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ABSTRACT OF DISSERTATION

MIXTURE MODELING WITH APPLICATIONS IN ALZHEIMER’S DISEASE

This dissertation involves an application of mixture of regression models to 114 indi-
viduals who are cognitively intact (from the Alzheimer’s Disease and Neuroimaging
Initiative-ADNI, data). The correct number of components in the model were esti-
mated with the Singular BIC (SBIC), marking the first time it has been applied to
such a problem. The smallest true model in conjunction with the approximation of
SBIC was fixed at 1. The resulting posterior probabilities from the model were used
to estimate the probability of a person transitioning and risk plots were obtained
that could in principle be used by clinicians to identify patients at risk. This work
also proposed a model selection criterion for mixture of regression models with ap-
plication to the ADNI data. Finally simulation studies were conducted to compare
the performance of the novel model selection and existing criteria.
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Chapter 1 Introduction

1.1 Definition of Mixture Models and Examples

Let X1, ..., Xn denote a random sample of size n, where X j is a p-dimensional random

vector with probability density function f (x j) on Rp. Then we define a k component

finite mixture model:

f (x j) =

k∑
i=1

pi f (x j|θi) (1.1)

where the functions f (x j|θi) are called the component densities of the mixture and

the quantities p1, .., pk are the mixing proportions with 0 ≤ pi ≤ 1 and
∑k

i=1 pi = 1.

The mixture model defined in this context assumes a known number k component(s).

However, in reality the number of components is inferred from the data and so are

the mixing proportions and the component- specific parameters. If we allow k to

increase with the sample size n, then the resulting model is called a mixture sieve

[19].

Example 1. Charnigo et. al.[27] modeled birthweight distribution of a population of

white singleton infants born to heavily smoking mothers in the United States. In this

study the number of components in the model was chosen with Flexible Information

Criterion (FLIC), a model selection criterion that imposes a penalty based on sample

size and data configuration. FLIC and Bayesian Information Criterion (BIC) chose a

4-component normal mixture as a good fit to the data. The resulting model structure
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is given below and the plot corresponding to the model is shown in Figure 1 of

Charnigo et. al. (2010):

0.009 f (x, 872, 247) + 0.231 f (x, 2890, 726) + 0.707 f (x, 3165, 403) + 0.054 f (x, 3821, 365),

where the two numbers in each component-specific density are estimated mean and

standard deviation. The first component of the model describes the distribution of

extremely low and very low birthweight (ELBW and VLBW) infants, component 2

describes mostly moderate low birthweight (MLBW) and normal birthweight (NBW)

infants with some VLBWs as well as high birthweight (HBW) cases. The third com-

ponent is similar to the mean component in a contaminated[31] and a 2-component

model[32]. The fourth component consists of NBW and HBW cases. The complexity

underlying the birthweight distribution as outlined cannot be adequately captured

with a single or perhaps fewer than four component Gaussian model. In the same

vein, fixing the number of components a priori may not yield reasonable results

because the appropriate complexity may vary across geographic and demographic

boundaries.

Example 2. Santago et. al. [26] applied two versions of finite mixture models

to automatically quantify single valued pixels of brain tissue types from Magnetic

Resonance Imaging (MRI). The brain data consist of four adjacent images. In the

first model, no partial volume effect was assumed; the errors were Gaussian with

homoscedastic variance and the mixing parameters summed to 1. The model con-

sists of three brain tissues; cerebrospinal fluid (CSF), white matter (WM) and gray

matter(GM) and is thus referred to as the three tissue model. The three tissue model

2



was stated as:

p(ν) =
∑

tεT3
Pr[t]Pν|t(ν|t),T3 = {CS F,WM,GM},

∑
Pr[t] = 1

where ν is the pixel intensity and Pν|t is the component-specific density.

A second model called the six tissue model, assumed a partial volume effect.

However, the error terms were normally distributed. The six tissue model was defined

as:

p(ν) =
∑

tεT6
Pr[t]Pν|t(ν|t),T6 = {CS F,WM,GM,CW,CG,GW},

∑
Pr[t] = 1

where CW, CG and GW represent combinations of the aforementioned three tissue

types. The resulting parameters in the models were estimated with tree annealing

algorithm which minimizes ||p(v)− h(v)||2 where h(ν) is the histogram of the data and

p(ν) is the model. Annealing algorithm is suitable for minimizing continuous func-

tions with only the known form of the function and not its derivatives. The quantity

of each brain material type was estimated with either parameter or Bayesian quan-

tification method. The Bayesian approach quantifies each tissue type by relying on

the normal model assumptions, the estimated mean and variance to optimize class

decision boundaries. On the other hand, quantifying tissues directly with estimated

parameters from the model was termed parameter quantification. The Bayesian ap-

proach was found to be more accurate and the three tissues model more consistent

in its fidelity to data as shown in Figure 5a in Santago et’ al. (1993).

3



1.2 Review of Applications

Mixture models have been used since the 19th century when they were applied by

Karl Pearson[13] in the analysis of crab morphometry [4]. Many novel applications

have been published in the fields of genetics, finance and engineering using mixture

models. Extensive discussions on the application of mixture models have been well

documented in Titterington et. al.[16] and Lindsay [17]. For instance a geneticist

might be interested in knowing if a disease population is homogeneous in situations

where a disease is caused in one group of individuals by one locus and in another

group of individuals by another locus.[4] Since the incipience of mixture models,

many methodological improvements have been proposed and justified. For exam-

ple, Mclachlan [3] used a bootstrap method to estimate the number of components

in normal mixture models. The bootstrap method was applied to a mixture based

on yields from seven barley types grown in 6-blocks. The purpose was to deter-

mine the number of mixture components when barley yields were clustered. The

method ultimately reduced the problem to choosing between two or three compo-

nent mixtures. At K=19 bootstrap replications the p-value obtained suggested that

the two-component model was more appropriate.

Chen and Chen[4] have shown that under the null hypothesis of homogeneity and

under some regularity conditions including a compact parameter space, the likelihood

ratio test statistic of a mixture model has an asymptotic distribution of (supθ W+(θ))2,

where W is a Gaussian process with mean 0 and variance 1. Other theoretical devel-

opments in the field of mixture models include the modification of the log likelihood

ratio test by Chen et al. [5] and the D-testing [6]. Chen et al.[5] modified the log like-

4



lihood of the finite mixture model by adding a penalty C log(4γ(1−γ)). They specified

two related motivations motivations for this modification; lack of identifiability prop-

erty in mixture models under the null hypothesis and the boundary issues regarding

the mixing proportion γ possibly being zero. Under the null hypothesis, the mixing

parameters are estimated as 1/2 leading to no effective penalty. Thus the penalty

only affects the alternative hypothesis model(heterogeneous model). The constant C

in the penalty is used to control the modification so that for a bounded kernel density,

one may choose C to be C = log(M) where M comes from the parameter space de-

fined as [−M,M]. Under the null hypothesis and regularity conditions, Chen et al[5]

obtained the asymptotic distribution of the modified likelihood ratio test (MLRT)

as 0.5χ2
0 + 0.5χ2

1 where χ2
0 denotes a degenerate distribution at zero. Furthermore,

a simulation study under the normal and the Poisson mixture models revealed that

when the Kullback-Leibler information is small, MLRT and the Neyman Scott test

[8] performed about the same and the method proposed by Mclachlan[3] performed

poorly. However for a large Kullback -Leibler information, the modified LRT was

preferable to the competing methods. Under the normal model assumption, Davies

[7] method was precise in terms of p-value estimates but less powerful in comparison

to the MLRT.

Charnigo et. al.[6] studied a new testing procedure for choosing the number

of components in finite mixture models. Their method relies on the Euclidean L2

distance between the competing models specified at the null and the alternative re-

spectively. Appealing features of the test include the emphasis it places on wider

differences between the density functions at the null and alternative hypotheses. In
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addition it has a closed form expression with respect to the parameter estimates when

the mixture components are from standard parametric families. Another strength of

the test is its independence of the data given parameter estimates. As a result, test-

ing can be performed in the absence of the original data if the parameter estimates

are known.

Let X1 . . . Xn be a simple random from the mixture distribution
∑k

i=1 pi f (x|θi) where

pi ≥ 0,
∑k

i=1 pi = 1, and { f (x|θ)|θεΘ ⊂ L2} is a family of probability density function

associated with a scalar or vector parameter θ, then the D-test statistic can be defined

as

d(k, n) =
∫ [∑k

i=1 p̂i f (x|θ̂i) − f (x|θ̂0)
]2

dx =
∫ [∑k

i=1 p̂i f (x|θ̂i)
]2

dx

where p̂0 = −1 and θ̂0 estimates the single parameter under the null hypothesis.The

corresponding closed form expressions for univariate and multivariate normal cases

are presented below:

d(k, n) =
∑k

i=0
∑k

j=0
p̂i p̂ j√

2π(σ̂2
i +σ̂2

j )
exp

[
−1

2
(µ̂i−µ̂ j)2

σ̂2
i +σ̂2

j

]
d(k, n) =

∑k
i=0

∑k
j=0

p̂i p̂ j

2dπd/2 exp
[
−1

2 ||µ̂i − µ̂ j||
2
]

assuming an identity covariance matrix within each component in the latter for-

mula.

Let X1 . . . Xn be iid under null hypothesis H0 : X1 ∼ f (x|θ0), for θ0 an interior

point in the compact parameter space Θ. Then under the five regularity conditions
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assumed by Charnigo et. al. [6] the following convergence rates were obtained re-

garding maximum likelihood parameter estimation with k = 2 and p1 ≥ p2:

p̂1(θ̂1 − θ0) + p̂2(θ̂2 − θ0) = Op(n−1/2)

p̂1(θ̂1 − θ0)2 + p̂2(θ̂2 − θ0)2 = Op(n−1/2)

Note that assuming the wrong model (that is two component when there is really only

one) yields slower or no convergence: θ̂1 is n1/4-consistent while θ̂2 is not consistent.

To see this note that p1 ≥ p2,→ p̂1 ≥ p̂2 and we have that

Op(n−1/2) = p̂1(θ̂1−θ0)2 + p̂2(θ̂2−θ0)2 ≥ p̂1(θ̂1−θ0)2 = Op(n−1/2)⇒ (θ̂1−θ0)2 = Op(n−1/2)

It follows that √
(θ̂1 − θ0)2 =

√
Op(n−1/2)⇒ |θ̂1 − θ0|= Op(n−1/4)

We also note that

Op(n−1/2) = p̂1(θ̂1 − θ0)2 + p̂2(θ̂2 − θ0)2 ≥ p̂2(θ̂2 − θ0)2 = Op(n−1/2)

⇒ (θ̂2 − θ0)2 = Op(n−1/2) 1
p̂2

But since p̂1 ≥ p̂2, we get stuck because p̂2 ≤ 1/2 ⇒ 1
p̂2
≥ 2 with no lower bound.

Thus to find a bound for this expression we infer from what was established above

that (θ̂1 − θ0) = Op(n−1/4) and noting that p̂1 ≤ 1, it follows that

p̂1(θ̂1 − θ0) ≤ 1 × Op(n−1/4) = Op(n−1/4)
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It can be deduced that Xn = Op(n−1/2) ⇒ Xn = Op(n−1/4). Making use of the latter

relation we further deduce that

Op(n−1/2) = p̂1(θ̂1 − θ0) + p̂2(θ̂2 − θ0)

⇒ Op(n−1/4) = p̂1(θ̂1 − θ0) + p̂2(θ̂2 − θ0)

⇒ Op(n−1/4) − p̂1(θ̂1 − θ0) = p̂1(θ̂1 − θ0) + p̂2(θ̂2 − θ0) − p̂1(θ̂1 − θ0)

⇒ p̂2(θ̂1 − θ0) = Op(n−1/4)

Using Taylor expansion, the convergence rate d(2, n) = Op(n−1) was then obtained.

The authors also showed that the testing procedure was consistent against a fixed

alternative.

The convergence rates above paved the way for properly rescaling critical values

for d(2, n) as elaborated below. Having that d(2, n) = Op(n−1) under the null and

dα;N(0,1) the corresponding critical value of d(2, n) for N(0, 1) then under the null

hypothesis and f (x|θ0) = N(0, 1),

P(d(2, n) ≥ dα;N(0,1)) ≈ α

and therefore conclude that dα;N(0,1) = O(n−1). If we assume more than was in

[6] and let nd(2, n) converge in distribution to F under the null hypothesis and

f (x|θ0) = N(0, 1), then we can have P(nd(2, n) ≥ F0.95) −→ 0.05, where F0.95 is the 95th

percentile of F. It follows that:

P(d(2, n) ≥ n−1F0.95) ≈ 0.05
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and

dα;N(0,1) ≈ n−1F0.95

For example, if dα;N(0,1) = 0.2 when n = 50, then it follows from the previous set up

that:

0.2 ≈ 50−1F0.95 ⇒ F0.95 ≈ 10

Now using the estimated critical value at n = 50, we can estimate dα;N(0,1) at another

n, say n = 100 as follows:

dα;N(0,1) ≈ n−1F0.95 ≈
1

100 × 10 = 0.1

Thus having estimated dα;N(0,1) at one n, the Op(n−1) convergence immediately esti-

mates dα;N(0,1) at another n.

Moreover, for any fixed n, let dα;N(µ0,σ2) and dα;exp(β0) denote the level α criti-

cal values of d(2, n) based on null distributions of N(µ0, σ
2) and exp(β0). Then

dα;N(µ0,σ2) ≈ dα;N(0,1)/σ and dα;exp(β0) ≈ β0dα;exp(1) where the parameter spaces for the

assumed models are; [−M,M] and [M−1,M] for the normal and exponential distribu-

tions respectively. The D-test performed competitively with MLRT on two simulation

studies including mixture of normals on one hand and mixture of exponentials on

the other.

Gene differential expression testing presents new problems that have attracted

the attention of researchers in the field of mixture modeling. As new methodologies

are being uncovered to test for genes that are differentially expressed, it is worth
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noting that the student t-test can be and has been used to test for genes that are

differentially expressed. The t-test, although simple to implement, has the disadvan-

tage of increasing the false positive rate of the tests because of the number of genes

involved.Additional concerns about T testing are as follows:

1. With small number of subjects, within-group variances are poorly estimated

and results of T testing may be very sensitive to this [33] as well as any underlying

non-normality of expressions levels.

2. If the expression levels for different genes are correlated then the validity of

omnibus testing (i.e. analyzing numerous T test statistics together through homo-

geneity testing in mixture modeling) may be compromised [30].

3. Differential expression may manifest not only in a change of mean level, which

is measured by T testing, but also in a change of variability which is not assessed by

T testing [34].

Newton et. al [14] developed a semi-parametric hierarchical mixture model to

address the problem of detecting genes that are differentially expressed while ac-

counting for complexities of microarray data. They considered two types of prior

(mixing distribution) distributions on the mean gene specific expression: one para-

metric (gamma distribution) and the other non-parametric (defining the mean to

have a probability distribution on an equally spaced grid). The former prior actually

induced a parametric model intended as a comparator to the semi-parametric model

induced by the latter. The semi-parametric model performed similarly to the compet-

ing parametric model when applied to data from the Gene-logic spike-in experiment.

The poorest performance in the comparison was recorded by the gene-specific T test.
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When the models were tested for robustness in a case study using a data leave-out

approach, the semi-parametric model identified 80% of down regulated genes com-

pared to 61% by the parametric method. The method proposed by Newton et.

al. was limited to a simple two-group comparison and ignores dependencies among

genes (conditional on gene-specific parameters). Also the non parametric prior can

slow down the performance of the EM or other optimization algorithms.

Besides the semi parametric model approach in the aforementioned discussion,

Bayesian models amongst others have also been used to obtain useful gene expres-

sion information in recent years. For example Zhou et. al [19] used Bayesian mixture

models to partition gene expression data and Alexandridis et. al. [21] developed

a multi-type classification method for gene selection and tissue sample separation.

In particular, Newton et. al. [28] developed EBarrays in R to compute dual char-

acter posterior probabilities for detecting patterns of genes and condition-specific

expected values. This method was believed to capture relevant sources of variations

in a high-dimensional expression profile and thus considered superior to some existing

methods such as the paired sample T test. EBarray also require fewer replications

of microarray data and does not require permutation. The undergirded assumptions

of EBarray are as follows:

a) Parametric observations component (log-normal or gamma)

b) Parametric mean component (conjugate to observation component)

c) Constant coefficient of variation

d) Only marginal information (rather than among-gene dependence) is relevant

The log-normal-normal hierarchical (LNN) model in EBarray package when ap-
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plied to mammary epithelial tissue from a rat model of breast cancer , identified

92.7% of the genes as equivalently expressed. EBarray models are however limited

by the assumptions underlying its operations. For instance it will under perform

if the constant variance assumption is violated or if the data deviate from the log-

normal-normal assumption. To increase the flexibility of the model, Newton et. al.

suggested using a nonparametric mean component approach. It is worth noting that

Speed [29] used a similar approach as Newton et. al.[28] but did not assume constant

variance of gene-specific expressions. As a result, Speed’s flexible model may provide

yet another avenue to model varying mixture components.

Omnibus tests [30] are also extensions of mixture models designed to overcome

difficulties in simultaneous testing of differentially expressed genes. Suppose we de-

cide to test for gene differential using t-test and adjust for multiplicity using the

Scheffe, Kolmogorov and Tukey. Such a test will have low power for detecting differ-

ential expression due to the conservative nature of the pairwise comparison methods.

Omnibus tests combines the D-test [27] and modified likelihood ratio test [5] to

determine whether p-values obtained from models used in testing differentially ex-

pressed genes come from uniform or beta contaminated distributions (uniform and

beta mixture). If the p − value ∼ Uni f (0, 1) then the batch of genes considered are

not differentially expressed otherwise they are considered to be coming from a Beta

contaminated distribution. The Beta contaminated model for p-values is defined as

follows:

Let P1, Pn be the random p-values from n hypothesis tests. For i = 1, .., n define Zi = 1
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if a gene is differentially expressed and 0 otherwise. The conditional distribution are

given as (Pi|Zi = 0) = uni f orm(0, 1) = Beta(1, 1) and (Pi|Zi = 1) = Beta(α, β). Thus the

marginal distribution of Pi for all i = 1, , n is P(Pi|Zi) = (1 − π)Beta(1, 1) + πBeta(α, β)

for 0 ≤ π ≤ 1, α > 0 and β > 0. The corresponding posterior of p̃i = P(Zi =

1|Pi, α, β) =
pi f (pi;α,β)

1−π+π f (pi;α,β) , where p̃i > T , for some cut off T, suggests that the ith gene

is differentially expressed.

The omnibus testing is applauded for the following strengths:

1) Ability to efficiently dispose of a batch of genes without alterations and thus in-

creasing the power of the test.

2) Estimated parameters from the model can provide a frame of reference for multi-

ple comparisons of the remaining batch.

3) Robustness in the sense that p-values from different distributions can be detected

assuming the p-value distribution is uniform under the null hypothesis and Beta con-

taminated otherwise.

In addition, omnibus testing can reject the uniform(0,1) model even in the face of

choosing α∗ = 0 and α∗∗ = 1 and it uses parameter estimates to determine the number

of true positive, false positive and posterior differential expression probabilities to im-

prove gene differential detection. In light of these strengths however, this testing

procedure assumes independence of the p-values that may not be correct even though

incorporating a covariance matrix of hundreds if not thousands of p-values may be

challenging if not impossible and modeling p-values rather than the full data makes

it impossible to recover information lost[28]. The assumption of a two-component
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mixture is overly simplified but agrees with bootstrap studies [3] that two mixture

assumption is appropriate in finite mixture problems. Furthermore, treating some

parameters in the Beta distribution as known a priori may introduce biases into the

testing procedure. These limitations call for an improvement to account for the iden-

tified problems.
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1.3 Review of Mixture Model Applications to Alzheimer’s Disease

Alzheimer’s disease (AD) is another area where mixture models have been applied for

diagnostic purposes. The Centers for Disease Control and Prevention defines AD as

a ’progressive disease beginning with mild memory loss possibly leading to loss of the

ability to carry on conversation and respond to the environment’. Three core criteria

for identifying the predementia phase of AD have been proposed by a working group

under the direction of the National Institute on Aging and the Alzheimer’s Associ-

ation. These include clinically based criteria for clinicians and healthcare providers,

biomarker (cerebrospinal fluid measures) and brain imaging for research purposes

and a combination of the clinical and biomarker evidence [25]. The prevalence of

AD in the United States in 2013 was 5 million projected to be 14 million in 2050

[24]. Identified as the most common form of dementia, AD incidence is between 60

and 80 percent of all dementia cases [24]. In 2010, an estimated 600,000 (32% of all

older adults death) adults 65 years and older with AD died in the United States. It

is projected that mortality rates due to AD could top 43% of all older adults death

by 2050. [22].

Presently, De Meyer et. al [9] are among few researchers who have used nor-

mal mixture components to separate patients with AD from those without using

biomarkers. Using a mixture model framework, De Meyer et. al. classified cogni-

tively normal elderly people into one of three categories; Alzheimer, mild cognitive

impairment (MCI) and cognitively normal (NC) using biomarkers. Many studies

have reported on the reliability of using biomarkers for detecting AD in its early

stages. For instance Hampel et al.[10] compared the AD predictive potentials of
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many existing biomarkers such as cererospinal fluid (CSF) tau protein (p − tau199),

threonine 231 (p− tau231), threonine 231 and serine 235 (p− tau231−235) threonine 181

(p− tau181), and serine 396 and serine 404 (p− tau396/404). They identified CSF total-

tau (t-tau) and CSF beta-amyloid1-42 to have reasonable sensitivity and specificity

rates for differentiating early and incipient AD groups from other age-associated dis-

ease such as Lewy body disease and some secondary dementia.

The procedure adapted by De Meyer et. al.[9] consists of three steps. First they

applied mixture models to a data set from the US Alzheimer’s Disease Neuroimaging

Initiative (US ADNI) using a single biomarker (CSF Abeta1-42) to differentiate be-

tween Alzheimer’s and none Alzheimer’s cases. This resulted in a sensitivity of 91%

and specificity of 62% when a cutoff value of 188pg/ml was used. A different decision

criterion that balances the two arms of the ROC curve yields a comparable rate for

the sensitivity (74%) and specificity(75%). Overall, 25.2% of the observations were

misclassified.

In the second and third steps, De Meyer and colleagues extended their method to

include the biomarkers CSF p− tau188p and or CSF tau. With an Akaike information

Criterion (AIC) difference of 26 between the two competing models, the Abeta1-42

and CSF tau181p (AIC= 4137) model was selected over the Abeta1-42 and CSF tau

model (AIC = 4163). The selected model was validated with two independent data

sets; an autopsy data set and a ADNI data set. The model detected 90% of AD sig-

nature in the AD group, 70% in the MCI group and 36% in the cognitively normal

group of the ADNI data set. Out of 68 autopsy confirmed AD cases, 64 cases were

correctly (94% sensitivity) classified as AD. The model also identified correctly all
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patients on track to AD (100% sensitivity) when patients with MCI conditions were

followed for 5 years.

The model’s performance hinges on the functions of the two biomarkers; CSF

Abeta1-42 as an initial biomarker and CSF p tau181p as a subsequent stage biomarker

associated with progression towards dementia. These intrinsic characteristics of the

selected biomarkers are not new as documented in the literature by many authors

including Montine [11], Albert et. al. [2], Stomrud et. al.[15] and Gustafson et. al.

[12].

De Meyer and colleagues noted that AD signatures were present in 39% cog-

nitively normal persons for the single biomarker model and 36% for the combined

biomarker model. They concluded that these observations were consistent with neu-

ropathological studies that healthy elderly individuals tend to have amyloid contain-

ing plaques and tau containing neurofibrillary tangles in their brains[9]. Thus their

method was consistent with expected AD diagnosis and thus serve as a platform

upon which future models may be developed.

De Meyer and colleagues’ work breaks ground for further expansions in this area.

Notably addition of Apolipoprotein (APOε4); the most robust genetic risk factor for

sporadic AD known to be related to AD, MCI and NC [35] in the analysis may lead

to improved results. We applaud the authors for their ground breaking application

of mixture models to addressing AD related problems however they did not address

all the potential stages of MCI as published by ADNI. Being able to detect candi-

dates with early MCI (eMCI) may prove vital in delaying the development of AD

using available therapeutic procedures. Although a hypothesis was not tested by the
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authors, identifiability problems which are inherently associated with mixture mod-

els were not addressed by the authors. The use of AIC as the only model selection

criteria raises concerns as it has been shown that AIC favors small sample size and

more mixture components [27]. Thus the Flexible Information Criteria may be more

appropriate in this case as the penalty involved considers the configuration of the

data points in addition to the sample size [27]. Finally, the wide variations in the

concentrations between different aliquots of Abeta1-42 [36] can significantly alter the

conclusions drawn from the two models. Perhaps following the guidelines in [36] may

help stabilize the variations in the concentrations of the analyte and thus improve

the outcome from the models.
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1.4 Review of Existing Model Selection Criteria and Mixture of Regres-

sion

Many model selection criteria span the field of mixture models. Popular amongst

these selection criteria are MLRT[5], D-test[6],FLIC[27], BIC and AIC.We should

observe that MLRT and D-test are hypothesis testing procedures compared to BIC,

AIC and FLIC which are information theoretic criteria. However,the hypothesis

test procedures may be used for model selection by determining the model complex-

ity (or number of mixture components in the underlying population). Drton and

Plummer(2016)[44] developed the singular Bayesian Information Criterion (sBIC)

to address model selection problems arising from singular models (models whose

Fisher information matrix is singular). The authors noted that sBIC differs from

BIC in that although they both have Bayesian flavors, the regularity conditions un-

derpinning the derivation of BIC are not satisfied by singular models. The authors

proposed: sBIC(Mi) = log L′(Mi) where Mi is a finite set of candidate models and

{L′(Mi) : i ∈ I} is the unique solution to the equations
∑

j≤i [L′(Mi) − L′i j]L
′(M j) = 0,

i ∈ I, that has all positive entries with L′i j = P(Yn|π̂,Mi)n−λi j(log n)mi j−1 where λi j is the

learning coefficient and mi j is the multiplicity of λi j. Compared to BIC, the authors

demonstrated that sBIC can achieves better frequentist model selection behavior,

and allows more posterior mass to be assigned to larger models. When the models to

be selected are regular, sBIC selects the same model as BIC; sBIC however does not

rely on Monte-Carlo computation but rather on the information about the learning

coefficient. For moderate number of models, sBIC and BIC have comparable compu-

tational burden. However there is a need for future work to address computational
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burdens associated with the use of sBIC when larger models are involved.

Viele and Tong (2002)[46] proposed modeling with mixtures of linear regressions

where the outcome of interest was modeled conditional on a set of covariates and

the prior was implicitly data dependent. The key additions to the mixture mod-

els paradigm from this procedure include the ability to adjust for covariates, ac-

count for masked outliers and also ensure consistency of the posterior distribution

using bracketing entropy. The likelihood of interest was defined as g(yi|xi1, ..., xip) =∑k
j=1 p jN

(∑P
p=1 xipβ jp, σ

2
j

)
(yi) where β jpεR for j = 1, ..., k, and p = 1, ..., P are re-

gression coefficients, σ2
jεR+ are the regression variances and (p1, ..., pk)εS k are the

relative probabilities of the k components with S k being a dimensional simplex

s = (s1, ..., sk) : s j > 0,
∑

s j = 1. Their approach has a Bayesian flavor in that they

placed priors on the mixing components, regression coefficients and regression vari-

ances ( Dirichlet, normal and Gamma respectively [refer to section 2 page 317 de-

tails]). The posterior modes in the model were estimated with an EM algorithm and

Gibbs sampling was used to sample from the identified modes.

Dai and Charnigo (2010) studied omnibus tests using Z or T statistics from

multiple differential expression testing of genes assumed to arise from an underly-

ing contaminated normal mixture model(CN). Prior to this study the authors de-

veloped the contaminated beta model(CB) for analyzing p-values arising from dif-

ferential expression tests. The CN model with the corresponding hypothesis for

the omnibus test were proposed as (1 − γ)N(0, σ2) + γN(µ, σ2) and H0 : γµ ver-

20



sus H1 : γµ , 0 and the the penalized maximum modified likelihood was given as

l∗n(γ, µ, σ2) =
∑n

i=1 log[(1 − γ) f (Zi; 0, σ2) + γ f (Ai; µ, σ2)] + C log[4γ(1 − γ)] where Zi is

the resulting Z statistic from the ith test, γε[0, 1] is the proportion of genes in the

batch that are deferentially expressed, µ and σ2 are the mean and variance of Zi given

differential expression of the ith gene respectively. The hypothesis test was carried

out with modified likelihood ratio test and D-test. Of note, the parameter estimates

from the maximum modified log likelihood(MMLE) were utilized in the calculation

of the D-test; an advantage of the D-test is that one only need to have the parameter

estimates to use the test. In an empirical study to compare the performance of the

new model (CN) to the old (CB), the authors noted that CN yields a more powerful

test than CB when there’s lack of symmetry between the over and under expressed

gene batches; the ratio of |µ| to σ in CN is not too large; and when two sided test

is of interest. To choose between the two models (CN or CB) one can apply a BIC

type criterion on the estimated MMLEs from the two models.
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Chapter 2 An Application of A Bivariate Normal Mixture Model

Introduction

Our research in this and subsequent chapters differs in many respects from exist-

ing analyses that used mixture modeling to analyze AD data[9]. Notable differences

include: 1) we consider all three biomarkers simultaneously instead of investigating

them pairwise. That is considering the n × 3 outcome matrix Y := (Y1i,Y2i,Y3i),

i = 1, 2, 3, ..., n,where n is the number of individuals, we derive the n×2 response ma-

trix Y∗ := (Y∗1i,Y
∗
2i), i = 1, 2, 3, ..., n corresponding to ratios of the original biomarkers

where Y∗1i = Y1i
Y3i

and Y∗2i = Y2i
Y3i

, i = 1, 2, 3, ..., n ; 2) we prioritize placing people in groups

based on biomarker data collected while they are still healthy and utilize an estab-

lished mixture method to predict their future status, rather than placing people in

groups based on biomarker data collected after they exhibit cognitive decline. At

that point it will be relatively easier to separate groups, but such focus may lack

prognostic relevance to those who are cognitively normal today but can potentially

develop AD in the future; 3) since AIC is known to overestimate the number of com-

ponents or groups [27] other statistical criteria such as singular Bayesian Information

Criterion (sBIC) are used in addition to AIC to choose the number of groups or com-

ponents; and, 4) more sophisticated statistical modeling is considered, to account for

other covariates such as APOE4, age, gender, race, mini mental state exam score at

baseline and level of education.
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2.1 Motivation and Objectives

As we have already alluded to in our introductory section of this dissertation, AD

is progressive in nature which means it worsens over time starting with a mild loss

in cognition and later developing into dementia where the affected persons lose their

ability to interact with or respond to their environment. Every 67 seconds, on aver-

age, someone living in the United States develops AD. One in three seniors dies with

AD or another form of dementia [38].

In addition to the burden of this disease to families, the estimated related care

cost paid by Medicare was about $11 billion in 2010 [52]. However, very little re-

search in the literature has relied on mixture modeling to address the identifying

candidates who are at high risk of transitioning from normal cognition at baseline.

As far as we know, only one article ([9]) used mixture modeling to diagnose AD. This

chapter differs from [9] and adds to the literature in four major ways as embodied in

the objectives and explained here:

1. We apply mixture models to individuals who are cognitively normal as opposed

to [9] where the participants were a combination of cognitively normal, mildly

cognitively impaired and AD.

2. we use derived variables such as tau/ abeta and ptau/abeta as in [48-51] in

which the authors showed that tau/abeta was a good predictor of future de-
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cline in cognition.

3. We use sBIC in addition to the traditional model selection criteria (AIC and

BIC) to select the number of components contrary to using only AIC as in [9].

We note that AIC may overestimate (too liberal) the model complexity and

BIC may underestimate (too conservative) it. Hence AIC or BIC alone may

be inadequate. However unlike AIC, sBIC operates on a Bayesian principle

and in general neither overestimates or underestimates the model complexity

as explained in [44]. If AIC and BIC disagree on the model complexity, sBIC

may serve as a tie breaker.

4. We adjust for other well established covariates associated with cognitive decline

whereas [9] did not.

Specifically in this chapter we use mixture modeling to achieve the following goals:

Objective 1:

To statistically determine the degree of heterogeneity within the population from

which the data were drawn.This population constitutes all people who could po-

tentially volunteer to participate in the ADNI study and are willing to undergo

lumbar puncturing to test whether or not AD proteins are present in the spinal

fluid. Objective one entails fitting various bivariate mixture models with differing
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number of groups (components) and estimating the complexity of the smallest true

model. Suppose once again that Y := (Y1i,Y2i,Y3i), i = 1, 2, 3, ..., n we define the

ratio of biomarkers as Y∗ := (Y∗1i,Y
∗
2i), i = 1, 2, 3, ..., n,where Y∗1i = Y1i

Y3i
and Y∗2i = Y2i

Y3i
,

i = 1, 2, 3, ..., n represent the two ratios formed from the three biomarkers. Suppose

moreover, that the response for a particular individual arises from the joint bivariate

normal mixture distribution whose density is g(y) =
∑m

k=1 θkN(µk, σ
2
k)(y) where θk is

the mixing parameter for component k, m is the unknown number of components

we wish to estimate, µk is a two vector of component means and σ2
k is a 2 × 2 co-

variance matrix for component k. So a two component mixture will take the form

θ1N(µ1, σ
2
1) + θ2N(µ2, σ

2
2) where θ2 = 1 − θ1 since in general θ1 + θ2 + ... + θm = 1. We

use various information-theoretic criteria (e.g., AIC, BIC and singular BIC[44]) to

decide how many groups are suggested by the data.
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Objective 2:

To investigate whether mixture components from objective 1 predict future dis-

ease status (i.e. cognitively normal, mild cognitive impairment, Alzheimer’s Disease)

and thereby estimate the hazard of future disease within each group. Suppose that T

is a continuous random variable denoting the length of time(months) to event(AD)

then T can be censored or uncensored depending on whether or not the event of

interest was observed. The corresponding hazard rate can be generally defined as

λ(t) = limδ→0
P(t≤T<t+δ|T≥t)

δ
=

f (t)
1−F(t) where F and f are the cumulative and density

functions of T. Furthermore, the hazard rate is related to covariates through the

functional form λ(t|X) = λ0(t) exp{Xβ} where X = (X1, X2, ...XN)T for some finite num-

ber N of covariates, consisting in our case, of estimated probabilities from the mixture

model, age, race, APOE4 and or level of education. We define covariates to permit

future adjustments.
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2.2 Methodologies, Cognitive Assessment and Review of Related Con-

cepts

Participant Characteristics

The data set used in this study is a subset of the original data from the ADNI

study. ADNI was launched in 2003 and was spearheaded by Dr. Michael Weiner with

the goal of testing magnetic resonance imaging (MRI), biomarkers and other modal-

ities to measure progression of and to mild cognitive impairment and Alzheimer’s

disease. The ADNI project has three phases: ADNI 1, ADNI GO and ADNI 2.

The first phase commenced in 2003 with a participant pool of 200 normal control,

400 with MCI and 200 with mild AD. The first phase ended in 2010 and the second

phase began (2009) prior to phasing out the first. ADNI GO is made up of 200 newly

recruited participants with early MCI (EMCI) and 500 normal controls and MCI in-

herited from ADNI 1, making up a total of 700 participants. This phase ended in

early 2011. The third phase ADNI 2 started in early 2011 slightly overlapping the

second phase. The participants included 150 new normal controls, 150 new EMCI,

150 new late MCI (LMCI) and 200 new mild AD. Approximately 450 to 500 partic-

ipants with normal cognition and MCI came from ADNI 1 and approximately 200

participants with EMCI are included from ADNI GO[47]. The de-identified data are

publicly available at adni.loni.usc.edu and can be obtained by completing a registra-

tion process.

From Table 2.1, 779(44.9%) of the participants are females and 956(55.1%) are

males. There are 3(0.17%) American Indians, 29(1.67%) Asians, 77(4.44%) Blacks,
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2(0.12%) Hawaiians, 21(1.21%) unknown and 1603(92.39%) Whites. Non-Hispanic/

Latinos make up 1666(96.2%) of the sample while Hispanic or Latino make up

58(3.34%). The minimum age at enrollment is 48.1 years and the maximum is 91.4

years old.

Our interest lies with the n = 114 subjects with known ages and biomarker levels

classified by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) as cognitively

normal at their baseline visits based on a mini mental state exam (MMSE) score

between 24 and 30, a clinical dementia rating sum of boxes (CRDSB) score of zero

and the absence of depression, MCI or dementia [9]. We arrived at 114 participants

by removing all duplicates with nodupkey with SAS procedures. The demographics

of the participants in this subsample are shown in Table 2.2 and Figure 2.1 illustrates

the distribution of the biomarkers Abeta142, Ptau181p and Tau. The distribution

of Abeta142 appears to be bimodal: one mode at lower Abeta142 values (less than

200) and the other mode at higher Abeta values(above 200). The Tau and Ptau

distributions are arguably bimodal and most of the observations accumulate at the

lower values. The distributions are skewed to the right. The derived biomarker

measures are shown in Figure 2.2. The derivations are obtained by taking a ratio

of Tau and Ptau with respect to Abeta142. Both distributions are also negotiably

multimodal and skewed to the right akin to their counterparts in Figure 2.1. In

addition the distributions appear to suggest three distinct groups: one large group

on the extreme left another smaller group in the middle and a third on the extreme

right which consists of few observations especially of Ptau181P/Abeta142. The three
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groups apparent in the distributions of the derived variables are more visible to the

untrained eye than the original variables (using the same breaks=20 in R package) in

figure 2.1, which could provide a strong hint that the estimated number of mixture

components m̂ in this chapter’s formal data analysis might be three.

The Institutional Review Board (IRB) at the University Of Kentucky approved

an exemption for the use of this data set on conditions including: 1) that the data

will be stored on a jump drive accessible to the two specific persons only and 2) that

the IRB will be informed of any substantial future changes to the study described in

the application.
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Figure 2.1: Original Biomarkers
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Figure 2.2: Derived Biomarker Histogram
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Cognitive Assessment

To ascertain that the participants in our data are indeed cognitively normal at

baseline, we examine a cross tabulation of the clinical dementia rating sum of boxes

(CDRSB) and MMSE baseline to assess the degree of agreement between the two

scores. Participants’ scores at or below 24 on the MMSE scale or at 0.5 or higher on

the CDRSB scale will counter the claim of normal cognition according to [39] and

[40]. From Table 2.5 eight (8) participants in our data set who scored at and above 27

on the MMSE scale at baseline present a score at or greater than 0.5 on the CDRSB

scale. These participants’ CDRSB and MMSE baseline scores are compared with

the Alzheimer’s Disease Assessment Score (ADAS11) and the Rey’s Verbal Auditory

Learning Test percent forgetting (RAVLT) score.

Two of the eight with MMSE baseline scores of 27 and 30 respectively also have

the same score of 6.67 for ADAS11 and their RAVLT forgetting scores are respectively

36% and 7.7%. Of those who scored 0.5 on CDRSB scale, two scored approximately

31% and 33% on the RAVLT forgetting scale with a corresponding 5.0 and 3.33 on

the ADAS11 scale. The participant who scored 2.5 on the CDRSB scale also scored

71% on the RAVLT forgetting scale and 7 on ADAS11 scale with 30 on the MMSE

baseline scale. One participant with a score of 1 on the CDRSB scale, 11 on ADAS11

scale, and 30 on MMSE baseline scale also scored 100% on RAVLT .

Based on these findings the participants that scored 0.5 and above on the CDRSB
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scale will be included and excluded in two versions of the model fitting process to

see if they influence our results. If dramatic changes such as a significant decrease

or increase in the c-statistic, log rank test p-value, huge swings in the standard error

estimates or covariates’ p-values occur due to the absence of the eight participants’

information in the modeling, then the output from both sets of the results will be

presented: one with the participants excluded and the other with the participants

included. If however there’s no such dramatic changes from the inclusion or exclusion

of the information from the eight participants then we shall present the output with

information on all eight participants.

Statistical Modeling

As introduced in chapter 1 and re-emphasized earlier in this chapter a variety of

mixture models will be fitted throughout this dissertation. In chapter 2 we fit the bi-

variate normal mixture model (BNM) without covariates using the mixtools package

in R[42] and write and R code the sBIC function for model selection. The responses

are collected in an n × 2 matrix whose columns correspond to TAU/ABETA142 and

PTAU181/ABETA where n = 114. The number of mixture components representa-

tive of the underlying heterogeneity in the data will also be selected using AIC, BIC

and sBIC.

The aforementioned objective 2 is to predict the future cognition status of cog-

nitively normal individuals into one of three groups: normal cognition (CN), mildly
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impaired cognition (MCI) and Alzheimer’s (AD).

Bayes method will be implemented to determine the respective (posterior) prob-

ability of individuals belonging to a given group given their biomarker information.

We will classify individuals into one of two or three groups depending on the chosen

number of mixture components. The characteristics of members in each component

will be assessed based on current knowledge of the biomarker literature and visual

representation; and the groups will be labeled as either (projected) cognitively normal

(CN) or MCI/AD for the two component mixtures or (projected) CN, MCI and AD

for the three component mixture. A high risk group will have higher scores overall

on the TAU/ABETA and PTAU181/ABETA142 scales compared to a low risk group.

A multivariate Cox regression model for survival time of conversion from CN to

MCI or AD will be used to assess the predictive utility of the model as expressed by

the concordance (c ) statistic. The logrank p-value associated with the hard classifica-

tion will be used to test whether the group of survival time are statistically different.

The raw (soft classified) and hard classified posterior probabilities of belonging to a

component will be included in the Cox model such that a two component mixture

model will yield one vector of posterior probabilities that represents the probability

of belonging to the higher risk group. In this case, the group whose probability vector

was not included in the model will be the baseline or referent risk group. For a three

component mixture model we will have two probability vectors included in the Cox

model: one vector for each of the two higher risk groups, and the third probability
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vector not included in the Cox model will represent the baseline/referent risk group.

Review of related concepts

The singular BIC model selection criterion introduced in chapter one will be

used in chapter two. A brief overview of the underlying principles is in order. The

sBIC is approximated as exp (sBIC(Mi)) ≈ P(Yn|π̂,Mi)n−λi j(log n)mi j−1 where λi j is the

learning coefficient and mi j is the multiplicity of λi j[44]. In this chapter we assume

a lowerbound for mi j to be 1 consistent with [44] and deduce the upperbound for λi j

as follows. Suppose the bivariate response of interest is Y∗ as before and define the

parameters

Σ =

 σ2
1 σ1,2

σ2,1 σ2
2


µ =

 β1

β2


and

Θ =



θ1

...

...

θm


; where m is the number of components ( or model complexity), Θ is a vector of mix-

ing coefficients, Σ is the component specific covariance matrix and µ the component

specific vector of means.
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Then to obtain an upperbound for the learning coefficient λi, j we either fix the

last i− j entries of the mixing coefficient Θ or prior distribution for group membership

(as regards to Bayesian methods) and estimate the number of free parameters (in

this case component specific Σ and µ) or fix the parameters Σ and µ in the last i − j

components and allow Θ to vary.The primary goal here is to make the free parame-

ters for the model estimable by overcoming the identifiability issues associated with

mixture models.

Let us proceed by fixing Θ. Furthermore let’s assume that i and j are respectively

the indices two true models as in [44] with i > j and j is the index of the smallest

true model. Then the number of free parameters for this model can be generated as

follows:

1. For j = 1 versus i = 2 we have N(µ1,Σ1) + 0N(µ2,Σ2) which yields 10 free pa-

rameters.

2. For j = 2 versus i = 3 we have θ1N(µ1,Σ1) + (1 − θ1)N(µ2,Σ2) + 0N(µ3,Σ3) thus

giving rise to 16 free parameters.

3. For j = 1 versus i = 3 we have N(µ1,Σ1) + 0N(µ2,Σ2) + 0N(µ3,Σ3) thus giving

rise to 15 free parameters.
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The number of free parameters generated form a pattern that can be expressed

as 5i + j − 1. Accordingly we can bound the learning coefficient from above by

λi, j ≤
1
2 [5i + j − 1].

Notice that if we fix Σ and µ in the last i − j component and allow Θ to vary, we

get an upperbound of the form λi, j ≤
1
2 [i + 5 j − 1] (see [44] for similar derivations

regarding the upper bound for the learning coefficient). Of note the smallest true

model is fixed at j = 1 in subsequent work throughout this dissertation.
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2.3 Results and Discussion

The BNM model reveals a three-component mixture underlying the distribution of

the biomarker ratios as the correct model based on sBIC estimated values and as

indicated in Table 2.3 and Figure 2.3 respectively. From Table 2.3 we notice that

the AIC and sBIC are in agreement as opposed to the BIC. However when we obtain

the probability of the correct model based on the biomarker information using the

sBIC estimated values we notice that in fact the three component (with estimated

probability of being correct = 1) model is narrowly preferred to a four component

model (with estimated probability of being correct ≈ 0.9999). The estimated prob-

abilities in each rectangle in the three histograms of Figure 2.3 are indicative of

the individuals who apparently (rectangle near 1) do or do not (rectangle near 0)

belong to the component under consideration given their biomarker information or

who are not conclusively classified (rectangles between the two main peaks). That

is individuals with P(X = x|Y∗) ≈ 1 almost surely belong to the component x and

for those with P(X = x|Y∗) ≈ 0 almost surely do not belong to the component in

question, where X and Y∗ are the latent grouping variable and the biomarker ratios

respectively. Those with 0 � P(X = x|Y∗) � 1 are comparatively fewer in number

and have posterior probabilities identified between the two extreme rectangles and

are illustrative of uncertainty about component membership.

Component three shows that about 10% of individuals in the sample belong to

the component and about 90% do not. Components one and two on the other hand

have comparable numbers of participants who belong with probability near 1 and
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who do not with probability near zero. Figure 2.3 also suggests an overlap between

components one and two due to the greater numbers of uncertain memberships in

these two components. As a result component three is well separated from compo-

nents one and two, an observation that is also well captured in Figure 2.4. In Figure

2.4 members of component one (as judged by hard classification) have comparatively

the lowest risk ratios compared to components two and three. It also shows that two

members of component three may be outliers (with respect to their rtaubeta values)

in the sense that even though they have comparatively larger rptaubeta values their

rtaubeta values are within the range of components one and two. The observed out-

lier may have been missed if only one biomarker has been used in the study.

The risk comparison plots in Figure 2.5 also shows the least in cognitive decline

risk for members in component one (as judged by hard classification) compared to

their counterparts in components two and three. Component three shows the steepest

decline in survival compared to component two after the 50th month of follow-up. We

also see the sharpest decline in survival for component three members at the 96th

follow-up month whereas the sharpest cognitive decline for component two takes

place around the 50th month of follow-up.

We compare the densities in each component using two dimensional contour plots

displayed in Figure 2.6. The plot indicates that the densities in components one and

two have the steepest contours compared to component three; an indication of lesser

variability amongst members of these components (not a surprise as suggested by
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Figure 2.4). An interesting observation from Figure 2.6 relates to the directions of

the contour plots; components one and two exhibit similar directions whereas com-

ponent three exhibits a direction opposite to that of components one and two. Thus

in components one and two, the biomarker ratios are positively correlated whereas

in component three they are negatively correlated.

Two Cox model outputs are generated from the hard classification and raw (for

soft classification) estimated Bayes probabilities of belonging to a component given

one’s biomarker information. Each of the two Cox model outputs are adjusted for

covariates in the data set and membership in component one is used as the reference

as it presumably has the least risk.

In the hard classification output in Table 2.4, the posterior probability related to

component two is significant at α = 0.001 adjusting for the posterior probability re-

lated to component three. The reverse is also true as seen in Table 2.4. A unit increase

in component one posterior probabilities increases the estimated hazard of developing

AD by three (HR = 3.02, 95%CI = (1.36, 6.68)) fold compared to posterior probabili-

ties in component 2 whereas a 10% change in the posterior probabilities in component

three increases ones estimated hazard by over 5 (HR = 5.35, 95%CI = (1.89, 15.15))

fold. In other words,a person who transitions from component two to component one

will experience an increase in hazard rate of about 3.02 whereas a transition from

component two to component three will increase the hazard rate by 5.35. The con-

cordance statistic is 63.3%. Adjusting for covariates led to an increase in the overall
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concordance. We also observe that immediate RAVLT (Reys Auditory Verbal Learn-

ing Test) offers a significant (HR = 0.94, 95%CI = (0.90, 0.98)) protection for AD

accounting for the other covariates in the model. Race was however not a significant

predictor of the time to transition, however, including race in the adjusted model

improved the c-statistic (from 0.73 to 0.76), hence we included race in the model.

Education, gender, MMSE, and age were all included in the adjusted Cox model and

eliminated by backward elimination method. The absence of latter covariates did not

influence the c-statistic. The output from the soft classification model indicates that

in addition to the posterior probabilities being significant predictors of the time to

transition, race (HR = 0.312, 95%CI = (0.11, 0.87)) is now a statistically significant

predictor of time to transition although it wasn’t in the hard classification model.

The soft classification model has a comparatively modest gain in c-statistic and a

modest increase in standard errors which consequently led to wider confidence inter-

vals. The global proportional hazard tests were not significant in both the hard and

soft classification cases.

The BNM model output without the eight participants as mentioned above in

the cognitive assessment section is shown in Table 2.7. The output with all partic-

ipants included in the modeling process was displayed in Table 2.4. In Table 2.4

the estimated hazard rate and standard error for component three posterior proba-

bilities is 5.35(S E = 0.53) which differs narrowly from the estimated hazard rate of

4.76(S E = 0.56) in Table 2.7. These are the most notable difference between the two

mixture models. Apart from these differences, the other estimators are comparable
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although the soft classification model in Table 2.7 seem to gain in the concordance

statistic albeit with larger confidence intervals. Since the two outputs are similar we

will henceforth discuss only the modeling including all participants. The component

estimated parameters are shown in Table 2.8.

The output from the models and the preceding discussion align well with the fol-

lowing speculations: component three is most indicative of the individual who could

potentially develop MCI/AD within eight years of follow up, component two is some-

what indicative of individuals on trajectory to developing AD or mild impairment

and those in component one may be most likely to remain cognitively normal.
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Discussion In this chapter of the dissertation we addressed two main goals: obtain

m̂ using statistical criteria other than AIC (and including AIC for comparison pur-

poses) and determine if the mixture components obtained are predictive of future

disease status using multivariate Cox modeling and Kaplan Meier plots as validation

tools.

Derived variables from the biomarkers obtained from ADNI are used in the mix-

ture modeling process. The raw biomarker ratios are not used in a straight forward

Cox modeling approach because we wouldn’t be contributing substantial novelty to

the literature although existing studies did not exclusively focus on predicting future

status of cognitively normal persons some examined biomarker ratios. Furthermore,

we have statistical reasons to deliberately avoid the simple approach in favor of a

mixture modeling approach. These reasons are:

1. Using the raw biomarker ratios in the Cox modeling assumes a linear relation

between the log hazard function and the biomarkers which may not be the case.

2. Using raw biomarker ratios in Cox modeling will suppress the potential of un-

covering any heterogeneity in the distribution of biomarker ratios.

We also used the posterior probabilities of each individual in the Cox model instead

of the raw biomarkers because the latter is not a significant predictor of hazard rate
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(results not shown). In both the soft and hard classification Cox models, the posterior

probabilities were significant predictors of the survival of the participants whereas

the use of raw biomarker ratios yielded insignificant results (not shown). This may

suggest that the hazard function is more related to the posterior probabilities than

a linear function of the biomarkers.

Mixture modeling was chosen for the following reasons:

1. It could capture the inherent heterogeneity in the population.

2. It does not impose a linear relationship between the hazard.

3. Patterns related via the components to which persons belong can be tracked.

4. The density function of each group can be estimated and visualized.

5. Cut offs are determined automatically and thus permits us to easily compare

predicted component with true component using cross tabulation as in Table

2.9.

One,two and three component mixtures were fitted and the three statistical selection

criteria AIC, BIC and (approximated)sBIC values were. All three criteria chose m̂ = 3

as the number of components that best describe the data. It should be noted that

sBIC generally tends to choose m̂ somewhere between the two extremes (AIC and

BIC)[44] as BIC tends to be very conservative and often underestimates m̂ whereas

AIC is very liberal and may overestimate m̂[27]. The approximated sBIC has an

additional strength of choosing the correct model given the biomarker information.
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In this particular application, all three criteria agreed on the number of components.

A multivariate Cox model with time to MCI/AD as the output and the posterior

probabilities corresponding to the two highest risk mixture components as covari-

ates were fitted. Both posterior probabilities were significant predictors of disease

with or without adjusting for other covariates listed in the literature. We did not

find any significant interaction between the estimated posterior probabilities and the

covariates accounted for in the Cox modeling. The separation between the three

KM curves is also significant by virtue of the log rank test, and the corresponding c

statistics found are modestly high.

The study in this chapter has shown that the ratio of biomarkers may be key

in diagnosing AD vulnerability among currently cognitively normal people. To the

best of our knowledge this is the first study to apply mixture modeling techniques to

the ratio of biomarkers obtained from cognitively normal individuals for diagnostic

purposes. The model classifies individuals in the sample by separating them into one

of three categories, depending on their risk of transitioning from normal cognition in

the future.

Since this study did not incorporate potential confounders in the mixture mod-

eling process, future studies will utilize mixture regression models that account for

covariates. The rationale for such an investigation is the potential of improving the

predictive performance of the model due to the additional information. Also includ-
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ing covariates in the mixture modeling process could improve the model’s ability to

account for hidden outliers as in [46].
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2.4 Limitations and Future Directions

The data used in this chapter is a non representative sample because it came from

volunteers or people living in the US who may be concerned about the potential of

developing AD. Thus the findings from this study cannot be generalized to all per-

sons that can potentially develop AD or its related illnesses. For instance in Table

2.8 the estimated mixture proportions corresponding to components one and two

may be unlikely to mimic those that might be derived from the general population.

The reason is because we speculate that the proportion of people in the general pop-

ulation who could have been in component two were underestimated in our model

because they do not have reasons to believe that they may have AD and thus are less

likely to participate in a study like ADNI. Those who could have been in component

one were over estimated by our model because they may have been concerned about

their cognitive health and so most of them enrolled in the study. We speculate that

the third component may be comparable to that of the general population that tend

to be older but cognitively normal. Such individuals may be inclined to volunteer

for a study like ADNI and we believe that the proportion of older cognitively normal

people genuinely concerned with deteriorating cognition in the population may be

low.

In the hard classification model an individual may have been classified into a

component based on his/her posterior probability for that component being slightly

higher than a competing component. For instance an individual with posterior prob-

abilities 0.51, 0.49 and 0.0 associated with components 1,2, and 3 respectively will be
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hard classified into component 1 although this individual could have plausibly been

in component 2 as well. In our data set only two individuals had such profiles. If

the posterior probabilities were like 34%, 33% and 33% probability of belonging is

about the same for all three components, so we will classify the individual(s) into

component 1 and make a note that they could also plausibly belong to the other two

components. This case however did not arise in our data set.
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Future Directions

In this study our interest was to primarily predict transition from cognitively normal

state to either MCI or AD. Although the c-statistic (64%) obtained in our analysis is

not demonstrably superior to that of using the raw biomarker ratios in Cox modeling

(c = 63%), this study presents a paradigm to classify persons who are cognitively

normal into one of three risks strata without knowledge of their future cognitive sta-

tus.

The unsupervised learning nature of the mixture model for developing risk strata

can be developed by clinicians whose interests may lie in persons at risk today so as

to provide them with interventions; whereas such risk strata cannot be obtained from

raw biomarker ratios in a Cox model since the latter cannot be fitted without know-

ing who experienced cognitive decline, except by reference to and extrapolation from

historical strata. For instance Figure 2.11 shows the risk strata boundaries based

on the participants in this study.Importantly, given ones biomarker ratios we can

identify if this individual is at a lower, medium or high risk of developing MCI/AD

when the individual is still cognitively normal and showing no apparent symptoms

of MCI/AD by seeing where he/she falls in Figure 2.11.

Future studies will consider the transition from CN to early or late MCI and AD

as distinct events. This will however require longer follow-up times to increase the

pool of participants in the categories of MCI and AD separately. In the present study

34 (≈ 30%) participants transition from CN to either MCI or AD. This suggests that
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relatively few participants transitioned within a maximum period of eight years given

the age distribution of the study participants.

Future studies will also appeal to mixture models that adjust for other covariates

within mixture components in hope of improving on predicting MCI or AD and de-

velop a new technique to estimate mixture complexity for such models. This will be

the subject of chapter 3.
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Figure 2.3: BNM Component Membership Probability Distribution
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Figure 2.4: BNM Predicted Components Scatterplot
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Figure 2.5: BNM Component Kaplan Meier Plots
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Figure 2.6: Component contour plots
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Figure 2.7: The empty circles identify potential outliers among the eight participants
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Figure 2.8: Joint Biomarker contour plot
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Figure 2.9: Joint Biomarker density plot
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Figure 2.10: ROC plot. AUC: Area under the curve
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Figure 2.11: Risk Boundaries
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Figure 2.12: Risk Boundaries
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Figure 2.13: Risk Differentiation Boundaries
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Figure 2.14: BNM Four Component Membership Probability Distribution
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Figure 2.15: BNM Four Component Kaplan Meier Plots
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Figure 2.16: BNM Predicted Four Component Plots
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Figure 2.17: Comparison of rtaubeta between CN and MCI/AD groups
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Figure 2.18: Comparison of rptaubeta between CN and MCI/AD groups
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Figure 2.19: Contours embedded on risk components
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Table 2.1: Table of Demographics (n=3082), standard deviation(sd), lower and upper
quartiles (Q1 and Q3), percentages may not add to 100 due to rounding

Characteristics Median(Q1,Q3) Min Max n(%)

Gender
Female - - - 779(44.9)
Male - - - 956(55.1)

Ethnicity
Hispanic/Latino - - - 58(3.3)

Non Hispanic/Latino - - - 1666(96.0)
Unknown - - - 11(0.6)

Race
American Indian/Alaskan - - - 3.00(0.17)

Asian - - - 29.00(1.67)
Black - - - 77.00(4.44)

Hawaiian - - - 2.00(0.12)
More than one - - - 18.00(1.04)

Unknown - - - 3.00(0.17)
White - - - 1603.00(92.39)
Other

Age at entry 73.9(69.2,78.9) 48.1 91.4 -
Missing values per variable - - - 1347.00(43.71)
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Table 2.2: Table of Demographics (n=114), standard deviation(sd), lower and upper
quartiles (Q1 and Q3), rptaubeta is the ratio of PTAU181P to ABETA142 and
rtaubeta is the ratio of TAU to ABETA142

Characteristics Median(Q1,Q3) Mean (sd) Min Max n(%)

Biomarkers (Units)
Tau(pg/ml) 61.00(32.00, 85.25) 69.68(30.37) 32.00 194.00 -

Abeta142(pg/ml) 217.00(75.00, 252.80) 205.60(55.09) 75.00 300.00 -
Ptau181p(pg/ml) 20.00(10.00, 28.75) 24.86(14.58) 10 83 -

Derived Biomarkers
rtaubeta 0.31(0.21,0.45) 0.39 (0.27) 0.13 1.51 -
rptaubeta 0.10(0.04,0.16) 0.14 (0.13) 0.04 0.82 -

Cognitive Test
CDRSB 0.00(0.00, 0.00) 0.06 0.00 2.50 -

MMSE baseline 29.00(29.00,30.00) 29.09 25 30.00 -
ADAS11 6.33(4.00, 8.33) 6.53 1.67 15.33 -
Gene
Apoe4 0.00(0.00,0.00) 0.24 0.00 1.00 27(24)
Race
Black - - - - 10(9)
White - - - - 104(91)

Gender
Female - - - - 56(49)
Male - - - - 58(51)

Other (Units)
Age at entry(years) 75.55(71.85,78.51) 75.51(5.2) 62.0 89.6 -
Education(years) 16.00(14.00,18.00) 15.79 6.00 20.00 -

Time(month) 54.00(36.00,90.00) 59.33(29.54) 1.00 96.00 -

Table 2.3: Selection of model complexity with three criteria

Complexity/Criteria AIC BIC sBIC

1 201.31 187.63 199.47
2 472.75 442.65 468.70
3 515.40 468.88 509.14
4 526.32 463.38 517.84
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Table 2.4: Medium/ high are respectively the component two/three rounded esti-
mated membership probabilities for the hard and soft classification. c is the con-
cordance. ** significant at 0.01 level and * significant at 0.05 level. Sample size is
n=114. HR: estimated hazard ratio, SE: standard error of log(HR), 95% CI: 95%
confidence interval, GPH Test: Global proportional hazard test

Hard classification HR SE P-value 95% CI c GPH Test

Medium|Low risk 3.02 0.41 < 0.01∗∗ (1.36, 6.68) 0.63 0.38
High|Low risk 5.35 0.53 < 0.01∗∗ (1.89, 15.15)

With Adjustment

Medium|Low risk 4.30 0.42 0.0005 (1.90, 9.76) 0.77 0.58
High|Low risk 4.49 0.55 0.006 (1.56, 13.50)

White 0.45 0.51 0.12 (0.17, 1.23)
RAVLT 0.94 0.02 0.003 (0.90, 1.98)

Soft classification

Medium|Low risk 3.32 0.46 < 0.01∗∗ (1.36, 8.13) 0.64 0.53
High|Low risk 6.15 0.54 < 0.01∗∗∗ (2.15, 17.57)

With Adjustment

Medium|Low 6.76 0.51 0.0002 (2.48, 18.40) 0.72 0.63
High|Low risk 6.45 0.65 0.0012 (2.09, 19.92)

White 0.19 0.61 < 0.01∗∗ (0.11, 0.87)
RAVLT 0.93 0.02 0.0.0017 (0.89, 0.98)

Table 2.5: Assessing CN status of Participants. Bolded observations are potential
outliers see Figure 2.7

CDRSB ADAS11 MMSE RAVLT Tau Abeta142 Ptau181p

0.50 6.67 27 36.36 44 173 15
0.50 8.00 29 30.00 97 216 32
0.50 10.33 29 40.00 48 265 13
0.50 3.33 30 33.33 53 300 13
0.50 5.00 30 30.77 37 201 11
2.50 7.00 30 71.43 119 123 59
0.50 6.67 30 7.69 86 165 43
1.00 11.00 30 100.00 61 235 18
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Table 2.6: Correlation Coefficient Matrix

Tau/Abeta Ptau/Abeta Tau Abeta Ptau

Tau/Abeta 1.00 0.74 0.85 −0.66 0.65
Ptau/Abeta 0.74 1.00 0.54 −0.65 0.92

Tau 0.85 0.54 1.00 −0.27 0.64
Abeta −0.66 −0.64 −0.27 1.00 −0.40
ptau 0.65 0.92 0.64 −0.40 1.00
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Table 2.7: Medium/ high are respectively the component two/three rounded esti-
mated membership probabilities for the hard and soft classification. c is the con-
cordance. ** significant at 0.01 level and * significant at 0.05 level. Sample size is
n=106. HR: estimated hazard ratio, SE: standard error of log(HR), 95% CI: 95%
confidence interval, GPH Test: Global proportional hazard test

Hard classification HR SE P-value 95% CI c GPH Test

Medium|Low risk 2.68 0.41 0.02 (1.19, 6.02) 0.63 0.49
High|Low risk 4.76 0.56 < 0.01∗∗ (1.58, 14.30)

With Adjustment

Medium|Low risk 2.71 0.43 0.02∗ (1.11, 6.30) 0.73 0.58
High|Low risk 3.65 0.63 0.04∗ (1.06, 12.56)

Apoe4 2.15 0.44 0.08 (0.91, 5.07)
Male 1.37 0.43 0.48 (0.58, 3.17)
White 0.23 0.60 0.02∗ (0.07, 0.76)

Baseline MMSE 1.29 0.21 0.23 (0.85, 1.96)
Education 0.99 0.07 0.87 (0.87, 1.13)

Age 0.97 0.05 0.51 (0.88, 1.06)
Soft classification

Medium|Low risk 3.39 0.48 0.01 (1.32, 8.75) 0.66 0.67
High|Low risk 6.33 0.57 < 0.01∗∗ (2.06, 19.48)

With Adjustment

Medium|Low risk 3.93 0.52 < 0.01∗∗ (1.41, 10.99) 0.74 0.63
High|Low risk 5.66 0.67 < 0.01∗∗ (1.52, 21.12)

Apoe4 1.88 0.45 0.16 (0.77, 4.56)
Male 1.33 0.43 0.51 (0.57, 3.10)
White 0.19 0.62 < 0.01∗∗ (0.06, 0.65)

Baseline MMSE 1.28 0.21 0.24 (0.84, 1.94)
Education 0.99 0.07 0.87 (0.87, 1.13)

Age 0.97 0.05 0.55 (0.89, 1.06)
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Table 2.8: Component estimated parameters. SE: standard error based on Bootstrap
sampling with B = 1000 in R mixtools package,C1-C3 are components 1 through 3.

λ̂(S Eλ̂) µ̂(S Eµ̂) Σ̂ S EΣ̂

C1 0.41(0.06) 0.2235(0.0096), 0.0684(0.0027)
[
0.0029 0.0005
0.0005 0.0002

] [
0.0009 0.0002
0.0002 0.0001

]
C2 0.47(0.06) 0.3883(0.0264), 0.1282(0.0104)

[
0.0191 0.0049
0.0049 0.0028

] [
0.0052 0.0019
0.0019 0.0008

]
C3 0.12(0.03) 0.9334(0.1179), 0.4589(0.0507)

[
0.1504 -0.0303
-0.0303 0.0274

] [
0.0547 0.0181
0.0181 0.0104

]

Table 2.9: Contingency table to compare component predicted values to the true
values

Actual (%)/Predicted(%) Normal AD/MCI

Component 1 27(58.6) 19(41.3) 46
Component 2 48(84.2) 9(15.8) 57
Component 3 5(45.5) 6(54.5) 11

80 34 114

Table 2.10: Sensitivity and Specificity

Sensitivity Specificity

Component 1 or 3 25
34 (74%) 48

80 (60%)
Component 3 6

34 (18%) 75
80 (94%)
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Chapter 3 Application of Mixture of Linear Regressions Models And the

Approximate Singular Bayesian Information Criterion

3.1 Introduction

The use of biomarkers to predict the potential of developing MCI/AD is not a new

concept. However to make such a prediction while the individuals are still cogni-

tively normal is rare in the literature. In the second chapter of this dissertation

we attempted to address this problem using mixture models without covariates to

see if the biomarker ratios by themselves can adequately predict future disease status.

In this chapter, we are interested in tapping into another form of mixture mod-

eling; mixture of regressions, to address the same scientific problem within a more

sophisticated analytical framework. Our approach is similar to [46] in that we will

regress biomarkers on covariates within each of a finite set of components. Our

analyses differ from existing ones in the following ways:

1. Unlike [46], our response variable is either trivariate or bivariate depending on

whether we use the three biomarkers or two biomaker ratios in the mixture

modeling.

2. We will also account for more than one covariate in our mixture modeling;

as a result, we will be fitting a hyperplane in each of the finite number of

components.
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3. We will determine the complexity of the mixture modeling based on two existing

model selection criteria, namely AIC and BIC,and a recently added criterion

sBIC. If there are disagreements in the estimated model complexity we will

revert to sBIC to select the correct model as sBIC has advantages over AIC and

BIC; in particular AIC is generally inconsistent as it tends to over estimate the

number of components and BIC though consistent often underestimates. Since

neither AIC nor BIC uses the correct number of parameters for the respective

penalties they impose for singular models such as mixtures, they cannot be

used to used to estimate posterior probabilities and thus cannot be used to

assess uncertainty regarding model’s correctness.

3.2 General Overview of Mixture of Regression Models With An Illus-

tration

We begin with a general overview of mixture of linear regression specific to our study

and follow-up with an example for a single subject. First we define the general

equations and the accompanying notations to be used throughout chapter three.

Yn×2 = AxBxW + εn×2Σ
1
2

2×2
(3.1)

where we assume that ε ∼ N(0, 1) and each of the entities in the model is explic-

itly defined as follows:
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Y =



y11 y12

y21 y22

y31 y32

...
...

...
...

yn1 yn2



=



YT
1

YT
2

YT
3

...

YT
n



W =



1 w11 w12 . . . w1p

1 w21 w22 . . . w2p

1 w31 w32 . . . w3p

1 w41 w42 . . . w4p

...
...

... . . .
...

...
...

... . . .
...

1 wn1 wn2 . . . wnp



=



WT
1

WT
2

WT
3

...

WT
n



β =



β01x β02x

β11x β12x

β21x β22x

β31x β32x

...
...

...
...

βp1x βp2x



=



βT
0x

βT
1x

βT
2x

...

βT
px


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ε =



ε11 ε12

ε21 ε22

ε31 ε32

...
...

...
...

εn1 εn2



=



εT
1

εT
2

εT
3

...

εT
n


Thus for a given individual the different matrix components with complexity

m = 3 can be simplified as follows. Later in the chapter we will use these information

to illustrate how a full model structure for an individual is formulated.

A2×6 =

 aT
1 01×3

01×3 aT
1

 ,B6×2 =

B01 B11

B02 B12

 ,W1×2 =

1

w


C2×6 =

σ11 σ12 σ13 0 0 0

0 0 0 σ21 σ22 σ23

 ,Z6×2 =

a
T
1 01×3

aT
1 01×3



a1 =


1x1=1

1x1=2

1x1=3


Notice from 3.1 that we have an n× 2 bivariate matrix of biomarker ratios Y and

an n× (p + 1) matrix of covariatesW, where n is the sample size, p is the number of

coefficients not including the intercept. We assume once again that Y|X = x,W ∼

N((AxBxW),Σx) where X is a vector identifying the component membership and Bx

is an (p + 1) × 2 matrix of coefficients.
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To further clarify the set up above, we illustrate with the first set of outcomes

(y11, y12) and how it relates to the regression coefficients and the covariates, taking

into consideration the potential components that this individual could belong to.

Here y11 and y12 are respectively the first and second biomarker ratios for the first

individual. Furthermore a coefficient such as β123 will imply the slope (in the sense

of linear regression) for the main effect of the first covariate on the second biomarker

ratio in the third mixture component. Thus a general index of the form ijk will

correspond to the ith covariate effect on the jth outcome in the kth mixture component

such that i = 0, 1, 2, ..., p, j = 1, 2 and k = 1, 2, 3, ...,m. For now let us assume that

there are three components (i.e. m = 3) and assume one covariate (p = 1). Notice

that we can present this concept in a matrix form as follows:

(
y11 y12

)
= Y1 =1x1=1{β011 + β111w1} + 1x1=2{β012 + β112w1} + 1x1=3{β013 + β113w1}

1x1=1{β021 + β121w1} + 1x1=2{β022 + β122w1} + 1x1=3{β023 + β123w1}

 + ε1

Let

β01 =


β011

β012

β013

 ,β11 =


β111

β112

β113

 ,β02 =


β021

β022

β023

 ,β12 =


β121

β122

β123

 , a1 =


1x1=1

1x1=2

1x1=3


then we obtain the matrix expression

(
y11 y12

)
= Y1 =

a
T
1β01 aT

1β02

aT
1β11 aT

1β12


1

w

 + ε1
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which corresponds to the matrix in equation 3.1

Note also that from equation 3.1 the error term ε1 = ε′Σ
1
2
x can be explicitly

presented as follows:

Σx1=1 =

σ
2
11 σ1

σ1 σ2
21

 ,Σx1=2 =

σ
2
12 σ2

σ2 σ2
22

 ,Σx1=3 =

σ
2
13 σ3

σ3 σ2
23


where σ2

jk is the variance of the jth outcome in the kth component and σk is the

covariance between the jth and jth + 1 outcome in the kth component.

Letting x represent the mixture component we define the error term corresponding

to the first observation as follows:

ε1 =

(
1x1=1Σ

1
2
1 + 1x1=2Σ

1
2
2 + 1x1=3Σ

1
2
3

)
ε′1

=

(
Σ

1
2
1 Σ

1
2
2 Σ

1
2
3

)

1x1=1

1x1=2

1x1=3

 ε
′
1 (3.2)

We re-write 3.2 as follows using the matrices defined above:

ε12×1 =

σ11 σ12 σ13 0 0 0

0 0 0 σ21 σ22 σ23


2×6

a
T
1 01×3

aT
1 01×3


6×2

ε′12×1
= CZε′1 (3.3)
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3.3 Overview of Primary Objectives

The primary objectives underscoring this chapter are as follows:

1. Use sBIC, AIC and BIC to determine the degree of complexity of a mixture of

regression modeling while accounting for race and other covariates in the mix-

ture. We will use the biomarker ratios and covariates in the mixture modeling

akin to [46].

2. We will examine the future predictive ability of the chosen model. To ac-

complish this we will compare the predicted classes into which subjects were

placed to their true future disease status so that we can address questions such

as what a person’s hazard or relative risk for developing MCI/AD is given what

we know about their current age and other covariates. Furthermore we will be

able to use their posterior probabilities to create a figure as in Figure 2.11 to

make it easier for clinicians to adequately determine an individual’s risk status.

3. Develop a risk strata plot for predictive purposes.

We begin with a graphical quick review of the biomarker ratios against selected

covariates of interest. The rationale here is to get a sense of empirical support for

the models we intend to fit. Figure 3.1 indicates that the mean biomarker ratios

for Blacks are lower than that of Whites. However both means are below the grand

mean of the biomarkers. The figure also reveals that the mean effect of race does

not statistically influence the mean effect of the biomarkers which is why the line (a
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degenerated ellipse because we have one degree of freedom) indicative of the hypoth-

esis variation is within the error variation ellipse.

Figure 3.2 however shows that Apoe4 statistically significantly influences the

mean biomarker ratios since the hypothesis variation line crosses the error variation

ellipse. As shown in the plot, carriers of Apoe4 tend to express biomarker ratios

higher than that of the grand mean whereas non-carriers tend to have lower average

biomaker ratios than the grand mean.

Figure 3.3 examines the effect of both race and Apoe4 concurrently on the

biomarker ratios. Again we notice that Apoe4 shows a significant effect whereas race

does not. Also carriers and non carriers of Apoe4 have relatively higher biomarker

ratios that are also above the grand mean than the two racial groups. Another

interesting observation from Figure 3.3 is the lack of parallelism between the two

hypothesis variations. Introducing an interaction term between apoe4 and race (plot

not shown) resulted in a much shorter hypothesis variation plot deeply embedded in

the error ellipse; an indication of an insignificant interaction between race and Apoe4.

The three plots in Figures 3.1-3.3 indicate that both race and Apoe4 influence

the biomarker ratios in the same direction and in a linear fashion. However, Apoe4

will exhibit a greater slope hence comparatively more influence on the biomarker

ratios than race as demonstrated by their respective degenerated hypothesis variation

ellipses.
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3.4 Methodologies and Overview of AIC

Participants and Cognitive Status

In chapter two we discussed the participants from the ADNI data and also explicitly

assessed the cognitive status of the participants based on the information available

in the data namely MMSE scores, CDRSB, ADAS11 and RAVLT percentage of

forgetting. From our assessment we concluded that all but eight participants in the

study can be considered cognitively normal as initially identified by ADNI. The eight

participants had questionable CDRSB scores and thus were included and excluded in

the model to measure any effect they my have. As seen in chapter two, the estimates

from the fitted model and their corresponding standard errors were all reasonably

similar and thus only the model with all the participants was reported.

In this chapter we operate on the foundation laid in chapter two; that the participants

are indeed cognitively normal and thus we work with all 114 participants.

Statistical Modeling

We use flexmix[41] an R package to model a mixture of linear regression that will

be used to classify subjects into one of a finite set of groups namely. These groups

may will be labeled for example as high risk, medium risk, intermediate risk, low risk

etc. The flexmix package assumes independence between the two response variable

of interest and fits the mixture model providing estimates such as main/interactive

effects, standard errors within each component. It also provides the variance of the

response in each component in addition to overall component prior, ratio and poste-

rior probability plot. Readers interested in knowing more about how flexmix operates

can see [41] for details.
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Similar to chapter two, we focus on using the two biomarker rations namely

rtaubeta and rptaubeta as the response variables. We will assess the collective, in-

dividual and interactive effect of the following explanatory variables in this chapter:

age, gender, race, education, APOE4 and baseline MMSE. In the interim we assume

zero covariance between rtaubeta and rptaubeta after accounting for other covari-

ates. This assumption will be duly adjusted if it fails the diagnostic test that is

developed for assessing the model’s efficacy. We also assume that the distributions

of the responses are normal by virtue of the empirical evidence in the histogram plots.

We use sBIC to ascertain the number of components and the covariates to in-

clude in the model concurrently. As a result we consider all possible combinations

of the covariates in the mixture model and then record their corresponding sBIC

values. The model with the highest sBIC value will be noted and compared with the

model with the highest change in sBIC in moving from a less complex model to a

more complex one. The final phase ensures that the resulting model has estimable

standard errors. Models that are selected by sBIC but exhibit lack of stability in

their standard errors will be traded for those with slightly lower sBIC in addition to

having stable and smaller standard errors.

The chosen model is used to obtain the posterior probability of each subject. The

raw posterior probabilities will be the soft classification of the subjects into differ-

ent risk classes given the covariates. The hard classification is obtained by selecting
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the most probable cluster of belongingness for each subject from the set of compo-

nents.The hard classification probabilities are used to obtain risk plots and survival

curves.

Cox model is used to validate the model by determining how well the posterior

probabilities predict future cognitive status of each subject. The posterior probabili-

ties corresponding to low risk as determined by the survival plot will be the baseline

in the Cox model. The performance of the prediction of the posterior probabilities

will be estimated with the c statistic that is automatically generated as part of the

Cox modeling output. Backward elimination method will be used to identify the most

influential covariates in addition to the posterior probability. The final Cox model

output is obtained for the selected covariate(s) and the corresponding c-statistic and

p-values noted. The latter model is compared with the model with only the posterior

probability as the covariate to determine which model fits the data best in terms of

predicting subjects’ transition from normal cognition. Thus we will decide between

using only the posterior probabilities in the Cox model or the posterior probability

with other significant covariates in the Cox model.
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In-consistency of AIC

Suppose that ˆAIC j denotes the AIC selected model, then we would define the

consistency of ˆAIC j as P( ˆAIC j = m0) → 1 as n → ∞. We wish to examine if this

consistency hold for AIC without structural parameters as in Charnigo and Pilla

(2007) and in a multivariate setting, given that m0 is the true model.

Let AIC1 = 2 log L1 − 2p1 and AIC2 = 2 log L2 − 2p2 be the respective AIC’s for

models 1 and 2, where 2p is penalty (which depends on the number of free parame-

ters). Then we note that AIC will choose model 1 over model 2 if AIC1 > AIC2 ⇒

2 log L1 − 2p1 > 2 log L2 − 2p2 (3.4)

⇒

2 log
L1

L2
> 2(p1 − p2) (3.5)

For a multivariate normal mixture model with structural parameter we know that

2 log L1
L2

L
−→ sup

θ∈Θ

(W+(θ))2 as n → ∞ when model 1 is correct where W+ is a truncated

Gaussian process as defined by Chen and Chen (2001)[4].

It follows that

P( ˆAIC j = m0) ≤ P
(
2 log

L1

L2
> 2(p1 − p2)

)
L
−→ sup

θ∈Θ

(W+(θ))2
> 2(p1 − p2) (3.6)

as n → ∞ which is independent of n and thus regardless of how large n is the

probability will not approach 1.Thus P( ˆAIC j = m0) 9 1 if m0 = 1 demonstrating
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inconsistency.
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3.5 Results and Discussions

The mixture of regressions with covariate race is preferred among more than eighty

models considered. This is based on the chosen model scoring one of the highest

sBIC values for a two component mixture, presenting stable (or estimable) standard

errors and having well separated posterior plots as shown in Figure 3.4. The favored

model also has estimable standard errors within each component as demonstrated in

Table 3.2. Other two models with either apoe4 alone or Apoe4 and race as covariates

share these desirable characteristics and will be included in the following discussion.

In Table 3.1, we present the three criteria used in the model selection procedure

with our focus on the sBIC since it has ability to assess posterior probability of a

singular correctness of model unlike AIC and BIC. Table 3.1 indicates that the two

component model is preferred to a one component model by all three criteria. It

should be noted that a four component model was preferred by sBIC with covariates

age, gender and their interaction. However, this model and a similar three compo-

nent model exhibited unstable standard errors, and thus the next tier model which

has suitable characteristics in addition to high sBIC is considered instead.

Three models will now be discussed following from the latter considerations. The

first model has race as a predictor variable, the second, Apoe4, and the last both

race and Apoe4. Henceforth, these models will be referred to as race model, Apoe4

model and race and Apoe4 model respectively. Although these three models may

share similar properties in terms of the stability of standard errors and future pre-

89



dictive capabilities, the model with race will be given more attention relative to the

other two due to the following reasons:

1. The race model was chosen by sBIC as the better model among the three for

consideration by assigning the model the highest value.

2. The race model has a slightly better estimated concordance statistic (67%)

as shown in Table 3.3 than its competitors (66%, and 67% for Apoe4 alone

as predictor and race+Apoe4 as predictors respectively in Tables 3.5 and 3.7)

when the high risk posterior probability alone is used in the Cox model. Notice

that the c-statistic corresponding to the model with apoe4 and race model is

the same as that in the model with race without adjustment. This shows that

using race alone is preferable if we appeal to parsimonious modeling procedures.

3. The race model exhibits comparatively better well separatedness characteristics

as demonstrated in the plot of the posterior probabilities in Figure 3.4 compared

to Figures 3.8 and 3.12 for the Apoe4 model alone and Apoe and race models

respectively . This is key in knowing how well the clusters will be distinguished

in later analysis.

4. When race alone is included in the Cox model, it was not a significant predictor

of the event. This may be expected since 91% of all the participants being Cau-

casians creates an imbalance that leads to a low power of detecting any effect.

Furthermore, this outcome also suggests that indeed the posterior probabilities

are more statistically related to the estimated hazard ratio or ones propensity
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of transitioning from the normal state of cognition independent of race. In the

competing model, Apoe4 alone in the Cox model is a significant predictor of

the event albeit with significantly lower c-statistic(62%). Although one may

argue that 66% is indeed significantly different from 62% it still leaves room for

skepticism about the use of mixture modeling with Apoe4 if including directly

in the Cox model could produce a less complicated model that performs just

as well.

5. The risk strata obtained from the posterior probabilities associated with the

race model as shown in Figure 3.7 indicates that both biomarker ratios are

key in determining the state of cognition when race is used as the predictor

variable. Compared to the risk strata in Figure 3.11 obtained from the Apoe4

model, rtaubeta seem to be most influential in determining the strata as all

the boundaries seem to be almost vertical (this may be peculiar to the nature

of our study in that we are predicting future disease status from people who

are presently cognitively normal). This further deepens our trust in the race

model as we wish to explore the effects of both biomarker ratios in predicting

future cognitive status. Figure 3.15 depicts the risk strata plot for the race

and Apoe4 model. This plot looks similar to that of Figure 3.7 when only race

was introduced to the model. Thus if we appeal to parsimonious modeling

procedures we will prefer the race model to the race and Apoe4 model.

6. To the best of our knowledge Apoe4 has been well studied in the Alzheimer’s

Disease literature although not in the sense of mixture modeling, but little

is known about the how race might increase ones risk of getting the disease.
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Among the few existing studies Shadlen and colleagues(2006)[53] have noted

no significant differences in the risk of dementia between Black and White

subjects after accounting for confounders. Our study confirms their finding

on one hand in the sense that adjusting for race in the Cox model results in

race being a non-significant predictor of the event. However, our study also

reveals an interesting fact that race actually plays a vital role in determining

the posterior probabilities of the subjects which is a significant predictor of

the event. Here we should recognize the unique role of the mixture modeling

approach. As we have emphasized already, the mixture model approach helped

identify other roles of race in predicting future cognition that otherwise would

have been masked by using simpler analytical approaches.

We also note that the participants in the Shadlen et. al study consist of subjects

who are either cognitively normal, have incident dementia, prevalent dementia

or have MCI. Our study presents an approach to the same problem from a

strikingly different perspective stretching from the make-up of the participants

(all cognitively normal) to the methodological approaches adapted (mixture of

linear models).

As we have demonstrated above, the mixture of regression model with race as

covariate seem to embody favorable characteristics worthy of detailed study. The

model output fitted to each of the two components is displayed in Table 3.2. Com-

ponent 1 indicates that neither race nor the intercept are significant predictors of

rtaubeta. We note that being of White race has a relatively larger effect on rtaubeta

in component 1 (0.163 units) than in component 2 (0.036 units). In component two
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being White increases ones rtaubeta by about 0.04 units albeit not statistically sig-

nificant. The picture is not different when the model is fitted for rptaubeta. Once

again, race is not a significant predictor of rptaubeta in both components one and

two but its effects on rptaubeta are much greater in component one than two. A

similar trend is observed in the intercept with component one intercept being greater

than that of component two when rtaubeta or rptaubeta was the response.

Contrasting the above observation with the output from the competing models we

note that the Apoe4 model shows that Apoe4 is indeed a highly significant predictor

of both rtaubeta and rptaubeta in both components as seen in Table 3.4. Similar to

the race model, the Apoe4 model shows a greater main effect (slope) in component

one than two. When the two predictors were included in the model, Apoe4 was still

a significant predictor of both biomarker ratios adjusting for race; and race was still

not a significant predictor of the biomarker ratios in both components adjusting for

Apoe4 as shown in table 3.6. However Table 3.6 also revealed the comparable trend

of larger slopes in component one than two as indicated in the component plots in

Figure 3.5.

Figure 3.5, reinforces what we observed from the fitted models within each com-

ponent as it indicates that the relationship in component one follows a less linear

pattern than that in component two. Another observation is clear; the intercepts in

component one from Table 3.2 is much larger than that of component two for both

rtaubeta and rptaubeta respectively. This follows from the fact that we would need
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a larger intercept to fit the plot in component one than in component two.

In Figure 3.9 in many ways resembles that of Figures 3.5 and 3.13. However

Figure 3.9 classifies participants with rtaubeta between 0.5 and 0.8 into component

two whereas Figures 3.5 and 3.13 classify these participants into component one.

Thus by virtue of the Apoe4 model, having a relatively higher rtaubeta but lower

rptaubeta may not elevate ones risk of transitioning; whereas in the race model as

well as the race and Apoe4 model, such a scenario will place the participant on the

path to increased risk of transitioning.

The risk of transitioning from normal cognition in each group is shown in Figure

3.6. Component two members experience the earliest decline in cognition and the

least risk as a result of comparatively gentler decline in cognition from month 5 to

the 96th months dotted with lots of censoring. Members in component one however

experienced fewer censorship with comparatively sharper decline in cognition starting

from around months 20 to months 96. Component one membership is indicative of

comparatively latter decline in cognition around months 25 of follow-up and sharpest

decline after month 25.

In comparison to the risk plot in Figure 3.10 associated with the Apoe4 model,

the two risk components begin to separate rather earlier (about week 10) than that

of the race model or the race and Apoe4 model as shown in Figures 3.6 and 3.14

respectively. The separation between the risk groups in Figures 3.6 and 3.14 appear
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to be widening over time but this is not the case or at least not so obvious in the

risk plot of the Apoe4 model.

The Cox proportional hazard model presented in Table 3.3 shows the predictive

abilities of the soft and hard classified posterior probabilities of the race model. Based

on the risk plot in Figure 3.6 we will reference component two as the baseline risk

component. From Table 3.3 we notice from the soft classification model that when

the raw posterior probabilities are entered into the Cox model alone, the estimated

hazard ratio is 4.621(95%CI = (1.661, 12.860)). Thus the risk of transitioning from

the normal cognitive state increases by four fold if one is in component one compared

to being in component two. Adjusting for posterior probabilities for component one,

being of White race is protective against (ĤR = 0.40, 95%CI = (0.15, 1.08)) transi-

tioning from normal cognition compared to being of Black race safe that it is sta-

tistically insignificant. The corresponding c-statistic for the soft classification model

with only the posterior probabilities of component one members is 67.3% and that of

the adjusted model for immediate RAVLT is 77.6% respectively. We note here that

when race was adjusted for the c-statistic was 76.7. This may suggest that race does

not add any more information in distinguishing between those who will transition

and those who will not when the posterior probabilities are included in the model.

Of note Apoe4 was not a significant predictor (ĤR = 1.71, 95%CI = (0.88, 3.30)) of

the outcome in the presence of the risk probabilities and immediate RAVLT.

In the Apoe4 model, Apoe4 was a significant predictor of the biomarker ratios
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(Table3.4). The model also demonstrate a c-statistic of 66% when the only predictor

is the posterior probabilities in the soft classification model(Table 3.5). The hazard

of being in component one is 4.59, 95%CI = (1.844, 11.420) times that of being in

component two. Adjusting for Apoe4 increased the c-statistic modestly to 68% and

adjusting for immediate RAVLT alone also resulted in an increase in the c-statistic.

When both Apoe4 and RAVLT immediate were adjusted for, the posterior probabil-

ity (high risk) was no longer a significant predictor of the hazard (results not shown).

Notably both Apoe4 and RAVLT were significant predictors of the outcome when

the risk probabilities were eliminated from the Cox model (results not shown). Table

3.7 presents the validation for Apoe4 and race model. As seen in Table 3.6, only

Apoe4 was a significant predictor of the outcome with the two components. Table

3.7 shows that in the unadjusted model, the hazard risk associated with component

two increase 4.099, 95%CI = (1.49, 11.270) times that associated with component

one with a corresponding c statistic of 60%. Adjusting for RAVLT increased the

c-statistic to 75.9% (results not shown). Further improvements in the c-statistic

(77.2) was gained by adjusting for Apoe4 although the latter was no longer a signif-

icant predictor of the outcome (results not shown). Thus in the presence of the risk

probabilities derived from race alone or from race and Apoe4 and RAVLT, neither

race nor Apoe4 was a significant predictor of time to transition. For instance race

was a significant predictor of the outcome when RAVLT was absent from the race

and Apoe4 Cox model albeit with a significantly lower c-statistic (67%) (results not

shown).
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In the hard classification model, belonging to component one referent to compo-

nent two will significantly increase the risk of transitioning from the normal cognitive

state by 3.026, 95%CI = (1.24, 7.34). In the adjusted hard classification model, being

of White race again decreases ones risk of transitioning from normal cognition by

about 5.7% albeit statistically insignificant. We also note that the c-statistic for the

hard classification and the adjusted hard classification models are respectively 55%

and 75%. The hard classification model for Apoe4 shows also shows a reduced

effect of the posterior probabilities on the hazard (2.76, 95%CI = (1.355, 5.623))

as shown in Table 3.5. Adjusting for Apoe4 in the hard classification model re-

sulted in both the posterior probability and Apoe4 being significant predictors of

the hazard. A comparable observation can be made from the race and apoe4 hard

classification model in Table 3.7. The posterior probability had a reduced effect

(3.026, 95%CI = (1.247, 7.342)) on the hazard of transitioning. When we adjusted

for both race and Apoe4 both covariates are significant predictors of hazard ratio

but the posterior probability is not.

Further more when only race was presented in the model, being of White race

once again reduced the incidence of the event by 41%(0.49, 95%CI = (0.19, 1.26) (all

details not shown) compared to being of Black race. The associated c-statistic was

54%(S E = 0.026). This may suggest that the posterior probabilities from the mix-

ture modeling is more significantly related to the hazard function for transitioning

than the raw predictor (in this case race).
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In addition to the aforementioned observations Figure 3.7 shows the risk strata

associated with each model for diagnostic purposes. As seen in the Figure 3.7, high

risk (H.Risk) individuals tend to have high biomarker ratios or one high and one

relatively low biomarker ratio. It is clear that an approximate lower bound for the

biomarker ratios for the hypothetically high risk individuals are about 0.7 for rp-

taubeta and about 1.25 for rtaubeta. The hypothetical intermediate risk (I.Risk)

group will have an approximate rtaubeta value range of 1.05 to below 1.25 and 0.6

to below 0.7 for rptaubeta. For the medium risk (M.Risk) group, the range for the

biomarker ratios are respectively 0.5 to below 0.6 for rptaubeta and about 0.8 to be-

low 1.05 for rtaubeta. The minimal(least) risk group (L.Risk) will exhibit biomarker

ratios below 0.5 for rptaubeta and below 0.8 for rtaubeta.

Furthermore since Figure 3.7 is a consequence of the raw posterior probabilities

whereas Figure 3.5 is a consequence of the discretized (hard classified) posterior

probabilities. The former provides a continuum (as opposed to the latter) of the

progression of risk as one advances from a minimum risk region to a high risk, thus

presenting a more plausible picture of what could be.

In contrast with Figure 3.15 is in many ways similar to that of Figure 3.5. This

may be an indication that race is more influential in the race and Apoe4 model

than Apoe4. In Figure 3.11 however, the risk strata shows that rtaubeta is more

influential in classifying individuals into the various risk layers. The plot shows that

slight changes in rtaubeta beyond 0.3 units could results in a transition with very

little influence from the rptaubeta ratio.
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Discussion

In this study we have examined the potential of adequately predicting future cognitive

status of presently cognitively normal individuals using mixture of linear regressions.

We used the ADNI database and with the help of further assessment of the cognitive

measures such as MMSE, ADAS11, RVALT and CDRSB scores, 114 participants

were confirmed as cognitively normal. We adapted the mixture of linear regressions

method for the following reasons:

1. mixture of linear regression model is more adept in handling masked out-

liers[46].

2. mixture of linear regression model affords us the flexibility needed to under-

stand the linear association between the biomarker ratios and the respective

covariate(s) within each component.

3. mixture of linear regression model like in many mixture modeling procedures

enables us to group participants that present identical characteristics and study

their risks for transitioning from the normal cognitive state.

4. when we fit the Cox model with race alone it was not a significant predictor

of the event. However the posterior probability belonging to component one

is found to be a significant predictor of the event when presented in the Cox

model. Thus the mixture modeling procedure uncovered a relationship between

the event of interest and the covariates that otherwise would have been masked.
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5. when we fit the Cox model with the posterior probability of belonging to compo-

nent one and adjust for race, the posterior probability is found to be significant

but race is not. This may suggest that all the information needed to under-

stand the association between the event and the potential of transitioning is

captured in the relationship between the event and the posterior probabilities.

6. the concordance statistics that measures the degree of agreement between pre-

dicted and actual event indicate that the posterior probability (using race in-

directly through mixture modeling) from the mixture modeling procedure is

preferable as a measure of predicting future cognition status than using race

directly in a Cox modeling procedure.

More than eighty six models are examined with the aid of sBIC as the tool for model

selection. The models with largest sBIC and more stable standard errors are consid-

ered for further analysis.

The risk of transitioning from normal cognition within the individual components

indicate that participants in component two have the least risk with the highest risk

going to the participants in component one. This may suggest that candidates who

have low rtaubeta value and comparatively higher rptaubeta value or vice versa will

be at a medium to high risk of transitioning from normal cognition. However, if the

rptaubeta and rtaubeta values are relatively low, then the risk of transitioning is

minimal.

Figures 3.7 and 3.15 generalize the risk plot in Figures 3.5 and 3.13 and show that

having a high rptaubeta value with low rtaubeta or having a high rtaubeta keeping
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rptaubeta low both lead to an increased risk of transitioning from normal cognition.

The generalization of Figure 3.9 by Figure 3.11 is slightly different in that rtaubeta

tends to be the primary decider of the risk strata.

Furthermore, the risk strata described above can be used as a predictive mechanism

by physicians and other health practitioners based on an individual’s biomarker mea-

sures. Candidates who fall in the blue colored region based on their biomarker ratios

will have about 25% or less chance of transitioning given their biomarker ratios and

race (or biomarker ratio and Apoe4 or biomarker ratios, race and Apoe4 depending

on the model of choice). Subjects in the yellow region will be above 25% risk but

below 50% risk of transitioning given their information. Being in the brown region

increases ones risk above 50% but below 75% chance of transitioning given his/her

information. The riskiest region is denoted by red in which one has at least 75%

chance of transitioning given their information.

We speculate that the blue region may be indicative of individuals who will most

likely remain cognitively normal regardless of their race or Apoe4. Region yellow or

the intermediate region may be also indicative of a subject who will exhibit potential

signals of transitioning but may not transition and thus more likely to remain cog-

nitively normal. In the brown region we speculate that subjects are more likely to

transition than they are to remain cognitively normal. We also cautiously entertain

the possibility of the brown region being indicative of the region within which a well

targeted intervention may yield desired results since the associated risk in that region

is about the toss of a fair coin (in the neighborhood of 50%). Finally the red zone
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may be representative of subjects who will most likely transition with probabilities

well above a simple toss of a fair coin. Again we are cautiously optimistic that per-

sons who fall within this region based on their information if given the most targeted

interventions could reduce or slow their probability of transitioning out of normal

cognition.

We observe that the risk strata defined for participants who are black or white are

comparable with respect to their joint biomarker ratios. However, black participants

tend to be at a slightly higher risk for the rptaubeta ratio than the white partici-

pants (Figures 3.9-3.10). In terms of Apoe4 carriers and non-carriers, the risk strata

related to the latter seem to be driven by the rptaubeta ratio. In comparison, the

risk strata for carriers of Apoe4 are about equally influenced by the two biomarker

ratios (Figures 3.16-3.17). Given that a participant is black the risk of transitioning

associated with being non-Apoe4 carrier is primarily influenced by the rptaubeta

biomarker whereas the risk of transitioning associated with Apoe4 carriers are about

equally influenced by the two biomarkers (Figure 21-22). Given that a participant

is white the risk of transitioning for Apoe4 carriers is almost always determined by

their rptaubeta biomarker whereas the risk of transitioning for non-Apoe4 carriers

although in favor of rptaubeta biomarker is not so at values of rptaubeta lower than

0.4 (Figure 3.23-2.24).

Based on the foregone discussion, we speculate that in principle if we know a

person is white and an apoe4 carrier, the risk of transitioning in the future can solely

be determined using their baseline rptaubeta biomarker. This may not be so for non-

Apoe4 whites /blacks and apoe4 blacks in that these scenarios require knowledge on
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both biomarker ratios at baseline. Indeed these group specific diagnoses sounds the

bell that in principle the findings here may lend themselves to group specific inter-

ventions.
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3.6 Limitations and Future Directions

Limitations

In our analysis we assumed that biomarker ratios follow a normal distribution based

on the empirical evidence provided by the data via a histogram plot. Theoretically

we may be inclined to use Cauchy distribution as the biomarker ratios arise from

the ratio of two biomarkers which are assumed to be normally distributed. However

in this case the empirical evidence strongly favored normality. In addition to the

empirical evidence, the Gaussian distribution has nicer properties such as mean and

standard deviation which are both key in studying the properties of the biomarker

ratios presented here. Cauchy distribution is very limited in this sense.

We also assumed independence between the two biomarkers in our models. This

assumption arose from the fact that if we adjust for a covariate the correlation be-

tween the biomarkers will dissipate. Indeed we didn’t find any evidence that trumps

our assumption so much so that we had to change course. It is worth mentioning that

conditioning on the covariates such as race or Apoe4 or both reduced the correlation

between the outcomes.

Furthermore, only 10 of the 114 participants were Black which may bias the race

model outcome due to lack of power as the proportion of Black and White will be

very different. However the standard errors produced by the race model exhibited

stable properties which is non-indicative of biasedness.

104



Future Direction

In future studies we hope to access more events due to longer follow up periods in

the ADNI studies. In this study we had 34 events thus far. Longer follow-up could

yield more events which will increase the power of the study.
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Figure 3.1: Relationship between biomarkers ratios and race. + represents the grand
mean
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Figure 3.2: Relationship between biomarker ratios and Apoe4 + represents the grand
mean
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Figure 3.3: Relationship between biomarkers, race and Apoe4. + is grand mean.

108



Figure 3.4: Joint Distribution of rtaubeta and rptaubeta Given Race
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Figure 3.5: Posterior probability plot with race as predictor in the mixture regression
model indicates that the model is well separated
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Figure 3.6: Individual biomarker ratios grouped into different risk regions. Here race
is the predictor variable
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Figure 3.7: The survivability of the two groups over time given in weeks. Here race
is the predictor variable
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Figure 3.8: Risk strata for Blacks from the posterior probabilities obtained from the
mixture of linear regression with race as covariate
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Figure 3.9: Risk strata for Whites from the posterior probabilities obtained from the
mixture of linear regression with race as covariate
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Figure 3.10: Joint Distribution of rtaubeta and rptaubeta Given Apoe4
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Figure 3.11: Posterior probability plot indicates that the mixture of regression model
with Apoe4 as predictor model is comparatively less well separated
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Figure 3.12: Individual biomarker ratios grouped into different risk regions. Here
Apoe4 is the predictor variable.
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Figure 3.13: The survivability of the two groups over time given in weeks. Here
Apoe4 is the predictor variable.
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Figure 3.14: This corresponds to the risk strata for Apoe4 carriers derived from the
posterior probabilities obtained from the mixture of linear regression with Apoe4 as
predictor variable.
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Figure 3.15: This corresponds to the risk strata for none-Apoe4 carriers derived from
the posterior probabilities obtained from the mixture of linear regression with Apoe4
as predictor variable.
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Figure 3.16: Posterior probability plot indicates that the model with Apoe4 and race
as predictors is comparatively less well separated
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Figure 3.17: Individual biomarker ratios grouped into different risk regions. Here
Apoe4 and race are the predictor variables.
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Figure 3.18: The survivability of the two groups over time given in weeks. Here
Apoe4 and race are the predictor variables.
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Figure 3.19: Risk strata for black who are apoe4 carriers obtained from the mixture
of linear regression with Race and Apoe4 as covariates
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Figure 3.20: Risk strata for blacks who are none-apoe4 carriers obtained from the
mixture of linear regression with Race and Apoe4 as covariates
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Figure 3.21: Risk strata for whites who are apoe4 carriers obtained from the mixture
of linear regression with Race and Apoe4 as covariates
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Figure 3.22: Risk strata for whites who are none-apoe4 carriers obtained from the
mixture of linear regression with Race and Apoe4 as covariates
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Table 3.1: Selection of model complexity with three criteria. To calculate the learn-
ing coefficient sBIC, we are assuming the non-redundant one component. Numbers
shown are differences between the information criteria at one component versus the
information criteria at two component.

Complexity/Criteria AIC BIC sBIC

1-2 535.35 502.52 530.94
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Table 3.2: Estimates of the regression models within each component.Race is the
only predictor variable in the model. Race is an indicator variable for Caucasian
(coded as 1) and the referent group is black (coded as zero) *** significant at 0.001
level, ** significant at 0.01 level and * significant at 0.05 level

Component 1 for rtaubeta Estimate SE P-value

Intercept 0.563 0.315 0.074
Race 0.163 0.322 0.613

Component 2 for rtaubeta

Intercept 0.238 0.031 < 0.001∗∗∗

Race 0.036 0.034 0.282
Component 1 for rptaubeta Estimate SE P-value

Intercept 0.266 0.169 0.115
Race 0.039 0.172 0.819

Component 2 for rptaubeta

Intercept 0.080 0.011 < 0.001∗∗∗

Race 0.009 0.012 0.443
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Table 3.3: High|Low risk is component one estimated probability for the soft and
hard classification models. c is the concordance.HR is the hazard ratio. Race is
the only predictor. When model was adjusted for education, MMSE, and age only
prop.SBICO1 and rprop.SBICO1 were significant. This significance disappeared
when Apoe4 was adjusted for (results not shown)

Soft classification Estimated HR P-value CI c(SE)

High|Low risk 4.621 0.001 (1.661, 12.860) 0.680(0.058)
With Adjustment

High|Low risk 3.98 0.001 (1.693, 9.369) 0.776(0.058)
RAVLT 0.95 0.007 (0.912, 0.986)

Hard classification

High|Low risk 3.026 0.014 (1.24, 7.34) 0.547(0.026)
With Adjustment

High|Low risk 3.016 0.003 (1.460, 6.228) 0.745(0.057)
Race 0.943 0.003 (0.908, 0.980)
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Table 3.4: Estimates of the regression models within each component. Apoe4 is the
only predictor variable in the model.Apoe4 is coded as 1 for carriers of the gene and
0 for non carriers. *** significant at 0.001 level, ** significant at 0.01 level and *
significant at 0.05 level

Component 1 for rtaubeta Estimate SE P-value

Intercept 0.562 0.065 < 0.001∗∗∗

Apoe4 0.307 0.108 0.005∗∗

Component 2 for rtaubeta

Intercept 0.247 0.012 < 0.001∗∗∗

Apoe4 0.106 0.026 < 0.001∗∗∗

Component 1 for rptaubeta Estimate SE P-value

Intercept 0.217 0.032 < 0.001∗∗∗

Apoe4 0.192 0.054 < 0.001∗∗∗

Component 2 for rptaubeta

Intercept 0.078 0.004 < 0.001∗∗∗

Apoe4 0.034 0.008 < 0.001∗∗∗
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Table 3.5: High|Low risk is component one estimated probability for the soft and
hard classification models. c is the concordance. HR is the hazard ratio. Apoe4 is
the only predictor variable. When model was adjusted for education, MMSE, race
and age only prop.SBICO12 and race or rprop.SBICO12 were significant (results not
shown)

Soft classification Estimated HR P-value CI c(SE)

High|Low risk 4.590 0.001∗∗ (1.844, 11.420) 0.662(0.058)
With Adjustment

High|Low risk 4.758 0.005 (1.976, 11.58) 0.764(0.058)
RAVLT 0.942 0.002 (0.907, 0.979

Hard classification

High|Low risk 2.760 0.001 (1.355, 5.623) 0.586(0.039)
With Adjustment

High|Low risk 2.108 0.110 (0.844, 5.263) 0.69(0.057)
RAVLT 0.951 0.013 (0.914, 0.990)
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Table 3.6: Estimates of the mixture of regression models within each component.
*** significant at 0.001 level, ** significant at 0.01 level and * significant at 0.05
level

Component 1 for rtaubeta Estimate SE P-value

Intercept 0.255 0.264 0.333
Race 0.312 0.260 0.230

Apoe4 0.335 0.109 < 0.01∗∗

Component 2 for rtaubeta

Intercept 0.213 0.031 < 0.001∗∗∗

Race 0.039 0.032 0.221
Apoe4 0.108 0.025 < 0.001∗∗∗

Component 1 for rptaubeta Estimate SE P-value

Intercept 0.079 0.127 0.537
Race 0.141 0.125 0.263

Apoe4 0.206 0.053 < 0.001∗∗∗

Component 2 for rptaubeta

Intercept 0.072 0.009 < 0.001∗∗∗

Race 0.008 0.010 0.432
Apoe4 0.035 0.008 < 0.001∗∗∗
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Table 3.7: prop.SBIC013 is component one estimated probability and rprop.SBIC013
is component one hard classification. c is the concordance. HR is the hazard ratio.
Race and Apoe4 are the predictors. When model was adjusted for education, MMSE,
race and age only Apoe4 was significant (results not shown)

Soft classification Estimated Hazard P-value CI c(SE)

prop.SBIC013 4.099 0.006 (1.490, 11.270) 0.599(0.058)
With Adjustment

prop.SBIC013 2.863 0.058 (0.967, 8.480) 0.670(0.058)
Race 0.380 0.052 (0.143, 1.009)

Apoe4 2.312 0.036 (1.056, 5.066)
Hard classification

rprop.SBIC013 3.026 0.014 (1.247, 7.342) 0.547(0.026)
With Adjustment

rprop.SBIC013 2.345 0.083 (0.895, 6.145) 0.634(0.046)
Race 0.373 0.048 (0.140, 0.993)

Apoe4 2.366 0.029 (1.093, 5.119)
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3.7 Illustrative Computations for A1-A3 in Drton and Plummer(2016)

for Mixture of Regression Models

Adapting some of the notations from Dacunha-Castelle and Gassiat(1999)[55] we

define a family of mixture of regression models as:

Gk =

g = g(yi|xi,Θ j) =

k∑
j=1

π j f j(yi|xi,Θ j)

 (3.7)

where xi is the vector of covariates for subject i, Θ j is the component specific pa-

rameters (i.e. Θ j =
(
β j,Σ j

)
) and π j are the mixing proportions or weights such that

0 ≤ π j ≤ 1 and
∑k

j=1 π j = 1. Furthermore we assume that the Σ j are positive defi-

nite and their eigenvalues are bounded away from zero. That is ∃ ε > 0 such that

min{ev
(
Σ j

)
} ≥ ε > 0.

Assume that

X ∼ N(µ, τ2)

and

Y|X=x, β, σ2 ∼ N(β0 + β1x, σ2).

Then var(Y) = var(E(Y |X)) + E(var(Y |X)) = β2
1τ

2 + σ2. The covariance is also given

as cov(X,Y) = corr(X,Y) ∗
√

var(X)var(Y) = Rτ
√
β2

1τ
2 + σ2 noting from the standard

regression slope formula that β1 = R sy

sx
= R
√
β2

1τ
2+σ2

τ
⇒ R =

β̂1τ√
β2

1τ
2+σ2

. Here forward we

will adapt the notation r = R. The joint distribution is given as:

X,Y|τ2, σ2, β0, β1, µ ∼ N


 µ

β0 + β1µ

 ,
 τ2 rτ

√
β2

1τ
2 + σ2

rτ
√
β2

1τ
2 + σ2 σ2 + τ2β2

1


 . (3.8)
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X,Y|τ2, σ2, β0, β1, µ ∼ N


 µ

β0 + β1µ

 ,
 τ

2 β1τ
2

β1τ
2 σ2 + τ2β2

1


 . (3.9)

The rationale for the above assumptions and the subsequent derivation of the joint

density of X and Y is to be able to invoke assumptions P0 and P1 in Dacunha-Castelle

and Gassiat (1999) which assumed a parametric family of marginal densities. Our

original density is conditional on X and so to arrive at the joint distribution we notice

by elementary conditional probability that f (y|x) =
f (x,y)
f (x) .

Note that

Gk =

g =

k∑
j=1

π j
f (xi, yi|θ j)

f (xi|K)

 ,
where θ j = (β j, τ

2, σ2) and K = (µ, τ2) The corresponding log likelihood of the family

of conditional densities defined above is:

ln(g) =

n∑
i=1

ln
k∑

j=1

π j f (yi|xi, θ j) =

n∑
i=1

ln
k∑

j=1

π j
f (xi, yi|θ j)

f (xi|K)
=

n∑
i=1

ln
1

f (xi|K)

k∑
j=1

π j f (xi, yi|θ j)

Assuming a q mixture component under the null hypothesis we have that

f0 =

q∑
j=1

π j0

f (xi, yi|θ j0,K0)
f (xi|K0)

,

for some parameters K0, θ j0 and π j0 respectively and θ j0 is the true value of θ j. Define

a statistic based on the log likelihood as: Tn(k) = sup
g∈Gk

ln(g) − ln( f0), then the LRT

statistic for testing a q mixture component versus a k mixture component can be

defined based on Tn as follows: Vn = Tn(k) − Tn(q). In essence Vn is:
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Vn = sup
g∈Gk

n∑
i=1

ln
1

f (xi|K)

k∑
j=1

π j f (xi, yi|θ j) − sup
g∈Gq

n∑
i=1

ln
1

f (xi|K)

q∑
j=1

π j f (xi, yi|θ j)

=

n∑
i=1

ln 1
f (xi|K̂0)

k∑
j=1

π̂ j f (xi, yi|θ̂ j) − ln
1

f (xi|K̂0)

q∑
j=1

π̂ j0 f (xi, yi|θ̂ j0)


=

n∑
i=1

− ln f (xi|K̂0) + ln
k∑

j=1

π̂ j f (xi, yi|θ̂ j) + ln f (xi|K̂0) − ln
q∑

j=1

π̂ j) f (xi, yi|θ̂ j0)


=

n∑
i=1

ln k∑
j=1

π̂ j f (xi, yi|θ̂ j) − ln
q∑

j=1

π̂ j0 f (xi, yi|θ̂ j0)


Based on the latter results, testing on the conditional densities is equivalent to testing

on the marginal densities.

Recall that:

f (w|Σ,Γ) =
1

(2π)dim(w)/2|Σ|0.5
exp

{
−0.5(w − Γ)T Σ−1(w − Γ)

}
where

w =

x

y

 ,
Γ =

 µ

β0 + β1µ

 ,
Σ =

 τ
2 β1τ

2

β1τ
2 σ2 + τ2β2

1


We now want to show that ∃ h(x, y) and ε ∈ (0, 1) such that |ln f (x, y|Σ,Γ)|≤ h(w) =

h(x, y) where Eh(X,Y) < ∞ assuming that 1
ε
≥ τ2 ≥ ε > 0, 1

ε
≥ σ2 ≥ ε > 0, −1

ε
≤ µ ≤ 1

ε
,

−1
ε
≤ β0 ≤

1
ε
, −1

ε
≤ β1 ≤

1
ε

and −1
ε
≤ β0 + β1µ ≤

1
ε
.
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2|ln f (w|Σ,Γ)|=
∣∣∣∣∣ ln 2π− ln|Σ|−(w−Γ)T Σ−1(w−Γ)

∣∣∣∣∣ ≤ |ln 2π|+|ln|Σ||+||(w−Γ)T Σ−1(w−Γ)||

≤ c1 + c2 + ||(w − Γ)T Σ−1(w − Γ)|| (3.10)

where c1 = ln 2π and

|ln|Σ||= |ln ((τ2σ2 + τ4β2
1) − β2

1τ
4)|= |lnσ2τ2|≤ |ln ε4|= 4|ln ε |= c2. (3.11)

Furthermore by applying the Cauchy-Schwartz inequality and the induced norm we

have that

||(w − Γ)T Σ−1(w − Γ)||≤ ||(w − Γ)T Σ−1|| ||(w − Γ)||≤ ||(w + (−Γ))T || ||Σ−1|| ||(w + (−Γ))||

≤ (||wT ||+||ΓT ||)||Σ−1||(||w||+||Γ||) (3.12)

where

||ΓT ||= ||Γ||=
√
µ2 + (β0 + β1µ)2 ≤

√
1
ε2 +

(
1
ε

+
1
ε2

)2

= c3 (3.13)

also applying the Frobenius norm (norm of a matrix) we get

||Σ−1||≤ ||Σ−1||F=

√
tr(Σ−1T

Σ−1) =
√

tr(Σ−1Σ−1). (3.14)
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We note that

Σ−1Σ−1 =


1
τ2 +

β2
1
σ2

−β1
σ2

−β1
σ2

1
σ2




1
τ2 +

β2
1
σ2

−β1
σ2

−β1
σ2

1
σ2

 =


(

1
τ2 +

β2
1
σ2

)2
+

β2
1
σ4

−β1
τ2σ2 −

β3
1+β1

σ4

−β1
τ2σ2 −

β3
1+β1

σ4
β2

1+1
σ4


⇒ tr(Σ−1Σ−1) =

1
τ4 +

2β2
1

τ2σ2 +
β4

1 + 2β2
1 + 1

σ4

⇒ ||Σ−1||F=

√
tr(Σ−1T

Σ−1) =

√
1
τ4 +

2β2
1

τ2σ2 +
β4

1 + 2β2
1 + 1

σ4

≤

√
1
ε4 +

2/ε2

ε4 +
1/ε4 + 2/ε2 + 1

ε4

=

√
1
ε8 +

4
ε6 +

2
ε4 = c4 (3.15)

Thus from above we let

h(w) = c1 + c2 + c4(||wT ||+c3)(||w||+c3) = c1 + c2 + c4(||wT || ||w||+2c3||w||+c2
3), (3.16)

which depends only on w and let E f1(.) denote the expectation with respect to say

f1(w). Assuming the true parameters at the null are respectively γ0 = (µ0, τ0, β00, β10, σ0)

and fo =
∑q

i=1 πi fi0 it follows that"
h(w) f0(w|γ0)dw = π1

"
h(w) f10(w|γ0)dw + ... + πq

"
h(w) fq0(w|γ0)dw

= π1E f1(h(w)) + ... + πqE fq(h(w)) (3.17)

Then the first expectation can be evaluated as follows:

π1E f1(h(w)) = π1

{
c1 + c2 + c4E(W2

1 + W2
2 ) + 2c3c4E

(√
W2

1 + W2
2

)
+ c4c2

3

}
< ∞, (3.18)
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since in a general setting as in E(WT
1 W1 + ...+ WT

p Wp) = E(WT
1 W1) + ...+ E(WT

p Wp) and

in particular W1 = [X,Y], then E(WT
1 W1) = E(X2

1 + Y2
1 ) = var(X1) + E(X1)2 + var(Y1) +

E(Y1)2 = τ2 + µ2 + σ2 + τ2β2
1 + (β0 + β1µ)2 and p is the number of rows in W.

It also follows by Jensen’s inequality and the concavity of the square root function

that E
(√

WT
1 W1 + ... + WT

p Wp

)
≤

√
E(WT

1 W1 + ... + WT
p Wp) =

√
E(WT

1 W1) + ... + E(WT
p Wp).

Specifically for p = 2,

E
(√

WT
1 W1

)
≤

√
E(WT

1 W1)

=

√
τ2 + µ2 + σ2 + τ2β2

1 + (β0 + β1µ)2 ≤

√
4
ε2 +

1
ε4 < ∞ (3.19)

by virtue of our assumptions on the parameters. So we have that,

2|ln f (w|Σ,Γ)|≤ h(w) =⇒ |ln f (w|Σ,Γ)|≤ h(w), (3.20)

where E(h) ≤ ∞

Furthermore, we note that f (w|Σ,Γ) possesses partial derivatives up to the order

5 and that ∀z ≤ 5,
Dz

i1...iz
f (w|Σ0,Γ0)

f0
∈ L3( f0ν), (3.21)

where i1...iz indexes the densities of the function f (w|Σ0,Γ0) and z the order of deriva-

tive being taken with respect to the parameters in question. So if for instance i1 = i2

and z = 2 then the numerator of the expression above will yield the second derivative

with respect to one parameter. In particular we will have for example, that

D2
γ0γ0

f (w|Σ0Γ0)

f0
=

∂2 f (w|γ0)
∂γ2

0

f0
, (3.22)

140



which is the second derivative of the function with respect to γ0. On the other hand

if i1 , i2 and z = 2 then we take the partial derivative with respect to say β1 first and

then µ second getting a mixed partial derivative.

To see why eq(11) holds (here we suppress the dependence on component l in our

notation), consider the following expansions:

(w − Γ)T Σ−1(w − Γ) =

 x − µ

y − (β0 + β1µ)


T 

1
τ2 +

β2
1
σ2

−β1
σ2

−β1
σ2

1
σ2


 x − µ

y − (β0 + β1µ)


= (x − µ)2

(
1
τ2 +

β2
1

σ2

)
+
−2β1

σ2 (x − µ)(y − (β0 + β1µ)) +
1
σ2 (y − (β0 + β1µ))2 (3.23)

Thus the density can be expressed as:

f (w|Σ,Γ)

∝
1
τσ

exp
{
−0.5

(
(x − µ)2

(
1
τ2 +

β2
1

σ2

)
+
−2β1

σ2 (x − µ)(y − (β0 + β1µ)) +
1
σ2 (y − (β0 + β1µ))2

)}
(3.24)

We verify that the general derivative (D) of the density as defined above is of the

form D f = f (x, y|σ, τ, µ, β1, β0) ∗ polynomial where the plynomial is in terms of x − µ

and y where all parameters are expressed as rational functions. This will be clarified

below.

To see why we let v = 1/σ, s = 1/τ and notice that f can be written as:
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f (x, y|σ, τ, µ, β1, β0) ∝

vs exp
{
− 0.5

[
(x − µ)2(s2 + v2β2

1) − 2v2β1(x − µ)(y − (β0 + β1µ)) + v2(y − (β0 + β1µ))2
]}

We begin with the first derivative to form the foundation of the derivatives and

then proof by induction that the proposed pattern holds true for all higher order and

mixed derivatives. For simplicity we shall use f to represent the function defined

above and D to represent the derivative with respect to the parameter of interest

expressed as a subscript. In that respect we will have that:

Dβ1 f = f ∗
[
− v2β1(x − µ)2 + (x − µ)

{
v2(y − (β0 + β1µ)) − v2β1µ

}
+ µ(y − (β0 + β1µ))

]
which is of the form f ∗ polynomial in x − µ.

Dβ0 f = f ∗

[
− v2β1(x − µ) + v2µ(y − (β0 + β1µ))

]
which is of the form f ∗ polynomial in x − µ.

Dµ f = f ∗

[
(x − µ)

{
(s2 + v2β2

1) − v2β2
1

}]
which is of the form f ∗ polynomial in x − µ.

D 1
σ

f = Dv f = f ∗
[
− vβ2

1(x−µ)2 + 2vβ1(x−µ)(y− (β0 + β1µ))− v(y− (β0 + β1µ))2 +
1
v

]
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which is of the form f ∗ polynomial in x − µ.

D 1
τ

f = Ds f = f ∗

[
− s(x − µ)2 +

1
s

]
which is of the form f ∗ polynomial in x−µ. Without loss of generality we shall define

the polynomial as follows:
λ∑

j=0

t∑
r=0

cr(γ)xt−ryλ− j (3.25)

The foregone derivatives above are all of the form f ∗ polynomial in x, y, where

c(γ)′s are polynomial collections and rational functions of γ. Next we assume that

this observation holds true for all derivatives in the sense that the derivative of the

form f ∗ polynomial regardless of the parameter of interest yields a similar format

f̃ ∗ ˜polynomial in that taking the derivative of a polynomial yields a polynomial and

the derivative of f gives the product of f and a polynomial.

Mathematically we assume that

Di1,...,iz−1 f = f ∗ polynomial

where the polynomial is in terms of x and y. To maximize the polynomial we note

that γ is restricted to a compact region in the sense of ||γ − γ0||≤ ε and also recall

that Cr(γ) is a rational function of the form

Cr(γ) =
Pr(γ)
vδ, s∆

,∆ ≥ 0, δ ≥ 0,

where Pr(γ) is a polynomial function in γ. However as we have mentioned above γ

is in a compact region and since the polynomial function Pr(γ) is continuous with
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respect to γ vis a vis ||γ − γ0||≤ ε, ∃ M(ε) ≥ 0 for which |Pr(γ)|≤ M(ε). In addition we

recall from previous assumptions that 1
s ≤

1
ε

and 1
v ≤

1
ε

and it follows that:

Cr(γ) =
Pr(γ)
vδ, s∆

≤
M(ε)
εδ+∆

< ∞,

which in turn ensures that the polynomial

λ∑
j=0

t∑
r=0

cr(γ)xt−ryλ− j < ∞

In a broader sense if we let g = x and γ = β0, β1, σ, τ, µ then we are specifically

assuming that

Di1,...,iz−1 f = f ∗ [c1(γ)gtyλ + c2(γ)gt−1yλ−1 + ... + cr(γ)]

for an rth term polynomial with degree t + λ.

We proceed to show that all the derivatives (both mixed and otherwise) of

Di1,...,iz−1 f = f ∗ polynomial are also of the similar form f ∗∗ ∗ polynomial∗∗

Diz(Di1,...,iz−1 f ) = Diz

[
f ∗ [c1(γ)gt + c2(γ)gt−1 + ... + cr(γ)

]
= Diz

(
f ∗ c1(γ)gtyλ

)
+ ... + Diz

(
f ∗ cr(γ)

)
=

{
[Diz f ] ∗ c1(γ)gtyλ + f ∗ [Dizc1(γ)gtyλ]

)
+ ... + [Diz f ] ∗ cr(γ) + f ∗ [Dizcr(γ)]

)}
= f ∗polynomial∗c1(γ)gt+ f [Diz(c1(γ))gtyλ+(Dizg

tyλ)c1(γ)+...+ f ∗polynomial∗cr(γ)+ f ∗Diz(cr(γ))

= f
[
polynomial∗c1(γ)gtyλ+[Diz(c1(γ))gtyλ+(Dizg

tyλ)c1(γ)+...+polynomial∗cr(γ)+
∂

∂iz
cr(γ)

]
= f ∗ polynomial = f (x, y|σ, τ, µ, β1, β0)

λ∑
j=0

t∑
r=0

cr(γ)xt−ryλ− j
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Based on the derivations above we have that

Dz
i1,...,iz

f |γ0

f0
=

fl0 ∗ polynomial
π1 f10 + ... + πq fq0

≤
fl0 ∗ polynomial

πl fl0
=

1
πl0
∗ polynomial

=
1
πl0

λ∑
j=0

t∑
r=0

cr(γ)xt−ryλ− j

with respect to x, y and coefficients c(γ) which are rational functions of γ0. Since

E(|X|p) < ∞ and E(|Y |p) < ∞ it follows that∫ ∫ ∣∣∣∣∣Dz
i1,...,iz

f |γ0

f0

∣∣∣∣∣1/3 f (x, y|γ0)dxdy ≤
(∫ ∫ ∣∣∣∣∣ 1

πl0

λ∑
j=0

t∑
r=0

cr(γ0)xt−ryλ− j
∣∣∣∣∣3 f (x, y|γ0)

)1/3

dxdy < ∞

Next we show that there exists an H5(x, y) such that

sup
||γ−γ0 ||≤ε

∣∣∣∣∣D5
i1,...,i5

fγ
f0

∣∣∣∣∣ ≤ H5(x, y),

and E f0(H
3
5(X,Y)) < +∞.

Recall that f (x, y) = vs exp {−0.5[(x − µ)2(s2 + v2β2
1) − 2v2β1(x − µ)(y − β̄) + v2(y − β̄)2]}

where β̄ = β0 + β1µ.

Also recall that f0 =
∑q

i=1 πi fi(x, y) which we shall represent as f0 = π1 f1 + . . . + πq fq

To show the P0, we notice that

∣∣∣∣∣D5 fγr

f0

∣∣∣∣∣3 =

∣∣∣∣∣ D5 fγr

π1 f1+...+πq fq

∣∣∣∣∣3 ≤ ∣∣∣∣∣D5 fγr
πr fr

∣∣∣∣∣3, for r ≤ q, where D is

an arbitrary partial derivative, fγr is the nearby and fr = fγr0 is the true density for

component r. In the subsequent proof, expressions without subscripts are the nearby

quantities and those with subscripts are the true quantities.
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But∣∣∣∣∣D fγr

πr fr

∣∣∣∣∣
≤

vs exp {−0.5[(x − µ)2(s2 + v2β2
1) − 2v2β1(x − µ)(y − β̄) + v2(y − β̄)2]}M(ε)

∣∣∣∣∣ ∑λ
j=0

∑t
r=0 xt−ryλ− j

∣∣∣∣∣
πrvr sr exp {−0.5[(x − µ)2(s2

r + v2
rβ

2
1r) − 2v2β1r(x − µr)(y − β̄r) + v2(y − β̄r)2]}

=
vs

πrvr sr
exp

(
− 0.5

[
(x − µ)2(s2 + v2β2

1) − (x − µr)2(s2
r + v2

rβ
2
1r) − 2v2β1(x − µ)(y − β̄)

+2v2
rβ1r(x − µr)(y − β̄r) + v2(y − β̄)2 − v2

r (y − β̄r)2
])

M(ε)
∣∣∣∣∣ λ∑

j=0

t∑
r=0

xt−ryλ− j
∣∣∣∣∣

=
vs

πrvr sr
exp

(
− 0.5

[
x2{(s2 + v2β2

1) − (s2
r + v2

rβ
2
1r)} + x{−2µ(s2 + v2β2

1) + 2µr(s2
r + v2

rβ
2
1r)}

µ2(s2 + v2β2
1) − µ2

r (s2 + v2β2
1) + xy[−2v2β1 − 2v2

rβ1r]

x[−2v2β1β̄ + 2v2β1rβ̄r] + y[2v2β1µ − 2v2
rβ1rµr]

µ[−2v2β1β̄ + 2v2
rβ1rβ̄r] + y2[v2 − v2

r ] + y[−2v2β̄ + 2v2
r β̄] + (v2β̄2 − v2

r β̄
2
r )
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+2v2
rβ1r(x − µr)(y − β̄r) + v2(y − β̄)2 − v2

r (y − β̄r)2
])
∗ M(ε)

∣∣∣∣∣ λ∑
j=0

t∑
r=0

xt−ryλ− j
∣∣∣∣∣

=
vs

πrvr sr
exp

(
−0.5

[
x2{(s2+v2β2

1)−(s2
r +v2

rβ
2
1r)}+x{−2µ(s2+v2β2

1)+2µr(s2
r +v2

rβ
2
1r)−2v2β1β̄+2v2β1rβ̄r}

xy[−2v2β1 − 2v2
rβ1r] + y2[v2 − v2

r ] + y[2v2β1µ − 2v2
rβ1rµr − 2v2β̄ + 2v2

r β̄]

µ2(s2 + v2β2
1) − µ2

r (s2 + v2β2
1) + µ[−2v2β1β̄ + 2v2

rβ1rβ̄r]

+(v2β̄2 − v2
r β̄

2
r )
])
∗ M(ε)

∣∣∣∣∣ λ∑
j=0

t∑
r=0

xt−ryλ− j
∣∣∣∣∣

= exp
(
− 0.5

[
ax2 + bx + cxy + dy2 + ey + f

])
∗ M(ε)

∣∣∣∣∣ λ∑
j=0

t∑
r=0

xt−ryλ− j
∣∣∣∣∣,

where

a = −0.5
[
(s2+v2β2

1)−(s2
r +v2

rβ
2
1r)

]
, b = −0.5

[
−2µ(s2+v2β2

1)+2µr(s2
r +v2

rβ
2
1r)−2v2β1β̄+2v2β1rβ̄r

]

c = −0.5
[
−2v2β1−2v2

rβ1r

]
, d = −0.5

[
v2−v2

r

]
, e = −0.5

[
2v2β1µ−2v2

rβ1rµr−2v2β̄+2v2
r β̄

]
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f = −0.5
[
µ2(s2 +v2β2

1)−µ2
r (s2

r +v2
rβ

2
1r)+µ[−2v2β1β̄+2v2

rβ1rβ̄r]+(v2β̄2−v2
r β̄

2
r )+log

( vs
πrvr sr

)]
Now assuming that ||µ−µr||≤ ε, ||τ

2−τ2
r ||≤ ε, ||σ

2−σ2
r ||≤ ε, ||β1−β1r||≤ ε, ||β0−β0r||≤ ε,

||β̄− β̄r||≤ ε, ||s2 − s2
r ||≤ ε, ||v

2 − v2
r ||≤ ε, ||s− sr||≤ ε, and ||v− vr||≤ ε then we can find the

respective maximum and minimum expressions for a, b, . . . , f .

For we notice that∣∣∣∣∣0.5[(s2 + v2β2
1) − (s2

r + v2
rβ

2
1r)

]∣∣∣∣∣ ≤ ∣∣∣∣∣s2 − s2
r

∣∣∣∣∣ +

∣∣∣∣∣v2β2
1 − v2

rβ
2
1r

∣∣∣∣∣
≤

∣∣∣∣∣(s2
r + ε) − s2

r

∣∣∣∣∣ +

∣∣∣∣∣(v2 + ε)(β2
1r + ε) − v2

rβ
2
1r

∣∣∣∣∣
= ε +

∣∣∣∣∣εv2
r + εβ2

1r + ε2
∣∣∣∣∣ = amax,ε

similarly we can obtain a maximum for b as follows:

∣∣∣∣∣0.5[ − 2µ(s2 + v2β2
1) + 2µr(s2

r + v2
rβ

2
1r) − 2v2β1β̄ + 2v2β1rβ̄r

]∣∣∣∣∣
≤

∣∣∣∣∣µs2 − µr s2
r

∣∣∣∣∣ +

∣∣∣∣∣µrv2β2
1 − µrv2

rβ
2
1r

∣∣∣∣∣ +

∣∣∣∣∣v2β1β̄ − v2β1rβ̄r

∣∣∣∣∣
≤

∣∣∣∣∣(µr ± ε)(s2
r + ε) − µr s2

r

∣∣∣∣∣ +

∣∣∣∣∣(µr ± ε)(v2
r + ε)(β2

1r + ε) − µrv2
rβ

2
1r

∣∣∣∣∣
+

∣∣∣∣∣(v2
r + ε)(β1r ± ε)(β̄r ± ε) − v2β1rβ̄r

∣∣∣∣∣
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=

∣∣∣∣∣(µr ± sr + ε)ε
∣∣∣∣∣ +

∣∣∣∣∣ε(µrβ
2
1r ± v2

rβ
2
1r ± β

2
1rε + µrv2

r + εµr ± εv2
r ± ε

2)
∣∣∣∣∣

+

∣∣∣∣∣ε(β̄rβ1r±v2
r β̄r
± εβ̄r ± v2

rβ1r + εv2
r ± εβ1r + ε2)

∣∣∣∣∣
≤ bmax,ε

Following similar derivations we obtain the following maximums:

∣∣∣∣∣0.5(−2v2β1 − 2v2
rβ1r)

∣∣∣∣∣ ≤ |(v2
r + ε)(β1r ± ε) − v2

rβ1r

∣∣∣∣∣ ≤ ∣∣∣∣∣ε(v2
r + β1r + ε)

∣∣∣∣∣ ≤ cmax,ε

|0.5(v2 − v2
r )|≤ |(v2

r + ε) − v2
r |= |ε |= dmax,ε

∣∣∣∣∣0.5[2v2β1µ − 2v2
rβ1rµr − 2v2β̄r + 2v2

r β̄

∣∣∣∣∣ ≤ ∣∣∣∣∣(v2
r + ε)(β1r ± ε)(µr ± ε) − v2

rβ1rµr

∣∣∣∣∣ +

∣∣∣∣∣(v2
r +

ε)(β̄r ± ε) − v2
r (β̄r ± ε)

∣∣∣∣∣
=

∣∣∣∣∣ε(µrβ1r ± v2
rβ1r ± εβ1r ± µrv2

r + εv2
r ± εµr + ε2

)∣∣∣∣∣ +

∣∣∣∣∣ε(v2
r ± v2

r − β̄r + ε
)∣∣∣∣∣ ≤ emax,ε

and

∣∣∣∣∣0.5[µ2(s2 + v2β2
1)− µ2

r (s2 + v2β2
1) + µ[−2v2β1β̄+ 2v2

rβ1rβ̄r] + (v2β̄2 − v2
r β̄

2
r ) + log

(
vs

πrvr sr

)∣∣∣∣∣

≤

∣∣∣∣∣0.5(µ2(s2 + v2β2
1) − µ2

r (s2 + v2β2
1))

∣∣∣∣∣ +

∣∣∣∣∣µ(v2β2
1β̄ − v2

rβrβ̄r

)∣∣∣∣∣ +

∣∣∣∣∣0.5(v2β̄2 − v2
r β̄

2
r )
∣∣∣∣∣ +

∣∣∣∣∣ log
( vs
πrvr sr

)∣∣∣∣∣
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≤

∣∣∣∣∣0.5((µ2
r + ε)(s2

r + ε) + (v2
r + ε)(β2

1r + ε) − µ2
r s2

r − µ
2
r v2

rβ
2
r ))

∣∣∣∣∣ +

∣∣∣∣∣(µr ± ε)
(
(v2

r + ε)(β2
1r + ε)(β̄r ± ε) − v2

rβrβ̄r

)∣∣∣∣∣
+

∣∣∣∣∣0.5((v2
r + ε)(β̄2

r + ε) − v2
r β̄

2
r )
∣∣∣∣∣ +

∣∣∣∣∣ log 1
πr

∣∣∣∣∣ +

∣∣∣∣∣ log vr+ε
vr

∣∣∣∣∣ +

∣∣∣∣∣ log sr+ε
sr

∣∣∣∣∣
≤

∣∣∣∣∣ε(µ2
r + s2

r + ε + v2
rµ

2
r + µ2

rβ
2
1r + v2

rβ
2
1r + v2

r + εβ2
1r + ε

)∣∣∣∣∣ +

∣∣∣∣∣ε(v2
r + β̄2

r + ε)
∣∣∣∣∣

+

∣∣∣∣∣ε(µrv2
r β̄r ± β

2
1rµrv2

r ± µrv2
rε + µrβ

2
1rβ̄r ± εµrβ

2
1rεµrβ̄r ± ε

2µr ± v2
rβ

2
1rβ̄r + εv2

rβ
2
1r ± εv

2
r β̄rε

2v2
r ± β

2
1rβ̄r

+ε2β2
1r ± ε

2β̄r + ε3
)∣∣∣∣∣

+

∣∣∣∣∣ log 1
πr

∣∣∣∣∣ ± ε
vr

(1 + O(ε)) + ± ε
sr

(1 + O(ε)) = fmax,ε

Thus we have for x > 0 and y > 0 that

exp
(
− 0.5

[
ax2 + bx + cxy + dy2 + ey + f

])
∗ M(ε)

∣∣∣∣∣ λ∑
j=0

t∑
r=0

xt−ryλ− j
∣∣∣∣∣

≤ exp
[
amax,εx2 + bmax,εx + cmax,εxy + dmax,εy2 + emax,εy + fmax,ε

]
∗ M(ε)

∣∣∣∣∣ λ∑
j=0

t∑
r=0

xt−ryλ− j
∣∣∣∣∣

The afore-derived expression is wholly in terms of x and y, the true parameters

and ε. Thus we may define H5(x, y) for the different values that x and y can assume

as follows:
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H5(x, y) =

∣∣∣∣∣D5 fγr
πr fr

∣∣∣∣∣3 =



(
e[amax x2+bmax x+cmax xy+dmaxy2+emaxy+ fmax] ∗ M(ε)

∣∣∣∣∣ ∑λ
j=0

∑t
r=0 xt−ryλ− j

∣∣∣∣∣)3

x ≥ 0, y ≥ 0(
e[amax x2+bmin x+cmin xy+dmaxy2+emaxy+ fmax] ∗ M(ε)

∣∣∣∣∣ ∑λ
j=0

∑t
r=0 xt−ryλ− j

∣∣∣∣∣)3

x ≤ 0, y ≥ 0(
e[amax x2+bmax x+cmin xy+dmaxy2+eminy+ fmax] ∗ M(ε)

∣∣∣∣∣ ∑λ
j=0

∑t
r=0 xt−ryλ− j

∣∣∣∣∣)3

x ≥ 0, y ≤ 0(
e[amax x2+bmin x+cmax xy+dmaxy2+eminy+ fmax] ∗ M(ε)

∣∣∣∣∣ ∑λ
j=0

∑t
r=0 xt−ryλ− j

∣∣∣∣∣)3

x ≤ 0, y ≤ 0

Now we show that E(H5(X,Y)) < ∞ as follows:

E(H5(X,Y)) =
∫ ∞
−∞

∫ ∞
−∞

H5(x, y) f0dxdy =
∫ ∞
−∞

∫ ∞
−∞
π1H5(x, y) f1dxdy+

∫ ∞
−∞

∫ ∞
−∞
π2H5(x, y) f2dxdy . . .+∫ ∞

−∞

∫ ∞
−∞
πqH5(x, y) fqdxdy

However by appealing to the linearity of the integration above we have for the

first part that:

∫ ∞
−∞

∫ ∞
−∞
π1H5(x, y) f1dxdy < ∞ since E(Xp) < ∞, E(Y p) < ∞ and E(Xt−rYλ− j) < ∞

and the exponential functions H5(x, y) f1 ∝
¯̄f1 which resembles Gaussian densities and

thus the kernel method is applicable. Moreover since these facts hold for each of the

q integrations above we conclude that E(H5(X,Y)) < ∞ which concludes the proof of

P0.

To prove P1 we appeal to Yakowitz’s and Spragins’ (1968)[61] characterizations

of identifiability theorem that a finite mixture from a family F of cdf’s is identifi-
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able iff F is linearly independent over the real numbers. Since the identifiability has

been checked by Yakowitz’s and Spragins’ (1968)[61] proposition 2, the proof of P1

follows forthwith as shown below noting yet again that f0 is the q mixture at the null.

Lemma 1. Suppose that

m1∑
i=1

γi f (x, y, θi) =

m2∑
i=1

αi f (x, y,Φi)

then we see that taking integrals on both sides yield

∫ r

−∞

∫ s

−∞

m1∑
i=1

γi f (x, y, θi)dxdy =

∫ r

−∞

∫ s

−∞

m2∑
i=1

αi f (x, y,Φi)dxdy

⇐⇒

m1∑
i=1

∫ r

−∞

∫ s

−∞

γi f (x, y, θi)dxdy =

m2∑
i=1

∫ r

−∞

∫ s

−∞

αi f (x, y,Φi)dxdy

⇐⇒

m1∑
i=1

γiF(r, s, θi) =

m2∑
i=1

αiF(r, s,Φi),

which is identifiable according to proposition 2 in Yakowitz and Spragins[61]. We

conclude that identifiability of a family of Gaussian cdf’s implies identifiability of the

corresponding pdf’s. This means that m1 = m2, γi = αi, and θi = Φi for all 1 ≤ i ≤ m1.

Lemma 2. Suppose that α1 f1(x, y, θ1) + . . . + αk fk(x, y, θk) =
∑k

l=1 αl fl(x, y, θl) = 0,

then we have by integrating both sides that∫ u

−∞

∫ v

−∞

k∑
l=1

αl fl(x, y, θl)dxdy = 0⇐⇒
k∑

l=1

∫ u

−∞

∫ v

−∞

αl fl(x, y, θl)dxdy = 0⇐⇒
k∑

l=1

αlFl(u, v, θl) = 0,

which implies that α1 = . . . αk = 0 by Yakowitz and Spragins [61]. Thus linear

independence of a family of Gaussian cdf’s implies the linear independence of the

corresponding pdf’s.
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Define f̄ (x, y, γ, γ0) =

{(
f
γl

f0

)
l=1,...,p

,
(

f
γl0

f0

)
l=1,...,q

,
(

D1
i f
γl0

f0

)
l=1,..,q,i=1,..,k

,
(

D2
i j f

γl0

f0

)
l=σ(1),..,σ(p2),i, j=1,...,k

}
={(

fγ1

f0
,

f
γl

f0
, . . . ,

fγp

f0

)
,
(

fγ10

f0
,

fγ20

f0
, . . . ,

f
γq0

f0

)
,
(

D1
i fγ10

f0
,

D1
i fγ20

f0
, . . . ,

D1
i f
γq0

f0

)
i=1,..,k

,
(

D2
i j fγ10

f0
,

D2
i j fγ20

f0
, . . . ,

D2
i j f

γσ(p2)0

f0

)
l=σ(1),..,σ(p2),i, j=1,...,k

}
according to the notations in [55].

Suppose for some constants η1l, . . . , η4b we have that

p∑
l=1

η1l

( fγl

f0

)
+

q∑
a=1

η2a

( fγa0

f0

)
+

q∑
a=1

η3a

(D1
i fγa0

f0

)
i=1,..,k

+

σ(p2)∑
b=σ(1)

η4b

(D2
i j fγb0

f0

)
i, j=1,...,k

= 0. (3.26)

Recall from Lemma 1 and 2 that
∑p

l=1 η1l

(
f
γl

f0

)
= 0 ⇐⇒

∑p
l=1 η1l f ∗ = 0 implies that

η11, . . . , η1q = 0 and similarly,
∑q

a=1 η2a

(
fγa0

f0

)
= 0 ⇐⇒

∑q
a=1 η2a f ∗

γa0 = 0 implies that

η21, . . . , η2q = 0. Recall again that the partial derivatives of the density results in a

product of a polynomial (as described in equation 3.25) and the density. Moreover,

the polynomial is continuous on a compact set of parameters and thus bounded by

some M(ε) for ε ∈ (0, 1). As a result we note from f̄ (x, y, γ, γ0) suppressing all other

indices that:
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p1∑
l=1

η1l
fγl

f0
+

q∑
a=1

η2a
fγa0

f0
+

q∑
a=1

η3a
D1 fγa0

f0
+

σp2∑
b=σ(1)

η4b
fγb0

f0

=

p1∑
l=1

η1l f ∗
γl+

q∑
a=1

η2a f ∗
γa0+

q∑
a=1

η3a

λ∑
j=0

t1∑
r=0

cr1(γ)xt1−r1yλ1− j f ∗
γa0+

σp2∑
b=σ(1)

η4b

λ∑
j=0

t∑
r=0

cr(γ)xt−ryλ− j f ∗
γb0

≤

p1∑
l=1

η1l f ∗
γl+

q∑
a=1

η2a f ∗
γa0+

q∑
a=1

η3a

λ∑
j=0

t1∑
r=0

M1(ε)xt1−r1yλ1− j f ∗
γa0+

σp2∑
b=σ(1)

η4b

λ∑
j=0

t∑
r=0

M(ε)xt−ryλ− j f ∗
γb0

=

p1∑
l=1

η1l f ∗
γl +

q∑
a=1

η2a f ∗
γa0 +

q∑
a=1

η∗3a f ∗
γa0 +

σp2∑
b=σ(1)

η∗4b f ∗
γb0

= η11 f ∗
γ1 +. . .+η1p f ∗γp1 +η21 f ∗

γ10 +. . .+η2q f ∗
γq0 +η

∗
31 f ∗

γ10 +. . .+η
∗
3q f ∗

γq0 +η
∗
41 f ∗γ10+. . .+η∗4σ(p2) f ∗

γσ(p2)

= η11 f ∗
γ1 + . . . + η1p f ∗γp1 + (η21 + η31 + η41) f ∗

γ10 + . . . + (η2q + η3q + η4q) f ∗
γq0 + η4σ(p2) f ∗

γσ(p2)

= e1 f1 + . . . er fr,

where η∗4b = η4b
∑λ

j=0
∑t

r=0 M(ε)xt−ryλ− j, η∗3a = η3a
∑λ

j=0
∑t1

r=0 M1(ε)xt1−r1yλ1− j, e1 = η11,

er = η4σ(p2), f1 = f ∗
γ1 and fr = f ∗

γσ(p2) .

Suppose now that e1 f1 + . . . er fr = 0 then by virtue of Lemma 1 and 2, e1 = . . . er = 0

since η11, . . . , η4σ(p2) = 0 by identifiability and illustrations above. Thus making the

set of functions in f̄ (x, y, γ, γ0) linearly independent which establishes P1 as required.

Assuming P0 and P1 we invoke theorem 3.2 in [55] as follows by first recalling

that Tn(k) = sup
g∈Gk

ln (g) − ln ( f0) and noting that:

Tn(k)
d
→

1
2

sup
d∈D

ξ2
d1ξd≥0
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and

Tn(q)
d
→

1
2

sup
d0∈D0

ξ2
d0

1ξd0≥0,

where D is the subset of the unit sphere of H (Hilbert space) of functions of the

form 1
N(θ)

(∑q
l=1 π

0
l

∑k
i=1 δ

l
i

D1
i f
γl,0

f0
+

∑p−q
i=1 λi

fγi

f0
+

∑q
l=1 ρl

f
γl,0

f0

)
and ξd is the Gaussian process

indexed by D as defined in [55].

So following from theorem 3.6 in [55] we have that:

Vn = sup
g∈Gk

ln
g
f0
− sup

g∈Gq

ln
g
f0

= ln

sup
g∈Gk

g
f0

sup
g∈Gq

g
f0

d
→

1
2

sup
µ∈U

ξ2
µ1ξµ≥0

It follows from above that Vn = Op(1), which gives us assumption A1 in Drton

and Plummer (2016).

Now we show that A2 in Drton and Plummer (2016) is also satisfied by the mix-

ture of regression model. We begin by adopting the simplistic forms g = g(xi, yi) and

f = f (xi, yi) respectively unless otherwise defined.

We further define the following three models; the first two are considered true models

and the last, false model:

Tn(k) = sup
g∈Gk

∑n
i=1 ln (g) −

∑n
i=1 ln ( f0), Tn(q) = sup

g∈Gq

∑n
i=1 ln (g) −

∑n
i=1 ln ( f0)

Tn(p) = sup
g∈Gp

∑n
i=1 ln (g) −

∑n
i=1 ln ( f0).

We notice from above that Tn(k) − Tn(q) = Op(1). In the same spirit of LRT and

following the approach adopted in [45] we may state the comparison between a false

model Tn(p) and a true model Tn(k) as follows:
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Tn(p) − Tn(k) = Tn(p) − Tn(q) + Tn(q) − Tn(k) = Tn(p) − Tn(q) − Op(1). (3.27)

We also note by the strong law of large numbers that:

1
n

∑n
i=1 ln (g)

a.s
→ E(ln(g)) and

1
n

∑n
i=1 ln ( f )

a.s
→ E(ln( f )), under the assumption that π̂

a.s
→ π, θ̂

a.s
→ θ and K̂

a.s
→ K

(and the parameters spaces are compact). It follows by Slut sky’s theorem that:

1
nTn(p) − 1

nTn(q) − 1
nOp(1)

a.s
→ sup

g∈Gp

E
(

ln g
f

)
− sup

g∈Gq

E
(

ln g
f

)
= sup

g∈Gp

E
(

ln(g)
)
− sup

g∈Gq

E
(

ln(g)
)
.

Recalling from equation 3.28 above we have that:

1
nTn(p) − 1

nTn(k)
a.s
→ sup

g∈Gp

E
(

ln(g)
)
− sup

g∈Gq

E
(

ln(g)
)

≤ −

[
inf

g∈Gp

(
− ln

(
E(g)

))
+ sup

g∈Gq

ln
(
E(g)

)]
= −∆, by Jensen’s inequality where ∆ > 0 and

p < q.

Thus we conclude that

P
(

1
nTn(p) − 1

nTn(q) ≤ −∆
2

)
→ 1 for n→ ∞, and so

Tn(p) − Tn(q) = sup
g∈Gp

∑n
i=1 ln(g) − sup

g∈Gq

∑n
i=1 ln(g) = ln

sup
g∈Gp

∏n
i=1 g

sup
g∈Gq

∏n
i=1 g ≤ −n∆

2 . It follows that

sup
g∈Gp

∏n
i=1 g

sup
g∈Gq

∏n
i=1 g

≤ exp{−n ∆
2 }

which is akin to A2 in Drton and Plummer 2016.
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Finally A3 in Drton and Plummer 2016 follows immediately from [44] and [45]

by recalling that the learning coefficient pertaining to the mixture of regression as

discussed earlier is bounded as follows: λi j ≤
1
2 [6i+ j−1] ∀ j < i. We assumed that the

multiplicity mi j = ml = meek = 1 for some i, j, k, l ∈ I. Denote the lexicographic order

on R2 by ≺ and note that for any model indexed by j, k ∈ I and sub models indexed by

i, l ∈ I for all i < j < k and l < i < j we can easily check that (λi j,−mi j) ≺ (λeek,−meek)

and likewise (λl,−ml) ≺ (λi j,−mi j). For instance for any model with indices j = 3, k =

4 ∈ I and sub models with indices l = 1, i = 2 ∈ I, it is obvious that (λ32,−1) ≺

(λ42,−1) ⇐⇒ (18/2,−1) ≺ (25/2,−1) and similarly (λ31,−1) ≺ (λ32,−1) ⇐⇒ (9,−1) ≺

(19/2,−1) respectively.
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Chapter 4 A Singular Flexible Information Criterion From A Mixture of

Linear Regressions Perspective

4.1 Introduction

In this chapter we will establish a novel model selection criterion for mixture of re-

gression models called the SFLIC (Singular Flexible Information Criterion). In the

more basic setting of an ordinary mixture, SFLIC is a hybrid between FLIC[27] and

sBIC [44]. The SFLIC developed in this work is methodologically different from that

in [45], in that the modeling framework here is a mixture of regression model contrary

to that of [45] which is a heirarchical mixture model setting, making the derivation

approaches very different. The following steps will be traversed to fully develop this

new criterion.

1. First we will identify a penalty that will increase or decrease depending on

whether there is apparent homogeneity or heterogeneity in the mixture problem

at hand. The chosen penalty will also possess the ability to sandwich the

criterion between some singular versions of AIC and BIC (sAIC and sBIC if

you will); so that when the criterion is very liberal it will bear the mark of

sAIC and when it is very conservative it will resemble the sBIC. We may define

the sAIC as the AIC for a singular model (i.e. AIC with a learning coefficient

instead of the number of parameters). In other words sAIC may be defined as

158



2∗ loglik−2∗λ and sBIC may be defined as 2∗ loglik−2∗λ∗ log(n). Both sAIC

and sBIC, although slightly different from AIC and BIC, account for singularity

of the model.

2. Secondly, we will adapt Pilla and Charnigo’s(2007) bivariate function for a

vector outcome (contrary to the scalar outcome in Pilla and Charnigo(2007)).

This function was chosen because as part of the penalty, it will exhibit the

characteristics described above.

3. Thirdly, since our goal is to create a criterion that works in the general settings

work as described by Drton and Plummer(2016), we will adopt that general

setting but replace the penalty in Drton and Plummer (2016) with the penalty

established here and call it SFLIC. Importantly Drton and Plummer(2016) did

not consider specifically a mixture regression model.

4. Fourthly, we examine the statistical properties of the new criterion in regards

to determine if it converges in probability to the correct order. That is, does

m̂ := argmaxm∈{1,2,..,M}S FLICm
p
→ m0 where m0 is the true order of the model?

4.2 Deduction of Within and Between Covariance Matrices

To address objective one regarding penalty formulation, we will appeal to the under-

lying concept of ANOVA and compare component specific fitted models to component

specific outcomes on one hand; and on the other, compare the component specific

fitted models to a weighted model fitted to all the components. The former com-

parison will be the within variance covariance structure and the latter, the between
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variance covariance structure.

Within Variance Covariance Matrix Derivation

By definition the residual of a fitted regression model is the difference between

the observed and the predicted outcomes. For the purposes of our mixture re-

gression problem we more explicitly represent the residual for rtaubeta on race as:

êi1 j = Yi1 j− (β̂01 j + β̂11 jXi) conditional on being in component j and similarly represent

the residual resulting for rptaubeta on race as êi2 j = Yi2 j − (β̂02 j + β̂12 jXi). (This can

be generalized to multiple covariates.)

In essence êi1 j will measure the distance from Yi1 j to Ŷi1 j if we know that subject

i is in component j, where i = 1, 2, ..., n and j = 1, 2, ..,m, m being the number tem-

porarily assumed known mixture components in the model. Thus i1 j will correspond

to the ith observation for outcome one (in this case rtaubeta) if assumed in the jth

mixture component.

Using the definition above for residuals we can estimate the hard and soft classifi-

cation aggregated within variances (similar to generalized variance in a multivariate

setting) as follows:

Hard Classification

Whm :=
m∑

j=1

 n∑
i

1i jê2
i1 j

n∑
i

1i jê2
i2 j −

 n∑
i

1i jêi1 jêi2 j

2 (4.1)

where 1i j = 1P̂i j=max1≤k≤m P̂eek
. In words, the indicated condition says that for person
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i, the conditional probability of belonging to component j is greater than or equal

to the conditional probability of belonging to component k for any k. Whm is the

summation of component specific determinants.

Soft Classification

Wsm :=
m∑

j=1

 n∑
i

P̂i jê2
i1 j

n∑
i

P̂i jê2
i2 j −

 n∑
i

P̂i jêi1 jêi2 j

2 (4.2)

where P̂i j is the posterior probability of individual i belonging to component j given

all the information we know about this individual.

Between Variance Covariance Matrix Derivation

Here we aim to examine the variation between each component’s fitted model

and the weighted average of all the models fitted to the various components. This

will quantify how different the model fitted to a given component compares to the

weighted average of the rest. We begin by drawing analogy to one way ANOVA and

define the subject specific contribution to between variance in the context of mixture

of linear regressions as follows:

The between variance resulting from assignment of subject i to component j re-

garding rtaubeta is:

B̂2
i1 j :=

(β̂01 j + β̂11 jXi) −
m∑
l

π̂l(β̂01l + β̂11lXi)

2

(4.3)
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where π̂l is the proportion of membership in component l and the between variance

from rptaubeta is

B̂2
i2 j :=

(β̂02 j + β̂12 jXi) −
m∑
l

π̂l(β̂02l + β̂12lXi)

2

(4.4)

where m is the number of components.

Verbally we may interpret B̂i1 j as the distance from Ŷi1 j knowing that subject i is in

component j from Ŷi1. if we don’t know to which component subject i belongs, where

Ŷi1. =
∑m

l π̂l(β̂02l + β̂12lXi).

The corresponding hard and soft classification summation of component specific

determinants are as follows:

Hard Classification

Bhm :=
m∑

j=1

 n∑
i

1i jB̂2
i1 j

n∑
i

1i jB̂2
i2 j −

 n∑
i

1i jB̂i1 jB̂i2 j

2 (4.5)

Soft Classification

Bsm :=
m∑

j=1

 n∑
i

P̂i jB̂2
i1 j

n∑
i

P̂i jB̂2
i2 j −

 n∑
i

P̂i jB̂i1 jB̂i2 j

2 , (4.6)

where P̂i j is as previously defined.
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4.3 Definition and Derivation of SFLIC

Having established aggregated within and between variances for the mixture of linear

regression model, we proceed to define a statistic that will be used to later describe

the degree of heterogeneity in the fitted mixture models.

Define

τ(Y) :=
1
M

M∑
k=1

Wk(Y)
Bk(Y) + Wk(Y)

(4.7)

where Wk(Y) is either Wkh(Y) or Wks(Y) and likewise for Bk(Y).

We are thus averaging Wk
Bk+Wk

ratio over all models under consideration. It follows

that large(small) values of τ(Y) may be indicative of more homogeneity(heterogeneity)

in the data.

According to Pilla and Charnigo (2007) we can define a bivariate function such

that:

B(n, τ(Y)) =
Φ((log (

√
n)τ(Y))) − Φ(1)

1 − Φ(1)
(4.8)

Using the bivariate function above we define the singular flexible information cri-

terion (SFLIC) as follows inspired by Drton(2016):
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S FLICk := 2 log P[Yn|π0,Mk] − 2λk(π0) log (n)B(n,τ(Y)) (4.9)

also assuming a multiplicity factor of 1 as in Drton (2016) and Fan(2014) where

the terms in 4.11 are similar to those defined in chapter two under ’Review of related

concepts’.

We deduce the following observations from the SFLIC:

1) If n→ ∞ then B(n, τ(Y))
a.s
→ 1 because as n→ ∞

B(n, τ(Y)) =
Φ((log (

√
n)τ(Y))) − Φ(1)

1 − Φ(1)
≥

Φ((log (
√

n)
1
M )) − Φ(1)

1 − Φ(1)
a.s
→ 1

and so SFLIC becomes

S FLICk = 2 log P[Yn|π0,Mk] − 2λk(π0) log (n)

which is akin to sBIC.

2) If τ(Y) is small then B(n, τ(Y)) ≈ 0 because

Φ((log (
√

n)τ(Y))) ≈ Φ(1) =⇒
Φ(1) − Φ(1)

1 − Φ(1)
= 0

. Thus SFLIC will be approximately

S FLICk = 2 log P[Yn|π0,Mk] − 2λk(π0),

which is akin to sAIC or how the AIC might be defined for a singular model.
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Thus the SFLIC is sandwiched between sBIC and sAIC and drifts to the former

as n tends to infinity.
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4.4 Consistency of SFLIC

In a similar analogy to Drton (2016) we consider a finite set of true models Mi : i ∈ I

and a fixed data generating distribution π0 ∈
⋃

i∈IMi
. Mi is true if πi ∈ Mi else Mi is

false. A smallest true model Mi is a true model whose sub models are all false model.

That is if j ≺ i⇒ π0 < M j.

Mi is said to have a smaller Bayes complexity than M j if (−λi(π0),Mi(π0)) < (−λ j(π0),M j(π0))

for π0 ∈ Mi. This is equivalent to λi(π0) > λ j(π0). Of note the Bayes factor is de-

fined as nλi(π0)(log n)mi(π0)−1 where λi(π0) is the learning coefficient and mi(π0) is its

corresponding multiplier. The former and latter together describes the complexity

of model Mi under the data-generating distribution π0.

The following assumptions have been shown to be consistent with the proposed

mixture of regression models.

Assumptions proposed by Drton (2016)

A1) for any two true models Mi and M j

P(Yn|π̂k,Mk)
P(Yn|π̂i,Mi)

= Op(1)

A2) For any pair of a true model Mi and false model Mk ∃ a constant δeek > 0

such that

P(Yn|π̂k,Mk)
P(Yn|π̂i,Mi)

≤ e−δeekn

as n→ ∞
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A3) Let Mi and Mk be any two true models such that j � i and l � k index any

two respective sub models. Then the Bayes complexity is monotonically increasing

in the sense (−λi j,mi j) < (−λi j,mkl) if i ≺ k and j � l.

Theorem 4.1 (Consistency): Ler Mi be the model selected by maximizing the

SFLIC, that is

î = argmaxi∈IS FLIC(Mi). (4.10)

Then under assumptions A1-A3, the probability that Mi is a true model of minimal

Bayes complexity and thus the smallest true model tends to one as n goes to infinity.

it suffices to show that:

1. The SFLIC of any true model is asymptotically larger than that of any false

model.

2. SFLIC of a true model can be asymptotically maximal only if the model mini-

mizes Bayes complexity among the true models.

Proposition 4.1

Under assumption (A2) above, if model M′
i is true and model M′

k is false then the

probability that

S FLIC(M′
i ) > S FLIC(M′

k)→ 1, n→ ∞ (4.11)

To show prove proposition 4.1 we fix j′ � i′ and l′ � k′ and let M′
k and M′

i be

respectively false and true models. Then according to assumption A2 in Drton(2016)
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we have that

P(Yn|π̂
′
k,M

′
k)

P(Yn|π̂
′
i ,M

′
i )
< e−δi′k′n .

Thus there exist ε > 0 such that

P
[∣∣∣∣∣∣P(Yn|π̂

′
k,M

′
k)

P(Yn|π̂
′
i ,M

′
i )
− e−δi′k′n

∣∣∣∣∣∣
]
→ 0, n→ ∞ (4.12)

Hence following the definition of consistency we have that

P(|S FLICk − S FLICi|< ε)

= P(|P(Yn|π̂
′
k,M

′
k) − P(Yn|π̂

′
i ,M

′
i ) − log(n)B(n,τ(y))(λk(π0) − λi(π0))|< ε)

≤ P(|P(Yn|π̂
′
k,M

′
k) − P(Yn|π̂

′
i ,M

′
i )|< ε/2) + P(|log(n)B(n,τ(y))(λk(π0) − λi(π0)|< ε/2)

But

P(|log(n)B(n,τ(y))(λk(π0) − λi(π0)|< ε/2) = P
(∣∣∣log(n)B(n,τ(y))

∣∣∣ < ε/2
λk(π0) − λi(π0)

)
→ 0, n→ ∞

(4.13)

and

P(|P(Yn|π̂
′
k,M

′
k) − P(Yn|π̂

′
i ,M

′
i )|ε/2) = P(|Op(P(Yn|π̂

′
i ,M

′
i )) − P(Yn|π̂

′
i ,M

′
i )|< ε/2)

= P(|P(Yn|π̂
′
i ,M

′
i )(Op(1) − 1)|< ε/2) = P

(
|P(Yn|π̂

′
i ,M

′
i )|<

ε/2
(Op(1) − 1)

)
→ 0, n→ ∞

(4.14)

As a result

P(|S FLICk − S FLICi|< ε)→ 0, n→ ∞ (4.15)
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4.5 Application of SFLIC to the ADNI data

The SFLIC was applied to the ADNI data, specifically to the mixture of regression

model with race as covariate. The SFLIC favored a 2 component (S FLIC ≈ 746.8)

mixture model slightly over a three component (S FLIC ≈ 743.5) and in the apoe4

mixture model, SFLIC selected two components (S FLIC ≈ 747.5) as opposed to three

components (S FLIC ≈ 744.6). When the SFLIC was applied to the race and apoe4

mixture of regression model, it once again favored a two component (S FLIC ≈ 746.5)

to a three component (S FLIC ≈ 743.4). Thus in all three models SFLIC (similar to

SBIC considering the model with more stable standard errors) selected the number

of components that produced stable standard errors as seen in chapter 3.

169



Chapter 5 Simulation Studies

5.1 Introduction

Mixture modeling applications have been well received in many fields for identifying

subgroups underlying a given population in a non-parametric manner. For instance

mixture modeling has been applied in market response models and multidimensional

scaling Sarstedt and Schaiger(2008). Andrews and colleagues (2002) also identified

finite mixture modeling as a comparable model to the well received hierarchical Bayes

conjoint analysis models in terms of model fit, prediction and robustness with regards

to individuals decision making in market research. Crawford et. al(2012) recently ap-

plied mixture models to classify lake chemistry distributions into lake sub population.

5.2 Overview of Approach

The foregone background suggests that indeed mixture modeling is widely used as

a tool in many fields to address varied problems and to make important decisions.

But to be able to make a well informed decisions based on this modeling approach,

it is imperative for one to identify the correct number of heterogeneity underlying

the population on interest. To this end, and as we have already elaborated in the

previous chapters, AIC and BIC are popular in this regard. Drton and colleagues

(2016) have also added sBIC which is both suitable for modeling in the presence of
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identifiability issues and tends to be less extreme in comparison to AIC and BIC.

Furthermore, SFLIC was developed specifically to be able to address model selection

problems in mixture of regressions in the presence of identifiability issues. However

no study to the best of our knowledge has compared the performance of these four

criteria in regards to their ability to correctly identify the heterogeneity in the data.

The importance of a correct identification of the different segments underlying the

population from which the data are obtained, is invaluable to reach reasonable deci-

sions from any analysis (Sarstedt et. al (2008).

As a result, the purpose of this chapter is to conduct simulation study to compare

the performance of the novel model selection criterion developed in chapter four to

AIC, BIC and SBIC. In our quest we will further compare the performance of each

of the criteria to random chance, proportional chance and maximum chance criteria

as suggested by Sarstedt and Schaiger(2008). In particular our study will seek to

address the following goals:

1. For a known number of mixing component in a mixture of regression model

how well does SFLIC perform in comparison to AIC, BIC and sBIC.

2. For varying sample sizes and known number of mixing component in a mixture

of regression model how well does SFLIC perform in comparison to AIC, BIC

and sBIC.
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5.3 Simulation Design and Results

Three simulations were conducted namely; the race mixture of regression model

simulation, the Apoe4 mixture of regression model simulations and the race and

Apoe4 mixture model simulations. Each simulations followed the steps outlined

below:

1. The covariates were drawn from Bernoulli distribution with a prespecified prob-

ability of 0.9 for race and 0.27 for Apoe4. These probabilities were determined

from the original data.

2. The biomarker ratios were also drawn from two component normal mixture of

regression.

3. FlexMix package[41] in R was utilized to obtain a finite mixture of regression

with one or two covariates depending on the model. The number of components

k was varied from 2 to 4 and SFLIC, AIC, BIC and sBIC were used to select

the correct number of components which are called their success rates.

4. The simulation exercise was repeated for 7 sample sizes from 500 to 5000 in an

uneven increment and 8000.

5. The performances of the model selection criteria were displayed in a success rate

by sample size graph. The simulation size was fixed at B = 50. This simulation

size was chosen to make the process less expensive regarding computational

memory.
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Simulation Results: race mixture model

The results of the race mixture model simulation shows the following:

1. All the model selection criteria performed better than the random chance cri-

terion (0.33) and the proportional chance (0.32 + 0.32 + 0.42 = 0.34).

2. Overall BIC was sub optimal in comparison.

3. SFLIC and AIC performed slightly better than sBIC.

4. For sample sizes less than or equal to 4000 but greater than 2000, AIC and

SFLIC performed about the same.

5. For sample sizes below 3000 SFLIC performed the slightly better than sBIC

and AIC.

6. For sample larger than 4000, AIC performed slightly better than SFLIC.

Simulation Results: Apoe4 mixture model

The results of the Apoe4 mixture model simulation shows the following:

1. All the model selection criteria performed better than the random chance cri-

terion (0.33) and the proportional chance (0.32 + 0.32 + 0.42 = 0.34).

2. Overall BIC was sub optimal in comparison.

3. Overall SFLIC and AIC performed slightly better than sBIC.

4. For sample sizes from 2000 to 4500, the SFLIC performed and AIC performed

about the same.
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5. For sample larger than 4500, AIC performed slightly better than SFLIC.

Simulation Results: race and Apoe4 mixture model

The results of the race and Apoe4 mixture model simulation shows the following:

1. All the model selection criteria performed better than the random chance cri-

terion (0.33) and the proportional chance (0.32 + 0.32 + 0.42 = 0.34).

2. Overall BIC was sub optimal in comparison.

3. Overall SFLIC and AIC performed slightly better than sBIC for smaller sample

sizes.

4. For sample sizes between to 2000 and 2500 SFLIC performed slightly better

than AIC.

5. For sample sizes above 2500 SFLIC performed the slightly better than sBIC

and AIC.

6. For sample larger than 2500, SFLIC, AIC and sBIC all performed about the

same.

7. All four criteria had a success rate at or better than 37% and they all seem to

perform compartively better in the race only simulations.

8. None of the criteria achieved 100% success rate partly because the sample

size increases, the penalty grows logarithmically (refer to chapter 4) and thus

SFLIC and SBIC become very conservative behaving more like BIC.
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Figure 5.1: Simulation comparing the success rates of SFLIC, AIC, BIC and SBIC
with respect to the race mixture of regression model. Here the true mixture is k=2
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Figure 5.2: Simulation comparing the success rates of SFLIC, AIC, BIC and SBIC
with respect to the apoe4 mixture of regression model. Here the true mixture is k=2
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Figure 5.3: Simulation comparing the success rates of SFLIC, AIC, BIC and SBIC
with respect to the race and apoe4 mixture of regression model. Here the true
mixture is k=2
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Chapter 6 Supplementary Chapter

6.1 Introduction

This section addresses models that were fitted that were comparable to those dis-

cussed in this work however fell short on some key elements. Below we addressed

each model and provide substantive reasons for their exclusion in the main work.

6.2 Review of Other Comparable Models Fitted As Part of This Work

1. The use of the raw CSF biomarkers have been used by De Meyer and colleagues

(2010) to predict AD. They also used Abeta/Ptau ratio. The difference however

lies in their objective, which was to identify AD patterns in an independent,

and unsupervised way. This also influenced the data they used.

2. When we fitted Abeta and ptau, AIC and sBIC choose three components model

against a four component model selected by BIC. When the grouping probabili-

ties were fitted in the Cox reg model we obtained an unadjusted c− stats = 66%

and adjusted c = 69.5% (results not shown). In this case the unadjusted c-

statistic is the c-statistic resulting from fitting the Cox model with only the

grouping probabilities. Adjusting the Cox model for covariates results in the

adjusted c-statistic. So comparatively, this model is sub optimal to the one

created with the ratios in terms of the c-statistic. We noted also that just

as in the ratio model, this model predicts being of white race as protective
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with a reduced risk of transitioning. Also the posterior plots indicated lots

of misclassifications in the model. In addition the medium risk was no longer

significant after accounting for other risk factors. This suggests that the pos-

terior probabilities from the raw biomarker model may not possess the same

predictive abilities as that of the ratios. Indeed it is possible that account-

ing for an appropriate risk could wipe the effect of the grouping probabilities

entirely. If this were the case, then mixture modeling apporach may not be

worthwhile, however, the identified appropriate risk factors will serve the in-

terest of the clinician whose key interest is to provide cure without endulging

in complicated metholodolgies such as mixture modeling.

3. Putting all three biomarkers in the model resulted in a c-statistic of 58.4%

(unadjusted) and 69.4% (adjusted) for the hard classification model (adjusted

67.5%) and (unadjusted 62.4%) for the soft classification model. When we

adjusted both hard and soft classification model for RAVLT, the c-statistics

were respectively 71% and 72% (results not shown). The estimated group

probabilities also had larger standard errors, which resulted in wider confidence

intervals. Again this model is sub optimal in comparison to the ratio model.

The group probability failed the proportional hazard test in the presence of the

other risk factors.

4. We conclude that the raw biomarkers may not possess the optimal grouping

probabilities needed for predicting future cognitive status of people who are

cognitively intact.
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5. Using pca was not helpful in predicting either. In addition pca loses meaning

due to the fact that it is a linear combination of the predictors (in this case the

biomarkers) and we’re not sure what the linear combination of the biomarkers

really means.

6. The ratio biomarkers are enhanced to identify risks in the sense that if we

keep the numerators tau and ptau fixed and reduce the denominator abeta,

then the entire fraction will be enhanced and thus provide an indicator of high

risk of transitioning. On the other hand, using just the raw biomarkers may

not be enhanced enough to capture the potential transitioning. In essence the

ratio is accounting for the effect of abeta indirectly and incorporating it in the

modeling procedures.

7. Also the use of ratios affords us the flexibility of having two derived quantities

that move in the same direction in terms of low , medium or high risks. That

is the ratios if low then low risk and if high then high risk is preferred to an

inverse one in using something like abeta and tau or abeta and ptau.
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