.  

2.5 Discussion 

Due to its sensitivity, molecular gut-content analysis has the capacity to detect trace 

amounts of prey DNA among copious quantities of predator DNA. However, this 

sensitivity makes PCR susceptible to contamination, requiring careful consideration of 

the inherent risks of misinterpreting trophic relationships. We tested for surface and gut-

content contamination and revealed that zero specimens stored together in alcohol had 

surface contamination and zero pitfall-simulated containers had contamination in the 

beetles collected in them. Shokralla et al. (2010) documented that specimens stored in 

ethanol for only 24 h exuded amplifiable DNA. They tested only the preservative fluid 

and did not explore whether this DNA contaminated other specimens. 
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We amplified slug DNA from slug adjacent ethylene glycol samples after 24 h 

exposure to slugs, but this was not transferred to beetle gut-contents. Our research 

suggests that researchers may use wet pitfall traps without fear of contamination, but 

further studies are required to determine that this same lack of contamination occurs with 

other preservative fluids such as propylene glycol, often used for minimal vertebrate 

toxicity (LaKind et al. 1999). We would expect a lack of gut contamination to be found 

with propylene glycol, as it has similar DNA preservation to ethylene glycol 

(Aristophanous 2010), but simple pilot studies could be implemented to answer this 

question.  

Fluid-containing pitfall traps are efficient for mass-collecting ground predators 

(e.g., carabid beetles, spiders, etc.) but have the disadvantage of inadvertently collecting 

non-target specimens in the same vicinity. For example, 20.6% of pitfall traps targeting 

ground beetles used in a strawberry study contained slugs (Eskelson et al. 2011). Should 

such inadvertent trapping cause significant false-positive gut contamination of specimens, 

safeguards such as calibration terms would be required when inferring food web 

connections. We amplified slug DNA from slug adjacent ethylene glycol samples from 

17 of the 18 experimental units but could not amplify slug DNA from any of the 18 slug 

container ethylene glycol samples. Although the ethylene glycol was directly 

contaminated, contamination was not found in the guts of any ground beetles tested, 

suggesting that this is not a viable avenue for gut contamination in the time frame that we 

tested. Trap fluid preventing predator feeding activities in the trap potentially contributes 

to the mechanism of contamination avoidance (King et al. 2012). In addition, we used an 

organism that represented the worst-case scenario as slugs exude mucus and were able to 
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readily contaminate the preservative fluid without leading to gut-content contamination. 

This suggests that wet pitfall traps may be a safe way to collect predators for molecular 

gut-content analysis.  

We stored two insects together in ethanol for up to 120 days and found no 

surface-level contamination. A previous study documented surface contamination from 

forceful collecting methods such as shaking plants and aspirating insects en masse into a 

container with false-positive rates found to be as high as 31% (Greenstone et al. 2011). 

Our experiment was conducted in the laboratory and specimens were handled carefully to 

ensure that any surface contamination would have occurred as a result of being stored 

together, not from sample collection. Our specimens were also dead when they were 

placed in the vials, insuring that if we had found contamination, it was only from storing 

them together and not from them damaging each other when dying in a preservative fluid.  

This research provides no evidence of false positives generated by molecular gut-

content analysis by storing specimens together in alcohol for extended periods of time or 

by using simulated pitfall traps. As the number of studies using these techniques 

continues to increase, methodological studies provide an important framework upon 

which sampling procedures should be developed. Care should always be exercised when 

collecting and storing samples for subsequent molecular analysis to avoid, or minimize, 

the likelihood for cross-contamination of external body parts or gut-contents, but can be 

optimized for ease of collection. Molecular gut-content analysis will continue to grow in 

use with the reduced cost of next-generation sequencing techniques allowing us to have a 

much broader picture of food webs and optimizing collection techniques will be crucial 

to our understanding of these relationships. 
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Table 2-1 COI primers used in this study. 

Taxon Primer pair Primer sequence (5’-3’) Amplicon  

size  

(bp) 

Annealing  

temperature  

(ºC) 

Primer  

sensitivity  

(pg µl-1) 

Campoletis sp. Camp360-F TTAATCATGAAGGTATATCAGTTGATTTAT 208 60 0.10 

 Camp567-R GCACCAGCTAAAACTGGTACTGC    

Drosophila melanogaster Dros18-F TTGGAGCTTGAGCTGGAATAG  220 61 6.25 

 Dros237-R GGGAATGCTATATCAGGAGCA    

Philomycidae Phylo-32-F GTGGAATAGTCGGTACAGGMYTATC  288 60 0.05 

 Phylo-322-R CAGCACCACCTTCTACTATTCTAGAAC    
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Chapter 3: Stage specific aggregation mediates density dependent prey 

responses to non-consumptive predator effects 

Chapter contents submitted as Athey, K.J., Sitvarin, M.I, Harwood, J.D. 2017. Stage 

specific aggregation mediates density dependent prey responses to non-consumptive 

predator effects. Environmental Entomology. 

3.1 Summary 

Conservation biological control manipulates habitat characteristics to enhance natural 

enemy populations and ultimately reduce pest density. These practices can be most 

effective early in the growing season when pest populations are low. Early season 

predator impacts on these pests can include both direct consumption of herbivores and 

non-consumptive effects such as superfluous killing, both of which provide pest 

suppression. We combined a field cage experiment with molecular gut-content analysis to 

explore the effects of striped lynx spiders (Oxyopes salticus Hentz) on brown marmorated 

stink bugs (Halyomorpha halys (Stål)). To simulate field conditions in both early and late 

season, we manipulated the density and relative abundance of stink bug nymphs and 

adults in the presence and absence of lynx spiders. Interestingly, at high stink bug 

densities, more live stink bug nymphs were recovered from field cages with spiders, 

whereas adults had lower recovery rates. For nymphs, this result may be due to their 

response to aggregation pheromones, whereas highly mobile adults likely encountered 

spiders more frequently, promoting superfluous killing by spiders. Although dead stink 

bugs were recovered, we found no evidence of consumption through molecular gut-

content analysis, strengthening evidence for lethal non-consumptive predator effects. 

Contrary to expectations that generalist predators would have the greatest impact on pests 
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early in the growing season, our results support stronger predator-prey interactions when 

pest densities are highest. Biological control might be most effective when utilizing 

multiple predator species as part of a complex of natural enemies, so spiders acting in 

concert with other generalist predators could be capable of suppressing pest populations. 

3.2 Introduction 

The agricultural landscape, often characterized by a low abundance and diversity of 

arthropods, can be inhospitable for generalist natural enemies and often does not supply 

the additional resources these animals require for survival, growth, and development 

(Landis et al. 2000). These resources include extra-floral nectaries (Baggen and Gurr 

1998, Heil 2015), refugia (Halaj 2000, Knapp and Rezac 2015), and alternative prey and 

hosts (Gurr et al. 2004, Chapman et al. 2013). To ameliorate these challenges, 

conservation biological control involving habitat manipulation to enhance natural 

enemies and increase their effectiveness against pests can be utilized (Landis et al. 2000). 

This management approach can also serve to reduce mortality of natural enemies in 

agroecosystems through a reduction in pesticide sprays (Gurr et al. 2004) and these 

practices can be most effective early in the season, when alternative prey and refugia are 

scarce. 

Early in the growing season, agricultural fields are characterized by rapid 

emergence, dispersal, and growth of pests and natural enemies. Interactions among 

organisms at this critical time can have long-lasting effects on the populations of these 

taxa later in the year (Fleming 1980, Landis and Van Der Werf 1997, Landis et al. 2000, 

Fox et al. 2005). For example, alternative prey allowed the predatory bug, Orius 

insidiosus (Say) (Hemiptera: Anthocoridae), to establish in soybean fields early in the 
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season, thereby increasing their numbers sufficiently to exert some degree of control over 

soybean aphids, Aphis glycines Matsumura (Hemiptera: Aphididae), upon their initial 

colonization of the field (Yoo and O’Neil 2009). During this time, manipulation of 

generalist predator populations through conservation biological control is critical for 

maintaining pests at low levels and/or delaying the time at which pest populations reach 

economic thresholds (Welch and Harwood 2014, Athey et al. 2016). Generalist predators 

do not typically exert control on pest species when pest populations reach a maximum, 

and the lack of synchrony between pest populations and generalist predator diets is 

sometimes purported as detrimental to biological control. However, effective pest control 

most likely occurs when the ratio of predators to pests is greatest, facilitating a significant 

impact on pest population growth trajectories (Welch and Harwood 2014, Athey et al. 

2016), likely due to significant predation on scarce pest prey (Harwood et al. 2007a, 

Harwood et al. 2009, Chapman et al. 2013).  

Measuring the effect of generalist predators in open field conditions can be 

challenging due to the myriad of interactions between biotic and abiotic events (Welch 

and Harwood 2014). However, molecular gut-content analysis employing polymerase 

chain reaction (PCR) has become a popular tool for deducing the strength of trophic links 

in agroecosystems (e.g. Harwood et al. 2007b, King et al. 2011, Traugott et al. 2012, 

Hagler and Blackmer 2013, Schmidt et al. 2014). This has facilitated insights into feeding 

patterns when gut-contents cannot be morphologically identified. In addition, molecular 

gut-content analysis can expose the decoupling of prey availability and consumption, 

which cannot always be detected when relying on abundance data alone (Chapman et al. 

2013, Gomez-Polo et al. 2014).  
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Although these approaches allow reliable post-mortem identification of prey items 

contained in the gut of the predator, they do not alone quantify biological control service. 

Combining molecular gut-content analysis with ecological experimentation (e.g., 

manipulation of predators and prey in field cages) can provide a more complete 

understanding of predator-prey interactions. Specifically, non-consumptive predator 

effects (NCEs) may contribute significantly to predator impacts on prey populations 

(Preisser et al. 2005), yet these NCEs would not be detectable using molecular gut-

content analysis. Molecular methods are unlikely to detect superfluous (or wasteful) 

killing, a behavior whereby predators may abandon prey after attack (Maupin and 

Riechert 2001). Many groups of animals exhibit this behavior, including tardigrades, 

(Hohberg and Traunspurger 2009), mammals, (Short et al. 2002), insects (Johnson et al. 

1975, Lang and Gsodl 2003, Lounibos et al. 2008) and spiders (Riechert and Maupin 

1998, Maupin and Riechert 2001, Trubl et al. 2011). 

Spiders are abundant in agroecosystems, constituting some of the most prevalent 

generalist predators in temperate areas (Wise 1993). They are often food limited in the 

field (Bilde and Toft 1994) but can survive under these conditions for a considerable time 

(Anderson 1974), making them important natural enemies in agroecosystems due to 

temporal variability in food availability. These characteristics could therefore allow 

spiders to exert a substantial impact on pest populations early in the season when pest 

numbers are typically low (Chiverton 1987, Sunderland et al. 1987, Harwood et al. 2004, 

Harwood et al. 2007a, Chapman et al. 2013) potentially maintaining pest outbreaks below 

economic thresholds. Furthermore, if a common prey type is distasteful, leading to 

aversion (e.g., Toft 1997, Sunderland 1999), spiders may kill more prey than they 
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consume, resulting in an increased rate of prey killed per spider (Sunderland 1999). In 

addition, superfluous killing is usually observed when prey are plentiful (Sunderland 

1999). This form of induced prey mortality through superfluous killing would be 

underestimated by molecular gut-content analysis, thus reducing the assumed pest control 

services provided by spiders. Therefore, a combination of approaches is necessary to 

fully ascertain the impact of these predators on pest populations. 

 We utilized brown marmorated stink bug (Halyomorpha halys (Stål) (Hemiptera: 

Pentatomidae)) as a “distasteful” pest species (Aldrich 1995). Halyomorpha. halys is 

invasive in the United States, being native to China, Korea, and Japan, was first reported 

in 1996 in Allentown, Pennsylvania, and subsequently identified in 2001 (Hoebeke and 

Carter 2003). It is recognized as a pest of many important crops and an urban nuisance 

given its proclivity to overwinter within houses (Hoebeke and Carter 2003). Since its 

entrance into the United States, H. halys has spread quickly and is currently found in 43 

states (StopBMSB 2017). Striped lynx spiders (Oxyopes salticus Hentz (Araneae: 

Oxyopidae)) are dominant predators of many agricultural pests (Young and Lockley 

1985, Young and Edwards 1990, Nyffeler et al. 1992). They are ambush predators and 

frequently are found on plants. There are several studies employing molecular gut-

content analysis showing O. salticus readily consuming several species of stink bugs 

(Greenstone et al. 2014a) suggesting the potential for these spiders to exert some degree 

of control over H. halys, providing a pest control service in agroecosystems. 

 We combined experimental field cage manipulation with molecular gut-content 

analysis to assess the impact of a generalist predator on an agricultural pest. We predicted 
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that spiders, possessing the propensity for superfluous killing, interacting with stink bugs 

known to have characteristics that promote superfluous killing (distasteful and occurring 

at high densities) would contribute to biological control through non-consumptive 

interactions. In addition, we hypothesized that spiders would engage in superfluous 

killing when the stink bugs were at a higher density.  

3.3 Materials and Methods 

3.3.1 Field Cage Study 

 The experiment was conducted at the Spindletop Research Farm in Lexington, 

Kentucky, USA (38.1272° N, 84.5081° W). Field cages were 1.83 m x 1.83 m x 1.83 m, 

covered with nylon mesh screening (52 × 52 mesh count) to allow light, wind and rainfall 

penetration, but prevent arthropod entry or escape, with a side zipper for access and tent 

stakes to anchor the cages into the ground (Lumite Inc, Alto, Georgia, USA). Cage 

bottoms were buried ca. 20 cm into the soil to prevent arthropod entry/exit. To remove 

alternative prey that may be present in the field, a leaf blower (Poulan Pro 25cc Gas 

Blower/Vac, Poulan, Charlotte, North Carolina, USA) modified with an insect net 

attached to the intake was used to collect all arthropods present in the cages before the 

beginning of the experiment. Each cage was placed over three, 76 cm rows of full season, 

group 4.7 soybean plants (Asgrow AG4703) (Monsanto Company, St. Louis, Missouri, 

USA). Each cage consisted of approximately 110 mature soybean plants. BMSB and lynx 

spiders were collected from Spindletop Research Farm and maintained in the greenhouse 

prior to experimentation under controlled conditions (25 ± 1°C, 65 ± 5% RH, and 

photoperiod of 16:8 (L:D) h). Halyomorpha halys were maintained on a diet of green bell 

peppers and carrots and the lynx spiders were provided Drosophila melanogaster Meigen 
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(Diptera: Drosophilidae) but deprived of food for 48 h prior to the experiment to 

standardize feeding motivation.  

 Five treatments were used to evaluate the effect of O. salticus on H. halys (Table 

3-1, n = 5/treatment). The two treatments with O. salticus and H. halys simulated natural 

densities of this pest. Henceforth, the 3-level food chain treatments with 17 and 37 H. 

halys will be referred to as low density and high density, respectively (Table 3-1). 

Oxyopes salticus numbers were representative of population levels in agricultural systems 

(Nyffler and Sunderland 2003), including soybean fields in the region of study (Athey & 

Harwood, unpublished data). 

 Halyomorpha halys (2nd instar nymphs and a mixture of adult males and females) 

were added to the cages and given 48 h to acclimate, after which O. salticus were added. 

The experiment ran for five days, with O. salticus present for three, followed by 

destructive sampling, which consisted of removing all plant material from each cage, 

bringing it into the lab and recover all dead and living H. halys and O. salticus. All 

recovered O. salticus and H. halys were placed individually in 1.5 mL microcentrifuge 

tubes with 95% ethanol and stored at -20°C for subsequent molecular gut-content 

analysis. 

3.3.2 Sequencing for Primer Design 

 To obtain sequences for primer design, DNA was extracted from specimens using 

DNeasy Blood and Tissue Kits© (Qiagen Inc., Valencia, California, USA) following 

standard animal tissue protocols. DNA was then amplified using general 16S primers; 

16Sbr-H (5'- CCG GTC TGA ACT CAG ATC ACG T -3') and 16Sar-L (5'- CGC CTG 



 
 
 

34 
 

TTT AAC AAA AAC AT -3') (Palumi et al. 1991). Polymerase chain reactions (PCR) 

consisted of 1X Takara buffer (Takara Bio Inc., Shiga, Japan), 0.2 mM of each dNTP, 0.2 

mM of each primer, 1.25 U Takara Ex Taq™ and template DNA (1-2 μL of total DNA). 

PCRs were carried out in Bio-Rad C1000 thermal cyclers (Bio-Rad Laboratories, 

Hercules, California, USA). The PCR cycling protocol was 94 °C for 1 min followed by 

50 cycles of 94 °C for 45 s, 40 °C for 45 s, 72 °C for 45 s and a final extension of 72 °C 

for 5 min. PCRs included a positive control and a negative control consisting of all 

reagents without the addition of DNA. Following amplification, the bands were 

visualized on 2% SeaKem agarose (Lonza, Rockland, Maine, USA) pre-stained with 

GelRed nucleic acid gel stain (1X; Biotium, Hayward, California, USA). DNA 

sequencing was carried out at Advanced Genomics Technologies Center (University of 

Kentucky, Lexington, Kentucky, USA). 

3.3.3 Primer Design 

 To design a primer to test for predation on H. halys, sequences (GenBank 

accession numbers KT189171-KT189179) were edited using Geneious© (Biomatters 

Ltd, Auckland, New Zealand) and aligned using MUSCLE (Edgar 2004). We designed 

primers by visually inspecting the sequences using BioEdit 7.0.0 (Isis Pharmaceuticals 

Inc., Carlsbad, California, USA) and using Primer3 (Rozen and Skaletsky 2000) to 

determine whether the primer properties were adequate. The H. halys primers were: 

BMSB-34F (5’- AAC ATG TCC TAA TGA TTA ATT AG -3’) and BMSB-149R (5’- 

TAT AAA GAA AGA TAT TCC TTC ATC CG -3’) producing a 156 bp amplicon. All 

reaction conditions were identical to the 16S primer protocol, except the PCR cycling 

conditions were 94 °C for 1 min followed by 40 cycles of 94 °C for 45 s, 60.5 °C for 45 
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s, 72 °C for 30 s. Primers were screened against 183 nontarget taxa (Table 3-2). All O. 

salticus recovered from the cages at the end of the experiment were screened for H. halys 

predation using the H. halys specific primers. 

 Primer sensitivity was determined by testing dilutions of target DNA for 

amplification. DNA concentration was determined using a CLARIOstar microplate 

reader (BMG Labtech, Ortenberg, Germany) adjusted to 5000 pg/µL and two-fold 

serially diluted. The serially diluted target DNA was used as a template at concentrations 

of 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39, 0.20, 0.10, 0.05, 0.025 pg/µL of target 

DNA. 

3.3.4 Feeding Trials 

Feeding trials were conducted to determine the detectability half-life of DNA 

within the gut of the spiders (Greenstone et al. 2014b). Halyomorpha halys nymphs were 

maintained in a greenhouse in similar conditions to the field cage specimens. Oxyopes 

salticus were collected from Spindletop Research Farm and maintained under controlled 

conditions at 25°C, 16:8 LD.  Oxyopes salticus were deprived of food for a minimum of 

48 hours before encountering H. halys. Oxyopes salticus were maintained in 162 mL 

plastic cups with 5 mm of plaster in the bottom for moisture retention. Once O. salticus 

attacked H. halys, it was allowed to feed for 2 hours. Feeding was observed so that we 

could confirm duration of feeding. After the 2 hour feeding time, what was left of the H. 

halys was removed and the O. salticus was maintained until its scheduled freezing time. 

The freezing time intervals were 0, 1, 2, 4, 8, 10, 12, 16, 24, 48, 72, and 96 hours post 

feeding (n = 8 per time period). All O. salticus were placed into chilled 95% ethanol and 

frozen at -20°C for subsequent molecular analysis. If the O. salticus did not attack the 
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nymph within 4 hours, the H. halys was removed. Oxyopes salticus were presented with 

H. halys each day, following the procedures above, until they attacked and consumed 

one. This results in O. salticus that differ in their total food deprivation period. 

3.3.5 Data Analysis 

 At the end of the experiment, we measured the proportion of H. halys nymphs and 

adults recovered (alive or dead) as well as the proportion of live O. salticus recovered. 

Analysis of variance was conducted followed by Dunnett's test to compare H. halys 

recovery in the low and high density treatments against the treatment lacking O. salticus. 

We used the same test to compare O. salticus recovery in the low and high density 

treatments against the treatment containing only O. salticus. The analyses were 

conducted in SAS 9.3 (SAS Institute, Cary, North Carolina, USA). The detectability of 

H. halys within O. salticus guts over time in the feeding trials was calculated using a 

Probit model in SAS 9.3. 

3.4 Results 

3.4.1 Field Cage Study 

 Overall, the percentage of H. halys recovered alive at the end of the experiment 

was low, varying between 37% and 58% of individuals remaining. We have no reason to 

believe that the numbers of individuals escaping during this time would have differed by 

treatment, as all plants were handled similarly and processed in a random order. There 

were also no H. halys recovered from the soybean only treatments suggesting that there 

was no immigration of H. halys into the field cages. 
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 There were three possible outcomes for the H. halys: recovered alive, recovered 

dead or not recovered. There was no overall effect of treatment on recovery of H. halys 

nymphs (F2, 12 = 3.4344, p = 0.07). However, a higher proportion of living H. halys 

nymphs were recovered in the high density treatment compared with the H. halys only 

treatment (d = 2.502, p = 0.041). There was no effect of treatment on the proportion of 

dead nymphs recovered (F2, 12 = 1.3333, p = 0.3)  the proportion of dead nymphs was 

similar between the high density and H. halys only treatments (d = 2.502, p = 0.188) (Fig. 

3-1). Additionally, the total proportion of recovered nymphs, alive or dead, was similar 

between the low density treatment and the H. halys only treatment (d = 2.502, p = 0.303; 

d = 2.502 p = 0.267, respectively) (Fig. 3-1). 

 There was no overall effect of treatment on the proportion of living adult H. halys 

recovered (F2,12 = 0.05, p = 0.9514). The proportion of living adult H. halys was 

comparable between the H. halys only treatment and both high and low density 

treatments (d = 2.502, p = 0.850; d = 2.502, p = 0.921, respectively). There was also no 

overall effect of treatment on proportion of dead adults recovered (F2,12 = 3.2632, p = 

0.0739) a marginally higher proportion of dead adults were recovered from the high 

density cages compared to the H. halys only treatment (d = 2.502, p = 0.06) (Fig. 3-2). 

However, there was no difference between the low density and H. halys only treatments 

(d = 2.502, p = 0.792) (Fig. 3-2). 

 In the absence of prey, the proportion of O. salticus recovered did not differ from 

those in the high or low density treatments (d = 2.502, p = 0.991; d = 2.502, p = 0.816, 

respectively) (Fig. 3-3). 
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3.4.2 Feeding Trials 

The DNA detectability half-life of the amplicon for our H. halys primer within the 

guts of O. salticus was 8.2 hours (Fig. 3-4). At 72 h post feeding, the DNA was no longer 

detectable in the guts of O. salticus. The degradation rate for H. halys DNA was 

significantly different from zero (χ2 = 8.58, p = 0.0034). Over two-thirds (69.6%) of O. 

salticus did not attack a H. halys until they had not eaten for 72 h. Several O. salticus did 

not consume H. halys until they had been deprived of food for 189 h (Table 3-3). 

3.4.3 Primer Design and Gut-Content Analysis 

 During characterization, the H. halys -specific primers had 100% amplification 

success for H. halys but elicited no amplification when screened against 183 non-target 

organisms from 78 families (Table 3-2). The primer sensitivity is 12.5 pg/µL. In total, 67 

O. salticus recovered from the cages were tested for H. halys DNA, with none testing 

positive.  

3.5 Discussion 

 Oxyopes salticus effects on H. halys varied with prey density, with high densities 

leading to an increased recovery of nymphs but reduced adult survival. This result may 

be explained by the life history and behavior of stink bugs. Aggregation is common in all 

life stages (Inkley 2012, Reay-Jones 2014) and first instar nymphs remain together on the 

egg mass until they molt (McPherson and McPherson 2000). Lockwood and Story (1986) 

demonstrated that aggregated nymphs of southern green stink bug (Nezara viridula (L.)) 

(Hemiptera: Pentatomidae) suffered lower mortality from generalist predators than non-

aggregated nymphs, suggesting that aggregation may play an important role in their 

defense. Our demonstration of a higher proportion of nymphs recovered at higher density 
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may be due to the increased effectiveness of aggregation as more individuals aggregated, 

providing support for the dilution effect: the probability of an individual being attacked 

by a predator decreases as the size of an aggregation increases (Lehtonen and Jaatinen 

2016). The proportion of nymphs recovered was highest in the high density treatment, 

suggesting that aggregation reduced the number of nymphs killed by spiders or otherwise 

not recovered. In the low density treatment, spider-induced mortality did not differ from 

that in the H. halys control (lacking O. salticus), indicating that the effects of spiders 

were compensatory (sensu Beckerman et al. 1997) to background mortality levels. 

 Although both stink bug nymphs and adults respond to aggregation pheromones, 

the life stages differ markedly in mobility and dispersal potential. Second instar nymphs 

(used in our experiment) walk distances comparable to adults (Lee et al. 2014), but adults 

readily fly long distances (Wiman et al. 2015). Highly mobile adults may have had 

increased encounter rates with spiders, which would increase the likelihood of being 

attacked by a visually-orienting predator such as Oxyopes spp. (Hu et al. 2014). We 

found no molecular evidence for consumption of stink bugs by spiders in our field cages; 

however, more dead adults were recovered from the high density treatment, suggesting 

that spiders facilitated stink bug mortality when at stink bugs were at high density 

without actually consuming them.  

Our feeding trials showed the DNA half-life for our amplicon was 8.2 h, 

considerably shorter than the length of the experiment. It is possible that we were still 

observing non-consumptive effects and not missing the detection of consumption. In our 

feeding trials, 70% of O. salticus that fed on H. halys did not attack a stink bug until they 

had not eaten for more than the 72 h that our field cage experiment ran.  This suggests 
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that the higher proportion of dead adults found in the high density treatments was 

evidence of a non-consumptive effect. We found no spiders testing positive for H. halys 

DNA and given the time it took for an attack to occur in our feeding trials, if 

consumption were taking place it was likely to have resulted in at least a few O. salticus 

test positive for H. halys. Our laboratory feeding trial suggests it is unlikely consumption 

occurred but was undetected, it is likely that NCEs, such as superfluous killing, are 

responsible for the higher proportion of dead adult stink bugs in the high H. halys density 

treatments. 

 Adult stink bugs are 2-3 times larger than lynx spiders (Dondale and Redner 

1990, Hoebeke and Carter 2003) but these predators readily attack prey items much 

larger than themselves (Walker and Rypstra 2002, Nyffeler and Pusey 2014). Spiders 

may not have consumed the stink bugs because they are chemically defended (Millar 

2005), but if spiders attacked highly mobile adults, venom injection and associated injury 

may have facilitated the increased mortality of dead adults found in the high density 

treatment. The same patterns were not present at low stink bug density, which is 

consistent with superfluous killing typically occurring when prey are highly abundant 

(Johnson et al. 1975, Sunderland 1999). Furthermore, spiders are more likely to engage in 

superfluous killing when the most abundant prey type is chemically defended 

(Sunderland 1999). The combination of increased encounter rate between spiders and 

mobile adults, high prey density, and chemical defense all may have led O. salticus to 

frequently attack adult H. halys without actually consuming them. Such behavior is 

consistent with the lack of molecular evidence for consumption during these experiments. 
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 Our results suggest that O. salticus are unlikely to exert substantial early season 

control over H. halys. Additionally, no molecular evidence for consumption of H. halys 

by O. salticus was found in the field cages, and we only found evidence for superfluous 

killing in the high density treatment designed to replicate late season prey levels. Field 

studies have demonstrated that generalist predators can suppress pests if they are present 

early in the season prior to large increases in prey populations (e.g., (Landis and Van Der 

Werf 1997); reviewed by (Welch and Harwood 2014, Athey et al. 2016)). Oxyopes 

salticus may have been less effective at low prey densities because we standardized the 

number and age of soybean plants present in the field cages, meaning that spiders had an 

equivalent quantity of plant material to search regardless of prey density. In agricultural 

fields, early season plants would be smaller thus providing less habitat structure as refuge 

from predation. Halyomorpha halys recovery likely would have been lower if the low 

density treatment had smaller or fewer plants, as habitat structure is known to decrease 

predator-prey encounter rates (Birkhofer et al. 2008, Grabowski et al. 2008, Vucic-Pestic 

et al. 2010). 

 Overall, our results suggest that consumption of H. halys by O. salticus in the 

field is likely to be negligible (or absent altogether), and that this generalist predator is 

unlikely to exert substantial early season control. However, our field cages excluded 

other generalist predators and parasitoids, which would act in concert with O. salticus 

and potentially contribute to an effective conservation biological control regime. 

Enhanced predator diversity has been shown to contribute to increased pest suppression 

(Snyder et al. 2006, Straub and Snyder 2008), and spiders are likely to provide more 

effective pest control when natural assemblages are used instead of single species 
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(Riechert and Bishop 1990, Riechert and Lawrence 1997). Thus, the inclusion of multiple 

predator species may provide early season control of H. halys, preventing late season 

population outbreaks. Future studies examining suites of generalist predators may reveal 

productive directions for conservation biological control programs targeting H. halys. 
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Table 3-1. Treatments used in the field cage experiment, detailing the numbers of 

Oxyopes salticus (spider) and Halyomorpha halys (brown marmorated stink bug) present. 

Treatment # of O. salticus # of H. halys 

Soybean control 0 0 

Predator control 7 0 

2-level food chain, low density 0 7 adult + 10 nymphs 

3-level food chain, low density 7 7 adult + 10 nymphs 

3-level food chain, high density 7 7 adult + 30 nymphs 
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Table 3-2. List of non-target taxa screened for cross reactivity with Halyomorpha halys 

primer.  

Order  Family 
 

Species No. 
Tested 

Araneae Araneidae Magora sp. 1  
Araneidae Neoscona crucifera (Lucas) 1  
Araneidae 

 
3  

Linyphiidae Erigone autumnalis Emerton 1  
Linyphiidae Glenognatha foxi (McCook) 1  
Linyphiidae Tennesseellum formica (Emerton) 1  
Lycosidae 

 
2  

Miturgidae Cheiracanthium sp. 1  
Oxyopidae Oxyopes sp. 2  
Salticidae Hentzia mitrata (Hentz) 1  
Salticidae Pelegrina proterva (Walckenaer) 2  
Salticidae  1  
Tetragnathidae  2  
Thomisidae Misumena sp. 1  
Thomisidae  1  
Unidentified  11 

Coleoptera Aderidae 
 

1  
Anthicidae Notoxus sp. 2  
Anthicidae Acanthinus argentinus (Pic) 1  
Carabidae Lebia viridis Say 1  
Carabidae  2  
Chrysomelidae Diabrotica undecimpunctata (L.) 1  
Chrysomelidae  1  
Coccinellidae Coccinella septempunctata (L.) 1  
Coccinellidae Coleomegilla maculata De Geer 1  
Coccinellidae Hippodamia convergens Guérin-Méneville 1  
Coccinellidae Scymnus sp. 1  
Coccinellidae Hippodamia sp. 2  
Coccinellidae Coccinella sp. 1  
Curculionidae Hypera brunneipennis (Boh) 1  
Curculionidae Hypothenemus hampei Ferrari 1  
Elateridae  1  
Lathridiidae  1  
Latridiidae  1  
Meloidae Epicauta sp. 1  
Melyridae Collops sp. 1 
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Table 3-2 (continued) 

Order  Family 
 

Species No. 
Tested  

Nitidulidae  1  
Phalacridae  1  
Staphylinidae  2 

Diptera  Agromyzidae  1  
Anthomiidae  1  
Anthomyzidae  1  
Brachycera  6  
Chironomidae 

 
1  

Chloropidae  1  
Dolicopodidae  2  
Drosophilidae Scaptomyza sp. 1  
Drosophilidae 

 
2  

Empididae  1  
Ephydridae  1  
Heliomyzidae  1  
Lonchopteridae  1  
Muscidae  1  
Mycetophilidae  1  
Nematocera  3  
Phoridae  1  
Syrphidae  3  
Tipulidae  1 

Hemiptera Aleyrodidae Bemisia tabaci (Gennadius) 1  
Alydidae 

 
3  

Anthocoridae Orius albidipennis (Reuter) 1  
Anthocoridae Orius sp. 1  
Aphididae Capitophorus eleagni (Del Guercio) 1  
Aphididae Uroleucon gravicorne (Patch) 1  
Aphididae 

 
1  

Cicadellidae 
 

4  
Coccidae Coccus hesperidum (L.) 1  
Coccidae Neolecanium cornuparvum (Thro) 1  
Cydnidae Sehirus cinctus (Palisot) 3  
Cydnidae 

 
1  

Geocoridae Geocoris sp. 4  
Geocoridae 

 
1  

Lygaeidae Nysius sp. 1  
Miridae Lygus lineolaris (Palisot de Beauvois) 1  
Nabidae Nabis capsiformis Germar 4 
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Table 3-2 (continued) 
Order  Family 

 
Species No. 

Tested  
Nabidae 

 
2  

Pentatomidae Euschistus servus (Say) 3  
Pentatomidae Nezara viridula (L.) 4  
Pentatomidae  2  
Pseudococcidae Pseudococcus maritimus (Ehrhorn) 1  
Psyllidae Cacopsylla pyricola (Förster) 1  
Psyllidae  1  
Reduviidae Zelus sp. 1  
Reduviidae  2  
Rhyparochromidae  1  
Thyreocoridae  1  
Unidentified 

 
3 

Hymenoptera Argidae 
 

1  
Bethylidae Prorops nasuta Waterston 1  
Bethylidae 

 
1  

Braconidae Aridelus sp. 1  
Braconidae Meteorus sp. 1  
Braconidae Bracon sp. 1  
Braconidae 

 
5  

Ceraphronidae Aphanogmus sp.  1  
Chalcididae 

 
1  

Crabronidae Mimesa sp. 1  
Crabronidae  1  
Eulophidae Phymastichus coffea (LaSalle)  1  
Figitidae  2  
Formicidae Tapinoma sp. 1  
Formicidae 

 
1  

Ichneumonidae 
 

3  
Platygastridae Trimorus sp. 1  
Platygastridae  1  
Pompilidae  1  
Pteromalidae  1 

Lepidoptera Unidentified 
 

1 
Mantodea Mantidae  1 
Neuroptera Chrysopidae  3  

Hemerobiidae  2 
Orthoptera Tettigoniidae  1  

Tettigoniidae 
 

1 
Psocoptera Unidentified 

 
1 

Thysanoptera Thripidae Frankliniella occidentalis (Pergande) 1 
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Table 3-2 (continued) 
Order  Family 

 
Species No. 

Tested  
Thripidae Thrips tabaci L. 1 

 Stylommatophora Polygyridae Mesodon zaletus (Binney) 1  
Discidae Anguispira alternata (Say) 1 
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Table 3-3. Food deprivation periods (h) of Oxyopes salticus (spider) and the number that 

ate Halyomorpha halys (brown marmorated stink bug) in the feeding trials. 

 

Food deprivation period 

(hrs) 

Number included in 

feeding trials 

48 18 

72 3 

92 2 

114 9 

161 10 

189 27 
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Figure 3-1. Mean proportion (±SE) of live (black bars) and dead (white bars) 

Halyomorpha halys (brown marmorated stink bug (BMSB)) nymphs recovered from field 

cages when present alone or in the presence of low or high densities of Oxyopes salticus. 

* Indicates significant difference when compared to the control (BMSB only) using 

Dunnett’s test (d = 2.502, p = 0.041). Detailed treatment descriptions are given in Table 

3-1. 
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Figure 3-2. Mean proportion (±SE) of live (black bars) and dead (white bars) 

Halyomorpha halys (brown marmorated stink bug (BMSB)) adults recovered from field 

cages when present alone or in the presence of low or high densities of Oxyopes salticus. 

* Indicates marginal significant difference when compared to the control (BMSB only) 

using Dunnett’s test (d = 2.502, p = 0.06). Detailed treatment descriptions are given in 

Table 3-1. 
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Figure 3-3. Mean proportion (±SE) of live Oxyopes salticus (lynx spiders) recovered 

from field cages when present alone or in the presence of low or high densities of 

Halyomorpha halys (brown marmorated stink bugs (BMSB)). Detailed treatment 

descriptions are given in Table 3-1. No significant differences between treatments. 
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Figure 3-4. Results of the lynx spider feeding trial. Dots represent the proportion of 

samples at each time point (0-96 h) testing positive for Halyomorpha halys (brown 

marmorated stink bug (BMSB)) DNA. Dashed lines represent the upper and lower 95% 

confidence intervals. 
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Chapter 4: Predation on stink bugs (Hemiptera: Pentatomidae) in cotton and 

soybean agroecosystems 

4.1 Summary 

Stink bugs (Hemiptera: Pentatomidae) are significant pests of cotton and soybeans 

in the southeastern United States with annual control costs exceeding $14 million. Three 

of the most prominent pest species are the southern green, Nezara viridula, brown, 

Euschistus servus and green, Chinavia hilaris, stink bugs. To determine trophic linkages 

between generalist predators and these pests, species-specific 16S molecular markers 

were designed and used to detect the presence of prey DNA in predator gut-contents. 

Over 2700 predators were collected during two growing seasons in cotton and soybean in 

southern Georgia in 2011 and 2012 and screened for stink bug DNA. Trophic linkages 

were analyzed relative to prey availability, crop type and field location. N. viridula 

populations were significantly higher than E. servus and C. hilaris populations in both 

years. Predation was negligible on E. servus (0.23%) and C. hilaris (0.09%).  Overall 

predation on N. viridula was 3.3% and Geocoris sp. (Hemiptera: Geocoridae), Orius sp. 

(Hemiptera: Anthocoridae) and Notoxus monodon (Coleoptera: Anthicidae) were the 

primary predators. This contrasts with previous studies that have found a much more 

diverse suite of predators consuming stink bugs with much higher gut-content positives. 

The discrepancy between studies highlights the need for replication studies, especially if 

the goal is to implement conservation biological control in integrated pest management.  
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4.2 Introduction 

Phytophagous stink bugs (Hemiptera: Pentatomidae) are pests in cotton (Greene 

et al. 2001, Williams 2013) and soybean crops (Turnipseed and Kogan 1976, Panizzi and 

Slansky 1985). Historically, southern green stink bug, Nezara viridula (L.) and green 

stink bug, Chinavia. hilaris (Say) were the two most important stink bug pests in soybean 

in the southern United States and South America (Panizzi and Slansky 1985). However, 

these two species are joined by the brown stink bug (Euschistus servus (Say)) as a stink 

bug complex in the southern United States (McPherson and McPherson 2000). None of 

these stink bugs are directly affected by Bt (Bacillus thuringiensis Berliner) (Bacillales: 

Bacillaceae) toxins in transgenic cotton, currently in widespread use. Bt cotton use has 

led to decreased broad spectrum insecticide use in the southern United States (Ruberson 

et al., 2012). Further, the cotton boll weevil eradication program also reduced insecticide 

use. Historically, stink bugs were collaterally controlled by insecticidal sprays targeting 

other pests, and without these sprays, stink bugs have emerged as significant pests in crop 

systems (Turnipseed et al. 1995, Greene et al. 1999). Additionally, release from 

competition with Bt-targeted insects, like Helicoverpa zea (Boddie), may contribute to 

stink bug outbreaks in cotton (Zeilinger et al. 2016). 

Stink bug species have been traditionally lumped together as a pest complex 

potentially making it difficult to assess their individual economic impact (Bundy and 

McPherson 2000, McPherson and McPherson 2000, Vyavhare et al. 2014).  Different 

species of stink bugs can have differential impacts on cotton, with different levels of 

damage to bolls (Zeilinger et al. 2015) and soybean crops, in terms of damaged seeds 

(Corrêa-Ferreira  and de Azevedo 2002), highlighting a need to study stink bugs as 
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individual species and not just as a pest complex. Their wide host ranges and varied 

feeding habits complicate the lumping together of the species with respect to their 

economic impacts. As noted, these stink bug species are pests of soybean and cotton, but 

are also pests in grain, fruit, nut and vegetable production where they cost millions of 

dollars in control and yield losses (McPherson and McPherson 2000). Nezara viridula is 

highly polyphagous, attacking over 30 species of plants (Todd 1989, Panizzi 2000, 

Panizzi et al. 2000). Jones and Sullivan (1982) showed that C. hilaris could utilize about 

16 different host plants for development and reproduction. Several other species of stink 

bugs (e.g. E. servus, E. tristigmus (Say), Thyanta accerra McAtee) were found to exploit 

a number of hosts in addition to economically important crops, such as soybean and 

cotton (Jones and Sullivan 1982). 

These stink bug species also vary in their susceptibility to insecticides (Willrich et 

al. 2003, Vyavhare et al. 2014). For example, E. servus was found to be less susceptible 

to some pyrethroids and organophosphates than was C. hilaris and N. viridula (Snodgrass 

et al. 2005). The variability in species-specific impact on crops, susceptibility to various 

insecticides, and general species ecology underscore the need for an integrated approach 

to managing stink bug pests. 

Integrated pest management (IPM) programs benefit greatly from incorporating 

biological control (Naranjo 2011). Generalist predators contribute vital ecosystem 

services through pest control (Power 2010) and pest control utilizing natural enemies in 

the United States has been estimated to save $4.5 billion annually (Losey and Vaughan 

2006). Many studies have identified predators of stink bugs (Yeargan 1979, Ragsdale et 

al. 1981, Stam et al. 1987, Van Den Berg et al. 1995, Ehler 2002, Tillman 2008, Tillman 
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2011, Olson and Ruberson 2012), but only two recent studies utilized PCR for identifying 

stink bug predators (Greenstone et al. 2014a, Tillman et al. 2015). 

In a study using sentinel N. viridula egg masses in weeds, tomato and beans, 

predation varied from 0-68.2% of the total eggs. (Ehler 2002). Yeargan (1979) measured 

egg predation in soybean and alfalfa with up to 31 % and 50% of eggs consumed by 

sucking and chewing predators, respectively. Olson and Ruberson (2012) found that 

predation of N. viridula sentinel eggs masses, mainly by fire ants, Solenopsis invicta 

Buren (Hymenoptera: Formicidae) and longhorned grasshoppers (Orthoptera: 

Tettigoniidae), was crop specific where egg mortality was 74-86% in peanut, 39-65% in 

soybean and 4-34% in cotton. Additionally, Tillman (2011) identified predators observed 

on egg masses (sucking: Podisus spp. (Hemiptera: Pentatomidae), Orius spp. (Hemiptera: 

Anthocoridae), Geocoris spp.(Hemiptera: Geocoridae); chewing: ants and ladybeetles 

(Coleoptera: Coccinellidae)), but only quantified predation based on feeding mode.  

Other researchers combined observations and radioactive labelling to assess 

predation on N. viridula in soybeans, with the dominant egg predators being S. invicta 

and grasshoppers (Stam et al. 1987). They also observed Nabis spp. (Hemiptera: 

Nabidae), phytophagous stink bugs, Sinea sp. (Hemiptera: Reduviidae) green lacewing 

larvae (Neuroptera: Chrysopidae) and an anthicid beetle (Coleoptera: Anthicidae) (Stam 

et al. 1987). In a study employing ELISA for detection of predation on N. viridula eggs 

and nymphs, predators from several species were tested and ladybeetles, Geocoris 

punctipes, Orius insidiosus, Podisus maculiventris, S. invicta, Nabis roseipennis, and 

Lebia analis (Coleoptera: Carabidae) were positive for egg predation (Ragsdale et al. 

1981). Ladybeetles, Oxyopes salticus, (Araneae: Oxyopidae) Phidippus audax (Araneae: 
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Salticidae), Neoscona arabesca (Araneae: Araneidae), G. punctipes, and N. roseipennis 

were positive for stink bug nymph predation (Ragsdale et al. 1981). 

Molecular gut-content analysis is a popular tool for determining trophic linkages 

(Juen and Traugott 2007, King et al. 2008, Furlong 2015, Hagler et al. 2015) and 

screening many diverse predators in a short amount of time for a given prey item. This 

technique is useful in agroecosystems (Hagler and Blackmer 2013, Schmidt et al. 2014) 

and has been used in stink bug food webs (Greenstone et al. 2014a, Tillman et al. 2015). 

The majority of terrestrial arthropod predators feed cryptically by liquid ingestion 

following extra-oral digestion (Cohen 1995), determining trophic linkages without 

molecular methodologies would require visual observations and not allow large number 

of predators to be screened quickly. There are however, limitations to molecular gut-

content analysis, such as the inability to separate primary predation from secondary 

predation or scavenging (von Berg et al. 2012). In addition, molecular gut-content 

analysis using PCR is a strictly qualitative measure of predation (Greenstone et al. 2010) 

but if used in conjunction with prey abundance data may allow inference about the 

potential impact on the overall pest population (Furlong 2015).  

For this project, we employed molecular gut-content analysis to determine which 

predators from a diverse suite of insects and spiders consumed three species of stink bugs 

in cotton and soybean crops in Georgia over two years in three locations. We tested for 

differences in predation as a function of crop types, farm locations and prey availability. 

The main objective of this study was to determine which predators most frequently 

preyed upon stink bugs at different times of the season in cotton and soybeans.  
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4.3 Materials and Methods 

4.3.1 Field Conditions 

Field sampling took place on soybean-cotton farms from July through October 

2011 and 2012 in three locations in southwestern Georgia, USA. The locations were 

Belflower Farm, Tifton, GA (Tift Co.) (N31° 30.434 W083° 33.430) (planted on 2 June 

2011, 17 June 2012), the Attapulgus Research and Education Center, Attapulgus, GA 

(Decatur Co) (N30°76.254 W84° 48.488) (planted on 31 May 2011, 17 June 2012) and 

the Southwest Research and Education Center, Plains, GA (Sumter Co) (N32° 03.589 

W84° 36.691) (planted on 6 June 2011, 17 June 2012). In 2011, three crops at each 

location were sampled: Bt-cotton (DP1034B2RF), soybeans MG5 (maturity group 5) 

(Agsouth Genetics 568RR) and soybeans MG6.9 (maturity group 6.9) (Asgrow 

AG6931RR) (Monsanto Co, St. Louis, MO, USA). The different soybean maturity 

groups were used because they attract different complexes of predators (McPherson 

1996). In 2012, four crops were sampled at each location: Bt-cotton, non-Bt cotton, MG5 

soybeans and MG7 soybeans.  Aldicarb (Bayer CropScience Leverkusen, Germany), was 

applied in furrow at planting in cotton (3.93 kg/ha (3.5 lbs/acre)) for thrips control (Grey 

et al. 2006). No other insecticides were applied. Because there were different crop types 

in the two years, each year was analyzed separately. 

4.3.2 Arthropod Sampling 

Samples were collected biweekly (2011: 29 July- 7 October, 2012: 12 July – 11 

October) using a 31 cm diameter sweep net with 100 sweeps per sample, with two 

samples per field which were pooled for subsequent analyses. Within each field, samples 

were taken along two different rows separated from one another by six rows. Sweeping 
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was initiated five meters into the crop and along rows at least five rows from the plot 

edge to reduce edge effects. Different rows were sampled on each sample date to prevent 

prolonged disruption of sampling rows. All arthropods were counted with predators and 

stink bugs immediately separated and placed in sterile 1.5 mL microcentrifuge tubes 

filled with 95% ethanol. Specimens were identified to the lowest taxonomic level 

possible and then frozen at -20°C until subsequent DNA analysis. 

For primer design, specimens of N. viridula, and E. servus were collected from 

lab colonies and field locations in Tifton, GA and non-target species were collected in 

field locations in Tifton, GA. Primers to amplify C. hilaris were designed in conjunction 

with a previous study (Penn et al. 2017). Each specimen was preserved as above. 

4.3.3 Molecular Gut-content Analysis 

Total DNA was extracted from all specimens using DNeasy Blood and Tissue 

Kits© (Qiagen Inc., Valencia, CA, USA) following standard animal tissue protocols. For 

primer design, stink bug legs were removed and DNA was extracted. For molecular gut-

content analysis, all predators were crushed and whole body extracted (Table 4-1). 

For primer design, we amplified 16S sequences using general primers; 16Sbr-H 

and 16Sar-L (Palumi et al. 1991). Polymerase chain reactions (PCR) (25 µL) consisted of 

1X Takara buffer (Takara Bio Inc., Shiga, Japan), 0.2 mM of each dNTP, 0.2 mM of each 

primer, 1.25 U Takara Ex Taq™ and template DNA (1-2 μL of total DNA). PCRs were 

carried out in Bio-Rad PTC-200 and C1000 thermal cyclers (Bio-Rad Laboratories, 

Hercules, CA, USA). The PCR protocol was 94 °C for 1 min followed by 50 cycles of 94 

°C for 45 s, 63 °C for 45 s, 72 °C for 45 s and a final extension of 72 °C for 5 min. PCRs 
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included a positive and negative control. Following amplification, the bands were 

visualized on 2% SeaKem agarose (Lonza, Rockland, Maine, USA) pre-stained with 

GelRed nucleic acid gel stain (1X; Biotium, Hayward, California, USA). The PCR 

product was purified and sequenced at AGTC (University of Kentucky, Lexington, KY, 

USA).  

Sequences were edited using Geneious© (Biomatters Ltd, Auckland, New 

Zealand) and aligned using MUSCLE (Edgar 2004). We designed primers by visually 

inspecting the sequences using BioEdit 7.0.0 (Isis Pharmaceuticals Inc., Carlsbad, CA, 

USA) and then using Primer3 (Rozen and Skaletsky 2000) to determine whether the 

primer properties were adequate. PCR reagents were the same as above with PCR 

protocols of 94 °C for 1 min followed by 50 cycles of 94 °C for 45 s, 49-62 °C for 45 s, 

72 °C for 15 s (Table 4-2). Following this, the primers were tested against 183 non-

targets (Table 3-2) for cross reactivity and no amplification was observed. In addition, all 

primers were target tested against specimens of the respective stink bugs collected from 

the field with 100% amplification success.  

4.3.4 Statistical Analysis 

The proportion of predators testing positive for stink bugs was arc-sine square 

root transformed for heterogeneity of variance and analyzed by a ANOVA using a 

generalized linear model in SAS (SAS Institute, Cary, North Carolina, USA). The factors 

in this analysis were prey availability, week, and crop type. For 2011, a ANOVA was run 

for all predators combined. For 2012, one ANOVA was run for all predators combined 

and one was run for each of three focal predators. Differences among the locations and 

crop types were determined by using Tukey’s Honest Significant Difference (HSD) tests. 
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Prey availability was the total number of stink bugs, adults and nymphs combined, of 

each species collected per field per date (200 sweeps). This number was used to represent 

the potential prey available to the generalist predators. It is used as a proxy for population 

levels as we did not have information on egg masses, which are the likely prey item for 

most of our screened predators. Differences between the means for different stink bug 

species was determined using a paired t-test in SAS with comparisons between N. 

viridula and C. hilaris and N. viridula and E. servus. 

4.4 Results 

4.4.1 Stink Bug Predation 

A total of 2805 predators were tested for predation on stink bugs (Table 4-1). 

Seventeen of 1277 predators tested positive for N. viridula in 2011 and 72 of 1528 

predators were positive for N. viridula in 2012. 1729 predators were tested for E. servus, 

with four individuals testing positive (Coccinella septempunctata, Zelus sp., Geocoris 

sp., and Orius sp.). 2133 predators were tested for C. hilaris, with 2 individuals testing 

positive (Nabis sp. and Oxyopes sp.). Overall predation on E. servus and C. hilaris was 

negligible and so they were excluded from all other analyses.  

4.4.2 Predation on N. viridula 

The following predators tested positive for N. viridula: Coleomegilla maculata, 

Geocoris spp., Orius spp., Notoxus monodon, Nabis spp., and Oxyopes spp. In 2012, only 

groups that had positives from 2011 were repeated (Table 4-1). Predation in 2011 was 

very low for all predators with large sample sizes (Fig. 4-1) so predation by individual 

predators was only analyzed for 2012: Geocoris spp. (3.5%, 20/564), Orius spp. (9.8%, 

39/399), and Notoxus spp. (4.7%, 13/279) (Fig. 4-2). 
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When all predators were combined in 2011 (overall model: F36,12 = 3.17, p = 0.02) 

there was a significant interaction of week and crop (F11, 12 = 4.00, p = 0.01) (Fig. 4-3, 

Table 4-3). There was higher predation on N. viridula in Bt-cotton compared to maturity 

group 7 soybean (Tukey’s HSD, P <0.05) (Fig. 4-3). There was a main effect of location 

on predation (F11, 12 = 3.96, p = 0.05) although no individual differences were detected in 

the Tukey’s HSD. 

In 2012, there were no significant effects on predation (overall model F78, 29 = 

0.95, p = 0.58) (Table 4-4).  Two of the predator groups, Nabis spp. and Oxyopes spp., 

had very low gut-content positives overall and C. maculata had zero gut-content positives 

in 2012, so these taxa were not analyzed (Table 4-1).  

In 2012, the overall ANOVA for Geocoris spp. predation on N. viridula was not 

significant (overall model F77, 19 = 1.73, p = 0.09). There was however, a significant 

interaction of week and location (F20, 19 = 3.17, p = 0.007) on Geocoris spp. predation on 

N. viridula (Table 4-5) (Fig 4-2). Neither the overall ANOVA for N. monodon predation 

on N. viridula (F18, 40 = 1.15, p = 0.34) (Table 4-6) nor the ANOVA for Orius spp. 

predation on N. viridula was significant (F18, 22 = 1.02, p = 0.48) (Table 4-7). 

4.4.3 Pest population numbers 

In both years, the population numbers of N. viridula were higher than C. hilaris 

(2011: t = 3.17, df = 127, Pr > |t| = 0.0019; 2012: t = 7.32, df = 243, Pr > |t| = <.0001) and 

E. servus (2011: t = 3.58, df = 127, Pr > |t| = 0.0005; 2012: t = 6.69, df = 243, Pr > |t| = 

<.0001) (Table 4-8). 
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4.5 Discussion 

Of the three stink bug species tested, N. viridula was the main prey item for 

generalist predators in our study. N. viridula also consistently had higher population 

levels in both years compared to the other species. This same trend has been observed in 

other studies in soybean (McPherson et al. 1979) and cotton (personal observation in 

(Greene et al. 1999)). Finding several different predators that consume N. viridula agreed 

with previous studies on stink bug predation (Ragsdale et al. 1981, Stam et al. 1987, 

Olson and Ruberson 2012, Greenstone et al. 2014a, Tillman et al. 2015). Predators with 

diverse feeding modes (sucking and chewing) consuming N. viridula may be promising 

for integrated pest management schemes in cotton and soybeans.  

Our study uncovered several predators with diverse feeding modes (sucking: 

Orius spp., Geocoris spp., and Nabis spp.; chewing: N. monodon, Oxyopes spp., and C. 

maculata) that were consuming N. viridula. Although there is considerable observational 

and molecular evidence for which predators consume stink bugs, the studies vary as to 

the impact of these predators in agroecosystems. For predator groups where we had 

substantial sample sizes, the highest percentage testing positive was 9.8% and this was 

for Orius spp. in 2012. Our study ran over two years and we were never able to detect 

over ten percent of predators testing positive for any prey group. This low level of 

positive responses to stink bugs may reflect the availability of alternate prey (including 

other predators) for the generalist predators surveyed. The general lack of a change in 

frequency of positive detections in the predators when stink bug populations significantly 

increased late in the season (Figs. 4-1-4-3) also suggests that the predators were largely 

consuming other prey items in each system. 
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 Our results contrast with two recent field studies employing molecular gut-

content analysis to study predation on stink bugs and a related prey item, kudzu bug 

(Megacopta cribraria) in a cotton-soybean-peanut agroecosystem in the same region of 

the US (Greenstone et al. 2014a, Tillman et al. 2015). They found very high percentages 

of predators testing positive for kudzu bug and stink bugs. They also found many 

instances of individual predators simultaneously testing positive for kudzu bug and three 

species of stink bugs. Geocoris spp. were especially prone to this in their study, with 4% 

of Geocoris punctipes individuals testing positive for four pest species. In contrast, we 

did not uncover any instances of more than one prey item being detectable in a single 

predator and we had much lower gut-content positives, suggesting possible differences in 

assay sensitivity. There were also major differences in procedures used. These studies 

were done in a single location over a one-month period with samples collected in narrow 

experimental soybean strips adjacent to cotton and the first and second rows of the cotton 

plots (Greenstone et al. 2014a, Tillman et al. 2015). Further, one of their treatments 

contained buckwheat, which is known to provide nectar to generalist predators, especially 

Geocoris spp. (De Lima and Leigh 1984). In contrast, there were no nectar sources 

adjacent to our sampling sites and, we sampled at least 5 meters away from the field 

edges over 8-12 weeks at three well-separated locations, and replicated over two years. 

These procedural differences also could have contributed to some of the differences in 

our findings. 

The contrast between other studies on stink bug predation and ours is not 

necessarily surprising as two of the three focal predators uncovered in this study, Orius 

spp., and Geocoris spp. have been examined in several studies employing molecular gut-
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content analysis in open field conditions and estimates of their gut-content positives are 

quite variable. Hagler and Blackmer (2013) tested Geocoris spp. collected in sweep nets 

for predation on three different prey items and found that the percent testing positive for 

any prey item varied from year to year. For example, in 2007, 15% of Geocoris spp. (N = 

215) were found to be preying on Bemisia tabaci, whereas in 2008 (N = 160), 46% were 

positive for B. tabaci. An opposite trend was observed for Lygus spp., with 35% of 

Geocoris spp. testing positive for them in 2007 and 4% testing positive for Lygus spp. in 

2008.  

Additionally, in a study investigating predation of the soybean aphid (Aphis 

glycines) variability was found with Orius insidiosus, with 13.4% of adults and 25% of 

immatures being gut-content positive for A. glycines (Harwood et al. 2009). The same 

trend was found with the other prey item they tested, Neohydatothrips variabilis, with 

21.7% of adult O. insidiosus and 5.0% and immatures positive for N. variabilis (Harwood 

et al. 2009). A study on the same predators and prey, but not separated by life stage, 

found that O. insidiosus preyed upon A. glycines and N. variabilis, 65% and 35% of the 

time, respectively (Harwood et al. 2007b). Even within the same system, these generalist 

predators can vary greatly in their gut-content positives for the same prey items.  

The differences in molecular techniques between studies could help explain the 

disparity in the frequency of the same species testing positive for predation. We screened 

our primers against 183 non-targets from 12 orders and 78 families (Table 3-3). This is in 

contrast to the non-target testing in other studies with 57 non-targets from 4 orders and 7 

families (Greenstone et al. 2014a) and 83 non-targets from 3 orders and 7 families 

(Tillman et al. 2015). Cross amplification of primers can occur across very disparate taxa 
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(Chapman et al. 2013) emphasizing the need for strenuous non-target testing. Therefore, 

differences in primer design among studies may have contributed to differential gut-

content amplification. 

The variance in the frequency of a predator species testing positive for the same 

prey species from year to year, and the potential influence of different densities of 

available alternative prey on species interactions (Harwood et al. 2007b, Harwood et al. 

2009, Hagler and Blackmer 2013) suggests that the effectiveness of generalist predators 

for controlling stink bug pests may need to be viewed on a case by case basis.  In 

addition, our study highlights the need for replication studies. Our results contrast with 

previous studies occurring in the same crops in similar locations (Greenstone et al. 2014a, 

Tillman et al. 2015). The present study pinpointed several generalist predators that were 

consuming stink bug pests (Geocoris spp., N. monodon 0 Orius spp.) and they had a low 

rate of testing positive for these pests. Before implementing a biological control scheme 

in a specific agroecosystem, it is important to know which natural enemies are having an 

impact on the focal pests. It is essential, therefore, that experiments exploring natural 

enemies on pests be replicated so we can optimize an integrated pest management 

scheme in cotton and soybean agroecosystems. A better understanding of the foraging 

behavior of these predators when a complex cocktail of prey species and densities are 

available would be needed to be able to predict their biological control potential in 

relation to a focal pest. And given the wide host ranges of stink bugs and the dispersal 

abilities of these pests, it’s likely much more important to consider landscape-level 

biological control rather than simply focusing on crop fields.  
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Table 4-1. List of all predator taxa tested, with numbers testing positive in PCR testing. References contain observation evidence 

justifying inclusion of a given predator taxon. 

   2011 2012  
Order Family Species/Group PCR (+) 

of N. 
viridula 

PCR 
Tested for 
N. viridula 

PCR (+) 
of N. 
viridula 

PCR 
Tested 
for N. 
viridula 

Reference 

Araneae Anaphyanidae  0 3    
 Araneidae  0 6   (Ragsdale et al. 1981) 
 Linyphiidae  0 10    
 Lycosidae  0 1   (Ehler 2002) 
 Lycosidae Pardosa sp. 0 12    
 Oxyopidae  0 12    
 Oxyopidae Oxyopes salticus 1 163 0 174 (Ragsdale et al. 1981, 

Ehler 2002) 
 Oxyopidae Peucetia virudans 0 22 0 1  
 Salticidae  0 51   (Ragsdale et al. 1981) 
 Salticidae Hentzia sp. 0 10    
 Salticidae Sitticus sp. 0 14 0 1  
 Tetragnathidae  0 2 0 2 (Ehler 2002) 
 Theridiidae Latrodectus sp. 0 1    
 Thomisidae  0 61 0 6  
Blattodea Blattellidae Blattella asahinai 0 24   1(Pfannenstiel et al. 

2008) 

Coleoptera Anthicidae Notoxus monodon 3 79 13 279 2(Stam et al. 1987, 
Ehler 2002) 

 Carabidae  0 1    
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Table 4-1 (continued) 

   2011 2012    
Order Family Species/Group PCR (+) 

of N. 
viridula 

PCR 
Tested 
for N. 
viridula 

PCR (+) 
of N. 
viridula 

PCR 
Tested 
for N. 
viridula 

Reference 

 Coccinellidae Coccinella septempunctata   0 5 (Ehler 2002, Tillman 
2011) 

 Coccinellidae Coleomegilla maculata 3 9 0 87 (Ragsdale et al. 
1981, Tillman 2011) 

 Coccinellidae Harmonia axyridis 0 15 0 10 (Ehler 2002, Tillman 
2011) 

Dermaptera Forficulidae Doru taeniataum 0 1  1(Fenoglio and 
Trumper 2007) 

 Labiduridae Labidura riparia 0 13   1(Fenoglio and 
Trumper 2007) 

Hemiptera Anthocoridae Orius spp. 4 114 39 399 (Ragsdale et al. 
1981, Tillman 2011) 

 Labiduridae Labidura riparia 0 13   1(Fenoglio and 
Trumper 2007) 

Hemiptera Anthocoridae Orius spp. 4 114 39 399 (Ragsdale et al. 
1981, Tillman 2011) 

 Coreidae Leptoglossus phyllopus 0 2    
 Geocoridae Geocoris spp. 5 258 20 564 (Ragsdale et al. 

1981, Ehler 2002, 
Tillman 2011) 

 Nabidae Nabis sp. 1 142   (Ragsdale et al. 
1981, Stam et al. 
1987, Ehler 2002) 

 Pentatomidae Podisus maculiventris 0 21   (Ragsdale et al. 
1981, Tillman 2011) 

 Reduviidae Sinea spp. 0 37   (Stam et al. 1987) 
 Reduviidae Zelus spp. 0 25   (Ehler 2002) 
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Table 4-1 (continued) 

   2011 2012    
Order Family Species/Group PCR (+) 

of N. 
viridula 

PCR 
Tested for 
N. viridula 

PCR (+) 
of N. 
viridula 

PCR 
Tested 
for N. 
viridula 

Reference 

Orthoptera Tettigoniidae  0 1    
Neuroptera Chrysopidae Chrysoperla rufilabris 0 12   (Stam et al 1987; 

3Ehler 2002) 
 Hemerobiidae Micromus sp. 0 1    

1Lepidopteran egg predators 
2Beetle from the family Anthicidae 
3Observation during laboratory feeding trials 
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Table 4-2. Primer names and sequences for taxa tested for consumption by predators. 

Taxon Primer Sequence Amplicon  

size (bp) 

Annealing  

Temp (°C) 

Reference 

N. viridula NV-334F:  5’-TTTTTATTATTTATTTGGGTTG-3 

NV-566R: 5’-GTCGAACAGACCTAGAAC-3’ 

245 53 Designed herein 

E. servus ES-43F: 5’-GTCTGATGTTATTTATATCAGATTTAA-3’ 

ES-295R: -5’-AATAAATATTAACAATTTAACCAAAAC-

3’ 

277 49 Designed herein 

C. hilaris AH-276F: 5’-AGACCCTATAGAATTTTATTTTAAAG-3’ 

AH-390R: 5’-CCTAAAAATAATTATATTTAAACC-3’  

146 53 (Penn et al. 2017) 
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Table 4-3. ANOVA table predation by all predators combined on N. viridula in 2011. 

Sum of Squares for factors are Type III. Crop types are maturity group 5, soybean 

maturity group 6.9, and Bt cotton. Prey availability is the total number of N. viridula 

(adults and nymphs) collected via sweep net. Sampling weeks were 29 July – 7 October 

2011. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 36 0.68479234 0.01902201 3.17 0.02 

Error  12 0.07206651 0.00600554   

Corrected Total 48 0.75685886    

Location 2 0.04753257 0.02376629 3.96 0.05 

Crop 2 0.13571826 0.06785913 11.30 0.002 

Week 7 0.23669475 0.03381354 5.63 0.005 

Prey availability 1 0.02417603 0.02417603 4.03 0.07 

Location*Crop 4 0.01641453 0.00410363 0.68 0.62 

Location*Week 9 0.05413316 0.00601480 1.00 0.49 

Crop*Week 11 0.26438236 0.02403476 4.00 0.01 
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Table 4-4. ANOVA table predation by all predators combined on N. viridula in 2012. 

Sum of Squares for factors are Type III. Crop types are maturity group 5, soybean 

maturity group 6.9, Bt cotton, and non-Bt cotton. Prey availability is the total number of 

N. viridula (adults and nymphs) collected via sweep net. Sampling weeks were 12 July – 

11 October 2012. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 78 3.75011609 0.04807841 0.95 0.58 

Error  29 1.46312203 0.05045248   

Corrected Total 107 5.21323812    

Location 2 0.01326135 0.00663068 0.13 0.88 

Crop 3 0.04968397 0.01656132 0.33 0.80 

Week 12 0.85314837 0.07109570 1.41 0.22 

Prey availability 1 0.08084322 0.08084322 1.60 0.22 

Location*Crop 4 0.32427806 0.08106951 1.61 0.20 

Location*Week 22 1.15980375 0.05271835 1.04 0.45 

Crop*Week 33 1.34005144 0.04060762 0.80 0.73 
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Table 4-5. Two-way ANOVA table Geocoris spp. predation on N. viridula in 2012. Sum 

of Squares for factors are Type III. Crop types are maturity group 5, soybean maturity 

group 6.9, Bt cotton, and non-Bt cotton. Prey availability is the total number of N. 

viridula (adults and nymphs) collected via sweep net. Sampling weeks were 12 July – 11 

October 2012. 

Source DF Sum of 

Squares 

Mean Square F Value Pr > F 

Model 77 4.51752653 0.05866918 1.73 0.09 

Error  19 0.64378456 0.03388340   

Corrected Total 96 5.16131109    

Location 2 0.08257281 0.04128640 1.22 0.32 

Crop 3 0.06403806 0.02134602 0.63 0.60 

Week 12 1.67271046 0.13939254 4.11 0.003 

Prey availability 1 0.01386715 0.01386715 0.41 0.53 

Location*Crop 4 0.05293233 0.01323308 0.39 0.81 

Location*Week 20 2.15099825 0.10754991 3.17 0.007 

Crop*Week 32 0.97113854 0.03034808 0.90 0.62 
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Table 4-6. Two-way ANOVA table Notoxus spp. predation on N. viridula in 2012. Sum 

of Squares for factors are Type III. There were not enough degrees of freedom for all the 

interactions. Crop types are maturity group 5, soybean maturity group 6.9, Bt cotton, and 

non-Bt cotton. Prey availability is the total number of N. viridula (adults and nymphs) 

collected via sweep net. Sampling weeks were 12 July – 11 October 2012. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 18 1.14406684 0.06355927 1.15 0.34 

Error  40 2.21035389 0.05525885   

Corrected Total 58 3.35442073    

Location 2 0.07096084 0.03548042 0.64 0.53 

Crop 3 0.37531126 0.12510375 2.26 0.1 

Week 12 0.67877007 0.05656417 1.02 0.45 

Prey availability 1 0.05155230 0.05155230 0.93 0.34 

Location*Crop 0 0 0 0 0 

Location*Week 0 0 0 0 0 

Crop*Week 0 0 0 0 0 
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Table 4-7. Two-way ANOVA table Orius spp. predation on N. viridula in 2012. Sum of 

Squares for factors are Type III. There were not enough degrees of freedom for the 

interactions. Crop types are maturity group 5, soybean maturity group 6.9, Bt cotton, and 

non-Bt cotton. Prey availability is the total number of N. viridula (adults and nymphs) 

collected via sweep net. Sampling weeks were 12 July – 11 October 2012. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 18 1.29868768 0.07214932 1.02 0.48 

Error  22 1.55441378 0.07065517   

Corrected Total 40 2.85310145    

Location 2 0.10823481 0.05411741 0.77 0.48 

Crop 3 0.04815640 0.01605213 0.23 0.88 

Week 12 0.84790309 0.07065859 1.00 0.48 

Prey availability 1 0.03579425 0.03579425 0.51 0.48 

Location*Crop 0 0 0 0 0 

Location*Week 0 0 0 0 0 

Crop*Week 0 0 0 0 0 
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Table 4-8. Mean stink bugs collected by 100 sweeps by sweep net across the season 

Stink Bug Species 2011 Mean ± SE 2012 Mean ± SE 
N. viridula 3.8 ± 0.71 2.6 ± 0.35 
C. hilaris 1.8 ± 0.27 0.1 ± 0.04 
E. servus 1.7 ± 0.24 0.7 ± 0.11 
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Figure 4-1. Mean (±SE) number N. viridula per 100 sweeps and the proportion Geocoris 

spp., Orius spp, and Notoxus monodon testing positive for N. viridula DNA by sampling 

week, 29 July – 7 October 2011. 
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Figure 4-2. Mean (±SE) number of N. viridula per 100 sweeps and the proportion 

Geocoris spp, Orius spp, and N. monodon. testing positive for N. viridula DNA by 

sampling week, 12 July – 11 October 2012. 
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Figure 4-3. Proportion of predators testing positive for N. viridula DNA by crop and 

sampling week, 29 July – 7 October 2011. Predators are Coleomegilla maculata, 

Geocoris spp., Orius spp., Notoxus monodon, Nabis spp., and Oxyopes spp.  
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Figure 4-4. Proportion of predators testing positive for N. viridula DNA by crop and 

sampling week, 12 July – 11 October 2012. Predators are Coleomegilla maculata, 

Geocoris spp., Orius spp., Notoxus monodon, Nabis spp., and Oxyopes spp. 
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Chapter 5: Detection of the invasive kudzu bug (Megacopta cribraria) beyond its 

invaded front through molecular gut-content analysis 

5.1 Summary 

The kudzu bug, Megacopta cribraria (Hemiptera: Plataspidae) was discovered in the 

United States in 2009 in northeast Georgia, has invaded thirteen states and is a significant 

pest in soybean. Megacopta cribraria is also a beneficial herbivore of kudzu with a large 

impact on stands of kudzu, complicating the status of this invasive insect. Predators of M. 

cribraria are poorly understood and in need of investigation. As field observation of 

predation is difficult, molecular gut-content analysis offers an alternative to traditional 

approaches. Consequently, species-specific 16S molecular markers were designed and 

used to discern the gut-contents of potential predators of M. cribraria. Over 2300 

predators were collected during two growing seasons in cotton and soybean in southern 

Georgia in 2011 and 2012, screened for M. cribraria DNA and trophic linkages were 

analyzed relative to prey availability, crop type and field location. Our results indicate M. 

cribraria was consumed primarily by Geocoris spp. We detected M. cribraria, in a 

previously undocumented county in Georgia, a year before it was detected by standard 

visual or mechanical trapping methodologies. Implications of using molecular techniques 

to track invasive species, especially early in their spread are discussed. 

5.2 Introduction 

Biotic invasions occur when organisms are transported to new areas where they 

proliferate, spread and persist (Elton 1958). Since the late 1950s, invasion by non-native 

species has been recognized as a critical problem in our highly mobile and connected 
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world (Elton 1958, Vitousek 1996, Mack et al. 2000, Paini et al. 2016). These organisms 

can do extreme damage in their new ranges including displacing native species, 

restructuring habitats and ecosystems, and even destroying certain habitats. For example, 

Littorina littorea (L.) has restructured intertidal ecosystems (Bertness 1984); an invasive 

moss, Campylopus introflexus (Hedw.) Brid., has altered arthropod assemblages in acidic 

coastal dunes (Schirmel et al. 2011); and gypsy moth (Lymantria dispar) populations can 

be so large that they alter soil organic matter dynamics on the forest floor with nutrient 

pulses from their feces, dead bodies and unconsumed green foliage (Lovett et al. 2006)). 

In addition to damaging natural habitats, invasive species may have significant effects on 

agroecosystems. It is estimated that overall damages to natural and managed ecosystems 

and control of invasive species can have costs of up to $120 billion/year in the US 

(Pimentel et al. 2005). It is further estimated that the United States spends about $7.4 

billion dollars on pesticides, for plants and animals, much of which goes to control non-

indigenous pests (U.S. Congress 1993).   

When invasive species move into an area, they can cause major shifts in the 

existing food web. Invasive purple loosestrife (Lythrum salicaria L.) can recruit 

additional pollinators and dragonflies, increasing larval dragonfly abundance and also 

changing zooplankton richness (Burkle et al. 2012). Additionally, the opossum shrimp 

(Mysis diluviana Audzijonyte & Väinölä) changes the fish community in a freshwater 

lake with affects cascading to the top predators in the system (Ellis et al. 2011). Overall, 

invasive species could displace native prey and become an abundant prey resource for 

native predators (Carlsson et al. 2009). The zebra mussel (Dreissena polymorpha 

(Pallas)) has numerous effects on habitats it invades, including shifts in food webs when 
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predatory amphipods benefit from zebra mussel biodeposits (Gergs et al. 2011) and 

inducing native fish to consume zebra mussel over the native mussels, possibly resulting 

in lower parasite loads in native fish (Locke et al. 2014). Native predators often respond 

to large invasions of prey items into their habitats which can dramatically change the 

food available to them (Carlsson et al. 2009). Pintor and Byers (2015) conducted a meta-

analysis and found that predators could benefit from non-native prey as a supplemental 

resource. Additionally, predators can exploit recent invaders into agricultural settings, as 

observed with the invasive brown marmorated stink bug (Halyomorpha halys 

(Hemiptera: Pentatomidae) (Morrison et al. 2016). 

In 2009, Megacopta cribraria (kudzu bug) (Hemiptera: Plataspidae) was 

discovered in the United States in northeast Georgia (Eger et al. 2010). This native to 

Asia has spread quickly in North America, with an estimated range expansion from 7,050 

km2 in 2009 to 98,816 km2 in 2010, and subsequent spread to 13 states (Gardner et al. 

2013, KudzuBug 2017). These bugs are strong fliers and are known to hitchhike on 

vehicles (Gardner et al. 2013). Megacopta cribraria was found in large numbers on 

houses near kudzu, Pueraria montana (Lour.) Merr. (Fabales: Fabaceae) where it had 

developed and then moved into houses to overwinter (Eger et al. 2010).  

Megacopta cribraria can develop on several plants species including soybean, 

kudzu, and other legumes, although they lay most of their egg masses on soybean and 

kudzu in green house experiments (Medal et al. 2016). Although M. cribraria was found 

on several legume species in field settings, complete development occurred only on 

kudzu and soybean (Zhang et al. 2012). Megacopta cribraria can be both a beneficial and 

a pest species as their preferred plants are kudzu, one of the most serious invasive weeds 
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in the United States (Myers and Bazely 2003), and soybean, a valued agricultural crop 

(e.g. Zhang et al. 2012, Ruberson et al. 2013, Medal et al. 2016). Megacopta cribraria 

has been shown to decrease kudzu growth by 33% in controlled field plots (Zhang et al. 

2012), and has removed 80% of kudzu aboveground biomass over a period of three years 

in open field observations (Gardner and Olson 2016). However, it can also significantly 

reduce soybean yield (Seiter et al. 2013).  In addition to soybean, M. cribraria has been 

observed on cotton, but this is probably a non-host on which M. cribraria rest or 

congregate (Gardner et al. 2013).  

In less than four years, from October 2009-July 2012, M. cribraria spread from 

nine counties in Georgia to 392 counties in eight states (Gardner et al. 2013). During this 

swift invasion, a project using molecular gut-content analysis to study predation on stink 

bugs in soybean and cotton in Georgia, U.S.A., was underway (Chapter 4). A variety of 

generalist predators were collected and screened for predation on southern green stink 

bug, Nezara viridula (L.), green stink bug, Chinavia. hilaris (Say) and brown stink bug, 

Euschistus servus (Say). There were three locations where sampling was conducted, two 

of them had documented M. cribraria invasion in 2011, and one of the locations did not 

have M. cribraria invasion until 2012. We investigated predation on the invasive M. 

cribraria in soybean and cotton at the three locations in both years to determine which 

predators were eating M. cribraria and if we could detect predation on M. cribraria in 

areas where researchers had not yet documented the kudzu bug invasion using standard 

sampling techniques, such as sweep net sampling and visual observations (Gardner et al. 

2013).  
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5.3 Materials and Methods 

5.3.1 Field Sampling 

Field sampling took place in soybean-cotton farms from July through October 

2011 and 2012 in three locations in southwestern Georgia, USA. The locations were 

Belflower Farm, Tifton, GA (Tift Co.) (N31° 30.434 W083° 33.430), the Southwest 

Research and Education Center, Plains, GA (Sumter Co) (N32° 03.589 W84° 36.691) 

where M. cribraria was detected in 2011, and the Attapulgus Research and Education 

Center, Attapulgus, GA (Decatur Co) (N30°76.254 W84° 48.488) where M. cribraria 

was not detected until 2012 (KudzuBug 2017). In 2011, three crops at each location were 

sampled: Bt-cotton (DP1034B2RF), soybeans MG5 (maturity group 5) (Agsouth 

Genetics 568RR) and soybeans MG6.9 (maturity group 6.9) (Asgrow AG6931RR) 

(Monsanto Co, St. Louis, MO, USA). In 2012, four fields were sampled: Bt-cotton, non-

Bt cotton, MG5 soybeans and MG7 soybeans.  Aldicarb (Bayer CropScience Leverkusen, 

Germany), was applied in furrow at planting (3.93 kg/ha (3.5 lbs/acre)) for thrips control 

(Grey et al. 2006). No other insecticides were applied. Each year was analyzed separately 

because of the addition of non-Bt cotton in 2012.  

5.3.2 Arthropod Sampling 

Predators and M. cribraria were collected biweekly (2011: 29 July- 7 October, 

2012: 12 July – 11 October) via a 31 cm diameter sweep net with 100 sweeps per sample, 

two samples per field which were pooled for subsequent analyses. Each sample was taken 

along two different rows separated from one another by six rows. Sweeping was initiated 

five meters into the crop and along rows at least five rows from the plot edge to reduce 

edge effects. Different rows were sampled on each sample date to prevent prolonged 
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disruption of sampled rows. All arthropods were counted with predators and M. cribraria 

immediately separated and placed in sterile 1.5 mL microcentrifuge tubes filled with 95% 

ethanol. Identifications were to the lowest taxonomic level possible and specimens were 

then frozen at -20°C until subsequent DNA analysis. 

5.3.3 Molecular Gut-content Analysis 

Total DNA was extracted from all predatory specimens using DNeasy Blood and 

Tissue Kits© (Qiagen Inc., Valencia, CA, USA) following standard animal tissue 

protocols. For primer design, stink bug legs were removed and extracted. For molecular 

gut-content analysis, all predators were crushed and whole body extracted.  

For primer design, we amplified 16S sequences using general primers; 16Sbr-H 

and 16Sar-L (Palumi et al. 1991). Polymerase chain reactions (PCR) (25 µL) consisted of 

1X Takara buffer (Takara Bio Inc., Shiga, Japan), 0.2 mM of each dNTP, 0.2 mM of each 

primer, 1.25 U Takara Ex Taq™ and template DNA (1-2 μL of total DNA). PCRs were 

carried out in Bio-Rad PTC-200 and C1000 thermal cyclers (Bio-Rad Laboratories, 

Hercules, CA, USA). The PCR protocol was 94 °C for 1 min followed by 50 cycles of 94 

°C for 45 s, 63 °C for 45 s, 72 °C for 45 s and a final extension of 72 °C for 5 min. PCRs 

included a positive and negative control. Following amplification, the bands were 

visualized on 2% SeaKem agarose (Lonza, Rockland, Maine, USA) pre-stained with 

GelRed nucleic acid gel stain (1X; Biotium, Hayward, California, USA). The PCR 

product was purified and sequenced at AGTC (University of Kentucky, Lexington, KY, 

USA).  

Sequences were editing using Geneious© (Biomatters Ltd, Auckland, New 

Zealand) and aligned using MUSCLE (Edgar 2004). We designed primers by visually 
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inspecting the sequences using BioEdit 7.0.0 (Isis Pharmaceuticals Inc., Carlsbad, CA, 

USA) and then using Primer3 (Rozen and Skaletsky 2000) to determine whether the 

primer properties were adequate. PCR reagents were the same as above with 94 °C for 1 

min followed by 50 cycles of 94 °C for 45 s, 62 °C for 45 s, 72 °C for 15 s. The primers 

designed for amplification of M. cribraria are MC-288F (5'-

CCCTATAGAAATTTACTCTATTTTTGGTG-3') and MC-454R (5'-

GAAATTACGCTGTTATCCCTAAGGTAAA-3') producing a 193 bp amplicon. 

Following this, the primers were tested against 183 non-targets (Table 3-2) for cross 

reactivity and no amplification was observed. In addition, primers were target tested 

against specimens of M. cribraria collected from the field with 100% amplification 

success.  

5.3.4 Statistical Analysis 

The proportion of predators testing positive for M. cribraria was arc-sine square 

root transformed for normality and analyzed by ANOVA using a generalized linear 

model (GLM) in SAS (SAS Institute, Cary, North Carolina, USA). The factors in this 

analysis were prey availability, week, location, and crop type. Prey availability was the 

total number of M. cribraria collected per field per date (200 sweeps). This number was 

used to represent the potential prey available to the generalist predators. It is used as a 

proxy for population levels as we did not have information on egg masses, which are the 

likely prey item for most of our screened predators.  

5.4 Results 

In 2011, four predators tested positive for M. cribraria DNA in the Attapulgus 

location, even though M. cribraria was not detected from samples in this location. In 
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week 4 (26 Aug), 1/3 Oxyopes spp. were positive for M. cribraria predation in Bt cotton 

and 2/2 were positive for M. cribraria predation in maturity group 5 soybean. In week 7 

(23 Sept.), 1/2 Nabis spp. were positive for M. cribraria predation (Table 5-1). Geocoris 

spp. were also positive for M. cribraria predation in the Plains and Tifton locations where 

kudzu bug had been previously detected (Fig. 5-1). A total of five M. cribraria were 

collected from all crops in 2011 in the Plains and Tifton locations. For all predator 

groups, combined, 2.3% of predators (4/175) were positive for M. cribraria predation in 

2011 at the Attapulgus location, whereas 1.7% of predators (3/176) were positive for M. 

cribraria predation in 2012. There was no significant difference between the years in this 

location (F1, 79 = 0.29, p = 0.59) (Table 5-2). 

Overall, 1.9% (16/836) of the predators tested were positive for M. cribraria in 

2011. In 2012, 5.2% (78/1505) of the predators were positive for M. cribraria predation. 

The predator groups were Geocoris spp., Orius spp., Nabis spp., C., N. monodon, 

Oxyopes spp., Linyphiidae, Thomisidae (Table 5-3). 

Geocoris spp. had the highest percentage (3%) of gut-content positives in 2011. 

The overall ANOVA was not significant (F33, 6 =1.49, p = 0.33) Neither location (F2, 6 = 

2.81, p = 0.14), crop type (F2, 6 = 3.01, p = 0.12), nor week (F6, 6 = 1.64, p = 0.28) affected 

predation of M. cribraria (Table 5-4). Geocoris spp. also had the highest percentage 

(9.4%) of gut-content positive for M. cribraria predation in 2012 (overall ANOVA: F87, 7 

= 3.99, p = 0.03). There was a significant effect of week (F12, 7 = 4.97, p = 0.02) (Fig. 5-

2). There was no effect of location (F2, 7 = 1.54, p = 0.28) or crop (F3, 7 = 1.34, p = 0.34) 

on predation of M. cribraria (Table 5-5). All other predator groups had low positives for 

M. cribraria predation and were not analyzed (Fig. 5-2). 
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5.5 Discussion 

Early detection of an invasive species is key to helping reduce its spread and harm 

(Pysek and Richardson 2010), whereby early detection may make control and eradication 

simpler (Simpson et al. 2009, Vander Zanden et al. 2010). One of the newest ways to 

detect invasive species is through the use of DNA based technologies (Jerde et al. 2011). 

Many of these studies have been conducted using environmental DNA (eDNA) and 

screening that for the presence of an invasive species (Jerde et al. 2011). This has been 

done extensively in aquatic systems (Harvey et al. 2009b, Jerde et al. 2011, Dejean et al. 

2012, Clusa et al. 2016). Recently, this technique has been used in terrestrial systems 

with an assay developed to utilize eDNA to track another invasive terrestrial 

pentatomoid, H. halys (Valentin et al. 2016). We used DNA screening and detected M. 

cribraria in the guts of predators although we never detected M. cribraria in our field 

samples at Attapulgus in 2011. The percentage of predators screening positive for M. 

cribraria DNA was 2.3% in 2011 at the Attapulgus location, whereas 1.7% of predators 

were positive for M. cribraria predation in 2012 when a low density of M. cribraria 

(mean ± SE = 2.88 ± 0.58 bugs per 100 sweeps) were collected in our samples. Generalist 

predators often consume rare prey items at disproportionate rates (Athey et al. 2016). 

This is generally seen in the early season predation literature, but could also pertain to 

invasive species in the early introduction or colonization stage of their invasive spread. In 

addition, as our primers underwent extensive non-target testing, with 183 exemplars from 

twelve orders and 78 families, we are confident that we were not observing false 

positives. Additionally, it is unlikely that these predators were eating M. cribraria in 

already infested areas and then flying to our fields as there is a several country buffer 
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around the Attapulgus location where M. cribraria were not detected until 2012 

(KudzuBug 2017). 

Predation on M. cribraria, overall was low. Even with very large numbers of M. 

cribraria in the landscape, with up to 935 (± 410) per 100 sweeps in week 12 in 2012, 

Geocoris spp. which had the highest number of individuals testing positive, only had 

9.4% positive indicators of M. cribraria predation. Much like previous studies on stink 

bugs and M. cribraria, we found a diverse suite of predators consuming M. cribraria 

(Chapter 4; (Greenstone et al. 2014a, Tillman et al. 2015)). These predators had diverse 

feeding modes; sucking: (Orius spp., Geocoris spp., and Nabis spp.; chewing: N. 

monodon, Oxyopes spp., Linyphiidae, Thomisidae and C. maculata). Predators were 

consuming kudzu bug at an overall comparable rate to their consumption of the 

naturalized southern green stink bug (Nezara viridula (L.) in our experimental locations 

(Chapter 4). Our results indicate that generalist predators readily exploit a new invasive 

species, albeit at low levels at present and may be useful as a part of an IPM strategy over 

time. 

To our knowledge, this is the first study to document the spread of an invasive 

species to a new location through molecular gut-content analysis. Screening for M. 

cribraria was done within the context of a study examining predation on several species 

of stink bugs (Chapter 4). We chose to additionally screen the predators for M. cribraria, 

as the invasion of this species was occurring at the time of our study. We therefore 

already had DNA extracted for predators in invaded and non-invaded locations allowing 

us examine predation on the invasive species along its invasion front. This technique may 

not be useful on a large scale, but recent techniques in biodiversity studies could be 
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utilized to study invasive species (Yu et al. 2012). Large scale trapping along an invasion 

front, followed by high throughput sequencing on homogenized samples (Yu et al. 2012) 

with specific primers used to amplify the target invasive should be a useful technique for 

invasive species detection. Use of specific primers would amplify rare targets without 

needing to design blocking primers. Each large sample, whether it was a sweep sample, 

malaise trap samples (Yu et al. 2012, Brandon-Mong et al. 2015, Moriniere et al. 2016) 

or soil samples (Yang et al. 2014, Andújar et al. 2015) could be combined because, 

unlike in our study, specific trophic interactions are not the goal, only detecting the 

presence of an invasive species. 

The probability of detecting an invasive species can be quite low. For example, a 

study on an introduced water flea (Cercopagis pengoi) found that the probability of 

detecting, using traditional zooplankton sampling techniques, when it was at low 

population densities was very low (< 0.2). This was true even with sampling intensity 20 

times higher than what is typically employed by plankton researchers.  Detection was 

only possible when the population densities were high (Harvey et al. 2009a). In our 

study, we detected M. cribraria DNA in the guts of predators when sweep net sampling, 

the most common method for detecting M. cribraria in soybean and kudzu (Gardner et al. 

2013), was not sufficient to detect it. This suggests that molecular methods have the 

potential to detect invasive species when they are in very low levels without intensive 

sampling. 

Metabarcoding could be a powerful tool for detecting unknown invasive species 

because it does not require an a priori knowledge of the species present in a sample 

(Comtet et al. 2015). Metabarcoding samples could therefore be used to monitor many 
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invasive species at once. Additionally, methods could be developed that would combine 

general and specific primers and could assess the biodiversity in an area while 

simultaneously screening for the presence of a specific invasive species, such as kudzu 

bug. This would also allow amplification of degraded DNA, such as gut-contents (Piñol 

et al. 2014, Macías-Hernández et al. 2017), which in the case of our study was the only 

means of detection for M. cribraria in the location where invasion had not been 

documented.  

 However, metabarcoding could result in the amplification of DNA from the guts 

of highly mobile predators and might result in false positives for a given area. Predators 

testing positive for habitat-specific pests of neighboring crops have documented the 

movement of predators between crops (Greenstone et al. 2014a). Predators testing 

positive could overestimate the spread of an invasive species, but since it is important to 

have early detection, this could be an early warning that an invasive species is nearby 

(Comtet et al. 2015).  

We detected an invasive species, kudzu bug, using molecular gut-content analysis 

in a previously undocumented county in Georgia, a year before it was detected by 

researchers using sweep net sampling. This research highlights the utility of molecular 

techniques to track invasive species, even with highly degraded DNA, like gut-contents. 

Employing next generation sequencing techniques for invasive species research could 

allow us to detect invasions early and possibly limit their spread and damage. 
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Table 5-1. Predators testing positive for M. cribraria in 2011. All predator groups except Geocoris spp. are shown. Geocoris spp. 

proportion testing positive is found in Figure 5-1. 

Predator Total (+) Total tested  Location and crop Week M. cribraria present1 Number collected2 
Nabis spp. 1 2 Attapulgus, soy 7 7 No NA 
Linyphiidae 1 2 Plains, soy 7 6 Yes 0 
Thomisidae 1 2 Tifton, soy 7 4 Yes 0 
 1 1 Plains, soy 7 6 Yes 0 
Oxyopes spp. 1 3 Attapulgus, Bt cotton 4 No NA 
 2 2 Attapulgus, soy 5 4 No NA 

1This column denotes whether M. cribraria was detected in this location in 2011 via sweep net. 

(http://www.kudzubug.org/distribution-map/).  

2This column denotes number of M. cribraria collected in this location and crop in the week that gut-content positives occurred. 

  

http://www.kudzubug.org/distribution-map/
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Table 5-2. ANOVA table predation on M. cribraria by all predators combined in the 

Attapulgus location. Sum of Squares for factors are Type III. Prey availability is the total 

number of M. cribraria (adults and nymphs) collected via sweep net.  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 33 2.61376539 0.07920501 1.09 0.37 

Error 79 5.76224590 0.07293982   

Corrected Total 112 8.37601129    

Crop 2 0.29282500 0.14641250 2.01 0.14 

Week 12 1.23489219 0.10290768 1.41 0.18 

Year 1 0.02140887 0.02140887 0.29 0.59 

Prey availability 1 0.00820004 0.00820004 0.11 0.74 

Crop*Week 17 1.26694357 0.07452609 1.02 0.45 
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Table 5-3. List of all predator taxa tested, with numbers testing positive for M. cribraria in PCR testing 

   2011 2012 

Order Family Species/Group 
No. tested for 
M. cribraria 

No. (+) % PCR (+) No. tested for 
M. cribraria 

No. (+) % PCR (+) 

Araneae Linyphiidae  10 1 10 0 0 0 
 Oxyopidae Oxyopes spp. 163 3 1.8 169 7 4.1 
 Thomisidae  61 2 3.3 6 0 0 
Coleoptera Anthicidae Notoxus monodon 79 0 0 279 3 1.1 
 Coccinellidae Coleomegilla maculata 9 0 0 87 4 4.6 
Hemiptera Anthocoridae Orius spp. 114 0 0 399 11 2.8 
 Geocoridae Geocoris spp. 162 5 3 565 53 9.4 
 Nabidae Nabis sp. 142 1 0.7 0 0 0 
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Table 5-4. ANOVA table predation on M. cribraria by Geocoris spp. in 2011. Sum of 

Squares for factors are Type III.   

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 33 0.81046698 0.02455961 1.48 0.33 

Error 6 0.09984832 0.01664139   

Corrected Total 39 0.91031529    

Location 2 0.09361131 0.04680565 2.81 0.14 

Crop 2 0.10002910 0.05001455 3.01 0.12 

Week 6 0.16368869 0.02728145 1.64 0.28 

Location*Crop 4 0.04573168 0.01143292 0.69 0.63 

Crop*Week 11 0.30805580 0.02800507 1.68 0.27 

Location*Week 8 0.09935040 0.01241880 0.75 0.66 
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Table 5-5. ANOVA table predation on M. cribraria by Geocoris spp. in 2012. Sum of 

Squares for factors are Type III. Prey availability is the total number of M. cribraria 

(adults and nymphs) collected via sweep net. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 87 17.74360038 0.20394943 3.99 0.03 

Error 7 0.35798442 0.05114063   

Corrected Total 94 18.10158480    

Location 2 0.15734265 0.07867132 1.54 0.28 

Crop 3 0.20556671 0.06852224 1.34 0.34 

Week 12 3.04929432 0.25410786 4.97 0.02 

Prey availability 1 0.00289431 0.00289431 0.06 0.82 

Location*Crop 4 0.07905485 0.01976371 0.39 0.81 

Crop*Week 26 1.24894747 0.04803644 0.94 0.59 

Location*Week 17 0.54471977 0.03204234 0.63 0.80 

Prey availability*Week 8 0.11535247 0.01441906 0.28 0.95 

Prey availability*Crop 2 0.06118845 0.03059423 0.60 0.58 

Prey availability*Location 2 0.06862248 0.03431124 0.67 0.54 
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Figure 5-1. Mean (±SE) number of Geocoris spp. and M. cribraria (kudzu bug) per 100 

sweeps and the proportion Geocoris spp. testing positive for M. cribraria DNA by 

sampling week (29 July – 7 October 2011). 
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Figure 5-2. Mean (±SE) number of M. cribraria (kudzu bugs) per 100 sweeps and the 

proportion predators testing positive for M. cribraria DNA by sampling week. (12 July – 

11 October 2012). 
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Chapter 6: Synthesis 

In this dissertation, I clarified predator prey interactions in agroecosystems using 

molecular gut-content analysis combined with ecological experimentation. 

Contamination and false positives (Chapman et al. 2010, Greenstone et al. 2011, 

Greenstone et al. 2012, King et al. 2012) are of concern in molecular gut-content 

analysis, and each technique for collecting and preserving specimens for molecular work 

should be scrutinized to minimize experimental error. This may be especially true with 

food webs in agroecosystems where management techniques recommended to farmers 

may be costly. Ensuring that the results generated show generalist predators engaging in 

consumption of a focal pest and are not generating false positives is crucial. I showed that 

gut-content contamination is not present in fluid filled pit-fall traps and may allow this 

technique to be utilized for sampling of predators for molecular gut-content analysis. 

Fluid filled pitfall traps eliminate the risk of predation within the trap. Their use will also 

allow nocturnal and cryptic predators to be collected in a more efficient, less labor-

intensive way without needing to collect each individually by hand. Additionally, I 

showed that storing specimens together in ethanol does not cause cross contamination 

and this may allow researchers to utilize mass sampling techniques, such as malaise traps 

for specimens destined for molecular gut-content analysis without risk of gut-content 

contamination. Mass sampling is more efficient than hand collecting of specimens, which 

is the current recommended best practice (King et al. 2008) and utilizing mass sampling 

techniques, such as wet pit-fall traps will allow researchers to expand the taxa used for 

food web characterization in molecular gut-content analysis. The future directions would 

be to undergo rigorous testing of other sampling techniques, such as malaise traps to 
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determine how long DNA is viable in the gut in this technique and if there is gut-content 

contamination using this tool. If not, this mass collecting technique could be utilized to 

collect specimens for gut-content analysis.  

In addition to contamination, false positives may result from primer design. PCR 

is a very sensitive technique and well-designed primers should only amplify DNA from 

target species or group of species, depending on the goal of the project. While 

investigating the food webs of stink bugs in cotton and soybean, I obtained results that 

were in contrast to previous studies on stink bug food webs in the same agroecosystems 

(Greenstone et al. 2014a, Tillman et al. 2015). My non-target testing was more rigorous 

and suggests their very high percentage of predators screening positive for stink bug 

DNA may have been due, in part, to non-target amplification. Although I did not directly 

test their primers, the disparity in our results highlights the need for replicated studies 

when examining generalist predators for possible conservation biological control 

programs. In this case, future studies could compare non-target amplification of by 

specific primers that target the same species but were designed by different researchers. 

When investigating possible conservation biological control using specific natural 

enemies, more replication is needed before making management recommendations to 

growers.  

Generalist predators can also have non-consumptive effects on pest species 

(Maupin and Riechert 2001, Preisser et al. 2005), and I sought to explore such effects in 

this dissertation. I combined molecular gut-content analysis with a field cage study to 

examine the relationship between a stink bug pest and a generalist predator. I detected no 
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predation within the cages, but I detected superfluous killing of stink bugs by spiders, 

only occurring in the treatments with high numbers of stink bugs. Combined, my results 

suggest that these spiders do not have significant impacts on stink bug populations, either 

through consumptive or non-consumptive effects. The evidence from my research 

suggests that an integrated pest management strategy for stink bug pests should not 

concentrate on generalist arthropod predators as their impacts on the populations may be 

negligible.  

Most of this dissertation focused on the relationships between generalist predators 

and pests in the superfamily Pentatomoidea. Overall, the percentage of predators that 

screened positive for stink bugs and kudzu bugs was low which is in direct contrast to 

previous studies. I used molecular gut-content analysis to detect the presence of M. 

cribraria in areas where they had not been detected by monitoring tools like sweep nets. 

This is the first instance of using this technique to track an invasive species. The use of 

specific primers, especially when combined with next generation sequencing 

technologies, has allowed the use of eDNA in non-aquatic systems (Valentin et al. 2016). 

Early detection of invasive species is critical to stopping their spread and proliferation 

and this work gives another tool for detection of terrestrial invasive arthropods.  
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