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ABSTRACT OF THESIS 
 

ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT 
 
 
The perioperative process in hospitals can be modelled as a 3-stage no-wait flow shop. The 
utilization of OR units and the average waiting time of patients are related to makespan 
and total completion time, respectively. However, minimizations of makespan and total 
completion time are NP-hard and NP-complete. Consequently, achieving good 
effectiveness and efficiency is a challenge in no-wait flow shop scheduling. The average 
idle time (AIT) and current and future idle time (CFI) heuristics are proposed to minimize 
makespan and total completion time, respectively. To improve effectiveness, current idle 
times and future idle times are taken into consideration and the insertion and neighborhood 
exchanging techniques are used. To improve efficiency, an objective increment method is 
introduced and the number of iterations is determined to reduce the computation times. 
Compared with three best-known heuristics for each objective, AIT and CFI heuristics can 
achieve greater effectiveness in the same computational complexity based on a variety of 
benchmarks. Furthermore, AIT and CFI heuristics perform better on trade-off balancing 
compared with other two best-known heuristics. Moreover, using the CFI heuristic for 
operating room (OR) scheduling, the average patient flow times are decreased by 11.2% 
over historical ones at University of Kentucky Health Care. 
 
KEYWORDS: Operating Room Scheduling, No-wait Flow Shop, Makespan and Total 
Completion Time, Trade-off Balancing, Heuristics. 
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Chapter 1 Introduction 

1.1 Background 

Operating rooms (OR) are the most cost and revenue intensive areas in hospitals. 

In 2002, there were 36.5 million hospital stays in the United States, with an average length 

of stay of 4.5 days and an average cost of $10,400 per stay. About 21.8% of hospital stays 

in 2012 were surgical (Weiss and Elixhauser, 2014). In surgical procedures, ORs have been 

estimated to account for over 40% of total expenditure of a hospital (Denton et al., 2007). 

On the one hand, the operating rooms are one of most important resources, which has the 

largest cost and revenues (Ghazalbash et al, 2012). Mean hospital costs of surgical stays 

are $21,200 in 2012, which is 2.5 times the mean costs of $8,500 for medical stays and 

nearly 5 times the mean costs of $4,300 for maternal and neonatal stays (Moore et.al, 2014). 

On the other hand, because of the aging population, there is a sharply increasing trend of 

demand for surgical services in recent years (Etzioni et al., 2003). There were around 51 

million inpatient surgical procedures performed in the United States in 2010, according to 

the latest data from the Centers for Disease Control and Prevention (Hall and Owings, 

2014).  

Long waiting time, a large number of emergencies, and resource overload are 

coming along with this increasingly demand in healthcare systems (Meskens et.al 2013). 

Therefore, hospital managers are continuously looking for new methods to increase the 

utilization of OR units and to reduce the average waiting time of patients (Cardoen et al., 

2010). From flow shop perspective, the utilization of an OR unit is defined as the workload 

divided by the completion time of the last patient, where workload is the sum of case times. 

The average waiting time is defined as the length of time that a patient stays in the 



2 
 

perioperative (periop) process, which consists of the preoperative (preop), intraoperative 

(intraop), and postoperative (postop) stages. Average waiting time can be represented by 

the average flow time in a flow shop, which is the total completion time divided by the 

number of patients. Minimization of maximum completion time or makespan can improve 

OR utilization, which directly reduces surgical overtime and its cost. Minimization of 

average waiting time can improve patient flow through the periop process, which improves 

patient throughput and generates more revenue.  

1.2 Motivation 

OR scheduling is extraordinarily complicated. The scheduling process must take 

different surgical specialties into consideration, each of which has different priorities, 

procedures, and case times. It also should consider different resources for specialties and 

surgical procedures. Resources include human resources (e.g., surgeons, anesthesiologists, 

nurses, and staff), equipment used in different periop stages (e.g., induction equipment, 

surgical instruments, and electro-medical equipment). In addition, the scheduling process 

must take into account the disturbances across the periop process, such as emergency cases, 

cancellations, or no-shows, variations in case times due to surgical complexities, post-

anesthesia care units (PACU) boarding, and length of stay in the periop process (Bosse et 

al., 2013). Another consideration is about different preferences of stakeholders involved in 

scheduling processes (Glouberman and Mintzberg, 2001), which might possibly be in 

conflict. 

Typically, the three stages of the periop process are shown in Figure 1.1 (Gupta, 

2007). There are many operations in each stage. For example, the collection of patient 

information and the preparation for surgeries occur in the preop stage, surgeries occur in 
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ORs in the intraop stage, and PACU, intensive care units (ICU), or ward for recovery are 

in the postop stage. Each stage requires different resources to accommodate specific patient 

needs. For simplicity, we model the OR scheduling problem across the periop process as a 

3-stage no-wait flow shop. 

 

Figure 1.3: The perioperative process 

The three stages in the periop process are tightly coupled, because performance of 

one stage affects the performance of adjacent stages. This is also the characteristic of a 3-

stage no-wait flow shop. For example, the delay of patients from a preop unit to ORs lowers 

OR utilization, especially for the first case (Roberts et al., 2015), which is the performance 

of stage 1 affects that of stage 2. Marcon and Dexter (2006) studied the impact of OR 

performance on PACU staffing, and found the performance of stage 2 affects that of stage 

3. These two examples show how upstream stages affect downstream stages. Downstream 

stages can affect upstream stages as well. For example, when all postop beds are occupied, 

blocking occurs between the intraop and postop stages. Consequently, case times are 

extended because patients cannot be transferred out of ORs in the absence of recovery beds 

in PACU or ICU (Augusto et al., 2010; Wang et al., 2015). This scenario is accentuated 

with PACU boarding, which means patients stay in PACU overnight (Price et al., 2011). 

Therefore, the 3-stage no-wait flow shop is suitable to model the periop process, in which 

no waiting time between stages is allowed.  

Preoperative Intraoperative Postoperative
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To evaluate OR scheduling across the periop process, there are two main 

performance measures: OR utilizations and average waiting time. From flow shop 

perspective, Cmax,2 as the maximum completion time of the intraop stage affects OR 

utilization, because utilization equals to the workload divided by the working period, and 

the working period is equal to the completion time of the last job (Cmax,2) minus the start 

time of the first job. 𝐶𝐶̅=∑Cj,3/n as the average completion time of the postop stage affects 

average waiting time, which is the total completion time in the postop stage (∑Cj,3) divided 

by the number of patients (n) (Pinedo, 2014). There are several other objectives to evaluate 

the performance of the periop process. The objective of throughput is closely related to the 

average patient waiting time. According to the Little’s Law, the average inventory in a 

system equals the average cycle time (which includes waiting time and processing time) 

times the average throughput (Little, 1961). The objective of leveling resources is mainly 

to develop a schedule by smoothing resource occupancies without over usage. Leveling 

resources involves the utilization and average flow time in each of the three stages across 

the periop process. Therefore, maximum completion time and average completion time are 

most important performance measures, which define the utilizations and average waiting 

times. 

ORs are the largest cost center and the greatest revenue source simultaneously for 

hospitals (Ghazalbash et al, 2012). OR scheduling affects the progression of surgical cases 

going through the periop process. Most hospitals use a three-phase block scheduling 

framework to plan this progression. OR planning is phase 1, focusing on long-term 

strategies, where resources and services are allocated to OR blocks. OR scheduling is phase 

2, focusing on medium-term tactics, where a master surgical schedule (MSS) is generated. 
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The MSS generates the number of available surgical suites, operation hours, and OR block 

times for a type of services. Case sequencing is phase 3, focusing on short-term execution 

of MSS, where daily surgical cases are sequenced by operating rooms (Banditori et al., 

2013, Cardoen et al., 2010).  

Different sequencing methods can address stakeholders’ objectives differently. For 

example, the longest processing time (LPT) rule is recommended to improve OR utilization 

(Magerlein and Martin, 1978; Gupta and Denton, 2008). The shortest processing time (SPT) 

rule is recommended to reduce the number of case delays and to speed up patient flows 

across the periop process (Testi et al., 2007). Both approaches give rise to schedule slippage 

in that we cannot generate the best solutions of OR utilization and patient time 

simultaneously through LPT and SPT rules. Therefore, it’s of great interest and importance 

to balance different performance measures and to achieve adaptive scheduling and control. 

1.3 The challenges in no-wait flow shop scheduling 

Given the above complexities in OR scheduling across the periop process, we 

model it as min(Cmax and ∑Cj) problems for a 3-machine no-wait flow shop. Therefore, we 

have the following challenges in no-wait flow shop scheduling. 

For the convenience of describing scheduling problems in no-wait flow shop, we 

use Fm |nwt| Cmax to denote minimization of makespan and Fm |nwt| ∑Cj to denote 

minimization of total completion time, where Fm is for a flow shop problem with m 

machines, nwt for the constraint of no-wait, and Cmax for the objective to minimize 

maximum completion time and ∑Cj for the objective of minimize total completion time 

(Graham et al., 1979). 
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No-wait flow shop scheduling problems are categorized as combinatorial 

optimization problems in which the feasible region is countable (Garey and Johnson, 2002). 

The complexity of different classes of problems in combinational optimization is shown in 

Figure 1.2. Fm |nwt| Cmax problems have been proved to be NP-hard when the number of 

machines is larger than or equal to three, and Fm |nwt| ∑Cj problems are NP-complete when 

the number of machines is larger than or equal to two (Garey and Johnson, 2002; Röck, 

1984). For an NP-complete or NP-hard problem, we cannot describe the problem by 

polynomials completely, or in other words, we cannot optimally solve the problem in a 

polynomial time. As a result of the NP-hardness or NP-completeness, it is extremely time 

consuming to find optimal solutions by using exact methods even for moderate-scale 

problems (Ding et al., 2014). Consequently, the complexity of these problems makes it 

difficult to optimally improve OR utilization and/or reduce average waiting time, although 

optimal solutions can be derived for 2-machine flow shop production to minimize Cmax 

(Johnson, 1954), and for 1-machine production to minimize ∑Cj. (Pinedo, 2014).  

 

Figure 1.4: Decision making problems and complexity (Samarghandi, 2011) 
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Given 𝐶𝐶̅=∑Cj/n, we can see that the completion time of the last job n (Cmax) is 

included in ∑Cj. If n is fixed, minimization of total completion time, min(∑Cj), is the same 

as min(𝐶𝐶̅ ). However, min(Cmax) does not necessarily mean min(∑Cj), or vice versa, 

although Cmax is included in ∑Cj. These two scheduling objectives are inconsistent. In the 

investigation of OR scheduling methods (Li et al., 2014), the authors found these two 

common OR scheduling objectives were inconsistent. One objective of min(Cmax) is to 

minimize the maximum completion time for the last surgical case of the day. The second 

scheduling objective of min (∑Cj) is to minimize the total completion time of an OR’s daily 

slate, which is analogous to minimizing the average completion time if the number of 

surgeries (n) is fixed, i.e., to min (𝐶𝐶̅), where j = 1,…,n. This inconsistency partially explains 

why delays can occur between any two perioperative stages -- improving utilization in any 

stage may reduce patient flow out of that stage, i.e., minimizing Cmax may maximize ∑Cj. 

Consequently, such inconsistency between min(Cmax) and min (∑Cj) makes it more 

difficult to improve OR utilization and reduce average waiting time at the same time, which 

is a multi-objective optimization problem. 

As OR management concerns evolve, on the one hand, the system changes over 

time and the relationship among system components creates inconsistencies in system 

performance (Davis et al., 2013; Beck et al., 2014; Pellegrino, 2015). Therefore, an OR 

scheduling process must adapt to changing relationships and facilitate OR management as 

concerns evolve. On the other hand, OR schedules are constructed as static timetables, with 

little ability to adapt to dynamic changes in demand (e.g., emergency cases or case time 

variation). With the time goes by, OR planning, scheduling, and control are interacted with 

each other. For example, if the performance at this time is not good as expected, it may 
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affect the schedulers to adjust scheduling at next time, or even affect the OR manager to 

change resource allocation at the next planning time. Consequently, the complexity of the 

interaction between OR planning, scheduling, and control makes it difficult to achieve 

adaptive scheduling in perioperative process. 

1.4 The contribution 

The contribution of our work comes from three aspects: (1) new methods to 

min(Cmax) and min(∑Cj) for no-wait flow shop respectively; (2) a trade-off balancing 

function to evaluate trade-off between Cmax and ∑Cj; (3) a validation of the CFI heuristic 

based on the historical data at University of Kentucky HealthCare (UKHC), along the time 

horizon. 

First, we propose an initial sequence algorithm (ISA), based on which we propose 

an average idle time (AIT) heuristic to min(Cmax), and a current and future idle time (CFI) 

heuristic to min(∑Cj) for no-wait flow shop scheduling. In the ISA, we treat current idle 

time and future idle time differently by a lever concept introduced in Li et al (2011). 

Consequently, in the initial sequence, we assign higher weights to current idle times 

generated by jobs in the head of a sequence than those generated by jobs in the tail of the 

sequence. In both AIT and CFI heuristics, search techniques of insertion and neighborhood 

exchanging are used to further improve the solutions generated by the ISA. Based on a 

variety of benchmarks and randomly generated instances, our AIT and CFI heuristics 

perform better than other best-known existing heuristics for no-wait flow shop scheduling. 

Second, we introduce a trade-off balancing (TOB) function for no-wait flow shop 

scheduling to evaluate trade-off between Cmax and ∑Cj. In the evaluation scheme, we assign 
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different preferences to each objective. The results show that the proposed heuristics 

perform better than the LS (Laha and Sapkal, 2014) and CH (Li et al., 2008) heuristics. 

Third, we use statistical process control (SPC) and control charts to validate our 

CFI heuristic for operating room (OR) scheduling across the periop process in a healthcare 

system. The results indicate that potentially 3,000 additional patients could be served in a 

year if our CFI heuristic was applied for sequencing. 

1.5 The structure of this thesis 

The rest of the thesis is organized as follows: 

The chapter 2 provides a thorough literature review, including current status of 

heuristics to minimize the Cmax and ∑Cj, current status of multi-objective optimizations in 

no-wait flow shop scheduling, and statistical process control in OR scheduling.  

The chapter 3 gives the methodology of the proposed heuristics. The problem 

description of no-wait flow shop is provided first. Then the initial sequence algorithm (ISA) 

is proposed to generate the initial sequence. Based on ISA, the AIT and CFI heuristics are 

given in detail to minimize Cmax and ∑Cj, respectively. The increment objective method is 

introduced to reduce the computational complexity from O(n) to O(1) when using 

neighborhood exchanging technique to calculate the total completion time. 

The chapter 4 provides the results of case study. First, the performance of AIT and 

CFI heuristics will be compared with other existing heuristics based on a variety of 

benchmarks and generated data. Second, by using trade-off balancing (TOB) function, 

based on the Taillard’s benchmarks, the performances of the trade-off between Cmax and 

∑Cj for each heuristic are compared. Last, based upon the historical data at the University 

of Kentucky HealthCare, the SPC charts with the CFI heuristic and UKHC are presented.  
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The chapter 5 presents the conclusions and directions for future research. 
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Chapter 2 Literature review 

This chapter focuses on the literature review on three topics. First, heuristics 

currently for single objective optimization of no-wait flow shop scheduling are introduced, 

which are to minimize maximum completion time (Cmax) and total completion time (∑Cj), 

respectively. Second, heuristics currently for multi-objective optimizations of no-wait flow 

shop scheduling are presented. Finally, statistical process control (SPC) methods are 

introduced for operating room scheduling. 

2.1 Heuristics for no-wait flow shop to minimize Cmax and ∑Cj 

Minimizations of Cmax and ∑Cj are NP-hard and NP-complete problems for no-wait 

flow shop production, and it is extremely time consuming to find optimal solutions using 

exact methods for such problems. There are mainly two ways to find near-optimal solutions 

by using heuristics and meta-heuristics (Ruiz and Maroto, 2005). The heuristics can be 

grouped into constructive heuristic and improvement heuristics. The constructive heuristics 

build a feasible schedule from scratch, such as the NEH heuristic (Nawaz et al., 1983), 

while the improvement heuristics improve the performance of feasible schedules by 

applying some search techniques, such as neighborhood exchanging (Dannenbring, 1997). 

Meta-heuristics start from an initial schedule constructed by constructive or improvement 

heuristics, and generate better performance by iterations until a stopping criterion is 

satisfied, such as the computation time, the number of iterations, etc. Typical examples of 

meta-heuristics are simulated annealing (Ogbu and Smith, 1990), tabu search (Moccellin, 

1995), genetic algorithms (Murata et al., 1996). Compared to heuristics, meta-heuristics 

can generate better results in general, but have much higher computational complexities 
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and take much longer computation time to solve even for moderately scaled instances. 

Consequently, with such a high computation burden, meta-heuristics are not commonly 

applied in industry where problem scales are changing from moderate to large. Therefore, 

heuristics with small computational efforts are proposed to minimize Cmax and ∑Cj 

respectively in the thesis for adaptive scheduling. 

2.1.1 Heuristics for no-wait flow shop to minimize Cmax 

Table 2.1 shows a summary of the heuristics for the Fm |nwt| Cmax problems 

reviewed in a chronological order. 

Table 2.1: The summary of heuristics to minimize Cmax 
Year Author(s) Acronym Comments 

1976 Bonney and Gundry BG Based on a slope index 

1980 King and Spachis KS Minimum covering level 

1993 
Gangadharan and 

Rajendran 
GR 

The jobs with increasing trends in 

processing time are processed ahead 

1994 Rajendran RAJ 
Adjacent jobs match and put last job 

with short processing time 

2008 Framinan and Nagano FN 
Based on Farthest Insertion 

Travelling Salesman Procedure 

2008 Li et al. CH 
Based on job insertion and 

interchange techniques 

2009 Laha and Chakraborty LC 
Based on job insertion considering 

two consecutive jobs as a block 

2016 Ye et al. ADT Based on average departure time 

 

Bonney and Gundry (1976) and King and Spachis (1980) pioneered constructive 

heuristics for solving Fm |nwt| Cmax problems. Bonney and Gundry (1976) proposed a slope 
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index method to sequence jobs. King and Spachis (1980) proposed a minimum covering 

level (MCL) method for solving Fm |nwt| Cmax problems. 

Gangadharan and Rajendran (1993) and Rajendran (1994) proposed two heuristics, 

named GR and RAJ, to solve the same problem. GR heuristic first sequences jobs in an 

increasing or decreasing trend of their times, then uses an insertion technique to improve 

the performance of the initial sequence. RAJ heuristic makes the adjacent jobs “match”, 

similar to the GR heuristic based on the increasing or decreasing trend of a job, as much as 

possible in order to minimize the inter-job delays and has the last job with short processing 

time. The computational results showed that GR and RAJ heuristics were superior to the 

heuristics proposed by BG heuristic (Bonney and Gundry, 1976) and KS heuristic (King 

and Spachis, 1980).  

Framinan and Nagano (2008) proposed a new heuristic based on Farthest Insertion 

Travelling Salesman Procedure (FITSP) (Syslo, 1983), and compared this new heuristic 

with random ordering, descending sum of processing times, and RAJ initial sequence 

(Rajendran, 1994). The experimental results showed that the new heuristic performed 

better than other three heuristics. 

Based on the objective increment method, Li et al. (2008) proposed a composite 

heuristic (CH) using job insertion and exchange techniques, and experimental results 

showed that the CH heuristic performed better than the GR (Gangadharan and Rajendran, 

1993) and RAJ (Rajendran, 1994) heuristics and used the least CPU time for the same 

instances.  

Laha and Chakraborty (2009) proposed a constructive heuristic (LC) to solve Fm 

|nwt| Cmax problems. The principle of job insertion in the LC heuristic is that every two 
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consecutive jobs are selected as a block from the initial sequence, which is to be inserted 

into a partial sequence, and each job in the block is inserted into each possible position of 

the partial sequence. Through each insertion, choose the best partial sequence with the 

smallest makespan and update the partial sequence until all jobs from the initial sequence 

have been inserted into the partial sequence. The computational results showed that the LC 

heuristic was significantly better than the GR (Gangadharan and Rajendran, 1993), RAJ 

(Rajendran, 1994) heuristics.  

Ye et al. (2016) proposed an average departure time (ADT) heuristic to minimize 

Cmax for no-wait flow shop production. They first proposed the initial sequence based on 

the average of idle times, and then use group and insertion techniques to improve the initial 

solutions. The computational results showed that the ADT heuristic performed better than 

GR (Gangadharan and Rajendran, 1993), RAJ (Rajendran, 1994), and modified NEH 

(Nawaz et al., 1983) heuristics.  

Overall, many researchers adopt the insertion and exchange techniques to improve 

the initial solutions for solving Fm |nwt| Cmax problems. However, the properties of no-wait 

flow shop scheduling still needs investigation to generate more effective and efficiency 

heuristics. 

2.1.2 Heuristics for no-wait flow shop to minimize ∑Cj 

Table 2.2 shows a summary of the heuristics for the Fm |nwt| ∑Cj problems reviewed 

in a chronological order. 
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Table 2.2: The summary of heuristics to minimize ∑Cj 
Year Author(s) Acronym Comments 

1990 Rajendran and 

Chaudhuri 

RC Based on preference relations 

2000 Bertolissi BER Temporary flow time 

2004 Aldowaisan and 

Allahverdi 

PH1(p) NEH insertion scheme and pair-wise 

exchange 

2010 Framinan et al. FNM Insertion and exchange neighborhood 

techniques 

2013 Gao et al. IB Improved Bertolissi heuristic 

2013 Sapkal and Laha SL Priority on the bottleneck 

2014 Laha et al. PSI Penalty-shift-insertion scheme 

2014 Laha and Sapkal LS Based on average departure time 

 

Rajendran and Chaudhuri (1990) proposed an RC heuristic based on the preference 

relations for the Fm |nwt| ∑Cj problems. According to the results of computational 

experiments, their RC heuristic was more effective on the Fm |nwt| ∑Cj problems than BG 

heuristic (Bonney and Gundry, 1976) and KS heuristic (King and Spachis, 1980).  

Bertolissi (2000) proposed a BER heuristic to min (∑Cj) based on an initial 

sequence and job insertion technique. The initial sequence is generated by comparing 

temporary flow times of each pair of jobs. Job insertion technique is applied to improve 

the performance by the initial sequence. The computational results showed that the BER 

heuristic performed better than RC heuristic (Rajendran and Chaudhuri, 1990) and BG 

heuristic (Bonney and Gundry, 1976). 

Aldowaisan and Allahverdi (2004) proposed six improved heuristics by using three 

different search methods, first by the same insertion scheme as in the NEH heuristic 

(Nawaz et al., 1983), second by the same insertion technique as in Rajendran and Ziegler 
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(1997), and third by the adjacent pair-wise neighborhood exchanging method. The NEH 

heuristic is considered to be the best constructive heuristic to minimize makespan for 

permutation flow shop production (Kalczynski and Kamburowski, 2007). Among the six 

improved heuristics, the PH1(p) heuristic performed significantly better than the heuristic 

proposed by RC heuristic (Rajendran and Chaudhuri, 1990) and the genetic algorithm 

proposed by Chen et al (1996).  

Framinan et al. (2010) proposed an FNM constructive heuristic to minimize total 

completion time based on insertion and exchange neighborhood techniques. The results of 

their case studies showed that the FNM heuristic performed better than the RC heuristic 

proposed by Rajendran and Chaudhuri (1990), the PH1(p) heuristic by Aldowaisan and 

Allahverdi (2004), BER heuristic by Bertolissi (2000), and the heuristic by Fink and Voß 

(2003).  

Using the constructive procedure as in Laha and Chakraborty (2009), Gao et al. 

(2013) proposed two constructive heuristics, the improved standard deviation (ISD) 

heuristic and the improved Bertolissi (IB) heuristic, which were developed from the 

standard deviation heuristic by Gao et al. (2011) and the BER heuristic (Bertolissi, 2000), 

respectively. The results of their case studies showed that the IB heuristic performed better 

than the NEH (Nawaz et al., 1983) and BER heuristic (Bertolissi, 2000).  

Sapkal and Laha (2013) proposed an efficient heuristic (SL heuristic) to minimize 

total flow time. The initial sequence is generated based on the assumption that the priority 

of a job in the initial sequence is given by the sum of processing times on the bottleneck 

machine. An insertion technique, the same as that in LC heuristic proposed by Laha and 

Chakraborty (2009), is applied to improve the performance of the initial sequence. The 
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results showed that the SL heuristic performed better than RC heuristic (Rajendran and 

Chaudhuri, 1990) and BER heuristic (Bertolissi, 2000). 

Laha et al. (2014) proposed a penalty-shift-insertion (PSI) heuristic for Fm |nwt| ∑Cj 

problems, and their computational experiments showed that the PSI heuristic was relatively 

more effective and efficient than other heuristics in the literature at the time.  

Recently, Laha and Sapkal (2014) proposed an improved LS heuristic, and results 

showed that the LS heuristic performed better than the PH1(p) heuristic (Aldowaisan and 

Allahverdi, 2004) and the FNM heuristic (Framinan et al., 2010). 

2.2 Heuristics for multi-objective optimization in no-wait flow shop 

Although in the past decades, efforts have been made to obtain high-quality 

solutions with acceptable computation times by optimizing a single objective, multi-

objective optimization is more reasonable for flow shop production scheduling in reality, 

because some objectives are inconsistent, such as min(Cmax) and min(ƩCj) as indicated in 

Li et al., (2014). Allahverdi and Aldowaisan (2002) proposed a PAAH heuristic to 

minimize a weighted sum of makespan and total completion time based on insertion and 

exchange techniques. By their computational results, the PAAH heuristic performed better 

than existing heuristics for the single objective of Cmax and ∑Cj, such as RC heuristic 

(Rajendran and Chaudhuri, 1990), GR (Gangadharan and Rajendran, 1993), RAJ 

(Rajendran, 1994), and a genetic local search algorithm for multi-objective in flow shop 

(Ishibuchi and Murata, 1998). 

Liao et al. (2008) proposed an evolutionary algorithm and Liu et.al (2008) proposed 

a new hybrid genetic algorithm. Both methods are for no-wait flow shop production to 

minimize both makespan and total flow time. A non-dominated sorting strategy and an 
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objective increment strategy are integrated into these two methods. Their experimental 

results showed that the proposed methods outperformed the PAAH heuristic (Allahverdi 

and Aldowaisan, 2002) and other heuristics. 

There are several other multi-objectives for no-wait flow shop scheduling. 

Allahverdi and Aldowaisan (2004) proposed hybrid simulated annealing (SA) and genetic 

algorithm (GA) algorithms for the no-wait flow shop problem with makespan and 

maximum lateness criteria, and showed that the hybrid approach was efficient. Pan et.al 

(2008) proposed a novel particle swarm optimization algorithm for no-wait flow shop 

scheduling problems with makespan and maximum tardiness criteria. Jevadi et al. (2008) 

proposed a fuzzy multi-objective linear programming (FMOLP) model to minimize the 

weighted mean completion time and weighted earliness. This model provided a systematic 

framework that facilitated the fuzzy decision-making process until a satisfactory solution 

was obtained. Ruiz and Allahverdi (2009) proposed local search methods to minimize the 

weighted sum of makespan and maximum lateness. The local search methods are mainly 

based on the genetic algorithms and iterated greedy procedures. The computational results 

showed that their algorithms performed better than the PAAH heuristic (Allahverdi and 

Aldowaisan, 2002) and the heuristic proposed by Allahverdi and Aldowaisan (2004). Pan 

et al (2009) proposed a novel discrete differential evolution (DDE) algorithm to minimize 

makespan and maximum tardiness. The computational results showed that DDE algorithm 

performed better than the HDE algorithm (Qian et al., 2009) and IMMOGLS2 algorithm 

(Ishibuchi et al. 2003). Xie and Li (2012) proposed an evolved discrete harmony search 

(EDHS) algorithm to minimize makespan, total flow time, and maximum tardiness.  
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From the literature review above, we found that there is a very limited number of 

papers to address the multi-objective no-wait flow shop scheduling problem by using 

heuristics, while most researchers adopted meta-heuristics, such as SA, GA and local 

search, to solve this problem. We assign different weights to different objectives as 

introduced in the PAAH heuristic (Allahverdi and Aldowaisan, 2002), to evaluate the 

trade-off between Cmax and ∑Cj based on our proposed and compared heuristics.  

2.3 Statistical process control in operating room scheduling 

Statistical process control (SPC) is a branch of statistics that combines a time series 

with historical data, generating good insights of scheduling in a more understandable way 

for decision makers. Conventional statistical analysis methods do account for natural 

variations without a time series. Therefore, it is a good way to use SPC and control charts 

to provide decision-makers to determine if changes in processes are making a real 

difference in outcomes. 

The theory of statistical process control (SPC) was developed by Dr. Walter 

Shewhard (1931), and was popularized worldwide by Dr. W Edwards Deming (2000). The 

basic principles of SPC include (Benneyan et al., 2003): 

• Individual measurement from any process will display a variation; 

• If the data is from a stable common cause process, the variability is predictable 

within a knowable range that can be calculated from statistical model such as 

Gaussian, binomial, or Poisson distribution; 

• If the data is from a special cause process, measured values will deviate in some 

observable way from these random distribution models; 
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• Assuming that the data are in control, we can establish the statistical control limits 

and test for data that deviate from predictions, providing statistical evidence of a 

change. 

The control charts are the key tools of statistical process control (SPC). The control 

chart consists of two parts: one is the series of measurement plotted in the time order, and 

the other are three horizons lines, including center line (the mean line), the upper control 

limit (UCL) and lower control limit (LCL). Figure 2.1 shows an example of control chart 

of effective service rate of surgery type 1 (S1) with time series. To interpret the control 

chart in Figure 2.1, the series of measurements of effective service rate is plotted as the 

black line. The green line is the center line, we can obtain the mean service rate is 0.7708. 

Besides, there are two red lines to present the UCL (0.8231) and LCL (0.7185). The data 

between the UCL and LCL in the Figure 2.1 are considered as the common cause variation. 

However, there are three red points in the line falling outside the control limits. These data 

are indications of special cause variation, which means these data are out of control.  

 

Figure 2.1: The control chart of effective service rate of surgery type 1 (S1) 
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Where to draw the UCL and LCL is an important factor in the control charts. If the 

limits are too narrow, there is a high risk to have ‘type I error’. Type I error means we 

mistakenly consider some data as the special cause variations, which in fact they are 

common cause variations. If the limits are too wide, there is a high risk to have ‘type II 

error’. Type II error means we consider some data as common cause variations, which in 

fact they are special cause variations. It is recommended that the control limits are set as 

±3 SD (standard deviation) for detecting a significant change while achieving a rational 

balance between two types of risks (Shewhard, 1931). 

Above all, the statistical process control (SPC) and control charts are good tools to 

monitor the process and evaluate the performance, especially in the healthcare environment, 

such as flash sterilization rate, surgical site infections, etc. (Benneyan et al., 2003).  

  



22 
 

Chapter 3 Methodology 

This chapter gives the methodology of our work. First, the problem description of 

no-wait flow shop is given in details. Second, the initial sequence algorithm (ISA) is 

illustrated based on the performance of current idle time and future idle time. Finally, the 

proposed AIT heuristic to min(Cmax) and the CFI heuristic to min(ƩCj) are presented 

respectively, of which an increment method is used to reduce the computational 

complexities. Moreover, a neighborhood exchanging technique is used in the CFI heuristic. 

3.1 Problem description  

The following notations are used in problem description and formulation. 

π: a sequence of n jobs, π = [J1, J2, …, Jj-1, Jj, …, Jn]; 

n: the number of jobs; 

m: the number of machines; 

pj,i: the processing time of job j on machine i, where j=1…n and i=1…m; 

STj,i: the start time of job j on machine i; 

CTj,i: the completion time of job j on machine i; 

𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖 : the potential distance between completion time of job j-1 and start time of 

job j on machine i; 

𝐷𝐷𝑗𝑗−1,𝑗𝑗: the distance between two adjacent jobs’ completion times on the last 

machine. 
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(a) Before shifting (b) After shifting 

Figure 3.1: Distance between two adjacent jobs (Ye et al. 2016) 

The calculation of Cmax and ∑Cj for no-wait flow shop production will be illustrated 

as follows. First, we assume the start time of job j on the first machine equals to the 

completion time of job j-1 on the last machine as shown in Figure 3.1(a) and Equation (3-

1). Meanwhile, there is no waiting time on intermediate machines for each job. 

Accordingly, the start time of job j on machine i and the completion time of job j-1 on 

machine i in Figure 3.1(a) can be formulated by Equations (3-2) and (3-3). 

Given initial conditions that CT0,m = 0, pj,0 = 0, p0,i = 0,  ∑ 𝑝𝑝𝑗𝑗,𝑘𝑘
0
𝑘𝑘=1  = 0, and 

∑ 𝑝𝑝𝑗𝑗,𝑘𝑘
𝑚𝑚
𝑘𝑘=𝑚𝑚+1  = 0, 

𝑆𝑆𝑆𝑆𝑗𝑗,1 = 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑚𝑚 where j=1,2,…,n (3-1) 

𝑆𝑆𝑆𝑆𝑗𝑗,𝑖𝑖 =   𝑆𝑆𝑆𝑆𝑗𝑗,1 + �𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

 where j=1,2,…,n and i=1,2,…,m (3-2) 

𝐶𝐶𝑆𝑆𝑗𝑗,𝑖𝑖 = 𝐶𝐶𝑆𝑆𝑗𝑗,𝑚𝑚 − � 𝑝𝑝𝑗𝑗,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 where j=1,2,…,n and i=1,2,…,m (3-3) 

Since the job is processed continuously on all machines, the start time of job j on 

machine i equals to its start time on the first machine plus the sum of its processing times 

on machines 1 to i-1 as shown in Equation (3-2). Similarly, the completion time of job j-1 
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on machine i equals to its completion time on the last machine minus the sum of its 

processing times on machine i+1 to m as shown in Equation (3-3). 

Consequently, the potential distances between the start time of job j and the 

completion time of job j-1 on machine i can be formulated by Equation (3-4). 

𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑗𝑗,𝑖𝑖 − 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑖𝑖 =   𝑆𝑆𝑆𝑆𝑗𝑗,1 − 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑚𝑚 + �𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

+ � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 

            = �𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

+ � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 

(3-4) 

These potential distances between the start times of job j and the completion times 

of job j-1 can be reduced by shifting job j to the left with the amount of the minimum of 

these potential distances as in Figure 3.1(b), i.e., min(𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖 ) for i = 1…m. In other words, 

there exists at least one machine 𝑖𝑖, where 𝑆𝑆𝑆𝑆𝑗𝑗,𝑖𝑖 equals to 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚). Hence, the 

distance between jobs j and j-1 on the last machine 𝐷𝐷𝑗𝑗−1,𝑗𝑗 can be calculated by the total 

processing time of job j on all machines minus the minimum 𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖 (𝑖𝑖 = 1 …𝑚𝑚) as shown 

in Equation (3-5): 

 𝐷𝐷𝑗𝑗−1,𝑗𝑗 = �𝑝𝑝𝑗𝑗,𝑘𝑘 − min
{𝑖𝑖}

𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖

𝑚𝑚

𝑘𝑘=1

                           
 

                        = �𝑝𝑝𝑗𝑗,𝑘𝑘 − min
{𝑖𝑖}

��𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

+ � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

�
𝑚𝑚

𝑘𝑘=1

 (3-5) 

    = max
{𝑖𝑖}

��𝑝𝑝𝑗𝑗,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖

− � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

� 
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Therefore, the calculation of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 for a sequence  π = [J1…Jn] can be transferred 

to the calculation of the total processing time of first job in the sequence and sum of 

𝐷𝐷𝑗𝑗−1,𝑗𝑗 (𝑗𝑗 = 2,3, … ,𝑛𝑛) as follows in Equation (3-6): 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋) = �𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

𝑛𝑛

𝑗𝑗=2

 (3-6) 

Similarly, the calculation of total completion time (TCT) for a sequence  π = [J1…Jn] 

can be transferred to the calculation of the sum of the completion time of each job in the 

sequence as follows in Equation (3-7): 

𝑆𝑆𝐶𝐶𝑆𝑆(𝜋𝜋) = �𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �(�𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)

𝑗𝑗

𝑘𝑘=2

)
𝑛𝑛

𝑗𝑗=2

 

(3-7) 

      = 𝑛𝑛�𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �(𝑛𝑛 − 𝑗𝑗 + 1)𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

𝑛𝑛

𝑗𝑗=2

 

3.2 Initial Sequence Algorithm (ISA) 

We use the initial sequence algorithm (ISA) to construct an initial sequence, where 

we assign higher weights to current idle times generated by jobs in the head of the sequence 

than those generated by jobs in the tail of the sequence. The steps of ISA are as follows: 

Step 1: Set the position index k=1, the set of sequenced jobs S=∅ and the set of 

unsequenced jobs U={all jobs}. 

Step 2: Select the jth job (denoted as J[j]) in U (j=1,…,n–k+1), place it into the 

position k in S, and calculate the average processing time (APTi) of all jobs 

in U except the selected J[j] on each machine. Set up an artificial job, and its 

processing time on each machine equals to APTi (Liu and Reeves, 2001; Li 

and Freiheit, 2016). Append this artificial job to J[j], that is the artificial job 
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is located on the (k+1)th position in S.  

Step 3: Calculate the idle time between J[j] and the (k–1)th job in S, which is 

considered as the current idle time CI(j)=∑ �𝐶𝐶𝑗𝑗,𝑖𝑖 − 𝑝𝑝𝑗𝑗,𝑖𝑖 − 𝐶𝐶𝑘𝑘−1,𝑖𝑖�𝑚𝑚
𝑖𝑖=1 , where 

𝐶𝐶0,𝑖𝑖 = 0 ∀ 𝑖𝑖. Calculate the idle time between J[j] and the artificial job, which 

is considered as the future idle time FI(j)= ∑ �𝐶𝐶𝑘𝑘+1,𝑖𝑖 − 𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖 − 𝐶𝐶𝑘𝑘,𝑖𝑖�𝑚𝑚
𝑖𝑖=1 . The 

index function f(j)=(n–k)*CI(j)+FI(j) is computed. For j=1,…,n–k+1, each 

job in U has its own index function value, and we remove the job which has 

the minimum value of f(j) from U and put it into the kth position in S. Set 

k=k+1. 

Step 4: If k < n, go to Step 2, otherwise, append the last one job in U to the last 

position in S, and output S as the initial sequence π0. 

To illustrate main procedures of the ISA heuristic in detail, we take a 6-job 5-

machine instance as an example, which is the same as in Li et al. (2008). The main steps 

are listed as follows, and the processing time of each job on each machine can be found in 

Table 3.1. 

1) Set S=∅ and the U={J1, J2, J3, J4, J5, J6}.  

2) Consider J1 in the 1st position of S, and the average processing times of J2, J3, J4, J5 

and J6 on each machine are computed as APTi=[46.4, 53.8, 57, 42.4, 38.4], which 

equal to the processing times of an artificial job. Append this artificial job to J1, and 

we can obtain the current idle time of 150, and future idle time of 262.4. The index 

function value for J1, namely f(1), is 1012.4. We can consider J2 in the 1st position 

of S and obtain f(2)=1596.8. Similarly, we can obtain f(3)=1430.8, f(4)=1146, 
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f(5)=945.2, and f(6)=822.8. Hence, we remove J6 that has the minimum f value 

from U and put it into the 1st position of S.  

3) For the 2nd position in S, we can do the similar procedure as in Step 2 in ISA, and 

obtain the index function values f for each job in U, which are f=[648.25, 1452.8, 

991.5, 960.75, 379.5]. Hence we remove J5 from U and put it into the 2nd position 

of S. Similarly, we generate the initial sequence π0 as {J6, J5, J1, J4, J3, J2}. 

Table 3.1: Processing times of a 6-job 5-machine instance 

 M1 M2 M3 M4 M5 

J1 72 68 9 1 48 

J2 83 83 31 66 90 

J3 11 90 74 72 36 

J4 89 7 57 37 31 

J5 44 62 41 13 22 

J6 5 27 82 24 13 

 

3.3 AIT heuristic to min(Cmax) 

The AIT heuristic consists of three phases: phase 1 for initial sequence generation, 

phase 2 for the insertion and neighborhood exchanging, and phase 3 for iteration 

improvement. In phase 1, we take both current idle times and future idle times into 

consideration to generate the initial sequence based on the ISA as in Section 3.2. In phase 

2, we apply the insertion and neighborhood exchanging techniques to improve solutions. 

In phase 3, we use iterations to further improve solutions. 

The techniques of insertion and neighborhood exchanging are used to improve 

solutions found by the ISA. In addition, when using insertion and neighborhood 

exchanging techniques, an objective increment method (Li et al., 2008) is used to calculate 
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the increment of makespan (∆Cmax), reducing the computational complexity of calculating 

Cmax from O(n) to O(1).  

Assume there are four jobs to be scheduled and the distance matrix 𝐷𝐷4×4 has been 

calculated in advance. For a temporary sequence π1=[J1,J2,J3], 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋1) = ∑ 𝑝𝑝𝜋𝜋(1),𝑖𝑖
𝑚𝑚
𝑖𝑖=1 +

𝐷𝐷𝜋𝜋(1),𝜋𝜋(2) + 𝐷𝐷𝜋𝜋(2),𝜋𝜋(3) using Equation (3-6). Assume J4 will be inserted into the second 

position of π1 and the sequence will be updated as π2 =[J1,J4,J2,J3]. The objective increment 

is ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚1= D1,4+D4,2–D1,2 Then 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋2) = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋1) + ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚1. In addition, if J4 and 

J2 are exchanged in π2 and the sequence is updated as π3 =[J1,J2,J4,J3], the objective 

increment is ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚2 = D1,2+D2,4+D4,3–D1,4–D4,2–D2,3. Then 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋3) = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋2) +

∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚2.  Therefore, by the objective increment method, the makespan can be calculated 

without computing makespan for the whole sequence. 

The steps for the AIT heuristic are as follows: 

Step 1: Compute the distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 and obtain the initial sequence π0 using 

ISA. Let Cmax0 be the makespan of π0. Set the current best makespan Cmaxb= 

Cmax0, the current best sequence πb=π0, and the number of iterations r 

changes from 1 to 5 (the experiment shows that when r exceeds 5, there is 

little improvement of solutions) for Steps 2 to 6. 

Step 2: Select first two jobs from πb, and choose the partial sequence with a smaller 

Cmax. Set k=3. 

Step 3: Select kth job in πb and insert it in all possible positions of the current partial 

sequence. Calculate ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  for all resultant temporary sequences. The 

temporary sequence whose job position has the minimum ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is selected 

as the current sequence. Next, exchange the position of each job in the 
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current sequence with that of the rest jobs. Among sequences generated by 

neighborhood exchanging, if one sequence yields the smallest negative 

∆Cmax, set this sequence as the current sequence, otherwise, keep the current 

one. k=k+1. 

Step 4: Repeat Step 3 until all jobs are scheduled, and set the current sequence as 

πr with Cmaxr. 

Step 5: If Cmaxr < Cmaxb, set Cmaxb = Cmaxr and πb=πr. 

Step 6: For j=1 to n–1, insert the jth job in πr into n–j possible positions in the 

forward direction. If these sequences generate a lower Cmax than Cmaxb, then 

update πb and Cmaxb. 

Step 7: Update r=r+1. If r ≤ 5, return to Step 2; otherwise, go to Step 8.  

Step 8: Output the final πb and Cmaxb. 

The computational complexity is O(mn2) for Step 1, which computes 𝐷𝐷𝑛𝑛×𝑛𝑛 by Eq. 

(3-5) and generates the initial sequence, O(n3) for Step 3 and 4, which results from the 

insertion and neighborhood exchanging techniques using the objective increment method, 

and O(n2) for Step 6, which generates n(n–1)/2 sequences and calculates corresponding 

makespan with O(1) Therefore, the computational complexity of the AIT heuristic is 

O(n3+mn2), which is the same as that of the LC, ADT and CH heuristics. An example, 

which is the same as the example in Table 3.1, is given below to illustrate the main steps 

of the AIT heuristic. 

1) The distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 calculated by Equation (3-5) is shown in Table 3.2. From 

the ISA, we obtain the initial sequence π0 ={J6, J5, J1, J4, J3, J2} and Cmax0=616. Set 

Cmaxb=616, πb ={J6, J5, J1, J4, J3, J2}, and r=1. 
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2) The sequence from Step 2 to 6 in the AIT heuristic is π1 ={J6, J3, J2, J5, J1, J4} and 

Cmax1=601. Update Cmaxb =601, πb ={J6, J5, J1, J4, J3, J2}.  

3) The sequence from second iteration (r=2) is π2 ={J3, J2, J4, J6, J5, J1} and Cmax2=584. 

Update Cmaxb =584, πb ={J3, J2, J4, J6, J5, J1}.  

4) The sequence from third iteration (r=3) is π3 ={J6, J3, J2, J4, J5, J1} and Cmax3=565. 

Update Cmaxb =565, πb ={J6, J3, J2, J4, J5, J1}.  

5) In the iterations from 4 to 5, the sequence and makespan remain unchanged. 

Therefore, the final sequence is {J6, J3, J2, J4, J5, J1} with makespan 565. 

Table 3.2: Distance matrix for an example to min(Cmax) 

 J1 J2 J3 J4 J5 J6 

J1 - 227 214 95 80 88 

J2 48 - 85 31 22 13 

J3 48 120 - 32 22 13 

J4 66 221 151 - 50 51 

J5 60 215 196 90 - 84 

J6 52 207 153 88 39 - 

3.4 CFI heuristic to min(ƩCj) 

The CFI heuristic consists of three phases: phase 1 for initial sequence generation, 

phase 2 for the insertion and neighborhood exchanging, and phase 3 for iteration 

improvement. To improve effectiveness of the CFI heuristic, we take both current idle 

times and future idle times into consideration to generate the initial sequence by the ISA 

as in Section 3.2, and apply the insertion and neighborhood exchanging techniques. To 

improve efficiency of the CFI heuristic, we introduce an objective increment method to 

calculate TCT while applying neighborhood exchanging. In addition, we determine the 

number of iterations as 6 rather than 10 as used in the PH1(p) (Aldowaisan and Allahverdi, 
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2004) and LS (Laha and Sapkal, 2014) heuristics. Six iterations reduce the computation 

time and maintain effectiveness of the CFI heuristic. The steps of the CFI heuristic are as 

follows: 

Step 1: Compute the distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 and obtain the initial sequence π0 using 

ISA. Let TCT0 be the total completion time of π0. Set the current best total 

completion time TCTb=TCT0, the current best sequence πb=π0, and the 

number of iterations r from 1 to 6 for Steps 2 to 6. 

Step 2: Select first two jobs from πb, and choose the partial sequence with a smaller 

TCT.  

Step 3: First, apply the NEH insertion technique (Nawaz et al., 1983) to the obtained 

partial sequences, select the best partial sequence with minimum TCT as 

current sequence. Next, exchange the position of each job in the current 

sequence with that of the rest jobs. Among sequences generated by 

interchanging, the objective increment method is used to calculate ∆TCT. If 

one sequence yields the smallest negative ∆TCT, set this sequence as the 

current sequence, otherwise, keep the current one. 

Step 4: Repeat Step 3 until all jobs are scheduled, and set the current sequence as πr 

with TCTr. 

Step 5: If TCTr< TCTb, set TCTb=TCTr and πb=πr. 

Step 6: For j=1 to n–1, insert the jth job in πr into n–j possible positions in the forward 

direction. If these sequences generate a lower TCT than TCTb, then update πb 

and TCTb. 



32 
 

Step 7: Update r=r+1. If r≤6, return to Step 2; otherwise, go to Step 8. (Note: the 

condition r≤6 is concluded from a case study.) 

Step 8: Output the final πb and TCTb. 

While using neighborhood exchanging technique in Step 3, an objective increment 

method is introduced to calculate TCT. For example, there are five jobs scheduled and the 

distance matrix D5×5 is computed. For the sequence π={J1, J2, J3, J4, J5}, 

TCTπ=5∑ 𝑝𝑝𝜋𝜋(1),𝑖𝑖
𝑚𝑚
𝑖𝑖=1 +∑ (𝑛𝑛 − 𝑗𝑗 + 1)𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

5
𝑗𝑗=2  using Equation (3-7). Let J1 and J2 be 

exchanged, and update the sequence as π’={J2, J1, J3, J4, J5}. The objective increment is 

∆TCT = 5(∑ 𝑝𝑝2,𝑖𝑖
𝑚𝑚
𝑖𝑖=1 − ∑ 𝑝𝑝1,𝑖𝑖

𝑚𝑚
𝑖𝑖=1 ) + 4(D2,1–D1,2) + 3(D1,3–D2,3). 𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋′ = 𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋 + ∆𝑆𝑆𝐶𝐶𝑆𝑆. 

Therefore, using the objective increment method, the TCT can be calculated without 

computing TCT for the whole sequence. The details of the objective increment method are 

provided in section 3.5. 

The main computational burden of the CFI heuristic is determined by the NEH 

insertion and neighborhood exchanging techniques in Step 3. The computational 

complexity for the NEH insertion is O(n3) including calculating TCT with O(n) when 

selecting the best insertion position. The computational complexity for neighborhood 

exchanging technique is also O(n3) including calculating TCT with O(1) when selecting 

the best exchanged pair. Therefore, the overall computational complexity of the CFI 

heuristic is O(n3), which is the same as that of the PH1(p) and LS heuristics, and less than 

that of the FNM heuristic. 

To illustrate the main steps of the CFI heuristic, we provide a 5-job 4-machine 

instance as shown in Table 3.3, which is the same as in Bertolissi (2000). 
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• Initial sequence algorithm 

Step 1: S=∅ and the U={J1, J2, J3, J4, J5}. 

Step 2: Consider J1 in the 1st position of S, the processing times of J2, J3, J4, and J5 on 

each machine are the average processing times. APTi = [18, 15.25, 13.75, 15.5]. 

Append this artificial job to J1, and we can obtain the current idle time of 48, 

and future idle time of 13.25. The index function value for J1, namely f(1), is 

205.25. We can consider J2 in the 1st position of S and obtain f(2)=211. 

Similarly, we can obtain f(3)=199.25, f(4)=222.25, and f(5)=230.25. Hence, we 

remove J3 that has the minimum f value from U and put it into the 1st position 

of S. 

Step 3: For the 2nd position in S, we can do the similar procedure as in Step 2, and 

obtain the index function values f for each job in U, which are f = [155, 53.33, 

153, 100.33]. Hence we remove J2 from U and put it into the 2nd position of S. 

Similarly, we generate the initial sequence π0 as {J3, J2, J1, J5, J4}. 

• CFI heuristic 

The distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 calculated by Equation (3-5) is shown in Table 3.4. From 

the ISA, we obtain initial sequence π0 ={J3, J2, J1, J5, J4,} and TCT0=501. Set TCTb=501, 

πb ={J3, J2, J1, J5, J4}, and r=1.  

Table 3.3: Processing times of a 5-job 4-machine instance. 

 M1 M2 M3 M4 

J1 12 24 12 13 

J2 20 3 19 11 

J3 19 20 3 15 

J4 14 23 16 14 

J5 19 15 17 22 
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We can select first two jobs, J3 and J2, from the initial sequence, and obtain a TCT 

of 129 for a partial sequence {J3, J2}. Exchange the two jobs and obtain a TCT of 130 for 

a partial sequence {J2, J3}. Hence, we fix the relative positions of two jobs as a partial 

sequence of {J3, J2}.  

Inserting J1 from the initial sequence to each possible position of the partial 

sequence {J3, J2}, we can have the following partial sequences, {J1, J3, J2}, {J3, J1, J2} and 

{J3, J2, J1} with partial TCTs of 228, 250, 229, respectively. Hence, we choose the partial 

sequence of {J1, J3, J2} as the current sequence with the minimum partial TCT of 228. The 

neighborhood exchanging method is applied, and the following partial sequences are 

examined, {J3, J1, J2}, {J2, J3, J1} and {J1, J2, J3} with ∆𝑆𝑆𝐶𝐶𝑆𝑆𝑇𝑇 of 22, 10 and 13, respectively. 

None of these values is lower than 0, therefore, the current sequence remains as {J1, J3, J2}. 

Insert J5 from the initial sequence to each possible position of the current sequence, 

and the following partial sequences are examined: {J5, J1, J3, J2}, {J1, J5, J3, J2}, {J1, J3, J5, 

J2} and {J1, J3, J2, J5} with partial TCTs of 376, 376, 372, and 359, respectively. Hence, 

we choose {J1, J3, J2, J5} as the current sequence with the minimum partial TCT of 359. 

The neighborhood exchanging method is applied, and the following partial sequences are 

examined: {J3, J1, J2, J5}, {J2, J3, J1, J5}, {J5, J3, J2, J1}, {J1, J2, J3, J5}, {J1, J5, J2, J3} and 

Table 3.4: Distance matrix for an example to min(ƩCj) 

 J1 J2 J3 J4 J5 

J1 - 17 15 28 29 

J2 28 - 24 34 40 

J3 31 15 - 35 36 

J4 19 16 15 - 25 

J5 13 11 15 14 - 
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{J1, J3, J5, J2} with ∆𝑆𝑆𝐶𝐶𝑆𝑆𝑇𝑇 of 36, 16, 36, 20, 18, and 13, respectively. None of these values 

is lower than 0, therefore, the current sequence remains as {J1, J3, J2, J5}. 

Insert J4 from the initial sequence to each possible position of the current sequence 

and the following candidates are tried: {J4, J1, J3, J2, J5}, {J1, J4, J3, J2, J5}, {J1, J3, J4, J2, 

J5}, {J1, J3, J2, J4, J5} and {J1, J3, J2, J5, J4} with TCTs of 526, 532, 542, 503 and 504. 

Hence, we choose {J1, J3, J2, J4, J5} as the current sequence with minimum TCT of 503. 

The neighborhood exchanging method is applied and the following partial sequences are 

examined: {J3, J1, J2, J4, J5},{J2, J3, J1, J4, J5},{J4, J3, J2, J1, J5},{J5, J3, J2, J4, J1},{J1, J2, 

J3, J4, J5},{J1, J4, J2, J3, J5},{J1, J5, J2, J4, J3},{J1, J3, J4, J2, J5},{J1, J3, J5, J4, J2},and {J1, 

J3, J2, J5, J4} with ∆𝑆𝑆𝐶𝐶𝑆𝑆𝑇𝑇 of 50, 32, 22, 54, 37, 46, 34, 39, 14 and 1. None of these values 

is lower than 0, therefore, the current sequence remains as {J1, J3, J2, J4, J5} with TCT 503.  

After using insertion and neighborhood interchanging methods, we obtain π1={J1, 

J3, J2, J4, J5} and TCT1=503. Since TCT1 is larger than TCTb, the πb remains unaltered with 

TCTb 501. For j=1 to 4, insert jth job into each possible position of π1 in the forward 

direction and get the following sequences: {J3, J1, J2, J4, J5}, {J3, J2, J1, J4, J5}, {J3, J2, J4, 

J1, J5}, {J3, J2, J4, J5, J1}, {J1, J2, J3, J4, J5}, {J1, J2, J4, J3, J5}, {J1, J2, J4, J5, J3}, {J1, J3, J4, 

J2, J5}, {J1, J3, J4, J5, J2} and {J1, J3, J2, J5, J4}.553, 510, 514, 510, 540, 541, 540, 542, 531, 

and 504. None of these values is lower than TCTb, the πb remains unaltered with TCTb 501 

and is used for further process till r=6 iterations are completed. Hence, the final sequence 

is {J3, J2, J1, J5, J4} with TCT 501. 

3.5 Objective increment method to calculate total completion time (TCT) 

Assume there is a sequence π={J1, J2,…, Jj-1, Jj,…, Jn}, and the corresponding TCT 

is TCTπ. When π(k) and π(j) (0<k<j≤n) in π are exchanged, the new sequence π’ is generated, 
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the difference of TCT between π’ and π, i.e., ∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗), can be calculated by one of the 

following conditions: 

Condition 1: k=1 and j=2 

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 𝑛𝑛��𝑝𝑝𝜋𝜋′(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

−�𝑝𝑝𝜋𝜋(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

� + (𝑛𝑛 − 1)�𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑗𝑗)�

+ (𝑛𝑛 − 2)�𝐷𝐷𝜋𝜋′(𝑗𝑗),𝜋𝜋′(𝑗𝑗+1) − 𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1)� 

Condition 2: k=1 and j=3,…,n–1 

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 𝑛𝑛��𝑝𝑝𝜋𝜋′(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

−�𝑝𝑝𝜋𝜋(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�

+ (𝑛𝑛 − 1)�𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)�

+ (𝑛𝑛 − 𝑗𝑗 + 1)� 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)� + (𝑛𝑛

− 𝑗𝑗)(𝐷𝐷𝜋𝜋′(𝑗𝑗)𝜋𝜋′(𝑗𝑗+1) − 𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1)) 

Condition 3: k=1 and j=n 

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 𝑛𝑛��𝑝𝑝𝜋𝜋′(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

−�𝑝𝑝𝜋𝜋(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�

+ (𝑛𝑛 − 1)�𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)� + 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗)

− 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗) 

Condition 4: k=2,3,…,n–2 and j=k+1 

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = (𝑛𝑛 − 𝑘𝑘 + 1)� 𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)�

+ (𝑛𝑛 − 𝑘𝑘)� 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑗𝑗)�

+ (𝑛𝑛 − 𝑗𝑗)� 𝐷𝐷𝜋𝜋′(𝑗𝑗),𝜋𝜋′(𝑗𝑗+1) −𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1)� 

Condition 5: k=2,3,…,n–3 and j=k+2,…,n–1 
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∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = (𝑛𝑛 − 𝑘𝑘 + 1)� 𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)�

+ (𝑛𝑛 − 𝑘𝑘)� 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) −𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)�

+ (𝑛𝑛 − 𝑗𝑗 + 1)� 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)�

+ (𝑛𝑛 − 𝑗𝑗)� 𝐷𝐷𝜋𝜋′(𝑗𝑗),𝜋𝜋′(𝑗𝑗+1) −𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1)� 

Condition 6: k=2,3,…n–2 and j=n 

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = (𝑛𝑛 − 𝑘𝑘 + 1)� 𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)�

+ (𝑛𝑛 − 𝑘𝑘)� 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) −𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)� + 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗)

− 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗) 

Condition 7: k=n–1 and j=n 

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 2�𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)� + 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑗𝑗) 

Hence, the TCT of new sequence π’ can be calculated by the following equation: 

𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋′ = 𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋 + ∆𝑆𝑆𝐶𝐶𝑆𝑆 

Therefore, the calculation of TCT for the new sequence can be reduced from O(n) 

to O(1). 
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Chapter 4 Case study 

To test the performance of our proposed heuristics on Fm |nwt| Cmax and Fm |nwt| 

ƩCj problems, we have done a series of case studies, and the results are presented in this 

chapter. First, we provide the schemes to generate the data and evaluate the heuristic 

performance. Second, for each single objective, the computational results of all compared 

heuristics are given from the perspectives of effectiveness and efficiency. Third, we 

introduce trade-off balancing function to evaluate of trade-off between min(Cmax) and 

min(∑Cj) for each heuristic. Finally, statistical process control (SPC) is used to evaluate 

the performance of the CFI heuristic along time horizon based on University of Kentucky 

HealthCare historical data. 

4.1 Schemes to carry out case studies 

First, to evaluate the performance of the AIT heuristic on solving Fm |nwt| Cmax 

problems, we compare the AIT heuristic with the LC (Laha and Chakraborty, 2009), ADT 

(Ye et al., 2016) and CH (Li et al., 2008) heuristics. Second, to evaluate the performance 

of the CFI heuristic on solving Fm |nwt| ∑Cj problems, we compare the CFI heuristic with 

the PH1(p) (Aldowaisan and Allahverdi, 2004), the FNM (Framinan et al., 2010), and LS 

(Laha and Sapkal, 2014) heuristics. 

For effectiveness, we use the average relative percentage deviation (ARPD), 

maximum percentage deviation (MPD), and percentage of the best solutions (PBS) to 

evaluate each heuristic based on both small-scale and large-scale instances. Analysis of 

variance (ANOVA) techniques and paired t-tests are used to statistically verify the 

improvement on effectiveness based on large-scale instances. To evaluate efficiency, we 
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use the computation times based only on large-scale instances, as the computation times 

for the small-scale instances are negligible. 

For small-scale instances, the number of jobs is 5, 6, 7, or 8, and the number of 

machines is 5, 10, 15, 20, or 25. Thus, there are 20 combinations. For each combination, 

30 instances are generated randomly, and the processing times for each instance are 

integers, following a uniform distribution in [1, 99]. In total, there are 600 instances in 

small-scale. 

For large-scale instances, Taillard’s benchmarks (Taillard, 1994) are classic and 

commonly used to test the performance of heuristics for flow shop scheduling. Taillard’s 

benchmarks consist of 120 instances in 12 combinations, with 10 instance for each 

combination, where the number of jobs is 20, 50, 100, 200 or 500, and the number of 

machines is 5, 10 or 20. 

For Fm |nwt| Cmax problems, three criteria are used to evaluate the effectiveness of 

each heuristic (Ye et al., 2016; Li et al., 2008): 

(1) Average relative percent deviation (ARPD): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 =
1
𝑁𝑁
�

𝑀𝑀𝑖𝑖(𝐻𝐻) − 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

× 100
𝑁𝑁

𝑖𝑖=1

 
 

                          (4-1) 

(2) Maximum percent deviation (MPD): 

𝑀𝑀𝐴𝐴𝐷𝐷 = max
𝑖𝑖=1,…,𝑁𝑁

�
𝑀𝑀𝑖𝑖(𝐻𝐻) − 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
� × 100 

 

                      (4-2) 

where, 𝑀𝑀𝑖𝑖(𝐻𝐻)  is the makespan obtained by heuristic H for an instance i in a 

combination. N is the number of instances for each combination. N is 30 for small-

scale instances but is 10 for large-scale instances. 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖  is the optimal 
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solution for small-scale instances by using exhaustive enumeration. However, for 

large-scale instances, 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖 is the best makespan among all four heuristics. 

(3) Percentage of the best solutions (PBS)  

PBS is the percentage of instances for which a heuristic achieves the best 

performance among the four heuristics. The row total for PBS does not necessarily 

sum to 100% since some heuristics may tie on the best performance for some 

instances. 

Similarly, for Fm |nwt| ∑Cj problems, three similar criteria are used to evaluate 

effectiveness of each heuristic: 

(1) Average relative percent deviation (ARPD): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 =
1
𝑁𝑁
�

𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖(𝐻𝐻)− 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

× 100
𝑁𝑁

𝑖𝑖=1

 (4-3) 

(2) Maximum percent deviation (MPD): 

𝑀𝑀𝐴𝐴𝐷𝐷 = max
𝑖𝑖=1,…,𝑁𝑁

�
𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖(𝐻𝐻) − 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
� × 100 (4-4) 

𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖(𝐻𝐻) is the total completion time obtained by heuristic H for an instance i in a 

combination. N is the number of instances for each combination. N is 30 for small-

scale instances but is 10 for large-scale instances. 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖  is the optimal 

solution for small-scale instances by using the exhaustive enumeration method. 

However, for large-scale instances, the best known solutions are from Qi et al. 

(2016), who proposed the best known upper bounds for Fm |nwt| ∑Cj problems 

based on Taillard’s benchmarks. 

(3) Percentage of the best solutions (PBS)  
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PBS is the percentage of instances for which a heuristic achieves the best 

performance among the four heuristics. The row total for PBS does not necessarily 

sum to 100% since some heuristics may tie on the best performance for some 

instances. 

4.2 Results of case study on Fm |nwt| Cmax problems 

4.2.1 Small-scale instances 

For small-scale instances, the results are shown in Table 4.1. The AIT heuristic 

achieves the best performance on ARPD of 0.23%, on MPD of 5.14%, and on PBS of 

82.17%. 

As shown in Table 4.1 for small-scale instances, with respect to ARPD, the CH 

heuristic achieves an average of 0.30%, better than 1.28% of the LC heuristic and 0.62% 

of the ADT heuristic. However, the AIT heuristic achieves the smallest average of 0.23%, 

which has a 23.3% improvement over the CH heuristic. With regard to MPD, the CH 

heuristic achieves 5.18%, smaller than 11.42% of the LC heuristic and 7.00% of the ADT 

heuristic. The AIT heuristic also achieves the smallest MPD of 5.14%. With respect to 

PBS, the CH heuristic achieves 76.50%, better than 63.33% and 48.5% of the ADT and 

LC heuristics, respectively. However, the AIT heuristic achieves the best PBS of 82.17%. 

Overall, the AIT heuristic achieves the best performances in ARPD, MPD and PBS in 

small-scale instances, compared with the LC, ADT, and CH heuristics. 
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Table 4.1: Average Relative and Maximum percent deviations (ARPD & MPD) for 

small-scale instances to min(Cmax) (%) 

Size LC ADT CH AIT 

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD 

5 5 0.75 11.42 0.52 3.44 0.10 3.08 0.17 5.14 

 10 0.71 4.17 0.70 6.11 0.21 4.11 0.00 0.00 

 15 1.05 5.86 0.28 3.61 0.01 0.43 0.01 0.43 

 20 0.79 3.48 0.12 1.79 0.27 3.96 0.13 3.96 

 25 1.06 5.74 0.30 3.92 0.11 1.48 0.07 1.48 

6 5 0.87 6.16 0.35 4.20 0.14 4.20 0.37 4.76 

 10 1.31 5.06 0.33 4.05 0.33 3.52 0.19 3.61 

 15 1.75 6.28 0.84 5.93 0.21 2.06 0.23 3.86 

 20 1.09 5.20 0.28 1.83 0.24 2.00 0.12 1.24 

 25 0.61 5.55 0.75 3.11 0.11 1.18 0.14 2.47 

7 5 1.24 7.32 0.89 5.52 0.32 1.96 0.20 1.79 

 10 1.65 6.27 0.59 2.87 0.58 5.18 0.48 4.88 

 15 2.17 7.84 0.93 3.78 0.58 3.79 0.40 4.55 

 20 1.08 3.90 0.55 3.53 0.46 4.42 0.18 1.83 

 25 1.48 6.48 0.63 3.30 0.46 3.30 0.31 3.80 

8 5 1.71 7.00 1.38 7.00 0.41 3.72 0.12 2.06 

 10 1.54 8.05 0.74 5.27 0.34 2.82 0.44 3.54 

 15 1.56 7.84 0.76 3.77 0.37 2.13 0.25 2.52 

 20 1.75 6.82 0.70 3.13 0.40 2.26 0.31 1.79 

 25 1.47 7.36 0.79 3.96 0.25 1.55 0.49 3.58 

All instances 1.28 11.42 0.62 7.00 0.30 5.18 0.23 5.14 

PBS 48.50 63.33 76.50 82.17 
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4.2.2 Large-scale instances 

For large-scale instances, the results are shown in Table 4.2. The AIT heuristic 

achieves the best performance on ARPD of 0.23% and on PBS of 65.83%, but not on MPD 

of 2.95%.  

Table 4.2: Average Relative and Maximum percent deviations (ARPD & MPD) for 
large-scale instances to min(Cmax) (%) 

Size LC ADT CH AIT 
n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD 
20 5 2.20 3.89 2.21 5.38 0.97 2.28 0.24 0.99 
 10 3.09 6.14 2.26 4.45 0.58 2.22 0.80 2.95 
 20 2.09 6.46 0.92 3.07 1.04 2.32 0.61 1.91 

50 5 3.24 4.72 3.68 4.97 0.78 2.14 0.07 0.68 
 10 2.40 4.11 2.24 3.90 0.66 1.69 0.06 0.49 
 20 2.69 6.27 1.33 2.12 0.36 1.46 0.26 1.26 

100 5 2.85 4.24 4.29 5.20 0.47 1.12 0.20 1.47 
 10 2.91 4.20 2.00 2.77 0.50 1.06 0.05 0.50 
 20 2.38 3.77 1.32 1.91 0.26 1.21 0.25 0.94 

200 10 2.57 3.26 2.04 3.05 0.50 1.61 0.13 0.47 
 20 2.51 3.22 1.48 2.10 0.46 0.92 0.06 0.41 

500 20 2.67 3.39 1.89 2.53 1.10 1.71 0.00 0.00 
All instances 2.63 6.46 2.14 5.38 0.64 2.32 0.23 2.95 

PBS 0.83 5.83 29.17 65.83 
 

As shown in Table 4.2, the LC heuristic achieves ARPD of 2.63%, MPD of 6.46% 

and PBS of 0.83%. The ADT heuristic achieves ARPD of 2.14%, MPD of 5.38% and PBS 

of 5.83%, better than the LC heuristic. The CH heuristic obtains ARPD of 0.64%, MPD of 

2.32%, and PBS of 29.17%, and performs the best among the LC, ADT, and CH heuristics. 

The AIT heuristic achieves the smallest ARPD of 0.23%, 64% improvement over the CH 

heuristic. Besides, the AIT heuristic obtains the largest PBS of 65.83% among all four 
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heuristics, although the MPD of the AIT heuristic is 2.95%, close to 2.32% of the CH 

heuristic, and smaller than those of the LC and ADT heuristics, which are 6.46% and 5.38%, 

respectively. 

ARPDs of heuristics for large-scale instances are used to plot the trend of deviations 

as the number of jobs or machines increases, as shown in Figure 4.1. 

 

(a) Deviation of Cmax by no. of jobs (%); 

 

(b) Deviation of Cmax by no. of machines (%) 

Figure 4.1: Deviations of Cmax as the number of jobs or machines increases 
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As the number of jobs increases from 20 to 500, Figure 4.1(a) shows that the 

deviation of the AIT heuristic is smaller than those of other three heuristics. The trends of 

the LC and ADT heuristics are relatively flat as the number of jobs increases. However, the 

trend of the CH heuristic is going up when the number of jobs is larger than 100, whereas 

the trend of the AIT heuristic is continuously going downwards as the number of jobs 

increases. 

Figure 4.1(b) plots the trend of ARPDs against the number of machines, ranging 

from 5 to 20 machines. The trend obtained by the ADT heuristic continuously goes 

downwards as the number of machines increases. However, the trends obtained by the LC, 

CH and AIT heuristics are relatively flat, when the number of machines increases from 5 

to 20. Among four heuristics, the deviation of the AIT heuristic is the smallest. 

To verify the effectiveness of the AIT heuristic, two statistical analyses are 

conducted based on ARPDs for large-scale instances. First, the analysis of variance 

(ANOVA) is used to test the difference among the ARPDs of the LC, ADT, CH and AIT 

heuristics. As shown in Table 4.3, the results show that the difference of ARPDs among 

four heuristics is statistically significant at 95% confidence interval with p-value=0.000. 

Second, paired t-tests on the ARPD are performed to validate whether there are 

significant differences among the LC, ADT, CH and AIT heuristics. As shown in Table 4.4, 

the estimates for mean differences between the AIT heuristic and other heuristics are all 

Table 4.3: ANOVA results to min(Cmax) (95% Confidence Interval) 

Source DF SS MS P 

Heuristics 3 482.3 160.782 0.000 

Error 476 437 0.918  

Total 479 919.3   
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smaller than 0 with p-value=0.000, and the 95% confidence intervals for mean differences 

fall into the negative interval, indicating that the ARPD of the AIT heuristic is significantly 

smaller than those of other three heuristics at confidence level α=0.05. 

We use the amount of CPU time to measure the efficiency of each heuristic. All 

four heuristics are programmed in Matlab and run on a Dell Precision T1700 with Intel 

Core i5-4590 CPUs of 3.3 GHz. For 500-job 20-machine instances, we have run one case 

for 100 times and obtain the average CPU time, which is 38.31 seconds for the AIT 

heuristic, and 21.97, 4.98, and 5.27 seconds for the CH, ADT, and LC heuristics, 

respectively. The performance of the AIT heuristic on deviation justifies the additional 

computation time, although the AIT heuristic uses the insertion and neighborhood 

exchanging techniques and generates more sequences than the other three heuristics. 

Overall, the AIT heuristic outperforms other heuristics on ARPD, MPD and PBS 

criteria. Moreover, the deviation of makespan for the AIT heuristic has a decreasing trend 

as the number of jobs or machines increases. Since all four heuristics have the same 

computational complexity, the AIT heuristic statistically performs better than the other 

three heuristics for no-wait flow shop production to min(Cmax). 

4.3 Results of case study on Fm |nwt| ∑Cj problems 

4.3.1 Small-scale instances 

Table 4.4: Paired t-tests results to min(Cmax) (α=0.05) 

AIT vs. LC ADT CH 

p-value 0.000 0.000 0.000 

Estimate for mean 

difference 
–2.407 –1.911 –0.414 

95% CI for mean difference (–2.618, –2.196) (–2.183, –1.639) (–0.574, –0.254) 
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For small-scale instances, the results are shown in Table 4.5. The CFI heuristic 

achieves the best performance on ARPD of 0.06%, on MPD of 2.98%, and on PBS of 88%. 

Table 4.5: Average relative and maximum percent deviation (ARPD & MPD) for 

small-scale instances to min(∑Cj) (%) 

Size PH1(p) FNM LS CFI 

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD 

5 5 0.41 5.94 0.18 2.08 0.18 2.09 0.05 1.36 

 10 0.13 1.36 0.09 1.93 0.06 1.36 0.06 0.79 

 15 0.27 2.77 0.28 3.38 0.07 0.77 0.01 0.30 

 20 0.07 0.43 0.03 0.43 0.01 0.24 0.01 0.24 

 25 0.06 1.31 0.01 0.41 0.04 1.31 0.04 1.02 

6 5 0.46 3.93 0.24 3.93 0.06 0.75 0.01 0.37 

 10 0.38 5.61 0.38 5.61 0.20 2.43 0.01 0.32 

 15 0.28 4.11 0.20 2.33 0.26 4.11 0.12 2.33 

 20 0.40 3.09 0.16 0.98 0.25 3.09 0.02 0.29 

 25 0.16 1.69 0.05 0.93 0.03 0.64 0.00 0.00 

7 5 0.51 5.99 0.30 1.95 0.23 1.95 0.03 0.54 

 10 0.50 2.60 0.22 1.20 0.31 2.00 0.06 1.82 

 15 0.46 4.65 0.14 0.92 0.34 3.71 0.12 1.28 

 20 0.49 3.76 0.34 2.54 0.25 2.52 0.08 1.11 

 25 0.16 0.98 0.09 0.87 0.21 1.97 0.05 0.85 

8 5 0.53 3.07 0.39 3.21 0.35 1.98 0.25 2.98 

 10 0.40 3.86 0.34 3.64 0.42 3.64 0.11 1.01 

 15 0.61 3.47 0.44 3.47 0.31 2.19 0.13 1.19 

 20 0.50 2.77 0.41 1.81 0.32 1.81 0.08 0.69 

 25 0.57 2.80 0.28 2.80 0.23 2.32 0.07 0.72 

All instances 0.37 5.99 0.23 5.61 0.21 4.11 0.06 2.98 

PBS 65 73 75 88 



48 
 

As shown in Table 4.5 for small-scale instances, with respect to ARPD, the LS 

heuristic achieves 0.21%, better than the PH1(p) heuristic of 0.37% and FNM heuristic of 

0.23%. The CFI heuristic achieves the smallest ARPD of 0.06% from the optimal. With 

regard to MPD, the LS heuristic achieves 4.11%, smaller than the PH1(p) of 5.99% and 

FNM heuristic of 5.61%. The CFI heuristic also achieves the smallest MPD of 2.98%. With 

respect to PBS, the LS and FNM heuristics are very close, 75% and 73%, respectively, 

better than the PH1(p) heuristic of 65%. The CFI heuristic reaches 88% of the best solutions, 

17% improvement over the LS heuristic. 

4.3.2 Large-scale instances 

For large-scale instances, the results are shown in Table 4.6. The CFI heuristic 

achieves the best performance on ARPD of 2.08% and on PBS of 53%, but not on MPD of 

7.05%.  

As shown in Table 4.6, the PH1(p) heuristic achieves ARPD of 3.47%, MPD of 

7.15% and PBS of 7%. The FNM heuristic achieves ARPD of 2.74%, MPD of 5.33% and 

PBS of 12%, better than the PH1(p) heuristic. The LS heuristic obtains ARPD of 2.33%, 

MPD of 4.91%, and PBS of 30%, better than the PH1(p) and FNM heuristics on 

effectiveness. The CFI heuristic achieves the smallest ARPD of 2.08% and the largest PBS 

of 53% among all four heuristics, although the MPD of the CFI heuristic is not as good as 

the FNM and LS heuristics. 
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ARPDs of heuristics for large-scale instances are used to plot the trend of deviations 

as the number of jobs or machines increases, as shown in Figure 4.2. 

As the number of jobs increases from 20 to 500, Figure 4.2 (a) shows that the 

deviations of all four heuristics are very close when the number of jobs is 20, and then 

increase when the number of jobs changes from 20 to 100. In addition, as the number of 

jobs increases from 100 to 500, the deviation of the CFI heuristic drops the fastest 

compared with those of other three heuristics. 

Figure 4.2 (b) plots the trend of ARPDs against the number of machines, ranging 

from 5 to 20 machines. The trends obtained by the PH1(p) and LS heuristics go downwards 

Table 4.6: Average relative and maximum percent deviation (ARPD & MPD) in 

Taillard’s benchmark to min(∑Cj) (%) 

Size PH1(p) FNM LS CFI 

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD 

20 5 1.60 5.21 1.27 2.55 1.38 3.26 0.87 3.03 

 10 1.36 3.25 1.61 3.89 1.06 2.92 1.34 3.52 

 20 1.50 4.43 1.13 2.87 0.85 2.30 0.74 1.47 

50 5 4.02 6.84 3.31 5.33 2.38 4.91 2.19 4.12 

 10 3.03 5.51 3.03 4.76 2.02 3.82 2.14 3.69 

 20 2.69 4.35 2.79 4.88 1.97 4.19 1.35 1.91 

100 5 5.94 7.15 3.44 4.55 3.75 4.72 3.35 5.35 

 10 4.58 5.43 3.41 4.63 2.87 4.73 3.07 7.05 

 20 3.89 5.18 3.19 3.97 2.61 3.37 2.53 4.89 

200 10 4.98 6.04 3.84 4.16 3.61 4.44 3.49 4.30 

 20 4.47 5.12 3.67 4.60 2.96 4.01 2.88 4.38 

500 20 3.62 4.86 2.21 2.41 2.50 3.11 0.98 1.78 

All instances 3.47 7.15 2.74 5.33 2.33 4.91 2.08 7.05 

PBS 7 12 30 53 
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as the number of machines increases from 5 to 15, whereas the deviations of both the FNM 

and CFI heuristics go up. However, when the number of machines increases from 10 to 20, 

the deviation of the CFI heuristic drops faster than those of other heuristics and reaches to 

the lowest point of deviations. 

 

(a) Deviation of TCT by no. of jobs (%); 

 

(b) Deviation of TCT by no. of machines (%) 

Figure 4.2: Deviations of TCT as the number of jobs or machines increases 



51 
 

To verify effectiveness of the CFI heuristic, two statistical analyses are conducted 

based on the large-scale instances. Firstly, the analysis of variance (ANOVA) is used to 

test whether the ARPDs of the PH1(p), FNM, LS and CFI heuristics are the same or 

whether some ARPDs are different. The ANOVA results from Table 4.7 show that the 

difference among heuristics is statistically significant with p-value=0.000. 

Secondly, paired t-tests on the ARPD are performed to validate whether or not there 

are significant differences among the PH1(p), FNM, LS and CFI heuristics. Table 4.8 

shows the summarized results of the paired t-test for confidence level α=0.05. As Table 4.8 

indicates, the CFI heuristic significantly outperforms the other three heuristics. 

Computation times are used to evaluate efficiency of each heuristic. All four 

heuristics are programmed in Matlab and run on a Dell Precision T1700 with Intel Core i5-

4590 CPUs of 3.3 GHz.  

Table 4.7: ANOVA results to min(∑Cj) (95% Confidence Interval) 

Source DF SS MS P 

Heuristics 3 134.27 44.76 0.000 

Error 476 890.40 1.87  

Total 479 1024.68   

Table 4.8: Paired t-test results to min(∑Cj) (α=0.05) 

CFI vs. PH1(p) FNM LS 

p-value 0.000 0.000 0.012 

Estimate for mean 

difference 
–1.397 –0.664 –0.2517 

95% CI for mean difference (–1.659,–1.135) (–0.886,–0.442) (–0.4461,–0.0573) 
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Figure 4.3: The deviation from upper bound with the value of r 

In order to improve efficiency of the CFI heuristic, we determine the number of 

iterations r by changing r from 1 to 16 based on large-scale instances. We calculate the 

deviations from upper bound for each value of r. Figure 4.3 indicates that when the value 

of r is larger than or equal to 6, the deviation asymptotically reaches to the same level of 

2.08%, which means our CFI heuristic generates all possible sequences in 6 iterations. 

Therefore, we set the number of iterations r as 6. 

The average computation time (in seconds) required for large-scale instances by 

each heuristic is given in Table 4.9. On average, the CFI heuristic uses less CPU time than 

the LS heuristic, but more CPU time than the PH1(p) and FNM heuristics. Although the 

computational complexity of the FNM heuristic is O(n4), higher than that of the LS and 

CFI heuristics, respectively, the FNM heuristic takes less computation time, because there 

are 10 iterations in the LS heuristic and 6 in our CFI heuristic. Overall, the CFI heuristic 

achieves the best effectiveness in less computation time among three popular heuristics. 
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(Unit: seconds) 

4.4 Trade-off balancing 

For bi-objective optimization of Cmax and ∑Cj, we introduce the trade-off balancing 

function to evaluate the performance of each heuristic. The trade-off balancing function is 

shown in Equation (4-5) as follows: 

𝑆𝑆𝑇𝑇𝐵𝐵(𝛼𝛼) = 𝛼𝛼𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁 + (1 − 𝛼𝛼)𝑆𝑆𝐶𝐶𝑆𝑆𝑁𝑁 (4-5) 

Where the 𝛼𝛼  is the preference or weight for the objective of Cmax, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁  is the 

normalized value of Cmax and 𝑆𝑆𝐶𝐶𝑆𝑆𝑁𝑁 is the normalized value of TCT. We compare our AIT 

heuristic and CFI heuristic with LS and CH heuristics based on large-scale instances. We 

have chosen 𝛼𝛼 to be 0, 0.25, 0.5, 0.75, and 1. If 𝛼𝛼 is less than 0.5, we give more preference 

to TCT and give more preference to Cmax when 𝛼𝛼 is greater than 0.5. The following Figure 

4.4 shows how the performances of each heuristic behave given different value of 𝛼𝛼. 

Table 4.9: CPU times of four heuristics for large-scale instances to min(∑Cj) 

n m PH1(p) FNM LS CFI 

20 5 0.00 0.02 0.10 0.06 

 10 0.00 0.01 0.10 0.05 

 20 0.00 0.01 0.09 0.06 

50 5 0.02 0.10 0.71 0.44 

 10 0.02 0.10 0.72 0.44 

 20 0.02 0.10 0.72 0.46 

100 5 0.09 0.80 4.10 2.66 

 10 0.10 0.83 4.23 2.78 

 20 0.12 0.86 4.17 2.81 

200 10 0.69 9.24 28.78 19.26 

 20 0.77 9.38 28.65 19.51 

500 20 10.64 283.49 467.04 319.58 

All instances 1.04 25.41 44.95 30.68 
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(a) The trade-off balancing when 𝛼𝛼 = 0 

 

(b) The trade-off balancing when 𝛼𝛼 = 0.25 
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(c) The trade-off balancing when 𝛼𝛼 = 0.5 

 

(d) The trade-off balancing when 𝛼𝛼 = 0.75 
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(e) The trade-off balancing when 𝛼𝛼 = 1 

Figure 4.4: The performances of each heuristic given different values of 𝛼𝛼 

From Figure 4.4, given different values of 𝛼𝛼, we can see that both AIT and CFI 

heuristics obtain the best performance. When the preference is given more to Cmax, the AIT 

heuristic performs the best. When the preference is given more to the TCT, the CFI heuristic 

performs the best. Besides, the trends obtained by the AIT and CFI heuristics go 

downwards as the number of jobs increases from 20 to 500, whereas the trends of both the 

LS and CH heuristics go up. In addition, when the number of job is 500, the performances 

of AIT and CFI heuristic almost converge together, which indicates that the initial sequence 

algorithm (ISA) plays an important role to generate the final solutions, since both heuristics 

use the same ISA to generate initial sequence. Overall, our proposed heuristics have better 

performances to minimize the trade-off than the other two heuristics. 

4.5 Case study on UKHC historical data 

To validate our CFI heuristic for operating room (OR) scheduling across the periop 

process in a healthcare system, we carry out a case study based on historical OR data from 
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University of Kentucky HealthCare (UKHC), in which the first come first serve (FCFS) 

rule is used for OR scheduling, especially for emergencies.  

The historical data set obtained from UKHC consists of almost 30,000 cases in 365 

consecutive days from 2013 to 2014. UKHC schedules operating rooms on weekdays, and 

opens emergency rooms on weekends and holidays, thus the number of cases on weekends 

and holidays is much less than that on weekdays. Therefore, removing data on weekends 

and holidays, we have more than 27,000 cases in 50 weeks with 5 days a week, i.e., in 250 

days. First, we compare the sequences of the PH1(p), FNM, LS, and CFI heuristics with 

the UKHC ones based on average patient flow time (APFT), which equals to the total 

completion time divided by the number of patients served in a day. Second, we use 

statistical process control (SPC) techniques to compare the process capability based on 

APFTs generated by our CFI heuristic and the actual UKHC data. 

Table 4.10 shows the APFTs and standard deviations for four heuristics and the 

actual UKHC data. As shown in Table 4.10, our CFI heuristic can achieve the smallest 

APFT with the smallest standard deviation. 

Table 4.10: APFT (minutes) and standard deviation for four heuristics and UKHC 

 PH1(p) FNM LS CFI UKHC 

APFT 545.19 544.83 544.91 544.74 613.09 

Standard deviation 40.91 40.85 40.88 40.82 56.20 

Using SPC techniques, we generate process capabilities for both CFI and the 

UKHC data as shown in Figure 4.5. The user-defined lower specification limit (LSL) and 

upper specification limit (USL) are set as 400 and 700 minutes, respectively, according to 

the historical data from UKHC. The process capabilities cp and cpk are defined as 𝑐𝑐𝑝𝑝 =

𝑈𝑈𝑈𝑈𝑈𝑈−𝑈𝑈𝑈𝑈𝑈𝑈
6𝜎𝜎

 and 𝑐𝑐𝑝𝑝𝑘𝑘 = min(𝑈𝑈𝑈𝑈𝑈𝑈−𝜇𝜇
3𝜎𝜎

, 𝜇𝜇−𝑈𝑈𝑈𝑈𝑈𝑈
3𝜎𝜎

), where µ is the average patient flow time and σ is 
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the standard deviation for the process performance (Montgomery, 2007). Process 

capability cp indicates if the outcomes of a process are within the control limits. With the 

fixed range of specification limits, which is USL − LSL, the larger the cp, the less the 

variation in process, which is 6σ. Process capability index cpk indicates if the outcomes are 

centered around the average performance. The larger the cpk, the less likely that the 

outcomes will fall outside the limits, LSL or USL. As shown in Figure 4.5, the cp is 1.21 

for our CFI heuristic and 0.90 for the UKHC data, and the cpk is 1.17 for our CFI heuristic 

and 0.52 for the UKHC data. Obviously, the APFTs generated by our CFI heuristic are 

more centered within the specification limits and with less variation, compared to those 

from historical UKHC data. 
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(a) Process Capability of CFI 

 

(b) Process Capability of UKHC 

Figure 4.5: Capability analysis of average patient flow times in 250 days 

Moreover, we generate the Xbar-R charts based on APFTs in 250 days as shown in 

Figure 4.6. The APFT is 544.7 minutes for our CFI heuristic, and 613.1 minutes for the 

data from UKHC. The improvement in average patient flow times can be calculated by 

(613.1 − 544.7)/613.1=11.2%. The range of variation on our CFI heuristic is 205.5 minutes, 

less than that of 275.4 minutes for the UKHC data. 
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(a) By CFI 

 

(b) By UKHC 

Figure 4.6: X-bar&R charts of average patient flow times 

These results from X-bar&R charts support those of cp and cpk, and the 11.2% 

improvement in average patient flow time indicates that potentially 3,000 additional 

patients could be served in a year if our CFI heuristic was applied for sequencing. However, 

in practice, OR scheduling and control is affected by many other factors in addition to 
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sequencing, such as emergencies, the availability of patients in the waiting list, surgical 

staff, and equipment, etc. These realities are reflected in the UKHC data. 

Based on the above case studies, we have test the effectiveness, efficiency and 

robustness of our AIT and CFI heuristics. Compared with the best known heuristics for Fm 

|nwt| Cmax and Fm |nwt| ƩCj problems, such as LC, ADT and CH heuristics for Cmax and 

PH1(p), FNM and LS heuristics for ƩCj, our heuristics outperform them significantly. In 

addition, for bi-objective optimization, our heuristics perform better than others based on 

the trade-off balancing function. Last, compared with actual performance at UKHC, our 

CFI heuristic can potentially serve 3,000 additional patients. 
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Chapter 5 Conclusion and future work 

5.1 Concluding remarks 

ORs are the largest cost center and the greatest revenue source simultaneously for 

hospitals (Ghazalbash et al, 2012). To achieve high utilization of OR units and reduce 

average waiting times are two main objectives in the 3-stage periop process. In the 3-stage 

periop process, the performance of one stage affects the performances of adjacent stages, 

which is also characteristic of a three-stage no-wait flow shop. The upstream stages affect 

downstream stages to influence the utilization and patient flow, and downstream stages can 

affect upstream stages as well, such as blocking and PACU boarding. Therefore, the 3-

stage no-wait flow shop is suitable to model the periop process, in which no waiting time 

between stages is allowed. 

No-wait flow shop production is common in industry, where no waiting time is 

allowed between intermediate operations. Minimization of makespan (Cmax), which relates 

to utilizations, for no-wait flow shop production has been proven to be NP-hard and 

minimization of total completion time (∑Cj), which relates to average waiting time, has 

been proven to be NP-complete. It is extremely time consuming to find optimal solutions 

using exact methods for such problems. Therefore, heuristics are widely used to find near 

optimal solutions for production scheduling in manufacturing. To min(Cmax), the LC, ADT, 

and CH heuristics are three typical ones developed recently (Laha and Chakraborty, 2009, 

Ye et al., 2016; Li et al., 2008), and to min(∑Cj), the PH1(p), FNM, and LS heuristics are 

three typical ones in the literature (Aldowaisan and Allahverdi, 2004; Framinan et al., 2010; 

Laha et al., 2014). These heuristics can obtain good solutions in a reasonable time, even 

for large-scale instances. However, there are some shortcomings of their heuristics, such 
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as high computational complexity in the FNM heuristic, lack of large-scale computational 

experiment in the LS heuristic. 

To enhance effectiveness and efficiency beyond these heuristics, we propose the 

AIT heuristic to min(Cmax) and the CFI heuristic to min(∑Cj) for no-wait flow shop 

production. To improve effectiveness, we first take the current idle times and future idle 

times into consideration, proposing an initial sequence algorithm, and then use the insertion 

and neighborhood exchanging methods to further improve the solutions. 

To increase efficiency, we first introduce an objective increment method to reduce 

the computational complexity from O(n) to O(1) in calculating total completion time, and 

then set the number of iterations in our AIT and CFI heuristic to further reduce the 

computation times. 

Compared with the LC, ADT and CH heuristics for the Fm |nwt| Cmax problems, 

based on 600 small-scale instances, our AIT heuristic achieves the best performance on 

average relative percentage deviation (ARPD) of 0.23%, maximum percentage deviation 

(MPD) of 5.14%, and the percentage of the best solutions (PBS) of 82.17%. Based on 

large-scale instances in Taillard’s benchmarks, our AIT heuristic achieves the best 

performance on ARPD of 0.23% and PBS of 65.83%, although not on the MPD of 2.95%. 

Compared with the PH1(p), FNM and LS heuristics for the Fm |nwt| ∑Cj problems, 

based on 600 small-scale instances, our CFI heuristic achieves the best performance on 

ARPD of 0.06%, MPD of 2.98%, and PBS of 88%. Based on large-scale instances in 

Taillard’s benchmarks, our CFI heuristic achieves the best performance on ARPD of 2.08% 

and PBS of 53%, although not on the MPD of 7.05%. In addition, on average, the CPU 
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time of our CFI heuristic is 30.68 seconds, based on Taillard’s benchmarks, less than the 

44.95 seconds of the LS heuristic.  

In the trade-off balancing, our AIT and CFI heuristics outperform the LS and CH 

heuristics. When the preference is given more to Cmax, the AIT heuristic performs the best. 

When the preference is given more to the ∑Cj, the CFI heuristic performs the best. Besides, 

the trends obtained by the AIT and CFI heuristics go downwards as the number of jobs 

increases from 20 to 500, whereas the trends of both the LS and CH heuristics go up. 

In a case study using historical data from UKHC, we found our CFI heuristic can 

achieve 11.2% improvement in average patient flow times over UKHC’s performance, and 

the average patient flow times generated by our CFI heuristic are under better process 

control with less variation. This means additional patients can potentially be served and 

there is a greater control of OR management across the peri-operative process. 

Overall, our AIT and CFI heuristics can achieve good effectiveness and efficiency 

for no-wait flow shop scheduling and operating room scheduling. 

5.2 Future work 

Variation in processing times is a common disturbance to flow shop production in 

manufacturing or healthcare systems, which consequently generates an uneven workflow 

on the production lines. Cao, Patterson, and Bai (2005) have concluded that the main source 

of variations in processing time is the variation in actual processing times from their 

expected values. The difficulty to handle the variation in processing time is that we do not 

exactly know how the current variations and performance will impact on the future overall 

performance. One topic of our future work is adaptive production control by resequencing 
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jobs for this type of disturbances that the overall system performance can be under control 

in an acceptable range. 

Besides variations in processing time, there are trade-offs between different 

objectives. Li et al. (2014) proved that the objectives of min(Cmax) and min(∑Cj) are not 

consistent in traditional permutation flow shop scheduling problems. The limitation of 

current work focuses on the evaluation scheme of trade-off for each single-objective 

heuristic, not addressing the root causes of trade-offs in no-wait flow shop production 

scheduling. The root cause of trade-off in flow shop scheduling is unbalanced cycle time 

at different stages in production lines. Therefore, another topic of our future work is to 

establish effective and efficient heuristics for multi-objective optimization in no-wait flow 

shop based on balancing cycle times at each stage. 

The third topic of our future work is to apply these heuristics to the hybrid no-wait 

flow shop, in which there exist parallel machines at each stage. Based on the second future 

work, we want to extend 3-machine flow shop to hybrid no-wait flow shop, which relates 

to the resource allocation at each stage. On the one hand, from the second topic of future 

work, we can find how sequencing changes the cycle time in no-wait flow shop scheduling. 

On the other hand, different schemes of resource allocation affect the cycle time of each 

machine at each stage as well. Therefore, it is important and meaningful to study the 

following three questions: (1) given the fixed resources, how sequencing affects cycle time? 

(2) Given the fixed sequencing method, how can we obtain better performances by 

adjusting the resource allocation scheme? (3) How do the resource allocation scheme and 

sequencing interact with each other to affect the performance of the systems? 



66 
 

Overall, the future work will focus on achieving adaptive scheduling in operating 

rooms scheduling when (1) disturbances occur in systems; (2) optimizing different 

inconsistent objectives, and (3) resource allocation and sequencing interact with each other. 
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