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Compared with conventional measurements from supervisory control and 

data acquisition (SCADA) system, phasor measurement units (PMUs) provide 
time-synchronized and direct measurements of phasors. The availability of 
synchronized phasor measurements can significantly improve power system 
protection and analysis. This dissertation is specifically committed to using 
synchronized measurements for estimation of fault locations in transmission 
systems.  

Transmission lines are prone to various short-circuit faults. Accurate fault 
location is critical for rapid power recovery. Chapter 2 proposes a new fault 
location method based on sparse wide area measurements. One distinguishing 
feature of this method is its applicability to both transposed and untransposed 
transmission lines. In addition, the method is developed based on sparse-wide 
area measurement that may be taken far away from the faulted line. Shunt 
capacitances of transmission lines are also fully considered by the algorithm. 
Moreover, when synchronized measurements from multiple buses are available, 
an optimal estimator can be used to make the most use of measurements, and to 
detect and identify potential bad measurements. 

Most of the existing fault location literatures discuss common shunt faults, 
including single line-to-ground faults, line-to-line faults, line-to-line-to-ground 
faults, and three-phase faults. However, in addition to common shunt faults, some 
complex faults may also occur in power systems. Among these complex faults, 
evolving fault and inter-circuit fault are two typical examples. Chapter 3 extends 
the method developed in Chapter 2 to deal with evolving faults. The proposed 

ABSTRACT OF DISSERATION 
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wide-area fault location methods are immune to fault type evolution, and are 
applicable to both transposed and untransposed lines.  

Chapter 4 discusses location of inter-circuit faults. Inter-circuit fault is a 
type of simultaneous fault, and it is the most common simultaneous fault type. 
Inter-circuit faults between each circuit in a double-circuit line is the most common 
inter-circuit fault. A fault location method for inter-circuit faults on double-circuit 
lines are developed and evaluated in Chapter 4. 

 Chapter 5 puts forward a fault location algorithm, which does not require 
line parameters information, for series-compensated transmission lines. Two-end 
synchronized voltage and current measurements are utilized. The proposed 
method is independent of source impedance and fully considers shunt 
capacitances of transmission lines.  
 
 
 
KEYWORDS:  fault location, untransposed lines, wide-area 

measurements, complex fault, parameter-free.  
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Chapter 1 Introduction 
 

1.1 Background 

Electric power system is one of the greatest engineering achievements in 

the last century. Electricity is generated at generating sites, and delivered to the 

end consumers remarkably far away. Transmission network plays a significant 

role in such bulk movement of electric energy. Modern transmission systems span 

over vast geographic area, and occasionally suffer from short-circuit faults. Faults 

are generally caused by random and unpredictable events such as falling of tree 

branches, lightning, wind, car accident, storm, etc. A fault usually results in a large 

amount of current flow that will lead to equipment damage, and even severe large 

area outages. Once a fault occurs in transmission networks, it is pivotal for utility 

engineers to repair the faulted line and restore power as soon as possible. 

Therefore, accurate and fast transmission line fault location plays a critical role in 

quick power system restoration.   

In the past, numerous algorithms have been developed to pinpoint the 

locations of faults in transmission systems [3]-[26]. Most of the existing methods 

require measurements from at least one end of the faulted line. To omit the 

necessity of local requirements, this dissertation develops new fault location 
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methods based on sparse wide-area measurements that may be taken far away 

from the faulted line. Wide-area measurements are captured by phasor 

measurement units (PMUs). IEEE standard C37.118.1-2011 defines PMU as a 

device that produces synchronized phasor, frequency and rate of change of 

frequency estimates from voltage and/or current signals and a time 

synchronization signal [27]. According to the standard C37.118.1-2011, the 

required reporting rates of PMU should either be 10, 25, or 50 frames per second 

for a 50 Hz system, and it may be 10, 12, 15, 20, 30, 60 frames per second for a 60 

Hz system [27].  Compared with conventional measurements from supervisory 

control and data acquisition (SCADA) system, PMU is able to provide direct and 

time-synchronized phasor measurements at a higher sampling frequency. The 

voltage and current phasors are measured with respect to a reference signal over 

the global positioning satellite (GPS) system, and thus are synchronized. Hence, 

PMUs installed at different locations in a transmission system can provide 

measurements that correspond to the same event. 

A variety of power system applications benefit from the increasing 

deployment of PMUs in power systems in the last decades. The work reported in 

this dissertation is primarily focused on using synchrophasors to realize wide-area 

fault location in transmission systems. Also, since transmission line parameters are 
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critical inputs for the proposed fault location methods, estimation of line 

parameters along with fault locations based on synchrophasors is discussed.  

1.2. Review of Fault Location Methods 

Transmission systems are subject to many types of fault. The principal types 

of fault include: 

a. single line-to-ground fault, which is denoted as LG fault; 

b. line-to-line fault, which is denoted as LL fault, 

c. double-line-to-ground fault, which is denoted as LLG fault,  

d. three-phase fault, which is denoted as LLL fault, 

e. three-phase-to-ground fault, which is denoted as LLLG fault. 

These types of faults are known as common shunt faults or common short-

circuit faults [1]. In balanced transmission lines, all of the faults listed above except 

the three-phase short-circuit with or without earth connection cause imbalance 

between phases, and are called unsymmetrical faults.  

In addition to these principal fault types, other kinds of fault may also occur, 

and these faults could be more complicated. Faults sometimes occur 

simultaneously at separate locations in a system, or change from one type to 

another over time. A fault may also occur between two transmission lines running 

in parallel, e.g. between two lines in a double-circuit transmission structure. These 
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types of faults are known as complex fault [2], and are less studied in the existing 

literatures.  

A considerable number of studies have been done on fault location in 

transmission lines [3]-[26]. These location approaches can be broadly classified 

into two categories: impedance based location methods and travelling-wave based 

location methods. Impedance based methods can be further divided into phasor 

based methods and time-domain based methods. Alternatively, depending on the 

source of measurements, conventional impedance-based fault location methods 

can be divided into single-end methods and double-end methods. Single-end 

impedance based methods utilize voltage and/or current measurements at only 

one end of the faulted line; while double-end impedance based method use 

synchronized or unsynchronized measurements from both ends.  

A review of impedance based fault location methods are presented as 

follows: In 1979, the authors of [3] developed an online digital fault locator which 

calculated fault distance based on measurement on the ratio of reactance of the 

line from the device to fault point. In 1988, M.S. Sachdev and R. Agarwal proposed 

a method that used the post fault voltage and current from two end terminals to 

pinpoint fault location [4]. The authors of [5] also utilize measurements from both 

ends of the studied transmission line to calculate fault distance, and the 

measurements do not have to be synchronized. Similarly, the author of [6] 
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proposed a method for multi-terminal single transmission lines using 

asynchronous samples from each terminal. In 1991, the authors of [7] proposed a 

fault location technique for multi-terminal two parallel transmission lines. M. 

Kezunovic et al. propose a fault location method that utilizes digital fault recorders 

equipped with Global Positioning System (GPS) to retrieve synchronized data 

from two end terminals [8]. The fault location technique proposed in [9] uses PMU 

at both ends of a transmission line to get synchronized voltage and current data. 

The author of [10] proposes several algorithms utilizing only voltage 

measurements, which omits possible errors caused by saturation of current 

transformers. The authors of [11] design an algorithm that pinpoints the fault by 

comparing the recorded voltage sag pattern to the patterns obtained in simulation 

by placing faults at different buses. In [12], fault location on a single multi-terminal 

line is identified iteratively by using synchronized voltage and current 

measurements from all terminals. A time-domain fault location algorithm for 

HVDC transmission lines is proposed in [14]. The proposed method incorporates 

the traveling-wave theory with the Bergeron time-domain method, and does not 

require synchronization of measurements. Reference [15] proposes a double-

circuit line fault location algorithm based on modifying the apparent impedance 

using modal transformation. The authors of [16] employ single-ended 

measurements to locate faults, as well as to determine fault types and phases. 
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Wang et al. couple the impedance fault location method and traveling-wave 

method to pinpoint faults [17]. Fault locations may also be identified based on 

wide area measurements. The authors of [18] uses gradient descent method to 

identify faulted zone and fault locations. In [19], detection of faults is achieved 

based on PMU measurements obtained from a single generator bus, and the fault 

locations can be determined based on analysis of variations of equivalent voltage 

phasor angle at any one of the generator buses. The authors of [20] constructed 

system equations around the parallel loops of sequence networks to solve the fault 

location for a double-circuit line.  

Some traveling-wave based fault location methods are reviewed as follows: 

Fault location on transmission lines using traveling-wave was first proposed by 

Röhrig in 1931 [21]. When a fault occurs on a transmission line, an electrical pulse 

originating from the fault point propagates along the transmission line away from 

the fault point. The time of pulse return indicates the distance to the fault point. 

One disadvantage of the traveling-wave method is that wave propagation can be 

significantly affected by system parameters and network configuration [22]. It is 

also quite challenging to locate faults close to a bus or faults with near zero 

inception angle [23]. In [24], a double end traveling-wave based fault location 

method is proposed. In [25], a traveling-wave fault location method that does not 

require time synchronization and wave polarity identification is developed. The 
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method developed in [26] estimates the Lipschitz exponent of the second transient 

wave-front signal, and uses it to determine the frequency component of the 

traveling-wave and the fault location. 

1.3 Motivation and Objectives  

As discussed above, conventional fault location methods require local 

measurements from at least one end of the faulted line. Such methods will fail to 

locate faults when monitoring devices at either end of the faulted line fails to take 

qualified measurements, or when monitoring devices are not available at either 

end of the faulted line. Methods were proposed using sparse measurements for 

fault location [28]. However, the methods assume transposed lines. 

As a matter of fact, most of the existing studies share an assumption that 

transmission lines are fully transposed. However, in practice, untransposed lines 

are widely used in modern power systems. Unlike transposed lines, untransposed 

line introduces imbalance into transmission systems, and some fault location 

methods may be no longer applicable in such condition [29].  

Moreover, traditional fault location algorithms assume fault conditions are 

stationary. However, not all fault conditions remain unchanged over the fault 

period. Evolving faults are types of faults such that the faulted phases change over 

time. Other complex fault types, such as inter-circuit faults, are usually neglected 

by conventional methods.  
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To complement these gaps, this dissertation aims to use wide-area 

measurements to pinpoint faults in transmission lines. The desired features of the 

proposed method should include: 

a. ability to locate faults precisely; 

b. ability to deal with both transposed and untransposed transmission 

lines; 

c. ability to locate faults with only sparse wide-area measurements; 

d. ability to deal with some complex faults 

e. ability to fully consider shunt capacitances of transmission lines 

1.4 Dissertation Outline  

In this dissertation, Chapter 2 is dedicated to wide-area fault location 

algorithm for untransposed/transposed transmission lines. First, the fault location 

approach based on single bus measurement is presented. Then, a two-bus fault 

location algorithm is discussed.  When measurements from multiple buses are 

available, an optimal estimator is designed and used to estimate fault locations as 

well as to detect/identify possible bad measurements.  

Chapter 3 and Chapter 4 focus on complex faults, including evolving fault, 

and inter-circuit fault. In the beginning of Chapter 3 and Chapter 4, the 

backgrounds of the studied complex faults are reviewed. The rest of these two 

chapters extends the method developed in Chapter 2, and adapts it to deal with 
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complex faults. Evaluation studies based on Electromagnetic Transient Program 

(EMTP) is carried out, and verifies the effectiveness and accuracy of the proposed 

methods.  

The fault location methods developed in Chapter 1 – Chapter 4 are based 

on wide-area measurements, and requires system information such as line 

parameters. As supplementary work to the previous chapters, Chapter 5 develops 

a fault location method that does not require line parameters information. The 

proposed method deals with series-compensated transmission lines, and is based 

on two-end voltage and current measurements. Line parameters, along with fault 

locations, can be estimated online. The information of the series compensator is 

not a prerequisite either.  

Finally, a conclusion on the entire presented fault location work is made in 

Chapter 6.  
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Chapter 2 Fault Location for 
Untransposed/Transposed Transmission Lines 
Using Sparse Wide Area Measurements 
 

2.1 Introduction 

Compared with conventional fault location methods, wide-area methods 

can determine the locations of faults in the entire transmission network, using only 

a limited amount of synchrophasors. In the last decade, some wide-area fault 

location methods have been put forward.  In [30], a traveling-wave based wide-

area fault location method is proposed. The method requires several synchronized 

measurements of transient voltages from strategically distributed monitoring 

devices. Fault locations are derived by extracting the arrival time of voltage 

traveling-waves at different monitoring devices. The authors of [28] propose a 

method to locate faults on a double-circuit transmission line by using sparse 

voltage measurements. Fault type information is required by this algorithm, and 

the line is assumed to be transposed. In [31], based on the positive-sequence 

network, suspicious fault regions and fault locations can be determined. Wide area 

measurements have been adopted to in power system protection as well. 

Reference [32] presents a remote backup protection scheme to detect faults using 

synchrophasors, but without calculation of the fault location. The author of [33] 
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and [34] puts forward distribution system fault location method based on 

measurements from substation.  

Most of the existing studies on transmission line fault location only consider 

transposed lines. The positions of a transposed line’s conductors are exchanged at 

regular intervals along the line. Such transposition results in equal average 

inductance and shunt capacitance for each conductor over the whole transposition 

cycle [29].  

However, in some cases, untransposed transmission lines are preferred 

over transposed lines, due to technical and economic factors such as additional 

cost of transposition tower, corridor limitation, reliability of transposition tower 

structure, etc. [35]-[38] In practice, most of the EHV/UHV transmission lines are 

untransposed [39]. In the context of untransposed lines, the fault location methods 

based on symmetrical component theory are no longer applicable.  

To deal with untransposed lines, this chapter presents a general fault 

location method that is applicable to both transposed and untransposed lines. The 

method is developed based on sparse wide-area voltage phasor measurement, and 

fully considers the shunt capacitances of transmission lines, by using distributed 

parameter line model. The method is applicable to any principal types of faults, 

and does not demand fault classification. Therefore, the potential error due to fault 

type misidentification is eliminated. Moreover, the proposed method is applicable 
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to both single-circuit and double-circuit transmission lines. Finally, when 

redundant measurements are available, an optimal estimator can be used to make 

the most of multiple measurements, and to identify/detect potential bad 

measurements. Note that the fault types in this chapter refers to the principal fault 

types (LG, LL, LLG, LLL, and LLLG faults). A practical assumption of the 

proposed algorithm is that the network’s parameter and topology are known.   

In the rest of this chapter, Section 2.2 introduces the proposed wide-area 

fault location method based on voltage measurements from a single bus. The 

proposed method can accurately locate faults on both single-circuit and double-

circuit transmission lines. When measurements from two buses are available, a 

two-bus fault location algorithm can be used. An optimal estimator is designed in 

Section 2.3, based on which potential bad measurements can be detected and 

identified. Evaluation studies under a variety of fault conditions are exhibited in 

Section 2.4, followed by the summary.  
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2.2 Fault Location Algorithm for Untransposed/Transposed 

Transmission Lines Based on Sparse Wide-Area 

Measurements 

The proposed method is based on the bus impedance matrix concept and is 

described as follows: In the during-fault network, a fictitious bus is added at the 

assumed fault point. Then, the transfer impedances between the fictitious bus and 

any other buses, along with the driving point impedances at the fictitious bus, can 

be expressed as functions of the unknown fault distance. Transfer impedances 

refer to the off-diagonal elements in the bus impedance matrix, and driving point 

impedances refer to the diagonal elements in the bus impedance matrix [29]. Based 

on the short-circuit analysis, the voltage, current and power at the fault bus can be 

derived in terms of the given voltage measurements at a certain bus, the 

corresponding transfer impedance, and driving point impedance. Consequently, 

they can be revealed as functions of the fault location. Since the fault resistance 

only consume real power, the reactive power consumed will be zero, based on 

which the fault location can be determined. 

The method is developed in phase domain to accommodate the inherent 

unbalances of the untransposed transmission lines. 

13 
 



2.2.1 Derivation of Transfer and Driving Point Impedances  

Assume a fault occurs on a single-circuit untransposed line as depicted in 

Figure 2.1 (the remaining part of the transmission system is not shown). The 

following notations are adopted in this chapter: 

n  total number of nodes of the entire transmission 

system without counting fault nodes; 

0Z  bus impedance matrix of the pre-fault network, 

excluding the fictitious fault nodes; the size of 0Z  is n  

by n , since n  nodes are included in the pre-fault 

network; 

 

Figure 2.1 Single-circuit untransposed line section of a transmission system. 
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Z  bus impedance matrix of the during-fault network; the 

size of Z  is ( n +3) by ( n +3); the element on the kth row 

and jth column is denoted as kjZ ; 

qp,  buses of the two ends of the studied line section; 

321321 ,,,,, qqqppp   nodes of the two ends of the studied line section; 

r  fictitious bus added at the assumed fault point; 

321 ,, rrr     fictitious nodes added at the assumed fault location; 

qp EE ,  node voltage vectors at bus p and bus q, respectively, 

where T
ppp EEE ],,[

321
=pE  and T

qqq EEE ],,[
321

=qE , and 

T[.]  represents transpose of its argument; 

rE  node voltage vector at the fictitious bus, bus r, where 

T
rrr EEE ],,[
321

=rE ; 

1l  length of the line between bus p and bus q; 

2l  length of the line between bus p and bus q; 

yx,  per unit length impedance and admittance matrix of 

the studied line section. 

The during-fault bus impedance matrix Z  shares the same first n rows and 

first n columns with 0Z . The other rows and columns of Z  consist of transfer and 
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driving point impedances related to the fault nodes. The following part of this 

section illustrates the derivation of these impedances.  

The equivalent PI circuit parameters for each segment of the untransposed 

line can be expressed as follows [40]: 

 2,1,]/).[sinh( 1 == − ildiag ii BγγzBz  (2.1) 

 2,1,]/).2/[tanh(
2

1 == − ildiag i
i yBγγBy  (2.2) 

where }{⋅diag  returns a square diagonal matrix with the elements of input vector 

on the its diagonal; B  is the eigenvector of yz ; ‘./’ for element-wise division; γ is 

a vector composed of jγ , the square root of the jth eigenvalue of yz , 3,2,1=j  for 

single-circuit lines, and 6,...,2,1=j  for double-circuit lines. 

Assume k is an arbitrary bus in the system except the fictitious bus, and bus 

k consists of nodes 1k , 2k , and 3k . Based on the definition of transfer impedance, 

the value of the transfer impedance between the node ik , 3,2,1=i , and a fault node 

will be equal to the voltage at the fault node, when all the sources in the network 

are removed and a current of 1 A is injected into the node ik .  

By removing all the sources in the network, injecting 1 A current into node 

ik , and apply the Kirchhoff's Current Law (KCL) at bus r gives  
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 0)()(
22

1
2

1
1

21 =−+−++ −−
qrprrr EEzEEzEyEy  (2.3) 

Therefore, the node voltage vector at the fictitious bus, rE , is calculated as 

 )()
22

( 1
2

1
1

11
2

1
1

21
qpr EzEzzzyyE −−−−− ++++=  (2.4) 

Then, the transfer impedances between the node ik  and the fault node can 

be expressed as 

 3,2,1     ,)()
22

( 1
2

1
1

11
2

1
1

21 =++++= −−−−− iqkpkrk iii
ZzZzzzyyZ  (2.5) 

where,  

 T
rkrkrk iiii

ZZZ ],,[
321

=rkZ  (2.6) 

 T
pkpkpk iiii

ZZZ ],,[
321

=pkZ  (2.7) 

 T
qkqkqk iiii

ZZZ ],,[
321

=qkZ  (2.8) 

The transfer impedances 
1pki

Z , 
1qki

Z  etc. are constant elements in the pre-

fault bus impedance matrix 0Z . Therefore, the transfer impedances between the 

non-fault node ik  and the fault nodes are functions of the fault distance 1l .  

17 
 



Similarly, by removing all sources in the network, injecting 1 A current into 

the fault node ir  (i = 1, 2, 3), and applying KCL at bus r, the driving point 

impedances and transfer impedances related to the fault nodes are derived as 

 3,2,1))
22

( ,( 1
2

1
1

11
2

1
1

21 =+++++= −−−−− iiiii
uZzZzzzyyZ qrprrr  (2.9) 

where u  is a three by three identity matrix, whose ith column is denoted by iu ; 

iprZ  consists of transfer impedances between nodes on bus p  and the fault node 

ir , and 
iqrZ  consists of transfer impedances between nodes bus q  and the fault 

node ir . It notes that iu  corresponds to the current injection into the ith node of the 

faulted bus.  

Therefore, the transfer impedances between the fault nodes, and the driving 

point impedances at fault nodes are derived as functions of the unknown fault 

distance 1l .  

2.2.2 Derivation of Voltage at Fault Nodes and Fault Current during 

the Fault Period 

Using the driving point impedances and transfer impedances derived 

above, the voltage at the fault nodes and the fault current during that fault can be 

determined. 
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Assume that the arbitrary bus k  consists of nodes 1k , 2k  and 3k . The 

voltage change due to the fault, i.e. the superimposed voltage at bus k , kΔE , can 

be written as  

 T
kkk EEE ],,[

321
∆∆∆=kΔE  (2.10) 

Based on the superimposed theory, the superimposed voltage during a 

fault can be obtained as: 

 fkrk IZΔE −=  (2.11) 

where krZ  consists of the transfer impedances between the nodes at bus k  and the 

faulted nodes, and fI  is the fault current. 

Subsequently, the fault current can be expressed in terms of measurements 

kΔE  as  

 )()( 1
kkrkrkrf ΔEZZZI TT −−=  (2.12) 

The pre-fault voltages at the fault nodes can be expressed in terms of the 

fault location as 

 ))
22

( 0
1

20
1

1
11

2
1

1
21

0 ( qpr EzEzzz
yy

E −−−−− ++++=  (2.13) 
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where 0pE  and 0qE  are the pre-fault node voltage vectors at bus p  ans bus q , 

respectively. These pre-fault voltages can be estimated based on the pre-fault 

network conditions.  

The during-fault voltages at the fault nodes can be expressed as  

 frrrr IZEE −= 0  (2.14) 

Equations (2.12) and (2.14) represent the fault current and the voltages at 

the faulted nodes in terms of the transfer and driving point impedances, and 

consequently in terms of the unknown fault location.  

2.2.3 Location of Faults Based on Single-Bus Measurements 

The complex power consumed by the fault resistance is the product of fault 

voltage and conjugate of fault current, and is obtained as:  

 *])()[( 1
kkrkrkrr ΔEZZZE TTTS −−=  (2.15) 

where, the asterisk sign denotes complex conjugate of its argument. A practical 

assumption is that the fault is pure resistive. Since the fault resistances only 

consumes real power, so the imaginary part of S  is zero: 

 0)Imag( =S  (2.16) 
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It can be observed that (2.16) only has one unknown variable 1l  that is the 

distance from the bus p  to the fault point r . The fault location can consequently 

be determined by the Newton-Raphson technique. The Newton-Raphson 

approach is described as follows: 

 vvv mmm ∆+=+1  (2.17) 

 )( vvv mQHm −=∆  (2.18) 

 
vmmm

mQHv =∂
∂

= |)(  (2.19) 

 

where the following notations are used: 

vm  fault distance variable at the vth iteration; 

1+vm  fault distance variable after the vth iteration; 

vm∆     fault distance variable update at the vth iteration; 

vH     Jacobian matrix when vmm = ; 

)( vmQ     imaginary power function when vmm = ; 

v     iteration number starting from 0. 

When the variable update reaches within the specified tolerance, the 

iterative process can be terminated. Educated initial value for variable should be 
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provided, which in this case is 0.5. The Jacobian matrix can be obtained based on 

numerical method, in order to obviate the need to derive the complicated 

analytical form of the derivatives of Jacobian matrix and to still maintain high 

accuracy of fault location estimate. 

It should be noted that the fault type information is not used in the above 

derivation, and neither is the fault resistance. It is also noted that this method is 

certainly applicable to transposed lines as well. 

Also, the system loading conditions do not affect the accuracy of fault 

location. The core equation to determine the fault location is (2.15). In (2.15), the 

accuracy of computation or measurement of variables on the right-hand-side are 

not affected by loading condition. Thus, the location accuracy is not affected by 

loading condition. 

2.2.4 Cases When the Faulted Line is A Double-Circuit Line 

When the faulted line is a double-circuit line, a fictitious bus containing six 

nodes are added to the assumed fault location in the network.  

The equivalent Pi circuit line parameters can be calculated following the 

equations (2.1)-(2.2). It is noted that, in the case of double-circuit lines, 2211 y,z,y,z  

are six by six matrices. The transfer impedances between the nodes of the bus k  

and the faulted nodes can be derived as 
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6,,2,1)],[],[()
22

(    ,1
2

1
1

11
2

1
1

21 =++++= −−−−− iTT
iiii qkqkpkpkrk ZZzZZzzzyyZ

i
 (2.20) 

The transfer impedances and the driving point impedances related to the 

faulted nodes are expressed as  

 6,,2,1)],[],[()
22

( ,1
2

1
1

11
2

1
1

21 =+++++= −−−−− ii
TT

iiii
gZZzZZzzzyyZ qrqrprprrri

 (2.21) 

where 
iprZ  and 

iqrZ  can be calculated based on (2.20), and g  is a six by six identify 

matrix whose ith column is denoted by ig .  

The pre-fault voltage at the fictitious bus is  

 )],[],[)
22

( 00
1

200
1

1
11

2
1

1
21

0 ( TT
qqppr EEzEEzzz

yy
E −−−−− ++++=  (2.22) 

The during-fault voltage the fictitious bus and the fault current can be 

calculated based on (2.14) and (2.12). The fault location can then be solved based 

on (2.16).  

2.2.5 Cases When Measurements from Two Buses Are Available 

For the scenarios where measurements from two buses are available, a two-

bus algorithm is developed based on synchronized measurements. Suppose 

voltage measurements are available from non-fault buses k  and 'k  
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( nkk ,...,2,1 , ' = ), and the two buses’ measurements are synchronized. For bus 'k , 

similar to (2.11), the following equation exists: 

 frk'k' IZΔE −=  (2.23) 

Eliminating  fI  from (2.11) and (2.23) results in  

 0)()()()( 1
''

1
'' =− −−

kkrkrkrkrkrkrk ΔEZZZΔEZZZ TTTT  (2.24) 

Equation (2.24) only includes one unknown variable, the fault distance. 

Three equations will be yielded from (2.24) for phase A, B, and C, respectively, 

which can then be separated into six real equation. Subsequently, the fault location 

can be solved based on this equation.  

If the measurements from buses k  and 'k  are not synchronized, by 

equaling the magnitudes of the fault current derived based on the two sets of 

measurements, the fault location can still be obtained.  

When the two buses’ measurements are not synchronized, the fault current 

calculated based on measurements from bus k  is )()( 1
kkrkrkr ΔEZZZ TT −− , while the 

current value based on the measurements from bus 'k  is )()( ''
1

''
δjTT ekrkrkrk ΔEZZZ − , 

where δ  represents the unsyncrhonization angle. Equaling the magnitudes of 

these two fault currents yields 

 0|)()(||)()(| 1
''

1
'' =− −−

kkrkrkrkrkrkrk ΔEZZZΔEZZZ TTTT  (2.25) 
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where |.|  returns the magnitude of its argument. Following a similar process 

described in (2.17)-(2.19), the fault location can be derived.  

2.3 Optimal Estimation of Fault Locations Considering 

Possible Measurement Errors 

In this section, an optimal fault location estimator is developed, which can 

detect and identify possible measurement errors when synchronized 

measurements are available at multiple buses in the system. 

2.3.1 Proposed Optimal Estimator for Fault Locations 

Suppose synchronized superimposed voltage measurements at buses 

Nnnn ,...,, 21  are available, which forms the following vector: 

 T
nnnnnnnnn NcNbNacbacba

EEEEEEEEE ],,,,,,,,[
222111

∆∆∆∆∆∆∆∆∆=M  (2.26) 

where N  is the total number of recordable buses, 
ianE∆ , 

ibnE∆  and 
icnE∆  are the 

phase A, B, C superimposed voltages at the bus in  ( Ni ,,1= ). 

Defining the unknown variable as  

 ],,...,,[ 16621 += NN xxxxX  (2.27) 

where ii xx 212 ,− , Ni 3,...,1=  are the variables required to represent the complex 

superimposed node voltages caused by the fault (i.e. the ith superimposed voltage 
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equals ijx
i ex 2

12 − , where j  denotes the imaginary unit here), and 16 +Nx  is the 

unknown fault distance variable.  

The total number of combination of two buses out of the measurable buses 

is 2
NCW = , where C  represents the combination calculation. One single such 

combination will yield six real equations. In total, we can have W6  such equations, 

and each of them is denoted as )(Xif . Then the function vector )(XF  is defined as  

 ( ) ( ) Wi  fii 6,,1           == XXF  (2.28) 

 Niex ijx
iiW 3,...,1)Re()( 2

12126 == −−+ XF  (2.29) 

 Niex ijx
iiW 3,...,1)Im()( 2

1226 == −+ XF  (2.30) 

It can be observed that )(XF  has NW 66 +  elements. 

Define Y  as the measurement vector, which is formed as  

 Wii 6,...,1,0 ==Y  (2.31) 

 NiM iiW 3,...,1),Re(126 ==−+Y  (2.32) 

 NiM iiW 3,...,1),Im(26 ==+Y  (2.33) 

The relationship between the measurement vector and function vector is  

 μF(X)Y +=  (2.34) 
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where μ  is a vector representing measurement errors which are dependent on 

meter accuracy. The more accurate a meter is, the less the corresponding element 

in μ  is.  

The vector of measurement errors is defined as the difference between the 

measurement vector and the function vector as 

 )(XFYμ −=  (2.35) 

By minimizing the following cost function, the optimal estimate of X  can 

be obtained.  

 ][][ 1 F(X)YRF(X)Y −−= −TJ  (2.36) 

where the covariance matrix R  is defined as 

  ),...,()( 2
66

2
1 NW

T diagE +== σσμμR  (2.37) 

Here, ( ).E  stands for the expected value of its argument. 2
iσ  is the variance 

corresponding to the ith measurement, with a smaller value indicating a higher 

accuracy.  Equation (2.36) can be solved iteratively [41]. The iteration calculation 

is terminated when the biggest element of the unknown variable update is smaller 

than the desired tolerance. The starting value of X  is chosen as: 0.1 p.u. and 
4
π  for 
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the superimposed voltage’s magnitude and angel, respectively; 0.5 p.u. for the 

fault location estimate.  

2.3.2 Detection and Identification of Measurement Errors 

Chi-Square test can be utilized to detect the presence of bad measurement 

[42]. First, the expected value of the cost function is calculated, which is equal to 

the number of measurements minus the number of variables. Then the estimated 

value of the cost function, JC , is obtained as: 

 ∑
=

=
N

i i

i
JC

1
2

^
2

σ
µ  (2.38) 

where, 

 
^

2
iµ  estimated measurement error in the ith measurement; 

2
iσ  variance of the error in the ith measurement; 

N  total number of measurement. 

The threshold value, 2
,αχh , can be calculated based on the number of degrees 

of freedom h , confidence level α , and the chi-square distribution. If 2
,αχhJC ≥ , 

then the presence of bad measurements is suspected with a probability of )1( α− . 

If bad data is detected, the normalized error will be calculated, and the 

measurement corresponding to the largest normalized error will be identified as 
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the bad data. Otherwise, for cases where 2
,αχhJC < , the measurement sets are 

assumed to be free of bad data.  

2.4 Evaluation Studies 

This section presents the evaluation simulation studies for verifying the 

developed fault location algorithms. The Electromagnetic Transients Program 

(EMTP) has been utilized to generate fault data for faults of different fault types, 

locations, and fault resistances [40]. 

 

 

Figure 2.2 Diagram of the studied 27-bus transmission system 
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A 27-bus, 345-kV, 60-Hz transmission-line system is utilized for evaluation 

study, which is shown in Figure 2.2. The lengths of each line are labeled in miles 

in parenthesis. For single-circuit line fault location study, the fault is imposed on 

the section between bus 4 and bus 6, with the dashed cross denoting the fault point. 

For double-circuit line fault location study, the fault is assumed to fall on the 

section between bus 9 and bus 10, with the cross denoting the fault point. Both 

lines are untransposed lines and are modeled based on the distributed parameter 

line model in EMTP. 

The developed algorithm has been implemented in Matlab. In the study, a 

starting value of 0.5 p.u. for the fault location is utilized, and all the cases except 

those where bad data exists converge within 10 iterations. The estimation accuracy 

is measured by the percentage error calculated as 

 100
Line Faulted ofLength  Total
Location Estimated -Location  Actual

%Error ×=  (2.39) 

2.4.1 Fault Location Results for One-Bus and Two-Bus Algorithms 

Table 2.1 and Table 2.2 present the fault location results on single-circuit 

untransposed lines. Different fault conditions with various fault types, resistances, 

and locations are studied.  
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The one-bus fault location results are listed in Table 2.1. In this table, 

columns 1-3 list the fault type, actual fault location, and fault resistance, 

respectively. The percentage errors of the estimation are listed in columns 4-6.  

Fault location is measured from the beginning bus, i.e. bus 4 in this case, of 

the line section. Various fault resistances have been tested in the evaluation studies. 

It can be seen that accurate results are obtained even if measurements only from a 

single bus is available, which may not be necessarily from the terminal of the 

faulted line. 

Table 2.2 presents representative fault location estimates using 

synchronized measurements from two buses obtained by the proposed method. 

The columns 1-3 provide the fault conditions, and the estimation results are listed 

in columns 4-7. It is observed that quite accurate results for fault location have 

been achieved by the developed algorithms. 
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Table 2.1 Fault Location Results for Single-Circuit Untransposed Lines 
Based on Measurements from One Bus 

 

Fault 

type 

Fault 

Loca. 

(p.u.) 

Fault 

res.  

(Ω ) 

Est. error (%) using data from bus 

3 11 21 

AG 0.3 1 0.03 0.07 0.33 

5 0.03 0.09 0.60 

50 0.39 0.43 0.88 

0.8 1 0.22 0.30 0.90 

5 0.26 0.36 0.91 

50 0.31 0.43 0.89 

BC 0.3 1 0.05 0.06 0.39 

10 0.09 0.11 0.43 

50 0.26 0.48 0.93 

0.7 1 0.13 0.10 0.04 

10 0.07 0.00 0.09 

50 0.20 0.44 0.31 

BCG 0.3 1 0.03 0.01 0.28 

5 0.02 0.02 0.09 

50 0.02 0.02 0.67 

0.5 1 0.13 0.01 0.44 

5 0.12 0.04 0.32 

50 0.05 0.04 0.04 

ABC 0.2 1 0.02 0.01 0.01 

5 0.03 0.03 0.05 

50 0.33 0.56 0.56 

0.7 1 0.03 0.02 0.02 

5 0.01 0.05 0.00 

50 0.60 0.67 0.46 
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Table 2.2 Fault Location Results for Single-Circuit Untransposed Lines 
Based on Measurements from Two Buses 

 
Fault 

type 

Fault 

Loca. 

(p.u.) 

Fault 

res. 

(Ω ) 

Est. error (%) using data from buses 

3&9 5&8 7&22 12&24 

AG 0.3 1 0.09 0.06 0.07 0.17 

5 0.07 0.02 0.04 0.12 

50 0.09 0.07 0.26 0.17 

0.8 1 0.01 0.04 0.17 0.12 

5 0.01 0.02 0.20 0.19 

50 0.08 0.04 0.41 0.41 

BC 0.3 1 0.01 0.03 0.16 0.16 

10 0.01 0.01 0.12 0.11 

50 0.01 0.02 0.22 0.23 

0.7 1 0.01 0.02 0.23 0.24 

10 0.01 0.01 0.19 0.19 

50 0.03 0.04 0.35 0.27 

BCG 0.3 1 0.00 0.04 0.13 0.22 

5 0.00 0.04 0.14 0.22 

50 0.00 0.04 0.19 0.19 

0.5 1 0.02 0.01 0.15 0.12 

5 0.02 0.01 0.17 0.14 

50 0.01 0.03 0.22 0.21 

ABC 0.2 1 0.02 0.02 0.03 0.11 

5 0.01 0.01 0.05 0.09 

50 0.00 0.01 0.33 0.21 

0.7 1 0.01 0.00 0.15 0.13 

5 0.00 0.00 0.16 0.11 

50 0.07 0.07 0.59 0.45 
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Table 2.3 and Table 2.4 exhibit the percentage fault location errors for 

double-circuit untransposed lines using measurement from a single bus and 

synchronized measurements from two buses, respectively. Various fault 

conditions have been tested in the simulation studies, and representative results 

are reported here. In Table 2.3 and Table 2.4, columns 1-3 are the fault type, actual 

fault location and fault resistance, respectively. The other columns are the fault 

location estimation errors based on measurements from different buses. It is seen 

that quite accurate estimates are produced by each algorithm. 

When measurements from multiple buses are available, the developed 

optimal fault locator can be applied. Table 2.5 lists the optimal estimation results 

obtained by the developed method. To save space, the results for single- and 

double-circuit lines are presented in columns 4 and 5 of the same table, 

respectively. The single-circuit case uses measurements from buses 1, 5, 13 and 26, 

and the double-circuit case uses measurements from buses 3, 7, 13 and 21. It is 

evinced that the proposed method has yielded quite accurate results. 
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Table 2.3 Fault Location Results for Double-Circuit Untransposed Lines 
Based on Measurements from One Bus 

 
Fault 

type 

Fault 

Loca. 

(p.u.) 

Fault 

res.  

(Ω ) 

Est. error (%) using data from bus 

4 18 26 

AG 0.3 1 0.15 0.18 0.23 

5 0.10 0.12 0.11 

50 0.20 0.22 0.04 

0.8 1 0.15 0.17 0.12 

5 0.03 0.09 0.03 

20 0.04 0.11 0.03 

BC 0.3 1 0.10 0.06 0.18 

10 0.12 0.07 0.20 

20 0.14 0.09 0.22 

0.6 1 0.19 0.38 0.14 

10 0.22 0.50 0.15 

50 0.39 0.32 0.17 

BCG 0.3 1 0.07 0.03 0.07 

5 0.08 0.03 0.17 

50 0.09 0.04 0.30 

0.7 1 0.05 0.05 0.07 

5 0.06 0.05 0.08 

50 0.08 0.07 0.10 

ABC 0.2 1 0.01 0.02 0.08 

5 0.01 0.02 0.10 

50 0.04 0.00 0.41 

0.6 1 0.04 0.28 0.04 

5 0.04 0.28 0.04 

50 0.10 0.13 0.17 
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Table 2.4 Fault Location Results for Double-Circuit Untransposed Lines 
Based on Measurements from Two Buses 

 
Fault 

type 

Fault 

Loca. 

(p.u.) 

Fault 

res. 

(Ω ) 

Est. error (%) using data from buses 

4&8 6&11 13&22 17&26 

AG 0.3 1 0.02 0.02 0.07 0.08 

5 0.05 0.04 0.10 0.11 

50 0.12 0.15 0.16 0.15 

0.8 1 0.01 0.03 0.06 0.10 

5 0.01 0.02 0.08 0.16 

20 0.03 0.05 0.15 0.26 

BC 0.3 1 0.06 0.03 0.09 0.10 

10 0.08 0.03 0.10 0.12 

20 0.11 0.03 0.12 0.14 

0.5 1 0.05 0.04 0.09 0.10 

5 0.06 0.04 0.09 0.10 

20 0.10 0.03 0.11 0.14 

BCG 0.3 1 0.01 0.03 0.06 0.07 

5 0.01 0.03 0.07 0.07 

50 0.03 0.03 0.08 0.09 

0.7 1 0.05 0.05 0.08 0.08 

5 0.05 0.05 0.08 0.09 

50 0.06 0.05 0.09 0.10 

ABC 0.2 1 0.02 0.03 0.06 0.07 

5 0.05 0.03 0.08 0.09 

50 0.34 0.04 0.30 0.39 

0.6 1 0.06 0.07 0.09 0.10 

5 0.06 0.07 0.09 0.11 

50 0.26 0.02 0.23 0.34 
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Table 2.5 Optimal Fault Location Results for Single-Circuit and Double-
Circuit Untransposed Lines Based on Redundant Measurements 

 
Fault 

type 

Fault 

Loca. 

(p.u.) 

Fault 

res.  

(Ω ) 

Est. error (%) 

Single-circuit 

case 

Double-circuit 

case 

AG 0.3 1 0.03 0.03 

5 0.17 0.04 

50 0.05 0.05 

0.8 1 0.04 0.02 

5 0.04 0.02 

20 0.05 0.05 

BC 0.3 1 0.11 0.03 

10 0.09 0.04 

20 0.13 0.03 

0.6 1 0.08 0.03 

10 0.08 0.03 

50 0.13 0.01 

BCG 0.3 1 0.04 0.04 

5 0.04 0.05 

50 0.05 0.08 

0.7 1 0.09 0.03 

5 0.07 0.04 

50 0.00 0.06 

ABC 0.2 1 0.00 0.08 

5 0.02 0.15 

50 0.04 0.09 

0.6 1 0.01 0.06 

5 0.02 0.02 

50 0.22 0.07 
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2.4.2 Optimal Estimator Evaluation 

This case study illustrates how to detect and identify bad measurements 

with the proposed optimal estimator. In our study, the voltage measurements 

from buses 3, 8, 10 and 13 are utilized to obtain the fault location. A value of 1e-4 

is chosen for the variance for the voltage measurements, and a value of 1e-6 is 

chosen for the variance for other measurements. 

 

 

Table 2.6 Optimal Estimates with Presence of Bad Data 

Quantity Unit Actual Value Optimal Estimate 

aV3∆  p.u. 0.3566 0.4702 

aV3∆∠  rad -3.0908 -3.0845 

aV8∆  p.u. 0.6116 0.6257 

aV8∆∠  rad -3.0828 -3.0844 

aV10∆  p.u. 0.3887 0.4003 

aV10∆∠  rad -3.1258 -3.1279 

aV13∆  p.u. 0.2841 0.3076 

aV13∆∠  rad -3.1362 -3.1400 

Fault Location  p.u. 0.8 0.6851 
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Table 2.7 Optimal Estimates with Bad Data Removed 

Quantity Unit Actual Value Optimal Estimate 

aV8∆  p.u. 0.6116 0.6122 

aV8∆∠  rad -3.0828 -3.0830 

aV10∆  p.u. 0.3887 0.3887 

aV10∆∠  rad -3.1258 -3.1258 

aV13∆  p.u. 0.2841 0.2837 

aV13∆∠  rad -3.1362 -3.1364 

Fault Location p.u. 0.8 0.7977 

 

Suppose that an AG fault occurs on line from bus 4 to bus 6 with the actual 

fault location being 0.8 p.u. and the fault resistance as 5 ohms. Suppose that there 

is an error of 50% in the superimposed voltage magnitude measurement at phase 

A at bus 3. 

The optimal estimation result with presence of the bad data is shown in 

Table 2.6. Only phase A voltage estimate of each bus and the estimated fault 

location are listed here.  

In this care, 35=h  and 342.572
01.0,35 =χ , with α  being chosen as 0.01. The 

estimated value of the cost function is calculated as 122.709, which is greater than 

2
01.0,35χ . Thus, the presence of bad data is suspected. To identify the bad 

measurement, the normalized error is computed, and the largest value 

corresponds to the magnitude of the superimposed voltage at phase A at bus 3. 
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Hence the phase A voltage measurement at bus 3 is identified as the bad 

measurement. 

To eliminate the effect of bad measurement, the voltage measurements at 

bus 3 are discarded. After that, the estimator calculates a new set of optimal 

estimates. In this scenario, the expected value of cost function is 17, and 

409.332
01.0,17 =χ . The newly estimated value of cost function is 0.040, which is much 

less than 2
01.0,17χ . So all of the measurements are considered as acceptable. The re-

estimated results by the optimal estimator are listed in Table 2.7. The fault location 

percentage error is calculated as 0.23%. It is shown that the fault location estimate 

is significantly enhanced. 

2.5 Summary 

Most of the previous fault location methods require measurements taken 

from terminals of the faulted line. Those algorithms using wide area 

measurements require fault type information and do not model untransposed 

lines precisely.  

This chapter proposes fault location methods for untransposed 

transmission lines by utilizing sparse wide area measurements. The methods are 

applicable to both single-circuit and double-circuit transmission lines, and are 

immune to fault resistances. In addition, the fault type information is not a 
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prerequisite. The shunt capacitance of transmission line is fully considered based 

on the distributed parameter line model. When synchronized measurements from 

multiple buses are available, an optimal estimator is proposed. The estimator is 

able to detect and identify possible measurement errors, and remove them to 

enhance estimation. It is noted that the proposed methods still provide quite 

accurate results when measurements from only one bus are available.  

Evaluation studies have demonstrated that the proposed algorithms can 

yield quite accurate estimates under various fault conditions for both single- and 

double-circuit untransposed lines. 
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Chapter 3 Location of Evolving Faults in 
Transmission Systems Based on Sparse Wide-Area 
Measurements 

 

3.1 Introduction 

In Chapter 2, a wide-area fault location method that is applicable to both 

transposed and untransposed lines is proposed. The fault types considered in 

Chapter 2 are principal fault types, including LG fault, LL fault, LLG fault, LLL 

fault and LLLG fault. The fault type during a fault period is assumed to be 

unchanged. 

In electric power systems, however, not all fault conditions remain 

unchanged during faults. Evolving faults are types of faults such that the faulted 

phases change over time [43]. Evolving faults occur less often than commonly 

occurring shunt faults (LG, LL, LLG, LLL and LLLG faults). However, in post-fault 

power networks, evolving faults can easily happen since the systems are under 

abnormal conditions [44], [45].  

 Locating evolving faults is challenging due to the change in fault type 

shortly after the fault initiation. Existing studies on locating evolving faults is very 

limited. This chapter presents a new approach to estimate the locations of evolving 

faults in transmission lines.  
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By using sparse wide area voltage measurements, this method can 

accurately locate evolving faults without requiring measurements from either end 

of the faulted line. Fault type information is not a necessity either, and the change 

of fault phases does not affect the estimation accuracy. In addition, the algorithm 

is applicable to both single-circuit and double-circuit lines, and the transmission 

lines can be either transposed or untransposed. Distributed parameter line model 

is adopted to fully consider the shunt capacitances of the transmission lines. EMTP 

simulation package is employed to evaluate the method, and quite accurate results 

have been achieved. 

The rest of this chapter is organized as follows: Section 3.2 introduces the 

background of evolving faults, including the causes of evolving faults, their 

characteristics, and existing studies on evolving faults. Section 3.3 presents 

evaluation studies of the proposed locator, followed by the summary in Section 

3.4. 

3.2 Characteristics of Evolving Faults 

An evolving fault is such a fault that the faulted phases change over time 

[43]. Evolving faults are more complicated compared to the common shunt faults, 

and are adversary to distance relay’s performance. 

The characteristic of an evolving fault is that its faulted phases change over 

time, while other types of faults’ faulted phases remain unchanged. Whether a 
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fault can be referred to as an evolving fault depends on its faulted phase(s), rather 

than other fault conditions such as fault resistance. For example, a fault with time-

dependent fault resistance is not an evolving fault if its faulted phases do not 

change. 

 

 

(a) 

 

 (b) 

Figure 3.1 Voltage and current waveforms during an example evolving fault 
changing from AG-to-ABG fault 
(a) Voltage waveform of an example evolving fault 
(b) Current waveform of an example evolving fault 
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Evolving faults can easily happen in overhead systems, when the object 

causing the initial fault touches conductor(s) of additional phase or phases 

[44],[46]. For example, an evolving fault may happen when a tree limb first touches 

one, then two phases in succession, making the fault changes from single line-to-

ground fault to double line-to-ground fault [47]. 

Figure 3.1 depicts the voltage and current waveform of an example 

evolving fault. The fault initially occurs at as a single line-to-ground fault in phase 

A, and evolves to a double line-to-ground fault between phases A and B within 

around four cycles. Typically, the location of an evolving fault would not change 

during the fault period [45].  

There have been several articles discussing evolving faults in transmission 

grid [45]-[49]. The authors of [45] use the ratio of zero sequence fault current over 

negative sequence fault current as the criterion to detect evolving faults. In [46], a 

few evolving faults recorded by transmission line relays are presented. It is learned 

from these practical experiences that evolving faults can delay distance element 

tripping which may result in longer duration of existence of faults. Due to evolving 

fault’s changing nature, fault classification is not easy. In [48], the impact of 

evolving fault on the fault phase selector is analyzed, and it is shown that various 

factors such as fault position and fault resistance could cause incorrect phase 
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selection. The authors of [49] use artificial neural networks (ANN) to select fault 

phase of evolving faults.  

There are very few literatures discussing fault location during evolving 

faults. Reference [44] presents a time-domain method to locate evolving faults in 

distribution systems. This method requires accurate fault classification that is a 

demanding task itself. Incorrect fault classification would yield erroneous 

estimation of where the fault happens. In [47], a method based on ANN is 

designed to locate evolving faults on transmission lines without knowing fault 

type information, where the network is trained under a variety of possible fault 

conditions.  

3.3 Location Method for Evolving Faults 

The location method is also based on bus impedance matrix concepts, and 

adopts the core equations of the method in Chapter 2. To deal with evolving faults, 

the fault locator should continuously determine the estimates of locations from the 

inception of an evolving fault, and generates a locus of fault location.    

In the faulted network, a fictitious bus is added at the assumed fault point. 

A fictitious bus added on a single-circuit line incorporates three nodes, while a 

fictitious bus added on a double-circuit line consists of six nodes. 

The pre-fault network’s bus impedance matrix is assumed to be known. The 

transfer impedances between the faulted nodes and an arbitrary node, as well as 
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the driving point impedances of the faulted nodes, can be determined following a 

similar procedure as that developed in Chapter 2.  

Based on the transfer impedances and the driving point impedances, the 

during-fault fault current and voltage at the fault nodes can be expressed as 

 )()( 1
kkrkrkrf ΔEZZZI TT −−=  (3.1) 

 frrrr IZEE −= 0  (3.2) 

where, 

kΔE  superimposed voltage at a measurable bus k ; 

r0E  pre-fault voltage at the fault bus, which can be 

estimated based on the pre-fault condition 

Based on fI  and rE , the reactive power consumed by the fault resistance 

can be computed as 

 { }*1 )]()[(Imag kkrkrkrr ΔEZZZE TTQ −−=  (3.3) 

The unknown fault location is the only unknown variable in (3.3). Since the 

fault resistance only consumes real power, (3.3) should equal to zero. The fault 

location can then be solved iteratively. 
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3.4 Evaluation Studies 

The presented fault-location algorithm has been validated by using the 

Electromagnetic Transients Program (EMTP) simulation data of faults in a 27-bus, 

345-kV, 60 Hz transmission system. The diagram of the studied system is shown 

in Figure 2.2. The bus numbers are labelled besides corresponding buses, and the 

line lengths in miles are given in parenthesis. Matlab is utilized to implement the 

proposed methods. 

3.4.1 Locating Evolving Faults on Untransposed Single-Circuit Line 

The transmission line between bus 4 and bus 6 is an untransposed single-

circuit line. A CG-ACG evolving fault occurs 45.72 miles (0.4 p.u.) away from the 

bus 4. The evolving fault starts as a CG fault on 0.1s, and evolves into ACG fault 

approximately two cycles later. The voltage measurements from bus 8, as shown 

in Figure 3.2, are recorded and used to locate the evolving fault. It can be observed 

that the Phase C voltage decreases from the initial-stage of the evolving fault, and 

both Phase A and Phase C voltages drop below normal values in the second-stage. 

The fault location algorithm developed in Section 3.3 is applied to estimate the 

fault location 8. The locus of estimated fault location over time is depicted in Figure 

3.3. The estimated location locus levels off at 0.4 after the initial fluctuation. Due 

to the transients introduced by the fault type transition, the locus oscillates around  
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Figure 3.2 Voltage measurements from bus 8 during a CG-ACG evolving fault on 
an untransposed single-circuit line 

 

 

Figure 3.3 Fault location estimation locus of the AG-ACG evolving fault on an 
untransposed single-circuit line 

 

0.14s. Afterwards, the locus coincides with the actual fault location reference line 

quickly. The proposed location algorithm yields considerably accurate fault 

location results over time. 

3.4.2 Locating Evolving Faults on Transposed Single-Circuit Line 

The transmission line between bus 4 and bus 10 is a transposed single-

circuit line. An evolving fault occurs on this transmission line. Assume the voltage 

measurements from bus 21 is available, as shown in Figure 3.4, and the 
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measurements are used to locate the evolving fault. The studied fault is 0.7 p.u. 

away from the bus 4. 

The initial stage of the evolving fault lasts from 0.1 s to 0.13 s. It can be observed 

that only BCG fault exists during this stage, since only the Phase B’s and Phase C’s 

voltages decrease. In the rest period of the event, the fault evolves into ABCG fault, 

where all three phases’ voltage drop significantly. At the beginning period of the 

fault inception and fault type evolution, the location locus oscillates due to 

inaccuracy in phasor estimation. However, even with these errors, the fault 

location estimation is still quite reliable. The locus of the fault location versus time 

is drawn in Figure 3.5. 

 

 

Figure 3.4 Voltage measurements from bus 21 during a BCG-ABCG evolving fault 
on a transposed single-circuit line 
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Figure 3.5 Fault location estimation locus of the BCG-ABCG evolving fault on a 
transposed single-circuit line 

 

3.4.3 Locating Evolving Faults on Untransposed Double-Circuit 

Line 

An evolving fault occurs on the double-circuit untransposed transmission 

line between bus 9 and bus 10. The voltage measurements from bus 22 is used for 

locating the fault which occurs 67.28 miles, i.e. 0.4 p.u., away from bus 9. The fault 

starts as AG fault and evolves into ABCG fault after around 1.5 cycle. The voltage 

measurements at bus 5 are shown in Figure 3.6.  

Figure 3.7 depicts the estimation locus of the evolving fault’s location. Some 

phasor estimation errors at the transition stage introduces some minor location 

errors for that period. However, it can be observed that quite accurate fault 

location result is then quickly achieved. The locus of the fault location can help 

researchers and engineers to better understand the nature of the studied fault. 

 

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

Time [s]

0.4

0.6

0.8

1

Fa
ul

t L
oc

at
io

n 
[p

.u
.]

Estimated fault location

Actual fault location

51 
 



 

Figure 3.6 Voltage measurements from bus 22 during an AG-ABCG evolving fault 
on an untransposed double-circuit line 
 

 

Figure 3.7 Fault location estimation locus of the AG-ABCG evolving fault on an 

untransposed double-circuit line 

 

Figure 3.8 Voltage measurements from bus 15 during a BG-ABCG evolving fault 

on a transposed double-circuit line 
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Figure 3.9 Fault location estimation locus of the BG-ABCG evolving fault on an 

untransposed double-circuit line 

 

3.4.4 Locating Evolving Faults on Transposed Double-Circuit Line 

Assume the double-circuit line between bus 9 and bus 10 is transposed. An 

example evolving fault is assumed to evolve from BG fault to ABCG fault 8 ms 

after the initial fault. The fault resistance is 5 ohms, and the actual fault location is 

0.3 p.u. away from the bus 9. Figure 3.8 depicts the voltage measurement from bus 

15. The fault location estimation locus is drawn in Figure 3.9. The estimation locus 
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Afterwards, the estimation locus and the reference line up with each other. In other 

words, quite accurate estimation is yielded.  
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availability of fault location locus over time can help utility engineers enhance 

awareness of events in power systems, and help understand the nature and 

evolution of the studied faults. 

3.4.5 Numerical Fault Location Results 

The previous parts of this section present recorded voltage waveform and 

graphical fault location results in the form of estimation locuses. This part exhibits 

numeric fault location results tested under a variety of fault conditions. Evolving 

fault happening on single-circuit and double-circuit lines are included in the study. 

Both transposed and untransposed lines are used to evaluate the algorithm.  

Table 3.1-Table 3.4 summarizes representative results. In these tables, the 

first columns give the fault types of the initial stages of evolving faults, while the 

second columns list the fault types of the second stage of the evolving faults. The 

fault resistances of the initial and second stages are given in Column Three and 

Columns Four, respectively. A variety of fault type changes have been studied, 

such as faults evolve from single line to ground faults to double line to ground 

faults, etc. The fault resistances may or may not change during the entire period 

of faults. Columns Five gives the actual fault location in per unit. The time 

intervals between the inception of the initial stage and the second stage are 

presented in the sixth columns.  
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Table 3.1 Location Results for Evolving Faults on Untransposed Single-

Circuit Lines 

Ini. fault 

type 

Sec. fault 

type 

Ini. 

fault 

res. 

(Ω) 

Sec. 

fault 

res. (Ω) 

Fault 

loca. 

(p.u.) 

Time 

inter-

val 

(ms) 

Est. error(%) 

based on meas. 

from bus 

7 19 

AG ABG 1 1 0.3 15 0.01 0.05 

CG BCG 5 5 0.2 20 0.11 0.19 

AG ACG 1 5 0.5 30 0.03 0.12 

BG BCG 10 10 0.7 26 0.15 0.07 

BG ABCG 5 5 0.6 8 0.02 0.02 

CG ABCG 20 20 0.3 17 0.13 0.19 

AC ABC 5 15 0.7 17 0.06 0.08 

BC ABC 1 10 0.8 10 0.19 0.06 

AB ABC 1 1 0.1 10 0.05 0.05 

BC ABC 15 5 0.5 15 0.07 0.09 

ACG ABCG 15 10 0.5 15 0.12 0.13 

ABG ABCG 10 10 0.9 50 0.08 0.04 

BCG ABCG 20 20 0.9 50 0.22 0.15 

ACG ABCG 1 1 0.2 30 0.01 0.01 
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Table 3.2 Location Results for Evolving Faults on Transposed Single-

Circuit Lines 

Ini. 

fault 

type 

Sec. fault 

type 

Ini. 

fault 

res. (Ω) 

Sec. 

fault 

res. (Ω) 

Fault 

loca. 

(p.u.) 

Time 

inter-

val 

(ms) 

Est. error(%) 

based on meas. 

from bus 

3 21 

AG ABG 10 10 0.4 26 0.14 0.06 

AG ACG 1 1 0.3 17 0.07 0.03 

BG BCG 25 25 0.5 30 0.15 0.18 

BG ABG 30 30 0.5 10 0.16 0.21 

CG ACG 10 15 0.7 35 0.05 0.06 

CG BCG 5 5 0.2 20 0.09 0.07 

AG ABCG 50 50 0.8 15 0.13 0.22 

CG ABCG 20 20 0.1 7 0.09 0.09 

BC BCG 1 1 0.1 35 0.01 0.01 

AB ABG 15 10 0.6 40 0.05 0.09 

AC ACG 5 5 0.9 30 0.03 0.03 

BCG ABCG 15 20 0.4 15 0.10 0.18 

ABG ABCG 5 15 0.3 10 0.02 0.17 

ACG ABCG 10 10 0.6 20 0.05 0.09 
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Table 3.3 Location Results for Evolving Faults on Untransposed Double-

Circuit Lines 

Ini. 

fault 

type 

Sec. fault 

type 

Ini. 

fault 

res. (Ω) 

Sec. 

fault 

res. 

(Ω) 

Fault 

loca. 

(p.u.) 

Time 

inter-

val 

(ms) 

Est. error(%) 

based on meas. 

from bus 

13 25 

AG ABG 1 10 0.2 26 0.05 0.08 

AG ACG 15 5 0.8 10 0.04 0.12 

CG ACG 10 10 0.6 10 0.08 0.09 

CG ABCG 15 15 0.3 15 0.05 0.12 

BG ABCG 5 5 0.3 30 0.09 0.06 

BG ABG 20 10 0.3 40 0.09 0.11 

BC BCG 10 10 0.7 40 0.03 0.04 

BC ABC 50 50 0.5 25 0.22 0.21 

AB ABG 30 30 0.2 15 0.15 0.09 

AB ABC 25 15 0.4 8 0.17 0.08 

ABG ABCG 1 1 0.1 8 0.02 0.03 

ACG ABCG 5 5 0.2 20 0.07 0.06 

BCG ABCG 15 10 0.8 20 0.04 0.05 

ABC ABCG 20 10 0.9 15 0.02 0.03 
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Table 3.4 Location Results for Evolving Faults on Transposed Double-

Circuit Lines 

Ini. fault 

type 

Sec. fault 

type 

Ini. 

fault 

res. (Ω) 

Sec. 

fault 

res. 

(Ω) 

Fault 

loca. 

(p.u.) 

Time 

inter-

val 

(ms) 

Est. error(%) 

based on meas. 

from bus 

11 22 

BG ABCG 20 25 0.1 15 0.15 0.11 

AG ABCG 50 50 0.8 20 0.19 0.22 

AC ACG 1 1 0.9 10 0.03 0.05 

AC ABCG 5 5 0.3 5 0.05 0.09 

BC BCG 10 10 0.3 30 0.05 0.08 

BC ABCG 15 15 0.4 40 0.07 0.06 

ABC ABCG 20 20 0.5 15 0.02 0.15 

AB ABC 15 5 0.5 17 0.05 0.12 

CG ACG 1 5 0.6 26 0.08 0.08 

CG ABCG 10 15 0.2 10 0.02 0.03 

BCG ABCG 10 10 0.7 10 0.12 0.17 

ABG ABCG 5 15 0.7 30 0.00 0.02 

AB ABG 1 1 0.4 50 0.05 0.04 

ACG ABCG 20 20 0.1 8 0.12 0.15 
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3.5 Summary 

Transmission lines are prone to evolving faults in addition to common 

shunt short-circuit faults. Evolving fault are types of faults such that the faulted 

phases change over time. Such kind of faults can easily happen in overhead 

systems, when the object causing the initial fault touches conductor(s) of 

additional phase or phases. Due to un-stationary fault conditions, it is not easy to 

determine the fault types and thus their locations. Little existing literatures discuss 

location of evolving faults. 

To complement such gap, this chapter extends the method developed in 

Chapter 2 to locate evolving faults on transmission lines. Compare with location 

methods based on soft computing, the proposed method does not require an 

extensive amount of data for training. The method makes use of sparse wide area 

measurements taken by PMUs. These measurements are not necessarily captured 

from either end of the faulted transmission line. The proposed method is 

applicable to both single-circuit and double-circuit transmission lines, and the 

lines can be either transposed or untransposed. Evaluation studies show that the 

proposed methods yield quite accurate results. The proposed algorithm has a good 

potential to help utility engineers and researchers to protect and recover power 

systems from evolving faults. 
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Chapter 4 Location of Inter-Circuit Faults on 
Double-Circuit Transmission Lines Based on Sparse 
Wide-Area Measurements 
 

4.1 Introduction 

An evolving fault, although its faulted phases changes over time, is still 

considered as a single fault. In addition to single faults, simultaneous faults may 

also occur in a transmission system. A simultaneous fault refers to a combination 

of two or more faults at the same time [50]. 

Inter-circuit fault is a type of simultaneous fault, and it is the most common 

simultaneous fault type [50]. An inter-circuit fault occurs at a single geographical 

location, and connects two or more circuits [51], [52]. The conductor geometry of 

multi-circuit lines makes them prone to inter-circuit faults, and the probability of 

inter-circuit faults increases when multiple lines are mounted on the same tower 

[53].  In addition to multi-circuit lines, an inter-circuit fault may also occur between 

single-circuit lines when they share the same tower structure. 

The causes of inter-circuit faults can be various. Lighting, bush fires under 

lines, falling of tree limbs, accidental conductor contact, etc. may all cause inter-

circuit faults [53]-[56]. Many inter-circuit faults on double-circuit lines occur as 

results of lightning. When a lightning strike hits a transmission tower or an earth 

60 
 



wire, the tower potential raises, and the backflash may cause an inter-circuit fault 

connecting two circuits [54], [57]. The likelihood of such condition is high when 

the tower footing resistance is high, e.g. in a rocky area [57]. The number of inter-

circuit faults causes by backflash can be reduced by making sure that earth wires 

are over-run with small shielding angles, and that the tower earth resistances are 

kept low. 

Inter-circuit faults between each circuit in a double-circuit line is the most 

common inter-circuit fault [50]. Such a fault occurs when phases of each circuit are 

connected through objects such as electric arc and tree limb. Earth may or may not 

involves in such faults. During unearthed inter-circuit fault, the fault path does 

not include ground, but zero-sequence current is still present, which make phase 

selection problematic [58]. Inter-circuit faults can cause serious system instability 

when phase and ground relaying schemes are used for protection, because they 

will trip three phases of both circuits [59]. 

The authors of [53] presents an artificial neural network based method to 

detect and classify inter-circuit faults. The authors of [60] propose a new fault-loop 

impedance measurement algorithm for inter-circuit faults on double-circuit lines. 

Reference [51] analyzed an inter-circuit fault in a 138 kV system, and concluded 

several lessons learned, such as that the traditional criteria to detect a three-phase 

fault to block reclosing based on negative sequence components may not work for 
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complex faults. In [55], different protection schemes are evaluated for inter-circuit 

fault conditions. McDaniel analyzed an inter-circuit fault between a 161 kV 

transmission line and an underbuilt 69 kV sub-transmission line, and proposed 

two fault location methods which both require local measurements [61]. A location 

method of inter-circuit faults is proposed in [62]. The algorithm is based on 

generalized fault-loop model, and requires fault type information. The inter-

circuit faults studied in [62] are those that connect one phase in each circuit, and 

the inter-circuit faults that involve multiple phases are not considered. 

This chapter proposes a new location method for inter-circuit faults based 

on sparse wide-area measurements. The proposed fault location method omits the 

necessity to identify fault types.  Sparse wide area measurements, which may be 

taken from buses far away from the faulted line, are utilized by the proposed 

method instead of local measurements. The proposed algorithm is derived in 

phase-domain, and is applicable to both transposed and untransposed 

transmission lines. Distributed parameter line model is utilized in order to fully 

consider the shunt capacitances. The rest of the chapter is organized as follows: 

Section 4.2 illustrates the proposed fault location algorithm. Section 4.3 presents 

the evaluation studies, followed by the conclusion. 
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4. 2 Location Algorithm for Inter-Circuit Faults on Double-

Circuit Transmission Lines 

This section presents a wide-area location method for inter-circuit faults on 

double-circuit transmission lines based on sparse wide-area measurements. 

In modern power systems, it is quite often to find double-circuit lines 

transmitting power in narrow physical corridors. There are also places in power 

systems where single-circuit lines are mounted on a same tower. An inter-circuit 

fault may occur in both situations. 

Figure 4.1 depicts several examples of inter-circuit faults. PE , PE , PE  and 

PE  represents the Thevenin equivalent sources. Figure 4.1 (a) presents the one-line 

diagram of a double-circuit transmission line with an inter-circuit fault. Two 

fictitious buses, bus R and bus S, are added at the assumed inter-circuit fault 

location as shown in Figure 4.1. But R contains nodes  1R , 2R  and 3R . Bus S 

contains nodes 1R , 2R  and 3R . Bus P and bus Q are the studied line’s the starting 

and ending bus, respectively, each of which contains six nodes. Figure 4.1 (b) 

exhibits an inter-circuit fault between two single-circuit lines with the same 

voltage level. Figure 4.1 (c) is an example inter-circuit fault between two lines with 

different voltage levels. 
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Figure 4.1 Examples of inter-circuit faults 
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Figure 4.2 Models of (a) an unearthed ICF, and (b) an earthed ICF. 

To illustrate the mechanism of inter-circuit faults clearly, Figure 4.2 depicts 

the models of an unearthed and an earthed inter-circuit faults involving phase A 

and phase B. Assume frI  and fsI  are the fault current vectors involving bus R and 

bus S, respectively. The fault currents can be expressed as 

 T
frfrfr III ],,[

321
=frI  (4.1) 

 T
fsfsfs III ],,[

321
=fsI  (4.2) 

where T[.]  represents transpose of a matrix. If a phase i is not the faulted phase, 

then the corresponding fault current 
ifrI  or 

ifsI  equals to zero. 
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Assume bus k and bus l are two measurable buses in the transmission 

system except the fictitious buses. Based on the superimposed theory and the 

meaning of transfer impedance, the voltage change due to the inter-circuit fault, 

i.e. the superimposed voltage at bus k and bus l, can be written as 

 fsksfrkrk IZIZΔE −−=  (4.3) 

 fslsfrlrl IZIZΔE −−=  (4.4) 

where kΔE  is the superimposed voltage at bus k, lΔE  is the superimposed 

voltage at bus l, krZ  is the transfer impedance matrix between bus k and bus r, ksZ  

is the transfer impedance matrix between bus k and bus s, lrZ  is the transfer 

impedance matrix between bus l and bus r, lsZ  is the transfer impedance matrix 

between bus l and bus s. The superimposed voltages at bus k and bus l can be 

measured by using PMUs. The transfer impedances can be expressed as functions 

of unknown fault distance. The transfer impedances can be derived following a 

similar procedure to that in Chapter 2.  

Note that the studied parallel lines in this chapter have identical parameters. 

Therefore, it holds that  

 kskr ZZ =  (4.5) 

 lslr ZZ =  (4.6) 
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Equations (4.3) and (4.4) can be re-written as 

 
sumfkrfsfrkrk IZIIZΔE −=+−= )(  (4.7) 

 
sumflrfsfrlrl IZIIZΔE −=+−= )(  (4.8) 

It follows from (4.7) and (4.8) that 

 )()( 1
kkrkrkrf ΔEZZZI

sum

−−= T  (4.9) 

 )()( 1
llrlrlrf ΔEZZZI

sum

−−= T  (4.10) 

Eliminating 
sumfI   from (4.9) and (4.10) results in 

 0)()()()( 11 =− −−
llrlrlrkkrkrkr ΔEZZZΔEZZZ TT  (4.11) 

Since the transfer impedances in (4.11) are functions of fault location, and 

the superimposed voltages can be measured, (4.11) only includes one unknown 

variable. Thus, the fault location can be derived. 

If the measurements at bus k and bus l are unsyncrhonized, by equaling the 

magnitudes of (4.9) and (4.10), the fault location can still be obtained by solving 

the following equation: 

 0|)()(||)()(| 11 =− −−
llrlrlrkkrkrkr ΔEZZZΔEZZZ TT  (4.12) 
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Note that whether an inter-circuit fault is earthed or not does not affect the 

derivation of the fault location. In addition, fault type information is not required 

by the proposed method. Considering that fault type identification can be 

challenging for inter-circuit faults, omitting fault classification is an outstanding 

advantage of the proposed algorithm. 

4.3 Evaluation Studies of Inter-Circuit Fault Location 

The proposed location method has been validated based on simulation in 

Electromagnetic Transients Program (EMTP). The 27-bus, 345 kV, 60 Hz system 

used in Chapter 2 is adopted to model the transmission network. The transmission 

line between bus 9 and bus 10 is double-circuit line. Inter-circuit faults are 

supposed to occur on this line. Matlab is utilized to implement the proposed 

methods.  

A variety of inter-circuit faults have been simulated with different fault 

conditions, including fault types, resistances, and locations. Representative fault 

location results are presented as follows: 

Table 4.1 exhibits location results for inter-circuit faults on a transposed 

double-circuit line based on synchronized measurements. Table 4.2 presents 

location estimates of faults on a transposed double-circuit line obtained using 

unsynchronized measurements.  
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Table 4.3 and Table 4.4 lists the location results for inter-circuit faults on 

untransposed double-circuit lines. Estimates in Table 4.3 are calculated based on 

synchronized measurements, while the results in Table 4.4. are achieved based on 

unsynchronized measurements. Columns 1-3 of these tables are the fault type 

information, actual fault location, and fault resistance, respectively.  

In the fault type information, capitalized letters represent the phases on one 

line of the double-circuit line, small letters are the phases on the other line, and ‘G’ 

means ground. The other columns are the fault location estimation errors based 

on measurements from different buses. Fault location is measured from bus 9.  

It is observed that quite accurate results are yielded by the proposed 

algorithms in various conditions and different line configurations. 
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Table 4.1 Location results of inter-circuit faults on transposed double-

circuit lines based on synchronized measurements 

Fault 

type 

Actual 

fault loc. 

(p.u.) 

Fault 

res. (

Ω ) 

Est. error (%) using 

measurements from buses 

8&11 6&19 13&24 

a-B 0.3 5 0.02 0.01 0.07 

b-C 0.7 10 0.02 0.01 0.09 

a-C-G 0.6 20 0.03 0.02 0.09 

b-A-G 0.1 50 0.05 0.06 0.12 

a-BC 0.2 30 0.07 0.09 0.10 

c-A-G 0.6 5 0.05 0.00 0.02 

b-AC 0.7 15 0.08 0.09 0.01 

ab-C 0.9 10 0.11 0.05 0.07 

c-AB-G 0.1 1 0.03 0.14 0.11 

c-B-G 0.8 15 0.01 0.00 0.09 

a-A-G 0.7 1 0.02 0.01 0.06 

a-AB 0.2 5 0.01 0.01 0.07 

b-AC-G 0.6 5 0.02 0.02 0.08 

bc-AC-G 0.4 10 0.02 0.01 0.07 
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Table 4.2 Location results of inter-circuit faults on transposed double-

circuit lines based on unsynchronized measurements 

Fault 

type 

Actual 

fault 

loc. 

(p.u.) 

Fault 

res. (

Ω ) 

Est. error (%) using 

measurements from buses 

5&13 9&22 16&27 

a-B 0.3 5 0.07 0.03 0.13 

b-C 0.7 10 0.20 0.07 0.10 

a-C-G 0.6 20 0.21 0.08 0.10 

b-A-G 0.1 50 0.19 0.18 0.18 

a-C 0.2 20 0.15 0.07 0.09 

Ab-C 0.3 5 0.10 0.09 0.13 

ab-BC 0.5 15 0.11 0.05 0.19 

c-AB-G 0.7 10 0.09 0.05 0.12 

c-B-G 0.8 15 0.16 0.08 0.11 

a-A-G 0.7 1 0.11 0.06 0.06 

a-AB 0.2 5 0.13 0.04 0.03 

b-AC-G 0.6 5 0.14 0.06 0.02 

bc-AC-G 0.4 10 0.13 0.05 0.02 
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Table 4.3 Location results of inter-circuit faults on untransposed double-

circuit lines based on synchronized measurements 

Fault 

type 

Actual 

fault loc. 

(p.u.) 

Fault 

res. (

Ω ) 

Est. error (%) using 

measurements from buses 

3&12 11&16 15&22 

a-A-G 0.6 1 0.03 0.16 0.09 

a-B 0.2 50 0.19 0.04 0.19 

c-A-G 0.4 10 0.05 0.15 0.13 

c-C-G 0.8 20 0.06 0.10 0.12 

a-BC 0.7 50 0.03 0.18 0.13 

a-BC-G 0.7 10 0.03 0.18 0.12 

ab-C-G 0.1 1 0.03 0.10 0.10 

bc-AC 0.1 5 0.07 0.08 0.11 

c-AB 0.6 10 0.10 0.11 0.15 

ac-B-G 0.8 20 0.02 0.16 0.16 

a-C 0.7 15 0.09 0.21 0.09 

c-AB-G 0.1 1 0.03 0.17 0.02 

ab-BC-G 0.2 10 0.12 0.11 0.05 
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Table 4.4 Location results of inter-circuit faults on untransposed double-

circuit lines based on unsynchronized measurements 

Fault 

type 

Actual 

fault 

loc. 

(p.u.) 

Fault 

res. (

Ω ) 

Est. error (%) using 

measurements from buses 

6&22 4&12 8&19 

a-A-G 0.6 1 0.08 0.12 0.04 

a-B 0.2 50 0.12 0.07 0.09 

c-A-G 0.4 10 0.10 0.01 0.03 

c-C-G 0.8 20 0.09 0.01 0.02 

a-BC 0.7 50 0.12 0.02 0.07 

ab-BC-G 0.2 15 0.17 0.09 0.08 

c-AC-G 0.3 20 0.05 0.06 0.09 

c-BC-G 0.2 1 0.09 0.12 0.11 

ac-B-G 0.1 10 0.14 0.02 0.10 

a-BC-G 0.7 10 0.12 0.03 0.07 

ab-C-G 0.1 1 0.04 0.02 0.01 

bc-AC 0.1 5 0.05 0.01 0.01 

ab-BC-G 0.2 10 0.10 0.00 0.03 
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4.4 Summary 

Inter-circuit fault is the most common simultaneous fault type in power 

systems, and usually occur in multi-circuit lines or between single-circuit line 

that are on the same tower structure. This chapter proposes a new location 

method for inter-circuit faults on double-circuit transmission lines. Although 

fault classification can be challenging for inter-circuit faults, this algorithm can 

still accurately determine fault locations, since fault type information is not a 

prerequisite. The proposed method utilizes wide-area voltage measurements that 

do not have to be taken at buses of faulted lines. In addition, the proposed 

method can deal with inter-circuit faults that involve multiple phases, and is 

immune to fault resistances. Whether the studied line is transposed or 

untransposed does not affect the effectiveness of the proposed algorithm. Shunt 

capacitances are fully modeled and considered. PMUs are used to measure 

voltage quantities in the system. Even if the measurements are not synchronized, 

accurate locations can still be obtained.  Evaluation studies based on EMTP 

simulation have demonstrated that the proposed algorithms can yield quite 

accurate estimates under a variety of inter-circuit fault conditions. 
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Chapter 5 Parameter-Free Fault Location Method for 
Series-Compensated Transmission Lines 
 

5.1 Introduction 

Chapter 2 – Chapter 4 presents several wide-area fault location methods. 

These methods rely on some system information, including transmission line 

parameters. To make this dissertation more comprehensive, this chapter presents 

a new fault locator for series compensated transmission lines without requiring 

line parameter information. Synchronized voltage and current measurements 

from both ends of the faulted line is utilized. Line parameters, along with fault 

locations, can be estimated online.  

In the past decades, fault location methods without utilizing line 

parameters and fault location methods for series-compensated lines have been put 

forward. The authors of [63] design a two-terminal parameter-free transmission 

line fault locator. Such locator utilizes measurements from both ends, and does not 

require synchronization. Shunt capacitances are ignored by this algorithm. In [64], 

a parameter-free fault location method based on distributed parameter line model 

is proposed. Reference [65] presents a fault location algorithm for series-

compensated transmission line. The proposed method utilizes two-terminal 

unsynchronized voltage and current measurements, and it requires line 
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parameters information. In [66], a fault location method that is applicable to 

double-circuit series-compensated line is proposed, and shunt capacitances are 

also considered. The authors of [67] puts forward a parameter-free fault location 

algorithm for double-circuit transmission lines using two-end current 

measurements. 

The rest of this chapter is organized as follows: Section 5.2 presents the fault 

location algorithm. Section 5.3 exhibits evaluation studies, followed by summary. 

5.2 Parameter-Free Fault location Algorithm 

Consider the transmission line between terminals P and Q to be a 

transposed line. The series compensation device is installed at the point of C. A 

fault may occur either to the left side or to the right side of the compensator. in 

Figure 5.1, GE  and HE  represent Thevenin equivalent circuits. 

Assume that the equivalent impedances of all three phases of the series 

compensator are the same, and equal to SCZ . Since there is no mutual coupling 

between the phases of series compensators, the compensator’s equivalent 

impedance of each sequence is SCZ . 
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Figure 5.1 Schematic diagram of a series compensated transmission line 

 

Assume that synchronized voltage and current measurements before and 

during fault are available from both ends. During normal operation, there are N 

sets of measurements. While during the fault period, only one set of measurements 

is required. Then, the measurements obtained are 

 ],,,,,,,,...,,,,[ 1111 fQfQfPfPQNQNPNPNQQPP IVIVIVIVIVIV=M  (5.1) 

where PiV , PiI , QiV  and QiI  are the ith set of normal operation measurement, fPV , 

fPI , fQV  and fQI  are the during-fault measurement. 

 The unknown variable vector is defined as  

 T
SC mXbxrbxr ],,,,,,,[ )0()0()0()1()1()1(=X  (5.2) 

where )1()1()1( ,, bxr  are the positive-sequence per-unit series resistance, series 

reactance, and shunt susceptance; )0()0()0( ,, bxr  are the zero-sequence per-unit 

series resistance, series reactance, and shunt susceptance; SCX  is the per-unit 

equivalent reactance of the compensator on each sequence; m represents the per-
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unit fault location. Therefore, the per-unit equivalent impedance of the 

compensator on each sequence SCZ  is SCjX . 

The derivation of measurement vector S  and function vector )(XF  is 

described as follows: 

Based on the equivalent Pi circuit during normal operation as shown in 

Figure 5.2, the following three equations can be established for sections PC and 

CQ: 

 k
PPC

k
PPC

C

k
cL IlVl

Z
I )1(

0
)1()1(

0
)1(

)1(
)1(

0 )cosh()sinh(1 γγ +−= , Nk ,...,1=  (5.3) 

 k
QCQ

k
QCQ

C

k
cR IlVl

Z
I )1(

0
)1()1(

0
)1(

)1(
)1(

0 )cosh()sinh(1 γγ +−= , Nk ,...,1=  (5.4) 

 

Figure 5.2 Positive-sequence equivalent Pi circuit of series compensated 

transmission line during normal operation 

Q P 
 

 

 

 

 

 

 

 C 

   

 

  

 

  

78 
 



 k
cR

k
cL II )1(

0
)1(

0 −= , Nk ,...,1=  (5.5) 

where k is the index of set of pre-fault measurements; l is the distance between 

terminal P and terminal Q; Cl  is the distance between terminal  P and the 

compensator location C; k
PV )1(

0  and k
QV )1(

0  are the kth positive-sequence voltage 

phasor measurements at P and Q preceding fault, respectively; k
PI )1(

0  and k
QI )1(

0  are 

the kth positive-sequence current phasor measurement at P and Q preceding fault, 

respectively; )(i
CZ  and )(iγ  are the ith sequence characteristic impedance and 

propagation constant of the transmission line, respectively. The relationship 

between )(i
CZ , )(iγ  and )()()( ,, iii bxr  can be found in [29]. In (5.3) - (5.5), i  equals to 

one, since only positive-sequence quantities exist in normal operation condition.  

Substitution of (5.3) and (5.4) into (5.5) leads to  

 
0])cosh()sinh(1[

])cosh()sinh(1[)(

)1(
0

)1()1(
0

)1(
)1(

)1(
0

)1()1(
0

)1(
)1(

=+−+

+−=

k
QCQ

k
QCQ

C

k
PPC

k
PPC

C
k

IlVl
Z

IlVl
Z

Xf

γγ

γγ
, Nk ,...,1=  (5.6) 

Based on the equivalent Pi circuit during normal operation as shown in 

Figure 5.2, another key relationship can be presented as  
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])sinh(-)[cosh(  

])sinh(-)[cosh(
)()()()()(

)1(
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0
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=

−
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−−
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i
QCQ

i
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k
cL

i
PPC

ii
C

i
PPC

i

k
cRSC

k
cL

k
cL

IlZVl
ZIIlZVl

VZIV

γγ

γγ
 (5.7) 

which can yield functions for N sets of measurements as  

0])sinh(-)[cosh(                
])sinh(-)[cosh()(
)()()()()(

)1(
0

)()()()()(

=−

−=+

i
QCQ

ii
C

i
QCQ

i
SC

k
cL

i
PPC

ii
C

i
PPC

i
kN

IlZVl
ZIIlZVlXf

γγ

γγ
, Nk ,...,1=  (5.8) 

The first 2N functions in the function vector can be developed based on (5.6) 

and (5.8). The other functions are to be constructed based on the during-fault 

equivalent circuit and corresponding fault type.  

If the fault is an AG fault, it holds that 

 )1()2()1()0( 3 fffff IRVVV =++  (5.9) 

where )(i
fV  and )(i

fI  are the ith sequence fault voltage and current, respectively 

( 0=i  represents zero-sequence, 1=i  represents positive-sequence, 2=i  

represents negative-sequence); fR  is the fault resistance. As fR  is a real number, 

the term )2()1()0(
fff VVV ++  are in phase with )1(

fI , and such relationship can be 

represented by the following equation: 

 0Im)( )1(

)0()2()1(

12 =










 ++

=+
f

fff
N I

VVV
Xf  (5.10) 
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If the fault is a phase B to phase C fault, it holds that  

 )1()2()1( 3 ffff IRVV =−  (5.11) 

Thus, the following function can be obtained: 

 0Im)( )1(

)2()1(

12 =










 −

=+
f

ff
N I

VV
Xf  (5.12) 

If the fault is a phase B to phase C to ground fault, it holds that  

 )0()1()0( 3 ffff IRVV −=−  (5.13) 

Such equation can be rewritten in the following form: 

 0Im)( )0(

)1()0(

12 =










 −

=+
f

ff
N I

VV
Xf  (5.14) 

If the fault is a balanced fault, it holds that  

 )1()1(
fff IRV =  (5.15) 

Such function can be expressed by 

 0Im)( )1(

)1(

12 =












=+
f

f
N I

V
Xf  (5.16) 
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The )(i
fV  and )(i

fI  in (5.10), (5.12), (5.14) and (5.16) can be expressed as 

functions of the unknown fault location and line parameters based on analysis of 

the during-fault circuit. It notes that the series compensation device, which is 

installed at a fixed location along the transmission line, divides the line into two 

segments. Since on which side the fault occurs is unknown, it is necessary to 

develop two subroutines addressing possible fault on either side.  

5.2.1 Subroutine 1: Fault Occurs To the Left-Hand Side of the 

Compensator 

 

Figure 5.3 The equivalent Pi circuit of ith sequence transmission line during fault 
with a fault to the left of the compensator 

 

The equivalent circuit of ith sequence transmission line during the fault is 

shown in Figure 5.3. Based on the analysis on line segment PF in Figure 5.3, the 
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voltage at the fault point )(i
fV  and fault current )(i

fI  can be calculated by the 

following equations: 

 )()()()()()( )sinh(-)cosh( i
PPF

ii
C

i
PPF

ii
f IlZVlV γγ=  (5.17) 

 )()()( i
fR

i
fL

i
f III −=  (5.18) 

where )(i
PV  and )(i

QV  are the ith sequence voltage phasors at P and Q during fault, 

respectively ( 2,1,0=i ); )(i
PI  and )(i

QI  are the ith sequence voltage phasors at P and 

Q during fault, respectively ( 2,1,0=i ). )(i
fLI , the current injection to the fault point 

from the left-hand-side, can be calculated by the following equation: 

 ( ) ( ) )()()()(
)(

)( coshsinh1 i
PPF

ii
PPF

i
i

C

i
fL IlVl

Z
I γγ +−=  (5.19) 

Another term on the right-hand-side of (5.18), )(i
fRI , can be derived as follows: 

Based on the analysis on the line segment CQ in Figure 5.3, the voltage and 

current to the left side of the compensator can be calculated by the following 

equation: 

 SC
i

cR
i

cR
i

cL ZIVV )()()( +=  (5.20) 

 )()( i
cR

i
cL II =  (5.21) 
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where 

 )()()()()()( )sinh()cosh( i
QCQ

ii
C

i
QCQ

ii
cR IlZVlV γγ +=  (5.22) 

 )()()()(
)(

)( )cosh()sinh(1 i
QCQ

ii
QCQ

i
i

C

i
cR IlVl

Z
I γγ +=  (5.23) 

Based on the analysis on the segment FC,  )(i
fRI  is  

 )()()()(
)(

)( )cosh()sinh(1 i
cLFC

ii
cLFC

i
i

C

i
fR IlVl

Z
I γγ +=  (5.24) 

By substituting (5.20) and (5.21) into (5.24), )(i
fRI  can be derived, and )(i

fI  can 

be represented by unknown fault distance and line parameters. 

Based on the analysis on the segment FC, the following equation can be 

obtained: 

 )()()()()()( )sinh()cosh( i
cLFC

ii
C

i
cLFC

ii
f IlZVlV γγ +=  (5.24) 

By equaling (5.17) and (5.24), another function can be obtained as: 
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5.2.2 Subroutine 2: Fault Occurs To the Right-Hand Side of the 

Compensator 

 

Figure 5.4 The equivalent Pi circuit of ith sequence transmission line during fault 
with a fault to the right of the compensator 

 

Based on the analysis on the line segment shown in Figure 5.4, the voltage 

at the fault point )(i
fV  and fault current )(i

fI   can be calculated by the following 

equations: 
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where 
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Derivation of )(i
fLI  is presented as follows: 

Based on the analysis on the line segment PC in the Figure 5.4, the voltage 

and current injection on the right side of the series compensator can be calculated 

as 

 SC
i

cL
i

cL
i

cR ZIVV )()()( −=  (5.29) 

 )()( i
cL

i
cR II =  (5.30) 

where 
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i
cL IlVl

Z
I γγ +−=  (5.32) 

For the line segment CF in the Figure 5.4, it holds that 

 )()()()(
)(

)( )cosh()sinh(1 i
cRCF

ii
cRCF

i
i

C

i
fL IlVl

Z
I γγ +−=  (5.33) 

By substituting (5.29) - (5.32) into (5.33), )(i
fLI  can be derived, and )(i

fI  can be 

represented by unknown fault distance and line parameters. 

Based on the analysis on the segment CF, the following equation can be 

obtained: 
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By equaling (5.26) and (5.34), another function can be obtained as: 
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Here concludes the discussion of subroutines. 

In summary, the functions are 
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Subroutine 1  
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Subroutine 2 
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Therefore, the function vector )(XF  can be obtained as:  

 )](Re[12 XXF ii f)( =− , 22,...,2,1 += Ni  (5.29) 

 )](Im[2 XXF ii f)( = , 22,...,2,1 += Ni  (5.30) 

where Re(.)  and Im(.)  yield the real and imaginary part of their arguments, 

respectively.  

The measurement vector S  is formulated as follows: 

 0=iS , 44,...,2,1 += Ni  (5.33) 

Note that for balanced faults, only positive-sequence functions should be 

used, since zero-sequence and negative-sequence quantities do not exist. The 

measurement vector and function vector are related as  

 μXFS += )(  (5.36) 
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where μ  is characterized by the following equation: 

 )( TE μμR =  (5.37) 

Elements of R  can be specified per the accuracy of meters, and a smaller 

value indicates a more accurate measurement. The estimate of X  can be obtained 

by minimizing the cost function defined as 

 )]([)]([ 1 XFSRXFS −−= −TJ  (5.38) 

Two fault locations will be derived based on the algorithm presented above. 

The appropriate estimate can be selected when it satisfies the following principles: 

1. The estimated fault location is within the assumed range. 

2. The fault resistance calculated based on the estimated fault location is 

non-negative. 

3. SCX , the reactance of the series compensator on each sequence, is 

negative. 

5.3 Evaluation Study 

This section presents the simulation results to evaluate the developed fault 

location algorithm. Matlab SimPowerSystems [68] is used to simulate the series-

compensated transmission line and generate voltage and current phasors for faults 

of different types, locations and resistances. These phasors are fed into the 
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algorithm to produce the fault location estimate. The initial value for the fault 

location is chosen as 0.5 p.u. The accuracy of fault location estimate is evaluated 

by percentage error as defined as the equation (2.39). 

The transmission system is studied in per unit system, of which base 

voltage is 500 kV and base power is 1000 MVA. The bus voltage at bus P is 200.1 ∠  

p.u., while the bus voltage at bus Q is 00.1 ∠  p.u. The positive-sequence source 

impedance of bus P is (0.0687 + j0.1821) p.u., and its zero-sequence source 

impedance is (0.0612 + j0.1837) p.u. The positive-sequence source impedance of 

bus Q is (0.0104 + j0.0589) p.u., and its zero-sequence source impedance is (0.0029 

+ 0.0605i) p.u. The total length of the studied line is 350 km, and the series 

compensator is installed 200km away from bus P (0.5714 p.u.). The positive-

sequence resistance is 0.0009967 p.u./km, the positive-sequence series reactance is 

0.002357 p.u./km, and the positive sequence shunt susceptance is 0.001835 p.u./km. 

Assume the studied transmission line is compensated with 40% of its total series 

reactance. Since the positive-sequence total reactance is 0.825 p.u., the series-

compensator’s reactance on each sequence is -0.33p.u. A value of 1e-6 is chosen for 

the variance for measurements. 

Four representative cases are exhibited as follows:  

Case 1: An AG fault occurs at 100 km away from bus P, of which fault 

resistance is 20 ohm.  
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The two fault location estimates based on two subroutines are: 2861.01 =m  

and 7325.02 =m . Based on the first subroutine, the calculated series compensator’s 

reactance is -0.3309 p.u. Based on the second subroutine, the calculated series 

compensator’s reactance is 0.1221 p.u. Therefore, the first estimate is adopted, and 

it is concluded that the fault location is 0.2861 p.u. from bus P. The percentage 

error of this estimate is 0.15%. 

Case 2: A BC fault occurs 260 km away from bus P, of which fault resistance 

is 10 ohm.  

The two fault location estimates based on two subroutines are: 5932.01 =m  

and 7437.02 =m . Since the compensator is installed 0.5714 p.u. from bus P, the first 

estimate is discarded. It is concluded that the fault location is 0.7437 p.u. from bus 

P. The percentage error of this estimate is around 0.11%. 

Case 3: A BCG fault occurs at 50 km away from bus P, of which fault 

resistance is 1 ohm.  

The two fault location estimates based on two subroutines are: 1428.01 =m  

and 6021.02 =m . Based on the first subroutine, the calculated series compensator’s 

reactance is -0.3284 p.u. Based on the second subroutine, the calculated series 

compensator’s reactance is 0.0597 p.u. Therefore, the first estimate is adopted, and 

it is concluded that the fault location is 0.1428 p.u. from bus P. The percentage 

error of this estimate is 0.07%. 
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Case 4: An ABC fault occurs at 300 km away from bus P, of which fault 

resistance is 5 ohm.  

The two fault location estimates based on two subroutines are: 7071.01 =m  

and 8587.02 =m . Since the compensator is installed 0.5714 p.u. from bus P, the first 

estimate is discarded. It is concluded that the fault location is 0.8587 p.u. from bus 

P. The percentage error of this estimate is around 0.20%.  

5.4 Summary 

This chapter proposes a parameter-free fault location method for series-

compensated transmission lines. Two-terminal voltage and current measurements 

are utilized. The proposed method does not rely on source impedance.  

Based on different fault types, different functions are used. Since the fault 

location is unknown, two subroutines where fault may occur to either side are 

considered, and two estimates will be yielded. The true fault location can be 

determined based on the identification principles.  

Evaluation studies based on Matlab SimPowerSystems are implemented, 

and verify the effectiveness of the proposed fault location method.  
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Chapter 6 Conclusion 
 

Short-circuit faults may cause severe losses to customers and hazardous 

impacts on electric power systems. Accurate and prompt fault location can help 

recover power systems in time, and help avoid potential financial losses and 

societal disasters.  

Compared with conventional fault location methods, the wide-area fault 

location method proposed in Chapter 2 have several superiorities. It does not rely 

on local measurements, and can precisely determine fault location with sparse 

wide-area measurements. Conventional methods assume transmission lines to be 

always transposed, which may not be true especially in EHV/UHV transmission 

networks. The proposed method is able to deal with both transposed and 

untransposed transmission lines. In addition, it is applicable to both single-circuit 

and double-circuit lines. To fully consider shunt capacitances, distributed 

parameter line models are used. Moreover, when multiple sets of measurements 

are available, an optimal estimator can be used to detect and identify potential bad 

measurements. Also, the system loading conditions do not affect the accuracy of 

fault location. Evaluation studies on 27-bus, 345kV, 60 Hz transmission network is 

implemented, and quite accurate fault location estimates can be obtained by the 

proposed method.  
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Another key contribution of this dissertation is consideration of complex 

faults. In Chapter 3, the wide-area fault location method is extended to deal with 

evolving fault. Evolving faults refers to faults of which fault types change over the 

fault periods. Fault classification is very challenging for evolving faults. The 

existing location methods for evolving faults rely on some critical factors, such as 

extensive amount of training for soft-computing, very high-frequency local 

measurements, etc. The wide-area fault location method proposed in this 

dissertation only requires sparse wide-area measurements, and does not need 

fault type information.  

In Chapter 4, fault location method for another complex fault type, inter-

circuit fault, is developed. Inter-circuit fault is a type of simultaneous fault, and it 

is the most common simultaneous fault type. Inter-circuit faults between each 

circuit in a double-circuit line is the most common inter-circuit fault. Inter-circuit 

faults can cause serious system instability when phase and ground relaying 

schemes are used for protection, because they will trip three phases of both circuits. 

A fault location method for inter-circuit faults on double-circuit lines are 

developed and evaluated in Chapter 4. Evaluation studies based on EMTP 

simulation have demonstrated that the proposed algorithms can yield quite 

accurate estimates under a variety of inter-circuit fault conditions. 
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The fault location methods proposed in Chapter 2 – Chapter4 require 

system information such as line parameters. The fault location method proposed 

in Chapter 5 is a parameter-free method. Neither line parameter information nor 

the series compensator’s capacitance is required. Distributed parameter line model 

is adopted to fully consider shunt capacitances of long distance lines. Evaluation 

studies verifies the effectiveness of the fault location method.   
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