

University of Kentucky UKnowledge

Theses and Dissertations--Mining Engineering

**Mining Engineering** 

2017

# Laboratory Performance Comparison of Vortecone Inertial Dust Scrubber to Flooded-Bed Dust Scrubber

Adam J. Levy University of Kentucky, adam.levy201@gmail.com Digital Object Identifier: https://doi.org/10.13023/ETD.2017.106

Right click to open a feedback form in a new tab to let us know how this document benefits you.

### **Recommended Citation**

Levy, Adam J., "Laboratory Performance Comparison of Vortecone Inertial Dust Scrubber to Flooded-Bed Dust Scrubber" (2017). *Theses and Dissertations--Mining Engineering*. 33. https://uknowledge.uky.edu/mng\_etds/33

This Master's Thesis is brought to you for free and open access by the Mining Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mining Engineering by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

### STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

### **REVIEW, APPROVAL AND ACCEPTANCE**

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student's thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Adam J. Levy, Student Dr. William C. Wedding, Major Professor Dr. Zach Agioutantis, Director of Graduate Studies

### LABORATORY PERFORMANCE COMPARISON OF VORTECONE INERTIAL DUST SCRUBBER TO FLOODED-BED DUST SCRUBBER

### THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering in the College of Engineering at the University of Kentucky

By

Adam Joseph Levy

Lexington, Kentucky

Director: Dr. William Chad Wedding, Assistant Professor of Mining Engineering

Lexington, Kentucky

2017

Copyright © Adam Joseph Levy 2017

### ABSTRACT OF THESIS

### COMPARISON OF PERFORMANCE OF VORTECONE INERTIAL DUST SEPARATOR TO FLOODED-BED DUST SCRUBBER

Increasing incidence of Black Lung disease in miners since the early 1990s has concerned law makers and the mining industry. New regulations promulgated by MSHA in 2014 lowered the permissible limit of dust exposure of underground workers. The hazards of respirable coal dust have been common knowledge throughout the mining industry since the enactment of the 1969 Federal Coal Mine Health and Safety Act, and many administrative controls have been put in place since its enactment.

The purpose of this thesis is to analyze the performance of a Vortecone scrubber, used in the automotive industry to remove paint overspray from the air, for removing coal dust with an emphasis on respirable coal dust. Comparisons are made to a very effective scrubbing technology already in use in many underground coal mines, a flooded-bed scrubber system. This system is typically mounted on a continuous miner, and used to scrub contaminated air of unwanted particulate matter. Per the results of this study, a Vortecone appears to remove a greater amount of respirable dust from an airstream than a floodedbed scrubber, and carries with it several operational advantages which are discussed.

KEYWORDS: Respirable Dust, Black Lung, Vortecone, Health and Safety

Adam Joseph Levy

4/26/2017

## COMPARISON OF PERFORMANCE OF VORTECONE INERTIAL DUST SEPARATOR TO FLOODED-BED DUST SCRUBBER

By

Adam Joseph Levy

Dr. William Chad Wedding Director of Thesis

Dr. Zach Agioutantis Director of Graduate Studies

4/26/2017

# DEDICATION

I dedicate this thesis work to the continuing effort to end Black Lung, a preventable industrial disease.

### ACKNOWLEDGEMENTS

I want to thank my wife, Nicole, for her unconditional love and support. I would also like to thank my parents, June and David, who continue to support me in everything I do. I would also like to thank my advisor, Dr. William C. Wedding, for his leadership, guidance, and support in my pursuit of my graduate degree. My colleagues Mr. Ed Thompson, Dr. Josh Calnan, Mr. Sampurna Arya, and Mr. Ashish Kumar also deserve recognition for their support in the completion of this research. Additionally, I thank my committee members Dr. Thomas Novak and Dr. Joseph Sottile for their excellent suggestions and academic support.

| ACKNOWLEDGEMENTS                                  | iii |
|---------------------------------------------------|-----|
| TABLE OF CONTENTS                                 | iv  |
| LIST OF TABLES                                    | v   |
| LIST OF FIGURES                                   | vi  |
| Chapter One: Introduction                         | 1   |
| Chapter Two: Review of Literature                 | 3   |
| 2.1 History of Black Lung and Dust Regulation     | 3   |
| 2.2 Epidemiology of Coal Workers' Pneumoconiosis  | 4   |
| 2.3 Dust Characterization                         | 5   |
| 2.4 Dust and the Respiratory Tract                | 6   |
| 2.4 Overview of Particle Measurement Technology   |     |
| 2.5 Dust Controls in Underground Coal Mines       | 10  |
| 2.6 Flooded-Bed Scrubber Overview and Performance | 12  |
| 2.7 Vortecone Scrubber Overview and Performance   | 14  |
| Chapter Three: Testing Setup                      | 16  |
| 3.1 Testing Setup Overview                        | 16  |
| 3.2 Sampling and Instrumentation                  | 25  |
| Chapter Four: Vortecone Testing                   | 29  |
| 4.1 Testing Methodology                           | 29  |
| 4.2 System Curve Testing Results                  | 30  |
| 4.3 Dust Testing Results                          | 31  |
| Chapter Five: Flooded-Bed Screen Testing          | 35  |
| 5.1 Testing Methodology                           | 35  |
| 5.2 System Curve Testing Results                  | 36  |
| 5.3 Dust Testing Results                          | 37  |
| Chapter Six: Analysis & Discussion                | 42  |
| Chapter Seven: Conclusion                         | 46  |
| Chapter Eight: Future Work                        | 48  |
| Appendix                                          | 49  |
| References                                        | 68  |
| Vita                                              | 70  |

# TABLE OF CONTENTS

# LIST OF TABLES

| Table 4.1: Results for Vortecone Testing at 535 fpm                         | 32 |
|-----------------------------------------------------------------------------|----|
| Table 4.2: Results for Vortecone Testing at 340 fpm                         | 33 |
| Table 5.1: Flooded-Bed Particle Reduction Results at 340 fpm                | 37 |
| Table 5.2: Flooded-Bed Particle Reduction Results at 535 fpm                | 38 |
| Table 5.3: Flooded-Bed Particle Reduction Results at 680 fpm                | 39 |
| Table 5.4: Flooded-Bed Particle Reduction Results at 1070 fpm               | 40 |
| Table 6.1: Analysis of Particle Reduction from Feed for Each Test Condition | 43 |
| Table 6.2: Testing Results Analyzed for Particles Under 10 Microns          | 44 |
| Table 6.3: Testing Results Analyzed for Particles Under 5 Microns           | 45 |
|                                                                             |    |

# LIST OF FIGURES

| Figure 2.1: Depositional Regions of the Lung (NIOSH)                        | 7    |
|-----------------------------------------------------------------------------|------|
| Figure 2.2: A Flooded-Bed Screen System on a Continuous Miner (NIOSH, 1997) | . 13 |
| Figure 2.3: Schematic of a Vortecone Scrubber (Salazar, 2012)               | . 15 |
| Figure 3.1: Vortecone Testing Setup                                         | . 16 |
| Figure 3.2: Inside of Dwyer STRA Airflow Measurement Station                | . 17 |
| Figure 3.3: Vortecone Placement in Testing Setup                            | . 19 |
| Figure 3.4: Conveying Eductor Layout (Crabtree, 1999)                       | . 19 |
| Figure 3.5: Vortecone in Early Stages of Construction                       | . 20 |
| Figure 3.6: Bottom of the Vortecone                                         | . 21 |
| Figure 3.7: Vortecone with Inlet and Water Manifold Installed               | . 22 |
| Figure 3.8: Top View of Water Manifold                                      | . 22 |
| Figure 3.9: Flooded-Bed Scrubber Testing Setup                              | . 23 |
| Figure 3.10: Flooded-Bed Screen and Demister Setup for Testing              | . 24 |
| Figure 3.11: Techweigh Feeder used for Flooded-Bed Setup                    | . 24 |
| Figure 3.12: Isokinetic Sampling Visualization (USGS)                       | . 25 |
| Figure 3.13: Sampling Train with Dilution Overview                          | . 26 |
| Figure 3.14: Sampling Train with no Dilution                                | . 27 |
| Figure 3.15: TSI Optical Particle Sizer (TSI)                               | . 28 |
| Figure 3.16: TSI OPS 3330 Internal Operation (TSI)                          | . 28 |
| Figure 4.1: Feed Material Size Distribution                                 | . 30 |
| Figure 4.2: Vortecone System Curve                                          | . 31 |
| Figure 4.3: Vortecone Test Results Best Fit Curve at 535 fpm                | . 32 |
| Figure 4.4: Vortecone Test Results Best Fit Curve at 340 fpm                | . 34 |
| Figure 5.1: Flooded-Bed Screen System Curve                                 | . 36 |
| Figure 5.2: Flooded-Bed Particle Reduction Best Fit Curve at 340 fpm        | . 38 |
| Figure 5.3: Flooded-Bed Particle Reduction Best Fit Curve at 535 fpm        | . 39 |
| Figure 5.4: Flooded-Bed Particle Reduction Best Fit Curve at 680 fpm        | . 40 |
| Figure 5.5: Flooded-Bed Particle Reduction Best Fit Curve at 1070 fpm       | . 41 |
|                                                                             |      |

#### **Chapter One: Introduction**

Per a study conducted by the National Institute for Occupational Safety and Health (NIOSH) the incidence rate of coal workers' pneumoconiosis (CWP), and other chronic diseases related to respirable coal mine dust exposure, has been on the rise since the early 1990s (NIOSH, 2008). Because of these findings, the Mine Safety and Health Administration (MSHA) has promulgated new regulations further reducing the allowable exposure miners may have to respirable dust (MSHA, 2014). These recent findings and regulations have initiated a renewed effort in improving the underground mine environment by reducing individual dust exposure.

Dust is an inescapable byproduct of coal mining, because any breaking or crushing of coal or rock will generate dust. A portion of generated dust is in the respirable range, having an aerodynamic diameter less than 10 microns, and poses a significant health risk to miners (WHO, 1999). Various methods of reducing or controlling dust emissions have been tested over the years, and some have proven to be very successful and are in wide use today. Some primary methods include dilution and displacement by ventilation, wetting and capture by water sprays, and collection and filtration by dust collector (Kissell, 2003).

A large share of the dust in an underground coal mine is generated at the working face, where the coal is broken and gathered for transport (NIOSH, 2008). Therefore, individuals employed close to the working face are at the highest risk of developing CWP and many dust control technologies are employed close to the active workings in a mine (Kissell, 2003; NIOSH, 2008). These dust control technologies can be stationary or machine-mounted depending on the application (Kissell, 2003). One that has proven

particularly effective is the machine-mounted, flooded-bed dust scrubber system (Campbell et al., 1983). The system employs, (1) a steel mesh screen flooded with water to trap dust in water droplets, (2) a demister to remove those droplets from the airstream, and (3) a fan to move the air (Campbell et al., 1983). The system is very effective, and can eliminate over 90% of the dust from coal mine air (Collinet et al., 1990).

The aim of this project is to introduce a new scrubbing system called the Vortecone, invented at the University of Kentucky and employed by Toyota Manufacturing, into the mining industry and to compare its performance with that of a flooded-bed screen and demister system. Vortecones currently employed by Toyota are used on its automotive painting line to separate paint overspray from the air (Salazar, 2012). The comparison will be made by testing a scale model of the Vortecone in a laboratory setting and comparing the results to those obtained from laboratory testing on a flooded-bed screen and demister system.

#### **Chapter Two: Review of Literature**

#### 2.1 History of Black Lung and Dust Regulation

Black Lung, also known as CWP, has existed since humanity starting mining coal (Arnold, 2016). Some of the earliest recorded recognition of the lung problems that coal miners were having, and linking the illness to coal dust, comes from British doctors in the 1830s (McIvor and Johnston, 2007). And as knowledge continued to grow into the early 1900s about the hazards of coal dust, little was done in the way of legislation controlling levels of respirable coal dust (Arnold, 2016). "By the 1950s, scientists had shown with near certainty that CWP could be caused exclusively by excessive exposure to coal dust" (Arnold, 2016). A strike by the United Mine Workers of America (UMWA) in 1968 initiated the creation of the 1969 Federal Coal Mine Health and Safety Act (Coal Act) (Arnold, 2016).

The incidence rate of CWP had been in steady decline since 1970, after the enactment of the Coal Act limited workers' exposure to respirable coal dust (NIOSH, 2008; Public Law 91-193, 1969). The Coal Act based the dust limitations on data from British prospective studies on CWP (Merchant, Taylor, and Hodous, 1986). However, research conducted by NIOSH has shown a rise in the incidence rate of CWP starting in the early 1990s (NIOSH, 2008). Therefore, the U.S. Department of Labor through MSHA proposed a new dust rule, called the Final Rule, aimed at lowering miners' exposure to respirable coal mine dust even further (MSHA, 2014). The Final Rule, effective August 1, 2016, lowered the permissible respirable dust exposure limit from 2.0 mg/m<sup>3</sup> to 1.5 mg/m<sup>3</sup> in the underground workings and from 1.0 mg/m<sup>3</sup> to 0.5 mg/m<sup>3</sup> in the intake air of an underground working place (U.S. Department of Labor, 2014). The Final Rule goes on

to say that decreasing the amount of respirable coal dust a worker is exposed to is "...the most effective means of preventing diseases caused by excessive exposure to such dust." (U.S. Department of Labor, 2014).

#### 2.2 Epidemiology of Coal Workers' Pneumoconiosis

The term "black lung" comes from the legal definition of many diseases that affect the lungs of individuals who have worked in a coal mine (Castranova and Vallyathan, 2000). Black lung includes CWP, bronchitis, emphysema, and silicosis which are diseases that are caused by the constituents of coal mine dust (Castranova and Vallyathan, 2000). The reason for lumping diseases under one umbrella is that it is difficult to distinguish among them without direct examination of the lungs which can only occur post-mortem (Castranova and Vallyathan, 2000). CWP is further divided into two separate diseases, simple CWP and complicated CWP depending on the characteristics and progression of the disease in the lung (Castranova and Vallyathan, 2000). CWP starts as the simple variety, and upon continued exposure the lungs continue to fill with coal dust and complex CWP develops (Castranova and Vallyathan, 2000). Simple and complex CWP are separated by the size and number of zones in a radiograph of a miner's lungs that have varying opacity compared to heathy lung tissue (Castranova and Vallyathan, 2000). The disease progresses because of several interactions between lung tissue and particles including physical and chemical mechanisms (Castranova and Vallyathan, 2000).

Silicosis, usually found in conjunction with other diseases in coal miners, is caused by crystalline silica being deposited in the lungs (Castranova and Vallyathan, 2000). Silica can be a constituent of coal mine dust, depending on the conditions of the mine, and may affect the maximum respirable dust exposure for a mine (Castranova and Vallyathan,

2000). Silicosis is encountered in several occupations, and silica dust is much more dangerous than coal dust because of its reactivity (Castranova and Vallyathan, 2000). CWP, once progressed to the complex stage, can be called Progressive Massive Fibrosis (PMF) which includes decreased lung function due to disease caused by inhalation of damaging particles (Castranova and Vallyathan, 2000). PMF can progress independently of exposure, so it is important for individuals to participate in monitoring of their lung heath if they are in occupations which expose them to respirable dust (Castranova and Vallyathan, 2000). PMF is typically the last stage of the disease, which includes vascular degeneration and declining lung function (Castranova and Vallyathan, 2000).

### **2.3 Dust Characterization**

Coal mine dust consists of over 50 different elements and their oxides and some can be cytotoxic and carcinogenic (NIOSH, 1995; Castranova and Vallyathan, 2000). It can also contain several minerals, whose content and concentration in the dust vary by coal seam (NIOSH, 1995). Coal miners working in anthracite coal have higher rates of CWP than other miners (Castranova and Vallyathan, 2000). This is thought to be due in part to the increased toxicity of anthracite coal compared to coals of lower ranks (Castranova and Vallyathan, 2000).

Dust is generally characterized by the size of its particles, which can be measured in several different ways. Typically, when dust is looked at from the perspective of occupational health, the aerodynamic diameter is of interest (WHO, 1999). The aerodynamic diameter of a particle is defined as a particle having identical terminal settling velocity in calm air to a spherical particle of density 1 g/cm<sup>3</sup> "… regardless of its

geometric size, shape, and true density" (WHO, 1999). The reason aerodynamic diameter is of interest from a health perspective is because deposition of particles in the lungs is dictated by the aerodynamic diameter of the particle (WHO, 1999). A particle with a smaller aerodynamic diameter will travel deeper into the lungs than a particle with a larger aerodynamic diameter (WHO, 1999).

Coal mine dust has a wide size distribution, and the airborne constituent typically consists of particles less than 100 microns in aerodynamic diameter that are carried by the ventilating air (NIOSH, 1995; WHO, 1999). Particles larger in size may become airborne, but do not remain there for an extended period (WHO, 1999). A study by NIOSH (2007) that sized dust from 47 different coal mines, showed coal mine dust having a median diameter around 150 microns, with as much as 40% of the material being under 200 mesh (74 microns) in some samples. A more recent study conducted specifically in the return of a continuous miner section showed a median diameter of 48 microns with 90% of the total being below 104 microns (Barone et al. 2016). The "(a)irborne respirable dust in underground coal mines has been estimated to consist of 40% to 95% coal…" (NIOSH, 1995). This varies by coal rank, seam thickness, and mining method (NIOSH, 1995).

### 2.4 Dust and the Respiratory Tract

Any particle small enough to become airborne may be inhaled into the nose or mouth depending on the respiration of an individual (WHO, 1999). Inhalation probability depends on several factors, particularly the particles aerodynamic diameter (WHO, 1999). Particles that become airborne are about 100 microns and below in aerodynamic diameter (WHO, 1999). Once a particle is inhaled, there are five mechanisms that control the deposition of particles in airways. They are sedimentation, inertial impaction,

diffusion, interception, and electrostatic deposition (WHO, 1999). The primary mechanisms in human airways are sedimentation and inertial impaction (WHO, 1999). Particles having an aerodynamic diameter greater than 10 microns are typically deposited in an individual's nose and throat, while particles less than 10 microns continue to the thoracic region (WHO, 1999). Particles ranging from 10 to 4 microns are generally deposited in the airways of the lung, and particles less than 4 microns reach the alveoli of the lung, where gas exchange occurs (WHO, 1999). Figure 2.1 depicts a general schematic of particle deposition in the airways.



Figure 2.1: Depositional Regions of the Lung (NIOSH)

#### 2.4 Overview of Particle Measurement Technology

Particulate matter is difficult to measure, because small particles represent relatively small masses and very sensitive instrumentation must be used (Amaral et al., 2015). Several methods for measuring particles exist today, with researchers needing to choose what type of measurement they wish to have, as well as the cost of the device (Amaral et al., 2015). The smaller the particle becomes, the more difficult and expensive it becomes to measure accurately (Amaral et al., 2015). The types of instruments that measure particles can be broken up into three different methods - gravimetric, optical, and microbalance methods (Amaral et al., 2015).

Gravimetric methods of measuring aerosol concentration represent sampling that directly collects a representative sample from an airstream, deposits it on a plate or filter, and then pre- and post-weights that filter for an averaged mass concentration (Amaral et al., 2015). This method is commonly used for personal sampling in environmental situations, where many standards are written in terms of a certain mass per unit volume of air that a worker may be exposed to (Amaral et al., 2015). These systems can be relatively inexpensive to operate, and require centralized pre- and post-weighing of filters for accurate measurements (Amaral et al., 2015). However, for gravimetric sampling of very small particles, very sensitive weighing equipment must be employed in a controlled environment to ensure accurate measurements (U.S. EPA 2016). For example, when measuring particulate matter present in ambient air below 2.5 microns, the U.S. Environmental Protection Agency requires that equipment be in an environment with temperature controlled to within two degrees centigrade, between thirty and forty percent relative humidity, and relatively vibration-free to avoid error in the measuring process

(U.S. EPA, 2016). These conditions typically require the construction of a unique room with specialized air handling equipment to accommodate the requirements (U.S. EPA, 2016).

The second, optical methods, represents a very broad range of particle measurement equipment that can rely on light scattering, light absorption, or light extinction (Amaral et al., 2015). These methods all use the properties of light and their interaction with particles to determine a particles size or concentration of particles, such as passing a particle neatly through a laser beam and measuring the response (Amaral et al., 2015). Light extinction can involve shining a light across a test duct and determining the amount of light attenuation for certain dust concentrations (Amaral et al., 2015). These techniques are advantageous because they do not require that the particles be collected on a surface, and are simply examined while still airborne (Glenn and Craft, 1986). However, the response of light to a particle may not always be uniform, and may be affected by the size as well as the color of the particle (Glenn and Craft, 1986). Therefore, the material being measured must have a carefully measured reflective and refractive index to properly correlate particle size with light response (Manickavasagam and Mengüç, 1993). For coal particles (of certain particle sizes ranges) the increase in light response is not linear with respect to particle size, making it difficult to distinguish between two particles (i.e. a 3 micron particle producing a response very similar to a 3.5 micron particle) (Manickavasagam and Mengüç, 1993). Therefore, without proper calibration, some optical machines may misrepresent the distribution of particle-size when measuring coal dust particles.

Finally, microbalance methods require very finely tuned micro scales to weigh individual particles or batches of particles to determine an exposure (Amaral et al., 2015). These instruments are typically expensive and involve a very small vibrating mass with a collection plate on top (Amaral et al., 2015). The vibrating mass will change frequency when particles are deposited on the collection plate; thus, a response can be measured and correlated with mass (Amaral et al., 2015). In this study, optical particle sizing methods are used for their quick readout time, one-step measurement (not requiring special sample handling and storage), and relatively low entry cost for the measuring devices.

#### **2.5 Dust Controls in Underground Coal Mines**

Dust is controlled in several ways including dilution and displacement by ventilation, wetting and capture by water sprays, and collection and filtration by dust collector (Kissell, 2003). These methods are aimed at reducing local dust concentration levels for the health and safety of the workers (Kissell, 2003). A large majority of dust in an underground coal mine is generated at the active working face, whether that be a continuous miner or longwall shearer (Kissell, 2003). Therefore, most dust control techniques are employed at or near the active workings of a mine (Kissell, 2003). Also, multiple dust control methods are typically employed at once because no single method, besides removing the worker from the dusty environment, eliminates exposure (Kissell, 2003).

Dilution by ventilating air serves to reduce the concentration of dust by supplying relatively fresh air to areas where workers are present (Kissell, 2003). This method can be useful if workers can be placed in the fresh air instead of standing in dirty or dusty air (Kissell, 2003). Displacement by ventilating air works in a similar fashion, but intends to use the velocity of ventilating air to move the dust away from workers (Kissell, 2003). This method, noted by Kissell (2003), "... is the most effective dust control technique available..." but is difficult to implement. "The cost and technical barriers to increased airflow can be substantial..." and are not always fiscally or technically feasible (Kissell 2003).

Water sprays aim to accomplish two objectives, wetting newly broken material and capturing airborne particles inside water droplets (Kissell, 2003). Wetting of newly broken material is an extremely valuable tool in controlling dust, Kissell (2003) notes, with a large portion of dust remaining on the surface of the material. Wetting of the material effectively captures the dust and prevents it from becoming airborne (Kissell, 2003). Sprays may be located on the mining machines themselves, as well as on any coal/rock breaking equipment to limit dust generated from the additional crushing of material (Kissell, 2003).

Another goal of water sprays is to capture dust once it has become airborne by creating many fine water droplets (Kissell, 2003). This works well in theory as well as in the laboratory, but there are drawbacks to the system in practice in an underground coal mine. Kissell (2003) notes that water sprays only capture a small amount of airborne respirable dust in an underground coal mine, because not all the air passes directly by a water spray. Kissell (2003) goes on to say that the water sprays may also induce airflow that increases a worker's exposure to dust by displacing the dust away from the working face and towards the worker.

The final method that is primarily used in underground coal mines is collection and filtration (Kissell, 2003). These can range from cab filters on mobile equipment to

machine-mounted scrubbers that capture dust-laden air near the cutting drum on mining equipment and pass it through a flooded-bed screen and demister (Kissell, 2003). A machine-mounted scrubber's performance is a function of the capture and cleaning efficiencies of the device (Kissell, 2003). While the scrubber may perform under ideal conditions at a 90%-95% efficiency, if only 50% of the air is captured then the dust reduction will only be around 40-50% (Kissell, 2003). Also, these scrubbers are maintenance intensive with clogging screens reducing capture efficiency by reducing the airflow through the systems (Kissell, 2003). With the aim of this project being a technology transfer of a new scrubbing system to potentially replace a flooded-bed scrubber system, the next section will evaluate these systems in greater detail.

#### 2.6 Flooded-Bed Scrubber Overview and Performance

The use of a flooded-bed scrubber mounted on a continuous miner was patented in 1983, and involved the use of a flooded-bed screen with sprayer, a demister, and a fan (Campbell et al., 1983). Dusty air drawn from near the cutting drum flows through a steel mesh screen, wetted by a water spray, where the dust particles are either captured on the screen itself, or inside the water droplets generated by air forcing water through the screen (Campbell et al., 1983). The air filled with water droplets passes through a mist eliminator which removes the water from the air by internal separation and gathers the dirty water in a sump for removal (Campbell et al., 1983). Finally, the air passes through an axial vane fan that serves at the primary air mover for the system (Campbell et al., 1983). Figure 2.2 depicts a system mounted on a continuous miner.



Figure 2.2: A Flooded-Bed Screen System on a Continuous Miner (NIOSH, 1997) Studies have been conducted in laboratory settings as well as in the field on the performance of flooded-bed scrubber systems, with most testing being conducted by NIOSH (NIOSH, 2014; NIOSH, 1990). Laboratory testing conducted by NIOSH evaluated the capture performance of a flooded-bed scrubber and mist eliminator setup, with measurement upwind and downwind of the scrubber (NIOSH, 1990). These tests used a flooded-bed screen and demister identical to those used on a Joy 14CM, a commonly used continuous miner (NIOSH, 1990). A dust feeder introduced dust upwind of the system, which was then scrubbed, and the capture across the device was measured (NIOSH, 1990). Different screens were tested to determine the performance changes across screen by density and manufacturer (NIOSH, 1990). In testing, most filters could achieve a cleaning efficiency more than 90%, with slight variation attributed to manufacturer and screen density (NIOSH, 1990).

Field testing of machine-mounted flooded-bed scrubber systems included tests at three different mines that used such a machine-mounted system (NIOSH, 2014). The study looked at several different locations within each mine including machine operators as well as the return of the section for dust reduction when using the system (NIOSH, 2014). Per testing conducted by NIOSH (2014), reductions in dust levels in the return of each of the three mines were 91%, 85%, and 40% were achieved using the machine-mounted flooded-bed scrubber. This shows that this technology, in conjunction with machine-mounted sprays and other ventilation practices, serves to reduce the amount of dust present in the mine atmosphere (NIOSH, 2014).

#### 2.7 Vortecone Scrubber Overview and Performance

The Vortecone is an inertial droplet separator invented at the University of Kentucky for use on an automotive paint line to capture paint overspray (Salazar, 2012). It accelerates contaminated air through the inlet portion of the device and then rapidly changes its direction, causing dust particles with high inertial energy to be transferred to the outer walls of the device (Salazar, 2012). Awaiting those particles is a sheet of water formed from the inlet of the device by water falling down all sides of the inlet and being accelerated along with the air (Salazar, 2012). The air then completes a turnaround 360° back to its original direction and exits the device (Salazar 2012). Figure 2.3 depicts a general schematic of the Vortecone, as depicted in the patent (Salazar, 2012). The inlet of the Vortecone is located at the top of the figure, with the air turning rapidly at the bottom and passing through one of two lobes that continue turning the air back to the original direction of travel to the outlet located near the bottom of the figure (Salazar, 2012).



Figure 2.3: Schematic of a Vortecone Scrubber (Salazar, 2012)

A feasibility study was carried out by Tianxiang Li, Abraham J. Salazar, and Kozo Saito (2009) on using the Vortecone to remove fly ash from coal fired power plants. Small scale testing and numerical modeling of fly ash particles passing through a Vortecone were performed (Li et al., 2009). Their experimental results showed a cleaning efficiency of 99.8% for fly ash, with a 30% energy savings over a cyclone that is traditionally used for this task (Li et al., 2009). Fly ash and paint overspray both contain particles in the respirable range, and thus a transfer of the technology to cleaning coal mine dust was a logical next step for the technology.

Copyright © Adam Joseph Levy 2017

### **Chapter Three: Testing Setup**

### 3.1 Testing Setup Overview

A wind tunnel was constructed for testing both the Vortecone and flooded-bed scrubber in the Ventilation Laboratory at the University of Kentucky. Airflow through the tunnel is driven by a 25-horsepower centrifugal fan, model RBE-11, manufactured by Cincinnati Fan. This fan was selected based on desired flows and expected pressure drop through a 3:1 scale Vortecone, reduced from the geometry invented at the University of Kentucky, that was the target for testing. The fan was positioned at the entrance of the wind tunnel, serving as the start as well as the inlet of the wind tunnel. Figure 3.1 shows the Vortecone testing setup, with the fan inlet facing upward and outlet attached to the end of the aluminum duct pictured.



Figure 3.1: Vortecone Testing Setup

The duct is an 18" by 12" rectangular duct, constructed from aluminum sheet and an aluminum extrusion product. Each section of duct has an identical aluminum plate on each end for ease of assembly. This duct setup also makes the unit modular, so that some pieces of ductwork may be reused for both the Vortecone setup as well as the floodedbed setup. Downwind of the fan is a Dwyer Instruments STRA Airflow Measurement Station (Dwyer Measurement Station), also having interior dimension of 18" by 12". It uses a honeycomb structure to straighten the airflow, and then two pressure-averaging tubes are used to measure total and static pressure. The tubes are plumbed to the size of the station, so that measurements may be taken. Figure 3.2 shows the downwind side of the flow measurement station, with honeycomb flow straightener and pressure-averaging tubes. This device is calibrated by Dwyer, and has specified standards for distances from airflow disturbances such as fans and corners. Therefore, the geometry of the first portion of the wind tunnel, including the distance from the fan to the Dwyer Measurement Station (eight feet) and the distance from the measurement station to the first downward corner (three feet), is dictated by the product specifications.



Figure 3.2: Inside of Dwyer STRA Airflow Measurement Station

In the case of the Vortecone setup, downwind of the Dwyer Measurement Station is a right-angle corner to direct flow downward and toward the Vortecone. The Vortecone was designed to be placed underneath an automotive painting line because of the required 100 linear feet per minute "...average air velocity over the open face of the booth (or booth cross section during spraying operations)..." (29 CFR § 1926.66(b)(5)(i), 1993). Therefore, Vortecones traditionally are situated with the inlet facing upward, and outlet facing downward underneath the entire cross-section of the painting line (Salazar 2012). Figure 3.3 depicts the portion of the test setup downwind of the Dwyer Measurement Station, with the Vortecone installed. To accommodate the traditional setup of the Vortecone, two corners are required to turn the flow downward into the Vortecone and then horizontal, so that the testing setup may reside inside the laboratory. Inside these corners are a generic HVAC turning vane and rail system provided by a local HVAC company. These turning vanes reduce the amount of shock loss through the corners, and are installed on both corners of the tunnel.



Figure 3.3: Vortecone Placement in Testing Setup

For the injection of dust into the system, a vibratory feeder meters the test dust into a conveying eductor, which sucks and aerosolizes in the material while conveying it into the duct. It is powered by a compressed air line that creates suction on the product inlet and accelerates the air through the discharge of the device into the test duct. Figure 3.4 shows a general cross section of an eductor, with more detail on the inner workings. Dust is ejected downward into the duct, but is rapidly accelerated in the direction of the airflow towards the Vortecone.



Figure 3.4: Conveying Eductor Layout (Crabtree, 1999)

The Vortecone is constructed from clear polycarbonate plates that are machined to fit 3D printed plastic parts that make up the inner geometry of the Vortecone. The 3D printed pieces are sandwiched between the polycarbonate sheets, and the whole assembly is bolted together. A 3D printed inlet is located at to the top of the device to aid in transition into the Vortecone and to reduce pressure loss. Figure 3.5 shows the test Vortecone in early stages of construction, with 3D printed parts sandwiched between clear polycarbonate sheets and held together with clamps. Once assembled, all seams were sealed with sealing compound.



Figure 3.5: Vortecone in Early Stages of Construction

After the air and dust exits the bottom outlet of the Vortecone through its two mirrored outlets, the flow is turned back horizontally and directed toward the sampling section, which will be explained in more detail in section 3.2. Figure 3.6 shows the underside of the Vortecone, with mirrored outlets at the bottom of the device. Figure 3.7 shows the Vortecone with blue inlet section installed as well as the orange water manifold, which

sheds a sheet of water around the periphery of the device to serve as the filter element inside the Vortecone as explained in Section 2.7. Water for the Vortecone is supplied by a traditional city water hose tap, flowing at approximately 10 gallons per minute. Figure 3.8 shows a top view of the Vortecone inlet and inside the water manifold.



Figure 3.6: Bottom of the Vortecone



Figure 3.7: Vortecone with Inlet and Water Manifold Installed



Figure 3.8: Top View of Water Manifold

A very similar setup is also used for the testing of the flooded-bed scrubber system with only minor changes. The fan, Dwyer Measurement Station, sampling section, and dust eductor are re-used from the Vortecone testing setup, simplifying construction. Figure 3.9 depicts the flooded-bed screen and demister testing setup. After the Dwyer Measurement Station a four-foot section of duct contains a 20-layer pleated flooded-bed screen. The screen is situated at approximately a 45-degree angle in the duct, as is seen in a traditional flooded-bed screen setup in the mining industry (Campbell et al., 1983). The demister section consists of sinusoidal demisting elements as employed by Joy Global, who supplied the demister fins as well as the flooded-bed screen. A single water spray supplies water to the screen as is typical for the setup, and is operated at approximately 10 gallons per minute from a traditional city water hose tap. Figure 3.10 shows the flooded-bed screen, demister, and water spray used for testing. The duct cross-section remains at 18" by 12", and the flow travels straight through the entirety of the duct.



Figure 3.9: Flooded-Bed Scrubber Testing Setup



Figure 3.10: Flooded-Bed Screen and Demister Setup for Testing Because testing of the flooded-bed scrubber required more time between control testing and filter testing, a more consistent auger feeder replaced the vibratory feeder. An auger feeder, a Techweigh Flex-Feed Volumetric Feeder 05 Series (Techweigh feeder), was chosen. The Techweigh feeder still feeds dust into the eductor in the same manner as the vibratory feeder. Figure 3.11 shows the Techweigh feeder setup, with internal hopper and feed screw leading to the end of the stainless-steel tube.



Figure 3.11: Techweigh Feeder Used for Flooded-Bed Setup

#### **3.2 Sampling and Instrumentation**

Isokinetic sampling of the airstream occurs approximately five feet from the start of the final duct section. In the case of the Vortecone setup this was five feet from the bottom corner, and in the case of the flooded-bed screen setup this was five feet from the rear of the demister. To properly sample in an isokinetic manner, the velocity of air entering the sampling probe must be identical to the velocity of the stream being sampled. This will prevent over or under sampling problems, which would misrepresent dust concentration in the airstream. Figure 3.12 depicts ideal isokinetic sampling, with streamlines undisturbed entering the sampling probe.



Figure 3.12: Isokinetic Sampling Visualization (Wilde, 2006)

To properly size the sampling probe for the testing setup, velocities for the ductwork had to be set. Velocities chosen for sampling were 535 fpm and 340 fpm, so an isokinetic sampling probe with interchangeable tips was constructed. The two tips were designed with a sample flow rate of 0.035 cubic feet per minute (1 liter per minute) sampling rate of the particle measuring device. To accommodate this flow rate, a simple calculation of dividing the flow by the velocity of the chosen test velocities gave the desired area, and therefore diameter hole, required for the probe tips to have an inlet velocity matching the

velocity of air in the tunnel. The probe tips were made to be 0.0318" and 0.0398" in diameter for the 535 fpm and 340 fpm flows respectively.

After being drawn through the isokinetic probe, the sampled air goes through the sampling train. The sampling train consists of a desiccant dryer, which is a tube within a large cylinder of desiccant that helps to eliminate any water droplets in the airstream as well as drying the aerosol sample as it passes through. After passing through the dryer, the sample goes through another isokinetic probe, which is located at a tee. This allows half of the flow to travel through the tee isokinetically (like a straw through the center of the tee) and the other half is forced to make the turn to the other leg of the tee. Figure 3.13 illustrates the entire sampling train.



Figure 3.13: Sampling Train with Dilution Overview

Half the sample air, with flow rate cut in half (to 0.5 L/min) continues onward while the other half goes through a fixed flow pump with filter. This pump is set to 0.5 L/min (to ensure an even split of flows), and once filtered, rejoins the isokinetically split sample air to continue to the Optical Particle Sizer (OPS). The sampling train can also operate without any dilution, taking advantage of the isokinetic tee's ability to split the flow in half without changing the sample, the sample flow rate can be increased to two liters per
minute at the isokinetic probe, and half of the sample can simply be sent through the fixed flow pump and into the atmosphere, allowing two additional sampling velocities, for a total of four, with only two isokinetic probe sizes. Figure 3.14 depicts the alternate way the sampling train may be set up.



Figure 3.14: Sampling Train with No Dilution

The OPS, model OPS 3330, by TSI is the measurement device of choice for this study. It has a measurement range of carbon black particles from 0.357 micron to 14.59 micron. Figure 3.15 shows the OPS, with black inlet tip on the top of the instrument, and display panel for operation. Figure 3.16 depicts the inner workings of the OPS, showing the aerosol inlet, laser measurement and photodetection, and other operational parameters. The particle sizer reports particle counts in 17 size ranges, which are automatically chosen by the machine depending on the characteristics of the material being measured, as light response is not always linearly associated with particle size.



Figure 3.15: TSI Optical Particle Sizer (TSI)



Figure 3.16: TSI OPS 3330 Internal Operation (TSI)

Copyright © Adam Joseph Levy 2017

#### **Chapter Four: Vortecone Testing**

#### 4.1 Testing Methodology

To begin testing, the fan was set using a variable frequency drive to provide the desired velocity through the tunnel and into the Vortecone. Then, a control test was performed by running only air and dust through the Vortecone, testing over 10 minutes and getting a total particle count for each of the 17 size bins from the OPS. After the control test was completed, another 10-minute test was conducted with air, dust, and water running through the Vortecone. With these two tests, a particle reduction could be calculated for each size bin on the OPS and a curve can be fitted to the data that approximates the capture rate of particles through the Vortecone. This reduction could then be compared to any size range of particles and give a theoretical capture of the device for the tested flow rate. For all testing in this report, a mineral black filler made from pulverized coal with 99.9% passing 325 mesh was used. The size distribution of this material, obtained from passing a representative sample through a Cilas 1064 Liquid Laser Particle Size Analyzer, is shown Figure 4.1. A full report of the size distribution measured by the Cilas machine can be found in Appendix A.



Figure 4.1: Feed Material Size Distribution

For the 535 fpm testing velocity, 10 replications were carried out with 10 minutes of control (dust and air) and 10 minutes of filter testing (dust, air, and water). The Appendix contains all the raw data for each test. For the 340 fpm testing velocity, only three replications were conducted because there were only small variations in results after more testing occurred at 535 fpm. Using this data, one can calculate theoretical capture and compare it to any theoretical coal dust distribution the Vortecone is required to filter.

### 4.2 System Curve Testing Results

A quantity and pressure survey was performed on the flooded-bed system with water running through the screen. Using the Dwyer Measurement Station to measure velocity pressure and total pressure while varying fan speed, a system curve can be developed and a power curve fit to the data. Figure 4.2 shows the results as well as a best-fit curve.



Figure 4.2: Vortecone System Curve

### **4.3 Dust Testing Results**

Averaged over the 10 replications of testing that occurred, Table 4.1 shows the percent particle reduction for each of the size ranges provided by the OPS. There are some inconsistent results for measurements of particles below 1.488 micron, as some size ranges reported negative reduction in particle count with the Vortecone active. This is a product of coincidence error in the device. With too many small particles in the sample, the laser is overwhelmed and misreports particle counts in those size ranges. Therefore in the analysis of the data, any particle below 1.5 micron is considered not to be captured, because the OPS does provide useful information concerning the filters response to particles with respect to the Vortecone at the 50% dilution rate. As well, the 14.59+ size bin did not contain enough particles to be considered a representative sample in testing, so the results from that size bin will not be included in analysis. Figure 4.3 shows the curve of best fit generated for the 535 fpm test results. Only one of the two sampling

methods was used, which is the train with dilution, because flows beyond 535 fpm were

difficult to achieve with the setup as constructed.

| Particle Size Range | Average % |
|---------------------|-----------|
| (micrometer)        | Reduction |
| .357504             | -22.2%    |
| .504664             | -20.4%    |
| .664945             | -1.7%     |
| .945-1.114          | 6.1%      |
| 1.114-1.488         | 25.6%     |
| 1.488-1.999         | 48.0%     |
| 1.999-2.250         | 68.8%     |
| 2.250-2.545         | 77.3%     |
| 2.545-3.219         | 86.7%     |
| 3.219-4.170         | 90.9%     |
| 4.170-5.208         | 95.4%     |
| 5.208-6.513         | 98.6%     |
| 6.513-7.969         | 99.0%     |
| 7.969-9.423         | 99.2%     |
| 9.423-11.47         | 98.9%     |
| 11.47-14.59         | 96.9%     |
| 14.59+              | 76.1%     |

Table 4.1: Results for Vortecone Testing at 535 fpm



Figure 4.3: Vortecone Test Results Best Fit Curve at 535 fpm

Table 4.2 shows the averaged results for the three replications carried out at the 340 fpm test velocity, again with erroneous readings due to coincidence error in the particle size ranges below 1.5 micron. Also, very few particles were sampled above 14.59 micron so that data will not be used in analysis. Figure 4.4 shows the curve of best fit generated for the particle size ranges from 1.488 through 11.47 micron.

| Particle Size Range | Average % |
|---------------------|-----------|
| (micrometer)        | Reduction |
| .357504             | -25.5%    |
| .504664             | -22.5%    |
| .664945             | -20.4%    |
| .945-1.114          | -14.9%    |
| 1.114-1.488         | -5.6%     |
| 1.488-1.999         | 2.5%      |
| 1.999-2.250         | 24.3%     |
| 2.250-2.545         | 39.9%     |
| 2.545-3.219         | 59.5%     |
| 3.219-4.170         | 79.2%     |
| 4.170-5.208         | 89.6%     |
| 5.208-6.513         | 94.2%     |
| 6.513-7.969         | 96.4%     |
| 7.969-9.423         | 97.7%     |
| 9.423-11.47         | 97.9%     |
| 11.47-14.59         | 94.8%     |
| 14.59+              | 61.6%     |

Table 4.2: Results for Vortecone Testing at 340 fpm



Figure 4.4: Vortecone Test Results Best Fit Curve at 340 fpm

Copyright © Adam Joseph Levy 2017

### **Chapter Five: Flooded-Bed Screen Testing**

#### 5.1 Testing Methodology

For the flooded-bed screen and demister setup, control tests were performed on the ductwork with the screen and demister removed. Five samples of 10 minutes in duration each were taken at four velocities tested with the flooded-bed screen and demister. Both diluted and non-diluted sampling methods could be carried out, with dilution being used at the 340 fpm and 535 fpm speeds, and no dilution being used at the 680 fpm and 1070 fpm velocities.

After the control tests were carried out, the flooded-bed screen and demister were reintroduced to the setup, and testing occurred with the screen and demister in place and the sprayer flooding the screen with water to analyze its performance. Repeating each test five times in 10 minute durations at each of the four velocities. The results of are shown in Section 5.3. Each control test was compared to a filtered test to calculate a particle reduction with the flooded-bed screen and demister installed.

### **5.2 System Curve Testing Results**

A quantity and pressure survey was carried out on the flooded-bed screen setup. This testing occurred with the water spray turned on. Using the Dwyer Measurement Station to measure pressure and quantity while changing the fan speed, a curve can be developed for analysis. Figure 5.1 shows the results as well as the curve of best fit.



Figure 5.1: Flooded-Bed Screen System Curve

### **5.3 Dust Testing Results**

In similar fashion to the Vortecone test results, some size fractions give inconsistent results because of coincidence error with the OPS. Therefore, any size fractions that report inconsistent particle numbers are not considered valid, and omitted from curve creation. Flooded-bed scrubbers typically do not operate at velocities as low as 340 fpm, and performance generally improves as velocity increases. At 340 fpm, the screen was not properly flooded with water and likely was not performing as intended. However, consistent results are found for particle size ranges above 1.488 micron. Another problem shared with the Vortecone, was that the 14.59+ micron size range did not contain enough particles to be considered valid and it was therefore omitted from curve fitting. The following tables and figures depict the results from each of the test velocities.

| Particle Size Range | Average % |
|---------------------|-----------|
| (micrometer)        | Reduction |
| .357504             | 24.3%     |
| .504664             | 24.7%     |
| .664945             | 24.3%     |
| .945-1.114          | 21.0%     |
| 1.114-1.488         | 37.4%     |
| 1.488-1.999         | -19.2%    |
| 1.999-2.250         | -20.8%    |
| 2.250-2.545         | -18.0%    |
| 2.545-3.219         | -5.3%     |
| 3.219-4.170         | 19.5%     |
| 4.170-5.208         | 48.1%     |
| 5.208-6.513         | 69.2%     |
| 6.513-7.969         | 82.4%     |
| 7.969-9.423         | 89.5%     |
| 9.423-11.47         | 92.8%     |
| 11.47-14.59         | 91.1%     |
| 14.59+              | 58.6%     |

 Table 5.1: Flooded-Bed Particle Reduction Results at 340 fpm



Figure 5.2: Flooded-Bed Particle Reduction Best Fit Curve at 340 fpm

| Particle Size Range | Average % |
|---------------------|-----------|
| (micrometer)        | Reduction |
| .357504             | -37.5%    |
| .504664             | -39.5%    |
| .664945             | -43.3%    |
| .945-1.114          | -37.6%    |
| 1.114-1.488         | -51.4%    |
| 1.488-1.999         | -2.0%     |
| 1.999-2.250         | 9.4%      |
| 2.250-2.545         | 21.2%     |
| 2.545-3.219         | 38.2%     |
| 3.219-4.170         | 58.4%     |
| 4.170-5.208         | 77.7%     |
| 5.208-6.513         | 87.9%     |
| 6.513-7.969         | 93.5%     |
| 7.969-9.423         | 96.3%     |
| 9.423-11.47         | 97.6%     |
| 11.47-14.59         | 96.6%     |
| 14.59+              | 86.2%     |

Table 5.2: Flooded-Bed Particle Reduction Results at 535 fpm



Figure 5.3: Flooded-Bed Particle Reduction Best Fit Curve at 535 fpm

| Particle Size Range | Average % |
|---------------------|-----------|
| (micrometer)        | Reduction |
| .357504             | -124.7%   |
| .504664             | -124.7%   |
| .664945             | -122.0%   |
| .945-1.114          | -118.6%   |
| 1.114-1.488         | -237.2%   |
| 1.488-1.999         | 0.7%      |
| 1.999-2.250         | 27.3%     |
| 2.250-2.545         | 44.5%     |
| 2.545-3.219         | 63.4%     |
| 3.219-4.170         | 81.3%     |
| 4.170-5.208         | 91.2%     |
| 5.208-6.513         | 95.7%     |
| 6.513-7.969         | 97.9%     |
| 7.969-9.423         | 98.9%     |
| 9.423-11.47         | 99.2%     |
| 11.47-14.59         | 98.5%     |
| 14.59+              | 89.9%     |

Table 5.3: Flooded-Bed Particle Reduction Results at 680 fpm



Figure 5.4: Flooded-Bed Particle Reduction Best Fit Curve at 680 fpm

| Particle Size Range | Average % |
|---------------------|-----------|
| (micrometer)        | Reduction |
| .357504             | -7.9%     |
| .504664             | -9.3%     |
| .664945             | -14.0%    |
| .945-1.114          | -16.7%    |
| 1.114-1.488         | -21.6%    |
| 1.488-1.999         | -15.0%    |
| 1.999-2.250         | -9.6%     |
| 2.250-2.545         | 0.3%      |
| 2.545-3.219         | 17.0%     |
| 3.219-4.170         | 41.6%     |
| 4.170-5.208         | 68.7%     |
| 5.208-6.513         | 83.6%     |
| 6.513-7.969         | 91.4%     |
| 7.969-9.423         | 95.3%     |
| 9.423-11.47         | 97.1%     |
| 11.47-14.59         | 96.2%     |
| 14.59+              | 83.1%     |

Table 5.4: Flooded-Bed Particle Reduction Results at 1070 fpm



Figure 5.5: Flooded-Bed Particle Reduction Best Fit Curve at 1070 fpm

Copyright © Adam Joseph Levy 2017

#### **Chapter Six: Analysis & Discussion**

For the Vortecone test setup, particle capture increases with increasing flow rate. This is to be expected, as the Vortecone uses a particles inertia to separate it from the airflow. Therefore, a higher flowrate through the Vortecone means particles will have a higher inertia, making them more likely to be captured on the opposite wall of the Vortecone. Also for the flooded-bed screen, there seems to be a general trend that with increasing velocity, there is an increase in particle capture. Further analysis of the data can be carried out by using the best fit curve generated from each individual trial, and calculating the mass and number of particles eliminated from the feed material. Using the curve of best fit from the Vortecone testing at 535 fpm, one can calculate a reduction in the particle count for any given size distribution by mass or count. Equation 1 below shows how volume percent reduction can be calculated for a given size fraction.

% *Remaining* = *Individual Volume* % \* 1 – 1.9195(*Individual Volume* %)<sup>-2.476</sup> (1) After calculating the volume amount reduction, one can account for mass as well, by calculating the mass percentage for each individual size fraction represents, and applying the same technique. First, the average diameter of a particle for a given size range must be found, then the volume of that particle calculated. A necessary assumption that the particle is perfectly spherical needs to be made which, for smaller particles, can be a reasonable assumption. Once the average diameter is determined, the volume of a sphere of that diameter can be calculated, then multiplied by the density of the material. Equation 2 shows how the average mass of one particle from that size range may be calculated.

Avg. Particle Mass = 
$$\frac{4}{3} * \pi * \left(\frac{avg.diameter}{2}\right)^3 * density$$
 (2)

Once a theoretical mass of one particle in a size range is found, multiplying that mass by the individual fraction percentage will give a relative mass contribution for each size fraction. This can then be used to compare mass reduction in each size fraction, and therefore in the feed. Equation 3 depicts how the mass contribution is calculated, and Equation 4 shows how the calculated theoretical mass reduction for a given size range is calculated.

$$Mass Contribution = Avg. Particle Mass * Individual \%$$
(3)

$$Mass Reduction = Mass Contribution * \% Remaining$$
(4)

This analysis was carried out for each test condition, for both the Vortecone and floodedbed scrubber. Comparison was made with respect to the mineral black feed, 99.9% passing 325 mesh, using the entire size range of the feed as well as particles in the feed less than 10 microns. Table 6.1 shows the analysis as performed based on the best fit curve from each test condition, and compared to the entire feed distribution.

|                               | From Entire Feed    |                     |
|-------------------------------|---------------------|---------------------|
|                               | <b>Reduction by</b> | <b>Reduction by</b> |
| Test Conditions               | Count               | Mass                |
| Vortecone 535 fpm             | 92.05%              | 99.92%              |
| Flooded-Bed Scrubber 680 fpm  | 88.75%              | 99.90%              |
| Vortecone 340 fpm             | 87.50%              | 99.74%              |
| Flooded-Bed Scrubber 535 fpm  | 84.95%              | 99.59%              |
| Flooded-Bed Scrubber 1070 fpm | 82.94%              | 99.53%              |
| Flooded-Bed Scrubber 340 fpm  | 78.05%              | 98.95%              |

Table 6.1: Analysis of Particle Reduction from Feed for Each Test Condition

Table 6.1 shows that both the flooded-bed scrubber and the Vortecone are very effective scrubbing technologies, removing over 98% of the mass from the mineral black feed in each test condition. However, their performance begins to differ when only looking at those particles most associated with health hazards to mine workers, particles below 10

microns, as can be seen in Table 6.2. The Vortecone, at 535 fpm, reduces the mass and count of particles below 10 microns at the highest rate, followed by the flooded-bed scrubber at 680 fpm. There appears to be a drop off for the flooded-bed scrubber as velocity increases, possibly because smaller particles start to pass through the screen more readily. The exact cause of this phenomenon is not known, but can be speculated with water more quickly clearing the flooded-bed screen, particles are free to pass through the mesh without contacting a water droplet.

|                               | From <10 microns Particles |                     |
|-------------------------------|----------------------------|---------------------|
|                               | <b>Reduction by</b>        | <b>Reduction by</b> |
| Test Conditions               | Count                      | Mass                |
| Vortecone 535 fpm             | 78.99%                     | 98.47%              |
| Flooded-Bed Scrubber 680 fpm  | 70.20%                     | 97.38%              |
| Vortecone 340 fpm             | 67.39%                     | 95.88%              |
| Flooded-Bed Scrubber 535 fpm  | 61.09%                     | 93.43%              |
| Flooded-Bed Scrubber 1070 fpm | 55.93%                     | 91.52%              |
| Flooded-Bed Scrubber 340 fpm  | 44.83%                     | 83.74%              |

 Table 6.2: Testing Results Analyzed for Particles Under 10 Microns

However, the impact of even smaller particles cannot be discounted whenever it comes to the occurrence of Black Lung. Therefore, analysis of particle capture less than 5 microns from the feed size distribution must also be considered. Table 6.3 shows how the devices performed, and that the Vortecone at 535 fpm significantly outperforms the flooded-bed scrubber at any velocity. With less maintenance than a flooded-bed screen system (no regular filter changes) and excellent performance, the Vortecone should make a significant and consistent reduction to respirable coal dust particles present in mine air.

|                               | From <5 micron Particles |        |
|-------------------------------|--------------------------|--------|
|                               | Reduction by Reduction   |        |
| Test Conditions               | Count                    | Mass   |
| Vortecone 535 fpm             | 61.50%                   | 91.22% |
| Flooded-Bed Scrubber 680 fpm  | 45.65%                   | 82.37% |
| Vortecone 340 fpm             | 41.81%                   | 78.78% |
| Flooded-Bed Scrubber 535 fpm  | 32.07%                   | 67.61% |
| Flooded-Bed Scrubber 1070 fpm | 23.99%                   | 57.03% |
| Flooded-Bed Scrubber 340 fpm  | 10.67%                   | 31.72% |

Table 6.3: Testing Results Analyzed for Particles Under 5 Microns

Copyright © Adam Joseph Levy 2017

#### **Chapter Seven: Conclusion**

Testing conducted on a flooded-bed scrubber and Vortecone scrubber shows that both technologies are very effective at removing airborne particles, including those in the respirable range. Cleaning efficiencies exceeding 99% by mass were observed with both scrubbing technologies when compared to the entire feed distribution. However, looking at the performance in reduction in the number of particles under 10 microns, the Vortecone has an 8% reduction advantage by count. An even greater performance advantage is observed in the less than 5 micron particle size fraction with the Vortecone outperforming the flooded-bed system by nearly 16% by count. In addition, the greater reduction of the number of very small (less than 5 micron) particles from the airstream can also represent a significant health victory when it comes to respiratory disease in underground coal miners. With current MSHA regulations focusing on the mass of particles less than 10 microns current scrubbing technologies may look attractive, but without significant reduction in very small particles respiratory disease may still plague coal workers.

However, the increased performance does not come without an operational compromise in the form of increased air-power requirements. The Vortecone has significantly larger pressure drops than the flooded-bed screen system, which is caused in large part by the significant reduction of cross sectional area inside the inlet portion of the Vortecone required to accelerate incoming air into the device. For example, the air-power required to operate the Vortecone at the 535 fpm test condition is nearly eleven and a half times larger than the air-power required to operate the flooded-bed screen and demister setup at the same velocity. For the 340 fpm test condition, the air-power required to operate the

46

Vortecone is roughly eight and a half times larger than the flooded-bed screen system at the same velocity. Implementing Vortecone scrubbers in their current form would require more powerful, centrifugal fans be used to operate the device. These figures were calculated using the system curves developed in Section 4 and Section 5.

Another factor to consider is the maintenance of the scrubbing devices. The flooded-bed screen has a steel mesh that can become clogged and requires regular cleaning. The Vortecone does not have any such screen in place, and with clean water constantly flowing through the device, the filter media is always changing. This constant recirculation allows the Vortecone to maintain its efficiency for a much longer period, almost indefinitely, with proper operation. In terms of the machine-mounted flooded-bed scrubber system, whose performance is a function of capture and cleaning efficiency, if the screen were to never clog the capture efficiency would never decrease and the system could always operate optimally. A study by NIOSH in 2014 showed that in a single cut, the airflow through a flooded-bed scrubber reduced on average by 29%. The same study by NIOSH (2014) showed that a flooded-bed scrubber system, when working optimally, can reduce the amount of respirable dust by as much as 90%. Therefore, the Vortecone represents a significant improvement to the existing technology, by eliminating the reduction in capture efficiency created by factors such as poor maintenance, or loading of the flooded-bed screen during a cut. Replacing a flooded-bed screen and demister setup with a Vortecone scrubber would greatly increase the overall performance of a machine mounted scrubber system on a continuous miner, and ultimately reduce workers' exposure to respirable dust.

Copyright © Adam Joseph Levy 2017

47

#### **Chapter Eight: Future Work**

With every experiment, new alterations to improve testing methodology and data analysis become apparent after experiments have concluded. For the experiments described herein the following changes are recommended. First, higher dilution ratios on the aerosol sampling system would allow the OPS to more accurately measure the particle size fractions that experienced high rates of coincidence in this testing. This would allow a finer definition of the lower tail of each distribution curve, which may become asymptotic with respect to capture, instead of a power degradation quickly to zero capture as shown in this study. Also, additional sampling velocities would allow a better understanding of the drop off in performance experienced on the flooded-bed screen system and allow one to find the optimum operation point for this setup. Additional isokinetic sampling with gravimetric samplers and multi-stage impactors would help to strengthen the analysis and provide a check against the performance of the OPS. Using multi-stage impactors that would give definite size fractions like the OPS would permit even finer comparison, particularly with the very fine size fractions (less than 5 micrometers).

Furthermore, the addition of a flow meter and pressure gauge on the water feed to both the Vortecone and flooded-bed screen sprayer would allow performance characteristics with respect to changes in water flow and pressure to be studied. Screens with more than twenty layers should also be compared to the Vortecone. Changes in the internal geometry of the Vortecone to reduce pressure loss should be considered, as well as changes to incorporate horizontal flow through the Vortecone.

Copyright © Adam Joseph Levy 2017

48

# Appendix

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3744530                 | 1274648                 | 66.0%                |
| .504664                          | 3875651                 | 1311519                 | 66.2%                |
| .664945                          | 5089582                 | 548421                  | 89.2%                |
| .945-1.114                       | 3326263                 | 53958                   | 98.4%                |
| 1.114-1.488                      | 3234741                 | 81405                   | 97.5%                |
| 1.488-1.999                      | 3600591                 | 1397520                 | 61.2%                |
| 1.999-2.250                      | 1036994                 | 262813                  | 74.7%                |
| 2.250-2.545                      | 818765                  | 156467                  | 80.9%                |
| 2.545-3.219                      | 826154                  | 94438                   | 88.6%                |
| 3.219-4.170                      | 348997                  | 26888                   | 92.3%                |
| 4.170-5.208                      | 113804                  | 4974                    | 95.6%                |
| 5.208-6.513                      | 43958                   | 650                     | 98.5%                |
| 6.513-7.969                      | 15492                   | 181                     | 98.8%                |
| 7.969-9.423                      | 4502                    | 35                      | 99.2%                |
| 9.423-11.47                      | 1188                    | 8                       | 99.3%                |
| 11.47-14.59                      | 206                     | 6                       | 97.1%                |
| 14.59+                           | 37                      | 8                       | 78.4%                |

## Table A.1: Test 1 Vortecone at 535 fpm

Table A.2: Test 2 Vortecone at 535 fpm

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3702730                 | 4949333                 | -33.7%               |
| .504664                          | 3924602                 | 5244129                 | -33.6%               |
| .664945                          | 5187017                 | 5924601                 | -14.2%               |
| .945-1.114                       | 3347991                 | 3362638                 | -0.4%                |
| 1.114-1.488                      | 3112394                 | 2460230                 | 21.0%                |
| 1.488-1.999                      | 3630406                 | 2111893                 | 41.8%                |
| 1.999-2.250                      | 1039304                 | 366652                  | 64.7%                |
| 2.250-2.545                      | 810609                  | 204532                  | 74.8%                |
| 2.545-3.219                      | 808693                  | 119308                  | 85.2%                |
| 3.219-4.170                      | 341048                  | 28076                   | 91.8%                |
| 4.170-5.208                      | 111566                  | 4661                    | 95.8%                |
| 5.208-6.513                      | 42981                   | 698                     | 98.4%                |
| 6.513-7.969                      | 14863                   | 154                     | 99.0%                |
| 7.969-9.423                      | 4352                    | 35                      | 99.2%                |
| 9.423-11.47                      | 1196                    | 7                       | 99.4%                |
| 11.47-14.59                      | 200                     | 5                       | 97.5%                |
| 14.59+                           | 37                      | 10                      | 73.0%                |

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3770976                 | 5180150                 | -37.4%               |
| .504664                          | 3849143                 | 5079410                 | -32.0%               |
| .664945                          | 5103481                 | 5987236                 | -17.3%               |
| .945-1.114                       | 3288075                 | 3541629                 | -7.7%                |
| 1.114-1.488                      | 3053992                 | 2636745                 | 13.7%                |
| 1.488-1.999                      | 3420964                 | 2015249                 | 41.1%                |
| 1.999-2.250                      | 955301                  | 340449                  | 64.4%                |
| 2.250-2.545                      | 733158                  | 189343                  | 74.2%                |
| 2.545-3.219                      | 728548                  | 114194                  | 84.3%                |
| 3.219-4.170                      | 307077                  | 29452                   | 90.4%                |
| 4.170-5.208                      | 102046                  | 5088                    | 95.0%                |
| 5.208-6.513                      | 39194                   | 577                     | 98.5%                |
| 6.513-7.969                      | 13795                   | 133                     | 99.0%                |
| 7.969-9.423                      | 4235                    | 50                      | 98.8%                |
| 9.423-11.47                      | 1101                    | 17                      | 98.5%                |
| 11.47-14.59                      | 183                     | 8                       | 95.6%                |
| 14.59+                           | 33                      | 9                       | 72.7%                |

Table A.3: Test 3 Vortecone at 535 fpm

## Table A.4: Test 4 Vortecone at 535 fpm

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3932355                 | 5058008                 | -28.6%               |
| .504664                          | 3718778                 | 4821926                 | -29.7%               |
| .664945                          | 4799965                 | 5355417                 | -11.6%               |
| .945-1.114                       | 3129331                 | 3283816                 | -4.9%                |
| 1.114-1.488                      | 2928940                 | 2523165                 | 13.9%                |
| 1.488-1.999                      | 2840506                 | 1600974                 | 43.6%                |
| 1.999-2.250                      | 757931                  | 258987                  | 65.8%                |
| 2.250-2.545                      | 575365                  | 144081                  | 75.0%                |
| 2.545-3.219                      | 564717                  | 86162                   | 84.7%                |
| 3.219-4.170                      | 235934                  | 25418                   | 89.2%                |
| 4.170-5.208                      | 78171                   | 4308                    | 94.5%                |
| 5.208-6.513                      | 29635                   | 535                     | 98.2%                |
| 6.513-7.969                      | 10801                   | 128                     | 98.8%                |
| 7.969-9.423                      | 3274                    | 19                      | 99.4%                |
| 9.423-11.47                      | 839                     | 9                       | 98.9%                |
| 11.47-14.59                      | 179                     | 1                       | 99.4%                |
| 14.59+                           | 57                      | 3                       | 94.7%                |

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3802163                 | 4966351                 | -30.6%               |
| .504664                          | 3894735                 | 5109510                 | -31.2%               |
| .664945                          | 4738247                 | 5646052                 | -19.2%               |
| .945-1.114                       | 3108440                 | 3463767                 | -11.4%               |
| 1.114-1.488                      | 3017293                 | 2683513                 | 11.1%                |
| 1.488-1.999                      | 2887901                 | 1940708                 | 32.8%                |
| 1.999-2.250                      | 784582                  | 338309                  | 56.9%                |
| 2.250-2.545                      | 600042                  | 193609                  | 67.7%                |
| 2.545-3.219                      | 591285                  | 111611                  | 81.1%                |
| 3.219-4.170                      | 243995                  | 29610                   | 87.9%                |
| 4.170-5.208                      | 78611                   | 4446                    | 94.3%                |
| 5.208-6.513                      | 29096                   | 527                     | 98.2%                |
| 6.513-7.969                      | 9884                    | 127                     | 98.7%                |
| 7.969-9.423                      | 2917                    | 36                      | 98.8%                |
| 9.423-11.47                      | 753                     | 10                      | 98.7%                |
| 11.47-14.59                      | 131                     | 5                       | 96.2%                |
| 14.59+                           | 37                      | 12                      | 67.6%                |

Table A.5: Test 5 Vortecone at 535 fpm

## Table A.6: Test 6 Vortecone at 535 fpm

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3774347                 | 4812561                 | -27.5%               |
| .504664                          | 3704086                 | 4663248                 | -25.9%               |
| .664945                          | 4669672                 | 4896694                 | -4.9%                |
| .945-1.114                       | 3100765                 | 3080064                 | 0.7%                 |
| 1.114-1.488                      | 3079295                 | 2397300                 | 22.1%                |
| 1.488-1.999                      | 3026099                 | 1292864                 | 57.3%                |
| 1.999-2.250                      | 845161                  | 198670                  | 76.5%                |
| 2.250-2.545                      | 660440                  | 110472                  | 83.3%                |
| 2.545-3.219                      | 665992                  | 64314                   | 90.3%                |
| 3.219-4.170                      | 278813                  | 22081                   | 92.1%                |
| 4.170-5.208                      | 90527                   | 3653                    | 96.0%                |
| 5.208-6.513                      | 33638                   | 374                     | 98.9%                |
| 6.513-7.969                      | 11290                   | 91                      | 99.2%                |
| 7.969-9.423                      | 3324                    | 21                      | 99.4%                |
| 9.423-11.47                      | 924                     | 11                      | 98.8%                |
| 11.47-14.59                      | 149                     | 4                       | 97.3%                |
| 14.59+                           | 41                      | 6                       | 85.4%                |

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3849356                 | 4957197                 | -28.8%               |
| .504664                          | 3625256                 | 4783616                 | -32.0%               |
| .664945                          | 4558809                 | 4971021                 | -9.0%                |
| .945-1.114                       | 3060752                 | 3108092                 | -1.5%                |
| 1.114-1.488                      | 2974110                 | 2447541                 | 17.7%                |
| 1.488-1.999                      | 2677482                 | 1311401                 | 51.0%                |
| 1.999-2.250                      | 727940                  | 200784                  | 72.4%                |
| 2.250-2.545                      | 559027                  | 112183                  | 79.9%                |
| 2.545-3.219                      | 564774                  | 64967                   | 88.5%                |
| 3.219-4.170                      | 241532                  | 22507                   | 90.7%                |
| 4.170-5.208                      | 80771                   | 3958                    | 95.1%                |
| 5.208-6.513                      | 30021                   | 380                     | 98.7%                |
| 6.513-7.969                      | 10215                   | 98                      | 99.0%                |
| 7.969-9.423                      | 2900                    | 30                      | 99.0%                |
| 9.423-11.47                      | 790                     | 12                      | 98.5%                |
| 11.47-14.59                      | 153                     | 14                      | 90.8%                |
| 14.59+                           | 31                      | 12                      | 61.3%                |

Table A.7: Test 7 Vortecone at 535 fpm

## Table A.8: Test 8 Vortecone at 535 fpm

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3779116                 | 5038021                 | -33.3%               |
| .504664                          | 3934301                 | 4854698                 | -23.4%               |
| .664945                          | 4924740                 | 5050861                 | -2.6%                |
| .945-1.114                       | 3232985                 | 3146755                 | 2.7%                 |
| 1.114-1.488                      | 3179482                 | 2436596                 | 23.4%                |
| 1.488-1.999                      | 3235543                 | 1314494                 | 59.4%                |
| 1.999-2.250                      | 894399                  | 201600                  | 77.5%                |
| 2.250-2.545                      | 692493                  | 111999                  | 83.8%                |
| 2.545-3.219                      | 697517                  | 65262                   | 90.6%                |
| 3.219-4.170                      | 292246                  | 21837                   | 92.5%                |
| 4.170-5.208                      | 96604                   | 3609                    | 96.3%                |
| 5.208-6.513                      | 35704                   | 356                     | 99.0%                |
| 6.513-7.969                      | 12380                   | 86                      | 99.3%                |
| 7.969-9.423                      | 3576                    | 13                      | 99.6%                |
| 9.423-11.47                      | 912                     | 10                      | 98.9%                |
| 11.47-14.59                      | 140                     | 2                       | 98.6%                |
| 14.59+                           | 47                      | 6                       | 87.2%                |

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3779116                 | 5163623                 | -36.6%               |
| .504664                          | 3934301                 | 5212568                 | -32.5%               |
| .664945                          | 4924740                 | 5889103                 | -19.6%               |
| .945-1.114                       | 3232985                 | 3627218                 | -12.2%               |
| 1.114-1.488                      | 3179482                 | 2745017                 | 13.7%                |
| 1.488-1.999                      | 3235543                 | 1958649                 | 39.5%                |
| 1.999-2.250                      | 894399                  | 331443                  | 62.9%                |
| 2.250-2.545                      | 692493                  | 185021                  | 73.3%                |
| 2.545-3.219                      | 697517                  | 105137                  | 84.9%                |
| 3.219-4.170                      | 292246                  | 28653                   | 90.2%                |
| 4.170-5.208                      | 96604                   | 4603                    | 95.2%                |
| 5.208-6.513                      | 35704                   | 576                     | 98.4%                |
| 6.513-7.969                      | 12380                   | 141                     | 98.9%                |
| 7.969-9.423                      | 3576                    | 28                      | 99.2%                |
| 9.423-11.47                      | 912                     | 7                       | 99.2%                |
| 11.47-14.59                      | 140                     | 2                       | 98.6%                |
| 14.59+                           | 47                      | 12                      | 74.5%                |

Table A.9: Test 9 Vortecone at 535 fpm

## Table A.10: Test 10 Vortecone at 535 fpm

| Particle Size Bange (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
|                                  | 2012014                 | F0227E9                 | 21 00/               |
| .357504                          | 3812814                 | 5023758                 | -31.8%               |
| .504664                          | 3795099                 | 4915473                 | -29.5%               |
| .664945                          | 4965164                 | 5370234                 | -8.2%                |
| .945-1.114                       | 3288336                 | 3384038                 | -2.9%                |
| 1.114-1.488                      | 3283756                 | 2546627                 | 22.4%                |
| 1.488-1.999                      | 3388897                 | 1607735                 | 52.6%                |
| 1.999-2.250                      | 962021                  | 266355                  | 72.3%                |
| 2.250-2.545                      | 753746                  | 151815                  | 79.9%                |
| 2.545-3.219                      | 762012                  | 87566                   | 88.5%                |
| 3.219-4.170                      | 319905                  | 25887                   | 91.9%                |
| 4.170-5.208                      | 104803                  | 4038                    | 96.1%                |
| 5.208-6.513                      | 39225                   | 456                     | 98.8%                |
| 6.513-7.969                      | 13702                   | 94                      | 99.3%                |
| 7.969-9.423                      | 3928                    | 25                      | 99.4%                |
| 9.423-11.47                      | 1041                    | 10                      | 99.0%                |
| 11.47-14.59                      | 173                     | 4                       | 97.7%                |
| 14.59+                           | 42                      | 14                      | 66.7%                |

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3103347                 | 3886148                 | -25.2%               |
| .504664                          | 3861423                 | 4670048                 | -20.9%               |
| .664945                          | 5018130                 | 5808297                 | -15.7%               |
| .945-1.114                       | 3021606                 | 3218677                 | -6.5%                |
| 1.114-1.488                      | 2276729                 | 2049050                 | 10.0%                |
| 1.488-1.999                      | 3771439                 | 3102852                 | 17.7%                |
| 1.999-2.250                      | 1111352                 | 668270                  | 39.9%                |
| 2.250-2.545                      | 862816                  | 399676                  | 53.7%                |
| 2.545-3.219                      | 852733                  | 261086                  | 69.4%                |
| 3.219-4.170                      | 373245                  | 58255                   | 84.4%                |
| 4.170-5.208                      | 123701                  | 9886                    | 92.0%                |
| 5.208-6.513                      | 47066                   | 2131                    | 95.5%                |
| 6.513-7.969                      | 15762                   | 446                     | 97.2%                |
| 7.969-9.423                      | 4610                    | 82                      | 98.2%                |
| 9.423-11.47                      | 1134                    | 21                      | 98.1%                |
| 11.47-14.59                      | 197                     | 7                       | 96.4%                |
| 14.59+                           | 54                      | 11                      | 79.6%                |

Table A.11: Test 1 Vortecone at 340 fpm

# Table A.12: Test 2 Vortecone at 340 fpm

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3052282                 | 3802236                 | -24.6%               |
| .504664                          | 3772498                 | 4602750                 | -22.0%               |
| .664945                          | 4792699                 | 5819905                 | -21.4%               |
| .945-1.114                       | 2832742                 | 3330238                 | -17.6%               |
| 1.114-1.488                      | 2076705                 | 2343663                 | -12.9%               |
| 1.488-1.999                      | 3571370                 | 3769543                 | -5.5%                |
| 1.999-2.250                      | 1055295                 | 893942                  | 15.3%                |
| 2.250-2.545                      | 826864                  | 565767                  | 31.6%                |
| 2.545-3.219                      | 824221                  | 385921                  | 53.2%                |
| 3.219-4.170                      | 359234                  | 87704                   | 75.6%                |
| 4.170-5.208                      | 117245                  | 14226                   | 87.9%                |
| 5.208-6.513                      | 43234                   | 2932                    | 93.2%                |
| 6.513-7.969                      | 14377                   | 601                     | 95.8%                |
| 7.969-9.423                      | 4062                    | 102                     | 97.5%                |
| 9.423-11.47                      | 1047                    | 27                      | 97.4%                |
| 11.47-14.59                      | 209                     | 14                      | 93.3%                |
| 14.59+                           | 46                      | 16                      | 65.2%                |

| Particle Size Range (micrometer) | Dry Test Particle Count | Wet Test Particle Count | % Particle Reduction |
|----------------------------------|-------------------------|-------------------------|----------------------|
| .357504                          | 3004877                 | 3811730                 | -26.9%               |
| .504664                          | 3709314                 | 4616015                 | -24.4%               |
| .664945                          | 4729801                 | 5861430                 | -23.9%               |
| .945-1.114                       | 2823743                 | 3409483                 | -20.7%               |
| 1.114-1.488                      | 2206353                 | 2517291                 | -14.1%               |
| 1.488-1.999                      | 3854590                 | 4030010                 | -4.6%                |
| 1.999-2.250                      | 1191267                 | 979416                  | 17.8%                |
| 2.250-2.545                      | 960790                  | 628855                  | 34.5%                |
| 2.545-3.219                      | 979170                  | 429963                  | 56.1%                |
| 3.219-4.170                      | 434766                  | 97862                   | 77.5%                |
| 4.170-5.208                      | 141272                  | 15523                   | 89.0%                |
| 5.208-6.513                      | 51584                   | 3190                    | 93.8%                |
| 6.513-7.969                      | 16794                   | 631                     | 96.2%                |
| 7.969-9.423                      | 4805                    | 131                     | 97.3%                |
| 9.423-11.47                      | 1195                    | 24                      | 98.0%                |
| 11.47-14.59                      | 202                     | 11                      | 94.6%                |
| 14.59+                           | 30                      | 18                      | 40.0%                |

Table A.13: Test 3 Vortecone at 340 fpm

# Table A.14: Test 1 Flooded-Bed at 340 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 2030615      | 1524135          | 24.9%                |
| .504664                          | 2285274      | 1701992          | 25.5%                |
| .664945                          | 2936138      | 2195286          | 25.2%                |
| .945-1.114                       | 1988004      | 1553249          | 21.9%                |
| 1.114-1.488                      | 1869339      | 1155991          | 38.2%                |
| 1.488-1.999                      | 5748640      | 6772015          | -17.8%               |
| 1.999-2.250                      | 2383376      | 2842883          | -19.3%               |
| 2.250-2.545                      | 2395837      | 2782025          | -16.1%               |
| 2.545-3.219                      | 3242555      | 3348109          | -3.3%                |
| 3.219-4.170                      | 2001435      | 1575758          | 21.3%                |
| 4.170-5.208                      | 885200       | 447150           | 49.5%                |
| 5.208-6.513                      | 419632       | 125695           | 70.0%                |
| 6.513-7.969                      | 171329       | 29117            | 83.0%                |
| 7.969-9.423                      | 53702        | 5440             | 89.9%                |
| 9.423-11.47                      | 12050        | 812              | 93.3%                |
| 11.47-14.59                      | 1235         | 110              | 91.1%                |
| 14.59+                           | 73           | 50               | 31.5%                |

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1974166      | 1595621          | 19.2%                |
| .504664                          | 2220169      | 1777184          | 20.0%                |
| .664945                          | 2856144      | 2291727          | 19.8%                |
| .945-1.114                       | 1936501      | 1625397          | 16.1%                |
| 1.114-1.488                      | 1784442      | 1263056          | 29.2%                |
| 1.488-1.999                      | 5748938      | 6763948          | -17.7%               |
| 1.999-2.250                      | 2390365      | 2809487          | -17.5%               |
| 2.250-2.545                      | 2408456      | 2730124          | -13.4%               |
| 2.545-3.219                      | 3255716      | 3257190          | 0.0%                 |
| 3.219-4.170                      | 2011141      | 1524265          | 24.2%                |
| 4.170-5.208                      | 885711       | 432056           | 51.2%                |
| 5.208-6.513                      | 417604       | 122081           | 70.8%                |
| 6.513-7.969                      | 169201       | 28400            | 83.2%                |
| 7.969-9.423                      | 52886        | 5412             | 89.8%                |
| 9.423-11.47                      | 11733        | 808              | 93.1%                |
| 11.47-14.59                      | 1258         | 95               | 92.4%                |
| 14.59+                           | 101          | 33               | 67.3%                |

Table A.15: Test 2 Flooded-Bed at 340 fpm

Table A.16: Test 3 Flooded-Bed at 340 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1977608      | 1505714          | 23.9%                |
| .504664                          | 2219191      | 1683163          | 24.2%                |
| .664945                          | 2848844      | 2177361          | 23.6%                |
| .945-1.114                       | 1928634      | 1541106          | 20.1%                |
| 1.114-1.488                      | 1784217      | 1123342          | 37.0%                |
| 1.488-1.999                      | 5723065      | 6841895          | -19.5%               |
| 1.999-2.250                      | 2377528      | 2881711          | -21.2%               |
| 2.250-2.545                      | 2389056      | 2828369          | -18.4%               |
| 2.545-3.219                      | 3228880      | 3407891          | -5.5%                |
| 3.219-4.170                      | 1992433      | 1606861          | 19.4%                |
| 4.170-5.208                      | 874443       | 454113           | 48.1%                |
| 5.208-6.513                      | 413533       | 127643           | 69.1%                |
| 6.513-7.969                      | 167713       | 29927            | 82.2%                |
| 7.969-9.423                      | 52660        | 5525             | 89.5%                |
| 9.423-11.47                      | 11645        | 870              | 92.5%                |
| 11.47-14.59                      | 1177         | 114              | 90.3%                |
| 14.59+                           | 105          | 26               | 75.2%                |

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1971727      | 1470084          | 25.4%                |
| .504664                          | 2215759      | 1643408          | 25.8%                |
| .664945                          | 2843726      | 2122826          | 25.4%                |
| .945-1.114                       | 1925443      | 1501473          | 22.0%                |
| 1.114-1.488                      | 1759951      | 1060892          | 39.7%                |
| 1.488-1.999                      | 5721976      | 6882455          | -20.3%               |
| 1.999-2.250                      | 2378395      | 2910207          | -22.4%               |
| 2.250-2.545                      | 2397288      | 2872223          | -19.8%               |
| 2.545-3.219                      | 3234886      | 3471791          | -7.3%                |
| 3.219-4.170                      | 1993687      | 1640642          | 17.7%                |
| 4.170-5.208                      | 874567       | 462578           | 47.1%                |
| 5.208-6.513                      | 412996       | 129142           | 68.7%                |
| 6.513-7.969                      | 166892       | 29667            | 82.2%                |
| 7.969-9.423                      | 52237        | 5515             | 89.4%                |
| 9.423-11.47                      | 11435        | 842              | 92.6%                |
| 11.47-14.59                      | 1229         | 116              | 90.6%                |
| 14.59+                           | 93           | 51               | 45.2%                |

Table A.17: Test 4 Flooded-Bed at 340 fpm

Table A.18: Test 5 Flooded-Bed at 340 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 2024072      | 1458539          | 27.9%                |
| .504664                          | 2272396      | 1632391          | 28.2%                |
| .664945                          | 2918560      | 2107624          | 27.8%                |
| .945-1.114                       | 1970746      | 1483779          | 24.7%                |
| 1.114-1.488                      | 1833192      | 1044537          | 43.0%                |
| 1.488-1.999                      | 5697028      | 6875630          | -20.7%               |
| 1.999-2.250                      | 2354475      | 2912400          | -23.7%               |
| 2.250-2.545                      | 2359302      | 2883551          | -22.2%               |
| 2.545-3.219                      | 3174530      | 3495107          | -10.1%               |
| 3.219-4.170                      | 1951513      | 1660694          | 14.9%                |
| 4.170-5.208                      | 853053       | 470423           | 44.9%                |
| 5.208-6.513                      | 403830       | 131666           | 67.4%                |
| 6.513-7.969                      | 163428       | 30486            | 81.3%                |
| 7.969-9.423                      | 51460        | 5704             | 88.9%                |
| 9.423-11.47                      | 11374        | 867              | 92.4%                |
| 11.47-14.59                      | 1127         | 101              | 91.0%                |
| 14.59+                           | 96           | 25               | 74.0%                |

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1907345      | 2759881          | -44.7%               |
| .504664                          | 2152112      | 3162821          | -47.0%               |
| .664945                          | 2818376      | 4241403          | -50.5%               |
| .945-1.114                       | 1974220      | 2835254          | -43.6%               |
| 1.114-1.488                      | 1826494      | 2901325          | -58.8%               |
| 1.488-1.999                      | 5964817      | 6000590          | -0.6%                |
| 1.999-2.250                      | 2503832      | 2192543          | 12.4%                |
| 2.250-2.545                      | 2519629      | 1893856          | 24.8%                |
| 2.545-3.219                      | 3402419      | 1962763          | 42.3%                |
| 3.219-4.170                      | 2101040      | 794215           | 62.2%                |
| 4.170-5.208                      | 921541       | 180590           | 80.4%                |
| 5.208-6.513                      | 434781       | 43594            | 90.0%                |
| 6.513-7.969                      | 176960       | 9234             | 94.8%                |
| 7.969-9.423                      | 56081        | 1478             | 97.4%                |
| 9.423-11.47                      | 13142        | 213              | 98.4%                |
| 11.47-14.59                      | 1482         | 26               | 98.2%                |
| 14.59+                           | 167          | 4                | 97.6%                |

Table A.19: Test 1 Flooded-Bed at 535 fpm

Table A.20: Test 2 Flooded-Bed at 535 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 2062915      | 2787486          | -35.1%               |
| .504664                          | 2333558      | 3189128          | -36.7%               |
| .664945                          | 3054307      | 4276582          | -40.0%               |
| .945-1.114                       | 2117750      | 2847882          | -34.5%               |
| 1.114-1.488                      | 2052219      | 2943939          | -43.5%               |
| 1.488-1.999                      | 5903904      | 5972440          | -1.2%                |
| 1.999-2.250                      | 2427622      | 2194802          | 9.6%                 |
| 2.250-2.545                      | 2412155      | 1902072          | 21.1%                |
| 2.545-3.219                      | 3215741      | 1996931          | 37.9%                |
| 3.219-4.170                      | 1955981      | 822766           | 57.9%                |
| 4.170-5.208                      | 854430       | 192067           | 77.5%                |
| 5.208-6.513                      | 401246       | 48444            | 87.9%                |
| 6.513-7.969                      | 163084       | 10304            | 93.7%                |
| 7.969-9.423                      | 51864        | 1842             | 96.4%                |
| 9.423-11.47                      | 12016        | 279              | 97.7%                |
| 11.47-14.59                      | 1401         | 42               | 97.0%                |
| 14.59+                           | 112          | 10               | 91.1%                |

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 2109915      | 2668098          | -26.5%               |
| .504664                          | 2392556      | 3057900          | -27.8%               |
| .664945                          | 3129815      | 4110635          | -31.3%               |
| .945-1.114                       | 2160096      | 2747876          | -27.2%               |
| 1.114-1.488                      | 2101701      | 2826647          | -34.5%               |
| 1.488-1.999                      | 5883168      | 6100481          | -3.7%                |
| 1.999-2.250                      | 2403041      | 2274132          | 5.4%                 |
| 2.250-2.545                      | 2376296      | 1992196          | 16.2%                |
| 2.545-3.219                      | 3138282      | 2126625          | 32.2%                |
| 3.219-4.170                      | 1893690      | 898035           | 52.6%                |
| 4.170-5.208                      | 821604       | 220602           | 73.1%                |
| 5.208-6.513                      | 383787       | 60211            | 84.3%                |
| 6.513-7.969                      | 154166       | 14411            | 90.7%                |
| 7.969-9.423                      | 49221        | 2851             | 94.2%                |
| 9.423-11.47                      | 11357        | 417              | 96.3%                |
| 11.47-14.59                      | 1282         | 64               | 95.0%                |
| 14.59+                           | 125          | 19               | 84.8%                |

Table A.21: Test 3 Flooded-Bed at 535 fpm

Table A.22: Test 4 Flooded-Bed at 535 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1946506      | , 2762734        | -41.9%               |
| .504664                          | 2198229      | 3165848          | -44.0%               |
| .664945                          | 2870130      | 4252844          | -48.2%               |
| .945-1.114                       | 2002705      | 2840341          | -41.8%               |
| 1.114-1.488                      | 1840181      | 2949939          | -60.3%               |
| 1.488-1.999                      | 5940228      | 6017614          | -1.3%                |
| 1.999-2.250                      | 2480615      | 2211229          | 10.9%                |
| 2.250-2.545                      | 2494455      | 1921929          | 23.0%                |
| 2.545-3.219                      | 3365201      | 2020063          | 40.0%                |
| 3.219-4.170                      | 2085344      | 834730           | 60.0%                |
| 4.170-5.208                      | 924718       | 195998           | 78.8%                |
| 5.208-6.513                      | 439038       | 49474            | 88.7%                |
| 6.513-7.969                      | 179902       | 10650            | 94.1%                |
| 7.969-9.423                      | 57652        | 1950             | 96.6%                |
| 9.423-11.47                      | 13378        | 262              | 98.0%                |
| 11.47-14.59                      | 1420         | 61               | 95.7%                |
| 14.59+                           | 134          | 27               | 79.9%                |

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1934065      | 2695705          | -39.4%               |
| .504664                          | 2178232      | 3093029          | -42.0%               |
| .664945                          | 2842269      | 4159946          | -46.4%               |
| .945-1.114                       | 1982740      | 2791948          | -40.8%               |
| 1.114-1.488                      | 1803126      | 2880904          | -59.8%               |
| 1.488-1.999                      | 5901854      | 6091979          | -3.2%                |
| 1.999-2.250                      | 2473371      | 2257727          | 8.7%                 |
| 2.250-2.545                      | 2489778      | 1966848          | 21.0%                |
| 2.545-3.219                      | 3370060      | 2071852          | 38.5%                |
| 3.219-4.170                      | 2095819      | 854300           | 59.2%                |
| 4.170-5.208                      | 928552       | 200553           | 78.4%                |
| 5.208-6.513                      | 441662       | 50197            | 88.6%                |
| 6.513-7.969                      | 181029       | 10724            | 94.1%                |
| 7.969-9.423                      | 58295        | 1906             | 96.7%                |
| 9.423-11.47                      | 13580        | 309              | 97.7%                |
| 11.47-14.59                      | 1481         | 46               | 96.9%                |
| 14.59+                           | 108          | 24               | 77.8%                |

Table A.23: Test 5 Flooded-Bed at 535 fpm

Table A.24: Test 1 Flooded-Bed at 640 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1318760      | 3119999          | -136.6%              |
| .504664                          | 1487414      | 3514044          | -136.3%              |
| .664945                          | 1930163      | 4501920          | -133.2%              |
| .945-1.114                       | 1231043      | 2888909          | -134.7%              |
| 1.114-1.488                      | 722210       | 2792089          | -286.6%              |
| 1.488-1.999                      | 5918342      | 5768626          | 2.5%                 |
| 1.999-2.250                      | 2680646      | 1888655          | 29.5%                |
| 2.250-2.545                      | 2860854      | 1521518          | 46.8%                |
| 2.545-3.219                      | 4090916      | 1420577          | 65.3%                |
| 3.219-4.170                      | 2730164      | 482574           | 82.3%                |
| 4.170-5.208                      | 1278761      | 106094           | 91.7%                |
| 5.208-6.513                      | 648406       | 26403            | 95.9%                |
| 6.513-7.969                      | 287999       | 5860             | 98.0%                |
| 7.969-9.423                      | 100671       | 1147             | 98.9%                |
| 9.423-11.47                      | 25762        | 197              | 99.2%                |
| 11.47-14.59                      | 3193         | 52               | 98.4%                |
| 14.59+                           | 198          | 6                | 97.0%                |

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1357030      | 3059405          | -125.4%              |
| .504664                          | 1526088      | 3445593          | -125.8%              |
| .664945                          | 1979485      | 4417860          | -123.2%              |
| .945-1.114                       | 1288293      | 2855526          | -121.7%              |
| 1.114-1.488                      | 811147       | 2771261          | -241.6%              |
| 1.488-1.999                      | 5871754      | 5874249          | 0.0%                 |
| 1.999-2.250                      | 2649514      | 1940254          | 26.8%                |
| 2.250-2.545                      | 2818650      | 1575754          | 44.1%                |
| 2.545-3.219                      | 4029825      | 1485715          | 63.1%                |
| 3.219-4.170                      | 2693564      | 507283           | 81.2%                |
| 4.170-5.208                      | 1270272      | 111773           | 91.2%                |
| 5.208-6.513                      | 649185       | 27904            | 95.7%                |
| 6.513-7.969                      | 291138       | 6156             | 97.9%                |
| 7.969-9.423                      | 102675       | 1121             | 98.9%                |
| 9.423-11.47                      | 26144        | 196              | 99.3%                |
| 11.47-14.59                      | 3163         | 47               | 98.5%                |
| 14.59+                           | 190          | 17               | 91.1%                |

Table A.25: Test 2 Flooded-Bed at 640 fpm

Table A.26: Test 3 Flooded-Bed at 640 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1389413      | 3061815          | -120.4%              |
| .504664                          | 1559662      | 3456485          | -121.6%              |
| .664945                          | 2028229      | 4435764          | -118.7%              |
| .945-1.114                       | 1342621      | 2873153          | -114.0%              |
| 1.114-1.488                      | 884519       | 2795290          | -216.0%              |
| 1.488-1.999                      | 5849190      | 5892189          | -0.7%                |
| 1.999-2.250                      | 2620291      | 1937876          | 26.0%                |
| 2.250-2.545                      | 2783272      | 1570733          | 43.6%                |
| 2.545-3.219                      | 3962871      | 1473688          | 62.8%                |
| 3.219-4.170                      | 2646443      | 499403           | 81.1%                |
| 4.170-5.208                      | 1252254      | 109625           | 91.2%                |
| 5.208-6.513                      | 643928       | 27265            | 95.8%                |
| 6.513-7.969                      | 288214       | 5970             | 97.9%                |
| 7.969-9.423                      | 103349       | 1139             | 98.9%                |
| 9.423-11.47                      | 26896        | 204              | 99.2%                |
| 11.47-14.59                      | 3119         | 48               | 98.5%                |
| 14.59+                           | 172          | 24               | 86.0%                |

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1404827      | 3051270          | -117.2%              |
| .504664                          | 1585031      | 3438180          | -116.9%              |
| .664945                          | 2058750      | 4419204          | -114.7%              |
| .945-1.114                       | 1380743      | 2863485          | -107.4%              |
| 1.114-1.488                      | 895038       | 2783020          | -210.9%              |
| 1.488-1.999                      | 5921076      | 5922193          | 0.0%                 |
| 1.999-2.250                      | 2640375      | 1950111          | 26.1%                |
| 2.250-2.545                      | 2789699      | 1581618          | 43.3%                |
| 2.545-3.219                      | 3935893      | 1482361          | 62.3%                |
| 3.219-4.170                      | 2595546      | 500732           | 80.7%                |
| 4.170-5.208                      | 1214908      | 109594           | 91.0%                |
| 5.208-6.513                      | 617454       | 26915            | 95.6%                |
| 6.513-7.969                      | 275309       | 5924             | 97.8%                |
| 7.969-9.423                      | 97193        | 1084             | 98.9%                |
| 9.423-11.47                      | 25152        | 222              | 99.1%                |
| 11.47-14.59                      | 2977         | 37               | 98.8%                |
| 14.59+                           | 180          | 23               | 87.2%                |

Table A.27: Test 4 Flooded-Bed at 640 fpm

Table A.28: Test 5 Flooded-Bed at 640 fpm

| Particle Size Range (micrometer) | Control Test | Full-System Test | % Particle Reduction |
|----------------------------------|--------------|------------------|----------------------|
| .357504                          | 1385991      | 3104870          | -124.0%              |
| .504664                          | 1563448      | 3488872          | -123.2%              |
| .664945                          | 2030318      | 4469750          | -120.2%              |
| .945-1.114                       | 1337563      | 2881075          | -115.4%              |
| 1.114-1.488                      | 843013       | 2787898          | -230.7%              |
| 1.488-1.999                      | 5928001      | 5822688          | 1.8%                 |
| 1.999-2.250                      | 2653163      | 1915863          | 27.8%                |
| 2.250-2.545                      | 2810798      | 1552424          | 44.8%                |
| 2.545-3.219                      | 3982275      | 1464483          | 63.2%                |
| 3.219-4.170                      | 2633538      | 501719           | 80.9%                |
| 4.170-5.208                      | 1235280      | 111209           | 91.0%                |
| 5.208-6.513                      | 628996       | 27395            | 95.6%                |
| 6.513-7.969                      | 280851       | 5984             | 97.9%                |
| 7.969-9.423                      | 98538        | 1093             | 98.9%                |
| 9.423-11.47                      | 25342        | 234              | 99.1%                |
| 11.47-14.59                      | 3055         | 52               | 98.3%                |
| 14.59+                           | 189          | 22               | 88.4%                |
| Particle Size Range (micrometer) | Test 64 Trial 1 | Test 68 Trial 1 | % Particle Reduction |
|----------------------------------|-----------------|-----------------|----------------------|
| .357504                          | 2385707         | 2759881         | -15.7%               |
| .504664                          | 2686656         | 3162821         | -17.7%               |
| .664945                          | 3455468         | 4241403         | -22.7%               |
| .945-1.114                       | 2273360         | 2835254         | -24.7%               |
| 1.114-1.488                      | 2197251         | 2901325         | -32.0%               |
| 1.488-1.999                      | 5281591         | 6000590         | -13.6%               |
| 1.999-2.250                      | 2078650         | 2192543         | -5.5%                |
| 2.250-2.545                      | 2002038         | 1893856         | 5.4%                 |
| 2.545-3.219                      | 2546827         | 1962763         | 22.9%                |
| 3.219-4.170                      | 1503917         | 794215          | 47.2%                |
| 4.170-5.208                      | 661234          | 180590          | 72.7%                |
| 5.208-6.513                      | 319946          | 43594           | 86.4%                |
| 6.513-7.969                      | 135181          | 9234            | 93.2%                |
| 7.969-9.423                      | 44591           | 1478            | 96.7%                |
| 9.423-11.47                      | 10988           | 213             | 98.1%                |
| 11.47-14.59                      | 1264            | 26              | 97.9%                |
| 14.59+                           | 96              | 4               | 95.8%                |

Table A.29: Test 1 Flooded-Bed at 1070 fpm

Table A.30: Test 2 Flooded-Bed at 1070 fpm

|                                  | 1               | 1               |                      |
|----------------------------------|-----------------|-----------------|----------------------|
| Particle Size Range (micrometer) | Test 64 Trial 2 | Test 68 Trial 2 | % Particle Reduction |
| .357504                          | 2533861         | 2787486         | -10.0%               |
| .504664                          | 2869906         | 3189128         | -11.1%               |
| .664945                          | 3700364         | 4276582         | -15.6%               |
| .945-1.114                       | 2419744         | 2847882         | -17.7%               |
| 1.114-1.488                      | 2396120         | 2943939         | -22.9%               |
| 1.488-1.999                      | 5278409         | 5972440         | -13.1%               |
| 1.999-2.250                      | 2040817         | 2194802         | -7.5%                |
| 2.250-2.545                      | 1945200         | 1902072         | 2.2%                 |
| 2.545-3.219                      | 2448599         | 1996931         | 18.4%                |
| 3.219-4.170                      | 1431820         | 822766          | 42.5%                |
| 4.170-5.208                      | 626922          | 192067          | 69.4%                |
| 5.208-6.513                      | 303978          | 48444           | 84.1%                |
| 6.513-7.969                      | 127050          | 10304           | 91.9%                |
| 7.969-9.423                      | 41154           | 1842            | 95.5%                |
| 9.423-11.47                      | 9934            | 279             | 97.2%                |
| 11.47-14.59                      | 1216            | 42              | 96.5%                |
| 14.59+                           | 103             | 10              | 90.3%                |

| Particle Size Range (micrometer) | Test 64 Trial 3 | Test 68 Trial 3 | % Particle Reduction |  |
|----------------------------------|-----------------|-----------------|----------------------|--|
| .357504                          | 2602160         | 2668098         | -2.5%                |  |
| .504664                          | 2947580         | 3057900         | -3.7%                |  |
| .664945                          | 3791807         | 4110635         | -8.4%                |  |
| .945-1.114                       | 2462408         | 2747876         | -11.6%               |  |
| 1.114-1.488                      | 2468081         | 2826647         | -14.5%               |  |
| 1.488-1.999                      | 5204673         | 6100481         | -17.2%               |  |
| 1.999-2.250                      | 2000492         | 2274132         | -13.7%               |  |
| 2.250-2.545                      | 1903405         | 1992196         | -4.7%                |  |
| 2.545-3.219                      | 2399279         | 2126625         | 11.4%                |  |
| 3.219-4.170                      | 1404835         | 898035          | 36.1%                |  |
| 4.170-5.208                      | 616316          | 220602          | 64.2%                |  |
| 5.208-6.513                      | 299642          | 60211           | 79.9%                |  |
| 6.513-7.969                      | 125997          | 14411           | 88.6%                |  |
| 7.969-9.423                      | 41226           | 2851            | 93.1%                |  |
| 9.423-11.47                      | 10058           | 417             | 95.9%                |  |
| 11.47-14.59                      | 1205            | 64              | 94.7%                |  |
| 14.59+                           | 109             | 19              | 82.6%                |  |

Table A.31: Test 3 Flooded-Bed at 1070 fpm

Table A.32: Test 4 Flooded-Bed at 1070 fpm

| Particle Size Range (micrometer) | Test 64 Trial 4 | Test 68 Trial 4 | % Particle Reduction |
|----------------------------------|-----------------|-----------------|----------------------|
| .357504                          | 2668759         | 2762734         | -3.5%                |
| .504664                          | 3026314         | 3165848         | -4.6%                |
| .664945                          | 3890923         | 4252844         | -9.3%                |
| .945-1.114                       | 2512177         | 2840341         | -13.1%               |
| 1.114-1.488                      | 2530717         | 2949939         | -16.6%               |
| 1.488-1.999                      | 5123503         | 6017614         | -17.5%               |
| 1.999-2.250                      | 1960431         | 2211229         | -12.8%               |
| 2.250-2.545                      | 1863685         | 1921929         | -3.1%                |
| 2.545-3.219                      | 2354422         | 2020063         | 14.2%                |
| 3.219-4.170                      | 1388820         | 834730          | 39.9%                |
| 4.170-5.208                      | 616325          | 195998          | 68.2%                |
| 5.208-6.513                      | 303487          | 49474           | 83.7%                |
| 6.513-7.969                      | 129311          | 10650           | 91.8%                |
| 7.969-9.423                      | 42569           | 1950            | 95.4%                |
| 9.423-11.47                      | 10069           | 262             | 97.4%                |
| 11.47-14.59                      | 1282            | 61              | 95.2%                |
| 14.59+                           | 96              | 27              | 71.9%                |

| Particle Size Range (micrometer) | Test 64 Trial 5 | Test 68 Trial 5 | % Particle Reduction |
|----------------------------------|-----------------|-----------------|----------------------|
| .357504                          | 2500287         | 2695705         | -7.8%                |
| .504664                          | 2834065         | 3093029         | -9.1%                |
| .664945                          | 3650163         | 4159946         | -14.0%               |
| .945-1.114                       | 2399748         | 2791948         | -16.3%               |
| 1.114-1.488                      | 2360842         | 2880904         | -22.0%               |
| 1.488-1.999                      | 5353834         | 6091979         | -13.8%               |
| 1.999-2.250                      | 2082172         | 2257727         | -8.4%                |
| 2.250-2.545                      | 1995701         | 1966848         | 1.4%                 |
| 2.545-3.219                      | 2530321         | 2071852         | 18.1%                |
| 3.219-4.170                      | 1485237         | 854300          | 42.5%                |
| 4.170-5.208                      | 651480          | 200553          | 69.2%                |
| 5.208-6.513                      | 314350          | 50197           | 84.0%                |
| 6.513-7.969                      | 131150          | 10724           | 91.8%                |
| 7.969-9.423                      | 42817           | 1906            | 95.5%                |
| 9.423-11.47                      | 10337           | 309             | 97.0%                |
| 11.47-14.59                      | 1301            | 46              | 96.5%                |
| 14.59+                           | 95              | 24              | 74.7%                |

Table A.33: Test 5 Flooded-Bed at 1070 fpm

| PARTICLE SIZE DISTRIBUTION         CILAS 1064 Liquid         Range : 0.04 μm - 500.00 μm / 100 Classes                                                     |                                                                                                       |                                                                                                                                                                                          |                                                                                                          |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Sample ref.<br>Sample Name<br>Sample type<br>Comments<br>Liquid<br>Dispersing agent<br>Operator<br>Company<br>Location<br>Date : 06/07/2007<br>Index meas. | : Sample_X_<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | Ultrasounds<br>Obscuration<br>Diameter at 10%<br>Diameter at 50%<br>Diameter at 90%<br>Fraunhofer<br>Density/Factor<br>Specific surface<br>Automatic dilution<br>Meas./Rins.<br>SOP name | : 60 s<br>: 6 %<br>: 2.46 μm<br>: 13.46 μm<br>: 28.63 μm<br><br>: No / No<br>: 60s/60s/4<br>: Fraunhofer |  |  |  |





Figure A.1: Page 1 of Calis Report



## PARTICLE SIZE DISTRIBUTION

## CILAS 1064 Liquid

Range : 0.04  $\mu m$  - 500.00  $\mu m$  / 100 Classes

| Sample ref. : Sample_X_<br>Sample Name :<br>Sample type :<br>Comments :<br>Liquid :<br>Dispersing agent :<br>Operator :<br>Company :<br>Location :<br>Date : 06/07/2007 Time : 05:18:25AM<br>Index meas. : 495<br>Database name : Granulog |               |                         |                         |                         |                         | Ultrasounds: 60sObscuration: 6 %Diameter at 10%: 2.46µmDiameter at 50%: 13.46µmDiameter at 90%: 28.63µmFraunhoferDensity/FactorSpecific surfaceAutomatic dilution: No / NoMeas./Rins.: 60s/60s/4SOP name: Fraunhofer |                         |                         |                         |                         |                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
|                                                                                                                                                                                                                                            |               |                         |                         | Standar                 | ds classe               | S                                                                                                                                                                                                                    | in vo                   | olume / ur              | ndersize                |                         |                         |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 0.04<br>0.02<br>0.00    | 0.07<br>0.10<br>0.01    | 0.10<br>0.17<br>0.01    | 0.20<br>0.41<br>0.02    | 0.30<br>0.68<br>0.05                                                                                                                                                                                                 | 0.40<br>0.97<br>0.07    | 0.50<br>1.28<br>0.10    | 0.60<br>1.60<br>0.12    | 0.70<br>1.94<br>0.15    | 0.80<br>2.31<br>0.19    |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 0.90<br>2.69<br>0.23    | 1.00<br>3.10<br>0.27    | 1.10<br>3.53<br>0.31    | 1.20<br>3.97<br>0.35    | 1.30<br>4.43<br>0.40                                                                                                                                                                                                 | 1.40<br>4.90<br>0.44    | 1.60<br>5.85<br>0.50    | 1.80<br>6.82<br>0.57    | 2.00<br>7.80<br>0.65    | 2.20<br>8.77<br>0.71    |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 2.40<br>9.72<br>0.76    | 2.60<br>10.65<br>0.81   | 2.80<br>11.55<br>0.85   | 3.00<br>12.41<br>0.87   | 3.20<br>13.25<br>0.91                                                                                                                                                                                                | 3.40<br>14.05<br>0.92   | 3.60<br>14.83<br>0.95   | 3.80<br>15.58<br>0.97   | 4.00<br>16.31<br>0.99   | 4.30<br>17.37<br>1.02   |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 4.60<br>18.39<br>1.06   | 5.00<br>19.74<br>1.13   | 5.30<br>20.73<br>1.19   | 5.60<br>21.72<br>1.25   | 6.00<br>23.04<br>1.34                                                                                                                                                                                                | 6.50<br>24.70<br>1.45   | 7.00<br>26.39<br>1.59   | 7.50<br>28.13<br>1.76   | 8.00<br>29.90<br>1.91   | 8.50<br>31.73<br>2.11   |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 9.00<br>33.58<br>2.26   | 10.00<br>37.33<br>2.48  | 11.00<br>41.07<br>2.74  | 12.00<br>44.75<br>2.95  | 13.00<br>48.35<br>3.14                                                                                                                                                                                               | 14.00<br>51.85<br>3.30  | 15.00<br>55.26<br>3.45  | 16.00<br>58.56<br>3.57  | 17.00<br>61.78<br>3.71  | 18.00<br>64.92<br>3.83  |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 19.00<br>68.02<br>4.00  | 20.00<br>71.01<br>4.07  | 21.00<br>73.87<br>4.09  | 22.00<br>76.58<br>4.07  | 23.00<br>79.11<br>3.97                                                                                                                                                                                               | 25.00<br>83.62<br>3.77  | 28.00<br>89.08<br>3.36  | 30.00<br>91.92<br>2.87  | 32.00<br>94.17<br>2.43  | 34.00<br>95.92<br>2.01  |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 36.00<br>97.25<br>1.62  | 38.00<br>98.16<br>1.17  | 40.00<br>98.81<br>0.88  | 43.00<br>99.42<br>0.59  | 45.00<br>99.66<br>0.37                                                                                                                                                                                               | 50.00<br>99.92<br>0.17  | 53.00<br>99.98<br>0.07  | 56.00<br>100.00<br>0.03 | 60.00<br>100.00<br>0.00 | 63.00<br>100.00<br>0.00 |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 66.00<br>100.00<br>0.00 | 71.00<br>100.00<br>0.00 | 75.00<br>100.00<br>0.00 | 80.00<br>100.00<br>0.00 | 85.00<br>100.00<br>0.00                                                                                                                                                                                              | 90.00<br>100.00<br>0.00 | 95.00<br>100.00<br>0.00 | 100.0<br>100.00<br>0.00 | 112.0<br>100.00<br>0.00 | 125.0<br>100.00<br>0.00 |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 130.0<br>100.00<br>0.00 | 140.0<br>100.00<br>0.00 | 150.0<br>100.00<br>0.00 | 160.0<br>100.00<br>0.00 | 170.0<br>100.00<br>0.00                                                                                                                                                                                              | 180.0<br>100.00<br>0.00 | 190.0<br>100.00<br>0.00 | 200.0<br>100.00<br>0.00 | 212.0<br>100.00<br>0.00 | 224.0<br>100.00<br>0.00 |  |
|                                                                                                                                                                                                                                            | x<br>Q3<br>q3 | 240.0<br>100.00<br>0.00 | 250.0<br>100.00<br>0.00 | 280.0<br>100.00<br>0.00 | 300.0<br>100.00<br>0.00 | 315.0<br>100.00<br>0.00                                                                                                                                                                                              | 355.0<br>100.00<br>0.00 | 400.0<br>100.00<br>0.00 | 425.0<br>100.00<br>0.00 | 450.0<br>100.00<br>0.00 | 500.0<br>100.00<br>0.00 |  |

x : diameter /  $\mu m$  - Q3 : cumulative value / % - q3 : density distribution

 Serial nb : 1232
 Ref : 2.r176.m0.88A1818/6.00/495/m17.12.20.40.1Fh.20.20.40.Bh/Q-.0.0.0.0//600.0.15.g10.0.9.10.1.10.P6500.1.10.N.0/V 9.03/635

Figure A.2: Page 2 of Calis Report

Copyright © Adam Joseph Levy 2017

## References

- 29 CFR § 1926.66. 1993. "Criteria for design and construction of spray booths". Occupational Health and Safety Administration.
- Arnold, C. (2016). A scourge returns: Black lung in Appalachia. *Environmental Health Perspectives*. http://doi.org/10.1289/ehp.124-A13.
- Amaral, S., de Carvalho, J., Costa, M., & Pinheiro, C. (2015). An Overview of Particulate Matter Measurement Instruments. *Atmosphere*, 6(9), 1327–1345. http://doi.org/10.3390/atmos6091327.
- Barone, T. L., Patts, J. R., Janisko, S. J., Colinet, J. F., Patts, L. D., Beck, T. W., & Mischler, S. E. (2016). Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust. *Journal of Occupational and Environmental Hygiene*, *13*(4), 284–292. https://doi.org/10.1080/15459624.2015.1116694.
- Campbell, J. A. L., Moynihan, D. J., Roper, W. D., & Willis, E. C. (1983). DUST CONTROL SYSTEM AND METHOD OF OPERATION. United States: U.S. Patent Office.
- Castranova, V., & Vallyathan, V. (2000). Silicosis and coal workers' pneumoconiosis. *Environmental Health Perspectives*. http://doi.org/10.1016/B978-1-4557-0792-8.00051-9.
- Colinet, J. F., Mcclelland, J. J., Erhard, L. A., & Jankowski, R. A. (1990). Laboratory Evaluation of Quartz Dust Capture of Irrigated-Filter Collection Systems for Continuous Miners. *Report of Investigations*. U.S. Bureau of Mines.
- Crabtree, D. (1999). BY-PASS EDUCTOR. United States: U.S. Patent Office.
- Glenn, R. E., & Craft, B. F. (1986). Air sampling for particulates. Occupational Respiratory Diseases DHHS (NIOSH) Publication, (86-102).
- Kissel, F. N. (2003). Handbook for Dust Control in Mining (IC 9465). Information Circular 9465. Retrieved from http://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/2003-147.pdf.
- Li, T., Salarzar, A. J., & Saito, K. (2009). Experimental and Numerical Feasibility Study of Modifying Automotive Wet Scrubber for Capturing Particulate in Coal-Fired Power Plants. *Sixth International Symposium on Scale Modeling*, 1–10.
- McIvor, A., & Johnston, R. (2007). MINERS' LUNG (1st ed.). Burlington, VT: Ashgate.

- Manickavasagam, S., & Mengüç, M. P. (1993). Effective optical properties of pulverized coal particles determined from FT-IR spectrometer experiments. *Energy & Fuels*, 7(6), 860–869. https://doi.org/10.1021/ef00042a023.
- Merchant, J., Taylor, G., Hodous, TK. (1986). Coal workers' pneumoconiosis and exposure to other carbonaceous dusts. *Occupational Respiratory Diseases*. (329– 400).
- MSHA (Mine Safety and Health Administration). (2014). Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. *Federal Register*, 79(84), 24814–24994.
- NIOSH (National Institute for Occupational Safety and Health). (1995). *Criteria for a recommended standard: Occupational exposure to coal mine dust*. Washington, DC.
- NIOSH (National Institute for Occupational Safety and Health). (2008). Work-Related Lung Disease Surveillance Report 2007. Cincinnati, OH.
- Public Law 91-173. Federal Coal Mine Health and Safety Act of 1969, Pub. L. No. 30 (1969). 30 USC.
- Salazar, A. J. (2012). FLUID SCRUBBER AND SPRAY BOOTH INCLUDING THE FLUID SCRUBBER. United States: U.S. Patent Office.
- Sapko, M. J., Cashdollar, K. L., Green, G. M., & Verakis, H. C. (2007). Coal Dust Particle Size Survey of U. S. Mines. *Journal of Loss Prevention Process in the Industries*, 20(4), 616–620.
- U.S. Environmental Protection Agency (U.S. EPA). (2016). Quality Assurance Guidance Document 2.12 - Monitoring PM2.5 in Ambient Air Using Designated Reference or Class I Equivalent Methods.
- Wilde, F.D., ed., 2006, Collection of water samples (version 2.0, September 2006): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4, http://water.usgs.gov/owq/FieldManual/chapter4/html/Ch4\_contents.html.
- WHO. (1999). Hazard prevention and control in the work environment: Airborne dust. Who/Sde/Oeh/99.14, 1–96. Retrieved from http://www.who.int/occupational\_health/publications/en/oehairbornedust3.pdf.

## Vita

Adam Joseph Levy graduated from Edwardsville High School in 2010 and enrolled at the University of Kentucky (UK). He graduated from UK in 2015, receiving a Bachelor of Science in Mining Engineering. During his time at UK, Adam held three internships in the coal industry, and worked as a Graduate Research Assistant for Dr. William C. Wedding while pursuing his graduate education. He was a student member of the Society of Mining, Metallurgy, and Exploration.

Adam Joseph Levy