
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Mechanical
Engineering Mechanical Engineering

2017

ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT

Honghan Ye
University of Kentucky, yehonghan1994@gmail.com
Author ORCID Identifier:

http://orcid.org/0000-0001-5329-7344
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.095

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Ye, Honghan, "ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT" (2017). Theses and
Dissertations--Mechanical Engineering. 88.
https://uknowledge.uky.edu/me_etds/88

This Master's Thesis is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Mechanical Engineering by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232577332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me
http://orcid.org/0000-0001-5329-7344
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Honghan Ye, Student

Dr. Wei Li, Major Professor

Dr. Haluk E. Karaca, Director of Graduate Studies

ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT

THESIS

A thesis submitted in partial fulfillment of the

requirement for the degree of Master of Science in Mechanical Engineering
in the College of Engineering
at the University of Kentucky

By

Honghan Ye

Lexington, Kentucky

Co-Directors: Dr. Wei Li, Assistant Professor of Mechanical Engineering

and Dr. Fazleena Badurdeen, Associate Professor of Mechanical Engineering

Lexington, Kentucky

2017

Copyright© Honghan Ye 2017

ABSTRACT OF THESIS

ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT

The perioperative process in hospitals can be modelled as a 3-stage no-wait flow shop. The
utilization of OR units and the average waiting time of patients are related to makespan
and total completion time, respectively. However, minimizations of makespan and total
completion time are NP-hard and NP-complete. Consequently, achieving good
effectiveness and efficiency is a challenge in no-wait flow shop scheduling. The average
idle time (AIT) and current and future idle time (CFI) heuristics are proposed to minimize
makespan and total completion time, respectively. To improve effectiveness, current idle
times and future idle times are taken into consideration and the insertion and neighborhood
exchanging techniques are used. To improve efficiency, an objective increment method is
introduced and the number of iterations is determined to reduce the computation times.
Compared with three best-known heuristics for each objective, AIT and CFI heuristics can
achieve greater effectiveness in the same computational complexity based on a variety of
benchmarks. Furthermore, AIT and CFI heuristics perform better on trade-off balancing
compared with other two best-known heuristics. Moreover, using the CFI heuristic for
operating room (OR) scheduling, the average patient flow times are decreased by 11.2%
over historical ones at University of Kentucky Health Care.

KEYWORDS: Operating Room Scheduling, No-wait Flow Shop, Makespan and Total
Completion Time, Trade-off Balancing, Heuristics.

 Honghan Ye
 Student’s Signature

 04/07/2017
 Date

ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT

By

Honghan Ye

 Dr. Wei Li
 Co-Director of Thesis

 Dr. Fazleena Badurdeen
 Co-Director of Thesis

 Dr. Haluk E. Karaca
 Director of Graduate Studies

 04/18/2017
 Date

iii

ACKNOWLEDGMENTS

First of all, I want to thank Dr. Wei (Mike) Li for taking me on as his student. His

critical thinking for doing research inspires me to construct my own research topic. In

addition, Dr. Li provided timely and instructive comments and help at every stage of the

thesis process, allowing me to finish this program on time.

Next, I want to thank Dr. Jawahir and Dr. Badurdeen for agreeing to be a part of

my committee. Each individual provided a wealth of insight that guided and challenged

my thinking in and out of class. I am truly grateful to Dr. Miao at HFUT for helping me to

start in this research field in my undergraduate study.

In addition to the technical and academic assistance above, I want to thank my

parents for always encouraging me so that I can go through all the ups and downs. I thank

my friends for taking the time with me to offer their friendship and laughter. I thank my

lab mate Amin for his kind help in my research and life. Finally, I want to thank my

roommates for their care and support.

iv

TABLE OF CONTENTS

Acknowledgments ... iii

List of Tables .. vi

List of Figures .. vii

Chapter One: Introduction

1.1 Background ..1

1.2 Motivation ..2

1.3 The challenges in no-wait flow shop scheduling ...5

1.4 The contribution ...8

1.5 The structure of this thesis ...9

Chapter Two: Literature review

2.1 Heuristics for no-wait flow shop to minimize Cmax and ∑Cj11

2.1.1 Heuristics for no-wait flow shop to minimize Cmax 12

2.1.2 Heuristics for no-wait flow shop to minimize ∑Cj 14

2.2 Heuristics for multi-objective optimization in no-wait flow shop17

2.3 Statistical process control in operating room scheduling19

Chapter Three: Methodology

3.1 Problem description ...22

3.2 Initial Sequence Algorithm (ISA) ..25

 3.3 AIT heuristic to min(Cmax) ...27

3.4 CFI heuristic to min(ƩCj) ...30

3.5 Objective increment method to calculate total completion time (TCT) 35

Chapter Four: Case study

4.1 Schemes to carry out case studies ..38

4.2 Results of case study on Fm |nwt| Cmax problems ...41

4.2.1 Small-scale instances ...41

4.2.2 Large-scale instances ...43

4.3 Results of case study on Fm |nwt| ∑Cj problems ..46

v

4.3.1 Small-scale instances ...46

4.3.2 Large-scale instances ...48

4.4 Trade-off balancing ..53

4.5 Case study on UKHC historical data ...56

Chapter Five: Conclusion and future work

5.1 Concluding remarks ...62

5.2 Future work ..64

References ..67

Vita ...77

vi

LIST OF TABLES

Table 2.1: The summary of heuristics to minimize Cmax ..12

Table 2.2: The summary of heuristics to minimize ∑Cj ..15

Table 3.1: Processing times of a 6-job 5-machine instance ..27

Table 3.2: Distance matrix for an example to min(Cmax) ...30

Table 3.3: Processing times of a 5-job 4-machine instance. ..33

Table 3.4: Distance matrix for an example to min(ƩCj) ..34

Table 4.1: Average Relative and Maximum percent deviations (ARPD & MPD) for small-

scale instances to min(Cmax) (%) ..42

Table 4.2: Average Relative and Maximum percent deviations (ARPD & MPD) for large-

scale instances to min(Cmax) (%) ..43

Table 4.3: ANOVA results to min(Cmax) (95% Confidence Interval)45

Table 4.4: Paired t-tests results to min(Cmax) (α=0.05) ...46

Table 4.5: Average Relative and Maximum percent deviations (ARPD & MPD) for small-

scale instances to min(∑Cj) (%) ...47

Table 4.6: Average Relative and Maximum percent deviations (ARPD & MPD) for large-

scale instances to min(∑Cj) (%) ..49

Table 4.7: ANOVA results to min(∑Cj) (95% Confidence Interval) 51

Table 4.8: Paired t-tests results to min(∑Cj) (α=0.05) ..51

Table 4.9: CPU times of four heuristics for large-scale instances to min(∑Cj)53

Table 4.10: APFT (minutes) and standard deviation for four heuristics and UKHC 57

vii

LIST OF FIGURES

Figure 1.1: The perioperative process ...3

Figure 1.2: Decision making problems and complexity ...6

Figure 2.1: The control chart of effective service rate of surgery type 1 (S1)20

Figure 3.1: Distance between two adjacent jobs ..23

Figure 4.1: Deviations of Cmax as the number of jobs or machines increases44

Figure 4.2: Deviations of TCT as the number of jobs or machines increases50

Figure 4.3: The deviation from upper bound with the value of r52

Figure 4.4: The performances of each heuristic given different values of α56

Figure 4.5: Capability analysis of average patient flow times in 250 days59

Figure 4.6: X-bar&R charts of average patient flow times ..60

1

Chapter 1 Introduction

1.1 Background

Operating rooms (OR) are the most cost and revenue intensive areas in hospitals.

In 2002, there were 36.5 million hospital stays in the United States, with an average length

of stay of 4.5 days and an average cost of $10,400 per stay. About 21.8% of hospital stays

in 2012 were surgical (Weiss and Elixhauser, 2014). In surgical procedures, ORs have been

estimated to account for over 40% of total expenditure of a hospital (Denton et al., 2007).

On the one hand, the operating rooms are one of most important resources, which has the

largest cost and revenues (Ghazalbash et al, 2012). Mean hospital costs of surgical stays

are $21,200 in 2012, which is 2.5 times the mean costs of $8,500 for medical stays and

nearly 5 times the mean costs of $4,300 for maternal and neonatal stays (Moore et.al, 2014).

On the other hand, because of the aging population, there is a sharply increasing trend of

demand for surgical services in recent years (Etzioni et al., 2003). There were around 51

million inpatient surgical procedures performed in the United States in 2010, according to

the latest data from the Centers for Disease Control and Prevention (Hall and Owings,

2014).

Long waiting time, a large number of emergencies, and resource overload are

coming along with this increasingly demand in healthcare systems (Meskens et.al 2013).

Therefore, hospital managers are continuously looking for new methods to increase the

utilization of OR units and to reduce the average waiting time of patients (Cardoen et al.,

2010). From flow shop perspective, the utilization of an OR unit is defined as the workload

divided by the completion time of the last patient, where workload is the sum of case times.

The average waiting time is defined as the length of time that a patient stays in the

2

perioperative (periop) process, which consists of the preoperative (preop), intraoperative

(intraop), and postoperative (postop) stages. Average waiting time can be represented by

the average flow time in a flow shop, which is the total completion time divided by the

number of patients. Minimization of maximum completion time or makespan can improve

OR utilization, which directly reduces surgical overtime and its cost. Minimization of

average waiting time can improve patient flow through the periop process, which improves

patient throughput and generates more revenue.

1.2 Motivation

OR scheduling is extraordinarily complicated. The scheduling process must take

different surgical specialties into consideration, each of which has different priorities,

procedures, and case times. It also should consider different resources for specialties and

surgical procedures. Resources include human resources (e.g., surgeons, anesthesiologists,

nurses, and staff), equipment used in different periop stages (e.g., induction equipment,

surgical instruments, and electro-medical equipment). In addition, the scheduling process

must take into account the disturbances across the periop process, such as emergency cases,

cancellations, or no-shows, variations in case times due to surgical complexities, post-

anesthesia care units (PACU) boarding, and length of stay in the periop process (Bosse et

al., 2013). Another consideration is about different preferences of stakeholders involved in

scheduling processes (Glouberman and Mintzberg, 2001), which might possibly be in

conflict.

Typically, the three stages of the periop process are shown in Figure 1.1 (Gupta,

2007). There are many operations in each stage. For example, the collection of patient

information and the preparation for surgeries occur in the preop stage, surgeries occur in

3

ORs in the intraop stage, and PACU, intensive care units (ICU), or ward for recovery are

in the postop stage. Each stage requires different resources to accommodate specific patient

needs. For simplicity, we model the OR scheduling problem across the periop process as a

3-stage no-wait flow shop.

Figure 1.3: The perioperative process

The three stages in the periop process are tightly coupled, because performance of

one stage affects the performance of adjacent stages. This is also the characteristic of a 3-

stage no-wait flow shop. For example, the delay of patients from a preop unit to ORs lowers

OR utilization, especially for the first case (Roberts et al., 2015), which is the performance

of stage 1 affects that of stage 2. Marcon and Dexter (2006) studied the impact of OR

performance on PACU staffing, and found the performance of stage 2 affects that of stage

3. These two examples show how upstream stages affect downstream stages. Downstream

stages can affect upstream stages as well. For example, when all postop beds are occupied,

blocking occurs between the intraop and postop stages. Consequently, case times are

extended because patients cannot be transferred out of ORs in the absence of recovery beds

in PACU or ICU (Augusto et al., 2010; Wang et al., 2015). This scenario is accentuated

with PACU boarding, which means patients stay in PACU overnight (Price et al., 2011).

Therefore, the 3-stage no-wait flow shop is suitable to model the periop process, in which

no waiting time between stages is allowed.

Preoperative Intraoperative Postoperative

4

To evaluate OR scheduling across the periop process, there are two main

performance measures: OR utilizations and average waiting time. From flow shop

perspective, Cmax,2 as the maximum completion time of the intraop stage affects OR

utilization, because utilization equals to the workload divided by the working period, and

the working period is equal to the completion time of the last job (Cmax,2) minus the start

time of the first job. 𝐶𝐶̅=∑Cj,3/n as the average completion time of the postop stage affects

average waiting time, which is the total completion time in the postop stage (∑Cj,3) divided

by the number of patients (n) (Pinedo, 2014). There are several other objectives to evaluate

the performance of the periop process. The objective of throughput is closely related to the

average patient waiting time. According to the Little’s Law, the average inventory in a

system equals the average cycle time (which includes waiting time and processing time)

times the average throughput (Little, 1961). The objective of leveling resources is mainly

to develop a schedule by smoothing resource occupancies without over usage. Leveling

resources involves the utilization and average flow time in each of the three stages across

the periop process. Therefore, maximum completion time and average completion time are

most important performance measures, which define the utilizations and average waiting

times.

ORs are the largest cost center and the greatest revenue source simultaneously for

hospitals (Ghazalbash et al, 2012). OR scheduling affects the progression of surgical cases

going through the periop process. Most hospitals use a three-phase block scheduling

framework to plan this progression. OR planning is phase 1, focusing on long-term

strategies, where resources and services are allocated to OR blocks. OR scheduling is phase

2, focusing on medium-term tactics, where a master surgical schedule (MSS) is generated.

5

The MSS generates the number of available surgical suites, operation hours, and OR block

times for a type of services. Case sequencing is phase 3, focusing on short-term execution

of MSS, where daily surgical cases are sequenced by operating rooms (Banditori et al.,

2013, Cardoen et al., 2010).

Different sequencing methods can address stakeholders’ objectives differently. For

example, the longest processing time (LPT) rule is recommended to improve OR utilization

(Magerlein and Martin, 1978; Gupta and Denton, 2008). The shortest processing time (SPT)

rule is recommended to reduce the number of case delays and to speed up patient flows

across the periop process (Testi et al., 2007). Both approaches give rise to schedule slippage

in that we cannot generate the best solutions of OR utilization and patient time

simultaneously through LPT and SPT rules. Therefore, it’s of great interest and importance

to balance different performance measures and to achieve adaptive scheduling and control.

1.3 The challenges in no-wait flow shop scheduling

Given the above complexities in OR scheduling across the periop process, we

model it as min(Cmax and ∑Cj) problems for a 3-machine no-wait flow shop. Therefore, we

have the following challenges in no-wait flow shop scheduling.

For the convenience of describing scheduling problems in no-wait flow shop, we

use Fm |nwt| Cmax to denote minimization of makespan and Fm |nwt| ∑Cj to denote

minimization of total completion time, where Fm is for a flow shop problem with m

machines, nwt for the constraint of no-wait, and Cmax for the objective to minimize

maximum completion time and ∑Cj for the objective of minimize total completion time

(Graham et al., 1979).

6

No-wait flow shop scheduling problems are categorized as combinatorial

optimization problems in which the feasible region is countable (Garey and Johnson, 2002).

The complexity of different classes of problems in combinational optimization is shown in

Figure 1.2. Fm |nwt| Cmax problems have been proved to be NP-hard when the number of

machines is larger than or equal to three, and Fm |nwt| ∑Cj problems are NP-complete when

the number of machines is larger than or equal to two (Garey and Johnson, 2002; Röck,

1984). For an NP-complete or NP-hard problem, we cannot describe the problem by

polynomials completely, or in other words, we cannot optimally solve the problem in a

polynomial time. As a result of the NP-hardness or NP-completeness, it is extremely time

consuming to find optimal solutions by using exact methods even for moderate-scale

problems (Ding et al., 2014). Consequently, the complexity of these problems makes it

difficult to optimally improve OR utilization and/or reduce average waiting time, although

optimal solutions can be derived for 2-machine flow shop production to minimize Cmax

(Johnson, 1954), and for 1-machine production to minimize ∑Cj. (Pinedo, 2014).

Figure 1.4: Decision making problems and complexity (Samarghandi, 2011)

7

Given 𝐶𝐶̅=∑Cj/n, we can see that the completion time of the last job n (Cmax) is

included in ∑Cj. If n is fixed, minimization of total completion time, min(∑Cj), is the same

as min(𝐶𝐶̅). However, min(Cmax) does not necessarily mean min(∑Cj), or vice versa,

although Cmax is included in ∑Cj. These two scheduling objectives are inconsistent. In the

investigation of OR scheduling methods (Li et al., 2014), the authors found these two

common OR scheduling objectives were inconsistent. One objective of min(Cmax) is to

minimize the maximum completion time for the last surgical case of the day. The second

scheduling objective of min (∑Cj) is to minimize the total completion time of an OR’s daily

slate, which is analogous to minimizing the average completion time if the number of

surgeries (n) is fixed, i.e., to min (𝐶𝐶̅), where j = 1,…,n. This inconsistency partially explains

why delays can occur between any two perioperative stages -- improving utilization in any

stage may reduce patient flow out of that stage, i.e., minimizing Cmax may maximize ∑Cj.

Consequently, such inconsistency between min(Cmax) and min (∑Cj) makes it more

difficult to improve OR utilization and reduce average waiting time at the same time, which

is a multi-objective optimization problem.

As OR management concerns evolve, on the one hand, the system changes over

time and the relationship among system components creates inconsistencies in system

performance (Davis et al., 2013; Beck et al., 2014; Pellegrino, 2015). Therefore, an OR

scheduling process must adapt to changing relationships and facilitate OR management as

concerns evolve. On the other hand, OR schedules are constructed as static timetables, with

little ability to adapt to dynamic changes in demand (e.g., emergency cases or case time

variation). With the time goes by, OR planning, scheduling, and control are interacted with

each other. For example, if the performance at this time is not good as expected, it may

8

affect the schedulers to adjust scheduling at next time, or even affect the OR manager to

change resource allocation at the next planning time. Consequently, the complexity of the

interaction between OR planning, scheduling, and control makes it difficult to achieve

adaptive scheduling in perioperative process.

1.4 The contribution

The contribution of our work comes from three aspects: (1) new methods to

min(Cmax) and min(∑Cj) for no-wait flow shop respectively; (2) a trade-off balancing

function to evaluate trade-off between Cmax and ∑Cj; (3) a validation of the CFI heuristic

based on the historical data at University of Kentucky HealthCare (UKHC), along the time

horizon.

First, we propose an initial sequence algorithm (ISA), based on which we propose

an average idle time (AIT) heuristic to min(Cmax), and a current and future idle time (CFI)

heuristic to min(∑Cj) for no-wait flow shop scheduling. In the ISA, we treat current idle

time and future idle time differently by a lever concept introduced in Li et al (2011).

Consequently, in the initial sequence, we assign higher weights to current idle times

generated by jobs in the head of a sequence than those generated by jobs in the tail of the

sequence. In both AIT and CFI heuristics, search techniques of insertion and neighborhood

exchanging are used to further improve the solutions generated by the ISA. Based on a

variety of benchmarks and randomly generated instances, our AIT and CFI heuristics

perform better than other best-known existing heuristics for no-wait flow shop scheduling.

Second, we introduce a trade-off balancing (TOB) function for no-wait flow shop

scheduling to evaluate trade-off between Cmax and ∑Cj. In the evaluation scheme, we assign

9

different preferences to each objective. The results show that the proposed heuristics

perform better than the LS (Laha and Sapkal, 2014) and CH (Li et al., 2008) heuristics.

Third, we use statistical process control (SPC) and control charts to validate our

CFI heuristic for operating room (OR) scheduling across the periop process in a healthcare

system. The results indicate that potentially 3,000 additional patients could be served in a

year if our CFI heuristic was applied for sequencing.

1.5 The structure of this thesis

The rest of the thesis is organized as follows:

The chapter 2 provides a thorough literature review, including current status of

heuristics to minimize the Cmax and ∑Cj, current status of multi-objective optimizations in

no-wait flow shop scheduling, and statistical process control in OR scheduling.

The chapter 3 gives the methodology of the proposed heuristics. The problem

description of no-wait flow shop is provided first. Then the initial sequence algorithm (ISA)

is proposed to generate the initial sequence. Based on ISA, the AIT and CFI heuristics are

given in detail to minimize Cmax and ∑Cj, respectively. The increment objective method is

introduced to reduce the computational complexity from O(n) to O(1) when using

neighborhood exchanging technique to calculate the total completion time.

The chapter 4 provides the results of case study. First, the performance of AIT and

CFI heuristics will be compared with other existing heuristics based on a variety of

benchmarks and generated data. Second, by using trade-off balancing (TOB) function,

based on the Taillard’s benchmarks, the performances of the trade-off between Cmax and

∑Cj for each heuristic are compared. Last, based upon the historical data at the University

of Kentucky HealthCare, the SPC charts with the CFI heuristic and UKHC are presented.

10

The chapter 5 presents the conclusions and directions for future research.

11

Chapter 2 Literature review

This chapter focuses on the literature review on three topics. First, heuristics

currently for single objective optimization of no-wait flow shop scheduling are introduced,

which are to minimize maximum completion time (Cmax) and total completion time (∑Cj),

respectively. Second, heuristics currently for multi-objective optimizations of no-wait flow

shop scheduling are presented. Finally, statistical process control (SPC) methods are

introduced for operating room scheduling.

2.1 Heuristics for no-wait flow shop to minimize Cmax and ∑Cj

Minimizations of Cmax and ∑Cj are NP-hard and NP-complete problems for no-wait

flow shop production, and it is extremely time consuming to find optimal solutions using

exact methods for such problems. There are mainly two ways to find near-optimal solutions

by using heuristics and meta-heuristics (Ruiz and Maroto, 2005). The heuristics can be

grouped into constructive heuristic and improvement heuristics. The constructive heuristics

build a feasible schedule from scratch, such as the NEH heuristic (Nawaz et al., 1983),

while the improvement heuristics improve the performance of feasible schedules by

applying some search techniques, such as neighborhood exchanging (Dannenbring, 1997).

Meta-heuristics start from an initial schedule constructed by constructive or improvement

heuristics, and generate better performance by iterations until a stopping criterion is

satisfied, such as the computation time, the number of iterations, etc. Typical examples of

meta-heuristics are simulated annealing (Ogbu and Smith, 1990), tabu search (Moccellin,

1995), genetic algorithms (Murata et al., 1996). Compared to heuristics, meta-heuristics

can generate better results in general, but have much higher computational complexities

12

and take much longer computation time to solve even for moderately scaled instances.

Consequently, with such a high computation burden, meta-heuristics are not commonly

applied in industry where problem scales are changing from moderate to large. Therefore,

heuristics with small computational efforts are proposed to minimize Cmax and ∑Cj

respectively in the thesis for adaptive scheduling.

2.1.1 Heuristics for no-wait flow shop to minimize Cmax

Table 2.1 shows a summary of the heuristics for the Fm |nwt| Cmax problems

reviewed in a chronological order.

Table 2.1: The summary of heuristics to minimize Cmax
Year Author(s) Acronym Comments

1976 Bonney and Gundry BG Based on a slope index

1980 King and Spachis KS Minimum covering level

1993
Gangadharan and

Rajendran
GR

The jobs with increasing trends in

processing time are processed ahead

1994 Rajendran RAJ
Adjacent jobs match and put last job

with short processing time

2008 Framinan and Nagano FN
Based on Farthest Insertion

Travelling Salesman Procedure

2008 Li et al. CH
Based on job insertion and

interchange techniques

2009 Laha and Chakraborty LC
Based on job insertion considering

two consecutive jobs as a block

2016 Ye et al. ADT Based on average departure time

Bonney and Gundry (1976) and King and Spachis (1980) pioneered constructive

heuristics for solving Fm |nwt| Cmax problems. Bonney and Gundry (1976) proposed a slope

13

index method to sequence jobs. King and Spachis (1980) proposed a minimum covering

level (MCL) method for solving Fm |nwt| Cmax problems.

Gangadharan and Rajendran (1993) and Rajendran (1994) proposed two heuristics,

named GR and RAJ, to solve the same problem. GR heuristic first sequences jobs in an

increasing or decreasing trend of their times, then uses an insertion technique to improve

the performance of the initial sequence. RAJ heuristic makes the adjacent jobs “match”,

similar to the GR heuristic based on the increasing or decreasing trend of a job, as much as

possible in order to minimize the inter-job delays and has the last job with short processing

time. The computational results showed that GR and RAJ heuristics were superior to the

heuristics proposed by BG heuristic (Bonney and Gundry, 1976) and KS heuristic (King

and Spachis, 1980).

Framinan and Nagano (2008) proposed a new heuristic based on Farthest Insertion

Travelling Salesman Procedure (FITSP) (Syslo, 1983), and compared this new heuristic

with random ordering, descending sum of processing times, and RAJ initial sequence

(Rajendran, 1994). The experimental results showed that the new heuristic performed

better than other three heuristics.

Based on the objective increment method, Li et al. (2008) proposed a composite

heuristic (CH) using job insertion and exchange techniques, and experimental results

showed that the CH heuristic performed better than the GR (Gangadharan and Rajendran,

1993) and RAJ (Rajendran, 1994) heuristics and used the least CPU time for the same

instances.

Laha and Chakraborty (2009) proposed a constructive heuristic (LC) to solve Fm

|nwt| Cmax problems. The principle of job insertion in the LC heuristic is that every two

14

consecutive jobs are selected as a block from the initial sequence, which is to be inserted

into a partial sequence, and each job in the block is inserted into each possible position of

the partial sequence. Through each insertion, choose the best partial sequence with the

smallest makespan and update the partial sequence until all jobs from the initial sequence

have been inserted into the partial sequence. The computational results showed that the LC

heuristic was significantly better than the GR (Gangadharan and Rajendran, 1993), RAJ

(Rajendran, 1994) heuristics.

Ye et al. (2016) proposed an average departure time (ADT) heuristic to minimize

Cmax for no-wait flow shop production. They first proposed the initial sequence based on

the average of idle times, and then use group and insertion techniques to improve the initial

solutions. The computational results showed that the ADT heuristic performed better than

GR (Gangadharan and Rajendran, 1993), RAJ (Rajendran, 1994), and modified NEH

(Nawaz et al., 1983) heuristics.

Overall, many researchers adopt the insertion and exchange techniques to improve

the initial solutions for solving Fm |nwt| Cmax problems. However, the properties of no-wait

flow shop scheduling still needs investigation to generate more effective and efficiency

heuristics.

2.1.2 Heuristics for no-wait flow shop to minimize ∑Cj

Table 2.2 shows a summary of the heuristics for the Fm |nwt| ∑Cj problems reviewed

in a chronological order.

15

Table 2.2: The summary of heuristics to minimize ∑Cj
Year Author(s) Acronym Comments

1990 Rajendran and

Chaudhuri

RC Based on preference relations

2000 Bertolissi BER Temporary flow time

2004 Aldowaisan and

Allahverdi

PH1(p) NEH insertion scheme and pair-wise

exchange

2010 Framinan et al. FNM Insertion and exchange neighborhood

techniques

2013 Gao et al. IB Improved Bertolissi heuristic

2013 Sapkal and Laha SL Priority on the bottleneck

2014 Laha et al. PSI Penalty-shift-insertion scheme

2014 Laha and Sapkal LS Based on average departure time

Rajendran and Chaudhuri (1990) proposed an RC heuristic based on the preference

relations for the Fm |nwt| ∑Cj problems. According to the results of computational

experiments, their RC heuristic was more effective on the Fm |nwt| ∑Cj problems than BG

heuristic (Bonney and Gundry, 1976) and KS heuristic (King and Spachis, 1980).

Bertolissi (2000) proposed a BER heuristic to min (∑Cj) based on an initial

sequence and job insertion technique. The initial sequence is generated by comparing

temporary flow times of each pair of jobs. Job insertion technique is applied to improve

the performance by the initial sequence. The computational results showed that the BER

heuristic performed better than RC heuristic (Rajendran and Chaudhuri, 1990) and BG

heuristic (Bonney and Gundry, 1976).

Aldowaisan and Allahverdi (2004) proposed six improved heuristics by using three

different search methods, first by the same insertion scheme as in the NEH heuristic

(Nawaz et al., 1983), second by the same insertion technique as in Rajendran and Ziegler

16

(1997), and third by the adjacent pair-wise neighborhood exchanging method. The NEH

heuristic is considered to be the best constructive heuristic to minimize makespan for

permutation flow shop production (Kalczynski and Kamburowski, 2007). Among the six

improved heuristics, the PH1(p) heuristic performed significantly better than the heuristic

proposed by RC heuristic (Rajendran and Chaudhuri, 1990) and the genetic algorithm

proposed by Chen et al (1996).

Framinan et al. (2010) proposed an FNM constructive heuristic to minimize total

completion time based on insertion and exchange neighborhood techniques. The results of

their case studies showed that the FNM heuristic performed better than the RC heuristic

proposed by Rajendran and Chaudhuri (1990), the PH1(p) heuristic by Aldowaisan and

Allahverdi (2004), BER heuristic by Bertolissi (2000), and the heuristic by Fink and Voß

(2003).

Using the constructive procedure as in Laha and Chakraborty (2009), Gao et al.

(2013) proposed two constructive heuristics, the improved standard deviation (ISD)

heuristic and the improved Bertolissi (IB) heuristic, which were developed from the

standard deviation heuristic by Gao et al. (2011) and the BER heuristic (Bertolissi, 2000),

respectively. The results of their case studies showed that the IB heuristic performed better

than the NEH (Nawaz et al., 1983) and BER heuristic (Bertolissi, 2000).

Sapkal and Laha (2013) proposed an efficient heuristic (SL heuristic) to minimize

total flow time. The initial sequence is generated based on the assumption that the priority

of a job in the initial sequence is given by the sum of processing times on the bottleneck

machine. An insertion technique, the same as that in LC heuristic proposed by Laha and

Chakraborty (2009), is applied to improve the performance of the initial sequence. The

17

results showed that the SL heuristic performed better than RC heuristic (Rajendran and

Chaudhuri, 1990) and BER heuristic (Bertolissi, 2000).

Laha et al. (2014) proposed a penalty-shift-insertion (PSI) heuristic for Fm |nwt| ∑Cj

problems, and their computational experiments showed that the PSI heuristic was relatively

more effective and efficient than other heuristics in the literature at the time.

Recently, Laha and Sapkal (2014) proposed an improved LS heuristic, and results

showed that the LS heuristic performed better than the PH1(p) heuristic (Aldowaisan and

Allahverdi, 2004) and the FNM heuristic (Framinan et al., 2010).

2.2 Heuristics for multi-objective optimization in no-wait flow shop

Although in the past decades, efforts have been made to obtain high-quality

solutions with acceptable computation times by optimizing a single objective, multi-

objective optimization is more reasonable for flow shop production scheduling in reality,

because some objectives are inconsistent, such as min(Cmax) and min(ƩCj) as indicated in

Li et al., (2014). Allahverdi and Aldowaisan (2002) proposed a PAAH heuristic to

minimize a weighted sum of makespan and total completion time based on insertion and

exchange techniques. By their computational results, the PAAH heuristic performed better

than existing heuristics for the single objective of Cmax and ∑Cj, such as RC heuristic

(Rajendran and Chaudhuri, 1990), GR (Gangadharan and Rajendran, 1993), RAJ

(Rajendran, 1994), and a genetic local search algorithm for multi-objective in flow shop

(Ishibuchi and Murata, 1998).

Liao et al. (2008) proposed an evolutionary algorithm and Liu et.al (2008) proposed

a new hybrid genetic algorithm. Both methods are for no-wait flow shop production to

minimize both makespan and total flow time. A non-dominated sorting strategy and an

18

objective increment strategy are integrated into these two methods. Their experimental

results showed that the proposed methods outperformed the PAAH heuristic (Allahverdi

and Aldowaisan, 2002) and other heuristics.

There are several other multi-objectives for no-wait flow shop scheduling.

Allahverdi and Aldowaisan (2004) proposed hybrid simulated annealing (SA) and genetic

algorithm (GA) algorithms for the no-wait flow shop problem with makespan and

maximum lateness criteria, and showed that the hybrid approach was efficient. Pan et.al

(2008) proposed a novel particle swarm optimization algorithm for no-wait flow shop

scheduling problems with makespan and maximum tardiness criteria. Jevadi et al. (2008)

proposed a fuzzy multi-objective linear programming (FMOLP) model to minimize the

weighted mean completion time and weighted earliness. This model provided a systematic

framework that facilitated the fuzzy decision-making process until a satisfactory solution

was obtained. Ruiz and Allahverdi (2009) proposed local search methods to minimize the

weighted sum of makespan and maximum lateness. The local search methods are mainly

based on the genetic algorithms and iterated greedy procedures. The computational results

showed that their algorithms performed better than the PAAH heuristic (Allahverdi and

Aldowaisan, 2002) and the heuristic proposed by Allahverdi and Aldowaisan (2004). Pan

et al (2009) proposed a novel discrete differential evolution (DDE) algorithm to minimize

makespan and maximum tardiness. The computational results showed that DDE algorithm

performed better than the HDE algorithm (Qian et al., 2009) and IMMOGLS2 algorithm

(Ishibuchi et al. 2003). Xie and Li (2012) proposed an evolved discrete harmony search

(EDHS) algorithm to minimize makespan, total flow time, and maximum tardiness.

19

From the literature review above, we found that there is a very limited number of

papers to address the multi-objective no-wait flow shop scheduling problem by using

heuristics, while most researchers adopted meta-heuristics, such as SA, GA and local

search, to solve this problem. We assign different weights to different objectives as

introduced in the PAAH heuristic (Allahverdi and Aldowaisan, 2002), to evaluate the

trade-off between Cmax and ∑Cj based on our proposed and compared heuristics.

2.3 Statistical process control in operating room scheduling

Statistical process control (SPC) is a branch of statistics that combines a time series

with historical data, generating good insights of scheduling in a more understandable way

for decision makers. Conventional statistical analysis methods do account for natural

variations without a time series. Therefore, it is a good way to use SPC and control charts

to provide decision-makers to determine if changes in processes are making a real

difference in outcomes.

The theory of statistical process control (SPC) was developed by Dr. Walter

Shewhard (1931), and was popularized worldwide by Dr. W Edwards Deming (2000). The

basic principles of SPC include (Benneyan et al., 2003):

• Individual measurement from any process will display a variation;

• If the data is from a stable common cause process, the variability is predictable

within a knowable range that can be calculated from statistical model such as

Gaussian, binomial, or Poisson distribution;

• If the data is from a special cause process, measured values will deviate in some

observable way from these random distribution models;

20

• Assuming that the data are in control, we can establish the statistical control limits

and test for data that deviate from predictions, providing statistical evidence of a

change.

The control charts are the key tools of statistical process control (SPC). The control

chart consists of two parts: one is the series of measurement plotted in the time order, and

the other are three horizons lines, including center line (the mean line), the upper control

limit (UCL) and lower control limit (LCL). Figure 2.1 shows an example of control chart

of effective service rate of surgery type 1 (S1) with time series. To interpret the control

chart in Figure 2.1, the series of measurements of effective service rate is plotted as the

black line. The green line is the center line, we can obtain the mean service rate is 0.7708.

Besides, there are two red lines to present the UCL (0.8231) and LCL (0.7185). The data

between the UCL and LCL in the Figure 2.1 are considered as the common cause variation.

However, there are three red points in the line falling outside the control limits. These data

are indications of special cause variation, which means these data are out of control.

Figure 2.1: The control chart of effective service rate of surgery type 1 (S1)

21

Where to draw the UCL and LCL is an important factor in the control charts. If the

limits are too narrow, there is a high risk to have ‘type I error’. Type I error means we

mistakenly consider some data as the special cause variations, which in fact they are

common cause variations. If the limits are too wide, there is a high risk to have ‘type II

error’. Type II error means we consider some data as common cause variations, which in

fact they are special cause variations. It is recommended that the control limits are set as

±3 SD (standard deviation) for detecting a significant change while achieving a rational

balance between two types of risks (Shewhard, 1931).

Above all, the statistical process control (SPC) and control charts are good tools to

monitor the process and evaluate the performance, especially in the healthcare environment,

such as flash sterilization rate, surgical site infections, etc. (Benneyan et al., 2003).

22

Chapter 3 Methodology

This chapter gives the methodology of our work. First, the problem description of

no-wait flow shop is given in details. Second, the initial sequence algorithm (ISA) is

illustrated based on the performance of current idle time and future idle time. Finally, the

proposed AIT heuristic to min(Cmax) and the CFI heuristic to min(ƩCj) are presented

respectively, of which an increment method is used to reduce the computational

complexities. Moreover, a neighborhood exchanging technique is used in the CFI heuristic.

3.1 Problem description

The following notations are used in problem description and formulation.

π: a sequence of n jobs, π = [J1, J2, …, Jj-1, Jj, …, Jn];

n: the number of jobs;

m: the number of machines;

pj,i: the processing time of job j on machine i, where j=1…n and i=1…m;

STj,i: the start time of job j on machine i;

CTj,i: the completion time of job j on machine i;

𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖 : the potential distance between completion time of job j-1 and start time of

job j on machine i;

𝐷𝐷𝑗𝑗−1,𝑗𝑗: the distance between two adjacent jobs’ completion times on the last

machine.

23

(a) Before shifting (b) After shifting

Figure 3.1: Distance between two adjacent jobs (Ye et al. 2016)

The calculation of Cmax and ∑Cj for no-wait flow shop production will be illustrated

as follows. First, we assume the start time of job j on the first machine equals to the

completion time of job j-1 on the last machine as shown in Figure 3.1(a) and Equation (3-

1). Meanwhile, there is no waiting time on intermediate machines for each job.

Accordingly, the start time of job j on machine i and the completion time of job j-1 on

machine i in Figure 3.1(a) can be formulated by Equations (3-2) and (3-3).

Given initial conditions that CT0,m = 0, pj,0 = 0, p0,i = 0, ∑ 𝑝𝑝𝑗𝑗,𝑘𝑘
0
𝑘𝑘=1 = 0, and

∑ 𝑝𝑝𝑗𝑗,𝑘𝑘
𝑚𝑚
𝑘𝑘=𝑚𝑚+1 = 0,

𝑆𝑆𝑆𝑆𝑗𝑗,1 = 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑚𝑚 where j=1,2,…,n (3-1)

𝑆𝑆𝑆𝑆𝑗𝑗,𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑗𝑗,1 + �𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

 where j=1,2,…,n and i=1,2,…,m (3-2)

𝐶𝐶𝑆𝑆𝑗𝑗,𝑖𝑖 = 𝐶𝐶𝑆𝑆𝑗𝑗,𝑚𝑚 − � 𝑝𝑝𝑗𝑗,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 where j=1,2,…,n and i=1,2,…,m (3-3)

Since the job is processed continuously on all machines, the start time of job j on

machine i equals to its start time on the first machine plus the sum of its processing times

on machines 1 to i-1 as shown in Equation (3-2). Similarly, the completion time of job j-1

24

on machine i equals to its completion time on the last machine minus the sum of its

processing times on machine i+1 to m as shown in Equation (3-3).

Consequently, the potential distances between the start time of job j and the

completion time of job j-1 on machine i can be formulated by Equation (3-4).

𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑗𝑗,𝑖𝑖 − 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑗𝑗,1 − 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑚𝑚 + �𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

+ � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 = �𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

+ � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

(3-4)

These potential distances between the start times of job j and the completion times

of job j-1 can be reduced by shifting job j to the left with the amount of the minimum of

these potential distances as in Figure 3.1(b), i.e., min(𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖) for i = 1…m. In other words,

there exists at least one machine 𝑖𝑖, where 𝑆𝑆𝑆𝑆𝑗𝑗,𝑖𝑖 equals to 𝐶𝐶𝑆𝑆𝑗𝑗−1,𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚). Hence, the

distance between jobs j and j-1 on the last machine 𝐷𝐷𝑗𝑗−1,𝑗𝑗 can be calculated by the total

processing time of job j on all machines minus the minimum 𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖 (𝑖𝑖 = 1 …𝑚𝑚) as shown

in Equation (3-5):

 𝐷𝐷𝑗𝑗−1,𝑗𝑗 = �𝑝𝑝𝑗𝑗,𝑘𝑘 − min
{𝑖𝑖}

𝑑𝑑𝑗𝑗−1,𝑗𝑗
𝑖𝑖

𝑚𝑚

𝑘𝑘=1

 = �𝑝𝑝𝑗𝑗,𝑘𝑘 − min
{𝑖𝑖}

��𝑝𝑝𝑗𝑗,𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

+ � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

�
𝑚𝑚

𝑘𝑘=1

 (3-5)

 = max
{𝑖𝑖}

��𝑝𝑝𝑗𝑗,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖

− � 𝑝𝑝𝑗𝑗−1,𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

�

25

Therefore, the calculation of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 for a sequence π = [J1…Jn] can be transferred

to the calculation of the total processing time of first job in the sequence and sum of

𝐷𝐷𝑗𝑗−1,𝑗𝑗 (𝑗𝑗 = 2,3, … ,𝑛𝑛) as follows in Equation (3-6):

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋) = �𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

𝑛𝑛

𝑗𝑗=2

 (3-6)

Similarly, the calculation of total completion time (TCT) for a sequence π = [J1…Jn]

can be transferred to the calculation of the sum of the completion time of each job in the

sequence as follows in Equation (3-7):

𝑆𝑆𝐶𝐶𝑆𝑆(𝜋𝜋) = �𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �(�𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)

𝑗𝑗

𝑘𝑘=2

)
𝑛𝑛

𝑗𝑗=2

(3-7)

 = 𝑛𝑛�𝑝𝑝𝜋𝜋(1),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �(𝑛𝑛 − 𝑗𝑗 + 1)𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

𝑛𝑛

𝑗𝑗=2

3.2 Initial Sequence Algorithm (ISA)

We use the initial sequence algorithm (ISA) to construct an initial sequence, where

we assign higher weights to current idle times generated by jobs in the head of the sequence

than those generated by jobs in the tail of the sequence. The steps of ISA are as follows:

Step 1: Set the position index k=1, the set of sequenced jobs S=∅ and the set of

unsequenced jobs U={all jobs}.

Step 2: Select the jth job (denoted as J[j]) in U (j=1,…,n–k+1), place it into the

position k in S, and calculate the average processing time (APTi) of all jobs

in U except the selected J[j] on each machine. Set up an artificial job, and its

processing time on each machine equals to APTi (Liu and Reeves, 2001; Li

and Freiheit, 2016). Append this artificial job to J[j], that is the artificial job

26

is located on the (k+1)th position in S.

Step 3: Calculate the idle time between J[j] and the (k–1)th job in S, which is

considered as the current idle time CI(j)=∑ �𝐶𝐶𝑗𝑗,𝑖𝑖 − 𝑝𝑝𝑗𝑗,𝑖𝑖 − 𝐶𝐶𝑘𝑘−1,𝑖𝑖�𝑚𝑚
𝑖𝑖=1 , where

𝐶𝐶0,𝑖𝑖 = 0 ∀ 𝑖𝑖. Calculate the idle time between J[j] and the artificial job, which

is considered as the future idle time FI(j)= ∑ �𝐶𝐶𝑘𝑘+1,𝑖𝑖 − 𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖 − 𝐶𝐶𝑘𝑘,𝑖𝑖�𝑚𝑚
𝑖𝑖=1 . The

index function f(j)=(n–k)*CI(j)+FI(j) is computed. For j=1,…,n–k+1, each

job in U has its own index function value, and we remove the job which has

the minimum value of f(j) from U and put it into the kth position in S. Set

k=k+1.

Step 4: If k < n, go to Step 2, otherwise, append the last one job in U to the last

position in S, and output S as the initial sequence π0.

To illustrate main procedures of the ISA heuristic in detail, we take a 6-job 5-

machine instance as an example, which is the same as in Li et al. (2008). The main steps

are listed as follows, and the processing time of each job on each machine can be found in

Table 3.1.

1) Set S=∅ and the U={J1, J2, J3, J4, J5, J6}.

2) Consider J1 in the 1st position of S, and the average processing times of J2, J3, J4, J5

and J6 on each machine are computed as APTi=[46.4, 53.8, 57, 42.4, 38.4], which

equal to the processing times of an artificial job. Append this artificial job to J1, and

we can obtain the current idle time of 150, and future idle time of 262.4. The index

function value for J1, namely f(1), is 1012.4. We can consider J2 in the 1st position

of S and obtain f(2)=1596.8. Similarly, we can obtain f(3)=1430.8, f(4)=1146,

27

f(5)=945.2, and f(6)=822.8. Hence, we remove J6 that has the minimum f value

from U and put it into the 1st position of S.

3) For the 2nd position in S, we can do the similar procedure as in Step 2 in ISA, and

obtain the index function values f for each job in U, which are f=[648.25, 1452.8,

991.5, 960.75, 379.5]. Hence we remove J5 from U and put it into the 2nd position

of S. Similarly, we generate the initial sequence π0 as {J6, J5, J1, J4, J3, J2}.

Table 3.1: Processing times of a 6-job 5-machine instance

 M1 M2 M3 M4 M5

J1 72 68 9 1 48

J2 83 83 31 66 90

J3 11 90 74 72 36

J4 89 7 57 37 31

J5 44 62 41 13 22

J6 5 27 82 24 13

3.3 AIT heuristic to min(Cmax)

The AIT heuristic consists of three phases: phase 1 for initial sequence generation,

phase 2 for the insertion and neighborhood exchanging, and phase 3 for iteration

improvement. In phase 1, we take both current idle times and future idle times into

consideration to generate the initial sequence based on the ISA as in Section 3.2. In phase

2, we apply the insertion and neighborhood exchanging techniques to improve solutions.

In phase 3, we use iterations to further improve solutions.

The techniques of insertion and neighborhood exchanging are used to improve

solutions found by the ISA. In addition, when using insertion and neighborhood

exchanging techniques, an objective increment method (Li et al., 2008) is used to calculate

28

the increment of makespan (∆Cmax), reducing the computational complexity of calculating

Cmax from O(n) to O(1).

Assume there are four jobs to be scheduled and the distance matrix 𝐷𝐷4×4 has been

calculated in advance. For a temporary sequence π1=[J1,J2,J3], 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋1) = ∑ 𝑝𝑝𝜋𝜋(1),𝑖𝑖
𝑚𝑚
𝑖𝑖=1 +

𝐷𝐷𝜋𝜋(1),𝜋𝜋(2) + 𝐷𝐷𝜋𝜋(2),𝜋𝜋(3) using Equation (3-6). Assume J4 will be inserted into the second

position of π1 and the sequence will be updated as π2 =[J1,J4,J2,J3]. The objective increment

is ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚1= D1,4+D4,2–D1,2 Then 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋2) = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋1) + ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚1. In addition, if J4 and

J2 are exchanged in π2 and the sequence is updated as π3 =[J1,J2,J4,J3], the objective

increment is ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚2 = D1,2+D2,4+D4,3–D1,4–D4,2–D2,3. Then 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋3) = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝜋𝜋2) +

∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚2. Therefore, by the objective increment method, the makespan can be calculated

without computing makespan for the whole sequence.

The steps for the AIT heuristic are as follows:

Step 1: Compute the distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 and obtain the initial sequence π0 using

ISA. Let Cmax0 be the makespan of π0. Set the current best makespan Cmaxb=

Cmax0, the current best sequence πb=π0, and the number of iterations r

changes from 1 to 5 (the experiment shows that when r exceeds 5, there is

little improvement of solutions) for Steps 2 to 6.

Step 2: Select first two jobs from πb, and choose the partial sequence with a smaller

Cmax. Set k=3.

Step 3: Select kth job in πb and insert it in all possible positions of the current partial

sequence. Calculate ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 for all resultant temporary sequences. The

temporary sequence whose job position has the minimum ∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is selected

as the current sequence. Next, exchange the position of each job in the

29

current sequence with that of the rest jobs. Among sequences generated by

neighborhood exchanging, if one sequence yields the smallest negative

∆Cmax, set this sequence as the current sequence, otherwise, keep the current

one. k=k+1.

Step 4: Repeat Step 3 until all jobs are scheduled, and set the current sequence as

πr with Cmaxr.

Step 5: If Cmaxr < Cmaxb, set Cmaxb = Cmaxr and πb=πr.

Step 6: For j=1 to n–1, insert the jth job in πr into n–j possible positions in the

forward direction. If these sequences generate a lower Cmax than Cmaxb, then

update πb and Cmaxb.

Step 7: Update r=r+1. If r ≤ 5, return to Step 2; otherwise, go to Step 8.

Step 8: Output the final πb and Cmaxb.

The computational complexity is O(mn2) for Step 1, which computes 𝐷𝐷𝑛𝑛×𝑛𝑛 by Eq.

(3-5) and generates the initial sequence, O(n3) for Step 3 and 4, which results from the

insertion and neighborhood exchanging techniques using the objective increment method,

and O(n2) for Step 6, which generates n(n–1)/2 sequences and calculates corresponding

makespan with O(1) Therefore, the computational complexity of the AIT heuristic is

O(n3+mn2), which is the same as that of the LC, ADT and CH heuristics. An example,

which is the same as the example in Table 3.1, is given below to illustrate the main steps

of the AIT heuristic.

1) The distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 calculated by Equation (3-5) is shown in Table 3.2. From

the ISA, we obtain the initial sequence π0 ={J6, J5, J1, J4, J3, J2} and Cmax0=616. Set

Cmaxb=616, πb ={J6, J5, J1, J4, J3, J2}, and r=1.

30

2) The sequence from Step 2 to 6 in the AIT heuristic is π1 ={J6, J3, J2, J5, J1, J4} and

Cmax1=601. Update Cmaxb =601, πb ={J6, J5, J1, J4, J3, J2}.

3) The sequence from second iteration (r=2) is π2 ={J3, J2, J4, J6, J5, J1} and Cmax2=584.

Update Cmaxb =584, πb ={J3, J2, J4, J6, J5, J1}.

4) The sequence from third iteration (r=3) is π3 ={J6, J3, J2, J4, J5, J1} and Cmax3=565.

Update Cmaxb =565, πb ={J6, J3, J2, J4, J5, J1}.

5) In the iterations from 4 to 5, the sequence and makespan remain unchanged.

Therefore, the final sequence is {J6, J3, J2, J4, J5, J1} with makespan 565.

Table 3.2: Distance matrix for an example to min(Cmax)

 J1 J2 J3 J4 J5 J6

J1 - 227 214 95 80 88

J2 48 - 85 31 22 13

J3 48 120 - 32 22 13

J4 66 221 151 - 50 51

J5 60 215 196 90 - 84

J6 52 207 153 88 39 -

3.4 CFI heuristic to min(ƩCj)

The CFI heuristic consists of three phases: phase 1 for initial sequence generation,

phase 2 for the insertion and neighborhood exchanging, and phase 3 for iteration

improvement. To improve effectiveness of the CFI heuristic, we take both current idle

times and future idle times into consideration to generate the initial sequence by the ISA

as in Section 3.2, and apply the insertion and neighborhood exchanging techniques. To

improve efficiency of the CFI heuristic, we introduce an objective increment method to

calculate TCT while applying neighborhood exchanging. In addition, we determine the

number of iterations as 6 rather than 10 as used in the PH1(p) (Aldowaisan and Allahverdi,

31

2004) and LS (Laha and Sapkal, 2014) heuristics. Six iterations reduce the computation

time and maintain effectiveness of the CFI heuristic. The steps of the CFI heuristic are as

follows:

Step 1: Compute the distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 and obtain the initial sequence π0 using

ISA. Let TCT0 be the total completion time of π0. Set the current best total

completion time TCTb=TCT0, the current best sequence πb=π0, and the

number of iterations r from 1 to 6 for Steps 2 to 6.

Step 2: Select first two jobs from πb, and choose the partial sequence with a smaller

TCT.

Step 3: First, apply the NEH insertion technique (Nawaz et al., 1983) to the obtained

partial sequences, select the best partial sequence with minimum TCT as

current sequence. Next, exchange the position of each job in the current

sequence with that of the rest jobs. Among sequences generated by

interchanging, the objective increment method is used to calculate ∆TCT. If

one sequence yields the smallest negative ∆TCT, set this sequence as the

current sequence, otherwise, keep the current one.

Step 4: Repeat Step 3 until all jobs are scheduled, and set the current sequence as πr

with TCTr.

Step 5: If TCTr< TCTb, set TCTb=TCTr and πb=πr.

Step 6: For j=1 to n–1, insert the jth job in πr into n–j possible positions in the forward

direction. If these sequences generate a lower TCT than TCTb, then update πb

and TCTb.

32

Step 7: Update r=r+1. If r≤6, return to Step 2; otherwise, go to Step 8. (Note: the

condition r≤6 is concluded from a case study.)

Step 8: Output the final πb and TCTb.

While using neighborhood exchanging technique in Step 3, an objective increment

method is introduced to calculate TCT. For example, there are five jobs scheduled and the

distance matrix D5×5 is computed. For the sequence π={J1, J2, J3, J4, J5},

TCTπ=5∑ 𝑝𝑝𝜋𝜋(1),𝑖𝑖
𝑚𝑚
𝑖𝑖=1 +∑ (𝑛𝑛 − 𝑗𝑗 + 1)𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

5
𝑗𝑗=2 using Equation (3-7). Let J1 and J2 be

exchanged, and update the sequence as π’={J2, J1, J3, J4, J5}. The objective increment is

∆TCT = 5(∑ 𝑝𝑝2,𝑖𝑖
𝑚𝑚
𝑖𝑖=1 − ∑ 𝑝𝑝1,𝑖𝑖

𝑚𝑚
𝑖𝑖=1) + 4(D2,1–D1,2) + 3(D1,3–D2,3). 𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋′ = 𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋 + ∆𝑆𝑆𝐶𝐶𝑆𝑆.

Therefore, using the objective increment method, the TCT can be calculated without

computing TCT for the whole sequence. The details of the objective increment method are

provided in section 3.5.

The main computational burden of the CFI heuristic is determined by the NEH

insertion and neighborhood exchanging techniques in Step 3. The computational

complexity for the NEH insertion is O(n3) including calculating TCT with O(n) when

selecting the best insertion position. The computational complexity for neighborhood

exchanging technique is also O(n3) including calculating TCT with O(1) when selecting

the best exchanged pair. Therefore, the overall computational complexity of the CFI

heuristic is O(n3), which is the same as that of the PH1(p) and LS heuristics, and less than

that of the FNM heuristic.

To illustrate the main steps of the CFI heuristic, we provide a 5-job 4-machine

instance as shown in Table 3.3, which is the same as in Bertolissi (2000).

33

• Initial sequence algorithm

Step 1: S=∅ and the U={J1, J2, J3, J4, J5}.

Step 2: Consider J1 in the 1st position of S, the processing times of J2, J3, J4, and J5 on

each machine are the average processing times. APTi = [18, 15.25, 13.75, 15.5].

Append this artificial job to J1, and we can obtain the current idle time of 48,

and future idle time of 13.25. The index function value for J1, namely f(1), is

205.25. We can consider J2 in the 1st position of S and obtain f(2)=211.

Similarly, we can obtain f(3)=199.25, f(4)=222.25, and f(5)=230.25. Hence, we

remove J3 that has the minimum f value from U and put it into the 1st position

of S.

Step 3: For the 2nd position in S, we can do the similar procedure as in Step 2, and

obtain the index function values f for each job in U, which are f = [155, 53.33,

153, 100.33]. Hence we remove J2 from U and put it into the 2nd position of S.

Similarly, we generate the initial sequence π0 as {J3, J2, J1, J5, J4}.

• CFI heuristic

The distance matrix 𝐷𝐷𝑛𝑛×𝑛𝑛 calculated by Equation (3-5) is shown in Table 3.4. From

the ISA, we obtain initial sequence π0 ={J3, J2, J1, J5, J4,} and TCT0=501. Set TCTb=501,

πb ={J3, J2, J1, J5, J4}, and r=1.

Table 3.3: Processing times of a 5-job 4-machine instance.

 M1 M2 M3 M4

J1 12 24 12 13

J2 20 3 19 11

J3 19 20 3 15

J4 14 23 16 14

J5 19 15 17 22

34

We can select first two jobs, J3 and J2, from the initial sequence, and obtain a TCT

of 129 for a partial sequence {J3, J2}. Exchange the two jobs and obtain a TCT of 130 for

a partial sequence {J2, J3}. Hence, we fix the relative positions of two jobs as a partial

sequence of {J3, J2}.

Inserting J1 from the initial sequence to each possible position of the partial

sequence {J3, J2}, we can have the following partial sequences, {J1, J3, J2}, {J3, J1, J2} and

{J3, J2, J1} with partial TCTs of 228, 250, 229, respectively. Hence, we choose the partial

sequence of {J1, J3, J2} as the current sequence with the minimum partial TCT of 228. The

neighborhood exchanging method is applied, and the following partial sequences are

examined, {J3, J1, J2}, {J2, J3, J1} and {J1, J2, J3} with ∆𝑆𝑆𝐶𝐶𝑆𝑆𝑇𝑇 of 22, 10 and 13, respectively.

None of these values is lower than 0, therefore, the current sequence remains as {J1, J3, J2}.

Insert J5 from the initial sequence to each possible position of the current sequence,

and the following partial sequences are examined: {J5, J1, J3, J2}, {J1, J5, J3, J2}, {J1, J3, J5,

J2} and {J1, J3, J2, J5} with partial TCTs of 376, 376, 372, and 359, respectively. Hence,

we choose {J1, J3, J2, J5} as the current sequence with the minimum partial TCT of 359.

The neighborhood exchanging method is applied, and the following partial sequences are

examined: {J3, J1, J2, J5}, {J2, J3, J1, J5}, {J5, J3, J2, J1}, {J1, J2, J3, J5}, {J1, J5, J2, J3} and

Table 3.4: Distance matrix for an example to min(ƩCj)

 J1 J2 J3 J4 J5

J1 - 17 15 28 29

J2 28 - 24 34 40

J3 31 15 - 35 36

J4 19 16 15 - 25

J5 13 11 15 14 -

35

{J1, J3, J5, J2} with ∆𝑆𝑆𝐶𝐶𝑆𝑆𝑇𝑇 of 36, 16, 36, 20, 18, and 13, respectively. None of these values

is lower than 0, therefore, the current sequence remains as {J1, J3, J2, J5}.

Insert J4 from the initial sequence to each possible position of the current sequence

and the following candidates are tried: {J4, J1, J3, J2, J5}, {J1, J4, J3, J2, J5}, {J1, J3, J4, J2,

J5}, {J1, J3, J2, J4, J5} and {J1, J3, J2, J5, J4} with TCTs of 526, 532, 542, 503 and 504.

Hence, we choose {J1, J3, J2, J4, J5} as the current sequence with minimum TCT of 503.

The neighborhood exchanging method is applied and the following partial sequences are

examined: {J3, J1, J2, J4, J5},{J2, J3, J1, J4, J5},{J4, J3, J2, J1, J5},{J5, J3, J2, J4, J1},{J1, J2,

J3, J4, J5},{J1, J4, J2, J3, J5},{J1, J5, J2, J4, J3},{J1, J3, J4, J2, J5},{J1, J3, J5, J4, J2},and {J1,

J3, J2, J5, J4} with ∆𝑆𝑆𝐶𝐶𝑆𝑆𝑇𝑇 of 50, 32, 22, 54, 37, 46, 34, 39, 14 and 1. None of these values

is lower than 0, therefore, the current sequence remains as {J1, J3, J2, J4, J5} with TCT 503.

After using insertion and neighborhood interchanging methods, we obtain π1={J1,

J3, J2, J4, J5} and TCT1=503. Since TCT1 is larger than TCTb, the πb remains unaltered with

TCTb 501. For j=1 to 4, insert jth job into each possible position of π1 in the forward

direction and get the following sequences: {J3, J1, J2, J4, J5}, {J3, J2, J1, J4, J5}, {J3, J2, J4,

J1, J5}, {J3, J2, J4, J5, J1}, {J1, J2, J3, J4, J5}, {J1, J2, J4, J3, J5}, {J1, J2, J4, J5, J3}, {J1, J3, J4,

J2, J5}, {J1, J3, J4, J5, J2} and {J1, J3, J2, J5, J4}.553, 510, 514, 510, 540, 541, 540, 542, 531,

and 504. None of these values is lower than TCTb, the πb remains unaltered with TCTb 501

and is used for further process till r=6 iterations are completed. Hence, the final sequence

is {J3, J2, J1, J5, J4} with TCT 501.

3.5 Objective increment method to calculate total completion time (TCT)

Assume there is a sequence π={J1, J2,…, Jj-1, Jj,…, Jn}, and the corresponding TCT

is TCTπ. When π(k) and π(j) (0<k<j≤n) in π are exchanged, the new sequence π’ is generated,

36

the difference of TCT between π’ and π, i.e., ∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗), can be calculated by one of the

following conditions:

Condition 1: k=1 and j=2

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 𝑛𝑛��𝑝𝑝𝜋𝜋′(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

−�𝑝𝑝𝜋𝜋(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

� + (𝑛𝑛 − 1)�𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑗𝑗)�

+ (𝑛𝑛 − 2)�𝐷𝐷𝜋𝜋′(𝑗𝑗),𝜋𝜋′(𝑗𝑗+1) − 𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1)�

Condition 2: k=1 and j=3,…,n–1

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 𝑛𝑛��𝑝𝑝𝜋𝜋′(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

−�𝑝𝑝𝜋𝜋(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�

+ (𝑛𝑛 − 1)�𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)�

+ (𝑛𝑛 − 𝑗𝑗 + 1)� 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)� + (𝑛𝑛

− 𝑗𝑗)(𝐷𝐷𝜋𝜋′(𝑗𝑗)𝜋𝜋′(𝑗𝑗+1) − 𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1))

Condition 3: k=1 and j=n

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 𝑛𝑛��𝑝𝑝𝜋𝜋′(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

−�𝑝𝑝𝜋𝜋(𝑘𝑘),𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�

+ (𝑛𝑛 − 1)�𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)� + 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗)

− 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

Condition 4: k=2,3,…,n–2 and j=k+1

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = (𝑛𝑛 − 𝑘𝑘 + 1)� 𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)�

+ (𝑛𝑛 − 𝑘𝑘)� 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑗𝑗)�

+ (𝑛𝑛 − 𝑗𝑗)� 𝐷𝐷𝜋𝜋′(𝑗𝑗),𝜋𝜋′(𝑗𝑗+1) −𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1)�

Condition 5: k=2,3,…,n–3 and j=k+2,…,n–1

37

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = (𝑛𝑛 − 𝑘𝑘 + 1)� 𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)�

+ (𝑛𝑛 − 𝑘𝑘)� 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) −𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)�

+ (𝑛𝑛 − 𝑗𝑗 + 1)� 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)�

+ (𝑛𝑛 − 𝑗𝑗)� 𝐷𝐷𝜋𝜋′(𝑗𝑗),𝜋𝜋′(𝑗𝑗+1) −𝐷𝐷𝜋𝜋(𝑗𝑗),𝜋𝜋(𝑗𝑗+1)�

Condition 6: k=2,3,…n–2 and j=n

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = (𝑛𝑛 − 𝑘𝑘 + 1)� 𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)�

+ (𝑛𝑛 − 𝑘𝑘)� 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑘𝑘+1) −𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑘𝑘+1)� + 𝐷𝐷𝜋𝜋′(𝑗𝑗−1),𝜋𝜋′(𝑗𝑗)

− 𝐷𝐷𝜋𝜋(𝑗𝑗−1),𝜋𝜋(𝑗𝑗)

Condition 7: k=n–1 and j=n

∆𝑆𝑆𝐶𝐶𝑆𝑆(𝑘𝑘, 𝑗𝑗) = 2�𝐷𝐷𝜋𝜋′(𝑘𝑘−1),𝜋𝜋′(𝑘𝑘) − 𝐷𝐷𝜋𝜋(𝑘𝑘−1),𝜋𝜋(𝑘𝑘)� + 𝐷𝐷𝜋𝜋′(𝑘𝑘),𝜋𝜋′(𝑗𝑗) − 𝐷𝐷𝜋𝜋(𝑘𝑘),𝜋𝜋(𝑗𝑗)

Hence, the TCT of new sequence π’ can be calculated by the following equation:

𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋′ = 𝑆𝑆𝐶𝐶𝑆𝑆𝜋𝜋 + ∆𝑆𝑆𝐶𝐶𝑆𝑆

Therefore, the calculation of TCT for the new sequence can be reduced from O(n)

to O(1).

38

Chapter 4 Case study

To test the performance of our proposed heuristics on Fm |nwt| Cmax and Fm |nwt|

ƩCj problems, we have done a series of case studies, and the results are presented in this

chapter. First, we provide the schemes to generate the data and evaluate the heuristic

performance. Second, for each single objective, the computational results of all compared

heuristics are given from the perspectives of effectiveness and efficiency. Third, we

introduce trade-off balancing function to evaluate of trade-off between min(Cmax) and

min(∑Cj) for each heuristic. Finally, statistical process control (SPC) is used to evaluate

the performance of the CFI heuristic along time horizon based on University of Kentucky

HealthCare historical data.

4.1 Schemes to carry out case studies

First, to evaluate the performance of the AIT heuristic on solving Fm |nwt| Cmax

problems, we compare the AIT heuristic with the LC (Laha and Chakraborty, 2009), ADT

(Ye et al., 2016) and CH (Li et al., 2008) heuristics. Second, to evaluate the performance

of the CFI heuristic on solving Fm |nwt| ∑Cj problems, we compare the CFI heuristic with

the PH1(p) (Aldowaisan and Allahverdi, 2004), the FNM (Framinan et al., 2010), and LS

(Laha and Sapkal, 2014) heuristics.

For effectiveness, we use the average relative percentage deviation (ARPD),

maximum percentage deviation (MPD), and percentage of the best solutions (PBS) to

evaluate each heuristic based on both small-scale and large-scale instances. Analysis of

variance (ANOVA) techniques and paired t-tests are used to statistically verify the

improvement on effectiveness based on large-scale instances. To evaluate efficiency, we

39

use the computation times based only on large-scale instances, as the computation times

for the small-scale instances are negligible.

For small-scale instances, the number of jobs is 5, 6, 7, or 8, and the number of

machines is 5, 10, 15, 20, or 25. Thus, there are 20 combinations. For each combination,

30 instances are generated randomly, and the processing times for each instance are

integers, following a uniform distribution in [1, 99]. In total, there are 600 instances in

small-scale.

For large-scale instances, Taillard’s benchmarks (Taillard, 1994) are classic and

commonly used to test the performance of heuristics for flow shop scheduling. Taillard’s

benchmarks consist of 120 instances in 12 combinations, with 10 instance for each

combination, where the number of jobs is 20, 50, 100, 200 or 500, and the number of

machines is 5, 10 or 20.

For Fm |nwt| Cmax problems, three criteria are used to evaluate the effectiveness of

each heuristic (Ye et al., 2016; Li et al., 2008):

(1) Average relative percent deviation (ARPD):

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 =
1
𝑁𝑁
�

𝑀𝑀𝑖𝑖(𝐻𝐻) − 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

× 100
𝑁𝑁

𝑖𝑖=1

 (4-1)

(2) Maximum percent deviation (MPD):

𝑀𝑀𝐴𝐴𝐷𝐷 = max
𝑖𝑖=1,…,𝑁𝑁

�
𝑀𝑀𝑖𝑖(𝐻𝐻) − 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
� × 100

 (4-2)

where, 𝑀𝑀𝑖𝑖(𝐻𝐻) is the makespan obtained by heuristic H for an instance i in a

combination. N is the number of instances for each combination. N is 30 for small-

scale instances but is 10 for large-scale instances. 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖 is the optimal

40

solution for small-scale instances by using exhaustive enumeration. However, for

large-scale instances, 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖 is the best makespan among all four heuristics.

(3) Percentage of the best solutions (PBS)

PBS is the percentage of instances for which a heuristic achieves the best

performance among the four heuristics. The row total for PBS does not necessarily

sum to 100% since some heuristics may tie on the best performance for some

instances.

Similarly, for Fm |nwt| ∑Cj problems, three similar criteria are used to evaluate

effectiveness of each heuristic:

(1) Average relative percent deviation (ARPD):

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 =
1
𝑁𝑁
�

𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖(𝐻𝐻)− 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

× 100
𝑁𝑁

𝑖𝑖=1

 (4-3)

(2) Maximum percent deviation (MPD):

𝑀𝑀𝐴𝐴𝐷𝐷 = max
𝑖𝑖=1,…,𝑁𝑁

�
𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖(𝐻𝐻) − 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖

𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
� × 100 (4-4)

𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖(𝐻𝐻) is the total completion time obtained by heuristic H for an instance i in a

combination. N is the number of instances for each combination. N is 30 for small-

scale instances but is 10 for large-scale instances. 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖 is the optimal

solution for small-scale instances by using the exhaustive enumeration method.

However, for large-scale instances, the best known solutions are from Qi et al.

(2016), who proposed the best known upper bounds for Fm |nwt| ∑Cj problems

based on Taillard’s benchmarks.

(3) Percentage of the best solutions (PBS)

41

PBS is the percentage of instances for which a heuristic achieves the best

performance among the four heuristics. The row total for PBS does not necessarily

sum to 100% since some heuristics may tie on the best performance for some

instances.

4.2 Results of case study on Fm |nwt| Cmax problems

4.2.1 Small-scale instances

For small-scale instances, the results are shown in Table 4.1. The AIT heuristic

achieves the best performance on ARPD of 0.23%, on MPD of 5.14%, and on PBS of

82.17%.

As shown in Table 4.1 for small-scale instances, with respect to ARPD, the CH

heuristic achieves an average of 0.30%, better than 1.28% of the LC heuristic and 0.62%

of the ADT heuristic. However, the AIT heuristic achieves the smallest average of 0.23%,

which has a 23.3% improvement over the CH heuristic. With regard to MPD, the CH

heuristic achieves 5.18%, smaller than 11.42% of the LC heuristic and 7.00% of the ADT

heuristic. The AIT heuristic also achieves the smallest MPD of 5.14%. With respect to

PBS, the CH heuristic achieves 76.50%, better than 63.33% and 48.5% of the ADT and

LC heuristics, respectively. However, the AIT heuristic achieves the best PBS of 82.17%.

Overall, the AIT heuristic achieves the best performances in ARPD, MPD and PBS in

small-scale instances, compared with the LC, ADT, and CH heuristics.

42

Table 4.1: Average Relative and Maximum percent deviations (ARPD & MPD) for

small-scale instances to min(Cmax) (%)

Size LC ADT CH AIT

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD

5 5 0.75 11.42 0.52 3.44 0.10 3.08 0.17 5.14

 10 0.71 4.17 0.70 6.11 0.21 4.11 0.00 0.00

 15 1.05 5.86 0.28 3.61 0.01 0.43 0.01 0.43

 20 0.79 3.48 0.12 1.79 0.27 3.96 0.13 3.96

 25 1.06 5.74 0.30 3.92 0.11 1.48 0.07 1.48

6 5 0.87 6.16 0.35 4.20 0.14 4.20 0.37 4.76

 10 1.31 5.06 0.33 4.05 0.33 3.52 0.19 3.61

 15 1.75 6.28 0.84 5.93 0.21 2.06 0.23 3.86

 20 1.09 5.20 0.28 1.83 0.24 2.00 0.12 1.24

 25 0.61 5.55 0.75 3.11 0.11 1.18 0.14 2.47

7 5 1.24 7.32 0.89 5.52 0.32 1.96 0.20 1.79

 10 1.65 6.27 0.59 2.87 0.58 5.18 0.48 4.88

 15 2.17 7.84 0.93 3.78 0.58 3.79 0.40 4.55

 20 1.08 3.90 0.55 3.53 0.46 4.42 0.18 1.83

 25 1.48 6.48 0.63 3.30 0.46 3.30 0.31 3.80

8 5 1.71 7.00 1.38 7.00 0.41 3.72 0.12 2.06

 10 1.54 8.05 0.74 5.27 0.34 2.82 0.44 3.54

 15 1.56 7.84 0.76 3.77 0.37 2.13 0.25 2.52

 20 1.75 6.82 0.70 3.13 0.40 2.26 0.31 1.79

 25 1.47 7.36 0.79 3.96 0.25 1.55 0.49 3.58

All instances 1.28 11.42 0.62 7.00 0.30 5.18 0.23 5.14

PBS 48.50 63.33 76.50 82.17

43

4.2.2 Large-scale instances

For large-scale instances, the results are shown in Table 4.2. The AIT heuristic

achieves the best performance on ARPD of 0.23% and on PBS of 65.83%, but not on MPD

of 2.95%.

Table 4.2: Average Relative and Maximum percent deviations (ARPD & MPD) for
large-scale instances to min(Cmax) (%)

Size LC ADT CH AIT
n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD
20 5 2.20 3.89 2.21 5.38 0.97 2.28 0.24 0.99
 10 3.09 6.14 2.26 4.45 0.58 2.22 0.80 2.95
 20 2.09 6.46 0.92 3.07 1.04 2.32 0.61 1.91

50 5 3.24 4.72 3.68 4.97 0.78 2.14 0.07 0.68
 10 2.40 4.11 2.24 3.90 0.66 1.69 0.06 0.49
 20 2.69 6.27 1.33 2.12 0.36 1.46 0.26 1.26

100 5 2.85 4.24 4.29 5.20 0.47 1.12 0.20 1.47
 10 2.91 4.20 2.00 2.77 0.50 1.06 0.05 0.50
 20 2.38 3.77 1.32 1.91 0.26 1.21 0.25 0.94

200 10 2.57 3.26 2.04 3.05 0.50 1.61 0.13 0.47
 20 2.51 3.22 1.48 2.10 0.46 0.92 0.06 0.41

500 20 2.67 3.39 1.89 2.53 1.10 1.71 0.00 0.00
All instances 2.63 6.46 2.14 5.38 0.64 2.32 0.23 2.95

PBS 0.83 5.83 29.17 65.83

As shown in Table 4.2, the LC heuristic achieves ARPD of 2.63%, MPD of 6.46%

and PBS of 0.83%. The ADT heuristic achieves ARPD of 2.14%, MPD of 5.38% and PBS

of 5.83%, better than the LC heuristic. The CH heuristic obtains ARPD of 0.64%, MPD of

2.32%, and PBS of 29.17%, and performs the best among the LC, ADT, and CH heuristics.

The AIT heuristic achieves the smallest ARPD of 0.23%, 64% improvement over the CH

heuristic. Besides, the AIT heuristic obtains the largest PBS of 65.83% among all four

44

heuristics, although the MPD of the AIT heuristic is 2.95%, close to 2.32% of the CH

heuristic, and smaller than those of the LC and ADT heuristics, which are 6.46% and 5.38%,

respectively.

ARPDs of heuristics for large-scale instances are used to plot the trend of deviations

as the number of jobs or machines increases, as shown in Figure 4.1.

(a) Deviation of Cmax by no. of jobs (%);

(b) Deviation of Cmax by no. of machines (%)

Figure 4.1: Deviations of Cmax as the number of jobs or machines increases

45

As the number of jobs increases from 20 to 500, Figure 4.1(a) shows that the

deviation of the AIT heuristic is smaller than those of other three heuristics. The trends of

the LC and ADT heuristics are relatively flat as the number of jobs increases. However, the

trend of the CH heuristic is going up when the number of jobs is larger than 100, whereas

the trend of the AIT heuristic is continuously going downwards as the number of jobs

increases.

Figure 4.1(b) plots the trend of ARPDs against the number of machines, ranging

from 5 to 20 machines. The trend obtained by the ADT heuristic continuously goes

downwards as the number of machines increases. However, the trends obtained by the LC,

CH and AIT heuristics are relatively flat, when the number of machines increases from 5

to 20. Among four heuristics, the deviation of the AIT heuristic is the smallest.

To verify the effectiveness of the AIT heuristic, two statistical analyses are

conducted based on ARPDs for large-scale instances. First, the analysis of variance

(ANOVA) is used to test the difference among the ARPDs of the LC, ADT, CH and AIT

heuristics. As shown in Table 4.3, the results show that the difference of ARPDs among

four heuristics is statistically significant at 95% confidence interval with p-value=0.000.

Second, paired t-tests on the ARPD are performed to validate whether there are

significant differences among the LC, ADT, CH and AIT heuristics. As shown in Table 4.4,

the estimates for mean differences between the AIT heuristic and other heuristics are all

Table 4.3: ANOVA results to min(Cmax) (95% Confidence Interval)

Source DF SS MS P

Heuristics 3 482.3 160.782 0.000

Error 476 437 0.918

Total 479 919.3

46

smaller than 0 with p-value=0.000, and the 95% confidence intervals for mean differences

fall into the negative interval, indicating that the ARPD of the AIT heuristic is significantly

smaller than those of other three heuristics at confidence level α=0.05.

We use the amount of CPU time to measure the efficiency of each heuristic. All

four heuristics are programmed in Matlab and run on a Dell Precision T1700 with Intel

Core i5-4590 CPUs of 3.3 GHz. For 500-job 20-machine instances, we have run one case

for 100 times and obtain the average CPU time, which is 38.31 seconds for the AIT

heuristic, and 21.97, 4.98, and 5.27 seconds for the CH, ADT, and LC heuristics,

respectively. The performance of the AIT heuristic on deviation justifies the additional

computation time, although the AIT heuristic uses the insertion and neighborhood

exchanging techniques and generates more sequences than the other three heuristics.

Overall, the AIT heuristic outperforms other heuristics on ARPD, MPD and PBS

criteria. Moreover, the deviation of makespan for the AIT heuristic has a decreasing trend

as the number of jobs or machines increases. Since all four heuristics have the same

computational complexity, the AIT heuristic statistically performs better than the other

three heuristics for no-wait flow shop production to min(Cmax).

4.3 Results of case study on Fm |nwt| ∑Cj problems

4.3.1 Small-scale instances

Table 4.4: Paired t-tests results to min(Cmax) (α=0.05)

AIT vs. LC ADT CH

p-value 0.000 0.000 0.000

Estimate for mean

difference
–2.407 –1.911 –0.414

95% CI for mean difference (–2.618, –2.196) (–2.183, –1.639) (–0.574, –0.254)

47

For small-scale instances, the results are shown in Table 4.5. The CFI heuristic

achieves the best performance on ARPD of 0.06%, on MPD of 2.98%, and on PBS of 88%.

Table 4.5: Average relative and maximum percent deviation (ARPD & MPD) for

small-scale instances to min(∑Cj) (%)

Size PH1(p) FNM LS CFI

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD

5 5 0.41 5.94 0.18 2.08 0.18 2.09 0.05 1.36

 10 0.13 1.36 0.09 1.93 0.06 1.36 0.06 0.79

 15 0.27 2.77 0.28 3.38 0.07 0.77 0.01 0.30

 20 0.07 0.43 0.03 0.43 0.01 0.24 0.01 0.24

 25 0.06 1.31 0.01 0.41 0.04 1.31 0.04 1.02

6 5 0.46 3.93 0.24 3.93 0.06 0.75 0.01 0.37

 10 0.38 5.61 0.38 5.61 0.20 2.43 0.01 0.32

 15 0.28 4.11 0.20 2.33 0.26 4.11 0.12 2.33

 20 0.40 3.09 0.16 0.98 0.25 3.09 0.02 0.29

 25 0.16 1.69 0.05 0.93 0.03 0.64 0.00 0.00

7 5 0.51 5.99 0.30 1.95 0.23 1.95 0.03 0.54

 10 0.50 2.60 0.22 1.20 0.31 2.00 0.06 1.82

 15 0.46 4.65 0.14 0.92 0.34 3.71 0.12 1.28

 20 0.49 3.76 0.34 2.54 0.25 2.52 0.08 1.11

 25 0.16 0.98 0.09 0.87 0.21 1.97 0.05 0.85

8 5 0.53 3.07 0.39 3.21 0.35 1.98 0.25 2.98

 10 0.40 3.86 0.34 3.64 0.42 3.64 0.11 1.01

 15 0.61 3.47 0.44 3.47 0.31 2.19 0.13 1.19

 20 0.50 2.77 0.41 1.81 0.32 1.81 0.08 0.69

 25 0.57 2.80 0.28 2.80 0.23 2.32 0.07 0.72

All instances 0.37 5.99 0.23 5.61 0.21 4.11 0.06 2.98

PBS 65 73 75 88

48

As shown in Table 4.5 for small-scale instances, with respect to ARPD, the LS

heuristic achieves 0.21%, better than the PH1(p) heuristic of 0.37% and FNM heuristic of

0.23%. The CFI heuristic achieves the smallest ARPD of 0.06% from the optimal. With

regard to MPD, the LS heuristic achieves 4.11%, smaller than the PH1(p) of 5.99% and

FNM heuristic of 5.61%. The CFI heuristic also achieves the smallest MPD of 2.98%. With

respect to PBS, the LS and FNM heuristics are very close, 75% and 73%, respectively,

better than the PH1(p) heuristic of 65%. The CFI heuristic reaches 88% of the best solutions,

17% improvement over the LS heuristic.

4.3.2 Large-scale instances

For large-scale instances, the results are shown in Table 4.6. The CFI heuristic

achieves the best performance on ARPD of 2.08% and on PBS of 53%, but not on MPD of

7.05%.

As shown in Table 4.6, the PH1(p) heuristic achieves ARPD of 3.47%, MPD of

7.15% and PBS of 7%. The FNM heuristic achieves ARPD of 2.74%, MPD of 5.33% and

PBS of 12%, better than the PH1(p) heuristic. The LS heuristic obtains ARPD of 2.33%,

MPD of 4.91%, and PBS of 30%, better than the PH1(p) and FNM heuristics on

effectiveness. The CFI heuristic achieves the smallest ARPD of 2.08% and the largest PBS

of 53% among all four heuristics, although the MPD of the CFI heuristic is not as good as

the FNM and LS heuristics.

49

ARPDs of heuristics for large-scale instances are used to plot the trend of deviations

as the number of jobs or machines increases, as shown in Figure 4.2.

As the number of jobs increases from 20 to 500, Figure 4.2 (a) shows that the

deviations of all four heuristics are very close when the number of jobs is 20, and then

increase when the number of jobs changes from 20 to 100. In addition, as the number of

jobs increases from 100 to 500, the deviation of the CFI heuristic drops the fastest

compared with those of other three heuristics.

Figure 4.2 (b) plots the trend of ARPDs against the number of machines, ranging

from 5 to 20 machines. The trends obtained by the PH1(p) and LS heuristics go downwards

Table 4.6: Average relative and maximum percent deviation (ARPD & MPD) in

Taillard’s benchmark to min(∑Cj) (%)

Size PH1(p) FNM LS CFI

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 1.60 5.21 1.27 2.55 1.38 3.26 0.87 3.03

 10 1.36 3.25 1.61 3.89 1.06 2.92 1.34 3.52

 20 1.50 4.43 1.13 2.87 0.85 2.30 0.74 1.47

50 5 4.02 6.84 3.31 5.33 2.38 4.91 2.19 4.12

 10 3.03 5.51 3.03 4.76 2.02 3.82 2.14 3.69

 20 2.69 4.35 2.79 4.88 1.97 4.19 1.35 1.91

100 5 5.94 7.15 3.44 4.55 3.75 4.72 3.35 5.35

 10 4.58 5.43 3.41 4.63 2.87 4.73 3.07 7.05

 20 3.89 5.18 3.19 3.97 2.61 3.37 2.53 4.89

200 10 4.98 6.04 3.84 4.16 3.61 4.44 3.49 4.30

 20 4.47 5.12 3.67 4.60 2.96 4.01 2.88 4.38

500 20 3.62 4.86 2.21 2.41 2.50 3.11 0.98 1.78

All instances 3.47 7.15 2.74 5.33 2.33 4.91 2.08 7.05

PBS 7 12 30 53

50

as the number of machines increases from 5 to 15, whereas the deviations of both the FNM

and CFI heuristics go up. However, when the number of machines increases from 10 to 20,

the deviation of the CFI heuristic drops faster than those of other heuristics and reaches to

the lowest point of deviations.

(a) Deviation of TCT by no. of jobs (%);

(b) Deviation of TCT by no. of machines (%)

Figure 4.2: Deviations of TCT as the number of jobs or machines increases

51

To verify effectiveness of the CFI heuristic, two statistical analyses are conducted

based on the large-scale instances. Firstly, the analysis of variance (ANOVA) is used to

test whether the ARPDs of the PH1(p), FNM, LS and CFI heuristics are the same or

whether some ARPDs are different. The ANOVA results from Table 4.7 show that the

difference among heuristics is statistically significant with p-value=0.000.

Secondly, paired t-tests on the ARPD are performed to validate whether or not there

are significant differences among the PH1(p), FNM, LS and CFI heuristics. Table 4.8

shows the summarized results of the paired t-test for confidence level α=0.05. As Table 4.8

indicates, the CFI heuristic significantly outperforms the other three heuristics.

Computation times are used to evaluate efficiency of each heuristic. All four

heuristics are programmed in Matlab and run on a Dell Precision T1700 with Intel Core i5-

4590 CPUs of 3.3 GHz.

Table 4.7: ANOVA results to min(∑Cj) (95% Confidence Interval)

Source DF SS MS P

Heuristics 3 134.27 44.76 0.000

Error 476 890.40 1.87

Total 479 1024.68

Table 4.8: Paired t-test results to min(∑Cj) (α=0.05)

CFI vs. PH1(p) FNM LS

p-value 0.000 0.000 0.012

Estimate for mean

difference
–1.397 –0.664 –0.2517

95% CI for mean difference (–1.659,–1.135) (–0.886,–0.442) (–0.4461,–0.0573)

52

Figure 4.3: The deviation from upper bound with the value of r

In order to improve efficiency of the CFI heuristic, we determine the number of

iterations r by changing r from 1 to 16 based on large-scale instances. We calculate the

deviations from upper bound for each value of r. Figure 4.3 indicates that when the value

of r is larger than or equal to 6, the deviation asymptotically reaches to the same level of

2.08%, which means our CFI heuristic generates all possible sequences in 6 iterations.

Therefore, we set the number of iterations r as 6.

The average computation time (in seconds) required for large-scale instances by

each heuristic is given in Table 4.9. On average, the CFI heuristic uses less CPU time than

the LS heuristic, but more CPU time than the PH1(p) and FNM heuristics. Although the

computational complexity of the FNM heuristic is O(n4), higher than that of the LS and

CFI heuristics, respectively, the FNM heuristic takes less computation time, because there

are 10 iterations in the LS heuristic and 6 in our CFI heuristic. Overall, the CFI heuristic

achieves the best effectiveness in less computation time among three popular heuristics.

53

(Unit: seconds)

4.4 Trade-off balancing

For bi-objective optimization of Cmax and ∑Cj, we introduce the trade-off balancing

function to evaluate the performance of each heuristic. The trade-off balancing function is

shown in Equation (4-5) as follows:

𝑆𝑆𝑇𝑇𝐵𝐵(𝛼𝛼) = 𝛼𝛼𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁 + (1 − 𝛼𝛼)𝑆𝑆𝐶𝐶𝑆𝑆𝑁𝑁 (4-5)

Where the 𝛼𝛼 is the preference or weight for the objective of Cmax, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁 is the

normalized value of Cmax and 𝑆𝑆𝐶𝐶𝑆𝑆𝑁𝑁 is the normalized value of TCT. We compare our AIT

heuristic and CFI heuristic with LS and CH heuristics based on large-scale instances. We

have chosen 𝛼𝛼 to be 0, 0.25, 0.5, 0.75, and 1. If 𝛼𝛼 is less than 0.5, we give more preference

to TCT and give more preference to Cmax when 𝛼𝛼 is greater than 0.5. The following Figure

4.4 shows how the performances of each heuristic behave given different value of 𝛼𝛼.

Table 4.9: CPU times of four heuristics for large-scale instances to min(∑Cj)

n m PH1(p) FNM LS CFI

20 5 0.00 0.02 0.10 0.06

 10 0.00 0.01 0.10 0.05

 20 0.00 0.01 0.09 0.06

50 5 0.02 0.10 0.71 0.44

 10 0.02 0.10 0.72 0.44

 20 0.02 0.10 0.72 0.46

100 5 0.09 0.80 4.10 2.66

 10 0.10 0.83 4.23 2.78

 20 0.12 0.86 4.17 2.81

200 10 0.69 9.24 28.78 19.26

 20 0.77 9.38 28.65 19.51

500 20 10.64 283.49 467.04 319.58

All instances 1.04 25.41 44.95 30.68

54

(a) The trade-off balancing when 𝛼𝛼 = 0

(b) The trade-off balancing when 𝛼𝛼 = 0.25

0

0.2

0.4

0.6

0.8

1

1.2

20 50 100 200 500

TO
B

No. of Job

α=0

LS

CH

AIT

CFI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 50 100 200 500

TO
B

No. of Job

α=0.25

LS

CH

AIT

CFI

55

(c) The trade-off balancing when 𝛼𝛼 = 0.5

(d) The trade-off balancing when 𝛼𝛼 = 0.75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 50 100 200 500

TO
B

No. of Job

α=0.5

LS

CH

AIT

CFI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 50 100 200 500

TO
B

No. of Job

α=0.75

LS

CH

AIT

CFI

56

(e) The trade-off balancing when 𝛼𝛼 = 1

Figure 4.4: The performances of each heuristic given different values of 𝛼𝛼

From Figure 4.4, given different values of 𝛼𝛼, we can see that both AIT and CFI

heuristics obtain the best performance. When the preference is given more to Cmax, the AIT

heuristic performs the best. When the preference is given more to the TCT, the CFI heuristic

performs the best. Besides, the trends obtained by the AIT and CFI heuristics go

downwards as the number of jobs increases from 20 to 500, whereas the trends of both the

LS and CH heuristics go up. In addition, when the number of job is 500, the performances

of AIT and CFI heuristic almost converge together, which indicates that the initial sequence

algorithm (ISA) plays an important role to generate the final solutions, since both heuristics

use the same ISA to generate initial sequence. Overall, our proposed heuristics have better

performances to minimize the trade-off than the other two heuristics.

4.5 Case study on UKHC historical data

To validate our CFI heuristic for operating room (OR) scheduling across the periop

process in a healthcare system, we carry out a case study based on historical OR data from

0

0.2

0.4

0.6

0.8

1

1.2

20 50 100 200 500

TO
B

No. of Job

α=1

LS

CH

AIT

CFI

57

University of Kentucky HealthCare (UKHC), in which the first come first serve (FCFS)

rule is used for OR scheduling, especially for emergencies.

The historical data set obtained from UKHC consists of almost 30,000 cases in 365

consecutive days from 2013 to 2014. UKHC schedules operating rooms on weekdays, and

opens emergency rooms on weekends and holidays, thus the number of cases on weekends

and holidays is much less than that on weekdays. Therefore, removing data on weekends

and holidays, we have more than 27,000 cases in 50 weeks with 5 days a week, i.e., in 250

days. First, we compare the sequences of the PH1(p), FNM, LS, and CFI heuristics with

the UKHC ones based on average patient flow time (APFT), which equals to the total

completion time divided by the number of patients served in a day. Second, we use

statistical process control (SPC) techniques to compare the process capability based on

APFTs generated by our CFI heuristic and the actual UKHC data.

Table 4.10 shows the APFTs and standard deviations for four heuristics and the

actual UKHC data. As shown in Table 4.10, our CFI heuristic can achieve the smallest

APFT with the smallest standard deviation.

Table 4.10: APFT (minutes) and standard deviation for four heuristics and UKHC

 PH1(p) FNM LS CFI UKHC

APFT 545.19 544.83 544.91 544.74 613.09

Standard deviation 40.91 40.85 40.88 40.82 56.20

Using SPC techniques, we generate process capabilities for both CFI and the

UKHC data as shown in Figure 4.5. The user-defined lower specification limit (LSL) and

upper specification limit (USL) are set as 400 and 700 minutes, respectively, according to

the historical data from UKHC. The process capabilities cp and cpk are defined as 𝑐𝑐𝑝𝑝 =

𝑈𝑈𝑈𝑈𝑈𝑈−𝑈𝑈𝑈𝑈𝑈𝑈
6𝜎𝜎

 and 𝑐𝑐𝑝𝑝𝑘𝑘 = min(𝑈𝑈𝑈𝑈𝑈𝑈−𝜇𝜇
3𝜎𝜎

, 𝜇𝜇−𝑈𝑈𝑈𝑈𝑈𝑈
3𝜎𝜎

), where µ is the average patient flow time and σ is

58

the standard deviation for the process performance (Montgomery, 2007). Process

capability cp indicates if the outcomes of a process are within the control limits. With the

fixed range of specification limits, which is USL − LSL, the larger the cp, the less the

variation in process, which is 6σ. Process capability index cpk indicates if the outcomes are

centered around the average performance. The larger the cpk, the less likely that the

outcomes will fall outside the limits, LSL or USL. As shown in Figure 4.5, the cp is 1.21

for our CFI heuristic and 0.90 for the UKHC data, and the cpk is 1.17 for our CFI heuristic

and 0.52 for the UKHC data. Obviously, the APFTs generated by our CFI heuristic are

more centered within the specification limits and with less variation, compared to those

from historical UKHC data.

59

(a) Process Capability of CFI

(b) Process Capability of UKHC

Figure 4.5: Capability analysis of average patient flow times in 250 days

Moreover, we generate the Xbar-R charts based on APFTs in 250 days as shown in

Figure 4.6. The APFT is 544.7 minutes for our CFI heuristic, and 613.1 minutes for the

data from UKHC. The improvement in average patient flow times can be calculated by

(613.1 − 544.7)/613.1=11.2%. The range of variation on our CFI heuristic is 205.5 minutes,

less than that of 275.4 minutes for the UKHC data.

60

(a) By CFI

(b) By UKHC

Figure 4.6: X-bar&R charts of average patient flow times

These results from X-bar&R charts support those of cp and cpk, and the 11.2%

improvement in average patient flow time indicates that potentially 3,000 additional

patients could be served in a year if our CFI heuristic was applied for sequencing. However,

in practice, OR scheduling and control is affected by many other factors in addition to

61

sequencing, such as emergencies, the availability of patients in the waiting list, surgical

staff, and equipment, etc. These realities are reflected in the UKHC data.

Based on the above case studies, we have test the effectiveness, efficiency and

robustness of our AIT and CFI heuristics. Compared with the best known heuristics for Fm

|nwt| Cmax and Fm |nwt| ƩCj problems, such as LC, ADT and CH heuristics for Cmax and

PH1(p), FNM and LS heuristics for ƩCj, our heuristics outperform them significantly. In

addition, for bi-objective optimization, our heuristics perform better than others based on

the trade-off balancing function. Last, compared with actual performance at UKHC, our

CFI heuristic can potentially serve 3,000 additional patients.

62

Chapter 5 Conclusion and future work

5.1 Concluding remarks

ORs are the largest cost center and the greatest revenue source simultaneously for

hospitals (Ghazalbash et al, 2012). To achieve high utilization of OR units and reduce

average waiting times are two main objectives in the 3-stage periop process. In the 3-stage

periop process, the performance of one stage affects the performances of adjacent stages,

which is also characteristic of a three-stage no-wait flow shop. The upstream stages affect

downstream stages to influence the utilization and patient flow, and downstream stages can

affect upstream stages as well, such as blocking and PACU boarding. Therefore, the 3-

stage no-wait flow shop is suitable to model the periop process, in which no waiting time

between stages is allowed.

No-wait flow shop production is common in industry, where no waiting time is

allowed between intermediate operations. Minimization of makespan (Cmax), which relates

to utilizations, for no-wait flow shop production has been proven to be NP-hard and

minimization of total completion time (∑Cj), which relates to average waiting time, has

been proven to be NP-complete. It is extremely time consuming to find optimal solutions

using exact methods for such problems. Therefore, heuristics are widely used to find near

optimal solutions for production scheduling in manufacturing. To min(Cmax), the LC, ADT,

and CH heuristics are three typical ones developed recently (Laha and Chakraborty, 2009,

Ye et al., 2016; Li et al., 2008), and to min(∑Cj), the PH1(p), FNM, and LS heuristics are

three typical ones in the literature (Aldowaisan and Allahverdi, 2004; Framinan et al., 2010;

Laha et al., 2014). These heuristics can obtain good solutions in a reasonable time, even

for large-scale instances. However, there are some shortcomings of their heuristics, such

63

as high computational complexity in the FNM heuristic, lack of large-scale computational

experiment in the LS heuristic.

To enhance effectiveness and efficiency beyond these heuristics, we propose the

AIT heuristic to min(Cmax) and the CFI heuristic to min(∑Cj) for no-wait flow shop

production. To improve effectiveness, we first take the current idle times and future idle

times into consideration, proposing an initial sequence algorithm, and then use the insertion

and neighborhood exchanging methods to further improve the solutions.

To increase efficiency, we first introduce an objective increment method to reduce

the computational complexity from O(n) to O(1) in calculating total completion time, and

then set the number of iterations in our AIT and CFI heuristic to further reduce the

computation times.

Compared with the LC, ADT and CH heuristics for the Fm |nwt| Cmax problems,

based on 600 small-scale instances, our AIT heuristic achieves the best performance on

average relative percentage deviation (ARPD) of 0.23%, maximum percentage deviation

(MPD) of 5.14%, and the percentage of the best solutions (PBS) of 82.17%. Based on

large-scale instances in Taillard’s benchmarks, our AIT heuristic achieves the best

performance on ARPD of 0.23% and PBS of 65.83%, although not on the MPD of 2.95%.

Compared with the PH1(p), FNM and LS heuristics for the Fm |nwt| ∑Cj problems,

based on 600 small-scale instances, our CFI heuristic achieves the best performance on

ARPD of 0.06%, MPD of 2.98%, and PBS of 88%. Based on large-scale instances in

Taillard’s benchmarks, our CFI heuristic achieves the best performance on ARPD of 2.08%

and PBS of 53%, although not on the MPD of 7.05%. In addition, on average, the CPU

64

time of our CFI heuristic is 30.68 seconds, based on Taillard’s benchmarks, less than the

44.95 seconds of the LS heuristic.

In the trade-off balancing, our AIT and CFI heuristics outperform the LS and CH

heuristics. When the preference is given more to Cmax, the AIT heuristic performs the best.

When the preference is given more to the ∑Cj, the CFI heuristic performs the best. Besides,

the trends obtained by the AIT and CFI heuristics go downwards as the number of jobs

increases from 20 to 500, whereas the trends of both the LS and CH heuristics go up.

In a case study using historical data from UKHC, we found our CFI heuristic can

achieve 11.2% improvement in average patient flow times over UKHC’s performance, and

the average patient flow times generated by our CFI heuristic are under better process

control with less variation. This means additional patients can potentially be served and

there is a greater control of OR management across the peri-operative process.

Overall, our AIT and CFI heuristics can achieve good effectiveness and efficiency

for no-wait flow shop scheduling and operating room scheduling.

5.2 Future work

Variation in processing times is a common disturbance to flow shop production in

manufacturing or healthcare systems, which consequently generates an uneven workflow

on the production lines. Cao, Patterson, and Bai (2005) have concluded that the main source

of variations in processing time is the variation in actual processing times from their

expected values. The difficulty to handle the variation in processing time is that we do not

exactly know how the current variations and performance will impact on the future overall

performance. One topic of our future work is adaptive production control by resequencing

65

jobs for this type of disturbances that the overall system performance can be under control

in an acceptable range.

Besides variations in processing time, there are trade-offs between different

objectives. Li et al. (2014) proved that the objectives of min(Cmax) and min(∑Cj) are not

consistent in traditional permutation flow shop scheduling problems. The limitation of

current work focuses on the evaluation scheme of trade-off for each single-objective

heuristic, not addressing the root causes of trade-offs in no-wait flow shop production

scheduling. The root cause of trade-off in flow shop scheduling is unbalanced cycle time

at different stages in production lines. Therefore, another topic of our future work is to

establish effective and efficient heuristics for multi-objective optimization in no-wait flow

shop based on balancing cycle times at each stage.

The third topic of our future work is to apply these heuristics to the hybrid no-wait

flow shop, in which there exist parallel machines at each stage. Based on the second future

work, we want to extend 3-machine flow shop to hybrid no-wait flow shop, which relates

to the resource allocation at each stage. On the one hand, from the second topic of future

work, we can find how sequencing changes the cycle time in no-wait flow shop scheduling.

On the other hand, different schemes of resource allocation affect the cycle time of each

machine at each stage as well. Therefore, it is important and meaningful to study the

following three questions: (1) given the fixed resources, how sequencing affects cycle time?

(2) Given the fixed sequencing method, how can we obtain better performances by

adjusting the resource allocation scheme? (3) How do the resource allocation scheme and

sequencing interact with each other to affect the performance of the systems?

66

Overall, the future work will focus on achieving adaptive scheduling in operating

rooms scheduling when (1) disturbances occur in systems; (2) optimizing different

inconsistent objectives, and (3) resource allocation and sequencing interact with each other.

67

References:

Allahverdi, A., and Aldowaisan, T. (2002). No-wait flowshops with bicriteria of makespan

and total completion time. Journal of the Operational Research Society, 53(9), 1004-

1015.

Aldowaisan, T., and Allahverdi, A. (2004). New heuristics for m-machine no-wait

flowshop to minimize total completion time. Omega, 32(5), 345-352.

Allahverdi, A., and Aldowaisan, T. (2004). No-wait flowshops with bicriteria of makespan

and maximum lateness. European Journal of Operational Research, 152(1), 132-147.

Augusto, V., Xie, X., and Perdomo, V. (2010). Operating theatre scheduling with patient

recovery in both operating rooms and recovery beds. Computers & Industrial

Engineering, 58(2), 231-238.

Banditori, C., Cappanera, P., and Visintin, F. (2013). A combined optimization–simulation

approach to the master surgical scheduling problem. IMA Journal of Management

Mathematics, 24(2), 155-187.

Beck, R., Pahlke, I., and Seebach, C. (2014). Knowledge exchange and symbolic action in

social media-enabled electronic networks of practice: A multilevel perspective on

knowledge seekers and contributors. MIS quarterly, 38(4), 1245-1270.

Benneyan, J. C., Lloyd, R. C., and Plsek, P. E. (2003). Statistical process control as a tool

for research and healthcare improvement. Quality and Safety in Health Care, 12(6),

458-464.

Bertolissi, E. (2000). Heuristic algorithm for scheduling in the no-wait flow-shop. Journal

of Materials Processing Technology, 107(1), 459-465.

68

Bonney, M. C., and Gundry, S. W. (1976). Solutions to the constrained flowshop

sequencing problem. Journal of the Operational Research Society, 27(4), 869-883.

Bosse, G., Mtatifikolo, F., Abels, W., Strosing, C., Breuer, J. P., and Spies, C. (2013).

Immediate outcome indicators in perioperative care: a controlled intervention study

on quality improvement in hospitals in Tanzania. PloS one, 8(6), e65428.

Cao, Q., Patterson, J. W., and Bai, X. (2005). Reexamination of processing time uncertainty.

European journal of operational research, 164(1), 185-194.

Cardoen, B., Demeulemeester, E., and Beliën, J. (2010). Operating room planning and

scheduling: A literature review. European journal of operational research, 201(3),

921-932.

Chen, C. L., Neppalli, R. V., and Aljaber, N. (1996). Genetic algorithms applied to the

continuous flow shop problem. Computers & Industrial Engineering, 30(4), 919-929.

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics.

Management science, 23(11), 1174-1182.

Davis, K., Mazzuchi, T., and Sarkani, S. (2013). Architecting technology transitions: A

sustainability‐oriented sociotechnical approach. Systems Engineering, 16(2), 193-

212.

Deming, W. E. (2000). Out of the Crisis. MIT press.

Denton, B., Viapiano, J., and Vogl, A. (2007). Optimization of surgery sequencing and

scheduling decisions under uncertainty. Health care management science, 10(1), 13-

24.

69

Ding, J., Song, S., Zhang, R., and Wu, C. (2014, July). Minimizing makespan for a no-wait

flowshop using tabu mechanism improved iterated greedy algorithm. In Evolutionary

Computation (CEC), 2014 IEEE Congress on (pp. 1906-1911). IEEE.

Etzioni, D. A., Liu, J. H., Maggard, M. A., and Ko, C. Y. (2003). The aging population and

its impact on the surgery workforce. Annals of surgery, 238(2), 170-177.

Fink, A., and Voß, S. (2003). Solving the continuous flow-shop scheduling problem by

metaheuristics. European Journal of Operational Research, 151(2), 400-414.

Framinan, J. M., and Nagano, M. S. (2008). Evaluating the performance for makespan

minimisation in no-wait flowshop sequencing. Journal of materials processing

technology, 197(1), 1-9

Framinan, J. M., Nagano, M. S., and Moccellin, J. V. (2010). An efficient heuristic for total

flowtime minimisation in no-wait flowshops. The International Journal of Advanced

Manufacturing Technology, 46(9-12), 1049-1057.

Gao, K. Z., Pan, Q. K., and Li, J. Q. (2011). Discrete harmony search algorithm for the no-

wait flow shop scheduling problem with total flow time criterion. The International

Journal of Advanced Manufacturing Technology, 56(5-8), 683-692.

Gao, K., Pan, Q., Suganthan, P. N., and Li, J. (2013). Effective heuristics for the no-wait

flow shop scheduling problem with total flow time minimization. The International

Journal of Advanced Manufacturing Technology, 66(9-12), 1563-1572.

Gangadharan, R., and Rajendran, C. (1993). Heuristic algorithms for scheduling in the no-

wait flowshop. International Journal of Production Economics, 32(3), 285-290.

Garey, M. R., and Johnson, D. S. (2002). Computers and intractability: a guide to the theory

of NP-completeness. New York: freeman.

70

Ghazalbash, S., Sepehri, M. M., Shadpour, P., and Atighehchian, A. (2012). Operating

room scheduling in teaching hospitals. Advances in Operations Research, 2012, 16

pages.

Glouberman, S., and Mintzberg, H. (2001). Managing the care of health and the cure of

disease—Part I: Differentiation. Health care management review, 26(1), 56-69.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of

discrete mathematics, 5, 287-326.

Gupta, D. (2007). Surgical suites' operations management. Production and Operations

Management, 16(6), 689-700.

Gupta, D., and Denton, B. (2008). Appointment scheduling in health care: Challenges and

opportunities. IIE transactions, 40(9), 800-819.

Hall, M. J., and Owings, M. (2014). Rural and urban hospitals’ role in providing inpatient

care, 2010. Population, 17, 12.

Ishibuchi, H., and Murata, T. (1998). A multi-objective genetic local search algorithm and

its application to flowshop scheduling. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 28(3), 392-403.

Ishibuchi, H., Yoshida, T., and Murata, T. (2003). Balance between genetic search and

local search in memetic algorithms for multiobjective permutation flowshop

scheduling. IEEE transactions on evolutionary computation, 7(2), 204-223.

Javadi, B., Saidi-Mehrabad, M., Haji, A., Mahdavi, I., Jolai, F., and Mahdavi-Amiri, N.

(2008). No-wait flow shop scheduling using fuzzy multi-objective linear

programming. Journal of the Franklin Institute, 345(5), 452-467.

71

Johnson, S. M. (1954). Optimal two-and three-stage production schedules with setup times

included. Naval Research Logistics (NRL), 1(1), 61-68.

Kalczynski, P. J., and Kamburowski, J. (2007). On the NEH heuristic for minimizing the

makespan in permutation flow shops. Omega, 35(1), 53-60.

King, J. R., and Spachis, A. S. (1980). Heuristics for flow-shop scheduling. International

Journal of Production Research, 18(3), 345-357.

Laha, D., and Chakraborty, U. K. (2009). A constructive heuristic for minimizing

makespan in no-wait flow shop scheduling. The International Journal of Advanced

Manufacturing Technology, 41(1-2), 97-109.

Laha, D., Gupta, J. N., and Sapkal, S. U. (2014). A penalty-shift-insertion-based algorithm

to minimize total flow time in no-wait flow shops. Journal of the Operational

Research Society, 65(10), 1611-1624.

Laha, D., and Sapkal, S. U. (2014). An improved heuristic to minimize total flow time for

scheduling in the m-machine no-wait flow shop. Computers & Industrial Engineering,

67, 36-43.

Li, X., Wang, Q., and Wu, C. (2008). Heuristic for no-wait flow shops with makespan

minimization. International Journal of Production Research, 46(9), 2519-2530.

Li, W., and Freiheit, T. I. (2016). An effective heuristic for adaptive control of job

sequences subject to variation in processing times. International Journal of

Production Research, 54(12), 3491-3507.

Li, W., Nault, B. R., Xue, D., and Tu, Y. (2011). An efficient heuristic for adaptive

production scheduling and control in one-of-a-kind production. Computers &

Operations Research, 38(1), 267-276.

72

Li, W., Mitchell, V. L., and Nault, B. R. (2014, January). Inconsistent Objectives in

Operating Room Scheduling. In IIE Annual Conference. Proceedings (p. 727).

Institute of Industrial Engineers-Publisher.

Liao, X. P., Deng, J., and Li, X. P. (2008, July). An evolutionary algorithm for constraint

flow shops with multi-criteria optimization. In Machine Learning and Cybernetics,

2008 International Conference on (Vol. 2, pp. 904-908). IEEE.

Liu, Y. G., Zhu, X., and Li, X. P. (2008, July). A new hybrid genetic algorithm for the bi-

criteria no-wait flowshop scheduling problem with makespan and total flow time

minimization. In Machine Learning and Cybernetics, 2008 International Conference

on (Vol. 2, pp. 883-888). IEEE.

Liu, Jiyin, and Colin R. Reeves. "Constructive and composite heuristic solutions to the P//

∑ Ci scheduling problem." European Journal of Operational Research 132.2 (2001):

439-452.

Little, J. D. (1961). A proof for the queuing formula: L= λ W. Operations research, 9(3),

383-387.

Magerlein, J. M., and Martin, J. B. (1978). Surgical demand scheduling: a review. Health

services research, 13(4), 418.

Marcon, E., and Dexter, F. (2006). Impact of surgical sequencing on post anesthesia care

unit staffing. Health Care Management Science, 9(1), 87-98.

Meskens, N., Duvivier, D., and Hanset, A. (2013). Multi-objective operating room

scheduling considering desiderata of the surgical team. Decision Support Systems,

55(2), 650-659.

73

Moccellin, J. V. (1995). A new heuristic method for the permutation flow shop scheduling

problem. Journal of the Operational research Society, 46(7), 883-886.

Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons.

Moore, B., Levit, K., and Elixhauser, A. (2014). Costs for Hospital Stays in the United

States, 2012. HCUP Statistical Brief, 181.

Murata, T., Ishibuchi, H., and Tanaka, H. (1996). Genetic algorithms for flowshop

scheduling problems. Computers & Industrial Engineering, 30(4), 1061-1071.

Nawaz, M., Enscore, E. E., and Ham, I. (1983). A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11(1), 91-95.

Ogbu, F. A., and Smith, D. K. (1990). The application of the simulated annealing algorithm

to the solution of the n/m/Cmax flowshop problem. Computers & Operations

Research, 17(3), 243-253.

Pan, Q. K., Wang, L., and Qian, B. (2008). A novel multi-objective particle swarm

optimization algorithm for no-wait flow shop scheduling problems. Proceedings of

the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,

222(4), 519-539.

Pan, Q. K., Wang, L., and Qian, B. (2009). A novel differential evolution algorithm for bi-

criteria no-wait flow shop scheduling problems. Computers & Operations Research,

36(8), 2498-2511.

Pellegrino, G. (2015). Obsolescence, presentification, revolution: Sociotechnical discourse

as site for in fieri futures. Current Sociology, 63(2), 216-227.

Pinedo, M.L. (2014). Scheduling: theory, algorithms, and systems. Springer: New York.

74

Price, C., Golden, B., Harrington, M., Konewko, R., Wasil, E., and Herring, W. (2011).

Reducing Boarding in a Post‐Anesthesia Care Unit. Production and Operations

Management, 20(3), 431-441.

Qi, X., Wang, H., Zhu, H., Zhang, J., Chen, F., and Yang, J. (2016). Fast local

neighborhood search algorithm for the no-wait flow shop scheduling with total flow

time minimization. International Journal of Production Research, 54(16), 4957-4972.

Qian, B., Wang, L., Huang, D. X., Wang, W. L., and Wang, X. (2009). An effective hybrid

DE-based algorithm for multi-objective flow shop scheduling with limited buffers.

Computers & Operations Research, 36(1), 209-233.

Rajendran, C. (1994). A no-wait flowshop scheduling heuristic to minimize makespan.

Journal of the Operational Research Society, 45(4), 472-478.

Rajendran, C., and Chaudhuri, D. (1990). Heuristic algorithms for continuous flow‐shop

problem. Naval Research Logistics (NRL), 37(5), 695-705.

Rajendran, C., and Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop

to minimize total weighted flowtime of jobs. European Journal of Operational

Research, 103(1), 129-138.

Roberts, S., Saithna, A., and Bethune, R. (2015). Improving theatre efficiency and

utilisation through early identification of trauma patients and enhanced

communication between teams. BMJ quality improvement reports, 4(1), u206641-

w2670.

Röck, H. (1984). The three-machine no-wait flow shop is NP-complete. Journal of the

ACM (JACM), 31(2), 336-345.

75

Ruiz, R., and Allahverdi, A. (2009). New heuristics for no-wait flow shops with a linear

combination of makespan and maximum lateness. International Journal of Production

Research, 47(20), 5717-5738.

Ruiz, R., and Maroto, C. (2005). A comprehensive review and evaluation of permutation

flowshop heuristics. European Journal of Operational Research, 165(2), 479-494.

Samarghandi, H. (2011). Scheduling optimization of manufacturing systems with no-wait

constraints.

Sapkal, S. U., and Laha, D. (2013). A heuristic for no-wait flow shop scheduling. The

International Journal of Advanced Manufacturing Technology, 68(5-8), 1327-1338.

Shewhart, W. A. (1931). Economic control of quality of manufactured product. ASQ

Quality Press.

Syslo, M. M. (1983). NP-complete problems on some tree-structured graphs: a review.

Universität Bonn. Institut für Ökonometrie und Operations Research.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64(2), 278-285.

Testi, A., Tanfani, E., and Torre, G. (2007). A three-phase approach for operating theatre

schedules. Health Care Management Science, 10(2), 163-172.

Wang, Y., Tang, J., Pan, Z., and Yan, C. (2015). Particle swarm optimization-based

planning and scheduling for a laminar-flow operating room with downstream

resources. Soft Computing, 19(10), 2913-2926.

Weiss, A. J., and Elixhauser, A. (2014). Overview of hospital stays in the United States,

2012. HCUP Statistical Brief, 180.

76

Xie, G., and Li, J. (2012). Evolved discrete harmony search algorithm for multiobjective

no-wait flow shop scheduling problem. In The 2nd International Conference on

Computer Application and System Modeling (pp. 791-794).

Ye, H., Li, W., and Miao, E. (2016). An effective heuristic for no-wait flow shop

production to minimize makespan. Journal of Manufacturing Systems, 40, 2-7.

77

Vita
NAME:
Honghan Ye

EDUCATION:
Bachelor of Engineering 2015
Department of Instrument Science and Opto-electronic Engineering
HeFei University of Technology, Hefei, China

AWARDS:
National Science Foundation: Student Travel Award 2017
National Science Foundation: Student Travel Award 2016
National Scholarship Award (China) 2014
National Scholarship Award (China) 2013
National Scholarship Award (China) 2012

PUBLICATIONS AND PRESENTATIONS
Publications in referred international journals
1. Ye, H.H., W. Li., E.M. Miao. 2016. An effective heuristic for no-wait flow shop

production to minimize makespan. Journal of Manufacturing Systems, 40 (2),
2-7. DOI: 10.1016/j.jmsy.2016.05.001.

2. Ye, H.H., W. Li, A. Abedini. 2017. An improved heuristic for no-wait flow
shop production to minimize makespan. Journal of Manufacturing Systems. In
press. DOI: 10.1016/j.jmsy.2017.04.007.

3. Ye, H.H., W. Li, A. Abedini, B. Nault. 2017. An effective and efficient heuristic
for no-wait flow shop production to minimize total completion time. Computers
and Industrial Engineering. 108, 57-69. DOI: 10.1016/j.cie.2017.04.002.

Publications in referred international conferences
1. Abedini, A., H. Ye, W. Li. 2016. Operating room planning under surgery type and

priority constraints. Procedia Manufacturing (44th North American
Manufacturing Research Conference), 5, 15-25. DOI:
10.1016/j.promfg.2016.08.005.

2. Abedini, A., W. Li, H. Ye. 2017. An optimization model for operating room
scheduling to reduce blocking across the perioperative process. 45th North
American Manufacturing Research Conference. (Accepted)

Presentations
1. Ye, H.H., W. Li., E.M. Miao. An effective heuristic for no-wait flow shop

production to minimize makespan. Paper presented at 44th North American
Manufacturing Research Conference, June 27-July 1, 2016, Virginia Tech,
Blacksburg, Virginia, United States.

	ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT
	Recommended Citation

	ADAPTIVE SCHEDULING FOR OPERATING ROOM MANAGEMENT
	ABSTRACT OF THESIS
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 The challenges in no-wait flow shop scheduling
	1.4 The contribution
	1.5 The structure of this thesis

	Chapter 2 Literature review
	2.1 Heuristics for no-wait flow shop to minimize Cmax and ΣCj
	2.1.1 Heuristics for no-wait flow shop to minimize Cmax
	2.1.2 Heuristics for no-wait flow shop to minimize ΣCj

	2.2 Heuristics for multi-objective optimization in no-wait flow shop
	2.3 Statistical process control in operating room scheduling

	Chapter 3 Methodology
	3.1 Problem description
	3.2 Initial Sequence Algorithm (ISA)
	3.3 AIT heuristic to min(Cmax)
	3.4 CFI heuristic to min(ƩCj)
	3.5 Objective increment method to calculate total completion time (TCT)

	Chapter 4 Case study
	4.1 Schemes to carry out case studies
	4.2 Results of case study on Fm |nwt| Cmax problems
	4.2.1 Small-scale instances
	4.2.2 Large-scale instances

	4.3 Results of case study on Fm |nwt| ΣCj problems
	4.3.1 Small-scale instances
	4.3.2 Large-scale instances

	4.4 Trade-off balancing
	4.5 Case study on UKHC historical data

	Chapter 5 Conclusion and future work
	5.1 Concluding remarks
	5.2 Future work

	References
	Vita

