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ABSTRACT OF DISSERTATION

CONTRIBUTIONS TO EDGE COMPUTING

Efforts related to Internet of Things (IoT), Cyber-Physical Systems (CPS), Ma-
chine to Machine (M2M) technologies, Industrial Internet, and Smart Cities aim to
improve society through the coordination of distributed devices and analysis of result-
ing data. By the year 2020 there will be an estimated 50 billion network connected
devices globally and 43 trillion gigabytes of electronic data. Current practices of mov-
ing data directly from end-devices to remote and potentially distant cloud computing
services will not be sufficient to manage future device and data growth.

Edge Computing is the migration of computational functionality to sources of
data generation. The importance of edge computing increases with the size and com-
plexity of devices and resulting data. In addition, the coordination of global edge-to-
edge communications, shared resources, high-level application scheduling, monitoring,
measurement, and Quality of Service (QoS) enforcement will be critical to address
the rapid growth of connected devices and associated data.

We present a new distributed agent-based framework designed to address the chal-
lenges of edge computing. This actor-model framework implementation is designed to
manage large numbers of geographically distributed services, comprised from hetero-
geneous resources and communication protocols, in support of low-latency real-time
streaming applications. As part of this framework, an application description lan-
guage was developed and implemented. Using the application description language a
number of high-order management modules were implemented including solutions for
resource and workload comparison, performance observation, scheduling, and provi-
sioning. A number of hypothetical and real-world use cases are described to support
the framework implementation.

KEYWORDS: Edge Computing, Distributed Systems, Cloud Computing
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1

Edge Computing Introduction

“The value of a network increases exponentially with the number of nodes.”

– Robert M. Metcalfe

For much of the history of computing data-generating resources have been consol-

idated in institutional data centers. End-users connect over communication networks

to access central data and computational resources. With the emergence of so-called

”Cloud Computing” many computational resources have moved out of institutional

data centers, but the practice of direct end-user access to central data centers persists.

However, with the prolific rise of smart devices such as phones, sensors, and other

distributed instrumentation a great deal of data generation moved from data centers

to the devices. In China alone there were a reported 9 billion devices as of 2014, with

estimates of 24 billion by 2020 [1]. By the year 2020 there will be an estimated 50

billion network connected devices globally [2, 3] and 43 trillion gigabytes of electronic

data [4].

Smart devices are often part of larger complex systems where actionable events

are determined through the correlation of data generated from distributed devices.

In 1991, Weiser described [5] a highly-connected world where devices would ”weave

themselves into the fabric of everyday life.” By the mid-2000s Weiser’s vision of

1



ubiquitous computing became commonly known as the Internet of Things (IoT).

Whether referred1 to as IoT, Cyber-Physical Systems (CPS) [6], Machine to Machine

(M2M) [7] technologies, Industrial Internet [8], or Smart Cities [9], all of these efforts

aim to improve society through the harnessing of data and resources from distributed

systems. In recent years a number of CPS software platforms [10, 11, 12, 13, 14, 15]

have been developed. The majority of these platforms rely on public cloud providers

such as Amazon EC2 [16] or Microsoft Azure [17] to centrally process and store CPS

data. The use of public cloud infrastructure in support of CPS requires that some if

not all of data generation and decision making take place in remote data centers. For

instance, the communication of location information between two mobile devices in

close proximity might require transmission through a public cloud hundreds of miles

away.

In May 2016, the Cyber-Physical Systems Public Working Group (CPSPWG),

a forum established by the National Institute of Standards and Technology (NIST),

published their Framework for Cyber-Physical Systems [18], defining CPS as ”smart

systems that include engineered interacting networks of physical and computational

components.” The CPSPWG framework described the need for ”Migration of Func-

tionality (vs Data)”, a computational paradigm where processing takes place on the

logical edge of networks instead of transmitting data to remote data centers. While

it is common to make use of graph-based models to represent aspects of locality and

hierarchy in large (global) networks [19], the term edge should not be considered a

specific tier as designated in hierarchical internetworking models [20].

While there does not appear to be a generally accepted definition, we understand

Edge Computing to be the intelligent processing of data throughout networks includ-

ing near sources of data generation, within points of data transmission, and in collec-

tions of centralized data center resources. The author believes that the importance of

edge computing will increase with the size and complexity of CPS deployments and

1The author does not suggest these terms are interchangeable only that overlaps do exist.
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resulting data processing. In addition, the coordination of global edge-to-edge com-

munications, shared resources, high-level application scheduling, monitoring, mea-

surement, and Quality of Service (QoS) enforcement will be critical to address the

rapid growth of connected devices and associated data.

While in its infancy, several authors have provided their interpretations of the

edge or fog computing paradigm, most notably Bonomi et al., 2012 [21], Lopez et al.,

2015 [22], and Varghese et al., 2016 [23]. In the following sections the author will

provide his interpretation of the motivations and characteristics of edge computing.

1.1 Motivations

Motivations for the adoption of edge computing over existing distributed computa-

tional paradigms include challenges such as operational constraints, gains in efficien-

cies, and better control of data and privacy. The following subsections describe the

motivations for edge computing in detail.

1.1.1 Resource Constraints

There exist an increasing number of CPS applications where the traditional com-

putational paradigm of central data center control, data collection, and processing

are impractical. There are computational constraints on smart devices, where limited

hardware or software prevent on-device analytics and communications constraints pre-

vent cloud-based offloading of decision making. For example, oil pipelines are typically

found in remote areas where satellite communication is used to communicate sensor

status to Supervisory Control and Data Acquisition (SCADA)[24] monitoring sys-

tems. Historically, SCADA systems acquire sensor data directly from Programmable

Logic Controllers (PLCs) that convert sensor signals to digital data. Typically, in

order to communicate large amounts of oil flow sensor2 data to a central SCADA sys-

2Oil flow sensors are used in leak and theft detection.
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tem, expensive broadband satellite system must be used. However, recently compa-

nies [25] have employed edge computing techniques in pipeline monitoring to increase

measurement accuracy (detect smaller leaks), decrease alert latency, and reduce com-

munication cost. In one such example [26], highly sensitive pressure sensors are used

in place of oil flow sensors, sensor data is analyzed before transmission, and inex-

pensive low-bandwidth satellite communication is used to communicate the status of

the local monitoring station in place of transmitting distinct sensor samples to the

central SCADA monitoring system. Pushing computational resources to the edge

enables decision making to take place near sources of data.

1.1.2 Predictive Requirements

The SCADA example in the previous section describes a scenario where both con-

nectivity and local analysis capabilities were limited. While satellite communication

serves as an extreme example, variations in traffic impact the most highly connected

communication networks, especially those participating in the public Internet where

utilization can change rapidly without warning. The term low-latency is relative to the

context of specific applications, where latency must fall within an acceptable range.

Real-time systems must guarantee processing within specified time constraints. In

order for real-time systems to operate in a distributed capacity both predictive com-

putation and network latencies are necessary. Applications that require predictive

latency can neither rely on the public Internet for communications or public cloud

services for computation as guaranteed resources. However, resources with known

performance characteristics, including communication latency to sources of data gen-

eration, can be used. Satyanarayanan et al., 2009 [27] proposed the idea of cloudlets,

small-scale clouds on the edge of networks, to support resource-intensive low-latency

applications. For example, systems that coordinate real-time video, such as those

from wearable cameras must transmit, encode, decode, and retransmit video streams

in less than 25-50ms, or video latency is detected by users [28]. The latency to
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communicate from a wireless transmitter through the public internet and back alone

can easily exceed real-time video requirements, so in the current paradigm one must

choose to operate in a standalone mode that lacks significant video analysis resources

and content distribution or in a remote data center mode with unacceptable latency.

A real-time video system operating in an edge computing environment can coordinate

video streams locally, while providing enough analytic capacity to detect interesting

events from one or more video streams, which the edge environment can act on or

direct to cloud resources for further processing.

1.1.3 Heterogeneous operations

Self-contained applications rely on tightly controlled vertical stacks of infrastructure,

devices, and software resources. Edge computing techniques can be used to ensure

application constraints are satisfied throughout the operating environment. As in the

previous example, real-time Smart Cities applications [29], such as traffic management

[30], require predictive processing on street-intersection, sub-city, and city-wide scales.

In addition, the interoperation of external federated participants, such as mobile

devices and vehicles required localized decision making. Not only must external

participants interoperate with distributed edge analysis services, the coordination of

autonomous Vehicle-2-Vehicle (V2V) interactions [31] between vehicles and Smarter

City infrastructure need to be accommodated through city-based edge [32] computing

environments.

1.1.4 Devices and Data

Smartphones potentially contain dozens of sensors with the ability to perform lim-

ited processing, storage, and transmission of data generated on the device. Vehicles

contain networks composed of hundreds of sensors and provide real-time processing,

storage, and potentially transmission capabilities for data generated by and in proxim-

ity to vehicles. Smart homes might contain a number of sensor networks representing
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thousands of potential data sources, with computational, long-term storage, and high-

speed communication resources. Commonly, on-device sensor data is confined to the

devices and systems where it is generated. While not all sensor data is relevant in iso-

lation, coordination of data streams from independent devices results in aggregated

streams of data that can yield new detectable events. For example, coordination

of smartphone data is used in sensing spatial and temporal personnel coordination

[33] and disaster relief operations [34]. However, even the most robust IoT cloud

platform is unable to centrally collect and process all on-device generated data for

large collections of interacting devices. Edge computational resources can be used to

perform intermediate operations, such as aggregated processing or filtering, between

end-user devices and higher-order analysis services. For instance, data probes placed

in a network exchange3 for cybersecurity monitoring communicate high-rate network

flow traffic to edge devices for analysis [35]. Anomaly detection is performed on edge

devices through the aggregation of probe data. When local anomalies are detected,

data is propagated to regional or national services for aggregated correlation. Like-

wise, if specific network flows are requested from end-devices, edge resources are used

to filter and propagate only the data that is needed for higher-order analysis. The

previous examples demonstrate how edge computing techniques are used to correlate

and manage data that would otherwise not be available.

1.1.5 Smart device capabilities

Smartphone data management is especially challenging due to their natural distribu-

tion and ability to generate large amounts of data through human-device interactions.

While cellular networks have long been used to address corresponding challenges of

mobility and data transmission, no comparative edge computational component ex-

ist. Smartphones and other devices must either operate with central coordination

or use ad-hoc device-to-device methods. Both cellular and wired telecommunication

3A facility where many independent networks connect to (peer) with each other.
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network services are provided through telephone exchanges or (as more commonly

referred) central offices (CO). COs provide telephony and data services for relatively

small geographic areas, which makes them ideal locations to place edge computing

resources. Currently, efforts are underway as part of the Central office re-architected

as a data center (CORD) [36] project to replace proprietary central office hardware

with open source software and commodity hardware. One use case of CORD is to

simplify the process of providing Content Distribution Networks (CDN) [37] resources

on the edges of networks. While typically end-device interactions between CDN and

other similar services are centrally coordinated, pushing such resources down to the

edge allows for CO-to-device service discovery. As with CDNs, the availability of

general purpose edge resources in COs allows for the end-user coordination of CPS,

P2P, M2M, IoT services. General purpose shared edge resources, like those proposed

by CORD efforts, are critical to realization of Smart Cities.

1.1.6 Decision making and security

While edge computing extends far beyond telecommunication service delivery, the po-

tential for disruption in a historically tightly controlled and highly regulated industry

is of great importance to the privacy and security of CPS. The migration of service

discovery and delivery from central cloud to CO coordination represents a paradigm

shift in decision making from the service provider to the end-devices. While the

outcome will be determine by implementations and policies, CO-level coordination

provides the capability to push control and trust down to the human-level. More of-

ten that not, users are unaware [38, 39, 40, 41, 42, 43] of the information that is being

shared by their devices. Even if users are aware of privacy policies, with application

control in the public cloud end-users must trust infrastructure, device, and application

providers to enforce privacy policies. For instance, thermostats, garage openers, and

other smart devices detect if users are away from their residence, but this ability cre-

ates to potential for criminals to learn this information as well. With decision-making
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related to data sharing and processing pushed down to the device-level, users have

more options to control what data is shared and how it is processed. Network Func-

tion Virtualization (NFV) [44] is a concept that decouples network functions from

proprietary hardware allowing services to run in software. Edge resources, like those

provided by the previously mentioned CORD, are capable of running user-defined

NFV functions. With decision making pushed down to the device, with capabilities

for devices to provision NFV functions, data processing pipelines with individualized

privacy and security policies are possible. For example, suppose for privacy pur-

poses one wished to limit location data from their personal mobile devices to their

home automation system. Currently, mobile devices and home automation systems

must coordinate communications through public infrastructure and cloud services.

Sensitive data is transmitted alongside unprotected data by the device through the

communication provider and the central applications must provide security and pri-

vacy enforcement to all end-points. However, with decision making pushed to the

end-device policies can be applied from the bottom-up to enforce security and pri-

vacy. For instance, an end-device can discover services provided by their current CO,

which could include the users home automation system. If communications were re-

quired between COs, edge coordinators or end-devices could provision NFV services

to enforce user-defined policies. In this mode of operation, no only could users de-

fine their own policies, they also could specify the methods and technologies used in

security and policy enforcement. The same reasoning can be applied for privacy of

biometric sensor data from personal mobile devices to private analysis services. For

privacy purposes biometric is restricted until an actionable event is detected, which

at point the best-fit medical personnel are alerted and streams of biometric data are

pushed to medical services.

The previous examples describe decision making in the context of users and end-

devices. However, it is unlikely that most end-users will design services using edge

resources and NFV building blocks on their own. End-users and those they interact
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with can negotiate policy-enforcing specifications, which can be implemented by edge

computing technologies. For example, with smart grid [45] technology energy usage

and scheduling is shared with power companies to make scheduling decisions. As

previously mentioned, knowledge of residency occupation in the wrong hands is not

desirable. Likewise, for privacy reasons, users might not want their home devices

communicating directly with power companies. Edge computing could be used to

broker agreements between power companies and home automation systems, where

users have control over what data is shared and potentially where data is processed.

In a brokered scenario, data might be sanitized at the users edge or perhaps necessary

demand response calculations performed in the residence or a local CO.

The sharing of healthcare information is an extremely complicated topic, where

additional information in the right hands can be beneficial, but in the wrong hands

highly undesirable. In the event of an emergency, possibly without end-user identifi-

cation, we want critical life-saving information to be shared with medical personnel.

In addition, many people would agree to share personal healthcare metrics for pre-

diction analysis and alerting purposes to avoid potentially life-threatening events.

However, ubiquitous medical record data, at least in part, is not a reality due to the

concerns surrounding the misuse of personal medical data. With edge computing,

data sharing, communication, and alerting policies between healthcare providers and

individuals could be enforced across devices, communication, and healthcare provider

networks. Edge computing technologies provide a platform for users to make decisions

about their data.

1.1.7 Workload Optimization

Perhaps the most compelling argument for edge computing is the ability to gain ef-

ficiencies by intelligently matching workloads, resources, and data sources. The pre-

vious sections described examples of where moving computation to data enables new

features and benefits not otherwise possible. While there are intrinsic efficiencies, as
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we have described, by moving computation to the edges of networks, there are broader

impacts to resource management working in the edge computing paradigm. In order

to understand what computation should exist on the edges of networks, one must

first have an understanding of the functional components of applications and there

relation to infrastructure. For instance, application components that require transac-

tional access to synchronous data sources are highly impacted by increases in latency.

Conversely, components that provide data to reporting systems asynchronously are

more tolerant of increases in latency. A single threaded process used for anomaly

detection is less tolerant of processor oversubscription than the long-running batch

processes used to generate the detection models. Resources on the edges of networks,

such as those found in COs, provide limited computational resources in comparison

to public clouds. One can think of edge resources as prime real-estate, where re-

sources cost is a premium. From a business model prospective, edge resources are

a store front, while public clouds function as warehouses and production facilities.

As with any business, high-level views of operations must be continuously evaluated

to align needs with appropriate resources. Edge computing workloads can be opti-

mized in various ways including cost [46], network characteristics [47], computational

performance [48], and power consumption [49] to name a few.

In several examples, we have described edge computing as resources that ex-

ist on the logical boundaries of networks providing intermediate resources between

end-devices and public clouds. However, edge computing techniques can be applied

throughout the infrastructure-application hierarchy. For sufficiently large and com-

plex services, especially those that are distributed globally, a top-level logical edge

of the network could be at a point of international network peering, with multiple

lower-level edges extending down to the end-device. One such global service is the

Netflix CDN, which uses Amazon Web Services (AWS) [50] infrastructure. The Net-

flix CDN provides video services for over 86 million subscribers in over 190 countries

[51]. Estimates place the global AWS server count in the millions [52], with AWS
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regions typically containing 50-80K servers, over 80K fiber connections, and over

100Tb/sec of network capacity provisioned per data center. Netflix must maintain an

acceptable customer experience with minimum cost, through management of globally

distributed CDN running on a vast AWS infrastructure for which they have no low-

level visibility or control. Netflix must determine the real-time viewing experience for

for millions of simultaneous data streams across the globe, detect unacceptable per-

formance, and adjust resource configurations throughout the service delivery pipeline

to maintain services. Netflix must be able to change consumer-side settings such as

lowering stream bit-rates or redirecting request to alternative data sources. Likewise,

producer-side changes such as the provisioning of additional edge computational or

network resources on the continental, regional, data center, or CO levels must be

predictive and reactive based on expected usage patterns and observed needs. Edge

computing technologies allows a platform to predict, detect, correct, and optimize

distributed applications.

1.2 Characteristics

In the previous section we described motivations for adopting edge computing prac-

tices. In this section we will provide a characterization of edge computing. Edge

computing implementations, such as one presented in this dissertation, should repre-

sent at least a subset of edge computing characteristics discussed in this section.

1.2.1 Proximity

Edge computing is placement of computational resources in close proximity to points

of data generation. As previously mentioned, edge computing shifts the paradigm of

moving data to computation, to moving appropriate levels of computation to data.

Moving computation to sources of data creates a natural requirement to support de-

centralized systems. Data is generated all over the world, and as such edge computing
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technologies must support geographic distribution. While often described as compu-

tational resources at the logical network boundary between communications networks

and end-devices, edge computing techniques can be extended to any number of logical

boundaries in software or infrastructure architectures. Logical boundaries in systems

often represent technical demarcations, where one level of the system is dependent

on some other level. For example, downstream network providers depend on one or

more up stream providers. Likewise, an application may depend on a virtual ma-

chine, which depends on a hypervisor, which in turn depends on underlying hardware

system. We discuss additional details pertaining to infrastructure virtualization in

Section 1.3.3, Global Observation. The natural hierarchy that exist in distributed sys-

tems necessitates that on a high-level edge computing frameworks must to function

in a hierarchical fashion.

1.2.2 Communications

In previous examples we had discussed the benefits of edge computing for predictive

and low-latency applications. Edge computing reduces communication and computa-

tional latency by moving resources closer to points of data origination. A hierarchy

of edge computing resources distributed in communications infrastructure allows for

the measurement and monitoring of network characteristics between two edge-enabled

network boundaries. Observation of network conditions by edge resources can be used

by Software Defined Networking (SDN) [53] controllers to manipulate low-level com-

munications infrastructure data paths to improve communications. Edge computing

technologies must participate actively in communications networks, discovering edge-

enabled network topologies, relaying link characteristics between edge nodes, and by

reporting observed network characteristics to low-level communication control sys-

tems.

In addition to communication performance, edge computing technologies must

function as data exchanges between heterogeneous networks and devices. Functioning
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on the application-level, edge resources must support simple high-level edge-to-edge

messaging abstracted from lower-level multi-protocol communications. In addition,

edge computing must provide methods to establish and control data plane operations

between underlying application and infrastructure components. Similar to the separa-

tion of control and data planes in the SDN OpenFlow [54] protocol, high-level control

messages are communicated between edge nodes and devices to provision data paths

and exchanges from low-level infrastructure to edge-managed applications. Edge tech-

nologies must be able to establish and maintain appropriate communication channels

between data generators and consumers.

There are twice as many reported devices in China alone than total number of

public IPv4 network addresses (4 billion). Edge computing frameworks must sup-

port communication protocols such as IPv6 (3.4× 1038 addresses) with large address

spaces. With the high prevalence of wireless devices in CPS networks, protocols such

as 6LoWPAN [55] and ZigBee [56] must be supported. Edge frameworks must be able

to provide both low-level protocol routing and high-level data translation services be-

tween devices, intermediate, and back-end processing resources. Where necessary,

edge technologies must be able to translate low-level protocols and high-level appli-

cation data between end-points. For example, an edge device might use the low-level

ZigBee protocol to acquire data from a low-power low-bandwidth wireless sensor,

which is then communicated to a cloud-based IoT application using the high-level

AWS IoT API [10].

1.2.3 Target Devices

Currently, edge computing efforts focus on end-devices such as smart phones, tablets,

standalone IoT devices, and supporting edge resources such as virtual servers. While

existing device and data processing requirements can benefit from edge computing

techniques, future requirements to support an increasing diverse array of data gen-

erating devices stand the most to gain through the adoption of edge technologies.
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Advances in centrally provided computational and communication capacities have

not yet grown to meet future demands in industrial, agriculture, transportation au-

tomation, healthcare, smart homes, campuses, and cities. A single autonomous car is

capable of generating 4 terabytes of data daily [57], as a result the 260 million regis-

tered vehicles [58] in the US alone are capable of generating over a quintillion (1×1018)

bytes of data on a daily basis. Likewise, cities like Chicago are deploying general pur-

pose sensor arrays to ”track the city’s vitals” [59]. The so-called sensor Array of

Things deployed in Chicago will be used to generate both information for research

and also city-wide decision making. While data generated from general purpose sen-

sor arrays is multipurpose in nature, the policies pertaining to usage will vary greatly

based on application. For instance, aggregated air quality information used to detect

real-time threats to public safety should have a higher computational and transmis-

sion priority than the same information used for a long-term climate change study.

However, while it is possible to provide traffic priorities between applications, exist-

ing end-to-end infrastructures typically don’t differentiate between intra-application

communications and processing priorities. Edge computing frameworks must be able

to manage sensor arrays, communication networks, and computational resources in

large data-intensive heterogeneous environments. In addition, such frameworks must

extend operations beyond interactions with end-devices to communication and com-

putational infrastructures providing end-to-end policy enforcement. The net result

is a requirement for edge frameworks to support a wide range of devices, including

resource components used in the provisioning of infrastructure and services. There is

a need for standards and protocols to support edge computing. Our work is a step in

this direction.

The next section describes several key challenges that must be addressed by edge

computing frameworks.
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1.3 Challenges

Above we discussed the motivations for and characteristics of edge computing. In this

section we discuss several challenges presented by modern cyberinfrastructure (CI)

that must be overcome by edge computing frameworks.

1.3.1 Comparison

Generally, with every layer of computational abstraction usability is increased, while

the underlying complexity is also increased. For example, it is much easier to write an

application in a higher-order language than in a machine-specific language. However,

this abstraction makes things like tracing specific hardware operations, and their

order of execution on lower abstracted levels, more difficult.

CPS-supporting infrastructure includes a wide-range of physical devices distributed

across geographic regions. Public, private cloud, and telecommunication resource

providers make use of CI frameworks to manage resources. CI frameworks, such as

OpenStack [60, 61], provide access to logically separated layers of compute, storage,

and network infrastructure. Most often hardware virtualization techniques are used to

provide dynamically reconfigurable resources. Popek and Goldberg [62], defined the

term Virtual Machine (VM) as ”an efficient, isolated duplicate of a real machine.” As

with VMs, methods for infrastructure virtualization have been extended to network,

storage, and even mobile [63] devices.

From the perspective of device operating systems (OS) and applications running

under the OS, the presence of CI management, and related virtualization layer, should

be transparent. However, the performance of virtual resources are not necessarily

representative of the capabilities of the underlying hardware they represent. For in-

stance, virtual hardware representations can exceed the total capacity of underlying

hardware, resulting in resource oversubscription. Even simple tasks such as deter-

mining application resource needs from the physical infrastructure layer are often
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more difficult, due to this further abstraction of the hardware layer. When using

virtual CI one might have no information as to where the underlying physical hard-

ware supporting specific virtual machines resources are geographically located, much

less have visibility into its operating state. In this paradigm one would have little

or no visibility into the underlying infrastructure layer. Performance of provisioned

resources from identically sized virtual machines vary based on the characteristics of

the underlying infrastructure. Consider the case where two identical virtual machines

are running identical workloads. Despite running identical instructions and observing

similar resource utilization metrics from the OS-level (inside each VM, not the host),

one workload may finish much sooner than the other. Likewise, two virtual network

circuits connecting islands of infrastructure can be presented as virtually equivalent

resources, but in practice the performance of the two circuits may greatly vary. This

variation could be related to inherent differences in the performance of the under-

lying infrastructure or could be a direct result of resource limits imposed on virtual

resources, where one resources is assigned a greater share of the underlying infrastruc-

ture than the other. Even if the underlying infrastructure and related configurations

are identical, contention for resources may create performance variations. In this

context, resource contention is the reduction in performance due to resource request

exceeding available resource assignments. Even more troublesome, CI resource costs

are typically based on the size of the reserved resource and the duration of reserva-

tion. So, assuming the two VMs in our example have the same unit cost, the slower

execution actually cost more money, not less. In order to compare the performance of

resources, including those that are reportedly equivalent by underlying infrastructure

managements systems, we will perform micro-benchmarks and report point-in-time

evaluations to the framework. With resource performance and financial cost infor-

mation, resource can be acquired, decommissioned, or exchanged, based on resource

value, thus creating a market.
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1.3.2 Identification

In modern infrastructure many layers of virtualization abstract resources from not

only underlying hardware, but also from other virtual resources. NFV, as discussed

in Section 1.1.6, Decision Making and Security, is commonly used to provide network

performance enhancement, firewall, intrusion detection, and other security services

that isolate groups of back-end application from external networks. Even if one could

query these isolated back-end resources, the resources themselves might not be able to

provide information needed to identify their relationship between external networks

and dependencies.

Consider the case where a request is made to a CI framework to provision two

back-end virtual machine (VM) resources to be used in separate applications. The

two VMs are requested from CI with networks in the same network address range

(e.g. 192.168.1.0/24), but the VMs are for two isolated applications and should

not be on the same logical network. This request would be invalid if the specified

address range was public [64], since this would be a duplication of assigned address

space. However, it is perfectly acceptable, and very common to duplicate private [65]

ranges. In our example two separate OSI Layer 2 (L2) [66] networks are required to

separate the two computers. Unfortunately, two networks with overlapping address

ranges can not be assigned to a single host. So, the CI framework must either use

separate physical machines or further abstract resources using namespace isolation

[67]. Namespace isolation, as the name suggest, allows for the kernel-level isolation

of resources, including network devices. This means that single nodes can host many

types of compute, network, and storage configurations without worry of namespace

(devices, networks, storage, etc) conflicts. The drawback of this method is that it

creates yet another layer of abstraction between infrastructure and virtual resources.

In this example, if a single node provides computational resources for both networks

using namespace isolation, neither networks will be directly accessible from the node

without explicitly specifying the namespace of the desired network. Figure 1.1 shows
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two physically connected nodes on the same address range as requested for the virtual

machines in the previous example. In the figure below there are also two VMs per

physical node, which also share the same address range as the physical host. The

VM networks are isolated using separate namespaces on the individual hosts, which

prevents conflict with the network of the physical host.

VM_1
192.168.1.2

Namespace: 0
VLAN 100

VM_3
192.168.1.2

Namespace: 1
VLAN 200

Physical Node 1
192.168.1.2

VM_0
192.168.1.1

Namespace: 0
VLAN 100

VM_2
192.168.1.1

Namespace: 1
VLAN 200

Physical Node 0
192.168.1.1

Tunnel between
Namespaces

Physical Network

Figure 1.1: The same network range in three separate Linux Namespaces.

It is common for virtual machines to be distributed across many physical nodes.

When these virtual machines and their connected networks are namespace-isolated,

tunnels linking network namespaces must be created. Typically these network names-

paces are connected using fully connected ”mesh” tunnels between participating phys-

ical nodes. From the standpoint of the virtual machines, they are all connected to the

same L2 (VLAN with same ID) network. However, outside of this namespace-isolated

network, these virtual machines are completely unreachable. To provide connectivity

to networks external to the namespace-isolated network, virtual interfaces are created

to bridge traffic between networks. However, this gets us back to the original problem

of separating networks with overlapping address ranges. To get around this problem,

private ranges are typically one-to-many (one address representing many other ad-

dresses) Network Address Translated (NAT) [68] from within the namespace-isolated

network. In the telephony context, this is analogous to extension numbers being
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assigned to internal nodes, where the extensions are part of a single phone number.

This allows traffic originating from within the network to reach external sources. If

network services on the namespace-isolated network need to be exposed to externally

originating traffic, typically a one-to-one floating address is assigned by the CI frame-

work to the NAT interface. Once again using the telephony analogy, this would be

like assigning a direct inward dial (DID) (phone number) number to a specific exten-

sion. Figure 1.2, shows the assignment of floating addresses to namespace isolated

VM networks.

VM_1
192.168.1.2

Namespace: 0
VLAN 100

VM_3
192.168.1.2

Namespace: 1
VLAN 200

Physical Node 1
192.168.1.2

VM_0
192.168.1.1

Namespace: 0
VLAN 100

VM_2
192.168.1.1

Namespace: 1
VLAN 200

Physical Node 0
192.168.1.1

192.168.1.3 
<-> 

192.168.1.4 
<-> 

192.168.1.5 
<-> 

192.168.1.6 
<-> 

Floating Addresses
on

Physical Network

Figure 1.2: Linux Namespaces Network with Floating Addresses

One-to-many and one-to-one NAT can provide connectivity to namespace-isolated

VMs. However, on the OS-level a virtual machine will be unaware of the external

address representing its services.

Techniques used by CI frameworks to provide network services can leave resources

inaccessible beyond CI regions.

Due to the lack of direct external connectivity to resources provided by CI, com-

munication channels must be established to directly manage otherwise unobservable

resources. In addition, network discovery methods must be implemented outside the
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CI framework to provide topology information the necessary to correlate isolated

pools of resources.

1.3.3 Global Observation

Most CI frameworks provide programatic methods for the collection of resource uti-

lization in the form of the quantity of resources actively provisioned. This occupancy

utilization is needed for reporting and billing purposes. A number of CI frameworks,

from the infrastructure standpoint, provide visibility into the discrete utilization of

compute, storage, and network utilization for resources under their control. However,

as we previously discussed, utilization metrics of virtual infrastructure is not always

sufficient to determine performance characteristics of underlying CI infrastructure.

Even if CI utilization metrics were comparable between regions, these metrics would

only be useful in evaluating performance for individual resources operating in a spe-

cific region. While one might be able to correlate application performance between

resources on separate CI regions, this inter-regional relationship is not directly observ-

able using resource utilization metrics provided by existing CI frameworks. Consider

the case where an application is exclusively deployed in regiona. This application

requires front-end (Web node) and a back-end (database node) regional resources to

function. Suppose furthermore the same application is independently and exclusively

deployed in a region identical to regiona, called regionb. The utilization metrics of

the individual regions would be comparable, for comparable workloads. This is to

say, if workload performance is understood based on the performance characteristics

of regiona, we can expect the same results in regionb. Now, suppose we configure the

application to allow for provisioning of interoperating resources across regions. For

example, a front-end node could consume services from a database node either in the

same region or a remote region. In this scenario workload performance can not be

directly interpreted based on the CI utilization reported by individual regions. Due

to the lack of observable performance metrics between CI regions, application-specific
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metrics must be generated to determine relational resource evaluations, as previously

mentioned in this chapter. Edge frameworks must address the evaluation, communi-

cation, and analysis of metrics globally. These evaluations can be used in scheduling

optimization calculations.

In the next chapter we present the architectural model for an edge computing

framework.
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2

The Architectural Model

In this chapter we describe the architecture model for a edge computing framework

we call Cresco [69]. First, in Section 2.1, Functions, we cover what we believe to

be functions required of edge frameworks. Second, in Section 2.2, Computational

Models, we discuss the computational models that have influenced Cresco framework

architecture. Next, in Section 2.3, Operating Principles, we discuss the principles

that guide the architecture of the Cresco framework. Finally, in Section 2.4, Cresco

Architecture, we cover the high-level architectural design of the Cresco framework.

2.1 Functions

In the previous, introductory chapter, we described the motivations and general re-

quirements for edge computing. In this section, we describe specific functions required

of edge computing frameworks.

2.1.1 Data Processing

Data processing functions provide the ability to communicate, exchange, and modify

data in and between points of data generation.

• Real-time data operations such as data filtering, aggregation, and complex event
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analytics.

• In-line data and protocol exchange, translations, and transformation.

2.1.2 Command and Control

Command and control functions provide framework intelligence and operations man-

agement capabilities.

• High-level message passing for both control and data processing operations.

• Device, CI, and global application provisioning and coordination of resources.

• High-level CI description language to be used in resource management orches-

tration.

• Discovery services to determine operational topology and potential resources.

2.1.3 Global Visibility and Actions

• Provide a global view of resource topologies with correlated monitoring and

measurement of underlying resources.

• Provide a global view of application topologies with key performance indicator

reporting.

• Provide global scheduling services, based on static and dynamic methods.

2.2 Computational Models

The Cresco framework is heavily influenced by previous work in Actor and Agent-

based computational models as described below.

23



2.2.1 Actor Model

On an abstract-level Cresco framework processes are based on Actor-model [70] dis-

tributed concurrency. In this model an Actor is a primitive unit of isolated computa-

tion that uses asynchronous messaging to communicate with other Actors. While the

details of the Actor-model are beyond the scope of this dissertation, basic operations

of Actors include message-based creation of more Actors, Actor-to-Actor messaging,

and the generation of state decisions applying to the next arriving message. Erlang

[71], an example of a popular programming language based on the Actor-model, in-

troduced a ”let it crash” philosophy for distributed computation. Instead of focusing

on defensive programming to prevent failures, using an offensive (create, monitor,

and verify) philosophy one relies on Actors to supervise other Actors creating ”self-

healing” distributed processing environments. In addition, the isolated operation of

Actors makes continuous self and supervisor reporting of KPIs across heterogeneous

environments possible.

Actors operate in isolation with the exception of inter-Actor messages, making Ac-

tor communication critically important, especially in cases where resource providers

and consumers are geographically distributed. The Cresco Actor-model implementa-

tion aims to address challenges related to interoperability, performance, and security

related to Actor communication channels.

Actors are typically represented as critical sections of code in programming frame-

works like Erlang, Scala [72], and Akka [73]. Cresco Actors can be critical sections

of code executing from within the native framework or abstracted interfaces (APIs,

CLIs, etc.) into external systems. For instance, a Cresco Actor responsible for aggre-

gating data within the framework communicates with other Cresco Actors responsible

for monitoring, measurement, and processing of an external sensor networks. Within

the Cresco framework all components are consider Actors.
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2.2.2 Agent-based Model

Agent-based modeling (ABM) [74] is a computational model used in the simulation

of agent interaction. There exist a large body of research for ABM across many

disciplines, including: biology, economics, social sciences, and engineering. We are not

developing agent programming, which is an existing large area in the methodology of

programming, but rather use an existing framework provided by V.S. Subrahmanian,

et . al [75], shown below:

• An agent provides one or more useful services that other agents may use under

specified conditions.

• An agent includes a description of the services offered by the software, which

may be accessed and understood by other agents.

• An agent includes the ability to act autonomously without requiring explicit

direction from a human being.

• An agent includes the ability to succinctly and declaratively describe how an

agent determines what actions to take even though this description may be kept

hidden from other agents.

• An agent includes the ability to interact with other agents, including humans,

either in a cooperative, or in an adversarial manner, as appropriate.

One area of ABM research that is of particular interest is Agent-Based Computa-

tional Economics (ACE) [76], where the agents themselves participate in agent-based

micro-economy. In addition, there is a body of research covering the development

of decentralized agent-based markets (dispersed exchanges without auctioneer [77]).

We argue that an agent participating in the global management (scheduling) of com-

putational resources, is participating in a dispersed resource exchange, without an
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auctioneer. We have adapted previous ACE research in the development of resource-

based and price-based markets provided by the Cresco framework as described in

Section 4.3.1, Guilder.

2.3 Operating Principles

In this section we identify our guiding operating principles in the development of the

Cresco Framework.

• Components should interoperate directly with other components through mes-

sage passing.

• Components should be arranged in such a way as to create a hierarchy of trust

and delegation, where higher-level components delegate responsibilities to lower-

levels.

• Components should operate across a wide variety of underlying architectures,

platforms, and devices.

• The Cresco framework should support a large number of common predefined

services.

• Decision making should take place at points of data generation, communication,

transformation, or processing.

• Components should be self-maintained, self-reporting, and operate autonomously

once directives have been delegated.

• Components should maintain operational status based on configuration direc-

tives in conjunction with self-discovery.

In the next section we provide a high-level view of Cresco architecture.
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2.4 Cresco Architecture

The Cresco framework was created to assist in the development of globally distributed

applications where data collection and processing take place on the network edge.

Using Actor and Agent-model computational techniques, the framework provides the

ability to coordinate the processing and exchange of data between networks of edge

and remote data center resources. For example, the framework can be used to develop

applications that process high-rate or globally inaccessible data on network edges,

assign workloads to and between appropriate edge devices, and coordinate central

processing of filtered, enriched, and edge-aggregated data.

Intelligent agent-based frameworks [78, 79] can be used to provide [80] reduced

network communication and latency, fault-tolerance, disconnected operation, resource

cloning, scalability, and serve as an ideal platform for edge computing. As previously

mentioned, Cresco components are modeled as Actors. Cresco-Agents and Cresco-

Plugins are used to support Actor implementations in the framework. Cresco-Agents

provide a operating environment for Cresco-Plugins, which provide a platform for

the development of Cresco framework operations and Actor implementations. The

Cresco framework shares aspects of Multi-Agent Systems (MAS) [81], while providing

centralized coordination and intervention.

As consistent with Actor-model concurrency, Cresco Actors communicate through

the use of message passing. While a number of Agent Communication Langues (ACL)

[82] and protocols have been developed we propose our own UTF-8 [83] encoded text

messages protocol we call Cresco MsgEvents. As with other popular agent-message

languages such as the Foundation for Intelligent Physical Agents (FIPA-ACL) [84] and

Knowledge Query and Manipulation Language (KQML) [85], MsgEvents are based

on performative (communicative verb) functions [86], where messages are defined by

classes and may contain contextual parameters. The Cresco MsgEvent protocol is

capable of encapsulating other ACLs including FIPA-ACL and KQML for proposes

of end-device communication.
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Working with agents in a hierarchical model makes it easier to solve issues re-

lated to system scalability. Actors are naturally hierarchical [87] with every Actor

being a child of another Actor. In the Cresco framework we define three primary op-

erational agent hierarchies including Agent, Regional, and Global. While additional

levels of Actor hierarchies may exist within the defined agent hierarchies, agent dis-

covery, communication, and security isolation is enforced within each level. Cresco

hierarchies (Agent, Region, Global) are not strictly related to geographic distribution

and all hierarchies could exist within a single location. However, there are a num-

ber of applications, where Cresco hierarchies are related to geographic distribution.

For instance, consider a potential Cresco smart grid application where information

from devices (power consumers) within a home influences decisions made by regional

and potentially national power grid management systems. In addition, information

from national and regional power producers can influence decisions made by home

automation systems. In this context, the Agent-level hierarchy would existing within

the home, potentially with a Cresco-Agent embedded within a smart power meter

[88] functioning as a smart home service gateway [89], using Cresco-Plugins to inter-

face with various lower-level protocols and related devices. In such an arrangement

there might exist billions of plugin-managed devices, millions of homes supported by

agents, thousands of cites managed as regions, and a small number of global entities

with a national view of the power grid. An example of Cresco components used in a

smart grid application, arranged in the Cresco hierarchy, is shown in Figure 2.1.

It is sufficient to think of the Cresco Actor-model implementation as a graph of

text-defined and text-communicating primitives describing edge-focused distributed

applications, implemented as a system of intelligent agents.

2.4.1 Cresco Edge Characteristics

We believe the Cresco framework addresses the following characteristic challenges

inherent to edge computing, as defined by Bonomi et al., 2014 [90].
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Figure 2.1: Cresco Smart Grid Hierarchy

Low latency and location awareness: There is a tradeoff between moving data

to processing resources or moving resource to sources of data generation. The Cresco

framework provides a global view of distributed resource performance allowing for

the programatic management of both low latency network edge processing and data

center processing. The Cresco Agents and Agent-Plugins operate in a hierarchical

role-based structure where all Actor assignments and locations are known globally.

Wide-spread geographical distribution: The Cresco framework was developed

to operate on a globally distributed level. Global topologies composed of resource

producers, consumers, and application components is maintained by Cresco. Cresco

components are arranged in a global, regional, agent, and workload (plugin) hierarchy.

Using our hierarchical agent architecture, we provide fine-grained control over the

structure, communication patterns, and security of distributed systems.

Mobility: Cresco provides high-level messaging services allowing Agent-based Ac-

tors across a wide-range of devices and environments to communicate. In our frame-

work Agents can be deployed directly on mobile devices or Agent-Plugins can be used

to represent individual external devices or networks of devices. Our text-based mes-

29



saging protocol allows Cresco participating Agent-based Actors to be implemented in

many languages or directly in hardware.

Very large number of nodes: Actor-model concurrency provides great scalabil-

ity through a natural hierarchical structure of node processes. In our hierarchical

management model, higher levels in the hierarchical structure are responsible for the

reporting and communication of lower level components. An Actor implemented in

an Agent-Plugin is managed by an Agent, which is managed by a hierarchy of agent

controllers. Information is propagated between between levels of the hierarchy only

as needed, such as changes in topology and Key Performance Indicators (KPI). While

the practical limit of nodes will vary based on infrastructure, the current technical

limit for nodes and edges stored in the global graph database is 278 − 1 records.

Predominant role of wireless access: Cresco Agents can be deployed in wireless

agents and participate as part of a wireless network. Additionally, Cresco can be used

to construct distributed applications using common, light-weight wireless protocols

such as MQTT [91].

Strong presence of streaming and real-time applications: Cresco originated

from the need to deploy interconnected, but possibly geographically distributed re-

sources for streaming and real-time applications. Using Cresco, large distributed

applications can be deployed for real-time event processing and data enrichment,

cross-region aggregation, and central stream analysis.

Heterogeneity: A key capability of the Cresco framework its ability to interface

with heterogeneous computational, network, and operating environments through

text-based configurations and messaging.

A detail description of Cresco component implementations are provided in Chapter
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3, Cresco Implementation.
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3

Cresco Implementation

Cresco [69] is a free and open-source distributed agent-based resource management

framework available under the Apache Version 2.0 [92] license. Initial project goals

are to provide solutions for resource and workload comparison, performance observa-

tion, scheduling, and provisioning.

Cresco is composed of six primary components:

• MsgEvents : Protocol used in the communication of Cresco components.

• Cresco-Agent : Endpoint resource management unit in charge of orchestrating

Cresco-Plugins state, messaging, and monitoring aggregation.

• Cresco-Plugins : Work units providing communication channels at the agent,

region, and global level, performance monitoring, as well as custom work units

through extension of the Cresco-Plugin-Library.

• Cresco-Library : Core functions shared by Cresco-Agent and Cresco-Plugins,

such as configuration management, message processing, event logging.

• Cresco-Plugin-Library : Common functions used by Cresco-Plugins, such as plu-

gin state management and interfaces to core Cresco Library functions.

32



• Cresco-Controller-Plugin: Special plugin used to manage agent topology, dis-

covery, and message communications. The Cresco-Controller-Plugin is required

by all agents to establish agent, regional, and global management planes.

Core Cresco components are shown in Figure 3.1.

Cresco Library

Cresco Plugin
Library

Cresco Library

Plugin
Agent

MsgEvent

Figure 3.1: Core Cresco Components

The following sections will describe the implementation details of Cresco compo-

nents.

3.1 MsgEvent Protocol

The Cresco MsgEvent protocol is an Agent Communication Language (ACL) used

by all Cresco components for framework communication. These messages are used

in both the transmission of data and in the remote execution of functions across

the Cresco components. MsgEvents are represented as class objects or as a textual

representation of class objects. In this context, class objects refer to programmatic

instantiations containing both attributes of state and behavior. MsgEvents can be

thought of as objects in the context of object-oriented programming. MsgEvents are

represented exclusively as object classes in all components of the Cresco framework,

with the exception plugins that convert MsgEvent class objects to and from their

textual representation for the purpose of external communication.
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3.1.1 MsgEvent Format

Typically, communication protocols are defined as byte addressable structures. These

structures are used to map defined byte ranges to locations in memory, which have

been populated by an underlying communication system. Where communication

performance is of concern, this is a good practice. However, with Cresco we are far

more interested in communication interoperability than message passing performance.

We will define the format of a Cresco MsgEvent in terms of the header and the body

of the message.

• HEADER

– msgRegion: In the routing process, this value is used to move values in

and between regions. This value can be considered the ”next-hop” value

for message routing on the global-level.

– msgAgent : In the routing process, this value is used to move values in and

between regions and agents. This value can be considered the ”next-hop”

value for message routing on the regional-level.

– msgPlugin: In the routing process, this value is used to move values in and

between regions, agents, and plugins. It can be considered the ”next-hop”

value for message routing on the agent-level.

– msgBody : This optional value is used to describe the body of the message.

– msgType: The enumerated MsgEventType class of message.

• BODY

– params : Is the identifier for a key-value collection of parameters.

∗ msg : This is the value of the msgBody.

∗ dst region: The regional destination of a message. If null, the message

destination is the global controller.
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∗ dst agent : The agent destination of a message. If null, the message

destination is a regional controller, as defined by dst region.

∗ dst plugin: The plugin slot destination of a message. If null, the mes-

sage destination is an agent, as defined by dst agent.

∗ src region: The regional source of a message. If null, the message

source is a global controller.

∗ src agent : The agent source of a message. If the src region value is

not null, this message should never be null, since a message sent from

a regional controller will include both agent and plugin source values.

∗ src plugin: The plugin slot source of a message. If this message is null,

then the message originated directly from the src agent and is not a

plugin message.

In the following subsection we will cover MsgEventType values.

3.1.2 MsgEventType in MsgEvent

There are several types of MsgEvents, specified by the MsgEventType enumeration.

A list of enumerated types and their function are shown below:

• CONFIG : message types that are used in the configuration of agent and plugin

status. These messages are used to register agents with controller plugins,

configure plugin status on agents, and configure plugin configurations on agents.

These messages function on the agent, regional, and global levels.

• DISCOVERY: message types, as the name suggest, are used in the discovery

of Cresco resources. DISCOVERY messages are used in agent, regional, and

global resource discovery. Discoverable agent items are available plugins and

plugin status, while discoverable plugin items are defined by the plugin. Plugins

will be identified by their Plugin Slot, as reported by the agent and their Plugin
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Name as reported by the actual plugin. At minimum, a plugin must report

their current configuration parameters as a discoverable item. Plugin Slots are

used to reference plugins on specific agents, plugin configurations are used to

identify the function of a specific plugin. These messages function on agent and

regional levels.

• ERROR: message types that are used to report functional errors in the Cresco

system. Error reporting will generally be isolated to specific agents and regions,

as errors are an expected part of operations. Errors related to active resources

will be propagated from regions to global controllers.

• EXEC : message types are used to designate messages that contain executable

functions. EXEC message types are routed to sections of code on agents and

plugins that provide functions for system interactions such as starting or stop-

ping Cresco-managed resources.

• INFO : message types are used to provide informational messages between Cresco

components that are otherwise not covered under more specific message types.

Typically, INFO messages are isolated to agents and regions. However, INFO

messages can be forwarded to a global controller.

• KPI : Key Performance Indicator (KPI) message types are data metrics used

by the Cresco framework to determine the performance of workloads in relation

to resources assignments. These messages report the qualitative and quantitate

metrics associated with agent and plugin related resources. KPI messages are

used to determine the active operating state of Cresco components in relation to

core component functions. KPI performance metrics are propagated to global

controllers to provide a central view of the overall system operating state.

• LOG : message types are used for logging purposes on agent, region, and global

levels.
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• WATCHDOG : These metrics are generated by agent and plugin resources.

WATCHDOG metrics provide uptime and agent configurations information

used by the controllers to determine agent topology and health.

The MsgEventType value is used in the routing and execution of MsgEvents. In

the next section we will cover the ways in which a MsgEvent is represented in the

Cresco framework.

3.1.3 MsgEvent Representations

As previously mentioned, MsgEvents can exist as class objects or textual representa-

tions of class objects. All Cresco components share the same MsgEvent class definition

through the use of a shared sourced code base. MsgEvent classes contain the data

of their textual representations along with functions to manipulate the data. Ms-

gEvents can be converted between valid textual representations, class objects, and

back to textual representations without data loss.

The choice to use text-based messages was based on the need for a simple, portable,

and flexible control protocol. Text messages can be communicated using many dif-

ferent underlying transports and application interfaces. The following subsections

describe text-based formats of MsgEvents and their expected usage. MsgEvent for-

mats and encoding are not limited to those presented in this document. In fact,

MsgEvents can be used to encapsulate other common ACLs including FIPA-ACL

[93] and KQML [85].

XML The Extensible Markup Language (XML) [94] format of a MsgEvent is shown

in Listing 3.1. The XML message format is used when the benefits of validating

MsgEvent textual representations against the XML MsgEvent schema outweigh the

overhead of XML processing and communication.
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Listing 3.1: XML format of a MsgEvent

1
2 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=” yes ”?>
3 <ns2:MsgEvent xmlns:ns2=” c r e s c o . shared ”>
4 <msgRegion> [ next−hop reg i on ]</msgRegion>
5 <msgAgent> [ next−hop agent ]</msgAgent>
6 <msgPlugin> [ next−hop p lug in s l o t ]</msgPlugin>
7 <msgBody> [ t ex t conta ined in the param=msg ]</msgBody>
8 <msgType> [ enumerated type o f the message ]</msgType>
9 <params>

10 <entry>
11 <key>msg</key>
12 <value> [ t ex t r e p r e s e n t i n g msgBody ]</ value>
13 </ entry>
14 <entry>
15 <key>d s t r e g i o n</key>
16 <value> [ d e s t i n a t i o n r eg i on ]</ value>
17 </ entry>
18 <entry>
19 <key>ds t agent</key>
20 <value> [ d e s t i n a t i o n agent ]</ value>
21 </ entry>
22 <entry>
23 <key>d s t p l u g i n</key>
24 <value> [ d e s t i n a t i o n p lug in ]</ value>
25 </ entry>
26 <entry>
27 <key>s r c r e g i o n</key>
28 <value> [ source r eg i on ]</ value>
29 </ entry>
30 <entry>
31 <key>s r c a g e n t</key>
32 <value> [ source agent ]</ value>
33 </ entry>
34 <entry>
35 <key>s r c p l u g i n</key>
36 <value> [ source p lug in ]</ value>
37 </ entry>
38 <entry>
39 <key> [ somekey0 ]</key>
40 <value> [ somevalue0 ]</ value>
41 </ entry>
42 <entry>
43 <key> [ somekeyN ]</key>
44 <value> [ somevalueN ]</ value>
45 </ entry>
46 </params>
47 </ns2:MsgEvent>
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Listing 3.2: URI format of a MsgEvent

1 HTTP: / / [ Global c o n t r o l l e r IP ] : [ Global C o n t r o l l e r Port ]
2 ? type =[enumerated type o f message ]
3 &reg i on =[next−hop reg i on ]
4 &agent =[next−hop agent ]
5 &plug in =[next−hop p lug in ]
6 &paramkey=msg&paramvalue=[ t ext r e p r e s e n t i n g message body ]
7 &paramkey=d s t r e g i o n&paramvalue=[ d e s t i n a t i o n r eg i on ]
8 &paramkey=dst agent&paramvalue=[ d e s t i n a t i o n agent ]
9 &paramkey=d s t p l u g i n&paramvalue=[ d e s t i n a t i o n p lug in s l o t ]

10 &paramkey=s r c r e g i o n&paramvalue=[ source r eg i on ]
11 &paramkey=s r c a g e n t&paramvalue=[ source agent ]
12 &paramkey=s r c p l u g i n&paramvalue=[ source p lug in s l o t ]

Listing 3.3: JSON format of a MsgEvent

1
2 {
3 ”msgRegion ” : [ next−hop reg i on ] ,
4 ”msgAgent ” : [ next−hop agent ] ,
5 ”msgPlugin ” : [ next−hop p lug in s l o t ] ,
6 ”msgType ” : [ enumerated type o f message ] ,
7 ”params ” :
8 {
9 ”msg ” : [ t ex t r e p r e s e n t i n g message body ] ,

10 ” d s t r e g i o n ” : [ d e s t i n a t i o n r eg i on ] ,
11 ” ds t agent ” : [ d e s t i n a t i o n agent ] ,
12 ” d s t p l u g i n ” : [ d e s t i n a t i o n p lug in s l o t ] ,
13 ” s r c r e g i o n ” : [ source r eg i on ] ,
14 ” s r c a g e n t ” : [ source agent ] ,
15 ” s r c p l u g i n ” : [ source p lug in s l o t ]
16 }
17 }

JSON The JavaScript Object Notation (JSON) [95] format of a MsgEvent is shown

in Listing 3.3. The JSON message format is used when the benefits of a compact

message outweigh MsgEvent protocol-level validation. Hypertext Transfer Protocol

(HTTP) POST actions use JSON format on both the submission and response (data

returned by HTTP server) messages.

URI The Uniform Resource Identifier (URI) format of a MsgEvent is shown in

Listing 3.2. The URI message format is used when the benefits of communication
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interface outweigh MsgEvent protocol level-validation. HTTP GET actions use the

URI message format on input (data submitted to the HTTP server) and the JSON

message format on response.

This section explained the MsgEvent format and ways in which it is used. In the

following sections we will cover the rest of the components that make up the Cresco

Framework. A high-level relationship between Cresco components is shown in Figure

3.2.
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3.2 Cresco-Agent

On a high-level, the Cresco framework functions in the Actor-model, implemented as

a multi-agent system. Cresco agents function as actors in the framework, where there

primary function is to support the operational tenets of other Cresco components.

The Cresco-Agent provides dynamic configuration, loading, and unloading of Cresco-

Agent-Plugins, described in Section 3.3, Cresco Plugins. The primary role of the

agent is to host and pass messages between plugins (new actors). The agent directly

routes intra-agent messages to plugins through plugin interfaces described Section

3.4.1, Plugin Interface. Inter-agent messages are communicated through queues pro-

vided by the Cresco Controller Plugin, described in Section 3.6, Cresco Controller

Plugin. Agent message routing is described in Section 3.2.3, Agent Message Routing.

The Cresco-Agent provides the underling runtime environment for all native Cresco

components.

The remainder of this section we will cover the implementation details of the

Cresco Agent.

3.2.1 Agent Initialization

On startup, agents are supplied configuration parameters specified in the Cresco-

Agent.ini file. The Cresco-Agent.ini configuration file must at a minimum provide a

[general] heading, along with generatename, region, watchdogtimer, controllerdiscov-

erytimeout, and plugin config file values. An example Cresco-Agent.ini file is shown

in Listing 3.4.

During the startup process, if the configuration file can not be validated agent will

be terminated. In addition to the agent configuration file a Cresco-Agent-Plugins.ini

file must be provided, which at a minimum provides a plugin configuration for the

Cresco-Controller-Plugin. Details pertaining to Cresco-Agent-Plugins.ini configura-
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tion is described in Section 3.2.2, Plugin Loading.

Listing 3.4: Cresco-Agent.ini Configuration file

1 [ g ene ra l ]
2 #Agent name used f o r s t a t i c opera t i on
3 agentname = agent−b
4 #Region name used f o r s t a t i c opera t i on
5 regionname = reg ion−r
6 #Automatica l ly generate agent name 0=f a l s e , 1=true
7 generatename = 1
8 #Automatica l ly generate r eg i on name 0=f a l s e , 1=true
9 gene ra t e r eg i on = 1

10 #Watchdog r e p o r t i n g f requency in ms
11 watchdogtimer = 5000
12 #Startup de lay in ms
13 s ta r tupde lay = 2500
14 #Discovery de lay in ms
15 c o n t r o l l e r d i s c o v e r y t i m e o u t = 15000
16 #Log producer timeout in ms
17 logproducert imeout = 10000
18 #F i l e path f o r p lug in c o n f i g u r a t i o n
19 p l u g i n c o n f i g f i l e = Cresco−Agent−Plug ins . i n i
20 #Di r ec to r f o r p lug in f i l e s
21 plug inpath = / opt / c r e s c o / p lug in s
22 #Direc tory path f o r l og f i l e s
23 logpath = / opt / c r e s c o / log
24 #Platform o f operat i on ( x86 64 , ARM, etc . )
25 plat form = x86 64 , De l l PowerEdge 720xd
26 #Operating enviorment ( metal , VM, conta iner , e t c . )
27 environment = metal , s tanda lone s e r v e r
28 #Locat ion o f r e s o u r c e s
29 l o c a t i o n = (38 .034349 , −84.504381) , Data Center ,
30 Rack B4 , 538 Rose Street , Lexington , KY, USA
31 #Features o f opera t ing enviorment
32 f e a t u r e s = Docker , OVS, RabbitMQ

Once the agent has validated the agent configuration files the Cresco-Controller-

Plugin is loaded. If the agent is configured for static operation the role of the agent

is determined exclusively by the configuration found in the Cresco-Agent-Plugins.ini

file. In a dynamic configuration agent operation is determined through a discovery

process, described in Section 3.6.3, Controller Discovery. The example configurations

describes startup parameters for a dynamic discovery agent. Once the static assign-

ment or dynamic discovery has completed, the remainder of the plugins described in
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Cresco-Agent-Plugins.ini are loaded by the Cresco Agent.

A flowchart for agent initialization is shown in Figure 3.3. The flowchart shows

the workflow of the agent taken during the initialization process.

Agent 
Startup

Load
Controller 

Plugin

has
Controller

Check/Load 
Config File

Agent Active

Yes

isActive Shutdown
PluginsNo Shutdown

Agent

No

Figure 3.3: Initialization of the Cresco Agent

In the next section we will cover details related to loading plugins by agents.

3.2.2 Plugin Loading

The primary function of the Cresco Agent is to manage Cresco plugins. Within

the agent plugins are are identified by their PluginID in the form plugin/N , where

N is the slot number of the plugin and its associated configuration. There are no

technical limits to the number of plugins managed by a single agent. An agents plugin

capacity is limited by the resources provided by a single node. In practice we have

shown that agents are capable of supporting hundreds of plugins. An example of the
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Cresco-Agent-Plugins.ini configuration file is shown in Listing 3.5.

Listing 3.5: Cresco-Agent-Plugins.ini Configuration file

1 [ p lug in s ]
2 p lug in/1=<d i s a b l e =0, enable=1>
3
4 [ p lug in /1 ]
5 pluginname=<name o f plugin>
6 f i l ename=<plug in j a r f i l ename>
7 watchdogtimer=<time in ms>

The Cresco-Agent-Plugins.ini configuration file must at a minimum contain a

configuration for a Cresco Controller Plugin, as described in Section 3.6.1, Controller

Initialization. During the startup process if the Cresco Controller Plugin fails initial-

ization agent startup is terminated. From the Agent prospective plugin loading is

accomplished in the following six steps:

1. Slot Check : Verify the requested plugin slot (PluginID) is not currently in use.

2. Plugin Validation: The plugin file integrity is verified against the described

plugin configuration, plugin object is created on the agent, and plugin object

interface is assigned to a plugin slot.

3. PreStart : Pre-startup functions are run once in the plugin object namespace

before plugin initialization. These functions include setting plugin information

based on the state of the host agent or existing application components.

4. Start : Start function is called in the plugin object namespace during plugin

initialization.

5. PostStart : Post-startup functions are run once in the object namespace after

plugin initialization. These functions can include notifying applications of the

current state of the plugin post-initialization.

Plugin loading functions implemented within the plugin namespace are described

in Section 3.4, Cresco Plugin Library.
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Once initialized, plugins will start transmitting WATCHDOG messages to their

host agent. The host agent propagates topology information to regional controllers

and likewise regional controllers communicate topology changes to global controllers.

Detailed information pertaining to agent and plugin discovery is described in Section

3.6.3, Controller Discovery.

From the agent prospective, intra-agent communication is messaging between an

agent and its hosted plugins. In intra-agent communication messaging the region and

agent source and destination addresses are the same. Inter-agent communication is

messaging between two agents or plugins hosted on another agent. In Inter-agent

communication source and destination agent and potentially region addresses differ.

Intra-and inter-agent communications require messages to be routed to appropriate

destinations. Message routing in the Cresco-Agent is described in the next section.

3.2.3 Agent Message Routing

The ability to pass messages between components is a fundamental aspect of dis-

tributed systems, agent-based frameworks, and actor-model concurrency. In the

implementation of the Cresco Agent a local concurrently accessible FIFO (first-in-

first-out) queue named AgentEngine.msgInQueue is used as a message mailbox. The

MsgInQueue process passes messages from the AgentEngine.msgInQueue to the ms-

gInProcessQueue executor service. Executors are discussed in Section 3.3.2, Executor

Class. The executor service spawns1 a msgRoute thread for each incoming message.

The msgRoute thread determines the delivery or execution path of the incoming

message. Once the message has been delivered the execution thread is terminated.

1The number of concurrent threads is configurable. The default value is four threads.
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The following variables are used by the msgRoute thread to determine message

destination:

• AgentEngine.region: Region name of the routing agent.

• AgentEngine.agent: Agent name of the routing agent.

• src region: Source region name of incoming message.

• src agent: Source agent name of incoming message.

• src plugin: Source plugin name of incoming message.

• dst region: Destination region name of incoming message.

• dst agent: Destination agent name of incoming message.

• dst plugin: Destination plugin name of incoming message.

The pseudocode shown in Algorithm 1 generates routeString, a 6 bit2 boolean

expression [RXr∧RXa∧RXp∧TXr∧TXa∧TXp] representing a contextual message

type. RouteString and the resulting routePath integer representation values are based

on source and destination message parameters in respect to agents settings. There

are three possible actions for the routing engine to take for each message:

• drop: Discard the message.

• getCommandExec: Execute message on the agent.

• sendToP lugin: Send message to a plugin on the agent.

The route path truth table is shown in Table 3.1, where F0 and F1 represent

getCommandExec and sendToP lugin respectively. The default route action is to

drop messages, which are omitted from the table.

2An arbitrary number of bits (flags) can be used in the future if needed.
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Algorithm 1 Determine RoutePath

Input: src region, src agent, src plugin, dst region, dst agent, dst plugin
Output: routePath = [Base 10 value of route code]

if src region = AgentEngine.region then
RXr ← 1

else
RXr ← 0

end if
if src agent = AgentEngine.agent then
RXr ← 1

else
RXr ← 0

end if
if src plugin 6= null then
RXr ← 1

else
RXr ← 0

end if
if dst region = AgentEngine.region then
TXr ← 1

else
TXr ← 0

end if
if dst agent = AgentEngine.agent then
TXr ← 1

else
TXr ← 0

end if
if dst plugin 6= null then
TXr ← 1

else
TXr ← 0

end if
routeString ← RXr + RXa + RXp + TXr + TXa + TXp

{routeString: a string concatenation representing a 6 bit binary value.}
routePath← Integer.parseInt(routeString,Base2)
{routePath: an integer representation of incoming message type.}
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Table 3.1: Agent Route Table

RoutePath RXr RXa RXp TXr TXa TXp F0 F1

56 1 1 1 0 0 0 1 0
57 1 1 1 0 0 1 1 0
58 1 1 1 0 1 0 0 1
59 1 1 1 0 1 1 0 1
60 1 1 1 1 0 0 1 0
61 1 1 1 1 0 1 1 0
62 1 1 1 1 1 0 0 1
63 1 1 1 1 1 1 0 1

The boolean expressions for our two actionable route cases are shown below:

• getCommandExec: RXr ∧RXa ∧RXp ∧ TXr ∧ TXa ∧ TXp

• sendToP lugin: RXr ∧RXa ∧RXp ∧ TXr ∧ TXa ∧ TXp

It not necessary to calculate boolean expressions for simple routing rules, like those

used by the agent. In the case of agent routing, conditional expressions applied to

source and destination addresses are sufficient to implement route procedures. How-

ever, as we will show in Section 3.6.4, Controller Message Routing, for routing cases

with more variables developing complex conditional statements becomes difficult and

are error prone. For complex cases routePath values are used with lookup tables to

determine route actions.

The MsgRoute workflow is shown in Figure 3.4.

Messages are either routed to a specific plugin or executed on the agent itself.

The route thread terminates on route completion, which is sufficient for unidirec-

tional messages. However, there are cases where we want a response to our messages.

Typically, method execution is a blocking function, where the calling instance must

wait (is blocked) for a method to complete before continuing its processing. This

mode of operation is considered a synchronous operation. In a distributed system
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Figure 3.4: MsgEvent Routing process for the Cresco-Agent

with many agents and plugins we do not want to block the execution path, while

waiting on methods to complete. The ability to call methods without waiting for

the method to complete is considered an asynchronous (non-blocking) operation. In

the context of the Cresco framework we define Remote Procedure Calls (RPC) as bi-

directional asynchronous method executions. These calls can be performed between

all Cresco components. RPC calls in the Cresco framework is explained in detail in

Section 3.5.4, Remote Procedure Call.

As previously mentioned, MsgEvent messages destined for agents are routed to

the getCommandExec process. The getCommandExec process implements the Cresco

Agent API described in the next subsection.
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3.2.4 Agent API

The Cresco Agent API provides functions used in the configuration and execution

of plugin management functions. API functions are executed through CONFIG and

EXEC MsgEvent type messages destined for the the agent. Currently implemented

API functions are described below.

CONFIG

• comm init : Function used to set the operating role state as determined by the

a local Controller Plugin or delegated by a remote Regional Controller.

• plugin add : Used to add plugin configurations to the agents local Cresco-Agent-

Plugins.ini file and start a plugin.

• plugin remove: Used to stop a plugin and remove plugin configurations from

the agents local Cresco-Agent-Plugins.ini file.

• plugin inventory : Returns the status and configuration for all plugins main-

tained by the agent.

• plugin download : Used to transfer plugins files from external HTTPS servers as

specified by URI.

EXEC

• plugin enable: Start a plugin described in the agents local Cresco-Agent-Plugins.ini

file.

• plugin disable: Shutdown a plugin described in the agents local Cresco-Agent-

Plugins.ini file.

• show version: Provides runtime information, such as software version and func-

tion capabilities pertaining to the agent.
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• show address : Returns network interface and address information pertaining to

the agents host.

In the next section, we will described the implementation of Cresco Plugins.

3.3 Cresco-Plugins

As with Cresco-Agents, Cresco-Plugins function as actors. However, with the ex-

ception of the Cresco-Controller-Plugin described in Section 3.6, Cresco-Controller-

Plugin, plugins focus primary on actor functions outside of the operation of the Cresco

framework. Cresco plugins provide communication channels for message passing, in-

terfaces to resources, methods for information gathering, and control environments

for processes running within the plugins themselves. We designate Cresco-Plugins

that either natively host or provide interfaces to resources as Resource plugins. These

plugins report resource information such as operational KPI, state, and capabilities to

the host agents, which propagate plugin information to controllers. The same resource

plugin implementation deployed on two agents can provide very different performance

information for the same observed workload, based on variations (load, infrastructure,

etc.) in the underlying operating environment. Plugins not only provide configuration

and operational controls for resources, they also provide information used in global

resource scheduling.

In Section 3.2.2, Plugin Loading, we described the process followed by the agent

to load plugins. In order for plugin loading to work, a common interface must be

implemented across all plugins. Required abstract classes used in the agent-plugin

interface and common operational tasks are described in Section 3.4, Cresco Plugin

Library. The Cresco Plugin Library not only provides a common agent-plugin inter-

face, it greatly simplifies the process of developing Cresco Plugins. The three primary

user-defined classes found in plugins are listed below:

• Plugin class : required main plugin class extending the CPlugin class found in
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the Cresco Plugin Library.

• Executor class : optional class extending the CExecutor class found in the Cresco

Plugin Library. This class is used to interface incoming messages with user-

defined operational functions.

• perfMonitor class : optional class used to communicate KPI (local performance)

messages to controllers.

The following sections describe the three primary user-defined functions found in

Cresco Plugins.

3.3.1 Plugin class

Source code for an example Plugin class is shown below in Listing 3.6.

Listing 3.6: Plugin.java

1 import com . researchworx . c r e s c o . l i b r a r y . p lug in . core . CPlugin ;
2
3 @AutoService ( CPlugin . class )
4 public class Plugin extends CPlugin {
5 private PerfMonitor per fMonitor ;
6
7 public void s t a r t ( ) {
8 setExec (new Executor ( this ) ) ;
9

10 per fMonitor = new PerfMonitor ( this ) ;
11 per fMonitor . s t a r t ( ) ;
12 l o g g e r . i n f o ( ” PerfMonitor i n i t i a l i z e d ” ) ;
13 }
14
15 @Override
16 public void cleanUp ( ) {
17 per fMonitor . stop ( ) ;
18 }
19 }

The Plugin class is used as a main class for user-defined object creation, instrumen-

tation, and destruction. In the actor-model paradigm, the start() function provisions

methods that allow the plugin actor to make decisions. Starting on line 7 of the code

52



an example the start() function is shown, which sets the user-defined Executor class,

creates the perfMontor object, and starts the perfMonitor services. On line 17 an op-

tional cleanUp() function is implemented to gracefully stop the PerfMonitor service

on plugin unload. Access to services instantiated in the Plugin class are accessed by

agents and plugins through the Executor class described below.

3.3.2 Executor class

As previously mentioned, the only method of communication between agents and

plugins is through message passing. In order to control the functions of plugins, an

Executor class must be implemented to interface used-defined services in the main

Plugin and derivative classes. In the actor-model the Executor class determines how

the plugin actor responds to messages. An example executor class is shown in the

Listing 3.7.

Listing 3.7: Cresco Plugin Executor

1 import com . researchworx . c r e s c o . l i b r a r y . messaging . MsgEvent ;
2 import com . researchworx . c r e s c o . l i b r a r y . p lug in . core . CExecutor ;
3 import com . researchworx . c r e s c o . l i b r a r y . u t i l i t i e s . CLogger ;
4
5 public class Executor extends CExecutor {
6 private f ina l CLogger l o g g e r ;
7
8
9 public Executor ( Plugin p lug in ) {

10 super ( p lug in ) ;
11 this . l o g g e r = new CLogger ( p lug in . getMsgOutQueue ( ) , p lug in

. getRegion ( ) , p lug in . getAgent ( ) , p lug in . getPluginID ( ) ,
CLogger . Leve l . I n f o ) ;

12 }
13
14 @Override
15 public MsgEvent processExec ( MsgEvent msg) {
16 msg . setParam ( ” sys−i n f o ” , Sys In foBu i lde r . g e t I n f o ( ) ) ;
17 return msg ;
18 }

In the plugin executor example, a new parameter ”sys-info” is added (line 16)

to every incoming message and the message is returned (line 17) to the sender. The
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value returned by the ”sys-info” key is determined by classes exposed by the Plugin

class.

3.3.3 perfMonitor class

PerfMonitor classes can be very simple, reporting a single metric such as the number

of active network flows, concurrent processes, or resource utilization. PerfMonitor

classes can also be very complex providing low-level infrastructure measurements

such as current environment state in relation to application-specific parameters. In

addition, perfMonitor classes are used to monitor and measure KPI indicators between

actors in a globally managed environment. For instance, suppose agent A and B with

associated plugins A.1 and B.1 are running in environments that from a provisioning

prospective are equivalent. However, the KPI(s) associated with the functions of

plugin B.1 show higher performance than that of plugin A.1. In this case, perfMonitor

data indicates that we should migrate processing from agent A’s environment to

agent B’s. Conversely, in a more complicated case, where plugins must interact

with geographically distributed agents as part of a process pipeline, there could exist

measured communication performance benefits of agent A’s environment that exceed

general process advantages of alternative environments.

An abridged example of a perfMonitor class is shown in Listing 3.8.

Listing 3.8: Cresco Plugin perfMonitor

1 import com . researchworx . c r e s c o . l i b r a r y . messaging . MsgEvent ;
2 import com . researchworx . c r e s c o . l i b r a r y . p lug in . core . CPlugin ;
3
4 class PerfMonitor {
5 private CPlugin p lug in ;
6 private Sys In foBu i lde r b u i l d e r ;
7
8 . . .
9

10 public void run ( ) {
11 MsgEvent t i c k = new MsgEvent ( MsgEvent . Type . KPI , p lug in .

getRegion ( ) , p lug in . getAgent ( ) , p lug in . getPluginID ( ) , ”
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Performance Monitoring t i c k . ” ) ;
12 t i c k . setParam ( ” s r c r e g i o n ” , p lug in . getRegion ( ) ) ;
13 t i c k . setParam ( ” s r c a g e n t ” , p lug in . getAgent ( ) ) ;
14 t i c k . setParam ( ” s r c p l u g i n ” , p lug in . getPluginID ( ) ) ;
15 t i c k . setParam ( ” d s t r e g i o n ” , p lug in . getRegion ( ) ) ;
16 t i c k . setParam ( ” r e s o u r c e i d ” , ” s y s i n f o r e s o u r c e ” ) ;
17 t i c k . setParam ( ” i n o d e i d ” , ” s y s i n f o i n o d e ” ) ;
18
19 for (Map. Entry<Str ing , Str ing> entry : b u i l d e r .

getSysInfoMap ( ) . entrySet ( ) ) {
20 t i c k . setParam ( entry . getKey ( ) , entry . getValue ( ) ) ;
21 }
22 p lug in . sendMsgEvent ( t i c k ) ;
23 } }

In the example perfMonitor class system-level parameters obtained from the Sys-

InfoBuilder object are packaged into a KPI message and sent to a regional controller

for additional processing and global resource propagation.

The described Cresco Plugin classes can be used to develop a wide-wide range

of resource plugins. A number of plugins have been implemented for the Cresco

Framework. Resource plugins are described in Section 3.7, Plugin Implementations.

Underlying abstract function used in initialization, message handling, and WATCH-

DOG generation are abstracted by the Cresco Plugin Library, which in turn used the

Cresco Library for lower-level functions such as message handling.

In the next section we describe the implementation of the Cresco Plugin Library.

3.4 Cresco Plugin Library

The Cresco Plugin Library provides common functions for Cresco-Plugins, such as ini-

tialization, shutdown, and interfaces to core functions provided by the Cresco Library.

The Cresco Library uses Apache Maven [96] for package distribution, which provides

build, reporting and documentation from a central object configuration. The Cresco

Library is available [97] from a public Maven repository. Low-level implementation
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details are found in the Cresco Plugin Library code repository [98].

In the following sections we describe the underlying functions provided by the

plugin library.

3.4.1 Plugin Interface

Plugins are units of compilation separate from agents, with respect to dependencies

and build environments. Plugins are loaded by agents and reside in the memory space

of the hosting agent. In order for plugins and agents to communicate, a common

Plugin Interface is implemented. Plugin Interfaces are common code that describe

the methods implemented by the plugin, which are accessible to the agent.

On plugin initialization the following objects are passed from the hosting agent

to the plugin:

• msgOutQueue: are concurrent queue used to offer messages back to the agent.

• configObj : is an object representation of the this plugins configuration found in

Cresco-Agent-Plugins.ini.

• region: the region name of the hosting agent.

• agent : the agent name of the hosting agent.

• pluginID : the plugin slot number of the hosting agent.

As part of the initialization process an incoming message processor (msgIn()),

RPC handler, WatchDog, and logging services are started. In addition, any preStart(),

start(), and postStart() functions implemented in the dependent plugin are executed.

If all core and user-defined function complete without error the plugin is marked

active and considered an actor in the Cresco Framework.

Figure 3.5 show the data-path interface between agents and plugins.

Additional functions provided by the Cresco Plugin Library are listed below:
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Figure 3.5: Cresco-Agent to Cresco-Agent-Plugin Interface

• get/setName: Function to get and set the name of the plugin.

• get/setVersion: Function to get and set version information of the plugin.

• get/setRegion: Function to get and set the region name of a plugin.

• get/setAgent : Function to get and set the agent name of a plugin.

• get/setPluginID : Function to get and set pluginID of a plugin.

• sendMsgEvent : Function to send MsgEvent messages from the plugin asyn-

chronously.

There are a number of additional functions, such as those dealing with RPC

communication, configuration management, and WatchDog services, provided by the

plugin library that wrap underlying calls provided by the Cresco Library into the

Cresco Plugin Library class. The Cresco Library implementation is described in the

next section.
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3.5 Cresco Library

The Cresco Library provides common core functions shared by Cresco-Agent and

Cresco-Plugins, such as configuration management, health monitoring, message pro-

cessing, logging, and other functionality. Providing core functions as part of a central

library enforces standardization across components, while making development of

new components easier. The Cresco Plugin Library uses Apache Maven for package

distribution and is available [99] from a public repository. Low-level implementation

details are found in the Cresco Plugin Library code repository [100].

The following subsections describe core functions provided by the Cresco Library.

3.5.1 Configuration Management

Plugin configuration are maintained for agents and plugins as part of the Config class.

Configurations are composed of key-value pairs. Modification of runtime configuration

parameters of agents (Cresco-Agent.ini) and plugins (Cresco-Agent-Plugins.ini are

reflected in their respective configuration files. The Config class provides the following

functions to convert configuration parameters into Java primitives and classes.

• getBoolean: returns requested boolean primitive from string configuration value.

• getDouble: returns requested double primitive (double-precision 64-bit IEEE

754 floating point) from string configuration value.

• getInteger : returns requested integer primitive (two’s complement range from

−231 to 231 − 1) from string configuration value.

• getLong : returns requested long primitive (two’s complement range from −263

to 263 − 1) from string configuration value.

• getString : returns requested string object from a array of characters.
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If the requested configuration file does not exist, a null value is returned. Addi-

tional methods exist for primitive conversion, which allow the user to supply a return

value if the configuration key does not exist.

3.5.2 Health Monitoring

Low-level health monitoring is accomplished through the use of WATCHDOG mes-

sages communicated throughout the Cresco component hierarchy. The Cresco Library

implements a WatchDog class, which is programmatically similar to the perfMonitor

class shown in Listing 3.8. The WatchDog class communicates WATCHDOG mes-

sages that contain information about the Cresco component, including runtime and

timestamp information (in milliseconds). Plugins communicate messages to agents,

agents to regional controllers, and regional controllers to global controllers. Based on

a user-defined timeout, Cresco components are considered detached from their hierar-

chy when downstream messages are not received. Likewise, if agents detect that they

are unable to communicate WATCHDOG messages, and are not configured for static

operation, a rediscovery process is triggered as described in Section 3.6.3, Controller

Discovery.

3.5.3 Message Tools

The Cresco Library provides implementation classes for MsgEvents as described in

Section 3.1, MsgEvent Protocol. Classes related to MsgEvent creation, object mar-

shallings, and communication are provided.

Cresco, as with other actor frameworks, has been designed to support asyn-

chronous messaging (message without response) between component actors. Syn-

chronous communication (messages with expected response) is accomplished through

the use of RPC described below.

59



3.5.4 Remote Procedure Call (RPC)

In princable synchronous messaging violates the primary tenants of Actor-model con-

currency. Allowing synchronous messaging creates the potential for dead-locks created

through circular message dependencies. The Remote Procedure Call (RPC) class is

used to implement synchronous operations using asynchronous messages, with con-

trols to prevent message dead-locks.

RPC messages are used in cases where a response from a remote component is

needed to complete a transaction. RPC messages must be identified in the payload of

the message. If a plugin or agent sends an RPC message, that message must contain

a callid parameter in the message body. The callid parameters must conform to the

following format: callId-[src region]-[src agent]-[src plugin]-[unique random string].

A unique identifier must prepend the callid, since this references a single unique

message. However, the unique identifier must only be unique for the duration of

the message and can be reused once the calling thread has terminated. In the case

of a RPC call originating by an agent, the [src plugin] field is omitted. The callid

parameters are inserted by the sender of an RPC message allowing agents and plugins

to uniquely identify and track RPC messages. The RPC call function spawns a new

thread, which adds appropriate callId information to the message. The message is

sent to an outgoing queue for routing and the thread will blocked until a return

message is received or the default RPC timeout of 30 seconds is exceeded. If RPC

timeout is exceeded the calling function is canceled and an error message is returned,

preventing component dependency locks.

3.5.5 Logging

The Cresco Library provides unified logging services across Cresco components. The

CLogger class implements message and file-based logging services with error, warn,

info, debug, trace designations. Message-based logs are created with the LOG Ms-
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gEvent type and file-based logs are stored on the host agent environment path as

defined in the Agent.ini.

3.6 Cresco-Controller-Plugin

The Cresco framework can be described as a hierarchical arrangements of actors,

implemented as message-passing agents and plugins. In Section 3.2, Cresco Agent, we

defined that the primary purpose of the agent is to host and communicate messages

between plugins. Likewise, in Section 3.3, Cresco-Plugins, we defined the primary

purpose of plugins as a provider monitoring, measurement, and control of resources in

the Cresco Framework. The Cresco-Controller-Plugin is a special plugin that governs

the operational aspects of the Cresco framework by providing the following:

• Discovery : The controller provides network-based discovery services, which are

used to determine operating roles within Cresco topologies.

• Message Broker : The controller provides message brokering services, which are

used for inter-agent and plugin communications.

• State Memory : Depending on operating mode, the controller maintains agent,

region, and global state information.

• Services : The controller provides decision making capabilities, such as resource

scheduling, optimization, and other service delivery functions on agent, region,

and global-levels.

In the remainder of this section we will cover the operational aspects of the Cresco-

Controller-Plugin.

3.6.1 Controller Initialization

On agent initialization, the controller is the first plugin that is initialized. If the

controller plugin can not be loaded the agent startup, process is terminated. The
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Cresco-Controller-Plugin configuration is maintained in the Cresco-Agent-Plugins.ini

file as with other plugins. An example controller configuration is shown in Listing

3.9.

Listing 3.9: ControllerConfiguration

1 [ p lug in s ]
2 p lug in /0 = 0
3
4 [ p lug in /0 ]
5 pluginname = cresco−agent−c o n t r o l l e r−plug in
6 j a r f i l e = cresco−agent−c o n t r o l l e r−plugin −0.5.0−SNAPSHOT. j a r
7 #Sec r e t key used in agent c o n t r o l l e r d i s cove ry
8 d i s c o v e r y s e c r e t a g e n t = c r e s c o a g e n t d i s c o v e r y s e c r e t
9 #Sec r e t key used in r e g i o n a l d i s cove ry

10 d i s c o v e r y s e c r e t r e g i o n = c r e s c o r e g i o n a l d i s c o v e r y s e c r e t
11 #Sec r e t key used in g l o b a l d i s cove ry
12 d i s c o v e r y s e c r e t g l o b a l = c r e s c o g l o b a l d i s c o v e r y s e c r e t
13 watchdogtimer = 5000
14 #Enable ssh daemon on the c o n t r o l l e r
15 enab l e s shd = true
16 sshd username = admin
17 sshd password = admin
18 s shd r sa key path = sshd . key
19 #Enable IPv6 c a p a b i l i t i e s
20 i s IPv6 = true

In the controller plugin configuration discovery secret configuration parameters

are used by the discovery process to determine the operating mode of the controller

and related agent. The discovery process is described in Section 3.6.3, Controller Dis-

covery. The controller plugin initialization process is shown in Figure 3.6. Controller

operating modes are described in Section 3.6.2, Controller Modes of Operation.
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Figure 3.6: Initialization of the Cresco Controller Plugin

In the next section we describe the modes of controller and related agent opera-

tions.

3.6.2 Controller Modes of Operation

An operating mode defines where a controller resides in the Cresco hierarchy. There

are three operating modes of a controller, as stated below:
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• Agent : Responsible for communication with regional controller.

• Regional : Responsible for communication between regions and with one or more

global controllers as well as intra-regional message routing.

• Global : Responsible for establishment of a global management plane across and

inter-region message routing.

An example of a topology graph showing the Cresco hierarchy is shown in Figure

5.15.

global 
controller

agent
regional controller

agent
regional controller

agent

plugin plugin plugin plugin

agent

plugin plugin

agent

plugin plugin

isAgent

isPlugin

isRegion

hasPlugin

Figure 3.7: Simple Cresco Topology Graph with two regions

Agent Controllers The agent controller manages inter-agent communications to

the regional controller. Agent controllers are dependent on regional controllers for all

intra-node communications.
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Regional Controllers The regional controller plugin manages reachable agents in

its region. This plugin serves as a gateway connecting reachable intra-regional com-

ponents and inter-regional components. Agent’s status is detected by the regional

controller plugin as changes on the agent-level are discovered. However, it is not nec-

essary for the agent to maintain connectivity to a regional controller at all times. The

system is designed with the expectation that agents and plugins can both appear and

disappear without warning, so state discovery is accomplished using several methods

described in the following subsection.

Global Controllers The global controller establishes a global view of resource

status across regions. This view is inclusive of all resources assigned at regional and

agent levels. A global resource view is established by maintaining a graph database of

all known local and regional relationships. Currently, the open-source graph database

OrientDB [101] is used for database services. We define all nodes and edges in our

graph database to be the complete Cresco data graph. We define the topology graph to

be a sub-graph of the complete graph, which contains nodes, edges, and labels related

to arrangement and connectivity of Cresco components. We refer to arrangement in

this context to be the spacial positioning of Cresco components based on regional,

agent, and plugin assignments. We define the connectivity of Cresco components in

this context to be the path in which MsgEvent messages are routed. The topology

graph is maintained by the global controller, based on regional topology information

provided by regional controllers.

We define the resource graph to be a sub-graph of the complete graph of the

system, which contains nodes, edges, and labels related to the arrangement, configu-

rations, and utilization of resources managed by Cresco components. In this context,

configuration is related to the textual configuration of agents and plugins as described

in Section 3.2, Cresco Agent. Utilization is defined as a set of resource-specific metrics,

reported by resource managing Cresco plugins.
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An example of a resource graph is shown in Figure 3.8.

global 
Application

plugin plugin

isConnected
——————
metricname0  = X
…
metricnameN = Y

[plugin/0]
pluginname=<name of plugin>
jarfile=<plugin jar path>
watchdogtimer=<time in ms>

Figure 3.8: Simple Cresco Resource Graph with two assigned plugins.

The resource graph includes active plugins related to specific global applications.

Information is provided to the global controller by one or more regional controllers.

These plugins establish communication with the global controller and provide both

regional and agent resource metrics for topology and resource graphs.

3.6.3 Controller Discovery

The controller discovery process is an important feature of the Cresco framework.

The ability to statically assign a network of agents is important for applications

where communication between hosts should be restricted to verified agents. Alter-

natively, dynamic discovery of agents, regions, and related controllers is important

for operational resiliency and scale. Agents and related resources assigned to specific

locations or regions should be discoverable without notification of resource creation or

assignment. In this section we discuss the discovery configuration, order of operations,
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process.

Discovery Modes Controller discovery takes place in the order of AGENT, RE-

GION, and GLOBAL. Discovery can be static, dynamic, or a hybrid of the two modes.

Discovery modes of operation are listed below. Additional methods may be added in

the future as needed:

• Static: All configurations related to the agent and plugins are provided on

agent startup via configuration file. While regional and global controllers can

be used in this mode, typically static assignments are made on agents to force

assignments to specific regional controllers without going through the network

discovery process. Static modes of operation based on configuration are listed

below:

– Agent-forced : In this mode of operation the regional controller name value

is provided in the agents configuration file. The agent will continue to

attempt unicast network discovery for the requested region until the agent

process is terminated.

– Region-forced : In this mode of operation the is regional controller value

is set to TRUE and no regional network discovery takes place. The

agent assigns itself the regional name provided in the regional controller-

name configuration. In this mode, dynamic global discovery does not take

place and unicast network discovery for the global controller specified by

global controller ip and global controller name is attempted.

– Global-forced : In this mode of operation the controller is already a re-

gional controller, either through static or dynamic discovery and unicast

network discovery for the global controller specified by global controller ip

and global controller name is attempted.

• Dynamic: Agent operation is determined through the network discovery process
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and component configuration can change as need in the future based on interac-

tions with other agents and controllers. For instance, if a dynamic agent looses

contact with its regional controller an agent may promote itself to a regional

controller. Dynamic modes of operation based on discovery are listed below:

– Agent-only : Connectivity with a regional controller has been established.

Regional and global communications will take place through the estab-

lished regional controller broker. Agent and Plugin status is communi-

cated to the regional controller. No further regional or global controller

discovery will take place, unless connectivity with the regional controller

is lost. If regional controller connectivity is lost, the dynamic discovery

process is repeated.

– Agent-Region: Agent (discovery) connectivity with an existing regional

controller could not be established and the controller has been promoted

to a regional controller. Communications between agents in this region

take place on this regional controller. Regional discovery can result in

regional peering3 between two regions. If regional peering has occurred re-

gional messaging will take place between regional controllers. Connectivity

with a global controller has been established. Regional status is commu-

nicated to the global controller. If global connectivity is lost the global

discovery will be restarted, but existing agent and regional settings will

remain unchanged. If no global controller is found the regional controller

is promoted to a global controller.

– Agent-Region-Global : Agent and regional connectivity with existing con-

trollers could not be established and the controller has been promoted to

a global controller. Plugin, agent, and regional status will be reported to

this global controller.

3Peering in this context, much like network peering is the sharing of reachable agents between
brokers.

68



Controller discovery takes place in two phases. The first phase is network iden-

tification, which is used to identify potential communication brokers for connection

and the second is the authenticated connection to the secure message broker.

Network Identification By default network discovery supports both IPv4 and

IPv6 protocols. IPv4 discovery is accomplished through network unicast4 and broad-

cast5 [102]. IPv6 discovery is accomplished through network multicast [103]. Both

discovery methods can be used simultaneously in ”dual stack” IPv4 and IPv6 opera-

tion.

In network discovery a MsgEvent message is transmitted to potential hosts us-

ing one or more supported protocols and communication methods. The message

contains the discovery type parameter, which specifies either AGENT, REGION, or

GLOBAL discovery. In addition, the message contains the discovery validator pa-

rameter, which contains an AES-encrypted [104] discovery message. The discovery

message is encrypted with a shared key configured in discovery secret agent, discov-

ery secret region, or discovery secret global depending on discovery type. Existing

controllers listen for discovery messages and if they are able to decrypt the discov-

ery message and are otherwise not restricted6 respond to discovery request with the

agent count and validated authenication parameters. The validated authenication pa-

rameter provides unique credentials that can be used to connect with a communica-

tion broker. The discovering controller might receive a number of responses and will

choose the least loaded controller for connection based on agent count values.

Broker Communication Following the network identification phase, in which se-

cure connection credentials are generated for each discovered session, the controller

will establish communication with one or more brokers. The open-source package Ac-

tiveMQ [105] is currently used to provide brokered communication services between

4Communication addressed to a specific host.
5Communication directed to many possible hosts.
6The maximum agents parameter restricts the number of connected agents.

69



controllers and potentially other plugins.

By default, ActiveMQ supports automated (AUTO) [106] detection for protocols

used in the Cresco framework communication. Natively, ActiveMQ supports chan-

nels using MQ telemetry transport (MQTT7 [91]), advanced message queuing protocol

(AMQP) [107], OpenWire [108], representational state transfer (REST) [109], RSS

and Atom [110], streaming text oriented messaging protocol (STOMP) [111], web

services invocation framework (WSIF) [112], WebSocket Notifications [113], and ex-

tensible message and presence protocol (XMPP) [114] natively. Regardless of the

transport protocol, the text-based MsgEvent format is used. The MsgEvent protocol

allows for the heterogeneous operation of the Cresco framework across a broad variety

of communication channels.

The communication broker’s modes of operation are listed below.

• Agent-to-Region: A controller functioning in an agent-only mode. The con-

troller creates a communication channel that is maintained by a regional con-

troller broker. The regional controller maintains a list of agent-only communi-

cation channels and routes messages between them.

• Region-to-Region: A controller that maintains its own broker for Agent-to-

Region communications. In addition, methods to peer (bridge) its broker with

another regional controller broker are provided. Broker peering provides the

ability of one broker to see the clients on another broker, which allows for the

routing of messages directly between connected regions. Once a broker bridge

is established, agent-only communications channels maintained by regions are

shared between brokers, allowing for region-to-region communications. Regional

bridge health is monitored and if a bridge failure is detected, the bridge and

related communication channels are removed.

• Region-to-Global : A special case of Region-to-Region communication where a

7MQTT is a widely adopted transport protocol in IoT applications.
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broker bridge is used to connect a regional controller to a global controller. The

global controller is identified by its regional controller communication channel

on the connecting regional controller.

Regional 
Controller

Global
Controller
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Controller

Agent 
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Plugin/N Plugin/0Plugin/0 Plugin/N

Global Secret = G.0

Agent 
Controller
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Regional Secret R.0

Agent Secret A.0 Agent Secret A.1

Figure 3.9: Secret-Key Managed Dynamic Discovery

Complex structures of networks of agents can be constructed through dynamic

discovery managed by shared discovery secrets. Figure 3.9 shows an agent structure

where two regions have been created dynamically through the use of differing agent

discovery secrets in the same discovery domain. During the agent discovery process

the existing regional controller is unable to decrypt and respond to the discovery

message, so the agent promotes itself to a regional controller. The new regional

controller is able to communicate with the old regional controller since the shared

regional discovery secrets are the same. Likewise, both regions communicate to the

same global controller since the global discovery secret is the same. In the example

if we wanted to prevent Region-to-Region or Region-to-Global communications with
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existing resources the shared secret could be changed. Using the shared secret method

of dynamic discovery we are able to add large numbers of agents to existing networks

with maintaining a desired network structure.

The discovery process described above allows us to both prescribe static agent

relationships and create scalable dynamic networks of agents. In the next section we

describe how brokered messages are routed between communication channels.

3.6.4 Controller Message Routing

From a procedural prospective, Controller Message Routing is the same as agent

message routing, described in Section 3.2.3, Agent Message Routing. The same vari-

ables used in the msgRoute thread in Agent Message Routing are used in Controller

Message Routing to determine message destination. However, the controller has ad-

ditional message paths, which result in a different routing table from the agents. The

following route destinations and related calling function are shown below:

• F0: externalSend: Send to external location through the message broker.

• F1: plugin.sendMsgEvent: Send message to the host agent

• F2: getCommandExec: Submit message to the plugin executor.

MsgEvents are submitted to the routing engine through the msgIn() plugin func-

tion described in Section 3.4.1, Plugin Interface. The msgIn function passes messages

to the msgInProcessQueue executor service. The executor service spawns a msgRoute

thread for each incoming message. For each new message arrival a MsgRoute thread

is created to route the incoming message.

In addition to messages arriving from the host agent, the controller routing engine

must also route message related to agent, regional, and global destinations. The

Cresco Controller Plugin provides inter-node agent communications.
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Table 3.2: Controller Route Table

Route Code RX r RX a RX p TX r TX a TX p F 0 F 1 F 2
0 0 0 0 0 0 0 0 1 0
21 0 1 0 0 1 0 1 0 0
48 1 1 0 0 0 0 1 0 0
52 1 1 0 1 0 0 1 0 0
53 1 1 0 1 0 1 1 0 0
56 1 1 1 0 0 0 0 1 0
58 1 1 1 0 1 0 0 0 1
62 1 1 1 1 1 0 0 0 1

The route path truth table is shown in Table 3.2. The default route action is to

drop messages. For the sake of simplification we have omitted the dropped message

case from the table.

The simplified boolean expressions for our three actionable route cases are shown

below:

• external : RXa ∧RXp ∧ TXr ∧ TXa ∧ TXp ∨RXr ∧RXa ∧RXp ∧ TXa ∧ TXp

• sendMsgEvent : RXr ∧RXa ∧RXp ∧ TXr ∧ TXa ∧ TXp ∨

RXr ∧RXa ∧RXp ∧ TXr ∧ TXa ∧ TXp

• getCommandExec: RXr ∧RXa ∧RXp ∧ TXr ∧ TXa ∧ TXp

The boolean expressions for Agent Message Routing differed by a single boolean

value and were simple enough to be implemented with conditional expressions. How-

ever, the boolean expressions representing Controller Message Routing are more com-

plex. For Controller Message Routing we maintain a static route table, which is suffi-

cient to route message to and from host agent, local plugin, and external sources and

destinations.

3.6.5 Controller API

The Cresco Controller API provides functions used in the configuration and execution

of controller management functions. API functions are executed through CONFIG
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and EXEC MsgEvent type messages destined for the the agent. Currently imple-

mented API functions are described below.

CONFIG

• addplugin: Function used to provision a Cresco plugin configuration for assign-

ment on a specific agent.

• removeplugin: Function used to decommission a Cresco plugin configuration on

a specific agent.

• gpipelinesubmit : Function used to submit a collection of Cresco plugin descrip-

tions for assignment on a number of agents.

• getgpipelinestatus : Function used to get the status of a specific pipeline.

• getgpipeline: Function used to get the current configuration details of a specific

pipeline.

• getgpipelinelist : Function used to get the list of current pipelines.

• gpipelineremove: Function used to decommission pipeline resources and remove

a specific pipeline from the controller database.

EXEC

• pluginupload : Function used to upload plugins to the controller.

• plugininventory : Function used to list all plugins available on a controller.

• plugininfo: Function used to retrieve a description of a specific plugin available

on a controller.

• getpluginstatus : Function used to retrieve the current status of a Cresco plugin.
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• getenvstatus : Function used to retrieve the Cresco Topology managed by a

controller.

• resourceinventory : Function used to retrieve the description of resources man-

aged by a controller.

• regionalimport : Function used to import regional databases on global con-

trollers.

The Controller API is accessible through Representational State Transfer (REST-

ful) methods. The Glashfish [115] embedded HTTPS web server implementation is

used to provide RESTful services.

In the next section, we will describe the implementation of Cresco plugins.

3.7 Plugin Implementations

A number of Cresco Plugins have been implemented to provide resources or manage

workloads. We describe a few notable plugins in this section.

3.7.1 Infrastructure as a Service (IaaS) Plugin

Infrastructure as a Service (IaaS) is a form of so-called cloud computing used to

manage collections of compute, storage, and network components to provide vir-

tual machine, and other low-level infrastructure resources. Typically, we designate

IaaS offered publicly by a third-parties as public IaaS providers. IaaS services that

are not available to the public, we refer to as private IaaS. IaaS platforms, such as

OpenStack, allow users to dynamic provision and de-provision resources as needed

programatically. For example, as the number of concurrent users increases for a

specific application, an application management system can increase the number of

application servers to distribute workloads. Likewise, as the number of application

users decreases so can the number of application servers.
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In edge applications, a number of agents will be statically configured on stan-

dalone servers located at the logical edges of networks. For example, a standalone

server acting as a data collector for an array of distributed sensors might be config-

ured with static plugins and controller configurations. However, the upstream data

processing system might be configured for dynamic operation where plugin assign-

ment are migrated between pools of regional resources. In order for regional resources

to expand and contract as needed, we need automated methods to manage regional

resources.

The IaaS Plugin is used to manage resources provided by IaaS cloud comput-

ing frameworks. We use the open-source Apache jClouds [116], software library to

manage IaaS providers. Apache jClouds supports a number of public and private

IaaS providers including Amazon Web Services, Microsoft Azure, Google Cloud, and

OpenStack-based services.

Functions provided by the IaaS Plugin are used to provision and de-provision

resources based on request from the Cresco schedulers.

3.7.2 System Information Plugin

The System Information Plugin is used to update regional and global controllers with

the current operating configuration and resource utilization of systems hosting Cresco

agents. We use the cross-platform Operating System and Hardware Information [117]

library to access system information. Information such as operating system versions,

CPU, memory, disk, and other resource configurations and related utilization are

collected. Listing 3.10 shows an example report generated by the System Information

Plugin.
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Listing 3.10: SysInfo Data

1 −−System Informat ion
2 sys−uptime=12 days , 15 : 1 4 : 26
3 sys−os=GNU/Linux Debian GNU/Linux 8 ( j e s s i e )
4
5 −−CPU Informat ion
6 cpu−sn−i dent=I n t e l 6 4 Family 6 Model 69 Stepping 1
7 cpu−sn=unknown
8 cpu−summary=I n t e l (R) Core (TM) i7 −4650U CPU @ 1.70GHz
9 cpu−core−count=2

10 cpu−i dent=I n t e l 6 4 Family 6 Model 69 Stepping 1
11
12 −CPU U t i l i z a t i o n
13 cpu−per−cpu−load=CPU Load per p ro c e s s o r : 8.1% 5.1%
14 cpu−user−load =6.09
15 cpu−nice−load =0.0
16 cpu−sys−load =0.5
17 cpu−i d l e−load=93
18
19 −Memory U t i l i z a t i o n
20 memory−a v a i l a b l e =1249308672
21 memory−t o t a l =2094940160
22
23 −Storage U t i l i z a t i o n
24 f s−map=0:/ ,1 : shm
25 f s−0−a v a i l a b l e =57786044416
26 f s−0−t o t a l =63370678272
27 f s−1−a v a i l a b l e =67108864
28 f s−1−t o t a l =67108864
29
30 −Network Informat ion
31 nic−map=0: eth0
32 nic−0−ip=fe80 : 0 : 0 : 0 : 4 2 : a c f f : f e11 :2%eth0 , 1 7 2 . 1 7 . 0 . 2

System information data is reported to regional and global controllers, where

capacity and utilization information is employed for scheduling purposes. In addition,

reported utilization information compared to KPI reports are used in resource value

analysis.

3.7.3 Process Manager Plugin

The process manager plugin is used to launch, observe, and manipulate processes

and schedulers on Unix-like operating systems, such as Linux. Processes are launched
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using common shell parameters and observed through resulting process IDs. One way

in which the scheduler is manipulated is through a processes nice [118] value. The

nice value is set through a kernel-level call and corresponding user-level application.

By default, processes have a nice level of 0, by changing this value the process is

given more or less scheduling priority. The scheduler will satisfy request based on

the lowest numerical priority p. So, setting the nice value to −20 would result in

the highest scheduling priority, while 19 would represent the lowest priority. The

share of resources allocated to a process based on nice value varies based on scheduler

implementation. Along with the process nice settings, there are also ionice settings

that specifically related to storage IO priority (I.e. file system devices).

This plugin can be used to run processes once, a designated number of iterations,

or maintain a process indefinitely through repeated execution.

3.7.4 Container Manager Plugin

The container manager plugin is used to launch, observe, and manipulate application

containers. We make use of Docker [119], a popular container management platform.

Docker, or simply containers, are an operating-system-level virtualization technology.

Using containers, specific application dependencies are bundled within the container

so no central management of library and runtime dependencies is required. Contain-

ers are arranged in layers of dependencies, which are registered through a central

container service. This service can be thought of as an ”App Store,” where specific

dependency layers are uniquely registered. The layered registration of containers pro-

vides the ability of a layer, regardless of the number of containers that use the layer

on a host, to only be stored once. For example, if 100 containers using the same

Java dependency are run on a single host, only disk storage related to a single Java

dependency layer will be consumed. When layers of dependencies are arranged to

provide a new combined layer of dependency or application, the resulting container

is called an image. Container images provide all system-level and application-level
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dependencies required to run one or more applications. Each time a container layer is

changed, a new registration is required for that image, so registered container images

provide a unique reference related to specific application versions.

Containers can have specific resources restrictions, such as processor time, mem-

ory, and storage capacity, applied at the container-level. For example, suppose there

are a number of containers on a host. One processor core can be exclusively assigned

to a single container, group A, while the remaining processor cores can be assigned

to the rest of the containers, group B. Within the group B containers a subgroup

B.1, can be assigned a higher priority of processor time than the rest of the poten-

tial containers in group B. Likewise, specific memory and storage constraints can be

applied per container or groups of containers. Figure 3.10 shows container resource

assignments as described in the previous example.
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Figure 3.10: Container Resource Assignments

This Container Manager Plugin is used to retrieve a container from a registry and

manage its operation, including resource settings.
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3.7.5 AMPQ Plugin

The AMPQ Plugin utilizes the Advanced Message Queueing Protocol (AMPQ) [120]

to provide communication. The RabbitMQ [121] AMPQ protocol implementation

is being used. This plugin establishes authorizations, queues, and exchanges for

Cresco-managed resources. For instance, the AMPQ Channel Plugin might be used

to manage an intermediate communications channel between an otherwise inaccess-

able data source and destination.

In the next Chapter Framework Technologies, the Cresco approach to resource

management, application description, and advanced operations modules are discussed.
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4

Framework Technologies

The purpose of the work described in this dissertation is to establish an edge comput-

ing framework for the management of distributed applications and related resources.

We have described the motivations, architecture model, and implementation details

of the presented framework. In the previous chapter, we described a foundational

platform to be used broadly in the configuration of edge components and the report-

ing of component-level metrics. Component-level information provided by the Cresco

framework allows for higher-order functions, such as scheduling optimizations, appli-

cation fault-tolerance, anomaly detection, predictions of future resource needs, and

resource trading to be implemented for distributed applications management.

In Section 4.1, Resource Management, we define management techniques for un-

derlying resources commonly used by the Cresco framework. In addition to under-

standing the operating state of underlying resources, in order for high-level func-

tions to operate dynamically, they must also understand the context of how resources

are related in distributed applications. In Section 4.2, Cresco Resource Model, we

discuss how resources are described and managed within the Cresco framework. In

Section 4.2.1, Cresco Application Description Language, we propose a language to de-

scribe resource relationships between components managed by the Cresco framework.

In Section 4.3, High-level Operations, we describe high-level component-application
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functions implemented by the Cresco framework.

4.1 Resource Management

There are potentially many layers of resource scheduling in edge computing environ-

ments. We define the following resource layers in the context of resource scheduling

or provisioning. Resource layers are listed from the lowest (closest to the hardware)

level of hardware abstraction, to the highest (closest to the application):

1. Hardware: Hardware-level resource scheduling pertains to the execution of pro-

cessor instructions, as defined by a specific Instruction Set Architectures (ISA),

such as the the common x86 64 [122] ISA. Operating system kernel-level com-

ponents interact with the hardware level using specific instruction sets through

interface registers, such as instruction registers. Scheduling required to execute

instructions submitted by the Kernel-level is executed at the hardware-level.

2. Kernel : Kernel-level scheduling pertains to the prioritized access of shared re-

sources on the hardware-level. Kernels work as an interface layer between hard-

ware and application processes.

3. Application ”Agent”: Agent layer scheduling pertains to the intra-instance man-

agement of application resources. In this context, an instance is an instantiation

of processes (plugins) isolated within same kernel instance. Isolated resources

are discussed in detail in Section 4.1.1, Isolated Resources. Examples of agent

scheduling include the management of resource competition between two Cresco

plugins running on the same devices.

4. Application ”Regional”: Regional scheduling pertains to the management of

Agent resources across potential resource providers. In this context, a provider

is a manager of resources for many kernel-level schedulers (Isolated Resources),

such as a Infrastructure as a Service (IaaS) provider discussed in Section 4.1.2.
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Examples of regional scheduling include the provisioning of virtual machines to

support Cresco agents and the deployment of interoperating plugins between

agents managed by the same provider.

5. Application ”Global”: Global scheduling pertains to the management of re-

sources between regions and their related resource providers, including isolated

resources and edge devices. Examples of global scheduling include provision-

ing workload operations across multiple regional providers. For example, data

collection services might be scheduled on sensor devices across a city, the ag-

gregation of a cities sensor data might be assigned to region X, a city data

center resource, and analysis resulting data might be assigned to region Y, a

designated public cloud provider.

Edge computing framework must address a number of computational environ-

ments and resource types. Centralized (isolated) computing resources typically in-

clude central processing (CPU), volatile (RAM), and non-volitile (Disk)1 storage com-

ponents that work together as independent computational resources. Communication

between computation and storage components within individual central nodes is con-

sistent across components using the same communication channels. For example, the

process of moving data from one processor to central memory is typically uniform

across processors. Perhaps more importantly, a central scheduler has full view of the

current state of computational components and can manage resources accordingly.

Distributed computing, as the name suggest, distributes computation to otherwise

independent computational resources through communication networks. Depending

on the distributed computing architecture, communication and resource uniformity

varies greatly. For example, locally-distributed high-performance computing clusters

are typically composed of nodes and communication resources that are uniform and

located in the same data center. For instance, node architectures, sizing, and com-

1Recent advancements [123] in non-volatile memory latency are blurring the lines between RAM
and disk storage.

83



munication can vary greatly for the highly geographically-distributed Folding@Home

[124] project, where individuals around the world volunteer personal computational

resources for molecular dynamics simulations.

Edge computing applications are made up of isolated, locally-distributed, and

geographically distributed components. In the following sections we describe how the

Cresco framework manages specific resource environments.

4.1.1 Isolated Resources

In the context of isolated resource management, we assume devices are capable of

running an Operating System (OS), such as Linux, (which allows for kernel-level

resource management). Alternatively, resource management is maintained by a high-

level API, such as those provided by virtual machine and container [125] management

systems such as Docker.

Resource request by application processes are managed by kernel schedulers, which

determine access priorities based on scheduler implementations. Implementations of

Weighted Fair Queueing [126] algorithm are commonly used in kernel-level schedul-

ing. The Completely Fair Scheduler (CFS) [127] has been the default scheduler in

the Linux kernel since the 2.6.23 release. Covering the complexities of kernel-level

scheduling is beyond the scope of this dissertation. However, it is sufficient to know

that kernel schedulers are manipulated through kernel-level function calls to control

the process-level priority of resource access. As described in Section 3.7.3, Process

Manager Plugin, we have implemented a process management plugin that provides

kernel-level priority control through the use of nice and ionice settings.

We briefly discussed Linux kernel namespace isolation of network services in Sec-

tion 1.3.2, Identification. Linux namespaces have been part of the Linux kernel since

the 2.4.19 release in 2002. While the implementation of kernel namespaces is beyond

the scope of this document, it is sufficient to know that namespaces operate under a
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parent-child2 hierarchy where sibling resources are isolated from each other. Kernel

namespaces are used to isolate a number of system resources including:

• Process IDs (PID): Using namespaces it is possible to have multiple process trees

nested and independently managed within a parent-child namespace hierarchy.

For example, process IDs P1 and P2 in a parent namespace might map to process

ID P0 in two independent child namespaces.

• Networks (NET): Namespaces are used to separate network devices and services

such as network interface controllers (NICs), routing tables, and firewall rules.

• Hostnames (UTS): Namespaces that allow for hostname operating system iden-

tifiers to be assigned to child namespace.

• Filesystem mounts (MNT): Namespaces that allow filesystem mounts to operate

independently between child namespaces. For instance, the root (/) filesystem

mount points are configured independently between child namespaces.

• Inter-process communications (IPC): System V inter-process communication

[128] is isolated between child namespaces.

• Users IDs (UID): User accounting are isolated between child namespaces.

Namespaces provide the fundamental underpinnings necessary for containerization

under the Linux operating system. Containers are an operating-system-level virtual-

ization technology, where user environments, including operating system dependen-

cies, are run under a parent kernel in isolated namespaces. Linux Kernel Control

Groups (cgroup) [129] are used to impose resource imitations, prioritization, account-

ing, and control of Linux processes. The most common container-based management

technology is Docker [119], which in addition to namespaces provides management

2Unless otherwise specified, process interactions with the Linux kernel are performed in the
”default” namespace.
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for a number of additional image, storage, and network resources. Docker imple-

ments granular container resource controls through the use of cgroups. As described

in Section 3.7.4, Container Manager Plugin, we have implemented a container man-

agement plugin that provides kernel-level priority control through container-based

resource assignments.

Operating-system virtualization should not be confused with lower-level hardware

virtualization. In hardware virtualization, hypervisors [130] running on physical hard-

ware present emulated representations of physical components to operating systems.

From an operating system prospective, virtual hardware is functionally equivalent

to physical hardware. Similarly, from a Linux process prospective, kernel interac-

tions within a isolated child namespaces are functionally equivalent to those in the

default namespace. However, it is worth noting that it is generally accepted that

operating-system-level isolation is computationally less expensive [131] than hard-

ware virtualization, where workload dependencies are meet equivalently using the

two technologies.

Virtual machine and related infrastructure management frameworks will be dis-

cussed in the next section.

4.1.2 Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) is a form of cloud computing that is focused on

the management of computational, network, and storage infrastructure components.

IaaS is most commonly used to automate the provisioning of virtual machines. IaaS

resource management provides identity management, provisioning, monitoring, and

resource utilization accounting. There exist a number of public IaaS providers in-

cluding but not limited to Amazon Web Services [16], Google Cloud Platform [132],

and Microsoft Azure [17], where underlying resources are owned and operated by the

public cloud provider. In addition, there exist software such as OpenStack, that can

be used to deploy private clouds, where the underlying cloud infrastructure is owned
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and operated by the institution consuming the resources.

IaaS frameworks provide programatic interfaces to manage collections of resources

across individual servers, server clusters, and collections of geographically distributed

clusters. Collections of underlying infrastructure such as CPU, RAM, and Disk stor-

age are assigned to virtual machine instances. As described in the previous section,

virtual machines provisioned from IaaS providers function as isolated resources. Clus-

ters of locally-distributed servers managed by IaaS frameworks are typically referred

to as zones. Parameters such as resources sizing and zone identification are specified

at time of instance creation. A kernel-level scheduler assigns time to system-level

(CPU, RAM, IO, etc) resources on a single node to processes, in order to satisfy

workload request. Similar to a kernel scheduling assigning time to infrastructure

components, an IaaS scheduler provisions infrastructure resources from a number of

potential nodes to form virtual machines. The IaaS scheduler attempts to balance

resource assignments evenly between infrastructure components within availability

zones. For example, if a IaaS cluster manages N infrastructure nodes with equal

available resources and N resources are requested from those nodes, then a single

resource will be provisioned from each node. Likewise, consider the case where ini-

tially M resources were provisioned on node0 and M ∗ 2 resources were provisioned

on node1. If M additional resources are requested, the IaaS scheduler will assign

resources from node0. After this assignment M ∗ 2 resources are provisioned from

both node0 and node1, thus balancing allocations across resource nodes.

Many IaaS frameworks, such as OpenStack, lack the concept of inter-node resource

scheduling. If resources for high-value workloads are provisioned on the same node

with low-value allocations, the two will compete for resources without preference from

the kernel-level scheduler. Similarly, instances that compete for specific resources,

such as highly computational workloads are intentionally scheduled on separate nodes.

The lack of inter-node scheduling in IaaS frameworks leads to workload performance

variations across nodes. As we discussed in the previous section, it would be possible
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to manage allocation preference on this level, but this is not typically the practice

within IaaS frameworks.

Vertical resource scaling is the process of increasing the access to, or capacity of

isolated resources, such as increasing a processes priority or increasing the quality of

resources assigned to an individual virtual machine. In IaaS, vertical scaling can be

accomplished for individual resources, to the extent of the maximum infrastructure

resource available. Specifically, resource allocations can not exceed the physical size

of individual components. Resources such as CPU and RAM are typically3 deployed

from resources in the same power domain (same node), while storage is often provided

from a separate domain. For example, IaaS can not be used to provision a virtual

machine in which the size of the virtual machine exceeds the capacity of the largest

available physical machine4.

Horizontal resource scaling is the process of increasing the quality of process or

isolated resources, such as the distribution of workload across multiple threads and

processor cores or the provisioning on additional Cresco Agents and Plugins. Hori-

zontal scaling in IaaS is accomplished by provisioning additional IaaS instances. For

example, IaaS frameworks provide the ability to provision (clone) new virtual ma-

chines from existing machines. Likewise, existing virtual machines can be suspended

or deleted, resulting in a release of active resources. The process of dynamically scal-

ing applications using this method is referred to as elastic computing [135]. A single

node OpenStack deployment might only scale a few instances across a few CPU cores,

where as large deployments like those maintained by CERN, might span thousands

of instances over one hundred fifty thousand cores [136].

As described in Section 3.7.1, Infrastructure as a Service (IaaS) Plugin, we have

implemented a plugin that provides the ability to interface with IaaS management

frameworks for the propose of infrastructure provisioning. While IaaS does not allow

3This may change in the future with the advancement of so-called memory-centric computing
[133].

4Software exist [134] to overcome this problem, but it is not considered a typical feature of an
IaaS framework.
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us to observe the underlying physical resources of instances, we can observe resource

utilization and workload performance of Cresco-enabled instances. As described in

Section 3.7.2, System Information Plugin, we have developed a plugin to report the

operating state, inventory, resource utilization, and performance of isolated resources

(physical devices, virtual machines, containers, etc).

In the next section we discuss the language used to describe and abstract Cresco

applications from underlying resources, allowing for automated and semi-automated

resource management.

4.2 Cresco Resource Model

In the previous sections we discussed various types of resources across several operat-

ing environments. We discussed how specific Cresco plugins manage resources used

by edge applications. We have claimed that Cresco plugin configurations can be used

to represent workloads and that collections of plugins are used to construct Cresco

applications. In this section we will discuss how Cresco Plugin configurations are

developed and related.

Cresco Plugin configurations and related applications relations can be assigned

manually (statically). In fact, the entire Cresco architecture supports static assign-

ment of agent names, roles, plugins, and inter-agent relationships. In Section 5.3, Ge-

nomic Processing Framework, we cover a Cresco-based application that is composed

primarily of statically assigned components. In this use case, the Cresco framework

is considered part of an In Vitro Diagnostic (IVD) device and the enforcement of

validated (static) resources is required. Alternatively, Cresco Plugin configurations

can be generated and assigned to applications dynamically. By contrast in Section

5.4, GLobal Edge Application Network, we discuss how the Cresco framework is used

to dynamically manage a globally distributed edge application network.

While we don’t typically think of genomic processing and global edge applica-
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tion networks as being related, there are similarities from a computational model

standpoint. In both cases application components (data collectors, privacy modules,

encryption, event processing, reporting, etc.) can be represented as nodes and the

flow of application data between components represented as edges. The resulting col-

lection of components can be modeled as an acyclic graph, commonly referred to as

an application pipeline. If we are able to abstractly describe graphs that model appli-

cations without assigning unnecessary operating environment or location constraints

we can bring to bear a host of computational techniques to manage distributed ap-

plications.

In the following sections we cover how applications are described, components

represented, and resources assign within the Cresco framework.

4.2.1 Cresco Application Description Language

We propose the Cresco Application Description Language (CADL) to model dis-

tributed applications managed by the Cresco framework. CADL is a graph language,

where nodes represent Cresco Plugin configurations, edges represent relationships be-

tween Cresco Plugins, and graphs composed of nodes and edges represent applications.

The format of CADL node fields and requirements are shown below:

• [node id] (required, unique): Node IDs are unique identifiers for nodes within

specific pipelines.

• [node name] (required): Node names are used as short descriptions for nodes

within specific pipelines.

• [type] Required : Node types represent specific Cresco Plugin implementations.

• [description] (optional): Node descriptions are used for descriptions of node

operations within specific pipelines.
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• [params] (optional): Params are collection of key-value pairs that specify

plugin-specific configurations. Manifest descriptors within Cresco Plugin im-

plementations determine parameter requirements.

• [isStateless] (optional): The isStateless parameter is a boolean value repre-

senting the ability of the configuration instantiation to be migrated between

Cresco Agents without maintaining plugin memory state. For example, the

configuration of a stateless plugin processing (filtering, format conversion, etc.)

data from a source with delivery guarantees, such as a durable queue, can be

migrated without memory migration or data loss.

• [isSource] (optional): The isSource parameter is a boolean value designating

the node as a data source for a potential external pipeline. For example, a

destination node that removes sensitive data in one pipeline might serve as the

data source for another pipeline.

• [location] (optional): The location parameter is used to relate nodes to specific

agents or locations. For example, to sample the network traffic at a specific

location, the location parameter would need to match the Cresco Agent location

parameter at the desired location.

Listing 4.1 shows the node description for a plugin that serves as an AMQP data

exchange at location X.

Listing 4.1: CADL Node

1 ” node id ” :”0”
2 ”node name ” :” pStart ”
3 ” type ” :”amqp”
4 ”params ” :
5 ” amqp server ” :” l o c a l h o s t ”
6 ”outExchange ” :” eQuery”
7 ” amqp login ” :” l o g i n ”
8 ”amqp password ” :” password”
9 ” i s S t a t e l e s s ” : t rue

10 ” i sSou r c e ” : t rue
11 ” l o c a t i o n ” :”X”
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As previously mentioned, edges represent the relationship between nodes. The

format of CADL edge fields and requirements is shown below:

• [edge id] (required, unique): Edge IDs are unique identifiers for nodes within

specific pipelines.

• [node from] (required): The node from parameter is used to designate source

node id for the edge within a specific pipeline.

• [node to] (required): The node to parameter is used to designate destination

node id for the edge within a specific pipeline.

Listing 4.2 shows an example of a CADL edge description relating two node ids.

Listing 4.2: CADL Edge

1 ” edge id ” : 0 ,
2 ” node to ” :”1” ,
3 ” node from ”:”0”

CADL node and edge descriptions are combined to form a pipeline description,

which represents a Cresco application. The format of CADL pipeline fields and

requirements are shown below:

• [pipeline name] (required): Pipeline names are used as short descriptions for

pipelines maintained by a specific Cresco Global Controller.

• [nodes] (required): Nodes are collections of CADL node descriptions. At least

one node description must exist for a pipeline to be considered valid.

• [edges] (optional): Edges are collections of CADL edge descriptions.

• [description] (optional): Pipeline descriptions are used to describe the opera-

tion of pipelines.

• [isFaultTolerant] (optional): The isFaultTolerant parameter is a boolean value

designating that pipeline components should be rescheduled if failures are de-

tected.
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CADL pipelines can be used to describe a number of applications. Suppose we

want to construct the following application pipeline:

1. Read JSON-formated Netflow records from an AMQP data source and emit

data to a downstream node.

2. Read data from an upstream node, marshal JSON data into a strongly typed

Netflow class, calculate the top ten network flows in a one minute sliding win-

dow, and emit JSON-formatted data to a downstream node.

3. Read data from upstream node and place results in a FIFO (first-in-first-out)

memory buffer, which is externally accessible through a RESTful interface pro-

vided by the plugin.

Listing 4.3 shows a three state CADL pipeline for the previously described appli-

cation.

Listing 4.3: CADL pipeline

1 {” nodes ” : [
2 {”node name ” :” pStart ” ,” type ” :”amqp” ,” node id ” :”0” ,” params ” :{”

amqp server ” :” l o c a l h o s t ” ,” outExchange ” :” someexchange ” ,”
amqp password ” :” somepassword ” ,” amqp login ” :” somelogin ”}} ,

3
4 {”node name ” :” netFlow Query ” ,” type ” :” e spe r que ry ” ,” node id ” :”1” ,”

params ” :{” q u e r y c l a s s ” : ” netFlow ” ,” q u e r y s t r i n g ” :” s e l e c t i p s r c
, i p ds t , bytes from netFlow . win : time (1 min ) . ext : s o r t (10 ,
bytes desc ) ”}} ,

5
6 {”node name ” :”” ,” type ” :” membuffer ” ,” node id ” :”2” ,” params ” :{”

d a t a u r l ” : ” http :// l o c a l h o s t /API/ bu f f0 ”}} ] ,
7
8 ” edges ” : [
9 {” edge id ” : 0 , ” node to ” :”1” ,” node from ”:”0”} ,

10 {” edge id ” : 1 , ” node to ” :”2” ,” node from ” : ” 1 ”} ] ,
11
12 ” p ipe l ine name ” :”Top 10 Netf lows ”}

CADL descriptions are submitted to Cresco Global Controllers for interpretation

and resource scheduling. Figure 4.1 shows the steps taken in the deployment of a

Cresco application.
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CADL description (Pipeline)

Component Representation (AppSchedulerEngine) 

Resource Placement (ResourceSchedulerEngine) 

Figure 4.1: Cresco Application Process

In the next section we will cover how CADL components are represented within

the Cresco framework.

4.2.2 Component Representations

The AppSchedulerEngine process is responsible for identifying incoming pipelines,

translating pipeline request into plugin resource requests, and submitting plugin

request for resource scheduling. CADL pipeline descriptions are submitted to the

Cresco Controller API, as described in Section 3.6.5. On submission, the pipelines

are recorded to the Cresco Global Controller database and submitted to the App-

ScheduleQueue queue. The AppSchedulerEngine process reads incoming pipeline re-

quest messages from the AppScheduleQueue, parses the CADL pipeline description,

and creates nodes and edge configurations representing the pipeline in the controller

graph database. The following node and edge class instances are used to describe

pipelines in the database.

• Node pipelineNode : pipelineNodes are roots nodes for pipelines described by

the CADL language.
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• Node vNode : vNodes maintain a record of pipeline nodes as described by the

CADL language.

• Node iNode : iNodes represent Cresco Plugin resource assignments in relation

to vNodes. There is a one-to-many relationship between iNodes and vNodes.

• Node eNode : eNodes represent data exchange mechanism between iNodes.

eNodes maintain configuration information such as data exchange locations and

authentication information generated by Cresco during pipeline interpretation.

• Node rNode : rNodes maintain a record of a specific Region in the Cresco

database.

• Node aNode : aNodes maintain a record of a specific Agent in the Cresco

database.

• Node pNode : pNodes maintain a record of a specific Plugin in the Cresco

database.

• Edge isVnode : isVnode associates pipelines to vNodes.

• Edge isVconnected : isVConnected associates vNodes that are connected based

on CADL description.

• Edge isInode : isInode associates vNodes and iNodes.

• Edge eOut : eOut associates the flow of data from a iNode to a eNode.

• Edge eIn : eIn associates the flow of data to a iNode from a eNode.

• Edge isEconnected : isEconnected edge indicates the directed flow of data from

one eNode to another.

• Edge isAssigned : isAssigned associates Cresco Plugins to iNode configurations.
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The relationship of Cresco database classes is shown in Figure 4.2.

vNode

isVnode
pipeline
Node

vNode

isVnode

isVconnected

iNode iNode

eNode eNodeeNode eNode

isInode isInode

eIn eIneOut eOut

isEconnected

Figure 4.2: Cresco Application Graph

On submission to the Cresco Global Controller, a pipelineNode is created to record

the initial CADL description. The incoming CADL expression is then forwarded to

the AppSchedulerEngine process for scheduling, where nodes described in the pipeline

are represented as vNodes in the database. If needed, iNodes are created for each

vNode to represent plugin implementations of request vNodes. However, iNodes

can be shared between pipelines. On iNode, and related eNode generation, we use

graph database query functions to search for existing candidate iNodes with exact the

same ”params” attributes and data paths as the iNode representation of the pipeline-

specific vNode. If an iNode replacement candidate is found, we traverse ”isECon-
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nected” and ”eIn” relationships to determine if iNode and eNode implementations

for the source data path are exactly the same as the sub-graph to be implemented.

Listing 4.4 shows a query used to traverse candidate iNode data paths.

Listing 4.4: Cresco Database Node Traversal

1 s e l e c t from ( t r a v e r s e in ( ) from [ node id ] ) where @class <> ’ vNode
’ and @class <> ’ P ipe l ine ’

If a valid iNode sub-graph is found, the vNode ”isINode” relationship is assigned to

the existing iNode. All remaining iNodes without an existing ”isINode” relationship

are submitted for resource scheduling.

In the next section we describe resource placement.

4.2.3 Resource Placement

The ResourceSchedulerEngine is responsible for identifying incoming request, deter-

mining the best-fit location for resource assignment, and is responsible for resource

assignment to specific agents. Incoming requests are identified by MsgEvent mes-

sages sent to the resourceScheduleQueue queue. Resource placement messages can be

generated from a number of sources including the AppSchedulerEngine, Cresco API,

or from High-level Operations modules, described in Section 4.3. Resource placement

message contain resource identifier information in the form of inode id and resource id

assignments, predicate restrictions such as location id, and all parameter information

required to provision a specific plugin. Resource scheduling takes place in the follow-

ing order:

1. iNodes can represent plugin implementations used by a number of pipelines.

The status of a pipeline that makes use of a specific iNode might be inactive,

whereas the iNode itself is active in another pipeline. The status of the existing

iNode representing the requested vNode is confirmed to be inactive to prevent

duplicate resource assignments.
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2. The controller plugin inventory is checked to determine if the requested plugin

exists on or is accessible by the controller.

3. The plugin information specified in the request is checked against the local plu-

gin manifest to determine if the required plugin parameters have been provided.

4. aNodes (Agent representations) information is queried to determine if predicate

(location, cpu-core-count, memory-available, etc.) requirements can be satis-

fied. Agents satisfying predicate restrictions are placed on the agent candidate

list.

If no agent candidates exist for resource scheduling, the unscheduled resource

request is recorded in the controller database and if enabled, the Guilder module,

described in Section 4.3.1, is notified of a pending resources request. If appropriate

resources are identified in the future the pending resource will be scheduled.

The candidate agent list could include a number of agents, all technically capable

of satisfying the resource request. If enabled, Optima, described in Section 4.3.3 is

used to determine the most appropriate candidates for resource assignment. Other-

wise, the least loaded (based on plugin count) agent is selected from the candidate

agent list for resource assignment. Once an agent is selected for resource assignment

the global controller sends a message to the agent to download the latest plugin.

Once plugin download has been verified, a message is sent to the agent to start the

plugin based on the parameters provided in the resource request. The ResourceSched-

ulerEngine process will spawn a new PollAddPlugin process, which watches the con-

troller database for notification that the plugin related to the initial iNode has been

started and is producing KPI updates. If the PollAddPlugin timeout (default of 30

seconds) is exceeded, the iNode is marked as failed, an agent health check is started,

and the resource scheduling process is restarted.
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4.3 High-level Operations

A number of high-level operations modules have been developed to demonstrate the

benefits of the Cresco approach to distributed resource and application management.

The modules and related services described in this section serve as proof of concepts

and are not required for Cresco operations. A list of high-level projects and their

related modules is shown below:

• Guilder : provides analysis and coordination for resource acquisition, relinquish-

ment, trading, and service cost.

• Futura: manages analysis related to workload classification, clustering, resource

utilization, and future needs prediction.

• Optima: manages analysis related to scheduling optimizations of individual

workloads, pipelines, and entire networks of Cresco-managed components.

4.3.1 Guilder

The Guilder project demonstrates the ability of Cresco to acquire, relinquish, and

trade resources with both fixed and dynamic utilization costs. In this context,

fixed resources are computational devices typically acquired through capital expense

(CAPEX). CAPEX cost are often amortized over the life of the device providing a

fixed cost regardless of resource utilization. Dynamic utilization cost are resources

provided by public and private cloud providers in the form of dynamically provisioned

services, such as virtual infrastructure. Dynamic resources are considered operating

expenses (OPEX), where cost occurs only while the resource is in use. Fixed or

dynamic resources are often determined by specific workload requirements. For ex-

ample, a workload designated for a specific capture device or location might force the

assignment of a fixed cost resources in the form of a edge device. Alternatively, a

request of 1000 workload resources might exceed fixed resource capacity and require
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the provisioning of resources from a public cloud environment. In many cases we have

the option to deploy workloads on a number of fixed and dynamic resources.

Resource Provider Evaluations Guilder provides analysis services used to de-

termine the value of potential resources. Agents and related information-gathering

plugins are deployed to infrastructure Resource Providers capable of hosting Cresco

workloads, which include both physical devices and virtual machines. In the context

of scheduling, Resource Providers are resources that are already under the manage-

ment of the Cresco framework and should not be confused with potential resources

provided by IaaS resource providers. Agents can be deployed directly on standalone

devices and resources that compose private computational clouds. The underlying

infrastructure supporting public clouds is not accessible for direct monitoring. How-

ever, agents can be deployed on virtual machines provided by public and private

clouds to provide assessment of the performance of the underlying system. If fact,

due to over-subscription and service tier (preference to one node over another) vari-

ations of resources in virtual environments node-specific evaluation is the only way

to determine realized resource capacities. As described in Section 3.7.2, System In-

formation Plugin, Cresco Plugins can be used to to determine the logical processor

core count C and idle load I of a specific host. On plugin initialization the System

Information Plugin performs the NIST SciMark 2.0 [137] benchmark on the host sys-

tem. The benchmark B is performed on a single logical core of the system, which

allows us to estimate overall computational potential P as: (C) · (B) = P . While the

benchmark value is obtained only on plugin initialization, system KPI message are

sent periodically (default of 15 seconds) to Cresco. Using system KPI messages we

estimate available computational capacity A as: (P ) · (I/100) = A. Currently, Guilder

demonstrates resource evaluations based on computational performance. Similar as-

sessments can be made using memory, disk, or network information provided by

system KPI information. Resource analysis services provide by Guilder are used by
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the Optima project described in Section 4.3.3.

Resource Provider Pricing and Provisioning As described in Section 3.7.1,

Infrastructure as a Service (IaaS) Plugin Cresco Plugins provide methods to manage

resource provided by a number of cloud providers. Guilder provides services to pro-

vision and de-provision resources as needed from cloud providers supported by the

IaaS plugin. In the context of Guilder, IaaS resources are managed in the form of vir-

tual machine instances designated by a specific VM types5. VM types are predefined

combinations of virtual cpu(s), memory, disk, and network capacities. For instance a

small VM type might provide a single cpu, 512MB of memory, and a 1GB disk space,

while a large type might provide 8 cpus, 32GB of memory, 1TB of disk space, and a

10GB network adapter. Typically, both public and private cloud providers conform

to Amazon EC2 VM types [138].

The use of common VM types provides a method to compare public and provide

cloud offering cost. Standalone hardware and private cloud costs based on VM types

are statically set through Guilder configuration values. In addition, dynamic cost for

public cloud resources are determined through provider specific interfaces, such as

the Amazon EC2 price API [139]. Guilder maintains the cost for all provisioned and

potential resources.

Guilder demonstrates how Cresco participates in a resource market with a number

of potential ”buyers” and ”sellers”. In such systems, the use cost of similar services

may vary widely and agents participating in said sources can have various policies

for utilizing resources depending on pricing and availability. Viewing distributed

resources as a market provides one way of approaching resource allocation problems.

5Depending on IaaS provider, the terms size, flavor, or instance are used.
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4.3.2 Futura

The Futura project demonstrates the ability of Cresco to profile workloads and

future-needs prediction. Resource utilization and other KPI metrics are observed

and recorded by the Cresco framework. As previously mentioned in the Guilder

section, metrics are gathered from Resource Providers to determine potential and

available resource capacities. However, in most cases more than one workload will

run per Resource Provider, so provider metrics alone are not enough to determine

workload-specific resource utilizations.

As described in Section 3.7.4, Container Manager Plugin, Cresco Plugins report

workload-specific Resource Metrics, including average CPU utilization U. In the con-

text of containers, resource metrics are gathered per Linux namespace, which provides

an accurate kernel-level account of resources utilized by a container for the duration

of its operation. As with the System Information Plugin, resource utilization KPIs

are reported to the Cresco framework periodically. A summary of resource utiliza-

tion, such as the total number of container cpu cycles, system system-wide cpu cycles,

filesystem bytes read, filesystem bytes written, network bytes received and network

bytes transmitted is provided. On report generation, point-in-time resource utiliza-

tion values such as cpu, memory, filesystem, and network per second utilizations are

calculated for use in time-series analysis. Historic records of configuration-specific

KPI metrics are maintained by Cresco.

Resource utilization metrics, such as the number of cpu cycles observed to satisfy

a specific workload are only useful if we understand the performance characteristics

of the observed metric. As previously mentioned in the Guilder section, we take

stock of resource provider performance characteristics including logical core count C,

and single core benchmark values B. Relating Resource Provider and Resource Met-

ric values Futura determines workload utilization W as: (C ·B) · (100/U) = W . The

workload utilization value is a device-independent estimation of computational need

for a specific workload. With the implementation of additional benchmark metrics in
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the System Information Plugin, a number of workload utilization values can be gen-

erated. The grouping or separation of workload in the scheduling process is highly

dependent on the type of resources workloads utilize. For example, computational

and memory-intensive workloads compete for resources when provisioned on the same

hosts. Alternatively, workloads that heavily utilize network communications might

predominately communicate with another workload in the same application pipeline.

For cases of intra-pipeline communication, the best approach might be to group these

workloads together on a single host or a cluster of hosts in the same geographic lo-

cation to take advantage of higher communication speeds, lower latency, and lower

cost. However, due to effects of so-called data-gravity, a phenomena where data tends

to reside in proximity to point of initial processing, high network utilization is often

correlated to high disk utilization. As with high cpu and memory high disk utiliza-

tion workloads should be separated in most cases to avoid resource contention issues.

Regardless of the logic used to group or separate workloads, programatic clustering

methods are needed to identify groups of similar workloads. Using The Apache Com-

mons Mathematics Library [140] Futura provides clustering functions for Resource

Metrics. Using the k-means [141] clustering method the Futura clustering function

takes as input the desired number of clusters, clusterK and the cluster method, clus-

terType, shown below:

• All : Cluster based on all cpu, memory, disk, and network statistics.

• Disk-Network : Cluster based on disk and network statistics.

• CPU : Cluster based on cpu statistics only.

• Memory : Cluster based on memory statistics only.

• Disk : Cluster based on disk statistics only.

• Network : Cluster based on network statistics only.
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Futura clustering functions are used in both scheduling optimization functions

and longer-term resource prediction analysis. Using the historical data maintained

by Futura not only can we predict needs for specific workloads, but using time-

series samples we can estimate future needs based on past resource utilization. In

analysis of fixed cost resource planning we can use Futura clustering functions to

estimate the most appropriate configurations (higher or lower cpu, memory, disk,

network) for purchase. Likewise, during the resource scheduling process if there are

not enough resources to satisfy request, new dynamic cost resources can be acquired

using Guilder. However, workload resource needs must be translated into specific VM

type(s) that can be acquired by Guilder. The Optima project, described in the next

section, is used to determine optimal resource assignments.

4.3.3 Optima

The Optima project demonstrates the benefits of Cresco in resource scheduling opti-

mization. In this context, scheduling is process of satisfying computational resource

request with appropriate resource assignments. There are a number of ways schedul-

ing optimization can take place. For example, the selection of the highest performing

host for a specific workload, or the section of most geographically diverse hosts to

deploy a highly-available pipeline. In addition to initial resource assignment, op-

timization techniques can be applied to existing resource assignments such as the

global optimization of all resource assignments across pipelines and workloads based

on overall costs. In the case of existing resource assignments we are concerned with

the reassignment, expansion, or contraction of resources for groups of workloads. Ours

is not a project in combinatorial optimization, but constraint programming tools are

used as part of this project to solve optimization problems.

In Section 4.2.2, Component Representations, we described the AppSchedulerEngine.

In Section 4.2.3, ResourceSchedulerEngine, we described the ResourceSchedulerEngine.

The AppSchedulerEngine is responsible for the translation of CADL descriptions into
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Cresco Plugin configurations that can be scheduled by the ResourceSchedulerEngine.

If there is no predicate assignment (location, region, agent, etc.) in the CADL to

directly relate a CADL node to a specific agent or groups of agents, the AppSched-

ulerEngine must determine the agent assignment. When enabled, Optima is used

to determine a potentially optimal assignment of CADL nodes to agents. Currently,

we are using a single estimated variable in our optimization calculations and make

no guarantee of assignment optimality. However, we do demonstrate how potential

projects might make use of Cresco to obtain distributed sources needed for optimiza-

tion calculations.

Resource Provider Location Problem (RPLP) There are a number of possible

approaches to determine the optimal assignment of workloads to resource providers.

For the purposes of demonstration we adapted the Warehouse Location Problem

(WLP) [142] to determine the best workload to resource provider assignment(s).

In the Resource Provider problem, a resource scheduler considers a number of

potential providers to supply resources to specific workloads. Each possible resource

provider has a potential capacity designating the maximum quantity of resources

that is can supply. Each resource must be supplied by exactly one resource provider.

The resource cost to satisfy a resource request depends on the resource provider in

relation to initial purchase cost and observed workload resource utilization metrics.

The objective is to determine which resource providers to use, and which resource

providers should supply the various resource requests, such that the sum of total

pipeline cost is minimized.

Optima makes use of the Choco [143] constraint programming library to imple-

ment a solver for RPLP. The implemented solver takes as input the number of the

number of workloads (stores) S, the number of Resource Providers (warehouses) W,

the cost for using a provider instance (opening a warehouse) C, an array of provider

instance capacities K, and a matrix of cost P, relating the cost for a specific provider
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to satisfy the resource request of a specific workload. The number of workloads is

provided by the scheduler, Futura data is used to calculate W and K values, C is de-

termined through Guilder data, and the cost matrix P is calculated using both Futura

and Guilder data. The resulting solver solution provides workload assignments and

the total cost for all assignments. If node assignment is not possible due to resource

constraints the optimization process fails and the scheduler is notified that additional

resources are needed.

Resource Provider Optimization (RPO) As previously mentioned, Resource

Providers in the context of scheduling pertain to resources already under Cresco

management. When additional resources are needed, Optima is used to translate

workload resource needs into specific VM types to be managed by Guilder. Resource

sizing specified by VM types results in new Resource Providers managed by Cresco.

Analysis performed by the University of Kentucky [144] compared 1500 real-world

virtual machines spanning academic, research, healthcare service areas with over 50

public cloud offerings, based on VM type specifications. The virtual machines in

the study were manually (IT professional selected resource quantities) provisioned

without specific VM type constraints. Analysis showed that 94% of the existing

virtual machine resource configurations could be matched exactly to a VM type offered

by a public cloud provider, based on virtual cpu and memory metrics. Introducing

storage into the comparison, where a match is made if the storage specified by the

VM type is within 35% of the actual storage, reduces the match rate to 15%. These

results suggest that the assignment of a single instance of a specific VM type will

result in the underutilization of at least one resource in 85% of cases.

There are several techniques to address the underutilization of instance resources

due to public cloud over-provisioning. If access to private cloud infrastructure is per-

mitted, custom VM types can be created for specific workload needs. However, this

creates complications when trying to compare the cost of public and private cloud of-
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ferings. In most cases, better approach is to assign more than one workload to a single

instance. In order to determine the appropriate VM type size we can make use of the

optimization approach described for RPLP. If we add potential Resource Providers,

based on available public and private VM types to the list candidate providers, we

can determine a potentially optimal size and quantity of new resources for Guilder to

acquire.

Global Provider Optimization (GPO) Through the scheduling process various

sizes of Resource Providers are provisioned to support collections of workloads. While

attempts are made to optimally size the creation of Resource Providers per pipeline

request, over repeated scheduling iterations Resource Provider fragmentation, much

like memory or disk fragmentation [145] can occur. For example, suppose we add a

new Resource Provider RP0 of size S0 and cost C to satisfy the requirements of a

new pipeline P0. Now suppose we add another pipeline P1 that requires the addition

of another Resource Provider RP1 of size S1 and cost C. From the standpoint of the

individual pipelines P0 and P1 resource assignments are optimal. While not optimal

for individual pipeline assignment, suppose a potential Resource Provider RPp of size

S0 + S1 and cost C · 1.5 is avalable. From a global prospective taking into account

both pipelines the single Resource Provider RPp would result in a lower overall cost.

As we previously stated, it is unlikely that the provisioned Resource Providers fully

utilize all available resources, so perhaps there exist a Resource Provider RPp−1 of

C · 1.25 that can satisfy the combined resource needs of pipelines P0 and P1.

Global Resource Provider optimization is accomplished in much the same way

as RPLP and RPO. Our provider list is composed of potential Resource Providers

as reported by Guilder. Our workload include all current configurations, which are

not otherwise restricted by a agent assignment predicate. The resulting solver solu-

tion provides workload assignments for potential Resource Providers and the total

cost for all assignments. If potential cost reductions exceed a threshold specified in
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Optima configuration, the scheduler is notified and the rescheduling process it started.

In Chapter 5, Case Studies of Edge Computing, a number of project implemen-

tations are discussed that either directly contributed to Cresco components or make

use of the Cresco framework.
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5

Case Studies of Edge Computing

In Chapters 1, Edge Computing Introduction, and 2, The Architectural Model, we

discussed a number of potentional use cases for the Cresco framework in relation to

edge computing. In this chapter we cover specific case study projects that either

directly led to the development of specific Cresco components and capabilities or are

works based on the Cresco framework.

In Section 5.1, Distributed Stream Analysis System, we cover work originally pub-

lished under the title Scalable Hybrid Stream and Hadoop Network Analysis System

[146]. This work led to several key Cresco design principles and components includ-

ing our stream-based (push) data model, NetFlow, Complex Event Processing (CEP),

and Hadoop components.

In Section 5.2, Workload Characterization, we cover work originally published un-

der the title Collating time-series resource data for system-wide job profiling [147].

This work led to the development of Cresco Global controller workload characteriza-

tion module described in Section 4.3.2, Futura.

In Section 5.3, Genomic Processing Framework, we cover work originally pub-

lished under the title Constellation: A secure self-optimizing framework for genomic

processing [148]. The resulting genomic processing framework developed as a result

of this work is an example of a statically deployed Cresco application.
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In Section 5.4, GLobal Edge Application Network, we describe the use of Cresco

in the development of an edge computing network.

5.1 Distributed Stream Analysis System

Collections of network traces have long been used in network traffic analysis. Flow

[149] analysis can be used in network anomaly discovery, intrusion detection and more

generally, discovery of actionable events on the network. The data collected during

processing may be also used for prediction and avoidance of traffic congestion, network

capacity planning, and the development of software-defined networking. Typically,

network-capture devices are placed at points of network data aggregation, such as the

point of exchange between organizational networks and the public Internet. However,

as network flow rates increase beyond the capacity of single analysis devices, many

organizations find themselves either technically or financially unable to generate, col-

lect, and analyze network flow data.

In this section we describe a network analysis system that addresses problems

of scale through the use of distributed computing methodologies. This system was

developed and deployed at the University of Kentucky (UK). The UK campus network

is composed of over 17,000 network segments and over 5000 wireless access points,

which serve over 36,000 students, faculty and staff.

In this system both stream and batch distributed processing frameworks are lever-

aged. Stream processing methods are employed to collect and enrich data streams

with ephemeral environment information, such as the current associated access point

location for an observed campus network address. Enriched stream-data is used for

event detection and near real-time flow analysis by an in-line complex event proces-

sor. Batch processing is performed by the Hadoop MapReduce framework [150], from

data stored in HBase [151] BigTable storage by the stream processor. In benchmarks

on our 10 node cluster, using actual network data, we were able to stream process
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Table 5.1: UK Network Devices

Device Count
Core 6

Distribution 44
Access 1176

Wireless Controllers 47
Wireless Access Points (AP) 5442

Virtual Switchs 42

over 315K flows/sec. In batch analysis were we able to process over 2.6M flows/sec

with a storage compression ratio of 6.7:1.

5.1.1 NetFlow Generation

We estimate the average UK campus data rate between network segments to be

282GB/sec (on the order of 1PB/hour), a rate that far exceeds capacity of commodity

servers to generate NetFlows from network observations (packet capture). Simply

generating NetFlows from high traffic links is, in itself, a highly computational task

[152]. Hardware devices equipped with ASICs, such as routers and switches, are

capable of generating line-rate flow exports on aggregations of hundreds of high-

speed (100G) links. However, with the introduction of new network protocols and

service on existing hardware platforms, even ASIC-based devices can loose the ability

to generate NetFlows. In fact, this is the case on the UK network where the use

of Multi-protocol Label Switching (MPLS) [153] on the existing network hardware

prevents NetFlow generation on the majority of devices.

Table 5.1, shows a list of devices found in the UK network.

We determined that a distributed network capture across the network core was the

best location to observe traffic that is traversing both campus and external locations.

This required distributed network probes consisting of a network capture devices

(server hardware) that generate NetFlow records based on the traffic they observe.

The probes ingest aggregates of distribution links from the core routers, effectively
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monitoring all traffic passing from distribution to distribution (intra-campus), and

core to edge (inter-campus). Each probe device runs an instance of Fprobe [154] for

each monitored network interface. In Fprobe we are able to specify the Link layer

header size, so MPLS header information is ignored and a NetFlow is generated from

the correct IP diagram.

5.1.2 NetFlow Collection

While we are able to generate NetFlows using distributed probes we still have the

problem of collection and processing. At the time of this writing no single appliance

exist that can collect and process hundreds of thousands of flows per second from

aggregated sources. To solve this problems we developed our own NetFlow collectors,

which are implemented on the network probe devices. The NetFlow collectors then

stream a pertinent subset of NetFlow information to an assigned Advanced Message

Queuing Protocol (AMPQ) [155] queues. AMQP queues are provided by servers

distributed in geographic proximity to probe devices. In this regard, probe devices

act as self-contained edge endpoints capable of generating, collecting, and distributing

NetFlows based on their location configuration.

5.1.3 NetFlow Processing

NetFlow records remain on distributed AMQP servers until enqueued by a queue

subscriber. This method allows a central system to control the rate of data flow

based on how quickly records are acknowledged from distributed sources. Aggregated

flows of NetFlow records are subscribed to by an application topology we developed

using Apache Storm [156]. Apache Storm is a cluster-based distributed real-time

computation system, where functional components are arranged in Storm Topologies.

The primary topology components of Storm are Spouts and Bolts. Spouts, as the

name suggest, are used to ingest data streams and emit tuples consumable by the

application topology. In this context, a tuple is a data diagrams in the form of a key-
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value pair. Bolts read tuples from either Spouts or other Bolts, and also typically emit

a tuple stream. Normally, tuple transformations, operations, and external data drains

occur in Bolts. Our Storm topology is shown in Figure 5.1. Similar to MapReduce

[157], Storm distributes and processes tuples of information on multiple nodes and

processes. However, unlike MapReduce, Storm will process tuples until the job is

manually terminated.

Spout 0 Combiner 
Bolt

Probe 
0

Probe 
1

Probe 
N

Spout 1

Spout N

Resolver 
Bolt CEP Bolt

Reducer
Bolt

Report 
BoltDrain Bolt

HBase

HDFS

Figure 5.1: Storm Topology

In the context of Cresco, Storm spouts and bolts function in much the same way

as Cresco Plugins do in Cresco Application pipelines. A number of Storm Spouts

and Bolts were developed as part of this effort including a AMQP Spout based on

RabbitMQ [121]. This Spout is used to retrieve bundles of NetFlows generated by

the probes and emit exactly one tuple for each flow. Along with building the Storm

tuple, the spout also injects a element identifying the originating probe and related

network observation area. In effect, AMPQ Spout produces a stream of database

records; the attribute names are in the Column 1 of Table 5.2, AMPQ Spout Tuple,
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Table 5.2: AMPQ Spout Tuple

Element Name Description
timestamp Time of flow creation

srcIp Source IP address
srcPort Source Port
dstIp Destination IP

dstPort Destination Port
byteCount Sum of bytes in flow

proto IP protocol
first t Router uptime at flow start
last t Router update at flow end

collector Probe Queue Name

while the meaning of these attributes is provided by Column 2, Description.

Additional bolts combine NetFlow fields to produce a tuple keys used to uniquely

identify flow records, inject ephemeral data such as current network location, and

compile data streams for Complex Event Processing (CEP) [158]. CEP is the term

used to describe a collection of methods used in the analysis of unbounded streams

of information. A CEP engine continuously processes information streams in an

attempt to identify, and react to, meaningful events. An CEP bolt was implemented

using ESPER [159], an event series analysis and event correlation engine (CEP).

Using the ESPER EPL (SQL-like) query language we implemented several NetFlow

analysis capabilities including network scan detection, identification of top talkers,

top connections, highest transfer rates, lowest transfer rates, total flows per second,

and total bandwidth per second.

Since individual components of Storm topologies, as with other cloud resources,

can be instantiated in a number of locations, we must define endpoint destinations

to receive data we can access. We developed a reporting bolt using a Simple Text-

Orientated Messaging Protocol (STOMP) [160], which is directly consumable by web

browsers using WebSockets [161]. WebSocket data pushed to web browsers allows

users to observe CEP events as they occur in the application topology. An example

of this type of reporting is found in the CEP ”Top Talkers” bolt, shown in Figure
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Table 5.3: Stream Process Rates

Source→ Destination Processed Flows/sec
AMPQ→ Spout 318672

AMPQ→ ResolverBolt 315208
AMPQ→ DrainBolt 233864

5.2.

Figure 5.2: Live CEP Report

Both raw, enriched, and processed data streams are useful for offline analysis.

Using HBase [151] we developed a bolt to drain steam processing data to an offline

data repository. The performance of the described stream processing system is shown

in Table 5.3. As shown in the table, the highest execution latency occurs in the Drain

bolt, which is used to store enriched results in the HBase table. The next highest

latency is the Resolve Bolt, which must calculate if the observed network address is

located on campus and resolve the campus location from in-memory lookup tables.

115



Spout CPE Reduce Combine Resolve Drain
0

0.05

0.1

0.15

0.2

E
x
e
c
u
te

 L
a
te

n
c
y
 (

m
s
)

Figure 5.3: Topology Component Latency

5.1.4 Stream Processing in Cresco

Our work in distributed network and stream processing greatly influenced the devel-

opment of Cresco. In the context of Cresco, probe devices act as independent Cresco

Agents and Cresco Plugins, while AMQP servers function in a similar capacity to

regional controllers. The resource and topology management capabilities of Apache

Storm directly influenced Cresco Global controller operations and the need for the

Cresco Application Description Language. Both Apache Storm and Cresco describe,

implement, and maintain applications based on functional components arranged in

topologies. However, Cresco functions at a much higher-level of abstraction than

Storm. Storm components are represented as software code, where as Cresco compo-

nents could be hardware or software represented through configuration and capable

of a programatic interface. Storm topologies are typically implemented on clusters

spanning a single geographic area, where Cresco is intended for geographic distribu-

tion. In fact, a Storm topology could be consider a Cresco component represented as

a Cresco Plugin. Large-scale stream processing systems, like the one described can

be rapidly developed using the Cresco framework.
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5.2 Workload Characterization

The time-series utilization of computational resources such as CPU, memory, and

data transfer can be used to characterize the behavior a wide-range of workloads.

Workload characterization is in turn helpful in cyberinfrastructure planning, resource

provisioning, and scheduling optimization.

We developed a workload characterization system to determine workload types

and related resource needs for jobs running on the University of Kentucky ”Lipscomb”[162]

High Performance Computing (HPC) cluster. Using this system we characterized over

200 thousands jobs using 30 billion time-series metrics.

The HPC cluster is composed of commodity hardware and software, such as that

found in both standalone servers and cloud computing clusters, and as a result char-

acterization techniques developed in this work are broadly applicable across compu-

tational environments. The node-level and cluster-level attributes of the Lipscomb

cluster are shown in Tables 5.4 and 5.5 respectively. Using the techniques described

in this section we were able characterize workloads and develop a detailed view of

resource utilization and scheduling patterns for our cluster.

Table 5.4: Node attributes

Node type Count CPU Core GPU RAM
Basic 256 Intel E5-2670 16 - 64G

Hi-Mem 8 Intel E5-4640 32 - 512G
GPU 24 Intel E5-2670 16 2 64G

Table 5.5: Cluster attributes

Node type Server Core GPU cores RAM
Basic Intel E5-2670 4096 - 16,384G

Hi-Mem Intel E5-4640 32 - 4096G
GPU Intel E5-2670 384 3584 1536G
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5.2.1 Workload Collection

As with edge- and cloud computing systems, resource request are submitted to sched-

ulers for provisioning. In the case of this work, job submission details were extracted

from SLURM [163] and combined with resource scheduling information from MOAB

[164], to form job records as shown in Figure 5.4.

• Key:

– [node name]-[timestamp]

• Value:

– [user name]-[job id ]-[queue name]-[job status ]

Figure 5.4: Job Record Format

For resource utilization metric collection we used Ganglia [165], a popular metric

collection system. Ganglia agents were deployed on HPC nodes which collected 41

metrics (cpu, memory, disk, network, etc.) every 15 seconds. The format of node

utilization records is shown in Figure 5.5.

• Key:

– [node name]-[metric name]-[timestamp]

• Value:

– [metric value]

Figure 5.5: Utilization Record Format

Due to the large number (billions) of utilization records, we used HBase [166],

large key-value tabular database as our record repository.
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5.2.2 Workload Collation

Job and utilization data were stored in separate unrelated data tables. In order to

determine the resource utilization of a workload, we determine the active node(s)

participating in a job and observe what resources are in use. Job records identify

the active job id for a specific node based on the record’s timestamp. Utilization

records provide resource usage data related to a specific resource metric name for a

specific node name, based on the record’s timestamp. During the collation process,

job and utilization data are related by a timestamp range and node name key. Job

records indicate the time a job was run on a specific node name, which is associated

to performance information during the active job interval.

The relation of job and utilization data is established in three steps:

1. Job-node relationship: Job data is processed, resulting in a single file containing

the starting and ending times of all jobs for all nodes.

2. Numeric-variable generation: Utilization data is processed, resulting in quartile

and percentage variable for each metric, based on known fixed or minimum and

maximum observed values.

3. Job-utilization relationship: Job and utilization data is processed providing raw,

quartile, or percentage resource averages across all nodes for each job.

The format of job-to-node records is shown in Figure 5.6.

• Key:

– [node name]

• Value:

– [TS start ],[TS end ],[user id ],[job id ],[queue name],

[job status ]

Figure 5.6: Job-to-Node Record Format
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The output of job-node relation step is used in the job-performance relation step

to group performance metrics for a specific job across nodes.

The job-utilization relation step uses data generated in the job-node relationship

and numeric-variable steps to relate node utilization metrics to corresponding jobs.

As with the node objects, the job record matching functions will be executed for each

utilization metric, so an efficient method is needed. Within node objects, tree map

structures are used to store job records. The tree map class is based on a special

type of binary search tree called a red-black tree [167], which guarantees O(log n)

lookup complexity, and more importantly allows us to quickly determine the floor

(closest lower timestamp) and ceiling (closest higher timestamp) jobs for a specific

metric timestamp. If a utilization metric is found to exist within a known job window,

numberic varable data is used to recalculate the metric value, and the metric is emitted

to the reducer with a key referencing its related job. The reducer phase calculates

mean average of individual job metrics and merges results into columns of utilization

metrics and rows of jobs.

The next subsection describes the method used to cluster workloads based on

job-utilization data.

5.2.3 Workload Clustering

The general approach to data clustering in this section can be extended to a number

of areas where distributed sources of data can be assembled centrally and used to

develop systematic characterizations of workloads. The work in this section greatly

influenced the Cresco Futura project described in Section 4.3.2.

In this section we will use job-utilization data to determine clusters of similar

workloads based on job and resource utilization statistics. For calculations in this

section, we discard any job with a runtime less than a minute or any job with fewer

than five full (all attributes) metric samples. The resulting corrections reduced the

number of jobs by 32%.
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In batch-scheduler systems, jobs are submitted to specific queues. As a general

rule, the longer the allowed wall clock time (WCT), the lower the resource assign-

ment for the queue. Queue policy attributes for the Lipscomb cluster are shown in

Table 5.6. Job-utilization data extracted from the job scheduler is used to calculate

per-queue job statistics, as shown in Table 5.6.

Table 5.6: DLX Queue attributes

Queue Name Node Type WCT1 Limit Min-core Max-core
debug Basic 1 hr 1 16

PartNod Basic 12 hr 1 15
Short Basic 1 day 512 1024
GPU GPU 3 days 1 265
Med Basic 7 days 65 512

FatComp Hi-Mem 14 days 1 32
gauss Basic 30 days 16 16
Long Basic 30 days 16 64

Table 5.7: DLX Queue statistics

Queue Name Job Count Ave WCT Total WCT Node Count2

PartNod 732 1.3 hr 0.03% 1
debug 6124 15 min 0.05% 1

FatComp 2817 14 hr 1.4% 1
GPU 4859 14.4 hr 4% 1.3
Short 41 7.5 hr 5.12% 1.17
gauss 11423 13 hr 5.4% 1
Med 1163 1.4 days 14% 10.4
Long 111519 12.4 hr 70% 1.1

On a fundamental level, cluster analysis algorithms are based on measurements

of distances between metric values. We found that the selection of appropriate [168]

clustering metrics greatly influenced the characterization of workloads. Initial clus-

tering calculations included all 41 utilization metrics across all node types. However,

strong correlations between metrics such as pks in - bytes in and mem free - swap free,

along with variations of maximum and minimum metric values across differing node

types, produced utilization clusters that were either non-useful or inaccurate. We
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restricted our dataset to the 96% of jobs that execute on a Basic nodes. Limiting

workload analysis to a specific node type allows for a uniform evaluation of resource

utilization for a known window of job time as defined by the job-node relationship. In

addition, we further restricted our dataset by eliminating metrics that from a utiliza-

tion clustering standpoint would be considered duplications. Finally, we calculated

new metrics to ensure each cluster metrics was related to resource utilization, not

the lack of utilization (memory used vs. memory free) and estimated data generation

metrics (Total bytes written) based on average metric rates and job runtime. The list

of metrics used for utilization clustering is shown in Figure 5.7.

• cpu load : Percent of computational load (utilization) [169]

• mem used : Available memory - free memory.

• job write: (Average disk write) * (runtime)

• job read : (Average disk read) * (runtime)

Figure 5.7: Cluster utilization metrics

We selected the K-means [141] clustering method, which has been used ([170],

[171]) successfully in workload characterization analysis. K-means cluster analysis re-

quires the specification of the number of clusters to extract. Several cluster variable-

selection heuristics have been developed [172] for k-means clustering, including the

so-called ”elbow” scree plot method. Using the scree plot method we selected between

4-8 clustering groups depending on the data set. However, in each analysis clusters

of similar usage ratios were combined into three final clusters. Cluster profile values

are based on maximum (1) and minimum (0) observed metrics across data sets. The

job-utilization clusters for Basic queue nodes are shown in Figure 5.8.

Our cluster analysis identified CPU, CPU + RAM, and IO dependent workload

profiles. Statistics related to our workloads are shown in Table 5.8.
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Figure 5.8: Basic queue node cluster profiles

Table 5.8: Basic node cluster statistics

Metric/Cluster CPU CPU + RAM IO
job count 40% 44% 15%

cluster time 8% 79% 13%
cpu load ave 72% 88% 22%
cpu load max 250%3 1475% 60%
mem used ave 22% 88% 77%
mem used max 60% 100% 100%
total read ave 90MB 271MB 906MB
total read max 250GB 327GB 1.5TB
total write ave 2.3GB 2.6GB 16GB
total write max 3.7TB 1.1TB 22TB
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In the following sub-sections we provide details of cluster analysis for each of the

original three (CPU, CPU + RAM, and IO) workload profile groups.

CPU sub-clustering: The CPU sub-cluster profile is shown in Figure 5.9. Within

the CPU profile we identified a LOW CPU resource sub-cluster, which accounts for

28% of the CPU cluster jobs and 35% of the runtime. This sub-cluster uses less than

48% of available CPU and 13% of RAM.
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Figure 5.9: CPU sub-cluster profiles

CPU+RAM sub-clustering: The CPU+RAM sub-cluster profile is shown in Fig-

ure 5.10. Within the CPU+RAM profile we identified a LOW RAM resource sub-

cluster, which accounts for 21% of the CPU cluster jobs and 8% of the runtime. This

sub-cluster uses less than 67% of available RAM. In total, this cluster was shown to

underutilize resources on 40% of jobs.
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Figure 5.10: CPU + RAM sub-cluster profiles

IO sub-clustering: The IO sub-cluster profile is shown in Figure 5.11. Within the

IO profile we identified a LOW WRITE resource sub-cluster, which accounts for 22%

of the CPU cluster jobs and 16% of the runtime. This sub-cluster uses less than 6%

of available CPU and 25% of RAM. In total this cluster was shown to underutilize

resources on 32% of jobs.

5.2.4 Workload Characterization in Cresco

The analysis of HPC workloads suggest that all but a very few data-dependent

and/or data-restricted jobs are candidates for alternative computational architec-

tures. Highly computational multi-node and accelerator-based jobs make use of tra-

ditional local and national HPC resources, while single-node jobs are candidates for

consolidation on virtual machines ([173], [174]), container-based environments [131],

or unisolated process co-location [175] on physical nodes.

Based on continued increases in workload and computational diversity, future re-
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Figure 5.11: IO sub-cluster profiles

source scheduling systems, like those at use by Google [176], will need to support

hybrid (batch and continuous) resource assignments across both general purpose and

accelerated processing (GPU [177], MIC [178], FPGA [179], etc.) environments. In

addition, the introduction of container-based [125] resource isolation provides the

ability fine granularity manipulate resource allocations, even within a single compu-

tational node.

In the context of Cresco, we are also interested in workload prediction (Futura),

resource utilization reporting, and resource scheduling optimization (Optima). While

a number of existing techniques ([180], [181], [182]) have been developed for workload

characterization, few make use of high-rate discrete metric collection and process-

ing, or high-rate continuous workload assessment modeling, which in and of itself

constitute a serious computational challenge. The lessons learned and techniques de-

veloped in this work directly contributed to workload characterization methods used

by Cresco Global controller modules.
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5.3 Genomic Processing Framework

Genomic processing is important to a wide range of areas, from fundamental re-

search to applications in diagnostic medicine. Starting in late 2000s, advancements

in second-generation DNA sequencing technology out-paced improvements in compu-

tational processing. The rapid acquisition of genomic data results in many terabytes

of storage and tens of thousands of CPU hours of processing. As whole exome sequenc-

ing (WES) and whole genome sequencing (WGS) using next generation sequencing

(NGS) technologies become common in diagnostic medicine and research, computa-

tional and ongoing storage costs increasingly become a larger portion of sequencing

operational costs. Genomic processing for clinical purposes imposes even greater chal-

lenges related to operating environment validation, service level commitments (SLC)

and data stewardship.

Genomic pipelines are often developed for specific processing environments and

are typically unable to leverage resources available outside the designated environ-

ment. Genomic information generated by NGS is only part of the data involved in

pipeline processing. Depending on the pipeline in use, hundreds of gigabytes, possi-

bly terabytes, of additional data such as: reference, annotation, tools, and operating

systems dependencies are needed. Due to effects of so-called data-gravity, a phenom-

ena where data tends to reside in proximity to the point of initial processing, one

typically finds pipelines either limited to local resources environments or restricted to

platforms utilizing shared public cloud resources.

In collaboration with the University of Kentucky Medical Center we developed

a flexible genomic processing framework for ”write once, run anywhere” custom ge-

nomic pipelines, to be executed across a range of computational resources and environ-

ments. We believe that a wide variety of computational environments, determined by

workload characteristics, should be used for genomic processing including HPC, cloud

computing, and accelerated hardware (GPU, FPGA, custom ASIC, etc). The purpose

of the work described in this section is to acquire data from genomic sequencer de-
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vices, identify potential processing resources, and manage the end-to-end flow of data

and processing encapsulating genomic pipeline processing within a Cresco-managed

application.

5.3.1 Cresco-based Architecture

Genomic processing pipelines can be represented by a directed acyclic graph (DAG).

In a pipeline DAG, nodes represent data sources or transformations, while edges

represent the flow of the pipeline between nodes, as shown in Figure 5.12.

Source OI ProcessI O StoreI O

Figure 5.12: Pipeline DAG

The simple pipeline shown in the above figure is representative of a single phase

pipeline, such as the conversion of raw sequence images to Fasta [183] records.

Nodes represent context-specific functional workloads, such as data transforma-

tion, enrichment, processing, etc., edges are points of data exchange. Specifically,

nodes represent functional modules that provide sets of tools and data sources used

in genomic processing. Nodes can act as both sources and destinations for flows of

data, as defined by the corresponding directed edges. Input and output interfaces

(areas where edges connect), shown in Figure 5.12 as I and O, for each node type

are defined by their data schema. In order for the output interface of the Source

node, SourceO, to be compatible with the input port of the Process node, ProcessI ,

the data schema of the two interfaces must be compatible, including any security

restrictions inherited from upstream data flows.

Cresco provides underlying resource management, component communication, job

monitoring, and performance measurement for the genomic processing framework.
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The Genomic Control System (GCS) makes use of the Cresco Application Description

Language to generate user-defined pipeline graphs, which in turn are used by Cresco

to implement and execute pipelines. Some genomic data, especially in the areas of

diagnostic medicine, must be tightly controlled from a data access standpoint. As

per the Cresco framework, all agent communication is encrypted, with explicit access

controls for each participating agent. GCS receives state information from agents

operating on resource nodes, which describe capacities (CPU count, available memory,

etc.) and current operational status. When work arrives for a specific pipeline the

GCS assigns workloads to resources agents. If no resource is available, the GCS can

request additional resources by running an agent on a wide-range of dynamic HPC

or cloud environments. Once initialized, the agent contacts the GCS to advertise its

capabilities. On workload initialization, the agent adjusts tool parameters described

in the pipeline manifest to match its discovered capabilities, thus providing tuning on

an instance runtime level. During workload execution, the agent sends both resource

utilization and process status data back to the GCS. Through the analysis of resource

cost and utilization, in-conjunction with runtime information, best-fit resources can

be determined.

In the next section, the computational, network, and storage environments man-

aged by Cresco as part of the genomic processing framework are described.

5.3.2 Cresco-managed Environments

Cresco manages a number of environments and technologies at the University of

Kentucky in relation to the described genomic framework including VM, Container,

storage, and networking.

Containers Application container technology [119] is extremely attractive for use in

genomics processing. From the prospective of the application execution environment,

a container running on a laptop is the same as a container running in a HPC or cloud
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environment. Phases (nodes) of pipelines are implemented as Docker containers in

this framework. Genomic container images contain all system-level and application-

level dependencies required to run one or more genomic applications. Each time a

container layer is changed, a new registration is required for that image, so registered

genomic container images provide a unique reference related to specific application

versions. Registered genomic container images are used across all genomic processing

environments in the framework. Container operations are managed as Cresco Plugins.

Data written to a container during application execution is non-persistent, so pre-

emption of container operation results in the loss of any data generated during a

specific execution of the container. However, if an attacker has access to a node run-

ning a container, the current state of the running container can be registered (saved)

as a new image. To prevent data loss as a result of creating a new container, the

filesystems (within the container storing restricted data) are encrypted with private

keys that reside only in container memory. Keeping filesystem encryption keys in

memory prevents access to restricted data if the container was restarted, such as

the case if a container was registered as a new image. Encryption is enforced on

any container-network communication, preventing data loss through traffic ”sniffing”

[184]. In addition, container communication is restricted to isolated nodes, which

limits data loss through controlling communication end-points. Containers make use

of namespace isolation, which means that application processes and memory running

inside of a container are protected from other containers as well as the host, which

runs in the default namespace.

Despite controls limiting the interaction of unrestricted and restricted workloads,

the encryption of data-at-rest and data-in-transit on containers, and restriction of

container communication to trusted sources, container compromise is still possible.

To limit the impact of compromised containers, single-use tokens are issued by the

pipeline controller to containers for every genomic data-set transaction. Additionally,

a new container will be executed for every new genomic data-set transaction. This
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policy ensures that a compromised container can, at most, expose its workload, but

not the workloads of other containers, or a broader collection of restricted data.

While containers are ideal for providing reproducible application environments,

current container storage architecture is not well suited for large (>1Tb) volume

management. More importantly, we don’t want to have to move hundreds of gigabytes

of reference data for each container execution or be restricted to locations where

reference data already exist. Along with container-based versioning, we also provide

methods to package, retrieve, and validate additional tools and data required to run

custom pipelines.

Object Storage Object-based storage is used for the management of raw and pro-

cessed genomic data. Object-based systems allow for the control of data on the

object-level (per sequence or result), they allow meta-data including additional au-

diting and security controls to be part of the data management environment. In

addition, object-based storage allows us to more tightly control data protection poli-

cies by providing replication.

While object-based storage is ideal for storing raw genomic and processed re-

sult data, few applications make use of object-based storage directly. Cresco Plug-

ins manage filesystem and object interactions. It is worth noting that just as with

computation environments, both local and public cloud storage can be used by our

framework.

With abstracted execution (Containers) and storage (Object) environments, the

framework is capable of scheduling work in a number of environments, as discussed

below.

HPC clusters The use of HPC clusters is common in genomic and bioinformatic

processing. There are two common approaches taken to address the processing of

restricted data on HPC clusters:
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• Physical-level isolation: A physically isolated HPC cluster dedicates compu-

tational, storage, and network resources to restricted workloads. These, often

physically-isolated, HPC clusters are purpose-built and used for the exclusive

processing of specific types of workloads, such as genomic pipelines. In this

model, tightly controlled security measures can be implemented around points

of data ingress and egress, since users and workloads in the system are con-

sidered trusted. Typically, users of these systems must agree to usage policies

where all users are responsible for their own data, as well of data of others if it

is inadvertently encountered in the trusted system. The primary benefit of this

model is the ability to restrict communications to known trusted sources. The

primary drawback of physical-level isolation is that unused resources that might

otherwise be shared with unrestricted workloads are unavailable for assignment.

• Shared : In shared HPC cluster deployments restricted and unrestricted work-

loads are run on the same physical infrastructure and operators rely on usage

policies and security controls to mitigate risk of data contamination. As with

physical-level isolated systems, users of these systems agree to usage policies

that make the user responsible for managing their own data as well of any

other restricted data they might encounter. While it is possible that com-

pensating controls like queue-level separation of workloads are implemented,

typically these systems don’t distinguish between unrestricted and restricted

workloads. With shared HPC systems control of points of data ingress and

egress is much more difficult since HPC operators have no a priori knowledge

of unrestricted data transfers. The primary benefit of this model is that all

available resources can be used for both restricted and unrestricted workloads.

The primary drawback of this system is that while well-defined usage policies

and violation notifications limit liability risk, policy in and of itself provides no

technical controls to prevent policy violation.
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While this framework could be used for physically isolated HPC clusters, the pri-

vacy preserving aspects of the framework provide the most benefit in shared HPC

environments. As mentioned above, shared HPC systems traditionally do little or

nothing to separate restricted workloads from unrestricted workloads. The primary

risk in mixing workload types, and by association workload data, is that global con-

straints can’t be applied to a shared HPC that both simultaneously protect restricted

workloads, while providing open access to unrestricted workloads. Based on this ob-

servation, we must conclude that from a shared HPC administrative-level (scheduling,

accounting, storage, etc.), restricted and unrestricted workloads can not and will not

be differentiated. In place of system-wide policies, we must focus on protecting re-

stricted workloads on the workload level. This is accomplished by isolating restricted

workloads through the use of container technology managed through Cresco Plugins.

Cloud computing HPC environments are typically comprised of highly-connected

physical hardware nodes, with many processor cores. However, there are some ge-

nomic processing steps that are serial in nature and only make use of a single core.

When a multi-core node is used for single-core (serial) operations, the rest of the cores

sit idle, thus wasting potential processing power. One approach to dealing with serial

operations is to execute single-core pipeline processes on virtual HPC nodes. Virtual

HPC nodes share underlying physical resources and provide process isolation on the

machine-level. For instance, two virtual HPC nodes running on a single physical

server could process two separate serial processes simultaneously. In addition, since

isolation is taking place on the machine-level, unrestricted and restricted workloads

can run on the same physical machine in two logically separated virtual machines.

As with physical HPC environments, containers managed by Cresco are used

within virtual environments to manage data flow and processing.
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Figure 5.13: Pipeline processing environments

5.3.3 Cresco-managed Operations

In this section we cover genomic processing steps managed by the GCS and related

Cresco components.

• Genomic object generation: Raw data from genomic sequencers is stored on a

network-attached client workstation. A Cresco Agent is deployed on sequencer

workstations and a genomic processor plugin is used to monitor the workstation

filesystem for the start of sequence generation. Once a new sequence is observed

the Cresco Plugin registeres the sequence with the GCS and awaits output

completion. Once complete, the plugin generates an MD5 [185] hash of all files

generated by the sequencer and transfers the data to the object storage system.

• Pre-processing : The GCS notifies a pre-processing node that a new sequence is
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available and provides information (location, credentials, object id, etc.) needed

for data transfer. The pre-process node transfers and MD5-verifies the sequence

data, then notifies the GCS that the sequence is ready for pre-processing. Based

on bioinformatician parameters, sequences are broken into samples and corre-

sponding sample configurations are generated. The samples and configuration

are then transferred to object storage and the GCS is notified that samples are

ready for processing.

• Processing : The GCS notifies the processing agent that a sample is ready for

processing and, similar to pre-processing, data is transferred to the processing

node. The agent on the processing node reads the configuration manifest and

begins environment validation. Resource bundles specified in the manifest are

download from object storage, if needed, and verified. The specified base ge-

nomic container is pulled or cache is verified from the container registry. Once

the container is active and the specified environments has been validated, the

agent adjusts runtime parameters of genomic tools in the pipeline based on

available resources, and starts processing. Using Cresco KPI, communication

resource utilization paramaters, as shown in Figure 5.13, and process status are

communicated to the GCS for the duration of execution. Using KPI indicators

the efficiency and cost effectiveness of various environments can be determined

through comparisons of resource utilization, job execution time, and environ-

mental cost.

• Post-processing : Once all of the samples have been processed, the GCS directs

resulting data to automated post-processing, an interactive genomic workspace,

or to an external application or storage.
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5.3.4 Cresco-based Genomic Framework

Our Cresco-based genomic processing framework provides many of the advanced fea-

tures of commercial cloud-based frameworks, with the added flexibility of edge (local,

cloud, or hybrid) operation based on workload needs. In fact, while our current im-

plementation manages custom pipelines, projects that already provide containerized

images can be used directly within our framework.

5.4 GLobal Edge Application Network

Testbeds provide environments for replicable testing of computational hypothesis and

techniques. Testbed environments are widely used in the development and demonstra-

tion of distributed network and communication systems. The Global Environment

for Networking Innovation (GENI) [186] and Future Internet Research and Exper-

imentation (FIRE) [187] are two of the most prominent next generation network

and innovation testbed projects. The GENI and FIRE projects allow for ”at scale”

network experimentation using a network of globally distributed edge resources. In

efforts to address the specific IoT experimentation needs [188], a number of indepen-

dent IoT testbeds [189] have been deployed in federation with FIRE across Europe.

The majority of these IoT specific testbeds focus on lower-level device data collection

and typically range in scope from single buildings to city-scale (Smart City) exper-

imentation. GENI resources (GENI racks) are deployed at universities and cities

around the world, which results in the potential for broad geographic experimenta-

tion. In the US, IoT and Smart Cities applications, like those developed as part

of US Ignite [190] efforts, are often deployed on GENI resources. However, at the

time of this writing there are no specific Cyber-Physical Systems (CPS), Machine

to Machine (M2M) technologies, Industrial Internet, or Smart Cities project feder-

ations with the GENI network as there are with FIRE. Perhaps of greater concern,

testbeds are generally considered research environments, where service is maintained
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on a best-effort basis. While testbeds are suitable for experiments, they are subject

to resource failure and are not appropriate for mission-critical applications, such as

those used in the management of city, regional, or national operations. In the absence

of resilient cyberinfrastructure, software frameworks can be used to mitigate failures

and manage the resource needs of applications.

Below we discuss the GLobal Edge Application Network (GLEAN), a distributed

network of managed resources found on the edges of networks and central data cen-

ters. GLEAN operates across a number of environments including standalone servers,

distributed testbeds, and cloud computing resources. The network is specifically de-

signed to address the challenges of IoT data collection, analysis, monitoring, and

measurement across islands of edge and data center resources.

As previously described, the following items must be addressed in order to use

existing testbeds as production edge application environments; a) Stability of com-

puting and network resources; b) Management a large number of objects; c) Quality-

of-Service (QoS) enforcement of resource reservations; d) End-to-end monitoring and

measurement of resources; e) Machine-to-Machine (M2M)-focused operations; f) Sim-

ple deployment of durable applications. While many other requirements are specific

to IoT operations, the previous list is limited to addressing suggested limitations of

existing underlying deployments.

A gap exist between production cloud-based IoT frameworks, which are often

focused on consumer devices, and testbed IoT edge (city, building, etc.) frameworks,

typically focused on Cyber-Physical System (CPS), Industrial Internet, and Smart

Cities. While GLEAN does not claim to close the gap between IoT frameworks, we do

offer a host of changes to be made to in conjunction with existing edge environments

and architectural principles for new classes of globally-connected infrastructures.

The remainder of this section will cover GLEAN: A GLobal Environment for IoT

Edge Computing, which is experimentally deployed on a 5 region (25 node) testbed

at the University of Kentucky.
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5.4.1 GLEAN Architecture

While the service-level requirements of production environments differ from experi-

mental testbeds, the GLEAN environment can be deployed on the existing GENI or

similar environments. Using software-defined provisioning and networking [53] capa-

bilities of the GENI network we can stitch together islands of low-level edge resources,

which from the infrastructure standpoint are indistinguishable from standalone re-

sources. The remainder of this section describes a system that can work from within,

or adjacent to GENI, depending on the desired service-level requirements. The Cresco

framework is used to manage GLEAN resources and operations across local, regional,

and global domains. As is common with software defined systems (including GENI),

GLEAN is divided into separate control and application planes. While the Cresco

framework is used in the control plane, additional IoT frameworks and/or federations

can be used on the application plane.

Stability of computing and network resources Testbed environments provide

low-level access to physical and virtual infrastructure, which is needed for experi-

mentations, such as protocol and device development. In testbeds such as GENI,

provisioning of low-level infrastructure must be coordinated between heterogeneous

hardware and software implementations, which could be geographically distributed

around the globe. The testbed scheduling service has little or no information per-

taining to the operational state of the underlying system. This type of high-level

scheduling of low-level geographically distributed resources is very different from the

way cloud providers, such as Amazon EC2, provide resources. For example, a cloud

provider has complete control over their underlying infrastructure and software stack

used in the provisioning of virtual resources. In comparison, GENI must manage

the low-level stitching of communication paths through Internet2 (I2) in conjunction

with local (campus) networks, and the provisioning of computational resources across
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heterogeneous environments. These scheduling practices, while necessary for experi-

mentation with testbed environments, lead to high-rates of provisioning failures. In

GLEAN we focus on providing environments for edge applications, not underlying

infrastructure, so once core underlying resources have been provisioned they remain

online as long as the framework is active. Applications share underlying low-level

resources managed and monitored by GLEAN. We are not suggesting that access to

low-level hardware (network devices, sensors, etc.) is not needed, but rather that

from an edge computing prospective access to these devices can be gained through

external IoT gateways, lower-level framework federations, or directly over higher-level

protocols.
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Figure 5.14: GLEAN sites connected over Internet2

Figure 5.14 shows two GLEAN sites connected over a low-level connection through

I2. The link L0.0/L1.0 represents a Data-Link layer (L2) connection directly between

edge routers Ri, i = 0, 1. Each edge site provides one or more computational resource
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providers CH with optional storage S resources. Links LX.1 represent L2 communica-

tion between edge routers and computational/storage resources. Container-provided

or -managed resources are represented by C, where links LX.4 & LX.6 represent

several possible communication methods including, but not limited to, native IPv6

container endpoints, IPv4 tunnels over IPv6 networks between containers, or other

protocols and transport mechanisms implemented in conjunction with CH resources.

Devices, represented as Dx.y, can be directly accessible globally or serve as data

sources for edge gateways and/or higher-level processing functions. Figure 5.15 pro-

vides an example of multi-transport communication between two endpoint devices

managed by GLEAN.
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Figure 5.15: Tunnel between regions

Management of a large number of objects The first step in managing IoT ob-

jects is in network communications. However, there are already over twice as many

devices in China alone (9 billion as of 2014) than there are total IPv4 network ad-

dresses [1]. Thus, GENI and many other testbeds that are based on IPv4 addressing,
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will not be sufficient to address a large number of devices. In addition, IPv6 support

for public cloud resources has been limited to specific regions and services or com-

pletely unavailable. GLEAN operates in a ”dual stack” allowing communications on

IPv4 and IPv6 networks. GLEAN can be used to translate messages and address re-

sources between IPv4 and IPv6 accessible resources. While GENI might not support

IPv6 addressing of its resources, it does provide lower-level network resources, which

allows us to communicate using IPv6 between GLEAN instances. For instance, two

GENI virtual machines in separate geographic locations might use publicly accessible

IPv4 addresses to communicate with the outside world. However, these same vir-

tual machines might also have a direct link-layer connection between each other or

another endpoint, which can be used to communicate using IPv6. In GLEAN, the

control plane and associated network overlays all operate over IPv6 taking advantage

of the Quality of Service (QoS), security, and large address range features of the IPv6

protocol. Application layer services can operate over IPv4 or IPv6, depending on re-

quirements and availiability. IPv6 allows us to efficiently assign and route billions of

addresses to individual edge resources. In Figure 5.14, routers designated as R0 and

R1 are directly connected via L2 link. These software4 routers run Bird [191] Border

Gateway Protocol (BGP) daemons and are capable of propagating IPv4/IPv6 routes

between other GLEAN sites and external networks. Figure 5.16 shows an example

GLEAN site network.

As shown in the previous figure, a /56 IPv6 range is advertised externally by the

site. For each compute host C a /64 range is assigned, providing 264 addresses for

each resource-providing or managing host. For each application container D a /128

address is assigned, which allows the application container to natively communicate

with IPv6 networks. Additionally, /64 and /128 addresses can be assigned to external

IoT gateways and directly to devices.

Resources and devices functioning as part of GLEAN are managed by Cresco,

4The software routers can be replaced by hardware routers if needed.
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Figure 5.16: GLEAN site network

which is capable of addressing large numbers of devices.

QoS enforcement of resource reservations Testbeds are able to provide com-

plex resource reservations, but lack the global ability to enforce resource-level Service

Level Commitments (SLC). In some cases, such as with I2 AL2S links [192], the

underlying infrastructure does not support QoS controls necessary to satisfy SLCs.

However, from the edge computing prospective, we can control both compute and net-

work resources to a high degree of detail. In addition, while we can’t yet5 guarantee

bandwidth between I2 connected sites, we can control the priority of traffic between

sites. The Linux kernel’s network stack provides native network traffic control and

shaping features. QoS policies can be implemented from routers to containers, as

5QoS features are on the I2 AL2S roadmap
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shown in Figure 5.16, and noted by IPv6 CIR (Committed Information Rate) [193].

QoS policies can be implemented on software and hardware routers connecting

sites, either through static classes or dynamic reservations. Through the use of Linux

kernel namespace isolation and resource control groups (cgroup) we can impose re-

source imitations, prioritization, accounting, and control of application containers.

While similar limits can be imposed by hypervisors managers for entire virtual ma-

chines, cgroups management allows for the process-level control of applications. For

example, specific components of the Cresco control system can be given system-wide

priority of compute and network resources, as needed for pseudo real-time system

control. Likewise, specific virtual machine resource equivalencies can be assigned

and enforced for application containers. With the assignment of explicit minimum

resource allocations across edge resources, we can enforce SLCs of resource reserva-

tions. Dynamic QoS operations will be managed by Cresco agents.

End-to-end monitoring and measurement of resources End-to-end monitor-

ing and measurement of federated resources used in experimentation and distributed

applications is a challenge. While high-level objects like provisioned network and

compute resources are available, low-level monitoring and measurement of underlying

edge resources and related networks are either not available or specific to underly-

ing federations or service offerings. For example, an application provisioned between

two sites might use resources provided by different federated compute projects, with

differing and possible unavailable low-level resource monitoring capabilities. In ad-

dition, data related to the state of the physical network(s) providing connectivity

between sites might also be unavailable. In GLEAN we can deploy Cresco agents

for resource-providing systems to verify operational status, including verification of

SLCs. In addition, lower-level infrastructure performance information can be made

available in conjunction with application-level performance information, allowing for

the correlation of edge reservations to global application performance.
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M2M-focused operations In testbed and cloud computing infrastructure envi-

ronments resource topologies are either requested as independent resource items or

as collections of interconnected systems. For instance, one might use Amazon EC2

to provision one or more independent virtual machines. Likewise, a researcher might

use GENI network to provision a multi-site topology connecting computational re-

sources running specific software by means of the Rspec [194] description language. In

both of these cases resources are described and provisioned statically through central

control services. In an edge-focused environment, infrastructure management must

not only respond to application-level changes, but it must anticipate, coordinate, and

implement SLC-driven changes dynamically, based on direct application interactions.

For instance, a overloaded edge at site A must be able to intelligently interact with

edge site B and cloud site C to determine appropriate workload offloading, based on

observed workload characteristics.

The GLEAN distributed control plane is based on the Cresco hierarchy of dis-

tributed agents. Agents operate autonomously and are capable of dynamically de-

veloping operational topologies through M2M discovery processes. Every agent can

communicate with all other agents through a protocol-independent communication

hierarchy. Agent communication is restricted independently at each level of the hi-

erarchy, based on group security policies. Agents are responsible for application

components and resources, while Regional controllers are responsible for operations

in their region, and global controllers manage regional controllers. Provisioning is ac-

complished through M2M-focused resource requests distributed throughout the global

environment. Global requests are filtered by input predicates and best-fit matching

of resource to workload is pushed down to regional and agent-levels.

Simple deployment of durable applications Application platform services, like

those provided by public clouds, abstract the underlying details of infrastructure from

application developers. If an underlying infrastructure component fails on the plat-
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form, workload and data is reassigned to healthy resources. For location independent

applications, such as websites, a platform abstraction where the underlying service

requirements determine workload placement is attractive, since we can move the data

to the locations where resources are available. However, in the realm of edge com-

puting we often want to selectively determine where workloads are processed, thus

moving computational resources to sources of data.

In contrast to cloud platform services, testbed resources (GENI) are explicitly

assigned by users using a topology description language ”Rspec”. While users can

provide custom images and describe complex resource topologies, there is otherwise no

abstraction from the infrastructure level. Unlike cloud platforms, testbed provisioning

systems typically do not detect and reassign resources on infrastructure failures.

Applications deployed on cloud platforms lack edge computing control and testbeds

lack infrastructure abstractions and resiliency that simplifies the deployment of durable

applications. GLEAN aims to bring platform-like abstractions of infrastructure to

edge computing environments, including but not limited to, testbeds. While the de-

tails of the provisioning process are outside the scope of this section, as with the

GENI Rspec, GLEAN uses the Cresco Application Description Language (CADL)

to implement and maintain application topologies. However, while Rspecs resource

assignments are typically prescribed, with GLEAN, resources are assigned through

both predicate filtering and best-fit scheduling. For example, data collection services

are pushed to specific locations as predicated by description, while higher-level pro-

cessing can be assigned, and in the future reassigned, to an adjacent edge or cloud

service. In addition, the current implementation of GLEAN makes use of both public

and private container registries. Public registries are typically used to provide source

containers for applications. Private registries are used as both application sources and

container snapshot targets. The description of the application along with the ability

to snapshot6 existing deployed applications, allows GLEAN to redeploy application

6Snapshots provide disk and configuration data only.
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components or entire topologies in the event of infrastructure failure. In addition,

where permitted by predicate assignment, workloads can be reassigned as environ-

mental variables change. For instance, location independent workloads on a specific

edge can be migrated to cloud resources as additional local resources are needed.

5.4.2 Related CPS Environments

As previously mentioned, there are examples of CPS and IoT related edge computing

on existing GENI and FIRE international testbeds. While these IoT efforts might

operate on international testbeds, most projects typically focus on smaller scale test-

ing.

City-scale IoT-focused testbeds such as SmartSantander [188] and others [189]

also exist. A number of IoT efforts focus on the deployment of IoT hubs to support

diverse communication protocols and large numbers of devices on a building-scale,

such as FIT IoT-LAB [195] and The IoT Hub [196].

Components of both existing testbeds and IoT-specific efforts complement GLEAN.

Existing federation services and low-level resources are used by GLEAN to deploy

globally distributed edge services, which can include existing city- or building-centric

IoT hubs.

5.4.3 GLEAN Conclusions

Global testbeds lack the production quality service aspects of public cloud computing

offerings. Conversely, public cloud computing offerings lack the edge computing re-

sources offered by testbed resources. Both cloud and testbeds typically lack the ability

to directly address, manage, and access very large numbers of devices. In addition,

neither testbeds or cloud offerings provide end-to-end monitoring, measurement, pro-

visioning, and migration of services between edge and cloud resources. Existing IoT

efforts (Hubs, IoT-testbeds, etc) typically focus on low-level device communication

and are limited to city- or building-centric deployments.
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We have described how GLEAN, and thus Cresco, can be used to provide a global

environment for IoT edge computing. GLEAN bridges the gap between existing

global infrastructures and existing IoT efforts by addressing issues related to a) Sta-

bility of computing and network resources, b) Manage a large number of objects, c)

QoS enforcement of resource reservations, d) End-to-end monitoring and measure-

ment of resources, e) M2M-focused operations, and f) Simple deployment of durable

applications.
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6

Building a Smart City Application

In this chapter we describe a process of developing a Cresco application to solve

a hypothetical problem. While there are a number of existing real-world Cresco

applications, including those described in Chapter 5, Case Studies, we want to de-

scribe the potential use of Cresco in large geographically distributed edge applications.

Cresco serves as a potential framework to solve a number of challenges required for

the advancement of Smart Cities. We will describe the process of using the Cresco

framework in the context of a hypothetical Smart City application used to manage

city-wide distributions of sensor arrays and vehicle data. Sections 6.1, Application

Requirements and 6.2, Application Design, are written as if the hypothetical appli-

cation was to be fully developed and implemented. The remaining sections describe

how we implement and operate the a subset of the described hypothetical application

to demonstrate Cresco in this context.

While the source data and resulting analysis data will be simulated, the application

will make use of Cresco as if it was fully developed and implemented in a production

environment. The described application makes use of many of the advanced features

of the Cresco framework and aims to highlight the use of Cresco in an edge computing

environment.
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6.1 Application Requirements

As mentioned in Chapter 1, Edge Computing Introduction, Smart Cities applica-

tions such as traffic and environmental sensor management require data processing

on street-intersection, neighborhood, and city-wide levels. Potential data sources in-

clude distributed sensor arrays, vehicles, and personal devices. Edge resources might

be used for data interoperation, processing (analysis) services, and the coordination

of information, such as autonomous Vehicle-to-Vehicle (V2V) interactions. As previ-

ously mentioned, a single autonomous car is capable of generating four terabytes of

data daily, which places serious demands on infrastructure and software systems sup-

porting Smart City efforts. Likewise, the coordination of millions of potential sensors

and devices in a large metropolitan area is a serious computational challange.

While there are no accepted standards for infrastructure supporting Smart City

efforts several trends have emerged, which will guide our application requirements.

Cities like Chicago are deploying general purpose sensor arrays to ”track the city’s

vitals” [59]. These sensor arrays are often deployed in conjunction with existing

light poles, which provide power and often network connectivity for street-level cam-

eras. Assuming this trend continues we should expect to see bidirectional wireless

communication from distributed ”processing poles” (PP), which can be used to com-

municate with end-devices such as vehicles or personal devices. PPs will likely provide

sensor and device gateway functions (communication, data exchange, filtering, etc.)

for street-level services areas. As previously mentioned, an attractive location for

neighborhood-level data aggregation and intermediate processing of PP data is within

telecommunication central offices (CO). Projects like CORD [36] provide Central Of-

fice Processing (COP) services from computational clusters distributed around city

COs. COP might include analysis services to route traffic, notifications of higher-level

city services of street-level problems, and additional analysis services only possible

through the coordination of data from multiple PPs. While COPs might maintain

a subset of city-wide data, such as current street-level traffic data, they need not
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maintain time-series logs of data from their or other COP regions. Aggregations

of neighborhood-level COP data and related processing will likely be maintained in

large computational clouds found within cities or other geographic areas. As data

is propagated from PPs (street-level) to COPs (neighborhood-level) and finally to

CP(s) (city-wide), computational capacity increases as does communication latency.

This inverse relationship between potential analytic capacity and communication re-

sults in the generation of computational models on higher-levels of process hierarchy

and the execution of models on lower-levels. For example, aggregations of street-level

data summaries provided by COPs can be used by CPs to generate weighted graphs

pertaining to city-wide traffic status. City-wide traffic status might then be propa-

gated to all COPs for use in neighbor-level traffic route calculation. Likewise, images

and related sensor data generated by PPs might be propagated to CPs to generate

image models to be implemented on PPs. Computer vision models on PPs might be

used to determine events such as if an intersection is clear of snow or to detect if an

accident has occurred. A potential city-wide data path topology between devices and

processor is shown in Figure 6.1. In the figure, SAs represent sensor arrays and Vs

represent vehicles. Sensor arrays are uniquely identifiable for each PP, while vehicles

and other transient devices might be observed by one or more PPs. Data exchange

between end-devices and PP is defined as PP-Device Data, data between PP and

COP is defined as COP-PP Data, data between two COPs is defined as Inter-CO

Data, and data exchanged between COP and CP is defined as CP-COP Data.

An application used to support the described Smart City will need to provision

workloads on a number of devices over a distributed geography, manage the flow

of data between workloads, and exapnd or contract provisioned resources based on

sources of data, results of analysis, and resource requirement demands.
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Figure 6.1: City-Wide Data Topology

6.2 Application Design

In this section, we describe the design aspects of a Cresco application used in the

management of Smart Cities. As previously discussed, the Cresco framework operates

in a hierarchy, which is configured based on application requirements and avalable

resources. Figure 6.2, shows the hierarchical mapping of Cresco components to Smart

City workload, resources, and designated data processing locations (PP, COP, CP).

In the figure the data designated by dashed lines represents Cresco Plugin-to-Plugin

workload communications, which is commonly referred to as the Data Plane. Solid

lines represent data exchanged between Cresco components in the operation of the

framework, which is commonly referred to as the Control Plane. Data and control

planes can both operate on the same physical and logical networks. However, when

planes are combined on the same network, priority is typically given to the control

plane allowing control instructions to be issued even if the data plane is saturating

the network.
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Figure 6.2: City Data and Cresco Topology

PPs are deployed on standalone devices with little or no general computing capac-

ity. COPs are deployed on cluster resources with the ability to increase and decrease

capacity as needed. CPs are deployed on large computational clouds, which could

be provided by the city or a public cloud provider. If a city event is taking place

in a specific neighborhood the processing capacity of the assigned COP should be

increased as needed. Likewise, during events impacting the entire city (for instance

rush hour), COP and CP capacities should be increased. The Cresco framework will

be used to increase and decrease process capacities as needed.

PP: PPs serve as the interface between end-devices and the application. PPs will

function as gateways for sensors and transient devices such as vehicles and personal
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mobile devices. Sensor arrays maintained within the same proximity as a PP will be

directly wired to and potentially powered by the PP gateway. Transient devices will

communicate with PPs using wireless technologies. Since PPs function as wireless

radio transmitters, the coordination of wireless transmit power will be coordinated

through wireless management services provided by COPs. Data obtained by PP

gateways will be transmitted to or between end-devices and upstream COP services.

For application communications, PPs will connect to a message queues provided by

their upstream COPs. The Cresco components that make up PPs are shown in Figure

6.3.

PP Device 
Gateway

VSA

PP
Region

PP Agent

Wired

COP Queue

Wireless

Figure 6.3: PP Data and Cresco Topology

When PP sensors readings exceed alarm thresholds, a message alert is propagated

to upstream COP processors. Device data such as numbers of observed vehicles,

speed, and traffic routing request that are propagated to COP processors. In addition,

data reduction and privacy-preserving features are provided by data filtering and

obfuscation measures applied to device data. Likewise, information pertaining to

specific vehicles is assigned an internal unique identifier by the PP Plugin before data

is propagated to COP processing, which obfuscates any possible identifiers provided

by the remote device as part of the PP-device gateway message exchange. Data from
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the PP Plugin is propagated to an assigned queue provided by a COP.

COP: Given COP resources should be able to expand and contract as needed the

number of Cresco components provisioned for each COP will vary. At a minimum

a COP will be composed of a queue and workload processor. The queue and work-

load processor are implemented as Cresco Plugins. The workload processor provide

analysis services for connecting PP systems. Workload processors will be expanded

as needed through the provisioning of additional Cresco Plugins. The queue will be

used to exchange data plane messages between PP, COP, and CP systems. A single

queuing plugin will be implemented per COP system. The Cresco components that

make up COPs are shown in Figure 6.4.
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Figure 6.4: COP Data and Cresco Topology

COP Queue: The COP Queue is provided by a Cresco Plugin that provisions a

single instance of the RabbitMQ queue management system for each COP location.

Incoming and outgoing queues are provided for each PP location, COP Processor,

and CP Processor. All data plane communication takes place over the COP Queue.

COP Processor: The COP Processor is provided by at least one Cresco Plugin

for each COP location. Since there is a single COP Queue per location, there are
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single sources of data for each incoming PP data stream. When multiple COP Pro-

cessors exist, they retrieve their data from the same queue in a round-robin order,

where each queue subscriber (COP Processor) receives an equal share of incoming

data messages. Incoming PP messages are retrieved from queues, where exactly one

message is delivered to a queue subscriber. In the described application, the primary

purpose of the COP Processor is to maintain a summarized state of neighbor data

from information obtained from PPs. In addition, COP Processors answer request

from end-devices that are communicated through PPs based on data that is main-

tained and processed on the COP. Also, a COP Processor might provide a vehicle

directions based on known city-wide traffic status. Finally, COP Processors commu-

nicate system-wide directives to PPs, which in turn communicate these directives to

end-devices. For example, broadcast notifications pertaining to inclement weather

city-wide, or directed notifications of public safety events (shooting, riot, gas leak,

etc.) pertaining to a neighborhood location. COP Processors also relay coordinated

data streams to CP Processors for further analysis.

CP: CP analysis could require significant computational, network, and storage re-

sources, perhaps beyond what is available within existing infrastructures. As with

COP, CP resources will vary based on load. However, unlike COP Cresco will pro-

vision additional infrastructure capacity as needed for CP operations. Infrastruc-

ture capacity will be increased through the provisioning of virtual machines running

Cresco agents, which will in turn allow for the provisioning of additional CP work-

load processors. CP workload processors will subscribe to message queues provided

by distributed COPs. The Cresco components that make up CPs are shown in Figure

6.5.
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Figure 6.5: CP Data and Cresco Topology

CP Processor: The CP Processor is provided by at least one Cresco Plugin for

each CP instance. Exactly one CP instance is responsible for recording time-series

and event information in a central database. One or more CP instances use the

central database to develop models that can be used by CP and COP Processors to

make decisions. For example, traffic data propagated from PPs through COPs makes

its way into the central database, which reflect the current status of city-wide traffic.

6.3 Application Implementation

In this section we describe the implementation details of components used to demon-

strate the Cresco framework in the described application. Specifically, we will describe

plugin implementations representing components described in the previous section,

Application Design.

The Cresco Application Description Language (CADL) is used to describe the

configuration and relationship between Cresco Plugins, plugin locations, and related

plugin configurations used in the described application pipeline. At the end of this

section we provide a CADL fragment used in initial application deployment.
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6.3.1 Plugin Implementations

The following Cresco Plugins are used in the described application implementation.

PP Plugin: Since we don’t have access to the physical devices that might be used

in the PP environment we developed a Cresco Plugin to simulate the PP gateway

environment, including data generation for sensor array and vehicle data. This plugin

will connect to a message queue provided by the COP. From an application topology

prospective the inclusion of data generation services within the representative gateway

plugin constituters the only logically topology change between the proposed design

and demonstrated implementation. The Cresco components that make up the PPs

implementation is shown in Figure 6.6.
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Figure 6.6: PP Data and Cresco Implementation

This plugin simulates the output of an array of sensors, which will be configured

to pseudo-randomly generate readings that exceed alarm thresholds. Device data

will be generated that simulates periods of high and low traffic, including numbers of

observed vehicles and their related speed.
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COP Queue Plugin: There will be no changes between design and implementation

of COP Queue services.

COP Processor Plugin: The COP Processor as designed above is responsible

for a number of complex tasks including coordination between PP and CP services.

Demonstrating the use of Cresco in a COP implementation requires that we demon-

strate the ability to scale, configure, provide communication, and maintain operation

of COP Processes. The COP Processor Plugin implementation simulates analytic

functions, communicates using a COP Queue Plugin, and based on self-reported

load, request the addition or reduction of COP Processor Plugins within its COP

location. The initially provisioned (COP Master) COP Plugin will be maintained for

the duration of application operation. A COP Master communicates with its host

Cresco Regional Controller to control COP Processor Plugin count. Through the use

of the Cresco Optima project, described in Section 4.3.3, new COP Processor Plugins

are provisioned on the least loaded COP instance.

CP Processor Plugin: As with COP Processors, the CP Processor is responsible

for a large number of tasks. We will simulate the operation of CP Processors includ-

ing downward propagation of city-wide data, end-device alerting, and on-demand

expansion of CP resources. While COP Processors are expanded through the pro-

cess of adding addition Cresco Plugins to existing infrastructure, CP resources are

expanded through the addition of cloud-based infrastructure. The initially deployed

(CP Master) CP Processor is responsible for maintaining a central database and for

the expansion and contraction of infrastructure resources. Through the use of the

Cresco Guilder project, described in Section 4.3.1, additional CP Processor Plugin

requests issued to the Cresco Global Controller will result in the provisioning of addi-

tional virtual machines to host CP Instances. Through the use of the Cresco Optima

project new CP Processor Plugins are provisioned on the least loaded CP instances.
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6.3.2 Implementation CADL

The CADL for the application implementation describes the initial state of the ap-

plication including configurations, relationships, and plugin location specifications.

Example CADL node descriptions for CP Processor Plugins, COP Queue Plugins,

COP Processor Plugins, and PP Plugins are shown below in Listings 6.1, 6.2, 6.3,

and 6.4 respectively.

Listing 6.1: CADL CP Processor Node

1 ” node id ” :”0”
2 ”node name ” :”CP PROCESSOR.0”
3 ” type ” :” cp−proces sor−plug in ”
4 ”params ” :
5 ”pluginname ” :” cp−proces sor−plug in
6 ” j a r f i l e ” : ” cp−proces sor−plugin −0 . 1 . 0 . j a r ”
7 ” l o c a t i o n ” :”CP.0”
8 ” i s S t a t e l e s s ” : f a l s e
9 ” i sSou r c e ” : f a l s e

Listing 6.2: CADL COP Queue Node

1 ” node id ” :”1”
2 ”node name ” :”COP QUEUE.0”
3 ” type ” :” cresco−conta iner−plug in ”
4 ”params ” :
5 ”pluginname ” :” cresco−conta iner−plug in
6 ” j a r f i l e ” : ” cresco−conta iner−plugin −0 . 1 . 0 . j a r ”
7 ” conta iner image ” :” rabbitmq :3−management”
8 ” e params ” :”CRESCO LOCATION=COP QUEUE. 0 ,RABBITMQ USER=

cre s co rquse r ,RABBITMQ PASS=rqpassword ”
9 ”p parms ”:”5672 ,15672”

10 ” l o c a t i o n ” :”COP QUEUE.0”
11 ” i s S t a t e l e s s ” : f a l s e
12 ” i sSou r c e ” : t rue

Listing 6.3: CADL COP Processor Node

1 ” node id ” :”2”
2 ”node name ” :”COP PROCESSOR.0”
3 ” type ” :” cop−proces sor−plug in ”
4 ”params ” :
5 ”pluginname ” :” cop−proces sor−plug in
6 ” j a r f i l e ” : ” cop−proces sor−plugin −0 . 1 . 0 . j a r ”
7 ” l o c a t i o n ” :”COP.0”
8 ” i s S t a t e l e s s ” : f a l s e
9 ” i sSou r c e ” : f a l s e
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Listing 6.4: CADL PP Node

1 ” node id ” :”3”
2 ”node name ” :”PP.0”
3 ” type ” :” cresco−conta iner−plug in ”
4 ”params ” :
5 ”pluginname ” :” cresco−conta iner−plug in
6 ” j a r f i l e ” : ” cresco−conta iner−plugin −0 . 1 . 0 . j a r ”
7 ” conta iner image ” :” g i t l a b . rc . uky . edu :4567/ c r e s c o / cresco−pp−

conta ine r ”
8 ” e params ” :”CRESCO LOCATION=PP.0”
9 ” l o c a t i o n ” :”PP.0”

10 ” i s S t a t e l e s s ” : f a l s e
11 ” i sSou r c e ” : t rue

The most basic CADL for the described implementation contains: a single CP,

CP.0 with CP Processor CP.0 Processor.0 Plugin, a single COP, COP.0, with COP

Queue Plugin COP.0 Queue Plugin and COP Processor Plugin COP.0 Processor.0

Plugin, and a single PP PP.0, with PP Plugin PP.0. This minimum design results

in the provisioning of at least four agents and seven plugins, of which three are

controllers. The minimum CADL Cresco topology is shown in Figure 6.7.
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Figure 6.7: Minimum CADL Implementation Topology
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The CADL implementation shown in the previous figure describes a single PP

node. However, this single COP resource might be capable of supporting many PPs,

with Cresco allocating resources as needed. Likewise, the single CP might be capable

of supporting a number of COPs, and it to is dynamically scalable through the Cresco

framework. The assignment of PPs to COPs in a real world deployment would depend

on the geographic service of the COP itself. For example, PPs might be physical

connected to specific COPs based on the distribution of existing fiber optics in a

neighborhood.

As the size and complexity of applications grow, so does the CADL. For example,

suppose we initially assign 100 PPs to every COP, and assign 100 COPs to a single

initial CP. The initial CADL pipeline will contain a graph with 30,000 PP nodes and

40,000 edges, 500 COP nodes and 700 edges, and three CP nodes and two edges. The

described graph results in a CADL size of 27.4 Megabytes. As previously mentioned,

CADLs are highly compressible and the Global Controller supports the submission

of Base64-encoded compressed CADL representations. In this case the compressed

CADL is 1.3 Megabytes, which represents a 21:1 compression ratio. One method of

reducing CADL pipeline size and complexity is to use application containers. The

Cresco framework allows us to place agents and plugins within containers, while still

maintaining agent, regional, and global communications. From a Cresco topology

prospective a agent running within a container, on a VM, or on physical hardware is

treated the same. For this implementation we combined a single agent and ten PP

plugins within a container cPP. The cPP container is published to a central registry

location: gitlab.rc.uky.edu:4567/cresco/pp. Each time the cPP container is executed

the container is updated, if needed, from the central registry. Given Cresco is capable

of running containers, even those with other Cresco agents, we can treat the cPP

container as a single plugin, thus reducing the CADL graph.

Perhaps more important than CADL size is the ability to manipulate functional

layers of applications independent of a single CADL pipeline representation. For
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example, we might want to update the cPP container image without impacting COP

or CP operations. In this implementation we will create three independent CADLs

as shown below:

1. queuePipeline: The queuePipeline provides queuing services for PP, COP, and

CP data-plane communications.

2. PPPipeline: The PPPipeline generates simulated data (vehicle, sensor, etc.)

and provides communication services between simulated devices and higher-

level control systems.

3. COPPipeline: The COPPipeline provides COP (edge) analysis services, such

as filtering, alerting, and complex event processing services. This pipeline con-

sumes data from the PPPipeline and communicates analysis results to and from

higher-level control systems.

While isolating application components into separate CADLs provides greater

flexibility, we must now keep track of multiple pipelines, including any inter-pipeline

dependencies. In the next sub-section we describe the Application Controller, which

is used to manage the pipelines described in this section.

6.3.3 Application Controller

A natural place to implement pipeline operations function is within CP operations.

On initialization, the CP plugin contacts the Cresco Global controller specified in

its configuration and deploys each CADL pipeline sequentially. The Cresco Global

controller reports the status (status code) of the pipeline. Once pipeline operational

status is verified (status code=10), the CP starts its analytic services.

In the next section we describe the operation of the application implementation

described in this section.
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6.4 Application Operation

We will simulate a distributed Smart City environment using 20 servers, each with

the following resource capacity:

• Cores : 8

• RAM : 8G

• Disk : 128G

The Application Controller is deployed on a single virtual machine. The queuePipeline,

PPPipeline, and COPPipeline, are deployed on 19 physical nodes, representing areas

of a city identified by location identifiers 0− 18. On initial provisioning each location

contains one COP, 15 cPPs (150 PPs), and a single queue. The Cresco Application

Scheduler determined that no more than 15 cPPs could be assigned location based

on observed cPP performance and available capacity. In the described configuration

we can simulate one city, as described in Sub-section 6.4.4, City-Level Operations, 19

neighborhoods, described in Sub-section 6.4.3, Neighborhood-Level Operations, and

2850 sensor arrays, described in Sub-section 6.4.2, Street-Level Operations.

In the next section we discuss how application pipelines are deployed.

6.4.1 Pipeline Deployment

The first step in Application Controller operation is the deployment of the queuePipelines,

PPPipeline, and COPPipeline CADLs. Listing 6.5 shows output of an Application

Controller during startup.

Listing 6.5: CADL Deployment : Application

1 −−Deploying queuePipe l ine
2 Waiting on queuePipe l ine 91 e58c7e s t a t u s c o d e : 3
3 Waiting on queuePipe l ine 91 e58c7e s t a t u s c o d e : 4
4 . . .
5 Waiting on queuePipe l ine 91 e58c7e s t a t u s c o d e : 10
6
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7 −−Deploying COPPipeline
8 Waiting COPPipeline 6 d59cc33 s t a t u s c o d e : 3
9 Waiting COPPipeline 6 d59cc33 s t a t u s c o d e : 4

10 . . .
11 Waiting COPPipeline 6 d59cc33 s t a t u s c o d e : 10
12 −−Deploying PPPipel ine
13 Waiting on PPPipel ine 69 f60227 s t a t u s c o d e : 3
14 Waiting on PPPipel ine 69 f60227 s t a t u s c o d e : 4
15 . . .
16 Waiting on PPPipel ine 69 f60227 s t a t u s c o d e : 10
17
18 −−Appl i ca t ion Star t
19 Appl i ca t ion C o n t r o l l e r State : 10
20 queuePipe l ine 91 e58c7e s t a t u s c o d e : 10
21 copP ipe l ine 6 d59cc33 s t a t u s c o d e : 10
22 ppPipe l ine 69 f60227 s t a t u s c o d e : 10

On submission of CADLs to the Cresco Global Controller the AppScheduler ser-

vice starts the high-level scheduling process, which includes resource assignment. List-

ing 6.6 shows the output of the Global Controller while scheduling a node representing

a cPP container.

Listing 6.6: CADL Node Scheduling

1 [ AppSchedulerEngine ] Locat ion : 28
2 [ AppSchedulerEngine ] Assigned Nodes : 1
3 [ AppSchedulerEngine ] Unassigned Nodes : 0
4 [ AppSchedulerEngine ] Noresource Nodes : 0
5 [ AppSchedulerEngine ] Error Nodes : 0
6 [ FuturaEngine ] ResourceMetr ic f o r Container :
7 g i t l a b . rc . uky . edu :4567/ c r e s c o /pp
8 [ OptimaEngine ] to ta l r e sourceWork loadUt i l : 289 .0
9 t o t a l r e s o u r c e A v a l a b l e : 5994.88

10 [ ProviderOpt imizat ion ] S ta r t i ng So lve r .
11 [ ProviderOpt imizat ion ] i=0 K[ i ] = 30
12 [ ProviderOpt imizat ion ] So lu t i on #1
13 [ AppSchedulerEngine ] Submitted to ResourceScheduler

Based on the location constraints and previously observed resource utilization

a candidate agent is selected by the AppSchedulerEngine for assignment. Once a

Cresco agent has been assigned by the AppSchedulerEngine the resource request is

submitted to the ResourceSchedulerEngine. The ResourceSchedulerEngine translates

the CADL node description into a plugin configuration and then submits the plugin
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configuration to the desired agent for initialization. Listing 6.7 shows the output of

the Global Controller while scheduling a plugin representing a cPP container.

Listing 6.7: CADL Node to Plugin Scheduling

1 [ ResourceSchedulerEngine ] Incoming r e sou r c e
2 [ ResourceSchedulerEngine ] s t a r t i n g precheck . . .
3 [ ResourceSchedulerEngine ] v e r i f y P l u g i n params = OK
4 [ ResourceSchedulerEngine ] p lug in precheck = OK
5 [ ResourceSchedulerEngine ] Payload : {msg=add plugin , d s t r e g i o n=

reg ion−a4e4cdcf −8575−4612−aa7e−b8d0d31d276d , ds t agent=agent−
ddbc73e6−8f09−4b53−a9f9−bde29884c90a , con f i g type=pluginadd ,
s r c a g e n t=agent−3ddd420c−1807−40ef−9b1c−adc4b58c3da6 ,
s r c r e g i o n=reg ion−a74b4d66−6ede−4c70−a0b5−7794a6b99fb8 ,
s r c p l u g i n=plug in /0 , h t tp hos t=http : / / 1 7 2 . 1 7 . 0 . 1 : 3 2 0 0 0 /PLUGINS
/ , http : / / 1 0 . 3 3 . 1 8 . 2 : 3 2 0 0 0 /PLUGINS/ , jarmd5=1
d918b8a374a3b32d8bde212f3307f6c , conf igparams=e params=
CRESCO path stage : CRESCO cop id : CRESCO pp amqp host :
CRESCO discovery secret agent :
CRESCO discovery ipv4 agent timeout , pluginname=cresco−
conta iner−plugin , j a r f i l e=cresco−conta ine r plugin −0 . 1 . 0 . jar ,
CRESCO path stage=1,CRESCO cop id=cop−28,
CRESCO discovery secret agent=c r e s c o d i s c o v e r y s e c r e t 3 2 ,
l o c a t i o n =32, CRESCO discovery ipv4 agent timeout =20000 ,
conta iner image=g i t l a b . rc . uky . edu :4567/ c r e s c o /pp , r e s o u r c e i d=
c4836c2f−b46a−4c33−be90−1556 bf0f64bd , i n o d e i d=f30c56e4−ad33−44
c8−a4ab−2d28c360e87f }

6 [ ResourceSchedulerEngine ] Schedul ing p lug in on
7 reg i on=reg ion−ecaca483−56d8−43c8−9584−75 feedbcddaf
8 agent=agent−04710df2−360 f−44f3−8ebc−c3bf480dace5

Once pipelines have been started, distributed operations begin as described in the

following sub-sections.

6.4.2 Street-Level Operations

We assume street-Level operation takes place in a location with limited computational

capacity, such as a intelligent street light. On a street-level we want to simulate the

collection of data from sensors, which should be physically connected or in proximity

to collection devices managed by PPs. This includes specific sensors and devices, such

as vehicles. We generate 1000 sensors values for each PP gateway node per second.

These sensor values include a fix sensor identifier for each PP gateway. Peak traffic

165



periods may vary from city to city, from region to region, and seasonally. We assume

a higher volume of traffic between 6-10 am (06:00-10:00) and 4-8 pm (16:00-20:00).

Based on time of day maintained by each PP gateway, we generate data representing

between 10 and 70 vehicles per second. Vehicle data includes a unique identifier and

vehicle speed. Based on the simulated time of the day each PP gateway is capable of

generating between 1010 and 1070 data points per second.

Simulated data on the street-level (PP) is transmitted to the neighborhood-level

(COP) for processing. Neighborhood-level processing is described in the next sub-

section.

6.4.3 Neighborhood-Level Operations

We assume neighborhood-level operations take place in small-to-medium sized telecom-

munication facilities distributed throughout a city, with enough computational capac-

ity to provide analytic services (COP) for a network of associated PP gateways. In the

described application there are 150 PP gateways assigned per COP, which results in

the processing of between 151,500 and 160,500 data points per second. The following

COP analytic services have been implemented for neighborhood-level processing:

• sensor alert : Sensor data filtering services, such as those that detect and provide

alert on individual sensor anomalies, have been developed.

• sensor data: Sensor data aggregation services, such as those that report average

sensor readings based on a number of sensor locations, have been developed.

• car speed : Vehicle data services, such as those that report average vehicle speed

on a street-level, have been developed.

• car count : Vehicle data service, such as those used to determine the number of

vehicles in an intersection have been developed.
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Listing 6.8 shows the complex event queries relating to the previously described

analytic services. Queries can be added and removed from COPs dynamically through

Cresco control-channel operations that interact directly with plugins, even when de-

ployed within a container.

Listing 6.8: COP CEP

1 addQuery (” s e n s o r a l e r t ” , ” s e l e c t ppId , sensor Id , sensorValue from
sensorMap where sensorValue = 1000”) ;

2 addQuery (” s en so r da ta ” , ” s e l e c t ppId , sensor Id , avg ( sensorValue ,
group by : s en so r Id ) as avgValue from sensorMap . win : t ime batch
(15 sec ) group by ppId output snapshot every 1 seconds ”) ;

3 addQuery (” ca r speed ” , ” s e l e c t i r s t r eam d i s t i n c t ppId , avg (
carValue ) as sps from carMap . win : time (15 sec ) group by ppId
output snapshot every 1 seconds ”) ;

4 addQuery (” car count ” , ” s e l e c t ppId , count (∗ ) as avgValue from
carMap . win : t ime batch (15 sec ) group by ppId output snapshot
every 1 seconds ”) ;

As previously mentioned, each COP instance receives between 151,500 and 160,500

raw data points per second, which results in the processing of 2,878,500 and 3,049,500

data points across 19 locations. The four described analytic operations generate

approximately 150 data points per second for each COP. Data generated by COPs

on the neighborhood-level is communicated to the CP. If COP operations were not

distributed to the neighborhood-level, millions of data points per second would have

to be transmitted to a central location for processing.

City-level operations are described in the next section.

6.4.4 City-Level Operations

In a real-world deployment, the majority of data modeling and storage would take

place centrally, where computational resources are more likely to be available com-

pared to neighborhood and street-level operations. However, the purpose of this

chapter is to describe the use of Cresco Applications, not the implementation of a

Smart City framework. We limit the implementation of city-level services to those

required for the Application Controller.
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As previously described, the Application Controller is responsible for pipeline

operations. Once the initial pipelines have been deployed, the Application controller

maintains an operational status for each COP based on data provided by Cresco and

load information provided by each COP instance. Using methods described in the

previous sub-section, he Application Controller determines the number of reported

vehicles per COP location. If the number of vehicles per COP location exceeds the

rush-hour threshold of 30 vehicles per PP gateway, an additional COP instance is

added to the location. The Application Controller maintains a list of COP-specific

pipelines and if the per COP vehicle threshold drops below 10 vehicles per PP gateway

COP instance pipelines are removed until there is a single COP instance remaining in

a specific location. Listing 6.9 shows the addition of COP pipelines by the Application

Controller.

Listing 6.9: Add COP Processor Alert

1 Add COP: ce95b4eb−5954−42e3−a943−31d5ac11535c high cop−33:381.6
2 . . .
3 Add COP: 4413 c788−5fb6−448e−8387−7cd65c795e7d high cop−28:380.7

In addition to the described pipeline management functions, methods have been

implemented in the Application Controller (CP) allowing communication to specific

COPs and PPs for the purposes of alert acknowledgement.

6.5 Application Conclusions

While the application described in this chapter is hypothetical in nature, it serves to

demonstrate the types of applications that might benefit from edge computing and by

association the Cresco framework. While the data described in this chapter was simu-

lated, the pipeline components related to data generation, communication, and associ-

ated analytics are real implementations. We demonstrated the distributed processing

of over over 6 million simulated sensor data points per second. The foundational

capabilities provided by Cresco might provide benefit to entire class of applications,
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where component abstraction and dynamic resource scheduling are beneficial.
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7

Conclusions

There is no generally accepted theory for edge computing. In this dissertation the

characteristics, challenges, and motivations for edge computing were presented. A

number of real-world use cases were described to support claims that in some cases

moving computation resource assignments to sources of data is more effective than

moving data to computational resources. As the number of connected devices increase

globally, so will the need for intelligent end-to-end management of computational

resources, workloads, and data.

An edge computing framework named Cresco was developed. While a number

of open source packages were used to develop the framework all core software devel-

opment, with the exception of the Cresco libraries discussed in Sections 3.4, Cresco

Plugin Library and 3.5, Cresco Library, were developed by the author. Cresco libraries

were developed by Caylin Hickey using common code that was originally written by

the author and repeated between components. A number of custom plugins that

where not covered in this dissertation have been developed by the author and others.

In the next section we describe work related to the Cresco framework described

in this dissertation.

170



7.1 Related Work

Early designs and implementations of the work presented in this dissertation pre-

date the seminal work of Bonomi et al., 2012 [21] defining the characteristics of Edge

Computing1. The use of agents in our framework was greatly influenced by the work

of V.S. Subrahmanian, et .al. [75]. The idea proposed by Named Data Networking

(NDN) [197], that networks should be data-centric not host-centric greatly influenced

design aspects of message routing, agent identification, and node hierarchy. Actor-

model concurrent programing, especially as implemented in ERLANG [71], influenced

agent implementation. Long-distance live (uninterrupted) workload migration [198],

through the management of application and infrastructure layers, influenced design

aspects of continuous scheduling and optimization. Work with Apache Storm Topolo-

gies [156] influenced the use of graphs to model the relationships between workloads

and data flow.

Making use of previous efforts and expanding on the work of Bonomi et al., 2014

[90], Lopez et al., 2015 [22], and Varghese et al., 2016 [23], we developed an archi-

tectural model for an edge-focused distributed resource and application framework,

that we named Cresco. Over the course of six years a Cresco implementation was de-

veloped, which now consist of nearly forty-thousand lines of source code. Currently,

there are a number of mature Cresco-based applications used in production, with

others under development.

In the next section we describe the accomplishments that were realized during the

development of this dissertation.

1Initially referred to as Fog Computing.
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7.2 Achievements

We believe the work described in this dissertation has demonstrated a number of

achievements, namely:

• An architectural model was developed to address aspects of edge computing, as

described in Chapter 2, The Architectural Model.

• Cresco, an edge-focued distributed application and resource management frame-

work was implemented, as described in Chapter 3, Cresco Implementation.

• Cresco provides data collection services used to take stock of a geographically

distributed network of resources.

• The Cresco Application Description Language (CADL) provides a way to de-

scribe applications, resource needs, and workload placements, as described in

Chapter 4, Framework Technologies.

• Cresco provides services to schedule, provision, and maintain CADL pipelines.

• Cresco provides the ability to configure workloads and resources on the edge of

networks, as described in Chapter 5, Case Studies of Edge Computing

• Cresco provides services to acquire new resources as needed from public and

private computational clouds, as demonstrated in Chapter 6, Building a Smart

City Application.

• Cresco provides services to attempt workload scheduling and resource acquisi-

tion optimization.

• Cresco provides services to predict workload and pipeline resource needs, based

on observed resource utilization.

• Cresco provides services to predict overall system resource needs, based on his-

torical utilization.
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• Cresco provides services to group or separate workloads based on observed re-

source alignment (two nodes communicate with each other) or competition.

In the next section we describe potentially future areas of development related to

the work described in this dissertation.

7.3 Future Work

There are a number of aspects of the work presented in this dissertation that can

benefit from additional work, including but not limited to:

• Currently, the Cresco is implemented using the cross-platform language Java.

While the computational requirements for basic agent services are low, Java

interpreters are not supported on all devices. A simple communication library

developed in C/C++ would allow Cresco to interact with more devices.

• The Futura project tracks a number of resource utilization metrics for work-

loads. However, for resource utilization assessment the current implementation

is limited to CPU metrics. In the future, all tracked resource metrics should be

included in workload utilization, clustering, and profile functions.

• The Optima project tracks a number of resource utilization metrics for resource

providers. However, for resource provider capacity assessment the current im-

plementation is limited to CPU metrics. In the future, all tracked metrics should

be included in resource optimization scheduling functions.

• Guilder is capable of acquiring resources from a number of locations, including

so-called ”spot” instances, which are priced based on a point-in-time cost with

time-limit restrictions. Futura is capable of predicting resource utilization, but

functions have not been developed to predict workload duration. In the future,

Futura should be expanded to allow for the acquisition of spot instances by

Guilder.
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• As with Futura and Guilder, Optima constrain programming models are based

on CPU metrics only. In the future, Optima models should include all resource

utilization aspects maintained by Futura.

The Cresco framework will continue to evolve as new applications are developed,

challenges are realized, and the Cresco community expands.
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