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ABSTRACT OF THESIS 
 
 

COMPARISON OF PERFORMANCE OF VORTECONE INERTIAL DUST 
SEPARATOR TO FLOODED-BED DUST SCRUBBER 

 
 

Increasing incidence of Black Lung disease in miners since the early 1990s has concerned 
law makers and the mining industry. New regulations promulgated by MSHA in 2014 
lowered the permissible limit of dust exposure of underground workers. The hazards of 
respirable coal dust have been common knowledge throughout the mining industry since 
the enactment of the 1969 Federal Coal Mine Health and Safety Act, and many 
administrative controls have been put in place since its enactment. 
 
The purpose of this thesis is to analyze the performance of a Vortecone scrubber, used in 
the automotive industry to remove paint overspray from the air, for removing coal dust 
with an emphasis on respirable coal dust. Comparisons are made to a very effective 
scrubbing technology already in use in many underground coal mines, a flooded-bed 
scrubber system. This system is typically mounted on a continuous miner, and used to scrub 
contaminated air of unwanted particulate matter. Per the results of this study, a Vortecone 
appears to remove a greater amount of respirable dust from an airstream than a flooded-
bed scrubber, and carries with it several operational advantages which are discussed. 
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Chapter One: Introduction 

Per a study conducted by the National Institute for Occupational Safety and Health 

(NIOSH) the incidence rate of coal workers’ pneumoconiosis (CWP), and other chronic 

diseases related to respirable coal mine dust exposure, has been on the rise since the early 

1990s (NIOSH, 2008).  Because of these findings, the Mine Safety and Health 

Administration (MSHA) has promulgated new regulations further reducing the allowable 

exposure miners may have to respirable dust (MSHA, 2014). These recent findings and 

regulations have initiated a renewed effort in improving the underground mine 

environment by reducing individual dust exposure.  

Dust is an inescapable byproduct of coal mining, because any breaking or crushing of 

coal or rock will generate dust. A portion of generated dust is in the respirable range, 

having an aerodynamic diameter less than 10 microns, and poses a significant health risk 

to miners (WHO, 1999). Various methods of reducing or controlling dust emissions have 

been tested over the years, and some have proven to be very successful and are in wide 

use today. Some primary methods include dilution and displacement by ventilation, 

wetting and capture by water sprays, and collection and filtration by dust collector 

(Kissell, 2003).  

A large share of the dust in an underground coal mine is generated at the working face, 

where the coal is broken and gathered for transport (NIOSH, 2008). Therefore, 

individuals employed close to the working face are at the highest risk of developing CWP 

and many dust control technologies are employed close to the active workings in a mine 

(Kissell, 2003; NIOSH, 2008). These dust control technologies can be stationary or 

machine-mounted depending on the application (Kissell, 2003). One that has proven 
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particularly effective is the machine-mounted, flooded-bed dust scrubber system 

(Campbell et al., 1983). The system employs, (1) a steel mesh screen flooded with water 

to trap dust in water droplets, (2) a demister to remove those droplets from the airstream, 

and (3) a fan to move the air (Campbell et al., 1983). The system is very effective, and 

can eliminate over 90% of the dust from coal mine air (Collinet et al., 1990). 

The aim of this project is to introduce a new scrubbing system called the Vortecone, 

invented at the University of Kentucky and employed by Toyota Manufacturing, into the 

mining industry and to compare its performance with that of a flooded-bed screen and 

demister system. Vortecones currently employed by Toyota are used on its automotive 

painting line to separate paint overspray from the air (Salazar, 2012). The comparison 

will be made by testing a scale model of the Vortecone in a laboratory setting and 

comparing the results to those obtained from laboratory testing on a flooded-bed screen 

and demister system.  
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Chapter Two: Review of Literature 

2.1 History of Black Lung and Dust Regulation 

Black Lung, also known as CWP, has existed since humanity starting mining coal 

(Arnold, 2016). Some of the earliest recorded recognition of the lung problems that coal 

miners were having, and linking the illness to coal dust, comes from British doctors in the 

1830s (McIvor and Johnston, 2007). And as knowledge continued to grow into the early 

1900s about the hazards of coal dust, little was done in the way of legislation controlling 

levels of respirable coal dust (Arnold, 2016).  “By the 1950s, scientists had shown with 

near certainty that CWP could be caused exclusively by excessive exposure to coal dust” 

(Arnold, 2016). A strike by the United Mine Workers of America (UMWA) in 1968 

initiated the creation of the 1969 Federal Coal Mine Health and Safety Act (Coal Act) 

(Arnold, 2016).  

The incidence rate of CWP had been in steady decline since 1970, after the enactment of 

the Coal Act limited workers’ exposure to respirable coal dust (NIOSH, 2008; Public 

Law 91-193, 1969). The Coal Act based the dust limitations on data from British 

prospective studies on CWP (Merchant, Taylor, and Hodous, 1986). However, research 

conducted by NIOSH has shown a rise in the incidence rate of CWP starting in the early 

1990s (NIOSH, 2008).  Therefore, the U.S. Department of Labor through MSHA 

proposed a new dust rule, called the Final Rule, aimed at lowering miners’ exposure to 

respirable coal mine dust even further (MSHA, 2014). The Final Rule, effective August 

1, 2016, lowered the permissible respirable dust exposure limit from 2.0 mg/m³ to 1.5 

mg/m³ in the underground workings and from 1.0 mg/m³ to 0.5 mg/m³ in the intake air of 

an underground working place (U.S. Department of Labor, 2014). The Final Rule goes on 
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to say that decreasing the amount of respirable coal dust a worker is exposed to is “…the 

most effective means of preventing diseases caused by excessive exposure to such dust.” 

(U.S. Department of Labor, 2014). 

2.2 Epidemiology of Coal Workers’ Pneumoconiosis 

The term “black lung” comes from the legal definition of many diseases that affect the 

lungs of individuals who have worked in a coal mine (Castranova and Vallyathan, 2000). 

Black lung includes CWP, bronchitis, emphysema, and silicosis which are diseases that 

are caused by the constituents of coal mine dust (Castranova and Vallyathan, 2000). The 

reason for lumping diseases under one umbrella is that it is difficult to distinguish among 

them without direct examination of the lungs which can only occur post-mortem 

(Castranova and Vallyathan, 2000). CWP is further divided into two separate diseases, 

simple CWP and complicated CWP depending on the characteristics and progression of 

the disease in the lung (Castranova and Vallyathan, 2000).  CWP starts as the simple 

variety, and upon continued exposure the lungs continue to fill with coal dust and 

complex CWP develops (Castranova and Vallyathan, 2000). Simple and complex CWP 

are separated by the size and number of zones in a radiograph of a miner’s lungs that 

have varying opacity compared to heathy lung tissue (Castranova and Vallyathan, 2000). 

The disease progresses because of several interactions between lung tissue and particles 

including physical and chemical mechanisms (Castranova and Vallyathan, 2000).  

Silicosis, usually found in conjunction with other diseases in coal miners, is caused by 

crystalline silica being deposited in the lungs (Castranova and Vallyathan, 2000). Silica 

can be a constituent of coal mine dust, depending on the conditions of the mine, and may 

affect the maximum respirable dust exposure for a mine (Castranova and Vallyathan, 
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2000). Silicosis is encountered in several occupations, and silica dust is much more 

dangerous than coal dust because of its reactivity (Castranova and Vallyathan, 2000).  

CWP, once progressed to the complex stage, can be called Progressive Massive Fibrosis 

(PMF) which includes decreased lung function due to disease caused by inhalation of 

damaging particles (Castranova and Vallyathan, 2000). PMF can progress independently 

of exposure, so it is important for individuals to participate in monitoring of their lung 

heath if they are in occupations which expose them to respirable dust (Castranova and 

Vallyathan, 2000). PMF is typically the last stage of the disease, which includes vascular 

degeneration and declining lung function (Castranova and Vallyathan, 2000). 

2.3 Dust Characterization 

Coal mine dust consists of over 50 different elements and their oxides and some can be 

cytotoxic and carcinogenic (NIOSH, 1995; Castranova and Vallyathan, 2000). It can also 

contain several minerals, whose content and concentration in the dust vary by coal seam 

(NIOSH, 1995). Coal miners working in anthracite coal have higher rates of CWP than 

other miners (Castranova and Vallyathan, 2000). This is thought to be due in part to the 

increased toxicity of anthracite coal compared to coals of lower ranks (Castranova and 

Vallyathan, 2000).  

Dust is generally characterized by the size of its particles, which can be measured in 

several different ways. Typically, when dust is looked at from the perspective of 

occupational health, the aerodynamic diameter is of interest (WHO, 1999). The 

aerodynamic diameter of a particle is defined as a particle having identical terminal 

settling velocity in calm air to a spherical particle of density 1 g/cm³ “… regardless of its 
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geometric size, shape, and true density” (WHO, 1999). The reason aerodynamic diameter 

is of interest from a health perspective is because deposition of particles in the lungs is 

dictated by the aerodynamic diameter of the particle (WHO, 1999). A particle with a 

smaller aerodynamic diameter will travel deeper into the lungs than a particle with a 

larger aerodynamic diameter (WHO, 1999).  

Coal mine dust has a wide size distribution, and the airborne constituent typically consists 

of particles less than 100 microns in aerodynamic diameter that are carried by the 

ventilating air (NIOSH, 1995; WHO, 1999). Particles larger in size may become airborne, 

but do not remain there for an extended period (WHO, 1999).  A study by NIOSH (2007) 

that sized dust from 47 different coal mines, showed coal mine dust having a median 

diameter around 150 microns, with as much as 40% of the material being under 200 mesh 

(74 microns) in some samples. A more recent study conducted specifically in the return 

of a continuous miner section showed a median diameter of 48 microns with 90% of the 

total being below 104 microns (Barone et al. 2016). The “(a)irborne respirable dust in 

underground coal mines has been estimated to consist of 40% to 95% coal…” (NIOSH, 

1995). This varies by coal rank, seam thickness, and mining method (NIOSH, 1995).  

2.4 Dust and the Respiratory Tract 

Any particle small enough to become airborne may be inhaled into the nose or mouth 

depending on the respiration of an individual (WHO, 1999). Inhalation probability 

depends on several factors, particularly the particles aerodynamic diameter (WHO, 

1999). Particles that become airborne are about 100 microns and below in aerodynamic 

diameter (WHO, 1999). Once a particle is inhaled, there are five mechanisms that control 

the deposition of particles in airways. They are sedimentation, inertial impaction, 
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diffusion, interception, and electrostatic deposition (WHO, 1999).   The primary 

mechanisms in human airways are sedimentation and inertial impaction (WHO, 1999). 

Particles having an aerodynamic diameter greater than 10 microns are typically deposited 

in an individual’s nose and throat, while particles less than 10 microns continue to the 

thoracic region (WHO, 1999). Particles ranging from 10 to 4 microns are generally 

deposited in the airways of the lung, and particles less than 4 microns reach the alveoli of 

the lung, where gas exchange occurs (WHO, 1999). Figure 2.1 depicts a general 

schematic of particle deposition in the airways.  

 

Figure 2.1: Depositional Regions of the Lung (NIOSH) 
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2.4 Overview of Particle Measurement Technology 

Particulate matter is difficult to measure, because small particles represent relatively 

small masses and very sensitive instrumentation must be used (Amaral et al., 2015). 

Several methods for measuring particles exist today, with researchers needing to choose 

what type of measurement they wish to have, as well as the cost of the device (Amaral et 

al., 2015). The smaller the particle becomes, the more difficult and expensive it becomes 

to measure accurately (Amaral et al., 2015). The types of instruments that measure 

particles can be broken up into three different methods - gravimetric, optical, and 

microbalance methods (Amaral et al., 2015).  

Gravimetric methods of measuring aerosol concentration represent sampling that directly 

collects a representative sample from an airstream, deposits it on a plate or filter, and then 

pre- and post-weights that filter for an averaged mass concentration (Amaral et al., 2015). 

This method is commonly used for personal sampling in environmental situations, where 

many standards are written in terms of a certain mass per unit volume of air that a worker 

may be exposed to (Amaral et al., 2015). These systems can be relatively inexpensive to 

operate, and require centralized pre- and post-weighing of filters for accurate 

measurements (Amaral et al., 2015). However, for gravimetric sampling of very small 

particles, very sensitive weighing equipment must be employed in a controlled 

environment to ensure accurate measurements (U.S. EPA 2016). For example, when 

measuring particulate matter present in ambient air below 2.5 microns, the U.S. 

Environmental Protection Agency requires that equipment be in an environment with 

temperature controlled to within two degrees centigrade, between thirty and forty percent 

relative humidity, and relatively vibration-free to avoid error in the measuring process 
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(U.S. EPA, 2016). These conditions typically require the construction of a unique room 

with specialized air handling equipment to accommodate the requirements (U.S. EPA, 

2016). 

The second, optical methods, represents a very broad range of particle measurement 

equipment that can rely on light scattering, light absorption, or light extinction (Amaral et 

al., 2015).  These methods all use the properties of light and their interaction with 

particles to determine a particles size or concentration of particles, such as passing a 

particle neatly through a laser beam and measuring the response (Amaral et al., 2015). 

Light extinction can involve shining a light across a test duct and determining the amount 

of light attenuation for certain dust concentrations (Amaral et al., 2015). These 

techniques are advantageous because they do not require that the particles be collected on 

a surface, and are simply examined while still airborne (Glenn and Craft, 1986).  

However, the response of light to a particle may not always be uniform, and may be 

affected by the size as well as the color of the particle (Glenn and Craft, 1986). 

Therefore, the material being measured must have a carefully measured reflective and 

refractive index to properly correlate particle size with light response (Manickavasagam 

and Mengüç, 1993). For coal particles (of certain particle sizes ranges) the increase in 

light response is not linear with respect to particle size, making it difficult to distinguish 

between two particles (i.e. a 3 micron particle producing a response very similar to a 3.5 

micron particle) (Manickavasagam and Mengüç, 1993).  Therefore, without proper 

calibration, some optical machines may misrepresent the distribution of particle-size 

when measuring coal dust particles. 
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Finally, microbalance methods require very finely tuned micro scales to weigh individual 

particles or batches of particles to determine an exposure (Amaral et al., 2015). These 

instruments are typically expensive and involve a very small vibrating mass with a 

collection plate on top (Amaral et al., 2015). The vibrating mass will change frequency 

when particles are deposited on the collection plate; thus, a response can be measured and 

correlated with mass (Amaral et al., 2015). In this study, optical particle sizing methods 

are used for their quick readout time, one-step measurement (not requiring special sample 

handling and storage), and relatively low entry cost for the measuring devices. 

2.5 Dust Controls in Underground Coal Mines 

Dust is controlled in several ways including dilution and displacement by ventilation, 

wetting and capture by water sprays, and collection and filtration by dust collector 

(Kissell, 2003). These methods are aimed at reducing local dust concentration levels for 

the health and safety of the workers (Kissell, 2003). A large majority of dust in an 

underground coal mine is generated at the active working face, whether that be a 

continuous miner or longwall shearer (Kissell, 2003). Therefore, most dust control 

techniques are employed at or near the active workings of a mine (Kissell, 2003). Also, 

multiple dust control methods are typically employed at once because no single method, 

besides removing the worker from the dusty environment, eliminates exposure (Kissell, 

2003). 

Dilution by ventilating air serves to reduce the concentration of dust by supplying 

relatively fresh air to areas where workers are present (Kissell, 2003). This method can be 

useful if workers can be placed in the fresh air instead of standing in dirty or dusty air 

(Kissell, 2003). Displacement by ventilating air works in a similar fashion, but intends to 
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use the velocity of ventilating air to move the dust away from workers (Kissell, 2003). 

This method, noted by Kissell (2003), “… is the most effective dust control technique 

available…” but is difficult to implement. “The cost and technical barriers to increased 

airflow can be substantial…” and are not always fiscally or technically feasible (Kissell 

2003). 

Water sprays aim to accomplish two objectives, wetting newly broken material and 

capturing airborne particles inside water droplets (Kissell, 2003). Wetting of newly 

broken material is an extremely valuable tool in controlling dust, Kissell (2003) notes, 

with a large portion of dust remaining on the surface of the material.  Wetting of the 

material effectively captures the dust and prevents it from becoming airborne (Kissell, 

2003). Sprays may be located on the mining machines themselves, as well as on any 

coal/rock breaking equipment to limit dust generated from the additional crushing of 

material (Kissell, 2003).  

Another goal of water sprays is to capture dust once it has become airborne by creating 

many fine water droplets (Kissell, 2003). This works well in theory as well as in the 

laboratory, but there are drawbacks to the system in practice in an underground coal 

mine. Kissell (2003) notes that water sprays only capture a small amount of airborne 

respirable dust in an underground coal mine, because not all the air passes directly by a 

water spray. Kissell (2003) goes on to say that the water sprays may also induce airflow 

that increases a worker’s exposure to dust by displacing the dust away from the working 

face and towards the worker.  

The final method that is primarily used in underground coal mines is collection and 

filtration (Kissell, 2003). These can range from cab filters on mobile equipment to 
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machine-mounted scrubbers that capture dust-laden air near the cutting drum on mining 

equipment and pass it through a flooded-bed screen and demister (Kissell, 2003). A 

machine-mounted scrubber’s performance is a function of the capture and cleaning 

efficiencies of the device (Kissell, 2003). While the scrubber may perform under ideal 

conditions at a 90%-95% efficiency, if only 50% of the air is captured then the dust 

reduction will only be around 40-50% (Kissell, 2003). Also, these scrubbers are 

maintenance intensive with clogging screens reducing capture efficiency by reducing the 

airflow through the systems (Kissell, 2003). With the aim of this project being a 

technology transfer of a new scrubbing system to potentially replace a flooded-bed 

scrubber system, the next section will evaluate these systems in greater detail.  

2.6 Flooded-Bed Scrubber Overview and Performance 

The use of a flooded-bed scrubber mounted on a continuous miner was patented in 1983, 

and involved the use of a flooded-bed screen with sprayer, a demister, and a fan 

(Campbell et al., 1983). Dusty air drawn from near the cutting drum flows through a steel 

mesh screen, wetted by a water spray, where the dust particles are either captured on the 

screen itself, or inside the water droplets generated by air forcing water through the 

screen (Campbell et al., 1983). The air filled with water droplets passes through a mist 

eliminator which removes the water from the air by internal separation and gathers the 

dirty water in a sump for removal (Campbell et al., 1983). Finally, the air passes through 

an axial vane fan that serves at the primary air mover for the system (Campbell et al., 

1983). Figure 2.2 depicts a system mounted on a continuous miner.  
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Figure 2.2: A Flooded-Bed Screen System on a Continuous Miner (NIOSH, 1997) 

Studies have been conducted in laboratory settings as well as in the field on the 

performance of flooded-bed scrubber systems, with most testing being conducted by 

NIOSH (NIOSH, 2014; NIOSH, 1990). Laboratory testing conducted by NIOSH 

evaluated the capture performance of a flooded-bed scrubber and mist eliminator setup, 

with measurement upwind and downwind of the scrubber (NIOSH, 1990). These tests 

used a flooded-bed screen and demister identical to those used on a Joy 14CM, a 

commonly used continuous miner (NIOSH, 1990). A dust feeder introduced dust upwind 

of the system, which was then scrubbed, and the capture across the device was measured 

(NIOSH, 1990). Different screens were tested to determine the performance changes 

across screen by density and manufacturer (NIOSH, 1990). In testing, most filters could 

achieve a cleaning efficiency more than 90%, with slight variation attributed to 

manufacturer and screen density (NIOSH, 1990). 
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Field testing of machine-mounted flooded-bed scrubber systems included tests at three 

different mines that used such a machine-mounted system (NIOSH, 2014). The study 

looked at several different locations within each mine including machine operators as 

well as the return of the section for dust reduction when using the system (NIOSH, 2014). 

Per testing conducted by NIOSH (2014), reductions in dust levels in the return of each of 

the three mines were 91%, 85%, and 40% were achieved using the machine-mounted 

flooded-bed scrubber. This shows that this technology, in conjunction with machine-

mounted sprays and other ventilation practices, serves to reduce the amount of dust 

present in the mine atmosphere (NIOSH, 2014). 

2.7 Vortecone Scrubber Overview and Performance 

The Vortecone is an inertial droplet separator invented at the University of Kentucky for 

use on an automotive paint line to capture paint overspray (Salazar, 2012). It accelerates 

contaminated air through the inlet portion of the device and then rapidly changes its 

direction, causing dust particles with high inertial energy to be transferred to the outer 

walls of the device (Salazar, 2012). Awaiting those particles is a sheet of water formed 

from the inlet of the device by water falling down all sides of the inlet and being 

accelerated along with the air (Salazar, 2012). The air then completes a turnaround 360° 

back to its original direction and exits the device (Salazar 2012). Figure 2.3 depicts a 

general schematic of the Vortecone, as depicted in the patent (Salazar, 2012). The inlet of 

the Vortecone is located at the top of the figure, with the air turning rapidly at the bottom 

and passing through one of two lobes that continue turning the air back to the original 

direction of travel to the outlet located near the bottom of the figure (Salazar, 2012).  
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Figure 2.3: Schematic of a Vortecone Scrubber (Salazar, 2012) 

A feasibility study was carried out by Tianxiang Li, Abraham J. Salazar, and Kozo Saito 

(2009) on using the Vortecone to remove fly ash from coal fired power plants. Small 

scale testing and numerical modeling of fly ash particles passing through a Vortecone 

were performed (Li et al., 2009). Their experimental results showed a cleaning efficiency 

of 99.8% for fly ash, with a 30% energy savings over a cyclone that is traditionally used 

for this task (Li et al., 2009). Fly ash and paint overspray both contain particles in the 

respirable range, and thus a transfer of the technology to cleaning coal mine dust was a 

logical next step for the technology. 

 

Copyright © Adam Joseph Levy 2017 
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Chapter Three: Testing Setup 

3.1 Testing Setup Overview 

A wind tunnel was constructed for testing both the Vortecone and flooded-bed scrubber 

in the Ventilation Laboratory at the University of Kentucky. Airflow through the tunnel is 

driven by a 25-horsepower centrifugal fan, model RBE-11, manufactured by Cincinnati 

Fan. This fan was selected based on desired flows and expected pressure drop through a 

3:1 scale Vortecone, reduced from the geometry invented at the University of Kentucky, 

that was the target for testing. The fan was positioned at the entrance of the wind tunnel, 

serving as the start as well as the inlet of the wind tunnel. Figure 3.1 shows the Vortecone 

testing setup, with the fan inlet facing upward and outlet attached to the end of the 

aluminum duct pictured. 

 

Figure 3.1: Vortecone Testing Setup 
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The duct is an 18” by 12” rectangular duct, constructed from aluminum sheet and an 

aluminum extrusion product. Each section of duct has an identical aluminum plate on 

each end for ease of assembly. This duct setup also makes the unit modular, so that some 

pieces of ductwork may be reused for both the Vortecone setup as well as the flooded-

bed setup. Downwind of the fan is a Dwyer Instruments STRA Airflow Measurement 

Station (Dwyer Measurement Station), also having interior dimension of 18” by 12”. It 

uses a honeycomb structure to straighten the airflow, and then two pressure-averaging 

tubes are used to measure total and static pressure. The tubes are plumbed to the size of 

the station, so that measurements may be taken. Figure 3.2 shows the downwind side of 

the flow measurement station, with honeycomb flow straightener and pressure-averaging 

tubes. This device is calibrated by Dwyer, and has specified standards for distances from 

airflow disturbances such as fans and corners. Therefore, the geometry of the first portion 

of the wind tunnel, including the distance from the fan to the Dwyer Measurement 

Station (eight feet) and the distance from the measurement station to the first downward 

corner (three feet), is dictated by the product specifications. 

 

Figure 3.2: Inside of Dwyer STRA Airflow Measurement Station 
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In the case of the Vortecone setup, downwind of the Dwyer Measurement Station is a 

right-angle corner to direct flow downward and toward the Vortecone. The Vortecone 

was designed to be placed underneath an automotive painting line because of the required 

100 linear feet per minute “…average air velocity over the open face of the booth (or 

booth cross section during spraying operations)…” (29 CFR § 1926.66(b)(5)(i), 1993). 

Therefore, Vortecones traditionally are situated with the inlet facing upward, and outlet 

facing downward underneath the entire cross-section of the painting line (Salazar 2012). 

Figure 3.3 depicts the portion of the test setup downwind of the Dwyer Measurement 

Station, with the Vortecone installed. To accommodate the traditional setup of the 

Vortecone, two corners are required to turn the flow downward into the Vortecone and 

then horizontal, so that the testing setup may reside inside the laboratory. Inside these 

corners are a generic HVAC turning vane and rail system provided by a local HVAC 

company. These turning vanes reduce the amount of shock loss through the corners, and 

are installed on both corners of the tunnel.  
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Figure 3.3: Vortecone Placement in Testing Setup 

For the injection of dust into the system, a vibratory feeder meters the test dust into a 

conveying eductor, which sucks and aerosolizes in the material while conveying it into 

the duct. It is powered by a compressed air line that creates suction on the product inlet 

and accelerates the air through the discharge of the device into the test duct. Figure 3.4 

shows a general cross section of an eductor, with more detail on the inner workings. Dust 

is ejected downward into the duct, but is rapidly accelerated in the direction of the airflow 

towards the Vortecone. 

 

Figure 3.4: Conveying Eductor Layout (Crabtree, 1999) 
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The Vortecone is constructed from clear polycarbonate plates that are machined to fit 3D 

printed plastic parts that make up the inner geometry of the Vortecone. The 3D printed 

pieces are sandwiched between the polycarbonate sheets, and the whole assembly is 

bolted together. A 3D printed inlet is located at to the top of the device to aid in transition 

into the Vortecone and to reduce pressure loss. Figure 3.5 shows the test Vortecone in 

early stages of construction, with 3D printed parts sandwiched between clear 

polycarbonate sheets and held together with clamps. Once assembled, all seams were 

sealed with sealing compound.  

 

Figure 3.5: Vortecone in Early Stages of Construction 

After the air and dust exits the bottom outlet of the Vortecone through its two mirrored 

outlets, the flow is turned back horizontally and directed toward the sampling section, 

which will be explained in more detail in section 3.2. Figure 3.6 shows the underside of 

the Vortecone, with mirrored outlets at the bottom of the device. Figure 3.7 shows the 

Vortecone with blue inlet section installed as well as the orange water manifold, which 
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sheds a sheet of water around the periphery of the device to serve as the filter element 

inside the Vortecone as explained in Section 2.7. Water for the Vortecone is supplied by 

a traditional city water hose tap, flowing at approximately 10 gallons per minute. Figure 

3.8 shows a top view of the Vortecone inlet and inside the water manifold. 

 

 

Figure 3.6: Bottom of the Vortecone 
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Figure 3.7: Vortecone with Inlet and Water Manifold Installed 

 

Figure 3.8: Top View of Water Manifold 
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A very similar setup is also used for the testing of the flooded-bed scrubber system with 

only minor changes. The fan, Dwyer Measurement Station, sampling section, and dust 

eductor are re-used from the Vortecone testing setup, simplifying construction. Figure 3.9 

depicts the flooded-bed screen and demister testing setup. After the Dwyer Measurement 

Station a four-foot section of duct contains a 20-layer pleated flooded-bed screen. The 

screen is situated at approximately a 45-degree angle in the duct, as is seen in a 

traditional flooded-bed screen setup in the mining industry (Campbell et al., 1983). The 

demister section consists of sinusoidal demisting elements as employed by Joy Global, 

who supplied the demister fins as well as the flooded-bed screen. A single water spray 

supplies water to the screen as is typical for the setup, and is operated at approximately 

10 gallons per minute from a traditional city water hose tap. Figure 3.10 shows the 

flooded-bed screen, demister, and water spray used for testing. The duct cross-section 

remains at 18” by 12”, and the flow travels straight through the entirety of the duct. 

 

Figure 3.9: Flooded-Bed Scrubber Testing Setup 
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Figure 3.10: Flooded-Bed Screen and Demister Setup for Testing 

Because testing of the flooded-bed scrubber required more time between control testing 

and filter testing, a more consistent auger feeder replaced the vibratory feeder. An auger 

feeder, a Techweigh Flex-Feed Volumetric Feeder 05 Series (Techweigh feeder), was 

chosen. The Techweigh feeder still feeds dust into the eductor in the same manner as the 

vibratory feeder. Figure 3.11 shows the Techweigh feeder setup, with internal hopper and 

feed screw leading to the end of the stainless-steel tube.  

 

Figure 3.11: Techweigh Feeder Used for Flooded-Bed Setup 
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3.2 Sampling and Instrumentation 

Isokinetic sampling of the airstream occurs approximately five feet from the start of the 

final duct section. In the case of the Vortecone setup this was five feet from the bottom 

corner, and in the case of the flooded-bed screen setup this was five feet from the rear of 

the demister. To properly sample in an isokinetic manner, the velocity of air entering the 

sampling probe must be identical to the velocity of the stream being sampled. This will 

prevent over or under sampling problems, which would misrepresent dust concentration 

in the airstream. Figure 3.12 depicts ideal isokinetic sampling, with streamlines 

undisturbed entering the sampling probe. 

 

Figure 3.12: Isokinetic Sampling Visualization (Wilde, 2006) 

To properly size the sampling probe for the testing setup, velocities for the ductwork had 

to be set. Velocities chosen for sampling were 535 fpm and 340 fpm, so an isokinetic 

sampling probe with interchangeable tips was constructed. The two tips were designed 

with a sample flow rate of 0.035 cubic feet per minute (1 liter per minute) sampling rate 

of the particle measuring device. To accommodate this flow rate, a simple calculation of 

dividing the flow by the velocity of the chosen test velocities gave the desired area, and 

therefore diameter hole, required for the probe tips to have an inlet velocity matching the 
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velocity of air in the tunnel. The probe tips were made to be 0.0318” and 0.0398” in 

diameter for the 535 fpm and 340 fpm flows respectively.  

After being drawn through the isokinetic probe, the sampled air goes through the 

sampling train. The sampling train consists of a desiccant dryer, which is a tube within a 

large cylinder of desiccant that helps to eliminate any water droplets in the airstream as 

well as drying the aerosol sample as it passes through. After passing through the dryer, 

the sample goes through another isokinetic probe, which is located at a tee. This allows 

half of the flow to travel through the tee isokinetically (like a straw through the center of 

the tee) and the other half is forced to make the turn to the other leg of the tee. Figure 

3.13 illustrates the entire sampling train. 

 

Figure 3.13: Sampling Train with Dilution Overview 

Half the sample air, with flow rate cut in half (to 0.5 L/min) continues onward while the 

other half goes through a fixed flow pump with filter. This pump is set to 0.5 L/min (to 

ensure an even split of flows), and once filtered, rejoins the isokinetically split sample air 

to continue to the Optical Particle Sizer (OPS). The sampling train can also operate 

without any dilution, taking advantage of the isokinetic tee’s ability to split the flow in 

half without changing the sample, the sample flow rate can be increased to two liters per 
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minute at the isokinetic probe, and half of the sample can simply be sent through the 

fixed flow pump and into the atmosphere, allowing two additional sampling velocities, 

for a total of four, with only two isokinetic probe sizes. Figure 3.14 depicts the alternate 

way the sampling train may be set up.  

 

 

Figure 3.14: Sampling Train with No Dilution 

The OPS, model OPS 3330, by TSI is the measurement device of choice for this study. It 

has a measurement range of carbon black particles from 0.357 micron to 14.59 micron. 

Figure 3.15 shows the OPS, with black inlet tip on the top of the instrument, and display 

panel for operation. Figure 3.16 depicts the inner workings of the OPS, showing the 

aerosol inlet, laser measurement and photodetection, and other operational parameters. 

The particle sizer reports particle counts in 17 size ranges, which are automatically 

chosen by the machine depending on the characteristics of the material being measured, 

as light response is not always linearly associated with particle size.  
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Figure 3.15: TSI Optical Particle Sizer (TSI) 

 

Figure 3.16: TSI OPS 3330 Internal Operation (TSI) 
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Chapter Four: Vortecone Testing 

4.1 Testing Methodology 

To begin testing, the fan was set using a variable frequency drive to provide the desired 

velocity through the tunnel and into the Vortecone. Then, a control test was performed by 

running only air and dust through the Vortecone, testing over 10 minutes and getting a 

total particle count for each of the 17 size bins from the OPS. After the control test was 

completed, another 10-minute test was conducted with air, dust, and water running 

through the Vortecone. With these two tests, a particle reduction could be calculated for 

each size bin on the OPS and a curve can be fitted to the data that approximates the 

capture rate of particles through the Vortecone. This reduction could then be compared to 

any size range of particles and give a theoretical capture of the device for the tested flow 

rate. For all testing in this report, a mineral black filler made from pulverized coal with 

99.9% passing 325 mesh was used. The size distribution of this material, obtained from 

passing a representative sample through a Cilas 1064 Liquid Laser Particle Size 

Analyzer, is shown Figure 4.1. A full report of the size distribution measured by the Cilas 

machine can be found in Appendix A. 
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Figure 4.1: Feed Material Size Distribution 

For the 535 fpm testing velocity, 10 replications were carried out with 10 minutes of 

control (dust and air) and 10 minutes of filter testing (dust, air, and water). The Appendix 

contains all the raw data for each test. For the 340 fpm testing velocity, only three 

replications were conducted because there were only small variations in results after more 

testing occurred at 535 fpm. Using this data, one can calculate theoretical capture and 

compare it to any theoretical coal dust distribution the Vortecone is required to filter. 

4.2 System Curve Testing Results 

A quantity and pressure survey was performed on the flooded-bed system with water 

running through the screen. Using the Dwyer Measurement Station to measure velocity 

pressure and total pressure while varying fan speed, a system curve can be developed and 

a power curve fit to the data. Figure 4.2 shows the results as well as a best-fit curve. 
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Figure 4.2: Vortecone System Curve 

4.3 Dust Testing Results 

Averaged over the 10 replications of testing that occurred, Table 4.1 shows the percent 

particle reduction for each of the size ranges provided by the OPS. There are some 

inconsistent results for measurements of particles below 1.488 micron, as some size 

ranges reported negative reduction in particle count with the Vortecone active. This is a 

product of coincidence error in the device. With too many small particles in the sample, 

the laser is overwhelmed and misreports particle counts in those size ranges. Therefore in 

the analysis of the data, any particle below 1.5 micron is considered not to be captured, 

because the OPS does provide useful information concerning the filters response to 

particles with respect to the Vortecone at the 50% dilution rate. As well, the 14.59+ size 

bin did not contain enough particles to be considered a representative sample in testing, 

so the results from that size bin will not be included in analysis. Figure 4.3 shows the 

curve of best fit generated for the 535 fpm test results. Only one of the two sampling 
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methods was used, which is the train with dilution, because flows beyond 535 fpm were 

difficult to achieve with the setup as constructed. 

Table 4.1: Results for Vortecone Testing at 535 fpm 

 

 

Figure 4.3: Vortecone Test Results Best Fit Curve at 535 fpm  

Particle Size Range 
(micrometer)

Average % 
Reduction

.357-.504 -22.2%

.504-.664 -20.4%

.664-.945 -1.7%

.945-1.114 6.1%
1.114-1.488 25.6%
1.488-1.999 48.0%
1.999-2.250 68.8%
2.250-2.545 77.3%
2.545-3.219 86.7%
3.219-4.170 90.9%
4.170-5.208 95.4%
5.208-6.513 98.6%
6.513-7.969 99.0%
7.969-9.423 99.2%
9.423-11.47 98.9%
11.47-14.59 96.9%
14.59+ 76.1%
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Table 4.2 shows the averaged results for the three replications carried out at the 340 fpm 

test velocity, again with erroneous readings due to coincidence error in the particle size 

ranges below 1.5 micron. Also, very few particles were sampled above 14.59 micron so 

that data will not be used in analysis. Figure 4.4 shows the curve of best fit generated for 

the particle size ranges from 1.488 through 11.47 micron.  

Table 4.2: Results for Vortecone Testing at 340 fpm 

 

Particle Size Range 
(micrometer)

Average % 
Reduction

.357-.504 -25.5%

.504-.664 -22.5%

.664-.945 -20.4%

.945-1.114 -14.9%
1.114-1.488 -5.6%
1.488-1.999 2.5%
1.999-2.250 24.3%
2.250-2.545 39.9%
2.545-3.219 59.5%
3.219-4.170 79.2%
4.170-5.208 89.6%
5.208-6.513 94.2%
6.513-7.969 96.4%
7.969-9.423 97.7%
9.423-11.47 97.9%
11.47-14.59 94.8%
14.59+ 61.6%
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Figure 4.4: Vortecone Test Results Best Fit Curve at 340 fpm 
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Chapter Five: Flooded-Bed Screen Testing 

5.1 Testing Methodology 

For the flooded-bed screen and demister setup, control tests were performed on the 

ductwork with the screen and demister removed. Five samples of 10 minutes in duration 

each were taken at four velocities tested with the flooded-bed screen and demister. Both 

diluted and non-diluted sampling methods could be carried out, with dilution being used 

at the 340 fpm and 535 fpm speeds, and no dilution being used at the 680 fpm and 1070 

fpm velocities.  

After the control tests were carried out, the flooded-bed screen and demister were re-

introduced to the setup, and testing occurred with the screen and demister in place and the 

sprayer flooding the screen with water to analyze its performance. Repeating each test 

five times in 10 minute durations at each of the four velocities. The results of are shown 

in Section 5.3. Each control test was compared to a filtered test to calculate a particle 

reduction with the flooded-bed screen and demister installed. 
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5.2 System Curve Testing Results 

A quantity and pressure survey was carried out on the flooded-bed screen setup. This 

testing occurred with the water spray turned on. Using the Dwyer Measurement Station to 

measure pressure and quantity while changing the fan speed, a curve can be developed 

for analysis. Figure 5.1 shows the results as well as the curve of best fit. 

 

Figure 5.1: Flooded-Bed Screen System Curve 
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5.3 Dust Testing Results 

In similar fashion to the Vortecone test results, some size fractions give inconsistent 

results because of coincidence error with the OPS. Therefore, any size fractions that 

report inconsistent particle numbers are not considered valid, and omitted from curve 

creation. Flooded-bed scrubbers typically do not operate at velocities as low as 340 fpm, 

and performance generally improves as velocity increases. At 340 fpm, the screen was 

not properly flooded with water and likely was not performing as intended. However, 

consistent results are found for particle size ranges above 1.488 micron. Another problem 

shared with the Vortecone, was that the 14.59+ micron size range did not contain enough 

particles to be considered valid and it was therefore omitted from curve fitting. The 

following tables and figures depict the results from each of the test velocities. 

Table 5.1: Flooded-Bed Particle Reduction Results at 340 fpm 

 

Particle Size Range 
(micrometer)

Average % 
Reduction

.357-.504 24.3%

.504-.664 24.7%

.664-.945 24.3%

.945-1.114 21.0%
1.114-1.488 37.4%
1.488-1.999 -19.2%
1.999-2.250 -20.8%
2.250-2.545 -18.0%
2.545-3.219 -5.3%
3.219-4.170 19.5%
4.170-5.208 48.1%
5.208-6.513 69.2%
6.513-7.969 82.4%
7.969-9.423 89.5%
9.423-11.47 92.8%
11.47-14.59 91.1%
14.59+ 58.6%
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Figure 5.2: Flooded-Bed Particle Reduction Best Fit Curve at 340 fpm 

Table 5.2: Flooded-Bed Particle Reduction Results at 535 fpm 
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Particle Size Range 
(micrometer)

Average % 
Reduction

.357-.504 -37.5%

.504-.664 -39.5%

.664-.945 -43.3%

.945-1.114 -37.6%
1.114-1.488 -51.4%
1.488-1.999 -2.0%
1.999-2.250 9.4%
2.250-2.545 21.2%
2.545-3.219 38.2%
3.219-4.170 58.4%
4.170-5.208 77.7%
5.208-6.513 87.9%
6.513-7.969 93.5%
7.969-9.423 96.3%
9.423-11.47 97.6%
11.47-14.59 96.6%
14.59+ 86.2%
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Figure 5.3: Flooded-Bed Particle Reduction Best Fit Curve at 535 fpm 

Table 5.3: Flooded-Bed Particle Reduction Results at 680 fpm 
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Particle Size Range 
(micrometer)

Average % 
Reduction

.357-.504 -124.7%

.504-.664 -124.7%

.664-.945 -122.0%

.945-1.114 -118.6%
1.114-1.488 -237.2%
1.488-1.999 0.7%
1.999-2.250 27.3%
2.250-2.545 44.5%
2.545-3.219 63.4%
3.219-4.170 81.3%
4.170-5.208 91.2%
5.208-6.513 95.7%
6.513-7.969 97.9%
7.969-9.423 98.9%
9.423-11.47 99.2%
11.47-14.59 98.5%
14.59+ 89.9%
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Figure 5.4: Flooded-Bed Particle Reduction Best Fit Curve at 680 fpm 

Table 5.4: Flooded-Bed Particle Reduction Results at 1070 fpm 
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Particle Size Range 
(micrometer)

Average % 
Reduction

.357-.504 -7.9%

.504-.664 -9.3%

.664-.945 -14.0%

.945-1.114 -16.7%
1.114-1.488 -21.6%
1.488-1.999 -15.0%
1.999-2.250 -9.6%
2.250-2.545 0.3%
2.545-3.219 17.0%
3.219-4.170 41.6%
4.170-5.208 68.7%
5.208-6.513 83.6%
6.513-7.969 91.4%
7.969-9.423 95.3%
9.423-11.47 97.1%
11.47-14.59 96.2%
14.59+ 83.1%
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Figure 5.5: Flooded-Bed Particle Reduction Best Fit Curve at 1070 fpm 
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Chapter Six: Analysis & Discussion 

For the Vortecone test setup, particle capture increases with increasing flow rate. This is 

to be expected, as the Vortecone uses a particles inertia to separate it from the airflow. 

Therefore, a higher flowrate through the Vortecone means particles will have a higher 

inertia, making them more likely to be captured on the opposite wall of the Vortecone. 

Also for the flooded-bed screen, there seems to be a general trend that with increasing 

velocity, there is an increase in particle capture. Further analysis of the data can be 

carried out by using the best fit curve generated from each individual trial, and 

calculating the mass and number of particles eliminated from the feed material. Using the 

curve of best fit from the Vortecone testing at 535 fpm, one can calculate a reduction in 

the particle count for any given size distribution by mass or count. Equation 1 below 

shows how volume percent reduction can be calculated for a given size fraction. 

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 % ∗ 1 − 1.9195(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 %)−2.476 (1) 

After calculating the volume amount reduction, one can account for mass as well, by 

calculating the mass percentage for each individual size fraction represents, and applying 

the same technique. First, the average diameter of a particle for a given size range must 

be found, then the volume of that particle calculated. A necessary assumption that the 

particle is perfectly spherical needs to be made which, for smaller particles, can be a 

reasonable assumption. Once the average diameter is determined, the volume of a sphere 

of that diameter can be calculated, then multiplied by the density of the material. 

Equation 2 shows how the average mass of one particle from that size range may be 

calculated. 

𝐴𝐴𝐴𝐴𝐴𝐴.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 4
3
∗ 𝜋𝜋 ∗ �𝑎𝑎𝑎𝑎𝑎𝑎.𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2
�
3
∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (2) 
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Once a theoretical mass of one particle in a size range is found, multiplying that mass by 

the individual fraction percentage will give a relative mass contribution for each size 

fraction. This can then be used to compare mass reduction in each size fraction, and 

therefore in the feed. Equation 3 depicts how the mass contribution is calculated, and 

Equation 4 shows how the calculated theoretical mass reduction for a given size range is 

calculated. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐴𝐴𝐴𝐴𝐴𝐴.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 %  (3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ % 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅   (4) 

This analysis was carried out for each test condition, for both the Vortecone and flooded-

bed scrubber. Comparison was made with respect to the mineral black feed, 99.9% 

passing 325 mesh, using the entire size range of the feed as well as particles in the feed 

less than 10 microns. Table 6.1 shows the analysis as performed based on the best fit 

curve from each test condition, and compared to the entire feed distribution.  

Table 6.1: Analysis of Particle Reduction from Feed for Each Test Condition 

 

Table 6.1 shows that both the flooded-bed scrubber and the Vortecone are very effective 

scrubbing technologies, removing over 98% of the mass from the mineral black feed in 

each test condition. However, their performance begins to differ when only looking at 

those particles most associated with health hazards to mine workers, particles below 10 

Reduction by 
Count

Reduction by 
Mass

Vortecone 535 fpm 92.05% 99.92%
Flooded-Bed Scrubber 680 fpm 88.75% 99.90%
Vortecone 340 fpm 87.50% 99.74%
Flooded-Bed Scrubber 535 fpm 84.95% 99.59%
Flooded-Bed Scrubber 1070 fpm 82.94% 99.53%
Flooded-Bed Scrubber 340 fpm 78.05% 98.95%

Test Conditions

From Entire Feed 
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microns, as can be seen in Table 6.2. The Vortecone, at 535 fpm, reduces the mass and 

count of particles below 10 microns at the highest rate, followed by the flooded-bed 

scrubber at 680 fpm. There appears to be a drop off for the flooded-bed scrubber as 

velocity increases, possibly because smaller particles start to pass through the screen 

more readily. The exact cause of this phenomenon is not known, but can be speculated 

with water more quickly clearing the flooded-bed screen, particles are free to pass 

through the mesh without contacting a water droplet. 

Table 6.2: Testing Results Analyzed for Particles Under 10 Microns 

 

However, the impact of even smaller particles cannot be discounted whenever it comes to 

the occurrence of Black Lung. Therefore, analysis of particle capture less than 5 microns 

from the feed size distribution must also be considered. Table 6.3 shows how the devices 

performed, and that the Vortecone at 535 fpm significantly outperforms the flooded-bed 

scrubber at any velocity. With less maintenance than a flooded-bed screen system (no 

regular filter changes) and excellent performance, the Vortecone should make a 

significant and consistent reduction to respirable coal dust particles present in mine air. 

Reduction by 
Count

Reduction by 
Mass

Vortecone 535 fpm 78.99% 98.47%
Flooded-Bed Scrubber 680 fpm 70.20% 97.38%
Vortecone 340 fpm 67.39% 95.88%
Flooded-Bed Scrubber 535 fpm 61.09% 93.43%
Flooded-Bed Scrubber 1070 fpm 55.93% 91.52%
Flooded-Bed Scrubber 340 fpm 44.83% 83.74%

Test Conditions

From <10 microns Particles
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Table 6.3: Testing Results Analyzed for Particles Under 5 Microns 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Adam Joseph Levy 2017 

Reduction by 
Count

Reduction by 
Mass

Vortecone 535 fpm 61.50% 91.22%
Flooded-Bed Scrubber 680 fpm 45.65% 82.37%
Vortecone 340 fpm 41.81% 78.78%
Flooded-Bed Scrubber 535 fpm 32.07% 67.61%
Flooded-Bed Scrubber 1070 fpm 23.99% 57.03%
Flooded-Bed Scrubber 340 fpm 10.67% 31.72%

Test Conditions

From <5 micron Particles



46 
 

Chapter Seven: Conclusion 

Testing conducted on a flooded-bed scrubber and Vortecone scrubber shows that both 

technologies are very effective at removing airborne particles, including  those in the 

respirable range. Cleaning efficiencies exceeding 99% by mass were observed with both 

scrubbing technologies when compared to the entire feed distribution. However, looking 

at the performance in reduction in the number of particles under 10 microns, the 

Vortecone has an 8% reduction advantage by count. An even greater performance 

advantage is observed in the less than 5 micron particle size fraction with the Vortecone 

outperforming the flooded-bed system by nearly 16% by count. In addition, the greater 

reduction of the number of very small (less than 5 micron) particles from the airstream 

can also represent a significant health victory when it comes to respiratory disease in 

underground coal miners. With current MSHA regulations focusing on the mass of 

particles less than 10 microns current scrubbing technologies may look attractive, but 

without significant reduction in very small particles respiratory disease may still plague 

coal workers.  

However, the increased performance does not come without an operational compromise 

in the form of increased air-power requirements. The Vortecone has significantly larger 

pressure drops than the flooded-bed screen system, which is caused in large part by the 

significant reduction of cross sectional area inside the inlet portion of the Vortecone 

required to accelerate incoming air into the device. For example, the air-power required 

to operate the Vortecone at the 535 fpm test condition is nearly eleven and a half times 

larger than the air-power required to operate the flooded-bed screen and demister setup at 

the same velocity. For the 340 fpm test condition, the air-power required to operate the 
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Vortecone is roughly eight and a half times larger than the flooded-bed screen system at 

the same velocity. Implementing Vortecone scrubbers in their current form would require 

more powerful, centrifugal fans be used to operate the device. These figures were 

calculated using the system curves developed in Section 4 and Section 5.  

Another factor to consider is the maintenance of the scrubbing devices. The flooded-bed 

screen has a steel mesh that can become clogged and requires regular cleaning. The 

Vortecone does not have any such screen in place, and with clean water constantly 

flowing through the device, the filter media is always changing. This constant 

recirculation allows the Vortecone to maintain its efficiency for a much longer period, 

almost indefinitely, with proper operation. In terms of the machine-mounted flooded-bed 

scrubber system, whose performance is a function of capture and cleaning efficiency, if 

the screen were to never clog the capture efficiency would never decrease and the system 

could always operate optimally. A study by NIOSH in 2014 showed that in a single cut, 

the airflow through a flooded-bed scrubber reduced on average by 29%. The same study 

by NIOSH (2014) showed that a flooded-bed scrubber system, when working optimally, 

can reduce the amount of respirable dust by as much as 90%. Therefore, the Vortecone 

represents a significant improvement to the existing technology, by eliminating the 

reduction in capture efficiency created by factors such as poor maintenance, or loading of 

the flooded-bed screen during a cut. Replacing a flooded-bed screen and demister setup 

with a Vortecone scrubber would greatly increase the overall performance of a machine 

mounted scrubber system on a continuous miner, and ultimately reduce workers’ 

exposure to respirable dust. 

Copyright © Adam Joseph Levy 2017 
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Chapter Eight: Future Work 

With every experiment, new alterations to improve testing methodology and data analysis 

become apparent after experiments have concluded. For the experiments described herein 

the following changes are recommended. First, higher dilution ratios on the aerosol 

sampling system would allow the OPS to more accurately measure the particle size 

fractions that experienced high rates of coincidence in this testing. This would allow a 

finer definition of the lower tail of each distribution curve, which may become 

asymptotic with respect to capture, instead of a power degradation quickly to zero capture 

as shown in this study. Also, additional sampling velocities would allow a better 

understanding of the drop off in performance experienced on the flooded-bed screen 

system and allow one to find the optimum operation point for this setup. Additional 

isokinetic sampling with gravimetric samplers and multi-stage impactors would help to 

strengthen the analysis and provide a check against the performance of the OPS. Using 

multi-stage impactors that would give definite size fractions like the OPS would permit 

even finer comparison, particularly with the very fine size fractions (less than 5 

micrometers). 

Furthermore, the addition of a flow meter and pressure gauge on the water feed to both 

the Vortecone and flooded-bed screen sprayer would allow performance characteristics 

with respect to changes in water flow and pressure to be studied. Screens with more than 

twenty layers should also be compared to the Vortecone. Changes in the internal 

geometry of the Vortecone to reduce pressure loss should be considered, as well as 

changes to incorporate horizontal flow through the Vortecone. 

Copyright © Adam Joseph Levy 2017 
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Appendix 

Table A.1: Test 1 Vortecone at 535 fpm 

 

Table A.2: Test 2 Vortecone at 535 fpm 

 

  

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3744530 1274648 66.0%
.504-.664 3875651 1311519 66.2%
.664-.945 5089582 548421 89.2%
.945-1.114 3326263 53958 98.4%
1.114-1.488 3234741 81405 97.5%
1.488-1.999 3600591 1397520 61.2%
1.999-2.250 1036994 262813 74.7%
2.250-2.545 818765 156467 80.9%
2.545-3.219 826154 94438 88.6%
3.219-4.170 348997 26888 92.3%
4.170-5.208 113804 4974 95.6%
5.208-6.513 43958 650 98.5%
6.513-7.969 15492 181 98.8%
7.969-9.423 4502 35 99.2%
9.423-11.47 1188 8 99.3%
11.47-14.59 206 6 97.1%
14.59+ 37 8 78.4%

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3702730 4949333 -33.7%
.504-.664 3924602 5244129 -33.6%
.664-.945 5187017 5924601 -14.2%
.945-1.114 3347991 3362638 -0.4%
1.114-1.488 3112394 2460230 21.0%
1.488-1.999 3630406 2111893 41.8%
1.999-2.250 1039304 366652 64.7%
2.250-2.545 810609 204532 74.8%
2.545-3.219 808693 119308 85.2%
3.219-4.170 341048 28076 91.8%
4.170-5.208 111566 4661 95.8%
5.208-6.513 42981 698 98.4%
6.513-7.969 14863 154 99.0%
7.969-9.423 4352 35 99.2%
9.423-11.47 1196 7 99.4%
11.47-14.59 200 5 97.5%
14.59+ 37 10 73.0%
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Table A.3: Test 3 Vortecone at 535 fpm 

 

Table A.4: Test 4 Vortecone at 535 fpm 

 

  

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3770976 5180150 -37.4%
.504-.664 3849143 5079410 -32.0%
.664-.945 5103481 5987236 -17.3%
.945-1.114 3288075 3541629 -7.7%
1.114-1.488 3053992 2636745 13.7%
1.488-1.999 3420964 2015249 41.1%
1.999-2.250 955301 340449 64.4%
2.250-2.545 733158 189343 74.2%
2.545-3.219 728548 114194 84.3%
3.219-4.170 307077 29452 90.4%
4.170-5.208 102046 5088 95.0%
5.208-6.513 39194 577 98.5%
6.513-7.969 13795 133 99.0%
7.969-9.423 4235 50 98.8%
9.423-11.47 1101 17 98.5%
11.47-14.59 183 8 95.6%
14.59+ 33 9 72.7%

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3932355 5058008 -28.6%
.504-.664 3718778 4821926 -29.7%
.664-.945 4799965 5355417 -11.6%
.945-1.114 3129331 3283816 -4.9%
1.114-1.488 2928940 2523165 13.9%
1.488-1.999 2840506 1600974 43.6%
1.999-2.250 757931 258987 65.8%
2.250-2.545 575365 144081 75.0%
2.545-3.219 564717 86162 84.7%
3.219-4.170 235934 25418 89.2%
4.170-5.208 78171 4308 94.5%
5.208-6.513 29635 535 98.2%
6.513-7.969 10801 128 98.8%
7.969-9.423 3274 19 99.4%
9.423-11.47 839 9 98.9%
11.47-14.59 179 1 99.4%
14.59+ 57 3 94.7%
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Table A.5: Test 5 Vortecone at 535 fpm 

 

Table A.6: Test 6 Vortecone at 535 fpm 

 

  

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3802163 4966351 -30.6%
.504-.664 3894735 5109510 -31.2%
.664-.945 4738247 5646052 -19.2%
.945-1.114 3108440 3463767 -11.4%
1.114-1.488 3017293 2683513 11.1%
1.488-1.999 2887901 1940708 32.8%
1.999-2.250 784582 338309 56.9%
2.250-2.545 600042 193609 67.7%
2.545-3.219 591285 111611 81.1%
3.219-4.170 243995 29610 87.9%
4.170-5.208 78611 4446 94.3%
5.208-6.513 29096 527 98.2%
6.513-7.969 9884 127 98.7%
7.969-9.423 2917 36 98.8%
9.423-11.47 753 10 98.7%
11.47-14.59 131 5 96.2%
14.59+ 37 12 67.6%

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3774347 4812561 -27.5%
.504-.664 3704086 4663248 -25.9%
.664-.945 4669672 4896694 -4.9%
.945-1.114 3100765 3080064 0.7%
1.114-1.488 3079295 2397300 22.1%
1.488-1.999 3026099 1292864 57.3%
1.999-2.250 845161 198670 76.5%
2.250-2.545 660440 110472 83.3%
2.545-3.219 665992 64314 90.3%
3.219-4.170 278813 22081 92.1%
4.170-5.208 90527 3653 96.0%
5.208-6.513 33638 374 98.9%
6.513-7.969 11290 91 99.2%
7.969-9.423 3324 21 99.4%
9.423-11.47 924 11 98.8%
11.47-14.59 149 4 97.3%
14.59+ 41 6 85.4%
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Table A.7: Test 7 Vortecone at 535 fpm 

 

Table A.8: Test 8 Vortecone at 535 fpm 

 

  

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3849356 4957197 -28.8%
.504-.664 3625256 4783616 -32.0%
.664-.945 4558809 4971021 -9.0%
.945-1.114 3060752 3108092 -1.5%
1.114-1.488 2974110 2447541 17.7%
1.488-1.999 2677482 1311401 51.0%
1.999-2.250 727940 200784 72.4%
2.250-2.545 559027 112183 79.9%
2.545-3.219 564774 64967 88.5%
3.219-4.170 241532 22507 90.7%
4.170-5.208 80771 3958 95.1%
5.208-6.513 30021 380 98.7%
6.513-7.969 10215 98 99.0%
7.969-9.423 2900 30 99.0%
9.423-11.47 790 12 98.5%
11.47-14.59 153 14 90.8%
14.59+ 31 12 61.3%

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3779116 5038021 -33.3%
.504-.664 3934301 4854698 -23.4%
.664-.945 4924740 5050861 -2.6%
.945-1.114 3232985 3146755 2.7%
1.114-1.488 3179482 2436596 23.4%
1.488-1.999 3235543 1314494 59.4%
1.999-2.250 894399 201600 77.5%
2.250-2.545 692493 111999 83.8%
2.545-3.219 697517 65262 90.6%
3.219-4.170 292246 21837 92.5%
4.170-5.208 96604 3609 96.3%
5.208-6.513 35704 356 99.0%
6.513-7.969 12380 86 99.3%
7.969-9.423 3576 13 99.6%
9.423-11.47 912 10 98.9%
11.47-14.59 140 2 98.6%
14.59+ 47 6 87.2%
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Table A.9: Test 9 Vortecone at 535 fpm 

 

Table A.10: Test 10 Vortecone at 535 fpm 

 

  

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3779116 5163623 -36.6%
.504-.664 3934301 5212568 -32.5%
.664-.945 4924740 5889103 -19.6%
.945-1.114 3232985 3627218 -12.2%
1.114-1.488 3179482 2745017 13.7%
1.488-1.999 3235543 1958649 39.5%
1.999-2.250 894399 331443 62.9%
2.250-2.545 692493 185021 73.3%
2.545-3.219 697517 105137 84.9%
3.219-4.170 292246 28653 90.2%
4.170-5.208 96604 4603 95.2%
5.208-6.513 35704 576 98.4%
6.513-7.969 12380 141 98.9%
7.969-9.423 3576 28 99.2%
9.423-11.47 912 7 99.2%
11.47-14.59 140 2 98.6%
14.59+ 47 12 74.5%

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3812814 5023758 -31.8%
.504-.664 3795099 4915473 -29.5%
.664-.945 4965164 5370234 -8.2%
.945-1.114 3288336 3384038 -2.9%
1.114-1.488 3283756 2546627 22.4%
1.488-1.999 3388897 1607735 52.6%
1.999-2.250 962021 266355 72.3%
2.250-2.545 753746 151815 79.9%
2.545-3.219 762012 87566 88.5%
3.219-4.170 319905 25887 91.9%
4.170-5.208 104803 4038 96.1%
5.208-6.513 39225 456 98.8%
6.513-7.969 13702 94 99.3%
7.969-9.423 3928 25 99.4%
9.423-11.47 1041 10 99.0%
11.47-14.59 173 4 97.7%
14.59+ 42 14 66.7%
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Table A.11: Test 1 Vortecone at 340 fpm 

 

Table A.12: Test 2 Vortecone at 340 fpm 

 

  

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3103347 3886148 -25.2%
.504-.664 3861423 4670048 -20.9%
.664-.945 5018130 5808297 -15.7%
.945-1.114 3021606 3218677 -6.5%
1.114-1.488 2276729 2049050 10.0%
1.488-1.999 3771439 3102852 17.7%
1.999-2.250 1111352 668270 39.9%
2.250-2.545 862816 399676 53.7%
2.545-3.219 852733 261086 69.4%
3.219-4.170 373245 58255 84.4%
4.170-5.208 123701 9886 92.0%
5.208-6.513 47066 2131 95.5%
6.513-7.969 15762 446 97.2%
7.969-9.423 4610 82 98.2%
9.423-11.47 1134 21 98.1%
11.47-14.59 197 7 96.4%
14.59+ 54 11 79.6%

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3052282 3802236 -24.6%
.504-.664 3772498 4602750 -22.0%
.664-.945 4792699 5819905 -21.4%
.945-1.114 2832742 3330238 -17.6%
1.114-1.488 2076705 2343663 -12.9%
1.488-1.999 3571370 3769543 -5.5%
1.999-2.250 1055295 893942 15.3%
2.250-2.545 826864 565767 31.6%
2.545-3.219 824221 385921 53.2%
3.219-4.170 359234 87704 75.6%
4.170-5.208 117245 14226 87.9%
5.208-6.513 43234 2932 93.2%
6.513-7.969 14377 601 95.8%
7.969-9.423 4062 102 97.5%
9.423-11.47 1047 27 97.4%
11.47-14.59 209 14 93.3%
14.59+ 46 16 65.2%
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Table A.13: Test 3 Vortecone at 340 fpm 

 

Table A.14: Test 1 Flooded-Bed at 340 fpm 

 

Particle Size Range (micrometer) Dry Test Particle Count Wet Test Particle Count % Particle Reduction
.357-.504 3004877 3811730 -26.9%
.504-.664 3709314 4616015 -24.4%
.664-.945 4729801 5861430 -23.9%
.945-1.114 2823743 3409483 -20.7%
1.114-1.488 2206353 2517291 -14.1%
1.488-1.999 3854590 4030010 -4.6%
1.999-2.250 1191267 979416 17.8%
2.250-2.545 960790 628855 34.5%
2.545-3.219 979170 429963 56.1%
3.219-4.170 434766 97862 77.5%
4.170-5.208 141272 15523 89.0%
5.208-6.513 51584 3190 93.8%
6.513-7.969 16794 631 96.2%
7.969-9.423 4805 131 97.3%
9.423-11.47 1195 24 98.0%
11.47-14.59 202 11 94.6%
14.59+ 30 18 40.0%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 2030615 1524135 24.9%
.504-.664 2285274 1701992 25.5%
.664-.945 2936138 2195286 25.2%
.945-1.114 1988004 1553249 21.9%
1.114-1.488 1869339 1155991 38.2%
1.488-1.999 5748640 6772015 -17.8%
1.999-2.250 2383376 2842883 -19.3%
2.250-2.545 2395837 2782025 -16.1%
2.545-3.219 3242555 3348109 -3.3%
3.219-4.170 2001435 1575758 21.3%
4.170-5.208 885200 447150 49.5%
5.208-6.513 419632 125695 70.0%
6.513-7.969 171329 29117 83.0%
7.969-9.423 53702 5440 89.9%
9.423-11.47 12050 812 93.3%
11.47-14.59 1235 110 91.1%
14.59+ 73 50 31.5%
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Table A.15: Test 2 Flooded-Bed at 340 fpm 

 

Table A.16: Test 3 Flooded-Bed at 340 fpm 

 

  

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1974166 1595621 19.2%
.504-.664 2220169 1777184 20.0%
.664-.945 2856144 2291727 19.8%
.945-1.114 1936501 1625397 16.1%
1.114-1.488 1784442 1263056 29.2%
1.488-1.999 5748938 6763948 -17.7%
1.999-2.250 2390365 2809487 -17.5%
2.250-2.545 2408456 2730124 -13.4%
2.545-3.219 3255716 3257190 0.0%
3.219-4.170 2011141 1524265 24.2%
4.170-5.208 885711 432056 51.2%
5.208-6.513 417604 122081 70.8%
6.513-7.969 169201 28400 83.2%
7.969-9.423 52886 5412 89.8%
9.423-11.47 11733 808 93.1%
11.47-14.59 1258 95 92.4%
14.59+ 101 33 67.3%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1977608 1505714 23.9%
.504-.664 2219191 1683163 24.2%
.664-.945 2848844 2177361 23.6%
.945-1.114 1928634 1541106 20.1%
1.114-1.488 1784217 1123342 37.0%
1.488-1.999 5723065 6841895 -19.5%
1.999-2.250 2377528 2881711 -21.2%
2.250-2.545 2389056 2828369 -18.4%
2.545-3.219 3228880 3407891 -5.5%
3.219-4.170 1992433 1606861 19.4%
4.170-5.208 874443 454113 48.1%
5.208-6.513 413533 127643 69.1%
6.513-7.969 167713 29927 82.2%
7.969-9.423 52660 5525 89.5%
9.423-11.47 11645 870 92.5%
11.47-14.59 1177 114 90.3%
14.59+ 105 26 75.2%
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Table A.17: Test 4 Flooded-Bed at 340 fpm 

 

Table A.18: Test 5 Flooded-Bed at 340 fpm 

 

 

 

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1971727 1470084 25.4%
.504-.664 2215759 1643408 25.8%
.664-.945 2843726 2122826 25.4%
.945-1.114 1925443 1501473 22.0%
1.114-1.488 1759951 1060892 39.7%
1.488-1.999 5721976 6882455 -20.3%
1.999-2.250 2378395 2910207 -22.4%
2.250-2.545 2397288 2872223 -19.8%
2.545-3.219 3234886 3471791 -7.3%
3.219-4.170 1993687 1640642 17.7%
4.170-5.208 874567 462578 47.1%
5.208-6.513 412996 129142 68.7%
6.513-7.969 166892 29667 82.2%
7.969-9.423 52237 5515 89.4%
9.423-11.47 11435 842 92.6%
11.47-14.59 1229 116 90.6%
14.59+ 93 51 45.2%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 2024072 1458539 27.9%
.504-.664 2272396 1632391 28.2%
.664-.945 2918560 2107624 27.8%
.945-1.114 1970746 1483779 24.7%
1.114-1.488 1833192 1044537 43.0%
1.488-1.999 5697028 6875630 -20.7%
1.999-2.250 2354475 2912400 -23.7%
2.250-2.545 2359302 2883551 -22.2%
2.545-3.219 3174530 3495107 -10.1%
3.219-4.170 1951513 1660694 14.9%
4.170-5.208 853053 470423 44.9%
5.208-6.513 403830 131666 67.4%
6.513-7.969 163428 30486 81.3%
7.969-9.423 51460 5704 88.9%
9.423-11.47 11374 867 92.4%
11.47-14.59 1127 101 91.0%
14.59+ 96 25 74.0%
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Table A.19: Test 1 Flooded-Bed at 535 fpm 

 

Table A.20: Test 2 Flooded-Bed at 535 fpm 

 

  

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1907345 2759881 -44.7%
.504-.664 2152112 3162821 -47.0%
.664-.945 2818376 4241403 -50.5%
.945-1.114 1974220 2835254 -43.6%
1.114-1.488 1826494 2901325 -58.8%
1.488-1.999 5964817 6000590 -0.6%
1.999-2.250 2503832 2192543 12.4%
2.250-2.545 2519629 1893856 24.8%
2.545-3.219 3402419 1962763 42.3%
3.219-4.170 2101040 794215 62.2%
4.170-5.208 921541 180590 80.4%
5.208-6.513 434781 43594 90.0%
6.513-7.969 176960 9234 94.8%
7.969-9.423 56081 1478 97.4%
9.423-11.47 13142 213 98.4%
11.47-14.59 1482 26 98.2%
14.59+ 167 4 97.6%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 2062915 2787486 -35.1%
.504-.664 2333558 3189128 -36.7%
.664-.945 3054307 4276582 -40.0%
.945-1.114 2117750 2847882 -34.5%
1.114-1.488 2052219 2943939 -43.5%
1.488-1.999 5903904 5972440 -1.2%
1.999-2.250 2427622 2194802 9.6%
2.250-2.545 2412155 1902072 21.1%
2.545-3.219 3215741 1996931 37.9%
3.219-4.170 1955981 822766 57.9%
4.170-5.208 854430 192067 77.5%
5.208-6.513 401246 48444 87.9%
6.513-7.969 163084 10304 93.7%
7.969-9.423 51864 1842 96.4%
9.423-11.47 12016 279 97.7%
11.47-14.59 1401 42 97.0%
14.59+ 112 10 91.1%
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Table A.21: Test 3 Flooded-Bed at 535 fpm 

 

Table A.22: Test 4 Flooded-Bed at 535 fpm 

 

  

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 2109915 2668098 -26.5%
.504-.664 2392556 3057900 -27.8%
.664-.945 3129815 4110635 -31.3%
.945-1.114 2160096 2747876 -27.2%
1.114-1.488 2101701 2826647 -34.5%
1.488-1.999 5883168 6100481 -3.7%
1.999-2.250 2403041 2274132 5.4%
2.250-2.545 2376296 1992196 16.2%
2.545-3.219 3138282 2126625 32.2%
3.219-4.170 1893690 898035 52.6%
4.170-5.208 821604 220602 73.1%
5.208-6.513 383787 60211 84.3%
6.513-7.969 154166 14411 90.7%
7.969-9.423 49221 2851 94.2%
9.423-11.47 11357 417 96.3%
11.47-14.59 1282 64 95.0%
14.59+ 125 19 84.8%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1946506 2762734 -41.9%
.504-.664 2198229 3165848 -44.0%
.664-.945 2870130 4252844 -48.2%
.945-1.114 2002705 2840341 -41.8%
1.114-1.488 1840181 2949939 -60.3%
1.488-1.999 5940228 6017614 -1.3%
1.999-2.250 2480615 2211229 10.9%
2.250-2.545 2494455 1921929 23.0%
2.545-3.219 3365201 2020063 40.0%
3.219-4.170 2085344 834730 60.0%
4.170-5.208 924718 195998 78.8%
5.208-6.513 439038 49474 88.7%
6.513-7.969 179902 10650 94.1%
7.969-9.423 57652 1950 96.6%
9.423-11.47 13378 262 98.0%
11.47-14.59 1420 61 95.7%
14.59+ 134 27 79.9%
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Table A.23: Test 5 Flooded-Bed at 535 fpm 

 

Table A.24: Test 1 Flooded-Bed at 640 fpm 

 

  

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1934065 2695705 -39.4%
.504-.664 2178232 3093029 -42.0%
.664-.945 2842269 4159946 -46.4%
.945-1.114 1982740 2791948 -40.8%
1.114-1.488 1803126 2880904 -59.8%
1.488-1.999 5901854 6091979 -3.2%
1.999-2.250 2473371 2257727 8.7%
2.250-2.545 2489778 1966848 21.0%
2.545-3.219 3370060 2071852 38.5%
3.219-4.170 2095819 854300 59.2%
4.170-5.208 928552 200553 78.4%
5.208-6.513 441662 50197 88.6%
6.513-7.969 181029 10724 94.1%
7.969-9.423 58295 1906 96.7%
9.423-11.47 13580 309 97.7%
11.47-14.59 1481 46 96.9%
14.59+ 108 24 77.8%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1318760 3119999 -136.6%
.504-.664 1487414 3514044 -136.3%
.664-.945 1930163 4501920 -133.2%
.945-1.114 1231043 2888909 -134.7%
1.114-1.488 722210 2792089 -286.6%
1.488-1.999 5918342 5768626 2.5%
1.999-2.250 2680646 1888655 29.5%
2.250-2.545 2860854 1521518 46.8%
2.545-3.219 4090916 1420577 65.3%
3.219-4.170 2730164 482574 82.3%
4.170-5.208 1278761 106094 91.7%
5.208-6.513 648406 26403 95.9%
6.513-7.969 287999 5860 98.0%
7.969-9.423 100671 1147 98.9%
9.423-11.47 25762 197 99.2%
11.47-14.59 3193 52 98.4%
14.59+ 198 6 97.0%



61 
 

Table A.25: Test 2 Flooded-Bed at 640 fpm 

 

Table A.26: Test 3 Flooded-Bed at 640 fpm 

 

  

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1357030 3059405 -125.4%
.504-.664 1526088 3445593 -125.8%
.664-.945 1979485 4417860 -123.2%
.945-1.114 1288293 2855526 -121.7%
1.114-1.488 811147 2771261 -241.6%
1.488-1.999 5871754 5874249 0.0%
1.999-2.250 2649514 1940254 26.8%
2.250-2.545 2818650 1575754 44.1%
2.545-3.219 4029825 1485715 63.1%
3.219-4.170 2693564 507283 81.2%
4.170-5.208 1270272 111773 91.2%
5.208-6.513 649185 27904 95.7%
6.513-7.969 291138 6156 97.9%
7.969-9.423 102675 1121 98.9%
9.423-11.47 26144 196 99.3%
11.47-14.59 3163 47 98.5%
14.59+ 190 17 91.1%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1389413 3061815 -120.4%
.504-.664 1559662 3456485 -121.6%
.664-.945 2028229 4435764 -118.7%
.945-1.114 1342621 2873153 -114.0%
1.114-1.488 884519 2795290 -216.0%
1.488-1.999 5849190 5892189 -0.7%
1.999-2.250 2620291 1937876 26.0%
2.250-2.545 2783272 1570733 43.6%
2.545-3.219 3962871 1473688 62.8%
3.219-4.170 2646443 499403 81.1%
4.170-5.208 1252254 109625 91.2%
5.208-6.513 643928 27265 95.8%
6.513-7.969 288214 5970 97.9%
7.969-9.423 103349 1139 98.9%
9.423-11.47 26896 204 99.2%
11.47-14.59 3119 48 98.5%
14.59+ 172 24 86.0%
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Table A.27: Test 4 Flooded-Bed at 640 fpm 

 

Table A.28: Test 5 Flooded-Bed at 640 fpm 

 

  

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1404827 3051270 -117.2%
.504-.664 1585031 3438180 -116.9%
.664-.945 2058750 4419204 -114.7%
.945-1.114 1380743 2863485 -107.4%
1.114-1.488 895038 2783020 -210.9%
1.488-1.999 5921076 5922193 0.0%
1.999-2.250 2640375 1950111 26.1%
2.250-2.545 2789699 1581618 43.3%
2.545-3.219 3935893 1482361 62.3%
3.219-4.170 2595546 500732 80.7%
4.170-5.208 1214908 109594 91.0%
5.208-6.513 617454 26915 95.6%
6.513-7.969 275309 5924 97.8%
7.969-9.423 97193 1084 98.9%
9.423-11.47 25152 222 99.1%
11.47-14.59 2977 37 98.8%
14.59+ 180 23 87.2%

Particle Size Range (micrometer) Control Test Full-System Test % Particle Reduction
.357-.504 1385991 3104870 -124.0%
.504-.664 1563448 3488872 -123.2%
.664-.945 2030318 4469750 -120.2%
.945-1.114 1337563 2881075 -115.4%
1.114-1.488 843013 2787898 -230.7%
1.488-1.999 5928001 5822688 1.8%
1.999-2.250 2653163 1915863 27.8%
2.250-2.545 2810798 1552424 44.8%
2.545-3.219 3982275 1464483 63.2%
3.219-4.170 2633538 501719 80.9%
4.170-5.208 1235280 111209 91.0%
5.208-6.513 628996 27395 95.6%
6.513-7.969 280851 5984 97.9%
7.969-9.423 98538 1093 98.9%
9.423-11.47 25342 234 99.1%
11.47-14.59 3055 52 98.3%
14.59+ 189 22 88.4%
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Table A.29: Test 1 Flooded-Bed at 1070 fpm 

 

Table A.30: Test 2 Flooded-Bed at 1070 fpm 

 

  

Particle Size Range (micrometer) Test 64 Trial 1 Test 68 Trial 1 % Particle Reduction
.357-.504 2385707 2759881 -15.7%
.504-.664 2686656 3162821 -17.7%
.664-.945 3455468 4241403 -22.7%
.945-1.114 2273360 2835254 -24.7%
1.114-1.488 2197251 2901325 -32.0%
1.488-1.999 5281591 6000590 -13.6%
1.999-2.250 2078650 2192543 -5.5%
2.250-2.545 2002038 1893856 5.4%
2.545-3.219 2546827 1962763 22.9%
3.219-4.170 1503917 794215 47.2%
4.170-5.208 661234 180590 72.7%
5.208-6.513 319946 43594 86.4%
6.513-7.969 135181 9234 93.2%
7.969-9.423 44591 1478 96.7%
9.423-11.47 10988 213 98.1%
11.47-14.59 1264 26 97.9%
14.59+ 96 4 95.8%

Particle Size Range (micrometer) Test 64 Trial 2 Test 68 Trial 2 % Particle Reduction
.357-.504 2533861 2787486 -10.0%
.504-.664 2869906 3189128 -11.1%
.664-.945 3700364 4276582 -15.6%
.945-1.114 2419744 2847882 -17.7%
1.114-1.488 2396120 2943939 -22.9%
1.488-1.999 5278409 5972440 -13.1%
1.999-2.250 2040817 2194802 -7.5%
2.250-2.545 1945200 1902072 2.2%
2.545-3.219 2448599 1996931 18.4%
3.219-4.170 1431820 822766 42.5%
4.170-5.208 626922 192067 69.4%
5.208-6.513 303978 48444 84.1%
6.513-7.969 127050 10304 91.9%
7.969-9.423 41154 1842 95.5%
9.423-11.47 9934 279 97.2%
11.47-14.59 1216 42 96.5%
14.59+ 103 10 90.3%
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Table A.31: Test 3 Flooded-Bed at 1070 fpm 

 

Table A.32: Test 4 Flooded-Bed at 1070 fpm 

 

  

Particle Size Range (micrometer) Test 64 Trial 3 Test 68 Trial 3 % Particle Reduction
.357-.504 2602160 2668098 -2.5%
.504-.664 2947580 3057900 -3.7%
.664-.945 3791807 4110635 -8.4%
.945-1.114 2462408 2747876 -11.6%
1.114-1.488 2468081 2826647 -14.5%
1.488-1.999 5204673 6100481 -17.2%
1.999-2.250 2000492 2274132 -13.7%
2.250-2.545 1903405 1992196 -4.7%
2.545-3.219 2399279 2126625 11.4%
3.219-4.170 1404835 898035 36.1%
4.170-5.208 616316 220602 64.2%
5.208-6.513 299642 60211 79.9%
6.513-7.969 125997 14411 88.6%
7.969-9.423 41226 2851 93.1%
9.423-11.47 10058 417 95.9%
11.47-14.59 1205 64 94.7%
14.59+ 109 19 82.6%

Particle Size Range (micrometer) Test 64 Trial 4 Test 68 Trial 4 % Particle Reduction
.357-.504 2668759 2762734 -3.5%
.504-.664 3026314 3165848 -4.6%
.664-.945 3890923 4252844 -9.3%
.945-1.114 2512177 2840341 -13.1%
1.114-1.488 2530717 2949939 -16.6%
1.488-1.999 5123503 6017614 -17.5%
1.999-2.250 1960431 2211229 -12.8%
2.250-2.545 1863685 1921929 -3.1%
2.545-3.219 2354422 2020063 14.2%
3.219-4.170 1388820 834730 39.9%
4.170-5.208 616325 195998 68.2%
5.208-6.513 303487 49474 83.7%
6.513-7.969 129311 10650 91.8%
7.969-9.423 42569 1950 95.4%
9.423-11.47 10069 262 97.4%
11.47-14.59 1282 61 95.2%
14.59+ 96 27 71.9%
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Table A.33: Test 5 Flooded-Bed at 1070 fpm 

 

Particle Size Range (micrometer) Test 64 Trial 5 Test 68 Trial 5 % Particle Reduction
.357-.504 2500287 2695705 -7.8%
.504-.664 2834065 3093029 -9.1%
.664-.945 3650163 4159946 -14.0%
.945-1.114 2399748 2791948 -16.3%
1.114-1.488 2360842 2880904 -22.0%
1.488-1.999 5353834 6091979 -13.8%
1.999-2.250 2082172 2257727 -8.4%
2.250-2.545 1995701 1966848 1.4%
2.545-3.219 2530321 2071852 18.1%
3.219-4.170 1485237 854300 42.5%
4.170-5.208 651480 200553 69.2%
5.208-6.513 314350 50197 84.0%
6.513-7.969 131150 10724 91.8%
7.969-9.423 42817 1906 95.5%
9.423-11.47 10337 309 97.0%
11.47-14.59 1301 46 96.5%
14.59+ 95 24 74.7%
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Figure A.1: Page 1 of Calis Report 
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Figure A.2: Page 2 of Calis Report 
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