
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2017

HYBRID PARALLELIZATION OF THE NASA GEMINI HYBRID PARALLELIZATION OF THE NASA GEMINI

ELECTROMAGNETIC MODELING TOOL ELECTROMAGNETIC MODELING TOOL

Buxton L. Johnson Sr.
University of Kentucky, buxton.johnson.sr@uky.edu
Author ORCID Identifier:

http://orcid.org/0000-0002-6417-2333
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.080

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Johnson, Buxton L. Sr., "HYBRID PARALLELIZATION OF THE NASA GEMINI ELECTROMAGNETIC
MODELING TOOL" (2017). Theses and Dissertations--Electrical and Computer Engineering. 99.
https://uknowledge.uky.edu/ece_etds/99

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
http://orcid.org/0000-0002-6417-2333
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Buxton L. Johnson Sr., Student

Dr. Robert J. Adams, Major Professor

Dr. Cai-Cheng Lu, Director of Graduate Studies

HYBRID PARALLELIZATION OF THE NASA GEMINI ELECTROMAGNETIC

MODELING TOOL

THESIS

A thesis submitted in partial fulfillment of the requirements for the

degree of Master of Science in Electrical Engineering in the

College of Engineering

at the University of Kentucky

By

Buxton L. Johnson, Sr.

Lexington, Kentucky

Director: Dr. Robert J. Adams, Professor of Electrical and Computer Engineering

Lexington, Kentucky

2017

Copyright © Buxton L. Johnson, Sr. 2017

ABSTRACT OF THESIS

HYBRID PARALLELIZATION OF THE NASA GEMINI ELECTROMAGNETIC

MODELING TOOL

Understanding, predicting, and controlling electromagnetic field interactions on

and between complex RF platforms requires high fidelity computational electromagnetic

(CEM) simulation. The primary CEM tool within NASA is GEMINI, an integral

equation based method-of-moments (MoM) code for frequency domain electromagnetic

modeling. However, GEMINI is currently limited in the size and complexity of problems

that can be effectively handled. To extend GEMINI’S CEM capabilities beyond those

currently available, primary research is devoted to integrating the MFDlib library

developed at the University of Kentucky with GEMINI for efficient filling, factorization,

and solution of large electromagnetic problems formulated using integral equation

methods. A secondary research project involves the hybrid parallelization of GEMINI

for the efficient speedup of the impedance matrix filling process. This thesis discusses

the research, development, and testing of the secondary research project on the High

Performance Computing DLX Linux supercomputer cluster. Initial testing of GEMINI’s

existing MPI parallelization establishes the benchmark for speedup and reveals

performance issues subsequently solved by the NASA CEM Lab. Implementation of

hybrid parallelization incorporates GEMINI’s existing course level MPI parallelization

with Open MP fine level parallel threading. Simple and nested Open MP threading are

compared. Final testing documents the improvements realized by hybrid parallelization.

KEYWORDS: computational electromagnetics, method of moments, electric field

integral equation, hybrid parallelization, high performance computing.

Buxton L. Johnson, Sr.

April 10, 2017

HYBRID PARALLELIZATION OF THE NASA GEMINI ELECTROMAGNETIC

MODELING TOOL

By

Buxton L. Johnson, Sr.

Robert J. Adams, Ph.D.

Director of Thesis

Cai-Cheng Lu, Ph.D.

Director of Graduate Studies

April 10, 2017

iii

Acknowledgements

I wish to express my deep gratitude to my thesis advisor, Dr. Robert J. Adams, for his

direction, support, and understanding from the first day in EE 622 and continuing

throughout the completion of this work.

Also, I am thankful to Dr. John C. Young for his oft meetings with me to explain and

guide me in understanding Open MP programming in a High Performance Computing

environment.

In addition, I would like to express my appreciation to Dr. Bill T. Smith for steering me

into the graduate program in Electrical Engineering at the University of Kentucky when

circumstances forced me to change careers.

Furthermore, I would like to thank my wife, Tina, for her continual encouragement to

complete this work while personally experiencing a most difficult season in our life.

Also, I wish to thank my four children, Buxton Jr., Laura, Wesley, and Haddon, for their

patience and sacrifice, especially during my first two years back in graduate school.

Finally, I would like to acknowledge my personal savior, Jesus Christ; for without His

help, strength, and upholding during great difficulty, I would never have finished this

work. Isaiah 41:10

iv

Table of Contents

Acknowledgements ... iii

List of Tables .. vi

List of Figures ... viii

Chapter 1. Introduction .. 1

1.1. Background .. 1

1.2. Motivation .. 2

Chapter 2. Model ... 4

2.1. Integral Equation Based Formulation using Method of Moments 4

2.2. EFIE Formulation for Perfect Electrical Conductors ... 5

2.3. Discretization and Basis Functions .. 7

2.4. RWG Model ... 8

Chapter 3. NASA GEMINI Solver .. 15

3.1. GEMINI Solver Structure and Existing MPI Parallelization ... 15

3.2. Computing Platforms ... 17

3.3. Preliminary MPI Testing .. 19

3.3.1. Triangular Mesh Generation Using CUBIT ... 19

3.3.2. Create GEMINI Solver Input Test Files Using EIGER ANTS 20

3.3.3. MPI Multi-Process Test Runs on Windows-7 ... 22

3.3.4. Initial MPI Runtime Performance Measurements on DLX 25

3.3.5. Improved MPI Runtime Performance Measurements on DLX 29

3.4. GEMINI Post RCS Measurements .. 37

Chapter 4. Hybrid Parallelization: Combining Open MP with MPI .. 39

4.1. Why Open MP Multi-Threading? .. 39

4.2. OMP Directives and Parallelization ... 45

4.2.1. Using OMP on a Simple Printing Operation.. 46

4.2.2. Testing OMP on a Matrix Multiply Operation .. 47

4.3. Integrating OMP into GEMINI Solver’s Matrix Fill Routine 56

4.3.1. Incorporating Simple OMP Parallelism into GEMINI Solver 58

4.3.2. Incorporating Nested OMP Parallelism into GEMINI Solver 66

Chapter 5. Testing MPI-OMP Hybrid Parallelization ... 71

5.1. Final Implementation ... 71

5.2. GEMINI Solver Results ... 78

v

5.3. GEMINI Post Results .. 99

Chapter 6. Conclusion & Future Direction .. 100

6.1. Conclusion ... 100

6.2. Future Direction ... 100

Appendix A GEMINI Post RCS Results Fit to Mie Series .. 101

Appendix B Final Implementation: Changes To GEMINI Solver v3.0 115

References .. 126

Vita... 128

vi

List of Tables

Table 1: GEMINI Solver program tree ... 16

Table 2: Cubit Script to create a meshed sphere with mesh size lambda/10 19

Table 3: Ten triangular surface meshes for 1-m radius sphere with λ
2
 / ½ℓ

2
 ≈ 200 19

Table 4: Input Files Generated to Test GEMINI Solver ... 22

Table 5: GEMINI Solver v1.0 test cases run under MPI for Windows-7 22

Table 6: Building GEMINI Solver on University of Kentucky HPC DLX supercluster 25

Table 7: GEMINI Solver v1.0 test cases run under MPI for Linux .. 25

Table 8: GEMINI Solver v2.0 test cases run under MPI for Linux .. 29

Table 9: GEMINI Post RCS results fit to Mie Series ... 38

Table 10: Loop iterations per thread for nt = 2, 4, 8, and 16 OMP threads 42

Table 11: A few common OMP directives ... 45

Table 12: FORTRAN 2000 program with OMP directive to execute code in parallel 46

Table 13: Sample output of FORTRAN 2000 program with OMP parallel execution................. 46

Table 14: Serial FORTRAN 2000 program used to multiply two matrices.................................. 48

Table 15: Parallel implementation of matrix multiplication using OMP 49

Table 16: Threading - NRA Combinations ... 51

Table 17: Matrix Multiply Serial and Parallel Execution Times for NRA = 16M 52

Table 18: Matrix Multiply Serial and Parallel Execution Times for NRA = 32M 53

Table 19: Matrix Multiply Serial and Parallel Execution Times for NRA = 64M 54

Table 20: Matrix Multiply Serial and Parallel Execution Times for NRA = 128M 55

Table 21: Maximum Speedup for each NRA Value ... 56

Table 22: GEMINI Solver program tree with optimal OMP threading location 57

Table 23: Simple OMP parallelization of FORTRAN 2000 matrix fill routine, part 1 59

Table 24: Simple OMP parallelization of FORTRAN 2000 matrix fill routine, part 2 60

Table 25: Test cases run using simple OMP parallelization of GEMINI Solver v2.0 61

Table 26: GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 1083 61

Table 27: GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 4455 62

Table 28: GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 41,415 64

Table 29: GSv2.0 Parallel Execution S, E, and SEP for N = 4455 ... 65

Table 30: Nested OMP parallelization of FORTRAN 2000 matrix fill routine, part 1 67

Table 31: Nested OMP parallelization of FORTRAN 2000 matrix fill routine, part 2 68

Table 32: Test cases run to compare simple vs. nested OMP parallelism 69

Table 33: Performance ratios comparing nested to simple parallelism speedup 69

Table 34: N=208K case using 224 MPI processes for 8 and 16 MPIs/node 71

Table 35: N=208K case using 224 MPI processes with 8 MPIs/node and 2 OMP threads 71

Table 36: Test cases for final implementation of hybrid MPI-OMP GEMINI Solver v3.0 75

Table 37: DLX batch script with sanity checks .. 76

Table 38: DLX run script to execute GEMINI Solver v3.0 test sets .. 77

Table 39: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=41.4K, f=0.8994GHz 78

Table 40: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=74.4K, f=1.1992GHz 82

Table 41: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=168K, f=1.7998GHz 86

Table 42: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=208K, f=2.0000GHz 90

Table 43: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=299K, f=2.3984GHz 94

vii

Table 44: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=326K, f=2.5000GHz 97

Table 45: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=342K, f=2.5624GHz 98

Table 46: GEMINI Post RCS results fit to Mie Series ... 99

Table 47: Results for best MPI-OMP combinations of matrix fill routine 100

viii

List of Figures

Figure 1: Analyzing antenna systems on Orbital Sciences’ Orion Abort Test Booster 2

Figure 2: Astronaut Extra Vehicular Activity (EVA) lunar surface studies 2

Figure 3: UHF-band shuttle antenna placement analysis .. 3

Figure 4: PEC with surface current zyxJ ,,

 ... 5

Figure 5: Discretization of spherical surface by triangular patches .. 7

Figure 6: Triangle pair and geometrical parameters associated with interior edge 8

Figure 7: Plane wave travelling down z-axis and polarized along x-axis 12

Figure 8: Distribution of J over triangular mesh as viewed from north pole 13

Figure 9: Distribution of J over triangular mesh as viewed from south pole 14

Figure 10: RCS plot for 60 MHz plane wave scattering on 1-m (0.2λ) radius PEC sphere 14

Figure 11: Parallelization with MPI processes ... 15

Figure 12: The CEM Laboratory at NASA’s Johnson Space Center .. 17

Figure 13: The University of Kentucky HPC DLX Linux Cluster ... 18

Figure 14: EIGER ANTS Project: ℓ = 1.50 cm / f = 2.000 GHz Incident Plane Wave 20

Figure 15: Steps in making/exporting an EFIE solution test input file for a PEC sphere 21

Figure 16: Matrix factor & fill performance comparisons GSv1.0 (f=0.2998GHz/N=4K) 23

Figure 17: Matrix factor & fill performance comparisons GSv1.0 (f=0.5996GHz/N=18K) 24

Figure 18: Matrix factor & fill performance comparisons GSv1.0 (f=0.8994GHz/N=41K) 26

Figure 19: Matrix factor & fill performance comparisons GSv1.0 (f=0.8994GHz/N=83K) 27

Figure 20: Matrix factor & fill performance comparisons GSv1.0 (f=1.1992GHz/N =74K) 28

Figure 21: Matrix factor & fill performance comparisons GSv2.0 (f=0.8994GHz/N=41K) 30

Figure 22: Matrix factor & fill performance comparisons GSv2.0 (f=0.8994GHz/N=83K) 31

Figure 23: Matrix factor & fill performance comparisons GSv2.0 (f=1.1992GHz/N=74K) 32

Figure 24: Matrix factor & fill performance comparisons GSv2.0 (f=1.7988GHz/N=168K) 33

Figure 25: Matrix factor & fill performance comparisons GSv2.0 (f=2.0000GHz/N=208K) 34

Figure 26: Matrix factor & fill performance by MPIs/node GSv2.0 (f=2.0000GHz/N=208K) 35

Figure 27: Multi-threading of MPI processes ... 36

Figure 28: GPv2.0 EFIE & Dielectric RCS results w/fit to Mie Series for f = 0.1499 GHz 38

Figure 29: The Open MP fork-join programming model.. 39

Figure 30: Loop structure of the GEMINI Solver impedance matrix fills routine 40

Figure 31: Hybrid Parallelization Programming: Combining MPI/Open MP 41

Figure 32: OMP parallelization of impedance matrix fill routine ... 43

Figure 33: Speedup and efficiency vs number of threads for NRA = 16M 52

Figure 34: Speedup and efficiency vs number of threads for NRA = 32M 53

Figure 35: Speedup and efficiency vs number of threads for NRA = 64M 54

Figure 36: Speedup and efficiency vs number of threads for NRA = 128M 55

Figure 37: Simple parallelization of GEMINI Solver matrix fill routine 58

Figure 38: Speedup vs number of threads for N = 1083 ... 61

Figure 39: Efficiency vs number of threads for N = 1083 .. 62

Figure 40: Speedup vs number of threads for N = 4455 ... 63

Figure 41: Efficiency vs number of threads for N = 4455 .. 63

Figure 42: Speedup vs number of threads for N = 41,415 .. 64

Figure 43: Efficiency vs number of threads for N = 41,415 ... 65

ix

Figure 44: Nested parallelization of GEMINI Solver ... 66

Figure 45: Simple vs. Nested OMP Performance ratios with 99¾% intervals 70

Figure 46: Illustration for 4-MPI / 4-Simple OMP hybrid parallelization 72

Figure 47: Matrix fill times vs. MPI-OMP combination for N=41.4K, f=0.8994GHz 78

Figure 48: Required memory/node vs. MPIs/node for N=41.4K, f=0.8994GHz 79

Figure 49: OMP threading vs. No OMP threading for N=41.4K, f=0.8994GHz 80

Figure 50: Matrix Fill Times: OMP vs. No OMP for N=41.4K, f=0.8994GHz 81

Figure 51: Matrix fill times vs. MPI-OMP combination N=74.2K, f=1.1992GHz 82

Figure 52: Required memory/node vs. MPIs/node for N=74.2K, f=1.1992GHz 83

Figure 53: OMP threading vs. No OMP threading for N=74.2K, f=1.1992GHz 84

Figure 54: Matrix Fill Times: OMP vs. No OMP for N=74.2K, f=1.1992GHz 85

Figure 55: Matrix fill times vs. MPI-OMP combination for N=168K, f=1.7998GHz 86

Figure 56: Required memory/node vs. MPIs/node for N=168K, f=1.7998GHz 87

Figure 57: OMP threading vs. No OMP threading for N=168K, f=1.7998GHz 88

Figure 58: Matrix Fill Times: OMP vs. No OMP for N=168K, f=1.7998GHz 89

Figure 59: Matrix fill times vs. MPI-OMP combination for N=208K, f=2.0000GHz 90

Figure 60: Required memory/node vs. MPIs/node for N=208K, f=2.0000GHz 91

Figure 61: OMP threading vs. No OMP threading for N=208K, f=2.0000GHz 92

Figure 62: Matrix Fill Times: OMP vs. No OMP for N=208K, f=2.0000GHz 93

Figure 63: Matrix fill times vs. MPI-OMP combination for N=299K, f=2.3984GHz 94

Figure 64: Required memory/node vs. MPIs/node for N=299K, f=2.3984GHz 95

Figure 65: OMP threading vs. No OMP threading for N=299K, f=2.3984GHz 96

Figure 66: Matrix Fill Times: OMP vs. No OMP for N=299K, f=2.3984GHz 96

Figure 67: Matrix fill times & memory usage for N=326K, f=2.5000GHz 97

Figure 68: Matrix fill times & memory usage for N=342K, f=2.5624GHz 98

Figure 69: Nmax vs. Number of Unknowns ... 99

Figure 70: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.1499 GHz 101

Figure 71: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.1499 GHz 102

Figure 72: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.2998 GHz 103

Figure 73: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.2998 GHz 104

Figure 74: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.5996 GHz 105

Figure 75: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.5996 GHz 106

Figure 76: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.8994 GHz 107

Figure 77: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.8994 GHz 108

Figure 78: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=1.1992 GHz 109

Figure 79: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=1.7988 GHz 110

Figure 80: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.0000 GHz 111

Figure 81: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.3984 GHz 112

Figure 82: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.5000 GHz 113

Figure 83: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.5624 GHz 114

1

Chapter 1. Introduction

1.1. Background

Understanding, predicting, and controlling electromagnetic field interactions on

and between complex RF platforms is essential to the design and analysis of various

NASA communications and sensing systems. Electromagnetic interactions underlie

various critical properties of such systems including antenna radiation patterns and

impedances, near field distributions, instrument-platform interactions, link budgets, etc.

Modern platforms are increasingly sophisticated and complex, and accurate

electromagnetic modeling of these platforms in their deployed environment requires high

fidelity computational electromagnetic (CEM) simulation tools. While NASA currently

has significant capability in this area, existing and future design and analysis

requirements exceed the capabilities of its existing CEM tools.

The primary CEM tool within NASA is GEMINI (formerly EIGER [1]), which is

maintained by the members of the CEM Laboratory [2] at NASA’s Johnson Space Center

(JSC) in Houston. GEMINI is an integral equation based method-of-moments (MoM)

code for frequency domain electromagnetic modeling [3]. GEMINI is well tested and has

been proven accurate and effective in a number of real world applications. However,

GEMINI is currently limited in the size and complexity of problems that can be

effectively handled. The CEM Lab at JSC relies on a supercomputer with 476 processors

and 1.9 terabytes of RAM. The GEMINI tool currently relies on standard distributed LU

decomposition techniques. For this reason, the group’s simulation capabilities are

currently limited to about 290,000 unknowns.

A primary NASA research project at the University of Kentucky involves the

integration of the sparse linear solution library, MFDlib, developed at the University of

Kentucky, with GEMINI for efficient filling, factorization, and solution of large

electromagnetic problems formulated using integral equation methods [4]. A secondary

research project involves the hybrid parallelization of GEMINI for the efficient speedup

of the filling process. This thesis discusses the research, development, and testing of this

secondary research project. The next section identifies several problems that emphasize

the need NASA has to extend its CEM capabilities beyond those currently available.

2

1.2. Motivation

NASA’s Computational Electromagnetics (CEM) Laboratory has a strong

reputation for providing reliable, accurate solutions for a wide range of practical

electromagnetic problems. Some of NASA-JSC CEM Lab’s recent activities include

analyzing the flight termination system (FTS) antennas on four different vehicles:

NASA’s ARES I-X Rocket (2008), SpaceX’s Falcon-9 rocket (2009), Orbital Science

Corporation’s Taurus II Rocket (2010-2011), and SpaceX (2011).

Analyzing the antenna systems on the Orion Abort Test Booster (ATB) was

required in four frequency bands: UHF, L-Band, S-Band, and C-Band. See Figure 1.

Figure 1: Analyzing antenna systems on Orbital Sciences’ Orion Abort Test Booster

NASA is studying C-band antennas mounted at different locations on an astronaut

suit. The entire astronaut can be modeled at UHF band using GEMINI. See Figure 2.

Figure 2: Astronaut Extra Vehicular Activity (EVA) lunar surface studies

3

The NASA-JSC CEM Lab provided computational analyses to relocate Space-to-

Space Orbiter Radio (SSOR) and Wireless Video System (WVS) antennas to

accommodate the Orbiter Boom Sensor System. The purpose of the CEM analysis was

to ensure that the antennas were located in regions that provided sufficient coverage to

astronauts performing EVA maneuvers. The analysis required the evaluation of 25

different antenna locations on the vehicle, with each location requiring a CEM simulation

analysis. See antenna photo and CEM antenna simulation analysis in Figure 3.

Figure 3: UHF-band shuttle antenna placement analysis

As indicated above, the CEM Laboratory at NASA’s Johnson Space Center has

significant experience with and confidence in the GEMINI computational

electromagnetics tool for a variety of electromagnetic modeling applications. However,

there is also a clear need to extend the capabilities of GEMINI in order to treat more

complex problems. While extensions to GEMINI would be desirable in a few areas, the

most significant of these is the need to be able to model complex platforms in higher

frequency bands (e.g., L-, S- and C-) than is currently possible.

As mentioned previously, the primary research project to integrate the MFDlib

library with GEMINI and the secondary research project (discussed in this thesis) to

develop hybrid parallelization of GEMINI target the important need NASA has to extend

its CEM capabilities beyond those currently available.

4

Chapter 2. Model

2.1. Integral Equation Based Formulation using Method of Moments

GEMINI employs an integral equation based method-of-moments code for

frequency domain electromagnetic modeling. The method-of-moments (MoM) is a

numerical method of solving linear partial differential equations which have been

formulated as integral equations [5]. It can be applied in many areas of engineering and

science including fluid mechanics, acoustics, electromagnetics, fracture mechanics, and

plasticity. In this thesis, we consider MoM only for boundary integral equation

formulations (BIEs) of time harmonic electromagnetic field scattering from piecewise

homogenous dielectric and conducting materials.

MoM for BIEs has become more popular since the 1980s because it enables the

solution for fields at all points in space using only boundary values, rather than values of

the fields throughout all of the space. It is significantly more efficient in terms of

computational resources for problems with a small surface/volume ratio. Conceptually, it

works by constructing a "mesh" over the modeled surface. However, for many problems,

the boundary element method (BEM) is significantly computationally less efficient than

volume-discretization methods (finite element method, finite difference method, finite

volume method). Boundary element formulations typically give rise to fully populated

matrices. This means the storage requirements will tend to grow according to the square

of the problem size, and the computational times will tend to grow as the cube of the

problem size. One way to reduce these costs is to use data-sparse solution methods such

as those provided by the University of Kentucky MFDlib library [4]. Such strategies are

not discussed in this thesis.

BEM is applicable to problems for which Green's functions can be calculated.

These usually involve fields in linear homogeneous media. This places considerable

restrictions on the range and generality of problems suitable for boundary elements.

Nonlinearities can be included in the formulation, although they generally introduce

volume integrals which require the volume to be discretized before solution. In some

cases, this removes an oft-cited advantage of BEM.

5

2.2. EFIE Formulation for Perfect Electrical Conductors

The Electric Field Integral Equation (EFIE) formulation has the advantage of

being applicable to both open and closed bodies [6]. Let S denote the surface of an open

or closed PEC scatterer with unit normal n̂ . An electric field
iE

 (due to an impressed

source in the absence of a scatterer), is incident on and induces surface currents J

on S.

Figure 4: PEC with surface current zyxJ ,,

If S is open, J

is the vector sum of the surface current on opposite sides of S and,

therefore, the normal component of J

must vanish on boundaries of S. The scattered

electric field
sE

can be computed from surface current by

AjE s (1)

where the magnetic vector potential is defined as

S

jkR

dS
R

e
JrA '

4

 (2)

6

and the scalar potential is defined as

S

jkR

dS
R

e
r '

4

1

 (3)

A harmonic time dependence (
tje
) is assumed and /2k , where λ is the

wavelength. 'rrR

 is the distance between an arbitrarily located observation point r

and a source point 'r

 on S. The surface charge density is related to the surface

divergence of J

through the equation of continuity

jJS

 (4)

Enforcing the boundary condition

 0ˆ si EEn

 (5)

on S, we obtain

 iEAj tantan

(6)

which constitutes the electric field integral equation (EFIE). The EFIE method

constitutes solving eq.(6) utilizing the magnetic vector potential [eq.(2)], scalar potential

[eq.(3)], and continuity equation [eq.(4)].

Although the EFIE method has the advantage of being applicable to both open

and closed bodies, it can be difficult to apply due to the kernel of the integral containing a

singularity. When computing self-interactions, the source and observation points are the

same ('rr

) and the integrals contain a singularity at 0R . Transformations such as

Duffy’s transformation of source coordinates can be used to remove the singularity [5].

7

2.3. Discretization and Basis Functions

The current J

on surface S can be approximated in terms of a series of vector

basis functions rf n

. A discrete computational representation of the problem to be

solved typically includes a mesh of some simple shape, together with parameter values

that specify the physical properties in the material of each mesh element [7]. In EFIE

formulations, continuous surface models employ surface “patches” with overlapping

basis functions. The patch shape of choice for discretization of a continuous surface is

the planar triangular patch [8] displayed in Figure 5.

Figure 5: Discretization of spherical surface by triangular patches

Planar triangular patches are capable of accurately conforming to any geometrical

surface or boundary with the desired tolerance, are easily specified for computer input,

and allow for varying patch density to accommodate small geometry features and sharp

variation in anticipated current density.

If the basis functions representing the surface current are not constructed such that

their normal components are continuous across the patch edges, then the continuity

equation [eq. (4)] requires the presence of point or line charges at the edges. These

fictitious charges, if present, can cause erroneous solutions in some cases and are to be

avoided for that reason. Thus, the basis function of choice for triangular patches is the

RWG basis function (discussed in next section) which avoids difficulties at patch edges.

8

2.4. RWG Model

The Rao-Wilton-Glisson (RWG) model uses a special set of vector basis

functions rf n

 which are suitable for use with the EFIE and a triangular mesh to

approximate S [6]. The surface mesh is divided into triangular pairs with a common

interior edge as shown in Figure 6.

Figure 6: Triangle pair and geometrical parameters associated with interior edge

The vector basis function associated with the nth edge of a triangular pair as shown in

Figure 6 is given by [5], [6], [8]

otherwise

Tinrfor
A

l

Tinrfor
A

l

rf
nn

n

n

nn

n

n

n

0

2

2

 (7)

where ln is the length of the edge and An
±
 is the area of the triangle Tn

±
. The current on S

can be approximated in terms of the vector basis functions rf n

 as

 rfIJ n

N

n

n

1

 (8)

9

where N is the number of interior (non-boundary) edges and In is the coefficient

(interpreted as the normal component of current density flowing past the nth edge). If the

vector basis functions rfm

 are also used as testing functions at observation triangles for

the EFIE [eq. (6)], then we obtain

 dSrfrEdSrfrdSrfrAj
S

m

i

S

m

S

m

(9)

The testing integral over each triangle can be eliminated by using the surface vector

calculus identity and approximating ,
iE

, and A

 by their values at the observation

triangle centroid yielding the EFIE equation

22

22

c

mc

m

i

c

mc

m

i

m

c

m

c

m

c

mc

m

c

mc

mm

rErEl

rrrArAjl

 (10)

Substituting the current J

[eq.(8)] into the EFIE [eq. (10)] yields an N x N system of

linear equations

22

4

1

224

c

mc

m

i

c

mc

m

i

m

n

S
c

m

rrjk

nS

S
c

m

rrjk

nS

c

m

S
c

m

rrjk

n

c

m

S
c

m

rrjk

n

m

rErEl

I

Sd
rr

e
rfSd

rr

e
rfj

Sd
rr

e
rfSd

rr

e
rfj

l
c

m
c

m

c
m

c
m

(11)

10

The N x N system of linear equations can be written in matrix form as follows

VIZ

~

 (12)

where mnZZ
~

 is an N x N matrix (known as the impedance matrix), nII

 and mVV

are column vectors of length N, m is the index over N observation triangles, and n is the

index over N source triangles. Elements of Z
~

 and V

are given by [6]

Sd
rr

e
rfSd

rr

e
rfj

Sd
rr

e
rfSd

rr

e
rfj

lZ

S

c

m

rrjk

nS

S

c

m

rrjk

nS

c

m

S

c

m

rrjk

n

c

m

S

c

m

rrjk

n

mmn
c

m
c

m

c
m

c
m

4

1

224

 (13)

and

22

c

mc

m

i
c

mc

m

i

mm rErElV

(14)

Once the elements Zmn of the impedance matrix and the elements Vm of the column vector

are determined, the N x N system of linear equations can be solved for the unknown

current coefficients In. Once solved, the current across the nth edge is found by

 rfIJ nnn

(15)

For plane wave incidence, the components of rE i
 are

 rkji

z

rkji

y

rkji

x

eEE

eEEE

eEEE

0

000

000

sin

cossincos

sincoscos

 (16)

11

where the components of the propagation vector k

 are

0

00

00

cos

sinsin

cossin

kk

kk

kk

z

y

x

 (17)

and 00 , defines the angle of arrival of the plane wave.

The ability of surface S to scatter electromagnetic waves can be summarized into

a single term, σ, known as the radar cross-section (RCS). The RCS of surface S can be

viewed as a ratio of the strength of the scattered wave from surface S to the scattered

wave from a perfectly smooth sphere of cross sectional area of 1 m
2
. After solving for

the unknown currents, the RCS can be computed by [5]

2
2

3
4

S

s

D dSrJrE
k

 (18)

where the plane wave rE s

 in the scattering direction is polarized in the ̂ or ̂

direction. The integral [eq. (18)] can be evaluated by substituting the expansion for the

surface current density in terms of basis functions [eq. (8)]. This leads to

2

1

2

3
4

S

n

s
N

n

nD dSrfrEI
k

 (19)

For a given pair of incident and scattering directions, there are four possible combinations

of polarizations for the incident and scattered plane waves, so in general σθθ, σθϕ, σϕθ, and

σϕϕ must be computed to characterize the scattering properties of the object.

12

To demonstrate, the EFIE method can be used on the spherical mesh geometry of

Figure 5 to solve for the triangle edge currents. Consider the spatial extent along the

diameter of a 2-m sphere to be 0.4λ. A plane wave is incident from above the sphere,

travelling down the z-axis, and polarized along the x-axis.

Figure 7: Plane wave travelling down z-axis and polarized along x-axis

For a plane wave incidence at φ0 = 0, θ0 = 0, Eϕ = 0, Eθ = -1, the components of rE i
 are

0

0

i

z

i

y

jkzi

x

E

E

eE

 (20)

and the components of the propagation vector k

 are

kk

k

k

z

y

x

0

0

 (21)

The incident plane wave is therefore in the -z direction and theta-polarized. The incident

plane wave has wavelength λ = 2 m / 0.4 = 5 m and frequency f = 60.0 MHz.

13

The triangle edge currents are solved as follows:

1. mVV

 is filled;

2. Impedance matrix mnZZ
~

 is computed (by matrix fill routine);

3. Inverse impedance matrix
1~ Z is computed (by matrix factorization routine);

4. Matrix equation VZI

1~ yields nII

 giving the current coefficients In for the

triangle pair edges;

5. Each current coefficient In is multiplied by the appropriate basis function rfn

[eq.(15)] to determine the distribution of J

over the triangles in the mesh.

Color density plots showing the distribution of J

over the triangle mesh as viewed from

the north pole and south pole, respectively, are shown in Figure 8 and Figure 9.

Figure 8: Distribution of J over triangular mesh as viewed from north pole

14

Figure 9: Distribution of J over triangular mesh as viewed from south pole

The RCS scattering results (E plane φ = 0) for a 60 MHz incident plane wave impingent

on the 1 meter radius PEC sphere is shown in Figure 10.

Figure 10: RCS plot for 60 MHz plane wave scattering on 1-m (0.2λ) radius PEC sphere

15

Chapter 3. NASA GEMINI Solver

3.1. GEMINI Solver Structure and Existing MPI Parallelization

Accurate electromagnetic (EM) analysis plays a critical role in NASA’s mission.

The primary tool for this purpose within NASA is GEMINI. GEMINI Solver calculates

the primary electromagnetic quantities (e.g., currents) and secondary quantities of interest

(e.g., far fields, etc.), if desired. The general framework is open to many applications

including antenna design, radio frequency design, and passive microwave device design.

GEMINI Solver runs on a variety of platforms with a FORTRAN 2000 compiler,

including Windows and Linux. Additionally, GEMINI executes in parallel on machines

using Message Passing Interface (MPI) libraries. MPICH [9] by Argonne National

Laboratory is a high performance, widely portable implementation of the MPI standard.

MPI was developed to facilitate portable programming for distributed-memory

architectures, where multiple processes execute independently and communicate data as

needed by exchanging messages. MPI provides a comprehensive set of library routines

for managing processes and exchanging messages. MPI is widely used in high-end

computing, where problems are so large that a cluster of computers is needed to solve

them. Figure 11 depicts a simple MPI program running with four processes.

Figure 11: Parallelization with MPI processes

The program tree for GEMINI Solver is shown in Table 1 on the next page.

16

Table 1: GEMINI Solver program tree

GEMINI Solver Program Tree

Begin GEMINI Solver
 CALL & RETURN ProjectModule%openPrimaryFiles
 CALL & RETURN ProjectModule%readFromFile
 CALL & RETURN ProjectModule%writeSimulationData
 CALL SolutionModule%solution
 CALL SolutionModule%nonperiodic/periodic
 ! loop over frequencies
 ! Begin “Fill the impedance matrix”
 CALL GlobalMatrixModule%fillNormal
 ! loop over observation elements --> loop over node sets for this observation element
 ! Begin “Moment method analysis”
 ! loop over source elements --> loop over node sets for this source element
 CALL LocalMatrixModule%fillMoM
 ! loop over observation points --> loop over the number of common regions
 CALL OperatorsModule%FillZMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasis%lambda(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! calculation: obsBasis%divLambda(iObs)*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillZMatrix
 CALL OperatorsModule%FillBetaMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasisCrossNormal(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillBetaMatrix
 CALL OperatorsModule%FillYMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasisCrossNormal(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! calculation: obsBasisCrossNormal(iObs) .dot. gradG(iQuad))*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillYMatrix
 CALL OperatorsModule%FillBetaTildeMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasis%lambda(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillBetaTildeMatrix
 ! end loop over the number of common regions --> end loop over observation points
 RETURN LocalMatrixModule%fillMoM
 CALL & RETURN GlobalMatrixModule%localToGlobal
 ! end loop over node sets for this source element --> end loop over source elements
 ! End “Moment method analysis”
 ! end loop over node sets for this observation element --> end loop over observation elements
 RETURN GlobalMatrixModule%fillNormal
 ! End “Fill the impedance matrix”
 ! Begin “Fill the right hand side for each excitation group”
 ! loop over excitation groups
 CALL & RETURN GlobalVector%fill
 ! loop over global wave sources --> loop over elements --> loop over node sets for this element
 LocalVectorModule%fillLocalSource
 LocalVectorModule%localToGlobal
 ! end loop over node sets for this element --> end loop over elements --> loop over global wave sources
 ! loop over voltage sources-> loop over node sets
 LocalVectorModule%fillLocalSource
 LocalVectorModule%localToGlobal
 ! end loop over node sets --> end loop over voltage sources
 CALL & RETURN ISISComplexSolverModule%solve
 CALL & RETURN ISISComplexVectorModule%gather
 CALL & RETURN SolutionModule%writeSolution
 ! end loop over excitation groups
 ! End “Fill the right hand side for each excitation group”
 ! end loop over frequencies
 RETURN SolutionModule%nonperiodic/periodic
 RETURN SolutionModule%solution
 CALL & RETURN ProjectModule%closeFiles
End GEMINI Solver

17

3.2. Computing Platforms

GEMINI is maintained by the members of the CEM Laboratory at NASA’s

Johnson Space Center (JSC) in Houston, Texas. The CEM Lab at JSC [2], shown below

in Figure 12, relies on a supercomputer with 476 processors and 1.9 terabytes of RAM.

Figure 12: The CEM Laboratory at NASA’s Johnson Space Center

The GEMINI tool currently relies on standard distributed LU decomposition techniques.

For this reason, the group’s simulation capabilities are currently limited to about 290,000

unknowns. Simulations of that size require about 12 hours. Due to space/cooling

limitations within the CEM Lab, they can fit only five more supercomputer racks in the

lab. If the lab were filled to capacity with oct-core blade clusters with 8 GB

RAM/processor, then the group could handle problems with up to 940,000 unknowns

using GEMINI in its current configuration.

GEMINI Solver is first built at the University of Kentucky within Visual Studio

under MPI (MPICH) and tested in the ECE Electromagnetics Laboratory on a Dell

workstation with an 8-core Intel Xeon CPU X5450 @ 3.00 GHz and 64.0 GB RAM

running Windows-7. Section 3.3.3 discusses the results of the initial MPI parallel testing.

18

Once the computing capacity of the Dell workstation is exceeded due to large size

MoM problems, GEMINI Solver is built under MPI [10] and tested on the University of

Kentucky HPC DLX Linux Cluster [11]. The DLX, shown in Figure 13, is a

supercomputer cluster with 256 Nodes (4096 cores), ~95 Teraflops, Dell C6220 Server, 4

nodes per 2U chassis, Dual Intel E5-2670 8 Core (Sandy Bridge) @ 2.6 GHz, 2

sockets/node x 8 cores/socket = 16 cores/node, 64 GB/node of 1600 MHz RAM, 500 GB

local (internal) SATA disk, Linux OS (RHEL).

Figure 13: The University of Kentucky HPC DLX Linux Cluster

Sections 3.3.4 and 3.3.5 of this thesis present the results of MPI parallel testing on

the DLX. MoM problem sizes are increased to find GEMINI Solver’s limit on the DLX

utilizing MPI parallelization. Chapter 4 and Chapter 5 discuss the hybrid parallelization

development and testing of GEMINI Solver’s existing course level MPI parallelization

with Open MP (OMP) [12] fine level parallel threading. MoM problem sizes are

increased to find GEMINI Solver’s limit on the DLX for hybrid parallelization.

19

3.3. Preliminary MPI Testing

3.3.1. Triangular Mesh Generation Using CUBIT

Cubit 14.1 [13] by Sandia National Laboratory is used to generate a triangular

surface mesh for a sphere with N triangle edges. Table 2 shows the script for generating

a triangular surface mesh for a 1-m radius sphere with 1.50 cm size mesh elements

yielding 207,663 edges for testing a λ = 15.0 cm (f = 2.000 GHz) incident plane wave.

Table 2: Cubit Script to create a meshed sphere with mesh size lambda/10

This example creates a meshed sphere with mesh size lambda/10.
#cubit 14.1
reset
create sphere radius 1
surface 1 size .0150
surface 1 scheme TriMesh
mesh surface 1

block 1 surface 1

save as"C:/Users/bljo222/Desktop/EIGER ANTS/Gemini

samples/sphere/spherebiggestmore.cub" overwrite

export ideas "C:\Users\bljo222\Desktop\EIGER ANTS\Gemini

samples\sphere\spherebiggestmore.unv" block all overwrite

Ten triangular surface meshes are generated to test GEMINI Solver’s existing MPI

parallelization. Table 3 shows the triangular surface meshes for a 1-m radius sphere with

varying size mesh elements from 1,083 edges to 342,087 edges. Each surface mesh

created by Cubit is exported as a universal “.unv” file.

Table 3: Ten triangular surface meshes for 1-m radius sphere with λ
2
 / ½ℓ

2
 ≈ 200

Frequency, f

(GHz)

Wavelength, λ

(cm)

Mesh Element Size, ℓ

(cm)

Triangle Pair Edges, N

(# unknowns)

0.1499 200 20.0 1,083

0.2998 100 10.0 4,455

0.5996 50.0 5.00 18,162

0.8994 33.3 3.33 41,415

1.1992 25.0 2.50 74,211

1.7988 16.7 1.67 167,652

2.0000 15.0 1.50 207,663

2.3984 12.5 1.25 298,863

2.5000 12.0 1.20 326,430

2.5624 11.7 1.17 342,087

20

3.3.2. Create GEMINI Solver Input Test Files Using EIGER ANTS

EIGER ANTS [14] is used to import each mesh file and make a project suitable

for exporting a GEMINI Solver “.eig” test input file. EIGER ANTS projects are

developed with the following designated properties:

• Material: εr = 1 (air) for PEC or εr = 4 (slate) for Dielectric

• Frequency: 0.1499 GHz to 2.5624 GHz

• Plane Wave: ϕ0 = 0, θ0 = 0, Eϕ = 0, Eθ = -1

• Far Field Scans: ϕ = 0, 0 ≤ θ ≤ 180 and ϕ = 90, 0 ≤ θ ≤ 180

Figure 14 shows an EIGER ANTS Project with 1.50 cm triangle mesh elements and a

2.000 GHz incident plane wave. The incident plane wave is in the -z direction and is

theta-polarized.

Figure 14: EIGER ANTS Project: ℓ = 1.50 cm / f = 2.000 GHz Incident Plane Wave

21

To complete a project, associations are made in EIGER ANTS. The finished

project is exported to a ”.eig” test input file. Most ”.eig” input files are generated to test

GEMINI Solver’s EFIE solutions. A few input files are generated to test Gemini’s

DIELECTRIC solutions. PEC associations for EFIE solutions require (1) Outside Region

association to mesh ID 1, (2) Material association to air, (3) Basis Function association to

linear basis, and (4) Integral Equation association to EFIE. Dielectric associations for

DIELECTRIC solutions require (1) Outside Region association to mesh ID 1, (2)

Material association to air (εr = 1), (3) Basis Function association to linear basis, (4)

Integral Equation association to DIELECTRIC, (5) Inside Region association to mesh ID

2, (6) Material association dielectric (εr = 4), (7) Basis Function association to linear

basis, and (8) Integral Equation association to DIELECTRIC. Figure 15 shows the steps

in making an EFIE solution test input file for a PEC sphere. Table 4 on next page shows

the input files created to test GEMINI Solver.

Step 1 Step 2 Step 3

Step 4 Step 5

Figure 15: Steps in making/exporting an EFIE solution test input file for a PEC sphere

22

Table 4: Input Files Generated to Test GEMINI Solver

Frequency, f

(GHz)

Triangle Pair Edges, N

(# unknowns)
Solution Test GEMINI Solver Input Test File

0.1499 1,083 EFIE spheresmaller0_1499GHz.eig

0.1499 2,166 DIELECTRIC spheresmallerDIE0_1499GHz.eig

0.2998 4,455 EFIE sphere0_2998GHz.eig

0.2998 8,910 DIELECTRIC sphereDIE0_2998GHz.eig

0.5996 18,162 EFIE spherebig0_5996GHz.eig

0.5996 36,324 DIELECTRIC spherebigDIE0_5996GHz.eig

0.8994 41,415 EFIE spherebiggerless0_8994GHz.eig

0.8994 82,830 DIELECTRIC spherebiggerlessDIE0_8994GHz.eig

1.1992 74,211 EFIE spherebigger1_1992GHz.eig

1.7988 167,652 EFIE spherebiggermore1_7988GHz.eig

2.0000 207,663 EFIE spherebiggestless2_0000GHz.eig

2.3984 298,863 EFIE spherebiggest2_3984GHz.eig

2.5000 326,430 EFIE spherebiggestmore2_5000GHz.eig

2.5624 342,087 EFIE spherebiggestmost2_5624GHz.eig

3.3.3. MPI Multi-Process Test Runs on Windows-7

GEMINI Solver v1.0 (GSv1.0) is built within Visual Studio 2012 to run multiple

MPI processes under Windows-7 on a Dell 8-core workstation. Table 5 lists the test

cases which are run successfully. GEMINI Solver is run on each test case in Table 5 to

solve for the triangular edge output currents. MPI performance comparisons are run for

cases N = 4K and 18K. Testing for cases N > 42 K would not complete after seven days

of processing on the Dell workstation.

Table 5: GEMINI Solver v1.0 test cases run under MPI for Windows-7

Frequency, f

(GHz)

Edges, N

(# unknowns)
Solution Test

MPI

Processes

MPI Performance

Comparison

0.1499 1,083 EFIE 1 No

0.1499 2,166 DIELECTRIC 1 No

0.2998 4,455 EFIE 1 to 8 Yes

0.2998 8,910 DIELECTRIC 1 No

0.5996 18,162 EFIE 1 to 8 Yes

0.5996 36,324 DIELECTRIC 1 No

0.8994 41,415 EFIE 1 No

23

Matrix factor and fill performance comparisons are shown in Figure 16 for N=4K.

As expected, the matrix factor time decreases as the number of MPI processes increases.

Significant speedup is observed as the number of MPI processes increases. However, the

matrix fill time is approximately constant and unexpectedly long. No speedup is

observed as the number MPI processes increases.

Figure 16: Matrix factor & fill performance comparisons GSv1.0 (f=0.2998GHz/N=4K)

24

Matrix factor and fill performance comparisons are shown in Figure 17 for

N=18K. As expected, the matrix factor time decreases as the number of MPI processes

increases. Significant speedup is observed as the number of MPI processes increases.

However, the matrix fill time is approximately constant and unexpectedly long. No

speedup is observed as the number MPI processes increases.

Figure 17: Matrix factor & fill performance comparisons GSv1.0 (f=0.5996GHz/N=18K)

25

3.3.4. Initial MPI Runtime Performance Measurements on DLX

GEMINI Solver v1.0 is subsequently built on the University of Kentucky HPC

DLX Linux Cluster [11] to run larger problems requiring many more MPI processes.

The steps to build GSv1.0 on DLX are shown in Table 6.

Table 6: Building GEMINI Solver on University of Kentucky HPC DLX supercluster

1. Make a directory called gemini on your /home/<username>/ directory on DLX.

2. Copy the contents of the gemini folder to this new directory on DLX.

3. This should be the directory structure:

4. Unpack libs.tar.gz in /home/<username>/gemini/lib/linux/ using “tar xvzf libs.tar.gz”

5. Rename the unpacked file libISIS_juggernaut.a to libISIS_dlx.a

6. Copy the two files, makefile and make.options.dlx to /home/<username>/gemini/

7. Make GEMINI_solver on DLX

Table 7 lists the test cases which run successfully. GEMINI Solver is run on each test

case in Table 7 to solve for the triangular edge output currents. MPI performance

comparisons are run for cases N = 41K, 83K, and 74K. Testing for N > 168 K would not

complete on the DLX supercluster within three days (maximum allowed time).

Table 7: GEMINI Solver v1.0 test cases run under MPI for Linux

Frequency, f

(GHz)

Edges, N

(# unknowns)
Solution Test

DLX

Nodes

MPI

Processes per

DLX Node

MPI

Processes

Performance

Comparison

0.8994 41,415 EFIE 1,2,3 16 16,32,48 Yes

0.8994 82,830 DIELECTRIC 2,3,4,5,6 16 32,48,64,80,96 Yes

1.1992 74,211 EFIE 2,3,4,5 16 32,48,64,80 Yes

1.7988 167,652 EFIE 9 16 144 No

26

Matrix factor and fill performance comparisons are shown in Figure 18 for

N=41K. As expected, the matrix factor time decreases as the number of MPI processes

increases. Significant speedup is observed as the number of MPI processes increases. As

the number of MPI processes is doubled (16→32) and tripled (16→48), the speedup is

likewise increased by a factor of approximately two and three, respectively. The matrix

fill time is approximately constant and unexpectedly long. No speedup is observed as the

number of MPI processes increases.

Figure 18: Matrix factor & fill performance comparisons GSv1.0 (f=0.8994GHz/N=41K)

27

Matrix factor performance comparisons are shown in Figure 19 for N=83K. As

expected, the matrix factor time decreases as the number of MPI processes increases.

Significant speedup is observed as the number of MPI processes increases. As the

number of MPI processes is doubled (32→64) and tripled (32→96), the speedup is

likewise increased by a factor of approximately two and three, respectively. The matrix

fill time is approximately constant and unexpectedly long. No speedup is observed as the

number MPI processes increases.

Figure 19: Matrix factor & fill performance comparisons GSv1.0 (f=0.8994GHz/N=83K)

28

Matrix factor and fill performance comparisons are shown in Figure 20 for

N=74K. As expected, the matrix factor time decreases as the number of MPI processes

increases. Significant speedup is observed as the number of MPI processes increases. As

the number of MPI processes is doubled (32→64), the speedup is likewise increased by a

factor of approximately two. The matrix fill time is approximately constant and

unexpectedly long. No speedup is observed as the number MPI processes increases.

Figure 20: Matrix factor & fill performance comparisons GSv1.0 (f=1.1992GHz/N =74K)

29

For the single N=168 K run with 144 MPI process, the factor time is reasonable at

1.82 hours, but the fill time is too long. The implementation of MPI parallelization in

GEMINI Solver v1.0 successfully increases the matrix factorization performance, but has

no observable effect on the matrix fill performance. Matrix factor and fill performance

results are presented to Nathan Champagne (author of GEMINI Solver) at the CEM

group at NASA in Houston to guide in improving GEMINI Solver’s performance. An

improved version is subsequently developed for further testing.

3.3.5. Improved MPI Runtime Performance Measurements on DLX

Several issues including long project load time and long, constant matrix fill time

are solved with the improved GEMINI Solver v2.0 (GSv2.0). GEMINI Solver is run on

each test case in Table 8 to solve for the triangular edge output currents. Matrix fill times

are significantly reduced with the improved version. Testing for N > 208 K would not

complete on the DLX due to excessive page swapping. The total memory required for

runs with N > 208 K exceeds the physical memory limit on each DLX node due to the

very large problem sizes (mesh sizes).

Table 8: GEMINI Solver v2.0 test cases run under MPI for Linux

Frequency, f

(GHz)

Edges, N

(# unknowns)
Solution Test

DLX

Nodes

MPI

Processes per

DLX Node

MPI

Processes

Performance

Comparison

0.8994 41,415 EFIE 4,5,6 16 64,80,96
Yes

0.8994 41,415 EFIE 7,8,9 16 112,128,144

0.8994 82,830 DIELECTRIC 6,7 16 96,112
Yes

0.8994 82,830 DIELECTRIC 8,9 16 128,144

1.1992 74,211 EFIE 4,5,6 16 64,80,96
Yes

1.1992 74,211 EFIE 7,8,9 16 112,128,144

1.7988 167,652 EFIE 9,10 16 144,160
Yes

1.7988 167,652 EFIE 11,12 16 176,192

2.0000 207,663 EFIE 14,16 16 224,256
Special

2.0000 207,663 EFIE 28 8 224

30

Matrix factor and fill performance comparisons are shown in Figure 21 for

N=41K. As expected, the matrix factor time decreases as the number of MPI processes

increases. Significant speedup is observed as the number of MPI processes increases.

The matrix fill time now decreases as the number of MPI processes increases. Speedup is

now observed as the number of MPI processes increases.

Figure 21: Matrix factor & fill performance comparisons GSv2.0 (f=0.8994GHz/N=41K)

31

Matrix factor and fill performance comparisons are shown in Figure 22 for

N=83K. As expected, the matrix factor time decreases as the number of MPI processes

increases. Significant speedup is observed as the number of MPI processes increases.

The matrix fill time now decreases as the number of MPI processes increases. Speedup is

now observed as the number of MPI processes increases.

Figure 22: Matrix factor & fill performance comparisons GSv2.0 (f=0.8994GHz/N=83K)

32

Matrix factor and fill performance comparisons are shown in Figure 23 for

N=74K. As expected, the matrix factor time decreases as the number of MPI processes

increases. Significant speedup is observed as the number of MPI processes increases.

The matrix fill time now decreases as the number of MPI processes increases. Speedup is

now observed as the number of MPI processes increases.

Figure 23: Matrix factor & fill performance comparisons GSv2.0 (f=1.1992GHz/N=74K)

33

Matrix factor and fill performance comparisons are shown in Figure 24 for

N=168K. As expected, the matrix factor time decreases as the number of MPI processes

increases. Significant speedup is observed as the number of MPI processes increases. In

addition, the matrix fill time decreases as the number of MPI processes increases.

Speedup is observed as the number of MPI processes increases.

Figure 24: Matrix factor & fill performance comparisons GSv2.0 (f=1.7988GHz/N=168K)

34

Matrix factor and fill performance comparisons are shown in Figure 25 for

N=208K. The matrix factor time varies little as the number of MPI processes increases.

The matrix fill time decreases as the number of MPI processes increases. Speedup is

observed as the number of MPI processes increases, but not as significantly as for

previous test cases. The large mesh size for N=208K could be a limiting factor in

performance for 224, 256, etc. MPI processes. Since the mesh is duplicated for each MPI

process running on a node, reducing the number of processes per node while keeping the

total number of MPI processes constant should decrease the matrix factor and fill times.

Figure 25: Matrix factor & fill performance comparisons GSv2.0 (f=2.0000GHz/N=208K)

35

Matrix factor and fill performance comparisons are shown in Figure 26 for N=208K

using 224 MPI processes for 8 and 16 MPI processes per node. As suspected, while

holding the total number of MPI processes constant, reducing the number of MPI process

per node reduces both the matrix fill and factor times. Therefore, higher performance can

be achieved for larger problems when the number of MPI processes per node is reduced.

Figure 26: Matrix factor & fill performance by MPIs/node GSv2.0 (f=2.0000GHz/N=208K)

36

The cases for N > 208K will not run on DLX with 16 MPI processes per node due

to excessive page swapping. However, reducing the number of MPI processes from 16 to

8 (or less) will free up memory per node which should allow larger problems to execute.

On the down side, efficiency suffers because cores not executing an MPI process are idle.

On a supercluster such as DLX, this waste cannot be permitted (just ask Jerry Grooms!).

To address the inefficiency problem, multiple threading of each MPI process can make

use of otherwise idle cores. For example, using four MPI processes per node with four

threads per MPI process would use all sixteen cores per node, allowing larger problems

to execute with shorter matrix fill and factor times. See diagram in Figure 27.

Figure 27: Multi-threading of MPI processes

Open MP (OMP) threading of the impedance matrix fill routine in GEMINI

Solver will be explored in the next chapter. Briefly, OMP threads can be created to

parallelize loop routines within the matrix fill routine of each MPI process. MPI

currently provides course parallelization (process level) while OMP can provide fine

parallelization (thread level) of the GEMINI Solver matrix fill routine. Other methods

utilizing the MFDlib library of data sparse methods have been developed to improve the

GEMINI Solver matrix factorization beyond the scope of this work [4].

37

3.4. GEMINI Post RCS Measurements

GEMINI Post v2.0 (GPv2.0) is built for Windows-7 on the Dell workstation as well

as on the University of Kentucky HPC Linux DLX Cluster. Gemini Post generates the

bistatic cross-section (RCS) pattern using eq. (19) for the solved currents of all test cases

discussed in sections 3.3.3, 3.3.4, and 3.3.5. Each RCS pattern is compared to the Mie

Series solution. The Mie Series is an analytical series used to calculate the RCS scattered

solution for a plane wave incident on a sphere. The Mie Series solution is given by

 22

22

0

22

12

0

sin
4

,cos
4

, S
k

S
k

 (22)

where 1S and 2S are the complex scattering amplitudes [15]. Often for purposes

of illustration, one specifies the cases where 0 and 2/ , giving

 00,
4

0,
2

12

0

 VVS
k

 (23)

 HHS
k

2

22

0

4

2
,0

2
, (24)

Hence the quantities sought are the magnitudes 1S and 2S . Computation of the

bistatic cross-sections using the Mie Series is performed using Walton C. Gibson’s

MieScattered MATLAB program [16]. The magnitudes of the complex scattering

amplitudes |S1(θ’)| and |S2(θ’)| are calculated by MieScattered to the optimal value of

terms Nmax. The optimal value Nmax is reached when further terms only improve the Mie

Series solution by 0.01%. Figure 28 on the next page shows two plots of the GEMINI

Post RCS results with fits to the Mie Series for EFIE and Dielectric solutions for a 0.1499

GHz plane wave incident on a 1-m sphere with a triangle surface mesh.

38

Figure 28: GPv2.0 EFIE & Dielectric RCS results w/fit to Mie Series for f = 0.1499 GHz

Comparisons of the RCS pattern generated by GEMINI Post are made to the Mie Series

using the Chi-Square goodness-of-fit (GOF) [15] given by:

 *2

2*

2

i

ii

y

yy

 (25)

where iy represents GEMINI Post RCS values, and
*

iy and *2

iy represent the Mie

Series values and variance, respectively. Table 9 displays the goodness-of-fit (GOF)

between GEMINI Post RCS values and the Mie Series using Nmax terms [16]. The

bistatic angle resolution is given by Δangle.

Table 9: GEMINI Post RCS results fit to Mie Series

Frequency, f

(GHz)

Edges, N

(# unknowns)

Solution

Test

Quality

of Fit

Nmax

Terms

Δangle

(°)

σVV χ
2

GOF

σHH χ
2

GOF

0.1499 1,083 EFIE Excellent 4 1 0.103 0.080

0.1499 2,166 DIELECTRIC Good 4 1 0.475 0.351

0.2998 4,455 EFIE Excellent 7 1 0.008 0.007

0.2998 8,910 DIELECTRIC Good 7 1 0.204 0.321

0.5996 18,162 EFIE Excellent 13 1 0.009 0.010

0.5996 36,324 DIELECTRIC Fair 13 1 2.123 2.308

0.8994 41,415 EFIE Excellent 19 1 0.013 0.015

0.8994 82,830 DIELECTRIC Poor 19 1 4.115 4.604

1.1992 74,211 EFIE Excellent 25 1 0.018 0.019

1.7988 167,652 EFIE Excellent 38 1 0.026 0.025

2.0000 207,663 EFIE Excellent 42 0.5 0.055 0.054

Appendix A contains the plots and goodness-of-fit statistics for all cases listed in Table 9.

39

Chapter 4. Hybrid Parallelization: Combining Open MP with MPI

4.1. Why Open MP Multi-Threading?

In this chapter hybrid parallelization is employed to decrease impedance matrix

fill time and increase the problem size potential by reducing the number of MPI processes

running on a node while utilizing all cores. Hybrid parallelization incorporates Open MP

(OMP) multi-threading within MPI processes. Hybrid parallelization is most efficient

when MPI processes work on a course level of parallelism and OMP is used with the

shared address space of each MPI process for additional fine-grained parallelization [17].

OMP enables the creation of shared-memory parallel threads within a program or

process. A thread is a runtime element that can execute a stream of instructions

independently [18]. When the operating system creates a process, such as an MPI

process, to execute a program, such as GEMINI Solver, it will allocate resources to that

process. If multiple threads work together to execute a program, they will share these

resources, including the address space of the associated process. OMP offers a structured

approach to multi-threaded programming utilizing the fork-join programming model

illustrated in Figure 29. In this approach, the program starts a single thread of execution

Figure 29: The Open MP fork-join programming model

referred to as the initial thread. If the initial thread encounters an OMP parallel construct

(fork), it creates a team of collaborating threads, becomes the master of the team, and

Master Thread

40

works with the other team members to execute the code dynamically. At the end of the

parallel construct (join), only the initial thread, or master thread, continues; all other

threads terminate. Any portion of the program enclosed by a parallel construct (fork-join

region) is known as a parallel region.

Consider four MPI processes running on a node threaded with four OMP threads

per each MPI process. Figure 31 on the following page illustrates the 4-MPI / 4-OMP

hybrid parallelization model for a node. Instead of sixteen copies of the mesh, only four

copies reside in node memory, one in the shared memory of each MPI process. Each

MPI process has four OMP threads working in parallel and sharing memory to

accomplish many times more work than a single MPI process with no threading.

Although only four MPI processes execute on the node, all sixteen cores are busy,

increasing efficiency.

OMP threading is well suited for parallelizing the loop structure found within the

impedance matrix fill routine of GEMINI Solver. Figure 30 shows a simplified diagram

of the matrix fill loop structure used in the impedance matrix fill routine.

Figure 30: Loop structure of the GEMINI Solver impedance matrix fills routine

41

 MPI Process 0

Open MP (Threads T0-T3)

 MPI Process 1

Open MP (Threads T0-T3)

 MPI Process 2

Open MP (Threads T0-T3)

 MPI Process 3

Open MP (Threads T0-T3)

 Figure 31: Hybrid Parallelization Programming: Combining MPI/Open MP

Shared Memory

T0 T1 T2 T3

Shared Memory

T0 T1 T2 T3

Shared Memory

T0 T1 T2 T3

Shared Memory

T0 T1 T2 T3

M
essa

g
e P

a
ssin

g
 In

terfa
ce

(u
ltra-fast n

etw
o

rk)

42

Consider the EFIE test case with N = 1083 (f = 0.1449 GHz) from Table 4

which has a mesh size of 722 triangular elements. In executing the outermost loop of

the impedance matrix fill routine, 722 loop iterations (elementCount) are performed

serially. During an outer loop iteration, the selected observation element is used with

each of 722 source elements to compute and fill 722 local matrices. In turn, each

local matrix is used to update the global matrix. Because iterations of the outer loop

can be made independent of each other, OMP threading can be successfully

implemented. Loop independence requires the results of one loop iteration do not

depend on the results of any other loop iteration; otherwise a data race condition may

occur. A data race condition arises when two or more threads access the same shared

variable without any synchronization to order the accesses, and at least one of the

accesses is a write [18]. A quick check for independence can be made by executing

the outer loop backwards and obtaining the same result [19]. GEMINI Solver’s

matrix fill outer loop passes the independence test with modifications discussed later.

Assuming loop independence, the 722 iterations can be divided into parallel groups

with as little as two threads or as many as sixteen threads. OMP threads working in

parallel can accomplish many more iterations in a given time than serial processing

with no threading. Table 10 shows the number of triangular elements in a mesh and

the estimated number of loop iterations performed by each thread per number of

OMP threads nt = 2, 4, 8, 16 for the EFIE cases listed in Table 4.

Table 10: Loop iterations per thread for nt = 2, 4, 8, and 16 OMP threads

Frequency, f

(GHz)

Edges, N

(# unknowns)

Triangular

elements

Loop Iterations Per Thread

nt = 2 nt = 4 nt = 8 nt = 16

0.1499 1,083 722 361 181 91 46

0.2998 4,455 2,970 1,485 743 372 186

0.5996 18,162 12,108 6,054 3,027 1,514 757

0.8994 41,415 27,610 13,805 6,903 3,452 1,726

1.1992 74,211 49,474 24,737 12,369 6,185 3,093

1.7988 167,652 111,768 55,884 27,942 13,971 6,986

2.0000 207,663 138,442 69,221 34,611 17,306 8,653

2.3984 298,863 199,242 99,621 49811 24,906 12,453

2.5000 326,430 217,620 108,810 54,405 27,203 13,602

2.5624 342,087 228,058 114,029 57,015 28,508 14,254

43

Generally as the number of threads increase, parallel sharing increases and the time to

execute the outer loop decreases.

Envision implementing OMP threading in the loop structure used to fill the

impedance matrix. Figure 32 shows OMP threading of the outer loop of the

impedance matrix fill routine with nt = 4. The single threading of Figure 30 has been

replaced with multiple threading. For the first case in Table 10, each OMP thread works

independently on a subset of about 181 iterations. Since the threads work in parallel, the

outer loop is effectively reduced from 722 iterations to 181 iterations, thus reducing the

execution time. However, execution time reduction also depends on “thread overhead

Figure 32: OMP parallelization of impedance matrix fill routine

44

cost” and “load balance”. Generally, the reduction in execution time of the outer loop

depends on three factors:

 number of threads: nt =2, 4, 8 or 16

 thread overhead cost: time cost related to creating and maintaining threads

 load balance: balance of workload among threads

Increasing the number of threads typically increases loop performance and thereby

reduces execution time. However, increasing the number of threads also increases the

overhead cost which reduces loop performance and lengthens execution time.

Furthermore, if the workload is not evenly balanced among the team of threads, some

threads can be idle while waiting for others to finish working, leading to inefficient

execution and longer than needed execution times. Therefore, optimizing execution time

requires a balance between the number of threads created, thread overhead cost, and load

balance.

Speedup measures the ratio of execution time for single threading to execution

time for multi-threading given by [18]:

PT

T
S 1 (26)

where T1 and Tp are the execution (wall clock) times required to perform loop iterations

with one thread (sequential or serial processing) and p threads (parallel processing),

respectively. Parallel efficiency measures the reduction in execution time per thread for

multi-threading compared to execution time for single threading given by:

p

S
E (27)

where S is the speedup and p is the number of threads.

45

4.2. OMP Directives and Parallelization

OMP consists of a set of compiler directives, runtime library routines, and

environment variables to enable the creation of shared-memory parallel threads within a

FORTRAN 2000 program. An OMP directive is a specially formatted comment

statement beginning with “!$OMP” which generally applies to the executable code

immediately following it in a program [20]. OMP directives provide the means for the

programmer to: create teams of threads for parallel execution, specify how to share work

among the members of a team, declare both shared and private variables, and synchronize

threads and enable them to perform certain operations exclusively. Table 11 shows a few

common OMP directives [21].

Table 11: A few common OMP directives

Create a team of threads which execute the enclosed code in parallel

!$OMP PARALLEL

< code to execute in parallel >

!$OMP END PARALLEL

Direct team of threads to execute iterations of the enclosed loop code in parallel

!$OMP DO

< loop code to execute in parallel >

!$OMP END DO

Create a team of threads and then direct team to execute iterations of the enclosed

loop code in parallel
!$OMP PARALLEL DO

< loop code to execute in parallel >

!$OMP END PARALLEL DO

Restricts execution of the enclosed code to only one thread in the team

!$OMP SINGLE

< code to be executed by only one thread in the team >

!$OMP END SINGLE

Restricts execution of the enclosed code to one thread at a time

!$OMP CRITICAL

< code to be executed by one thread at a time >

!$OMP END CRITAL

OMP directives will be illustrated in the examples of the next two sections.

46

4.2.1. Using OMP on a Simple Printing Operation

In the FORTRAN 2000 program shown in Table 12, the !$OMP PARALLEL

directive creates a team of threads which execute in parallel. Each thread displays its

own thread identification (TID) asynchronously and then one thread displays the number

Table 12: FORTRAN 2000 program with OMP directive to execute code in parallel

 PROGRAM HELLO

C**

C In this simple example, the master thread forks a parallel region. All threads in the team obtain

C their unique thread number and print it. The master thread only prints the total number of threads.

C Two OpenMP library routines are used to obtain each thread's number and the number of threads.

C**

 INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM

C*** OMP Directive: Fork a team of threads giving them their own copies of variables. ***

!$OMP PARALLEL PRIVATE(NTHREADS, TID)
C*** Obtain thread number and print. ***

 TID = OMP_GET_THREAD_NUM()

 PRINT *, 'Hello World from thread = ', TID

C*** Only one thread does this. ***

!$OMP SINGLE

 NTHREADS = OMP_GET_NUM_THREADS()

 PRINT *, 'Number of threads = ', NTHREADS

!$OMP END SINGLE
C*** All threads join master thread (TID=0) and disband. ***

!$OMP END PARALLEL

 END

of threads created. When the team of threads encounter the !$OMP END PARALLEL

directive, they join and disband except for the master thread. By default the number of

threads created equals the number of cores on the node. Output is shown in Table 13.

Table 13: Sample output of FORTRAN 2000 program with OMP parallel execution

Hello World from thread = 14

Hello World from thread = 8
Hello World from thread = 10

Hello World from thread = 3

Hello World from thread = 6
Hello World from thread = 2

Hello World from thread = 11

Hello World from thread = 7
Hello World from thread = 0

Hello World from thread = 9

Hello World from thread = 15

Hello World from thread = 12

Hello World from thread = 1

Hello World from thread = 4
Hello World from thread = 13

Hello World from thread = 5

Number of threads = 16

47

4.2.2. Testing OMP on a Matrix Multiply Operation

In the next example, OMP is used to parallelize a fundamental, but important,

problem: multiplying an n by m matrix A with an m by p matrix B and storing the result

in an n by p matrix C. Implementing the solution to this example will demonstrate some

key features of OMP used to parallelize loops which normally execute sequentially (one

iteration at a time). The formula for computing C = AB can be expressed as follows:

mpmm

p

p

nmnn

m

m

npnn

p

p

BBB

BBB

BBB

AAA

AAA

AAA

CCC

CCC

CCC

21

22221

11211

21

22221

11211

21

22221

11211

 (28)

Thus the formula for computing each element of matrix C using a serial (one thread)

implementation can be expressed as follows:

m

k

kjikij BAC
1

 (29)

The serial (sequential) implementation of the matrix-matrix multiplication using

FORTRAN 2000 is shown in Table 14 on the next page. The loops initializing matrices

A and B, zeroing C, and computing the elements of matrix C are all independent.

Independence is tested by running all program loops in reverse [19]. Therefore, loop

iterations can be executed simultaneously – each thread can work in parallel on its own

loop iteration without affecting the others. OMP will be used to parallelize these loops

and reduce the execution times. In addition to using the !$OMP PARALLEL directive

to create a team of threads, the !$OMP DO directive can be used to direct the team of

threads to execute the loop iterations in parallel. The FORTRAN 2000 parallel

implementation of the matrix-matrix multiplication using OMP is shown in Table 15 on

the page following the next.

48

Table 14: Serial FORTRAN 2000 program used to multiply two matrices

 PROGRAM MMSL

!==

! This program sequentially multiplies matrix A by matrix B and places the results in matrix C.

!==

 IMPLICIT NONE

! Declare variables. Set NRA: # rows in A. Set NCA: # columns in A. Set NCB: # of rows in B.

 INTEGER, PARAMETER :: NRA=32000000

 INTEGER, PARAMETER :: NCA=20

 INTEGER, PARAMETER :: NCB=40

 INTEGER :: I, J, K

 REAL, ALLOCATABLE :: A(:,:), B(:,:), C(:,:)

! Allocate arrays

 ALLOCATE (A(NRA,NCA), B(NCA,NCB), C(NRA,NCB))

! Initialize matrix A

 DO I=1, NRA

 DO J=1, NCA

 A(I,J) = ((I)+(J))

 END DO

 END DO

! Initialize matrix B

 DO I=1, NCA

 DO J=1, NCB

 B(I,J) = ((I)*(J))

 END DO

 END DO

! Zero matrix C

 DO I=1, NRA

 DO J=1, NCB

 C(I,J) = 0

 END DO

 END DO

! Multiply matrix A by matrix B and store in matrix C

 DO I=1, NRA

 DO J=1, NCB

 DO K=1, NCA

 C(I,J) = C(I,J) + A(I,K) * B(K,J)

 END DO

 END DO

 END DO

! Print results

 PRINT *, '**'

 PRINT *, 'Result Matrix:'

 DO I=1, NRA

 DO J=1, NCB

 WRITE (*,'(2x,f10.2,$)') C(I,J)

 END DO

 PRINT *, ' '

 END DO

 PRINT *, '**'

 PRINT *, 'Done.'

 PRINT *, ' '

 END PROGRAM MMSL

49

Table 15: Parallel implementation of matrix multiplication using OMP

 PROGRAM MMPL

!==

! This program uses OMP to multiply, in parallel, matrix A by matrix B and store in matrix C.

!==

 IMPLICIT NONE

! Declare variables. Set NRA: # rows in A. Set NCA: # columns in A. Set NCB: # of rows in B.

 INTEGER, PARAMETER :: NRA=32000000, NCA=20, NCB=40, CHUNK=1

 INTEGER :: TID, I, J, K, OMP_GET_NUM_THREADS,OMP_GET_THREAD_NUM

 REAL (KIND=8) :: OMP_GET_WTIME, WSTIME

 REAL, ALLOCATABLE :: A(:,:), B(:,:), C(:,:)

! Allocate arrays

 ALLOCATE (A(NRA,NCA), B(NCA,NCB), C(NRA,NCB))

! Get wall clock start time

 WSTIME = OMP_GET_WTIME()

! FORK: Spawn a parallel region explicitly scoping all variables

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(TID,I,J,K)

 TID = OMP_GET_THREAD_NUM()

 IF (TID .EQ. 0) PRINT *, 'Starting matrix multiply with ', OMP_GET_NUM_THREADS(),' threads'

! Initialize matrix A and matrix B using parallel threads on outer loop iterations

!$OMP DO SCHEDULE(STATIC, CHUNK)

 DO I=1, NRA

 DO J=1, NCA

 A(I,J) = ((I)+(J))

 END DO

 END DO

!$OMP END DO

!$OMP DO SCHEDULE(STATIC, CHUNK)

 DO I=1, NCA

 DO J=1, NCB

 B(I,J) = ((I)*(J))

 END DO

 END DO

!$OMP END DO

! Zero matrix C using parallel threads on outer loop iterations

!$OMP DO SCHEDULE(STATIC, CHUNK)

 DO I=1, NRA

 DO J=1, NCB

 C(I,J) = 0

 END DO

 END DO

!$OMP END DO

! Multiply matrix A by matrix B and store in matrix C using parallel threads on outer loop iterations

!$OMP DO SCHEDULE(STATIC, CHUNK)

 DO I=1, NRA

 DO J=1, NCB

 DO K=1, NCA

 C(I,J) = C(I,J) + A(I,K) * B(K,J)

 END DO

 END DO

 END DO

!$OMP END DO

! JOIN: End of parallel region

!$OMP END PARALLEL

! Display elapsed time

 PRINT *, 'Elapsed Time ', OMP_GET_WTIME() – WSTIME

 END PROGRAM MMPL

50

In this example, shared and private variables are explicitly scoped within the !$OMP

PARALLEL directive with the following properties:

 SHARED – Only one copy of a shared variable exists. All threads on a team can

access and modify a shared variable [18]. Care must be taken to ensure two or

more threads do not simultaneously write to a shared variable, otherwise a race

condition may result. Variables not specifically scoped within the parallel

directive are shared by default. In the current example, the variables representing

the matrices A, B, and C are shared by all threads. Each thread can access and

update these matrices simultaneously; however, the same matrix element cannot

be modified by two or more threads simultaneously, otherwise a race condition

may occur.

 PRIVATE – Each thread has its own copy of a private variable [18]. For

example, when the team of threads executes a parallel loop using the !$OMP DO

directive, each thread needs its own copy of the iteration variable. In the current

example, each thread has its own private copy of the thread identification number

(TID) and loop iteration variables I, J, and K. Each thread works in parallel on its

own loop iteration. For example, in computing the elements of matrix C, thread 1

may be executing iteration I=2, J=4, K=1 while thread 7 is executing I=4, J=3,

K=5 simultaneously, resulting in the concurrent update of elements C(2,4) and

C(4,3) which will not cause a race condition.

To test speedup and efficiency, the OMP parallel program shown in Table 15 is

built and executed on the HPC DLX Cluster in serial (single threaded) and in parallel

(multi-threaded) while measuring the execution time (a.k.a. wall clock time) for an

increasingly larger number of rows in matrix A. Increasing the number of rows in matrix

A increases the load of the matrix-matrix multiplication problem. The example in Table

15 shows thirty-two million rows (NRA = 32,000,000).

51

Table 16 shows combinations to be tested for the number of threads and the

number of rows of matrix A. Five trials of serial and parallel execution are implemented.

Table 16: Threading - NRA Combinations

Number of

Trials
Threading

Number of

Threads

NRA

(millions)

5 Serial 1 16, 32, 64, 128

5 Parallel 2 16, 32, 64, 128

5 Parallel 3 16, 32, 64, 128

5 Parallel 4 16, 32, 64, 128

5 Parallel 5 16, 32, 64, 128

5 Parallel 6 16, 32, 64, 128

5 Parallel 7 16, 32, 64, 128

5 Parallel 8 16, 32, 64, 128

5 Parallel 9 16, 32, 64, 128

5 Parallel 10 16, 32, 64, 128

5 Parallel 11 16, 32, 64, 128

5 Parallel 12 16, 32, 64, 128

5 Parallel 13 16, 32, 64, 128

5 Parallel 14 16, 32, 64, 128

5 Parallel 15 16, 32, 64, 128

5 Parallel 16 16, 32, 64, 128

The Matrix multiplication program is performed for each threading-NRA combination.

For example, NRA = 32M yields the following matrix C terms:

11688.205316.105232.1

10344.103580.603160.6

09720.603290.303080.3

32,402,401,40

32,22,21,2

32,12,11,1

EEE

EEE

EEE

CCC

CCC

CCC

M

M

M

The average execution time is determined for each threading-NRA combination.

Speedup and efficiency are then calculated using equations (26) and (27), respectively.

Graphs of speedup and efficiency vs. number of threads for each NRA are fit with a

polynomial to locate the maximum speedup (max point on polynomial curve). Average

execution times, speedup and efficiency calculations, and graphs for each NRA are

shown on the following pages.

52

Serial and parallel execution times, speedup, and efficiency are shown in Table 17

for the matrix multiplication program with NRA = 16M. Graphs of speedup and

efficiency vs. number of threads are shown in Figure 33.

Table 17: Matrix Multiply Serial and Parallel Execution Times for NRA = 16M

Number of

Trials
Threading

NRA

(millions)

Number of

Threads

Average

Execution

Time (s)

Speedup

S

Efficiency

E

5 Serial 16 1 21.658 1.00 100%

5 Parallel 16 2 12.104 1.79 89.5%

5 Parallel 16 3 10.452 2.07 69.1%

5 Parallel 16 4 9.414 2.30 57.5%

5 Parallel 16 5 7.880 2.75 55.0%

5 Parallel 16 6 6.836 3.17 52.8%

5 Parallel 16 7 6.140 3.53 50.4%

5 Parallel 16 8 5.780 3.75 46.8%

5 Parallel 16 9 5.044 4.29 47.7%

5 Parallel 16 10 4.858 4.46 44.6%

5 Parallel 16 11 4.846 4.47 40.6%

5 Parallel 16 12 4.850 4.47 37.2%

5 Parallel 16 13 4.920 4.40 33.9%

5 Parallel 16 14 5.964 3.63 25.9%

5 Parallel 16 15 6.588 3.29 21.9%

5 Parallel 16 16 7.670 2.82 17.6%

Figure 33: Speedup and efficiency vs number of threads for NRA = 16M

53

Serial and parallel execution times, speedup, and efficiency are shown in Table 18

for the matrix multiplication program with NRA = 32M. Graphs of speedup and

efficiency vs. number of threads are shown in Figure 34.

Table 18: Matrix Multiply Serial and Parallel Execution Times for NRA = 32M

Number of

Trials
Threading

NRA

(millions)

Number of

Threads

Average

Execution

Time (s)

Speedup

S

Efficiency

E

5 Serial 32 1 49.068 1.00 100%

5 Parallel 32 2 29.908 1.64 82.0%

5 Parallel 32 3 23.814 2.06 68.7%

5 Parallel 32 4 19.418 2.53 63.2%

5 Parallel 32 5 16.196 3.03 60.6%

5 Parallel 32 6 13.978 3.51 58.5%

5 Parallel 32 7 12.476 3.93 56.2%

5 Parallel 32 8 12.016 4.08 51.0%

5 Parallel 32 9 11.094 4.42 49.1%

5 Parallel 32 10 10.706 4.58 45.8%

5 Parallel 32 11 10.442 4.70 42.7%

5 Parallel 32 12 10.924 4.49 37.4%

5 Parallel 32 13 10.752 4.56 35.1%

5 Parallel 32 14 11.906 4.12 29.4%

5 Parallel 32 15 12.850 3.82 25.5%

5 Parallel 32 16 14.988 3.27 20.5%

Figure 34: Speedup and efficiency vs number of threads for NRA = 32M

54

Serial and parallel execution times, speedup, and efficiency are shown in Table 19

for the matrix multiplication program with NRA = 64M. Graphs of speedup and

efficiency vs. number of threads are shown in Figure 35.

Table 19: Matrix Multiply Serial and Parallel Execution Times for NRA = 64M

Number of

Trials
Threading

NRA

(millions)

Number of

Threads

Average

Execution

Time (s)

Speedup

S

Efficiency

E

5 Serial 64 1 113.598 1.00 100%

5 Parallel 64 2 69.004 1.65 82.3%

5 Parallel 64 3 49.000 2.32 77.3%

5 Parallel 64 4 40.564 2.80 70.0%

5 Parallel 64 5 35.560 3.19 63.9%

5 Parallel 64 6 30.694 3.70 61.7%

5 Parallel 64 7 27.666 4.11 58.7%

5 Parallel 64 8 26.646 4.26 53.3%

5 Parallel 64 9 24.466 4.64 51.6%

5 Parallel 64 10 24.128 4.71 47.1%

5 Parallel 64 11 21.902 5.19 47.2%

5 Parallel 64 12 22.024 5.16 43.0%

5 Parallel 64 13 21.384 5.31 40.9%

5 Parallel 64 14 20.918 5.43 38.8%

5 Parallel 64 15 21.136 5.37 35.8%

5 Parallel 64 16 21.476 5.29 33.1%

Figure 35: Speedup and efficiency vs number of threads for NRA = 64M

55

Serial and parallel execution times, speedup, and efficiency are shown in Table 20

for the matrix multiplication program with NRA = 128M. Graphs of speedup and

efficiency vs. number of threads are shown in Figure 36.

Table 20: Matrix Multiply Serial and Parallel Execution Times for NRA = 128M

Number of

Trials
Threading

NRA

(millions)

Number of

Threads

Average

Execution

Time (s)

Speedup

S

Efficiency

E

5 Serial 128 1 243.822 1.00 100%

5 Parallel 128 2 138.812 1.76 87.8%

5 Parallel 128 3 106.870 2.28 76.0%

5 Parallel 128 4 85.240 2.86 71.5%

5 Parallel 128 5 73.022 3.34 66.8%

5 Parallel 128 6 63.840 3.82 63.7%

5 Parallel 128 7 57.732 4.22 60.3%

5 Parallel 128 8 57.538 4.24 53.0%

5 Parallel 128 9 50.332 4.84 53.8%

5 Parallel 128 10 48.812 5.00 50.0%

5 Parallel 128 11 47.924 5.09 46.3%

5 Parallel 128 12 46.412 5.25 43.8%

5 Parallel 128 13 44.006 5.54 42.6%

5 Parallel 128 14 44.344 5.50 39.3%

5 Parallel 128 15 45.426 5.37 35.8%

5 Parallel 128 16 47.496 5.13 32.1%

Figure 36: Speedup and efficiency vs number of threads for NRA = 128M

56

Table 21 shows the maximum speedup observed with the associated number of threads

and efficiency for each NRA.

Table 21: Maximum Speedup for each NRA Value

Number of

Trials
Threading

NRA

(millions)

Number of

Threads

Maximum Speedup

Smax

Efficiency

E

5 Parallel 16 11 4.47 40.6%

5 Parallel 32 11 4.70 42.7%

5 Parallel 64 14 5.43 38.8%

5 Parallel 128 14 5.50 39.3%

Increasing the number of threads increases the performance of each loop and

thereby reduces the execution time. However, increasing the number of threads also

increases the overhead cost which reduces loop performance and lengthens execution

time. A maximum is observed in the speedup vs. the number of threads. In addition,

increasing the number of threads decreased the efficiency as each new thread requires

more resources than can be compensated for by speedup. Speedup and efficiency have

an inverse relationship. A balance between speedup and efficiency will be sought.

4.3. Integrating OMP into GEMINI Solver’s Matrix Fill Routine

Open MP threading is well suited for parallelizing the loop structure found within

the impedance matrix fill routine of GEMINI Solver. Table 22 on the next page shows

the GEMINI Solver program tree with the optimal location to incorporate OMP

threading. This location is optimal because (1) MPI is used only outside of the OMP

parallel region [17] and (2) each OMP thread is dedicated to an observation element’s

interaction with its source elements when calculating mnZ [eq. (18)]. OMP threading can

be implemented on the outer loop (loop over observation elements) of the matrix fill

routine in two ways:

 Simple OMP parallelism

 Nested OMP parallelism.

In the first case, a team of threads performs the iterations of the outer loop over

observation elements. In the second case, a team of parent threads performs the iterations

of the outer loop over observations elements and each parent has its own team of

daughter threads perform the iterations of the inner loop over source elements.

57

Table 22: GEMINI Solver program tree with optimal OMP threading location

GEMINI SOLVER Program Tree

Begin GEMINI SOLVER
 CALL & RETURN ProjectModule%openPrimaryFiles
 CALL & RETURN ProjectModule%readFromFile
 CALL & RETURN ProjectModule%writeSimulationData
 CALL SolutionModule%solution
 CALL SolutionModule%nonperiodic/periodic
 ! loop over frequencies
 ! Begin “Fill the impedance matrix”
 CALL GlobalMatrixModule%fillNormal
 ! loop over observation elements --> loop over node sets for this observation element
 ! Begin “Moment method analysis”
 ! loop over source elements --> loop over node sets for this source element
 CALL LocalMatrixModule%fillMoM
 ! loop over observation points --> loop over the number of common regions
 CALL OperatorsModule%FillZMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasis%lambda(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! calculation: obsBasis%divLambda(iObs)*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillZMatrix
 CALL OperatorsModule%FillBetaMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasisCrossNormal(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillBetaMatrix
 CALL OperatorsModule%FillYMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasisCrossNormal(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! calculation: obsBasisCrossNormal(iObs) .dot. gradG(iQuad))*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillYMatrix
 CALL OperatorsModule%FillBetaTildeMatrix
 ! loop over quadrature points --> loop over source nodes --> loop over observation nodes
 ! calculation: obsBasis%lambda(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian
 ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points
 RETURN OperatorsModule%FillBetaTildeMatrix
 ! end loop over the number of common regions --> end loop over observation points
 RETURN LocalMatrixModule%fillMoM
 CALL & RETURN GlobalMatrixModule%localToGlobal
 ! end loop over node sets for this source element --> end loop over source elements
 ! End “Moment method analysis”
 ! end loop over node sets for this observation element --> end loop over observation elements
 RETURN GlobalMatrixModule%fillNormal
 ! End “Fill the impedance matrix”
 ! Begin “Fill the right hand side for each excitation group”
 ! loop over excitation groups
 CALL & RETURN GlobalVector%fill
 ! loop over global wave sources --> loop over elements --> loop over node sets for this element
 LocalVectorModule%fillLocalSource
 LocalVectorModule%localToGlobal
 ! end loop over node sets for this element --> end loop over elements --> loop over global wave sources
 ! loop over voltage sources-> loop over node sets
 LocalVectorModule%fillLocalSource
 LocalVectorModule%localToGlobal
 ! end loop over node sets --> end loop over voltage sources
 CALL & RETURN ISISComplexSolverModule%solve
 CALL & RETURN ISISComplexVectorModule%gather
 CALL & RETURN SolutionModule%writeSolution
 ! end loop over excitation groups
 ! End “Fill the right hand side for each excitation group”
 ! end loop over frequencies
 RETURN SolutionModule%nonperiodic/periodic
 RETURN SolutionModule%solution
 CALL & RETURN ProjectModule%closeFiles
End GEMINI SOLVER

OMP

Threading

Here

58

4.3.1. Incorporating Simple OMP Parallelism into GEMINI Solver

In the case of simple OMP parallelism, a team of threads is created to perform the

iterations of the outer loop over observation elements. Each thread uses a selected

observation element and loops over each source element to compute a local observation-

source element interaction matrix, which in turn is used by the thread to update the global

matrix. Figure 31 shows simple outer loop parallelization of the matrix fill routine.

Figure 37: Simple parallelization of GEMINI Solver matrix fill routine

The integration of simple OMP parallelism into the FORTRAN 2000 matrix fill routine is

displayed in Table 23 and Table 24 on the following pages.

Several race conditions occur arising from OMP threading which cause moderate

errors in the output edge currents. These race conditions will be solved in the final MPI-

OMP hybrid parallelization of GEMINI Solver discussed in section 5.1

59

Table 23: Simple OMP parallelization of FORTRAN 2000 matrix fill routine, part 1

 SUBROUTINE fillNormal(project,freqIndex,gMatrix)
!
 < Declarations Omitted >
 elementCount = project%elements%listSize()
 freqPointer => project%frequencies%at(freqIndex)
 modeIndex = freqPointer%modeIndex
 omega = 2.0_dk*Constants%pi*freqPointer%frequency
!
! Refresh obsBases for each observation element and scrBases for each source element
 DO ip = 1,elementCount
 oE => project%elements%at(ip)
 obsBasis => project%obsBases%at(oE%type() + 1)
 sE => project%elements%at(ip)
 srcBasis => project%srcBases%at(sE%type() + 1)
 ENDDO
!
! Create a team of threads to execute code in parallel
!$OMP PARALLEL &
!$OMP SHARED(project,gMatrix,freqIndex, elementCount,freqPointer,modeIndex,omega) &
!$OMP PRIVATE(i_t,n_t,obsBasis,obsElement,obsNodeSetCount,obsNodeSet,obsNodeCount,obsArray) &
!$OMP PRIVATE(i_s,n_s,srcBasis,srcElement,srcNodeSetCount,srcNodeSet,srcNodeCount,commonRegions,regionCount) &
!$OMP PRIVATE(obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM,obsIndex,srcIndex) &
!$OMP NUM_THREADS(NTHREADS)
!>>> Threads Fork Here
!
! Direct team of threads to execute iterations of outer observation element loop in parallel using dynamic scheduling
!$OMP DO SCHEDULE(STATIC, CHUNK)
!
! Loop over observation elements
 DO i_t = 1,elementCount
 obsElement => project%elements%at(i_t)
 IF (.NOT. obsElement%contributesToRow .OR. obsElement%isGhost()) CYCLE
 obsBasis => project%obsBases%at(obsElement%type() + 1)
 obsNodeSetCount = SIZE(obsElement%nodeSets(:))
!
! Loop over node sets for this element
 DO n_t = 1,obsNodeSetCount
 obsNodeSet => obsElement%nodeSets(n_t)%object
 obsNodeCount = obsElement%nodeCount(n_t)
 CALL ObservationArrayStatic%create(obsElement,n_t,obsBasis,obsArray)
!
! Loop over source elements
 DO i_s = 1,elementCount
 srcElement => project%elements%at(i_s)
 IF (.NOT. srcElement%contributesToColumn) CYCLE
 srcBasis => project%srcBases%at(srcElement%type() + 1)
 srcNodeSetCount = SIZE(srcElement%nodeSets(:))
!
! Loop over node sets for this element
 DO n_s = 1,srcNodeSetCount
 srcNodeSet => srcElement%nodeSets(n_s)%object
 IF (srcNodeSet%equation == NodeSetEquations%E_FEM) CYCLE
 srcNodeCount = srcElement%nodeCount(n_s)
 CALL CommonRegionStatic%create(obsNodeSet,srcNodeSet,commonRegions)
 regionCount = CommonRegionStatic%regionCount
 IF (regionCount == 0) CYCLE
 IF (obsNodeSet%equation == NodeSetEquations%HYBRID_SOURCES .OR. &
 srcNodeSet%equation == NodeSetEquations%HYBRID_SOURCES) THEN
 CommonRegionStatic%regionCount = 1
 regionCount = 1
 ENDIF

60

Table 24: Simple OMP parallelization of FORTRAN 2000 matrix fill routine, part 2

!
! Create element-element interaction matrix
 CALL createLocals(regionCount,obsNodeCount,srcNodeCount,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)!
! Find element to element interaction
 CALL LocalMatrix%fill(project,omega,obsElement,n_t,obsArray,srcElement,n_s,commonRegions, &
 obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)
!
! Thin material contribution
 IF (srcNodeSet%equation == NodeSetEquations%THIN_PEC_EFIE .OR. &
 srcNodeSet%equation == NodeSetEquations%THIN_PEC_MFIE .OR. &
 srcNodeSet%equation == NodeSetEquations%THIN_PEC_CFIE) THEN
!
 CALL LocalMatrix%fill(project,omega,obsElement,n_t, obsArray,srcElement,n_s, &
 commonRegions,obsSourceFlag,obsJsourceJ)
 ENDIF
!
! Place element interactions into global matrix
 IF (obsSourceFlag(1)) THEN
 obsIndex = 1
 srcIndex = 1
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownJ(n_s),commonRegions,obsJsourceJ,gMatrix)
 ENDIF
 IF (obsSourceFlag(2)) THEN
 obsIndex = 1
 srcIndex = 2
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownM(n_s),commonRegions,obsJsourceM,gMatrix)
 ENDIF
 IF (obsSourceFlag(3)) THEN
 obsIndex = 2
 srcIndex = 1
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownJ(n_s), commonRegions,obsMsourceJ,gMatrix)
 ENDIF
 IF (obsSourceFlag(4)) THEN
 obsIndex = 2
 srcIndex = 2
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownM(n_s), commonRegions,obsMsourceM,gMatrix)
 ENDIF
 ENDDO
 ENDDO
 ENDIF
 CALL ObservationArrayStatic%destroy(obsArray)
 ENDDO
 ENDDO
!
!$OMP END DO
!
!>>> Threads Join Here
!$OMP END PARALLEL
!
 CALL deleteLocals(obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)
!
! Add lumped loads
 CALL addLumpedLoads(project,omega,gMatrix)
!
 END SUBROUTINE fillNormal

61

Simple OMP parallelization of the GEMINI Solver v2.0 FORTRAN 2000 matrix

fill routine is run on the test cases in Table 25 to solve for the output currents.

Table 25: Test cases run using simple OMP parallelization of GEMINI Solver v2.0

Frequency, f

(GHz)

Edges, N

(# unknowns)

Solution

Test

OMP

Parallelism

MPI

Processes

OMP

Threads

Performance

Comparison

0.1499 1083 EFIE Simple 1 1,2,4,8,16 Yes

0.2998 4455 EFIE Simple 8,16,32 1,2,4,8,16 Yes

0.8994 41,415 EFIE Simple 8,16,32 1,2,4,8,16 Yes

The matrix fill time, speedup, efficiency, and speedup-efficiency product (SEP)

for each OMP threading case with one MPI process on N = 1083 unknowns are shown in

Table 26. The highest, most efficient speedup (SEP = 2.2) occurs for 8 threads. Graphs

of speedup and efficiency vs. threads are shown in Figure 38 and Figure 39, respectively.

Table 26: GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 1083

OMP

Threading

N

(unknowns)

MPI

Processes

OMP

Threads

Execution

Time (s)

Speedup

S

Efficiency

E
SEP

Serial 1083 1 1 7.91180 1.00 100.0% 1.0

Parallel 1083 1 2 5.43418 1.46 72.8% 1.1

Parallel 1083 1 4 3.18102 2.49 62.2% 1.5

Parallel 1083 1 8 1.88971 4.19 52.3% 2.2

Parallel 1083 1 16 2.06925 3.82 23.9% 0.9

Figure 38: Speedup vs number of threads for N = 1083

62

Figure 39: Efficiency vs number of threads for N = 1083

The highest speedup, projected from Figure 38, would occur for 12 threads. However, its

SEP ≈ 1.9 is less than that for 8 threads.

The matrix fill time, speedup, efficiency, and SEP for each OMP threading case

with 8, 16, and 32 MPI process on N = 4455 unknowns are shown in Table 27. The

highest, most efficient speedup (largest SEP) occurs for 8 threads. Graphs of speedup

and efficiency vs. number of threads are shown in Figure 40 and Figure 41, respectively.

Table 27: GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 4455

OMP

Threading

N

(unknowns)

MPI

Processes

OMP

Threads

Execution

Time (s)

Speedup

S

Efficiency

E
SEP

Serial 4455 8 1 35.80556 1.00 100.0% 1.0

Parallel 4455 8 2 24.24482 1.48 73.8% 1.1

Parallel 4455 8 4 13.61293 2.63 65.8% 1.7

Parallel 4455 8 8 8.74592 4.09 51.2% 2.1

Parallel 4455 8 16 10.20651 3.51 21.9% 0.8

Serial 4455 16 1 28.71364 1.00 100.0% 1.0

Parallel 4455 16 2 18.81764 1.53 76.3% 1.2

Parallel 4455 16 4 10.20070 2.81 70.4% 2.0

Parallel 4455 16 8 6.46964 4.44 55.5% 2.5

Parallel 4455 16 16 7.61884 3.77 23.6% 0.9

Serial 4455 32 1 15.70761 1.00 100.0% 1.0

Parallel 4455 32 2 11.32628 1.39 69.3% 1.0

Parallel 4455 32 4 6.60075 2.38 59.5% 1.4

Parallel 4455 32 8 4.17962 3.76 47.0% 1.8

Parallel 4455 32 16 4.86951 3.23 20.2% 0.7

63

Figure 40: Speedup vs number of threads for N = 4455

Figure 41: Efficiency vs number of threads for N = 4455

The highest speedup, projected from Figure 40, would occur for 11½ threads. However,

its SEP ≈ 1.8, SEP ≈ 2.0, and SEP ≈ 1.5 for 8, 16, and 32 MPI processes, respectively, are

less than those corresponding to 8 threads.

64

The matrix fill time, speedup, efficiency, and SEP for each OMP threading case

with 8, 16, and 32 MPI process on N = 41,415 unknowns are shown in Table 28. The

highest, most efficient speedup occurs for 4 or 8 threads. Graphs of speedup and

efficiency vs. number of threads are shown in Figure 42 and Figure 43, respectively.

Table 28: GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 41,415

OMP

Threading

N

(unknowns)

MPI

Processes

OMP

Threads

Execution

Time (min)

Speedup

S

Efficiency

E
SEP

Serial 41,415 8 1 42.654 1.00 100.0% 1.0

Parallel 41,415 8 2 31.058 1.37 68.7% 0.9

Parallel 41,415 8 4 17.452 2.44 61.1% 1.5

Parallel 41,415 8 8 12.747 3.35 41.8% 1.4

Parallel 41,415 8 16 14.063 3.03 19.0% 0.6

Serial 41,415 16 1 30.583 1.00 100.0% 1.0

Parallel 41,415 16 2 23.712 1.29 64.5% 0.8

Parallel 41,415 16 4 13.161 2.32 58.1% 1.4

Parallel 41,415 16 8 8.966 3.41 42.6% 1.5

Parallel 41,415 16 16 10.771 2.84 17.7% 0.5

Serial 41,415 32 1 18.157 1.00 100.0% 1.0

Parallel 41,415 32 2 14.305 1.27 63.5% 0.8

Parallel 41,415 32 4 7.661 2.37 59.3% 1.4

Parallel 41,415 32 8 5.815 3.12 39.0% 1.2

Parallel 41,415 32 16 6.145 2.95 18.5% 0.5

Figure 42: Speedup vs number of threads for N = 41,415

65

Figure 43: Efficiency vs number of threads for N = 41,415

The highest speedup, projected from Figure 42, would occur for 11 threads. However, its

SEP ≈ 1.1, SEP ≈ 1.2, and SEP ≈ 1.0 for 8, 16, and 32 MPI processes, respectively, are

less than those corresponding 4 or 8 threads.

The speedup-efficiency product (SEP) bears some discussion. Consider parallel

cases with 16 MPI process on N = 4455 unknowns with the results given in Table 29.

Table 29: GSv2.0 Parallel Execution S, E, and SEP for N = 4455

OMP

Threading

N

(unknowns)

MPI

Processes

OMP

Threads

Speedup

S

Efficiency

E
SEP

Parallel 4455 16 1 1.00 100.0% 1.0

Parallel 4455 16 4 2.81 70.4% 2.0

Parallel 4455 16 8 4.44 55.5% 2.5

Parallel 4455 16 11½ 5* 41%** 2.1

*Estimated from fit to graph in Figure 40. ** Estimated from fit to graph in Figure 41.

The SEP takes into account both speedup and efficiency. A single thread always yields

the ideal efficiency 100%. If 4 threads were 100% efficient, the speedup would be 4;

however, the actual speedup is only 2.81, or 70.4% efficient. Parallel execution with 4

threads has 29.6% inefficiency and it gets worse as the number of threads increases.

Although 11½ threads yield 5x speedup, the efficiency is only 41%. To compare parallel

execution cases, the effective speedup is measured using the speedup-efficiency product.

66

4.3.2. Incorporating Nested OMP Parallelism into GEMINI Solver

In the case of nested OMP parallelism, a team of parent threads is created to

perform the iterations of the outer loop over observations elements. For each parent

thread, a team of daughter threads is created to perform the iterations of the inner loop

over sources elements. Each daughter thread uses the selected observation element of its

parent thread and its own source element to compute a local observation-source element

interaction matrix, which in turn is used by the daughter thread to update the global

matrix. Figure 44 shows outer-inner loop nested parallelization of the matrix fill routine.

Figure 44: Nested parallelization of GEMINI Solver

The integration of nested OMP parallelism into the FORTRAN 2000 matrix fill routine is

displayed in Table 30 and Table 31 on the following pages. The routine contains two

nested parallel regions with enclosed parallel loops.

67

Table 30: Nested OMP parallelization of FORTRAN 2000 matrix fill routine, part 1

 SUBROUTINE fillNormal(project,freqIndex,gMatrix)
!
 < Declarations Omitted >
 elementCount = project%elements%listSize()
 freqPointer => project%frequencies%at(freqIndex)
 modeIndex = freqPointer%modeIndex
 omega = 2.0_dk*Constants%pi*freqPointer%frequency

!
! Refresh obsBases for each observation element and scrBases for each source element
 DO ip = 1,elementCount
 oE => project%elements%at(ip)
 obsBasis => project%obsBases%at(oE%type() + 1)
 sE => project%elements%at(ip)
 srcBasis => project%srcBases%at(sE%type() + 1)
 ENDDO
!
! Create a team of parent threads to execute code in parallel
!$OMP PARALLEL &
!$OMP SHARED(project,gMatrix,freqIndex, elementCount,freqPointer,modeIndex,omega) &
!$OMP PRIVATE(i_t,n_t,obsBasis,obsElement,obsNodeSetCount,obsNodeSet,obsNodeCount,obsArray) &
!$OMP NUM_THREADS(obsNTHREADS)
!>>> Parent Threads Fork Here
! Direct team of parent threads to execute iterations of outer observation element loop in parallel using dynamic scheduling
!$OMP DO SCHEDULE(DYNAMIC, CHUNK)
!
! Loop over observation elements
 DO i_t = 1,elementCount
 obsElement => project%elements%at(i_t)
 IF (.NOT. obsElement%contributesToRow .OR. obsElement%isGhost()) CYCLE
 obsBasis => project%obsBases%at(obsElement%type() + 1)
 obsNodeSetCount = SIZE(obsElement%nodeSets(:))
!
! Loop over node sets for this element
 DO n_t = 1,obsNodeSetCount
 obsNodeSet => obsElement%nodeSets(n_t)%object
 obsNodeCount = obsElement%nodeCount(n_t)
 CALL ObservationArrayStatic%create(obsElement,n_t,obsBasis,obsArray)
!
! Create a team of daughter threads to execute code in parallel
!$OMP PARALLEL &
!$OMP SHARED(project,gMatrix,freqIndex, elementCount,freqPointer,modeIndex,omega) &
!$OMP SHARED (i_t,n_t,obsBasis,obsElement,obsNodeSetCount,obsNodeSet,obsNodeCount,obsArray) &
!$OMP PRIVATE(i_s,n_s,srcBasis,srcElement,srcNodeSetCount,srcNodeSet,srcNodeCount,commonRegions,regionCount) &
!$OMP PRIVATE(obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM,obsIndex,srcIndex) &
!$OMP NUM_THREADS(srcNTHREADS)
!>>> Daughter Threads Fork Here
! Direct team of daughter threads to execute iterations of inner source element loop in parallel using dynamic scheduling
!$OMP DO SCHEDULE(DYNAMIC, CHUNK)
!
! Loop over source elements
 DO i_s = 1,elementCount
 srcElement => project%elements%at(i_s)
 IF (.NOT. srcElement%contributesToColumn) CYCLE
 srcBasis => project%srcBases%at(srcElement%type() + 1)
 srcNodeSetCount = SIZE(srcElement%nodeSets(:))
!
! Loop over node sets for this element
 DO n_s = 1,srcNodeSetCount
 srcNodeSet => srcElement%nodeSets(n_s)%object
 IF (srcNodeSet%equation == NodeSetEquations%E_FEM) CYCLE
 srcNodeCount = srcElement%nodeCount(n_s)
 CALL CommonRegionStatic%create(obsNodeSet,srcNodeSet,commonRegions)
 regionCount = CommonRegionStatic%regionCount
 IF (regionCount == 0) CYCLE
 IF (obsNodeSet%equation == NodeSetEquations%HYBRID_SOURCES .OR. &
 srcNodeSet%equation == NodeSetEquations%HYBRID_SOURCES) THEN
 CommonRegionStatic%regionCount = 1
 regionCount = 1
 ENDIF

68

Table 31: Nested OMP parallelization of FORTRAN 2000 matrix fill routine, part 2

!
! Create element-element interaction matrix
 CALL createLocals(regionCount,obsNodeCount,srcNodeCount,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)
!
! Find element to element interaction
 CALL LocalMatrix%fill(project,omega,obsElement,n_t,obsArray,srcElement,n_s,commonRegions, &
 obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)
!
! Thin material contribution
 IF (srcNodeSet%equation == NodeSetEquations%THIN_PEC_EFIE .OR. &
 srcNodeSet%equation == NodeSetEquations%THIN_PEC_MFIE .OR. &
 srcNodeSet%equation == NodeSetEquations%THIN_PEC_CFIE) THEN
!
 CALL LocalMatrix%fill(project,omega,obsElement,n_t, obsArray,srcElement,n_s, &
 commonRegions,obsSourceFlag,obsJsourceJ)
 ENDIF
!
! Place element interactions into global matrix
 IF (obsSourceFlag(1)) THEN
 obsIndex = 1
 srcIndex = 1
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownJ(n_s),commonRegions,obsJsourceJ,gMatrix)
 ENDIF
 IF (obsSourceFlag(2)) THEN
 obsIndex = 1
 srcIndex = 2
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownM(n_s),commonRegions,obsJsourceM,gMatrix)
 ENDIF
 IF (obsSourceFlag(3)) THEN
 obsIndex = 2
 srcIndex = 1
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownJ(n_s), commonRegions,obsMsourceJ,gMatrix)
 ENDIF
 IF (obsSourceFlag(4)) THEN
 obsIndex = 2
 srcIndex = 2
 CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s, &
 srcNodeCount,srcElement%unknownM(n_s), commonRegions,obsMsourceM,gMatrix)
 ENDIF
 ENDDO
 ENDDO
!
!$OMP END DO
!
!>>> Daughter Threads Join Here
!$OMP END PARALLEL
!
 ENDIF
 CALL ObservationArrayStatic%destroy(obsArray)
 ENDDO
 ENDDO
!
!$OMP END DO
!
!>>> Parent Threads Join Here
!$OMP END PARALLEL
!
 CALL deleteLocals(obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)
!
! Add lumped loads
 CALL addLumpedLoads(project,omega,gMatrix)
!
 END SUBROUTINE fillNormal

69

Simple and nested OMP parallelization of the GEMINI Solver matrix fill routine

are each run back-to-back ten times on each test case in Table 32 to compare the

performance of the two parallel methods. The execution time for test cases are measured

Table 32: Test cases run to compare simple vs. nested OMP parallelism

Frequency, f

(GHz)

Edges, N

(# unknowns)

Solution

Test

OMP Parallelism

Comparison

Outer–Inner

OMP Threads

0.2998 4455 EFIE Simple vs Nested 4-0 vs. 2-2

0.2998 4455 EFIE Simple vs Nested 16-0 vs. 4-4

0.8994 41,415 EFIE Simple vs Nested 4-0 vs. 2-2

0.8994 41,415 EFIE Simple vs Nested 16-0 vs. 4-4

for simple and nested parallelism methods, and speedups compared. Nested parallelism

speedup compared to simple parallelism speedup is calculated using the performance

comparison ratio given by:

nested

simple

simple

nested

simple

nested

T

T
R

TT

TT

S

S
R

/

/

1

1 (30)

where equation (26) for speedup has been applied. Tsimple and Tnested are the simple and

nested execution times required to perform the matrix fill operation, respectively.

Performance ratios with 3σ (99¾% interval = R ± 3σ) are shown in Table 33.

Table 33: Performance ratios comparing nested to simple parallelism speedup

Case
Edges, N

(# unknowns)
Nodes

MPI

Processes

Simple vs Nested

OMP Threads

Average Performance

Ratio, R

3σ
(99¾%)

1 4455 1 4 4-0 vs. 2-2 0.972 0.040

2 4455 1 1 16-0 vs. 4-4 0.974 0.040

3 41,415 1 4 4-0 vs. 2-2 0.945 0.030

4 41,415 2 8 4-0 vs. 2-2 0.900 0.029

5 41,415 4 16 4-0 vs. 2-2 0.889 0.022

6 41,415 1 1 16-0 vs. 4-4 0.971 0.045

7 41,415 2 2 16-0 vs. 4-4 0.973 0.042

8 41,415 4 4 16-0 vs. 4-4 0.972 0.028

70

A color graph of the performance ratios with 99¾% confidence intervals for all 8 cases is

shown in Figure 45.

Figure 45: Simple vs. Nested OMP Performance ratios with 99¾% intervals

In all 8 cases, simple OMP threading slightly outperforms nested OMP threading. The

following considerations should be taken into account [18]:

 Increased demand for forking and joining of threads at the inner parallel

regions requires an extremely efficient thread runtime library and operating

system support.

 Synchronization overhead will increase because of the implicit barrier

synchronization at inner parallel regions.

Increased forking/joining demand and overhead are responsible for slightly poorer

performance in nested OMP parallelism. Any performance gained by threading the inner

loop is overshadowed by increased forking/joining demand and overhead. Thus, simple

OMP threading will be used in the MPI-OMP hybrid parallelization of GEMINI Solver.

R < 1 Simple OMP performance better than Nested OMP

R > 1 Nested OMP performance better than Simple OMP

71

Chapter 5. Testing MPI-OMP Hybrid Parallelization

5.1. Final Implementation

Consider the results from section 3.3.4 on the performance tests for N = 208K

using 224 MPI processes for both 16 and 8 MPI processes per node as shown in Table 34.

Table 34: N=208K case using 224 MPI processes for 8 and 16 MPIs/node

Edges, N

(# unknowns)

DLX

Nodes

MPI

Processes /

DLX Node

MPI

Processes

Idle

Cores

Fill Time

(hours)

Factor Time

(hours)

207,663 14 16 224 0 1.44 2.13

207,663 28 8 224 224 1.27 1.63

Reducing the MPI processes from 16 to 8 per node decreases both the matrix fill and

factor times. Performance increase is attributed to the reduction in node memory needed

by 8 MPI processes compared to 16. However, reducing the number of MPI process per

node results in 224 idle cores. To minimize inefficiencies when reducing the number of

MPI processes, the matrix fill routine can incorporate OMP threading to utilize idle cores

and increase matrix fill performance. A test done for N = 208K using 224 MPI processes

with 8 MPI processes per node and 2 OMP threads yields the results in Table 35.

Table 35: N=208K case using 224 MPI processes with 8 MPIs/node and 2 OMP threads

Edges, N

(# unknowns)

DLX

Nodes

MPI

Processes /

 DLX Node

MPI

Processes

OMP

Threads

Fill Time

(hours)

Factor Time

(hours)

207,663 28 8 224 2 1.09 1.67

Matrix fill performance improves as expected while matrix factor performance

remains essentially constant as expected. Implementation of MPI-OMP hybrid

parallelization incorporates the existing MPI parallelization between concurrent MPI

processes with simple OMP threading of the matrix fill routine within each MPI process.

Figure 46 on the following page illustrates an example of hybrid parallelization using

four MPI processes with four simple OMP threads per MPI process.

72

 MPI Process 0

Open MP (Threads T0-T3)

 MPI Process 1

Open MP (Threads T0-T3)

 MPI Process 2

Open MP (Threads T0-T3)

 MPI Process 3

Open MP (Threads T0-T3)

 Figure 46: Illustration for 4-MPI / 4-Simple OMP hybrid parallelization

M
essa

g
e P

a
ssin

g
 In

terfa
ce

(u
ltra-fast n

etw
o

rk)

73

In building the final implementation of MPI-OMP hybrid parallelization of

GEMINI Solver, several modifications need to be made to the original v3.0 program to:

 add capability to measure the matrix fill execution time for each MPI process;

 add fine level parallelization to the matrix fill routine with OMP threading;

 resolve race conditions arising from OMP threading.

The following GEMINI Solver program changes are made:

1. Add a wall clock time measurement feature to the matrix fill routine contained

within the solution_nonperiodic and solution_periodic subroutines of the

solution_m.f90 module. This tool allows measurement of the matrix fill time for

each executing MPI process. Modifications #4 through #6 listed in Appendix B

add matrix fill time measurement capability for nonperiodic solutions while

modifications #7 through #9 add this capability for periodic solutions.

2. Parallelize the outer loop of the matrix fill routine on the following statements:

DO i_t = 1,elementCount

∙ ∙ ∙

ENDDO

contained within the fillNormal subroutine of the globalmatrix_m.f90 module.

Modifications #24 and #27 listed in Appendix B add OMP parallelization.

3. Correct the OMP race condition occurring on the following statements:

obsBasis => project%obsBases%at(obsElement%type() + 1)

srcBasis => project%srcBases%at(srcElement%type() + 1)

inside the outer observation element loop and inner source element loop,

respectively, within the fillNormal subroutine of the of the globalmatrix_m.f90

module. The race condition causes the program to intermittently crash when one

OMP thread attempts to deallocate memory that another thread had previously

deallocated but had not had time to set the notification flag. Modifications #1 and

#23 listed in Appendix B solve the race condition.

74

4. Resolve the OMP race condition occurring on the following two statements:

obsElement => project%elements%at(i_t)

srcElement => project%elements%at(i_s)

inside the outer observation element loop and inner source element loop,

respectively, within the fillNormal subroutine of the of the globalmatrix_m.f90

module. The race condition causes a small intermittent error in the solution to the

edge currents when two or more OMP threads write access the same variable

simultaneously. Modification #28 listed in Appendix B solves the race condition

for the first statement and modification #29 solves it for the second statement. To

avoid the race condition, the modifications require use of an $OMP CRITICAL

directive to force all threads to work one at a time when executing the above

statements. Unfortunately, this directive reduces the parallel performance of the

matrix fill routine; however, no other solution can be found with the current

structure of GEMINI Solver. In the future design of GEMINI Solver, thread

safety needs to be incorporated into subroutines executed by the above statements.

5. Correct the race condition on the following statements:

value = gMatrix%getValue(rowDOF,columnDOF)

∙ ∙ ∙

CALL gMatrix%putValue(rowDOF,columnDOF,value)

within the localToGlobal subroutine of the globalmatrix_m.f90 module. The

race condition causes a large error in the solution to the edge currents because two

or more OMP threads often write to the gMatrix variable simultaneously. Since

gMatrix contains the global matrix, each thread must have sole access when

updating this matrix. Modifications #25 and #26 listed in Appendix B solve the

race condition. These modifications require use of the $OMP CRITICAL

directive to force all threads to execute one at a time when writing to gMatrix.

Although this directive reduces the parallel performance of the matrix fill routine;

this solution must be implemented to protect the global matrix. No way could be

found around the need to force threads to access gMatrix one at a time.

75

6. Resolve intermittent race conditions caused by the following variables:

CommonRegionStatic

HomogenousGreensFunction

LocalMatrix

rs, unitNormal, l_vec, jac, srcWghtJacobian, srcArray

G, Kphi, Kpsi, Pz, Qz, gradG, grad_Kphi, grad_Kpsi, grad_Pz, grad_Qz

Ga, Gf, curl_Ga, curl_Gf

xiTemp, wghtTemp

classPointer

located within various modules of GEMINI Solver. Modifications #10 through

#19 and #21 listed in Appendix B solve the race conditions caused when two or

more OMP threads write access one of the above variables simultaneously. These

modifications require use of the $OMP TREADPRIVATE directive to ensure

each thread receives its own a private copy of each above variable.

Table 36 shows the test cases utilized in the final hybrid MPI-OMP parallelization of

GEMINI Solver. The first five test cases include a performance comparison between

OMP threading and no OMP threading. The performance comparison for the fifth test

case can only be made for 32 nodes. The memory requirements on 28 and 30 nodes do

not allow execution without OMP threading. The last two cases have large problem sizes

requiring memory sizes that will not execute without OMP threading.

Table 36: Test cases for final implementation of hybrid MPI-OMP GEMINI Solver v3.0

Frequency, f

(GHz)

Edges, N

(# unknowns)

Solution

Test

DLX

Nodes

#MPI/node –

#OMP Thread

Combination

OMP vs. No OMP

Performance

Comparison

0.8994 41,415 EFIE 1,2,4 1-16, 2-8, 4-4, 8-2, 16-1 Yes

1.1992 74,211 EFIE 4,8,12 1-16, 2-8, 4-4, 8-2, 16-1 Yes

1.7988 167,652 EFIE 16, 20,24 1-16, 2-8, 4-4, 8-2, 16-1 Yes

2.0000 207,663 EFIE 16, 20,24 2-8, 4-4, 8-2, 16-1 Yes

2.3984 298,863 EFIE 28,30,32 2-8, 4-4, 8-2 Yes

2.5000 326,430 EFIE 30,32 2-8, 4-4 No

2.5624 342,087 EFIE 32 2-8 No

76

Allocating run time on the DLX requires following certain rules for batch job

submission as well as waiting for resources to become available. DLX batch scripts are

created, with sanity checks [22], to execute run scripts, which in turn execute GEMINI

Solver v3.0 test runs. Sanity checks ensure that batch submission rules are followed.

Without sanity checks, batch submissions could remain in que indefinitely, never being

allocated run time. Table 37 shows an example DLX batch script with sanity checks.

Table 37: DLX batch script with sanity checks

 Linux Batch Script mpgs_batchall.sh

#!/bin/sh

pnodes=$1 # number of physical nodes
time=$2 # max time in batch que
cper_pnode=16 # cores per physical node (Compute)
ncores=$(($cper_pnode*$pnodes)) # number of total cores requested

setup options
rdir="/home/bljo222/gemini_v3/Test" # SET PATH TO YOUR SBATCH SCRIPT AND OUTPUT FILE
script=$rdir/mpgs_runall-1.sh
outfil="$rdir/mpgs_screenall_p$pnodes-1.txt"

Select the queue and make sure run time meets requirements
if [$ncores -ge 512]; then
 part="Short"
 if [$time -gt 1440]; then
 echo "Time to long for Short queue. Exiting"
 exit
 fi
elif [$ncores -ge 65]; then
 part="Med"
 if [$time -gt 10080]; then
 echo "Time to long for Med queue. Exiting"
 exit
 fi
elif [$ncores -ge 16]; then
 part="Long"
 if [$time -gt 43200]; then
 echo "Time to long for Long queue. Exiting"
 exit
 fi
else
 part="debug"
fi

Submit the batch job
echo "sbatch --exclusive -p $part -t $time -N $pnodes -n $ncores -o $outfil $script $pnodes"
sbatch --exclusive --no-requeue -p $part -t $time -N $pnodes -n $ncores -o $outfil $script $pnodes

Once DLX resources become available, it is beneficial to run multiple tests while one has

the resources. DLX run scrips are created [23] to execute five MPI/node – OMP thread

combinations for each test case in Table 36. Table 38 shows an example DLX run script.

77

Table 38: DLX run script to execute GEMINI Solver v3.0 test sets

 Linux Run Script mpgs_runall.sh

#!/bin/sh

pnodes=$1 # number of physical nodes imported from ”mpgs_batchall.sh”
source /etc/bashrc # may need this to initialize module system
module load mpi/openmpi/intel/1.8.2 # load MPI module
#--
Run Combo #1 (1 MPI/node & 16 OMP/MPI processes) with OMP Nested Parallelism NOT Enabled
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable
tper_pnode=1 # MPI processes per physical node
cper_vnode=16 # OMP threads used by each MPI process
vnodes=$(($tper_pnode*$pnodes)) # total number of MPI processes on all nodes
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes_v$vnodes_cv$cper_vnode_tp$tper_pnode
mkdir -p $wkdir
cd $wkdir
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt"
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil
#--
Run Combo #2 (2 MPI/node & 8 OMP/MPI processes) with OMP Nested Parallelism NOT Enabled
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable
tper_pnode=2 # MPI processes per physical node
cper_vnode=8 # OMP threads used by each MPI process
vnodes=$(($tper_pnode*$pnodes)) # total number of MPI processes on all nodes
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes_v$vnodes_cv$cper_vnode_tp$tper_pnode
mkdir -p $wkdir
cd $wkdir
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt"
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil
#--
Run Combo #3 (4 MPI/node & 4 OMP/MPI processes) with OMP Nested Parallelism NOT Enabled
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable
tper_pnode=4 # MPI processes per physical node
cper_vnode=4 # OMP threads used by each MPI process
vnodes=$(($tper_pnode*$pnodes)) # total number of MPI processes on all nodes
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes_v$vnodes_cv$cper_vnode_tp$tper_pnode
mkdir -p $wkdir
cd $wkdir
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt"
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil
#--
Run Combo #4 (8 MPI/node & 2 OMP/MPI processes) with OMP Nested Parallelism NOT Enabled
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable
tper_pnode=8 # MPI processes per physical node
cper_vnode=2 # OMP threads used by each MPI process
vnodes=$(($tper_pnode*$pnodes)) # total number of MPI processes on all nodes
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes_v$vnodes_cv$cper_vnode_tp$tper_pnode
mkdir -p $wkdir
cd $wkdir
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt"
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil
#--
Run Combo #5 (16 MPI/node & 1 OMP/MPI processes) with OMP Nested Parallelism NOT Enabled
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable
tper_pnode=16 # MPI processes per physical node
cper_vnode=1 # OMP threads used by each MPI process
vnodes=$(($tper_pnode*$pnodes)) # total number of MPI processes on all nodes
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes_v$vnodes_cv$cper_vnode_tp$tper_pnode
mkdir -p $wkdir
cd $wkdir
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt"
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil

78

5.2. GEMINI Solver Results

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is

executed on the DLX cluster for the N = 41.4 K, f = 0.8994 GHz test case. Table 39

shows the average matrix fill time, factor time, and required memory per node for three

trials of each configuration: #DLX Nodes : #MPI processes/node : #OMP threads.

Table 39: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=41.4K, f=0.8994GHz

DLX

Nodes
MPIs/node

OMP

Threads
Cores

Matrix Fill

Time (min)

Matrix Factor

Time (min)

Required

Memory/node

1 1 16 16 70.274 164.584 50.1%

1 2 8 16 35.698 89.627 50.4%

1 4 4 16 34.189 45.276 51.0%

1 8 2 16 35.009 22.819 52.2%

1 16 1 16 33.263 11.100 54.6%

2 1 16 32 55.413 96.921 29.8%

2 2 8 32 21.435 48.571 30.1%

2 4 4 32 19.125 24.519 30.8%

2 8 2 32 25.835 11.508 32.1%

2 16 1 32 19.793 5.666 34.8%

4 1 16 64 33.913 56.171 19.3%

4 2 8 64 12.440 27.987 19.7%

4 4 4 64 14.116 12.401 20.3%

4 8 2 64 15.346 5.940 21.7%

4 16 1 64 11.559 2.981 24.4%

Matrix factor times follow earlier trends for MPI only parallelization. Graphs of matrix

fill times and required memory usage are shown in Figure 47 and Figure 48, respectively.

Figure 47: Matrix fill times vs. MPI-OMP combination for N=41.4K, f=0.8994GHz

79

Figure 48: Required memory/node vs. MPIs/node for N=41.4K, f=0.8994GHz

As the number of MPI processes per node is reduced by powers of two, OMP

threads are increased by the same factor to compensate and share more of the

computational workload. As expected, each line graph in Figure 47 is relatively constant

for all MPI-OMP combinations except the 1-16 combination. At least 2 MPI processes

per node must execute for OMP threading to be effective. In addition, as the number of

MPI processes per node is increased, the required physical memory usage per node

should increase as more copies of the mesh are needed. As expected, each line graph in

Figure 48 increases as the number of MPI processes increases. When reducing the

number of MPI processes, the matrix fill routine incorporates simple OMP threading to

utilize idle cores and increase matrix fill performance. Matrix fill time, speedup, and

efficiency graphs comparing OMP threading to the same cases without OMP threading

are shown in Figure 49 on the next page. Matrix fill time comparing OMP threading to

the same cases without OMP threading along with SEP tables are shown in Figure 50 on

the page following next. The highest, most efficient speedup occurs for 2 MPI processes

and 8 OMP threads with SEP = 1.9, 1.8, and 1.6 for 1, 2, and 4 nodes, respectively. The

2-8 combination requires the least MPI processes per node for effective OMP threading,

has the highest, most efficient speedup, and uses the least physical memory per node.

80

Figure 49: OMP threading vs. No OMP threading for N=41.4K, f=0.8994GHz

81

1 Node

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.4

2-8 1.9

1-16 0.4

2 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.3

2-8 1.8

1-16 0.4

4 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.3

2-8 1.6

1-16 0.4

Figure 50: Matrix Fill Times: OMP vs. No OMP for N=41.4K, f=0.8994GHz

82

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is

executed on the DLX cluster for the N = 74.2 K, f = 1.1992 GHz test case. Table 40

shows the average matrix fill time, factor time, and required memory per node for three

trials of each configuration: #DLX Nodes : #MPI processes/node : #OMP threads.

Table 40: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=74.4K, f=1.1992GHz

DLX

Nodes
MPIs/node

OMP

Threads
Cores

Matrix Fill

Time (min)

Matrix Factor

Time (min)

Required

Memory/node

2 1 16 32 158.917 523.943 74.9%

2 2 8 32 68.697 258.208 75.4%

2 4 4 32 60.710 129.531 76.6%

2 8 2 32 82.478 63.256 78.7%

2 16 1 32 63.205 31.477 83.1%

4 1 16 64 107.368 284.448 42.3%

4 2 8 64 39.673 138.766 42.7%

4 4 4 64 44.105 65.840 44.2%

4 8 2 64 47.943 32.161 45.9%

4 16 1 64 35.470 16.190 50.7%

8 1 16 128 62.560 158.237 25.8%

8 2 8 128 27.587 71.209 26.0%

8 4 4 128 25.716 33.699 27.1%

8 8 2 128 28.626 16.877 29.4%

8 16 1 128 19.019 8.354 34.4%

Matrix factor times follow earlier trends for MPI only parallelization. Graphs of matrix

fill times and required memory/node are shown in Figure 51 and Figure 52, respectively.

Figure 51: Matrix fill times vs. MPI-OMP combination N=74.2K, f=1.1992GHz

83

Figure 52: Required memory/node vs. MPIs/node for N=74.2K, f=1.1992GHz

As the number of MPI processes per node is reduced by powers of two, OMP

threads are increased by the same factor to compensate and share more of the

computational workload. As expected, each line graph in Figure 51 is relatively constant

for all MPI-OMP combinations except the 1-16 combination. At least 2 MPI processes

per node must execute for OMP threading to be effective. In addition, as the number of

MPI processes per node is increased, the required physical memory usage per node

should increase as more copies of the mesh are needed. As expected, each line graph in

Figure 52 increases as the number of MPI processes increases. When reducing the

number of MPI processes, the matrix fill routine incorporates simple OMP threading to

utilize idle cores and increase matrix fill performance. Matrix fill time, speedup, and

efficiency graphs comparing OMP threading to the same cases without OMP threading

are shown in are shown in Figure 53 on the next page. Matrix fill time comparing OMP

threading to the same cases without OMP threading along with SEP tables are shown in

Figure 54 on the page following next. The highest, most efficient speedup occurs for 2

MPI processes and 8 OMP threads with SEP = 1.9, 1.6, and 1.8 for 2, 4, and 8 nodes,

respectively. The 2-8 combination requires the least MPI processes per node for effective

OMP threading, has the highest, most efficient speedup, and uses the least physical

memory per node.

84

Figure 53: OMP threading vs. No OMP threading for N=74.2K, f=1.1992GHz

85

2 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.9

4-4 1.5

2-8 1.9

1-16 0.4

4 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.4

2-8 1.6

1-16 0.4

8 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.7

4-4 1.4

2-8 1.8

1-16 0.3

Figure 54: Matrix Fill Times: OMP vs. No OMP for N=74.2K, f=1.1992GHz

86

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is

executed on the DLX cluster for the N = 168 K, f = 1.7998 GHz test case. Table 41

shows the average matrix fill time, factor time, and required memory per node for three

trials of each configuration: #DLX Nodes : #MPI processes/node : #OMP threads.

Table 41: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=168K, f=1.7998GHz

DLX

Nodes
MPIs/node

OMP

Threads
Cores

Matrix Fill

Time (hr)

Matrix Factor

Time (hr)

Required

Memory/node

16 1 16 256 3.924 12.911 52.3%

16 2 8 256 1.394 6.194 53.2%

16 4 4 256 1.291 3.117 55.5%

16 8 2 256 1.298 1.537 60.5%

16 16 1 256 0.956 0.773 70.3%

20 1 16 320 3.443 10.204 43.2%

20 2 8 320 1.166 5.102 45.3%

20 4 4 320 0.972 2.510 47.2%

20 8 2 320 1.115 1.251 51.3%

20 16 1 320 0.688 0.640 62.7%

24 1 16 384 2.912 8.667 37.4%

24 2 8 384 0.945 4.253 38.6%

24 4 4 384 0.853 2.117 41.0%

24 8 2 384 0.878 1.062 46.7%

24 16 1 384 0.603 0.537 56.5%

Matrix factor times follow earlier trends for MPI only parallelization. Graphs of matrix

fill times and required memory/node are shown in Figure 55 and Figure 56, respectively.

Figure 55: Matrix fill times vs. MPI-OMP combination for N=168K, f=1.7998GHz

87

Figure 56: Required memory/node vs. MPIs/node for N=168K, f=1.7998GHz

As the number of MPI processes per node is reduced by powers of two, OMP

threads are increased by the same factor to compensate and share more of the

computational workload. As expected, each line graph in Figure 55 is relatively constant

except the 1-16 combination. At least 2 MPI processes per node must execute for OMP

threading to be effective. In addition, as the number of MPI processes per node is

increased, the required physical memory usage per node should increase as more copies

of the mesh are needed. As expected, each line graph in Figure 56 increases as the

number of MPI processes increases. When reducing the number of MPI processes, the

matrix fill routine incorporates simple OMP threading to utilize idle cores and increase

matrix fill performance. Matrix fill time, speedup, and efficiency graphs comparing

OMP threading to the same cases without OMP threading are shown in Figure 57 on the

next page. Matrix fill time comparing OMP threading to the same cases without OMP

threading along with SEP tables are shown in Figure 58 on the page following next. The

highest, most efficient speedup occurs for 2 MPI processes and 8 OMP threads with SEP

= 2.0, 1.8, and 1.9 for 16, 20, and 24 nodes, respectively. The 2-8 combination requires

the least MPI processes per node for effective OMP threading, has the highest, most

efficient speedup, and uses the least physical memory per node.

88

Figure 57: OMP threading vs. No OMP threading for N=168K, f=1.7998GHz

89

16 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.4

2-8 2.0

1-16 0.4

20 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.6

2-8 1.8

1-16 0.3

24 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.4

2-8 1.9

1-16 0.3

Figure 58: Matrix Fill Times: OMP vs. No OMP for N=168K, f=1.7998GHz

90

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is

executed on the DLX cluster for the N = 208 K, f = 2.0000 GHz test case. Table 42

shows the average matrix fill time, factor time, and required memory per node for three

trials of each configuration: #DLX Nodes : #MPI processes/node : #OMP threads.

Table 42: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=208K, f=2.0000GHz

DLX

Nodes
MPIs/node

OMP

Threads
Cores

Matrix Fill

Time (hr)

Matrix Factor

Time (hr)

Required

Memory/node

16 1* 16 256 – – –

16 2 8 256 2.121 6.194 75.9%

16 4 4 256 1.967 5.831 78.8%

16 8 2 256 2.004 2.909 84.9%

16 16 1 256 1.447 1.643 96.9%

20 1* 16 320 – – –

20 2 8 320 1.796 9.463 63.6%

20 4 4 320 1.507 4.667 66.1%

20 8 2 320 1.684 2.335 72.1%

20 16 1 320 1.060 1.204 84.5%

24 1* 16 384 – – –

24 2 8 384 1.463 7.865 55.1%

24 4 4 384 1.301 3.930 58.1%

24 8 2 384 1.362 1.976 64.0%

24 16 1 384 0.912 1.002 75.8%
*The total MPI processes required for 208 K unknowns was not attainable with 1 MPI/node

Matrix factor times follow earlier trends for MPI only parallelization. Graphs of matrix

fill times and required memory/node are shown in Figure 59 and Figure 60, respectively.

Figure 59: Matrix fill times vs. MPI-OMP combination for N=208K, f=2.0000GHz

91

Figure 60: Required memory/node vs. MPIs/node for N=208K, f=2.0000GHz

As the number of MPI processes per node is reduced by powers of two, OMP

threads are increased by the same to compensate and share more of the computational

workload. As expected, each line graph in Figure 59 is relatively constant for all MPI-

OMP combinations utilized. However, the required MPI processes for 208 K unknowns

were not attainable with the 1-16 combination. At least 2 MPI processes per node must

execute. In addition, as the number of MPI processes per node is increased, the required

physical memory usage per node should increase as more copies of the mesh are needed.

As expected, each line graph in Figure 60 increases as the number of MPI processes

increases. When reducing the number of MPI processes, the matrix fill routine

incorporates simple OMP threading to utilize idle cores and increase matrix fill

performance. Matrix fill time, speedup, and efficiency graphs comparing OMP threading

to the same cases without OMP threading are shown in are shown in Figure 61 on the

next page. Matrix fill time comparing OMP threading to the same cases without OMP

threading along with SEP tables are shown in Figure 62 on the page following next. The

highest, most efficient speedup occurs for 2 MPI processes and 8 OMP threads with SEP

= 2.2, 2.0, and 1.9 for 16, 20, and 24 nodes, respectively. The 2-8 combination requires

the least MPI processes per node for effective OMP threading, has the highest, most

efficient speedup, and uses the least physical memory per node.

92

Figure 61: OMP threading vs. No OMP threading for N=208K, f=2.0000GHz

93

16 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.5

2-8 2.2

20 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.6

2-8 2.0

24 Nodes

MPI-
OMP

SEP

16-1 1.0

8-2 0.8

4-4 1.5

2-8 1.9

Figure 62: Matrix Fill Times: OMP vs. No OMP for N=208K, f=2.0000GHz

94

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is

executed on the DLX cluster for the N = 299 K, f = 2.3984 GHz test case. Table 43

shows the average matrix fill time, factor time, and required memory per node for three

trials of each configuration: #DLX Nodes : #MPI processes/node : #OMP threads.

Table 43: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=299K, f=2.3984GHz

DLX

Nodes
MPIs/node

OMP

Threads
Cores

Matrix Fill

Time (hr)

Matrix Factor

Time (hr)

Required

Memory/node

28 1* 16 448 – – –

28 2 8 448 3.072 19.794 88.8%

28 4 4 448 2.502 9.819 93.0%

28 8 2 448 2.627 6.120 99.6%

28 16† 1 448 – – –

30 1* 16 480 – – –

30 2 8 480 2.861 18.503 83.0%

30 4 4 480 2.276 9.163 87.2%

30 8 2 480 2.681 5.049 95.6%

30 16† 1 480 – – –

32 1* 16 512 – – –

32 2 8 512 2.788 18.981 79.3%

32 4 4 512 2.179 8.601 84.4%

32 8 2 512 2.611 4.435 91.7%

32 16† 1 512 – – –

*The total MPI processes required for 299 K unknowns was not attainable with 1 MPI/node

†The total memory required per node for 299 K unknowns was exceeded for 16 MPIs/node

Matrix factor times follow earlier trends for MPI only parallelization. Graphs of matrix

fill times and required memory/node are shown in Figure 63 and Figure 64.

Figure 63: Matrix fill times vs. MPI-OMP combination for N=299K, f=2.3984GHz

95

Figure 64: Required memory/node vs. MPIs/node for N=299K, f=2.3984GHz

As the number of MPI processes per node is reduced by powers of two, OMP

threads are increased by the same to compensate and share more of the computational

workload. As expected, each line graph in Figure 63 is relatively constant for all MPI-

OMP combinations utilized. However, the required MPI processes for 299 K unknowns

were not attainable with the 1-16 combination and the total memory required per node for

299 K unknowns was exceeded for the 16-1 combination. In this case, at least 2 MPI

processes but no more than 8 MPI processes can execute on a node. In addition, as the

number of MPI processes per node is increased, the required physical memory usage per

node should increase as more copies of the mesh are needed. As expected, each line

graph in Figure 64 increases as the number of MPI processes increases. When reducing

the number of MPI processes, the matrix fill routine incorporates simple OMP threading

to utilize idle cores and increase matrix fill performance. Matrix fill time, speedup, and

efficiency graphs comparing OMP threading to the same cases without OMP threading

are shown in Figure 65 on the next page. Matrix fill time comparing OMP threading to

the same cases without OMP threading along with SEP tables are shown in Figure 66 on

the page following next. The highest, most efficient speedup occurs for 2 MPI processes

and 8 OMP threads with SEP = 1.5 for 32 nodes. GEMINI Solver would not execute

with less than 32 nodes in single threading mode (no OMP threading). The 2-8

96

combination requires the least MPI processes per node for effective OMP threading, has

the highest, most efficient speedup, and uses the least physical memory per node.

Figure 65: OMP threading vs. No OMP threading for N=299K, f=2.3984GHz

32 Nodes

MPI-
OMP

SEP

8-2 0.6

4-4 1.4

2-8 1.5

Figure 66: Matrix Fill Times: OMP vs. No OMP for N=299K, f=2.3984GHz

97

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is

executed on the DLX cluster for the N = 326 K, f = 2.5000 GHz test case. Table 44

shows the average matrix fill time, factor time, and required memory per node for three

trials of each configuration: #DLX Nodes : #MPI processes/node : #OMP threads.

Table 44: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=326K, f=2.5000GHz

DLX

Nodes
MPIs/node

OMP

Threads
Cores

Matrix Fill

Time (hr)

Matrix Factor

Time (hr)

Required

Memory/node

30 1* 16 480 – – –

30 2 8 480 3.440 25.070 97.5%

30 4 4 480 2.851 13.115 99.6%

30 8† 2 480 – – –

30 16† 1 480 – – –

32 1* 16 512 – – –

32 2 8 512 3.370 22.700 92.1%

32 4 4 512 2.592 11.503 97.4%

32 8† 2 512 – – –

32 16† 1 512 – – –
*The total MPI processes required for 326 K unknowns was not attainable with 1 MPI/node

†The total memory required per node for 326 K unknowns was exceeded for 8 and 16 MPIs/node

Matrix factor times agree with earlier values for MPI only parallelization. Graphs of

matrix fill times and required memory/node are shown in Figure 67. For the maximum

allowable 32 nodes on the DLX cluster, the total memory required per node is >92%.

Figure 67: Matrix fill times & memory usage for N=326K, f=2.5000GHz

98

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is

executed on the DLX cluster for the N = 342 K, f = 2.5624 GHz test case. Table 45

shows the average matrix fill time, factor time, and required memory per node for three

trials of each configuration: #DLX Nodes : #MPI processes/node : #OMP threads.

Table 45: GEMINI Solver v3.0 Matrix Fill & Factor Times for N=342K, f=2.5624GHz

DLX

Nodes
MPIs/node

OMP

Threads
Cores

Matrix Fill

Time (hr)

Matrix Factor

Time (hr)

Required

Memory/node

32 1* 16 512 – – –

32 2 8 512 4.371 31.489 99.5%

32 4† 4 512 – – –

32 8† 2 512 – – –

32 16† 1 512 – – –

*The total MPI processes required for 342 K unknowns was not attainable with 1 MPI/node

†The total memory required per node for 342 K unknowns was exceeded for 4, 8, and 16 MPIs/node

Matrix factor times agree with earlier values for MPI only parallelization. Graphs of

matrix fill times and required memory/node are shown in Figure 68. For the maximum

allowable 32 nodes on the DLX cluster, the total memory required per node is ≈100%.

Figure 68: Matrix fill times & memory usage for N=342K, f=2.5624GHz

Test cases with N > 342 K unknowns will not run on the DLX cluster because the total

memory required per node exceeds 100%.s

99

5.3. GEMINI Post Results

Comparisons of the RCS pattern generated by GEMINI Post are made to the Mie

Series using the Chi-Square goodness-of-fit (GOF) [15] given by equation (25). Table 46

displays the goodness-of-fit (GOF) between GEMINI Post RCS values and the Mie

Series using Nmax terms. The bistatic angle resolution is given by Δangle.

Table 46: GEMINI Post RCS results fit to Mie Series

Frequency, f

(GHz)

Edges, N

(# unknowns)

Solution

Test

Quality

of Fit

Nmax

Terms

Δangle

(°)

σVV χ
2

GOF

σHH χ
2

GOF

0.8994 41,415 EFIE Excellent 19 1 0.013 0.015

1.1992 74,211 EFIE Excellent 25 1 0.018 0.019

1.7988 167,652 EFIE Excellent 38 1 0.026 0.025

2.0000 207,663 EFIE Excellent 42 0.5 0.055 0.054

2.3984 298,863 EFIE Excellent 51 0.5 0.061 0.060

2.5000 326,430 EFIE Excellent 53 0.5 0.063 0.059

2.5624 342,087 EFIE Excellent 54 0.5 0.060 0.056

A plot of Nmax vs. N for the Goodness-of-Fit results is shown in Figure 69. The curve

follows the trend NN ~max .

Figure 69: Nmax vs. Number of Unknowns

Appendix A holds the plots and goodness-of-fit statistics for all cases listed in Table 46.

100

Chapter 6. Conclusion & Future Direction

6.1. Conclusion

The highest, most efficient speedup for the test cases listed in Table 36 occurs for

the combination of 2 MPI processes and 8 OMP threads. Table 47 shows the SEP results

for all 2-8 MPI-OMP combinations for which comparison runs could be performed.

Table 47: Results for best MPI-OMP combinations of matrix fill routine

Frequency, f

(GHz)

Edges, N

(# unknowns)

Solution

Test

Best MPI – OMP

Combination

DLX

Nodes

Average

SEP

0.8994 41,415 EFIE 2-8 1,2,4 1.8

1.1992 74,211 EFIE 2-8 4,8,12 1.8

1.7988 167,652 EFIE 2-8 16,20,24 1.9

2.0000 207,663 EFIE 2-8 16,20,24 2.0

2.3984 298,863 EFIE 2-8 32 1.5

The 2-8 combination affords the following advantages:

 minimum MPI processes needed per node for effective OMP threading;

 highest, most efficient speedup;

 least physical memory usage per node.

The largest problem size of 342 K unknowns could only be executed on 32 nodes

with the 2-8 combination. DLX policy allows a maximum of 32 nodes per user. For

problem sizes beyond 342 K, more than 32 nodes will be needed.

6.2. Future Direction

To achieve the highest, most efficient speedup in the GEMINI Solver matrix fill

routine, utilize hybrid MPI-OMP parallelization with 2 MPI processes and 8 OMP

threads per node. In addition, explore the use of high power clusters with more than 16

cores per node and test different MPI-OMP combinations to find the highest, most

efficient speedup combinations. Furthermore, solve the OMP race condition requiring

modifications #25 and #26 listed in Appendix B without using an OMP CRITICAL

directive. Finally, explore the utilization of hybrid MPI-OMP parallelization within the

GEMINI Solver matrix solver routine to supplement the current integration of the

University of Kentucky MFD library of advanced solution methods.

101

Appendix A GEMINI Post RCS Results Fit to Mie Series

Figure 70 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.1499 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

0.1499

Unknowns

1,083

Solution

EFIE

Nmax Terms

4

Agreement

Excellent

σVV χ2 GOF

0.103

σHH χ2 GOF

0.080

Figure 70: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.1499 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS result

102

Figure 71 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.1499 GHz

with fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit

(GOF) statistics indicate Gemini results are in good agreement with the Mie Series. VV

and HH linear scatterplots show a good correlation between Gemini RCS values, yi, and

Mie Series values, yi*. However, a minor lack of fit is observed by the scatter in the

linear values up to ≈ 4 m
2
.

Frequency (GHz)

0.1499

Unknowns

2,166

Solution

DIELECTRIC

Nmax Terms

4

Agreement

Good

σVV χ2 GOF

0..475

σHH χ2 GOF

0.351

Figure 71: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.1499 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results

103

Figure 72 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.2998 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

0.2998

Unknowns

4,455

Solution

EFIE

Nmax Terms

7

Agreement

Excellent

σVV χ2 GOF

0.008

σHH χ2 GOF

0.007

Figure 72: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.2998 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

104

Figure 73 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.2998 GHz

with fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit

(GOF) statistics indicate Gemini results are in good agreement with the Mie Series. VV

and HH linear scatterplots show a good correlation between Gemini RCS values, yi, and

Mie Series values, yi*. However, a slight lack of fit is observed by the scatter in the

linear values up to ≈ 5 m
2
.

Frequency (GHz)

0.2998

Unknowns

8,910

Solution

DIELECTRIC

Nmax Terms

7

Agreement

Good

σVV χ2 GOF

0.204

σHH χ2 GOF

0.321

Figure 73: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.2998 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results

105

Figure 74 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.5996 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

0.5996

Unknowns

18,162

Solution

EFIE

Nmax Terms

13

Agreement

Excellent

σVV χ2 GOF

0.009

σHH χ2 GOF

0.010

Figure 74: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.5996 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

106

Figure 75 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.5996 GHz

with fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit

(GOF) statistics indicate Gemini results are in fair agreement with the Mie Series. VV

and HH linear scatterplots show a fair correlation between Gemini RCS values, yi, and

Mie Series values, yi*. However, a clear lack of fit is observed by the scatter in the linear

values up to ≈ 10 m
2
.

Frequency (GHz)

0.5996

Unknowns

36,324

Solution

DIELECTRIC

Nmax Terms

13

Agreement

Fair

σVV χ2 GOF

2.123

σHH χ2 GOF

2.308

Figure 75: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.5996 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results

107

Figure 76 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.8994 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

0.8994

Unknowns

41,415

Solution

EFIE

Nmax Terms

19

Agreement

Excellent

σVV χ2 GOF

0.013

σHH χ2 GOF

0.015

Figure 76: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.8994 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

108

Figure 77 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.8994 GHz

with fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit

(GOF) statistics indicate Gemini results are in poor agreement with the Mie Series. The

Mie Series values tend to underestimate the Gemini values. VV and HH linear

scatterplots show a significant lack of fit by the scatter observed in the linear values up to

≈ 10 m
2
.

Frequency (GHz)

0.8994

Unknowns

82,830

Solution

DIELECTRIC

Nmax Terms

19

Agreement

Poor

σVV χ2 GOF

4.115

σHH χ2 GOF

4.604

Figure 77: (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.8994 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results

109

Figure 78 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 1.1992 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

1.1992

Unknowns

74,211

Solution

EFIE

Nmax Terms

25

Agreement

Excellent

σVV χ2 GOF

0.018

σHH χ2 GOF

0.019

Figure 78: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=1.1992 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

110

Figure 79 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 1.7988 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

1.7988

Unknowns

167,652

Solution

EFIE

Nmax Terms

38

Agreement

Excellent

σVV χ2 GOF

0.026

σHH χ2 GOF

0.025

Figure 79: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=1.7988 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

111

Figure 80 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.0000 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

2.0000

Unknowns

207,663

Solution

EFIE

Nmax Terms

42

Agreement

Excellent

σVV χ2 GOF

0.055

σHH χ2 GOF

0.054

Figure 80: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.0000 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

112

Figure 81 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.3984 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

2.3984

Unknowns

298,863

Solution

EFIE

Nmax Terms

51

Agreement

Excellent

σVV χ2 GOF

0.061

σHH χ2 GOF

0.060

Figure 81: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.3984 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

113

Figure 82 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.5000 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

2.5000

Unknowns

326,430

Solution

EFIE

Nmax Terms

53

Agreement

Excellent

σVV χ2 GOF

0.063

σHH χ2 GOF

0.059

Figure 82: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.5000 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

114

Figure 83 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°)

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.5624 GHz with

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF)

statistics indicate Gemini results are in excellent agreement with the Mie Series. VV and

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi,

and Mie Series values, yi*.

Frequency (GHz)

2.5624

Unknowns

342,087

Solution

EFIE

Nmax Terms

54

Agreement

Excellent

σVV χ2 GOF

0.060

σHH χ2 GOF

0.056

Figure 83: (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.5624 GHz

(Upper-Right) Chi-Square Goodness-of-Fit statistics

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results

115

Appendix B Final Implementation: Changes To GEMINI Solver v3.0

MODIFICATION #1

MODULE: project_m.f90

SUBROUTINE: createBasisLists

ENTRY AT ORIGINAL CODE LINE 831

!
!>>>
!>>>
!
! Addition: Nathan Champagne’s recommendation to refresh project obsBases and
! scrBases to avoid race condition.
!
 CALL this%obsBases%refreshArray()
 CALL this%srcBases%refreshArray()
!
!>>>
!>>>
!

MODIFICATION #2

MODULE: list_m.f90

ENTRY AT ORIGINAL CODE LINE 46

!
!>>>
!>>>
!
! Modification: Nathan Champagne’s recommendation to make refreshArray
! nonprivate
!
 PROCEDURE :: refreshArray
! PROCEDURE, PRIVATE :: refreshArray
!
!>>>
!>>>
!

MODIFICATION #3

MODULE: solution_m.f90

ENTRY AT ORIGINAL CODE LINE 25

!
!>>>
!>>>
!
! Addition: Use OMP Library
!
 USE OMP_LIB
!
!>>>
!>>>
!

116

MODIFICATION #4

MODULE: solution_m.f90

SUBROUTINE: solution_nonperiodic

ENTRY AT ORIGINAL CODE LINE 119

!
!>>>
!>>>
!
! Addition: Declare wall clock time
!
 REAL (KIND=8) :: WTIME
!
!>>>
!>>>
!

MODIFICATION #5

MODULE: solution_m.f90

SUBROUTINE: solution_nonperiodic

ENTRY AT ORIGINAL CODE LINE 222

!
!>>>
!>>>
!
! Addition: Get initial wall clock time
!
 WTIME = OMP_GET_WTIME()
!
!>>>
!>>>
!

MODIFICATION #6

MODULE: solution_m.f90

SUBROUTINE: solution_nonperiodic

ENTRY AT ORIGINAL CODE LINE 223

!
!>>>
!>>>
!
! Addition: Calculate and display "Elapsed Time" for global matrix fill
!
 WTIME = OMP_GET_WTIME() - WTIME
 WRITE (*,'(A,ES10.3E3)') ' Elapsed Time = ',WTIME
!
!>>>
!>>>
!

117

MODIFICATION #7

MODULE: solution_m.f90

SUBROUTINE: solution_periodic

ENTRY AT ORIGINAL CODE LINE 333

!
!>>>
!>>>
!
! Addition: Declare wall clock time
!
 REAL (KIND=8) :: WTIME
!
!>>>
!>>>
!

MODIFICATION #8

MODULE: solution_m.f90

SUBROUTINE: solution_periodic

ENTRY AT ORIGINAL CODE LINE 450

!
!>>>
!>>>
!
! Addition: Get initial wall clock time
!
 WTIME = OMP_GET_WTIME()
!
!>>>
!>>>
!

MODIFICATION #9

MODULE: solution_m.f90

SUBROUTINE: solution_periodic

ENTRY AT ORIGINAL CODE LINE 451

!
!>>>
!>>>
!
! Addition: Calcualte and display "Elapsed Time" for global matrix fill
!
 WTIME = OMP_GET_WTIME() - WTIME
 WRITE (*,'(A,ES10.3E3)') ' Elapsed Time = ',WTIME
!
!>>>
!>>>
!

118

MODIFICATION #10

MODULE: commonregion_m.f90

ENTRY AT ORIGINAL CODE LINE 75

!
!>>>
!>>>
!
! Addition: A private copy of CommonRegionStatic for each OMP thread
!
!$OMP THREADPRIVATE(CommonRegionStatic)
!
!>>>
!>>>
!

MODIFICATION #11

MODULE: homogeneousgreensfunction_m.f90

ENTRY AT ORIGINAL CODE LINE 43

!
!>>>
!>>>
!
! Addition: A private copy of HomogenousGreensFunction for each OMP thread
!
!$OMP THREADPRIVATE(HomogenousGreensFunction)
!
!>>>
!>>>
!
!

MODIFICATION #12

MODULE: localmatrix_m.f90

ENTRY AT ORIGINAL CODE LINE 84

!
!>>>
!>>>
!
! Addition: A private copy of LocalMatrix for each OMP thread
!
!$OMP THREADPRIVATE(LocalMatrix)
!
!>>>
!>>>
!

119

MODIFICATION #13

MODULE: localmatrix_m.f90

SUBROUTINE: fillMoM

ENTRY AT ORIGINAL CODE LINE 141

!
!>>>
!>>>
!
! Addition: A private copy of variables for each OMP thread
!
!$OMP THREADPRIVATE(rs,unitNormal,l_vec,jac,srcWghtJacobian,srcArray)
!$OMP THREADPRIVATE(G,Kphi,Kpsi,Pz,Qz,gradG,grad_Kphi,grad_Kpsi,grad_Pz,grad_Qz)
!$OMP THREADPRIVATE(Ga,Gf,curl_Ga,curl_Gf)
!
!>>>
!>>>
!

MODIFICATION #14

MODULE: localmatrix_m.f90

SUBROUTINE: fillMoMThin

ENTRY AT ORIGINAL CODE LINE 642

!
!>>>
!>>>
!
! Addition: A private copy of each variable for each OMP thread
!
!$OMP THREADPRIVATE(rs,unitNormal,l_vec,jac,srcWghtJacobian,srcArray)
!$OMP THREADPRIVATE(G,Kphi,Kpsi,Pz,Qz,gradG,grad_Kphi,grad_Kpsi,grad_Pz,grad_Qz)
!$OMP THREADPRIVATE(Ga,Gf,curl_Ga,curl_Gf)
!
!>>>
!>>>
!

MODIFICATION #15

MODULE: brickelement_m.f90

ENTRY AT ORIGINAL CODE LINE 288

!
!>>>
!>>>
!
! Addition: A private copy of each variable for each OMP thread
!
!$OMP THREADPRIVATE(xiTemp,wghtTemp)
!
!>>>
!>>>
!

120

MODIFICATION #16

MODULE: prismelement_m.f90

ENTRY AT ORIGINAL CODE LINE 272

!
!>>>
!>>>
!
! Addition: A private copy of each variable for each OMP thread
!
!$OMP THREADPRIVATE(xiTemp,wghtTemp)
!
!>>>
!>>>
!

MODIFICATION #17

MODULE: quadrilateralelement_m.f90

ENTRY AT ORIGINAL CODE LINE 220

!
!>>>
!>>>
!
! Addition: A private copy of each variable for each OMP thread
!
!$OMP THREADPRIVATE(xiTemp,wghtTemp)
!
!>>>
!>>>
!

MODIFICATION #18

MODULE: triangleelement_m.f90

ENTRY AT ORIGINAL CODE LINE 217

!
!>>>
!>>>
!
! Addition: A private copy of each variable for each OMP thread
!
!$OMP THREADPRIVATE(xiTemp,wghtTemp)
!
!>>>
!>>>
!

121

MODIFICATION #19

MODULE: wireelement_m.f90

ENTRY AT ORIGINAL CODE LINE 113

!
!>>>
!>>>
!
! Addition: A private copy of each variable for each OMP thread
!
!$OMP THREADPRIVATE(xiTemp,wghtTemp)
!
!>>>
!>>>
!

MODIFICATION #20

MODULE: globalmatrix_m.f90

ENTRY AT ORIGINAL CODE LINE 21

!
!>>>
!>>>
!
! Addition: Use OMP Library
!
 USE OMP_LIB
!
!>>>
!>>>
!

MODIFICATION #21

MODULE: globalmatrix_m.f90

SUBROUTINE: fillNormal

ENTRY AT ORIGINAL CODE LINE 64

!
!>>>
!>>>
!
! Modification: Make classPointer keep it's value between calls to fillNormal
! Addition: Make classPointer OMP Thread Private
!
! CLASS(*), POINTER :: classPointer
 CLASS(*), POINTER, SAVE :: classPointer => null()
!$OMP THREADPRIVATE(classPointer)
!
!>>>
!>>>
!

122

MODIFICATION #22

MODULE: globalmatrix_m.f90

SUBROUTINE: fillNormal

ENTRY AT ORIGINAL CODE LINE 65

!
!>>>
!>>>
!
! Addition: Variables needed for OMP threading
!
 INTEGER :: n_i,nodeSetCount,nodeCount,iNode
 INTEGER :: obsTID, srcTID, obsNTHREADS, srcNTHREADS,CHUNK, numUnknowns
 LOGICAL :: OMP_NESTED_FLAG
 CLASS(ElementType), POINTER :: element
 CLASS(NodeSetType), POINTER :: nodeSet
 TYPE(MatrixParametersType), POINTER :: matrixParameter
 matrixParameter => project%matrixParameters%at(1)
 numUnknowns = matrixParameter%numUnknowns
!
!>>>
!>>>
!

MODIFICATION #23

MODULE: globalmatrix_m.f90

SUBROUTINE: fillNormal

ENTRY AT ORIGINAL CODE LINE 77

!
!>>>
!>>>
!
! Addition: Nathan Champagne’s recommendation to reduce the number of OMP
! Critical Region directives needed to solve race conditions
!
 DO i = 1,elementCount
 element => project%elements%at(i)
 nodeSetCount = SIZE(element%nodeSets(:))
 DO n_i = 1,nodeSetCount
 nodeSet => element%nodeSets(n_i)%object
 nodeCount = element%nodeCount(n_i)
 DO iNode = 1,nodeCount
 IF(nodeSet%unknownFlags(1)) THEN
 CALL element%unknownJ(n_i)%node(iNode)%dofIds%refreshArray()
 ENDIF
 IF(nodeSet%unknownFlags(2)) THEN
 CALL element%unknownM(n_i)%node(iNode)%dofIds%refreshArray()
 ENDIF
 ENDDO
 ENDDO
 ENDDO
!
!>>>
!>>>
!

123

MODIFICATION #24

MODULE: globalmatrix_m.f90

SUBROUTINE: fillNormal

ENTRY AT ORIGINAL CODE LINE 77

!
!>>>
!>>>
!
! Addition: Set up for Open MP parallelization of outer observation element loop
!
! Set chuck size per thread
!
 CHUNK=1
!
! Disable nested parallelism
!
 OMP_NESTED_FLAG=.FALSE.
 CALL OMP_SET_NESTED(OMP_NESTED_FLAG)
!
! Display parallel environment
!
 IF (MPIWrapper%myIndex == 0) THEN
 WRITE (*,'(10X,A,I6,A,I2,A,I3)') 'Unknowns = ',numUnknowns, &
 ' Chunk = ', CHUNK, &
 ' MPI processes = ',MPIWrapper%numberOfProcessors
 IF (OMP_GET_NESTED()) THEN
 WRITE (*,'(10X,A,L5)') 'OMP Nested Parallelism ENABLED!'
 ELSE
 WRITE (*,'(10X,A,L5)') 'OMP Nested Parallelism NOT enabled!'
 ENDIF
 ENDIF
!
! Outer observation element loop forks here
!
!$OMP PARALLEL &
!$OMP SHARED(project,gMatrix,freqIndex) &
!$OMP SHARED(elementCount,freqPointer,modeIndex,omega) &
!$OMP PRIVATE(obsTID,i_t,n_t) &
!$OMP PRIVATE(obsElement,obsBasis,obsNodeSetCount,obsNodeSet,obsNodeCount) &
!$OMP PRIVATE(obsArray) &
!$OMP PRIVATE(srcTID,i_s,n_s) &
!$OMP PRIVATE(srcElement,srcBasis,srcNodeSetCount,srcNodeSet,srcNodeCount) &
!$OMP PRIVATE(commonRegions,regionCount) &
!$OMP PRIVATE(obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM) &
!$OMP PRIVATE(obsIndex,srcIndex)
!
! Dynamic Scheduling
!
!$OMP DO SCHEDULE(DYNAMIC, CHUNK)
!
!>>>
!>>>
!

124

MODIFICATION #25

MODULE: globalmatrix_m.f90

SUBROUTINE: fillNormal

ENTRY AT ORIGINAL CODE LINE 81

!
!>>>
!>>>
!
! Addition: OMP Critical Region required to eliminate race condition in
! obsElement => project%elements%at(i_t)
!
!$OMP CRITICAL
 classPointer => project%elements%at(i_t)
 SELECT TYPE(classPointer)
 CLASS IS(ElementType)
 obsElement => classPointer
 END SELECT
!$OMP END CRITICAL

!
!>>>
!>>>
!

MODIFICATION #26

MODULE: globalmatrix_m.f90

SUBROUTINE: fillNormal

ENTRY AT ORIGINAL CODE LINE 123 (FEM) & LINE 200 (MoM)

!
!>>>
!>>>
!
! Addition: OMP Critical Region required to eliminate race condition in
! srcElement => project%elements%at(i_s)
!
!$OMP CRITICAL
 classPointer => project%elements%at(i_t)
 SELECT TYPE(classPointer)
 CLASS IS(ElementType)
 srcElement=> classPointer
 END SELECT
!$OMP END CRITICAL

!
!>>>
!>>>
!

125

MODIFICATION #27

MODULE: globalmatrix_m.f90

SUBROUTINE: fillNormal

ENTRY AT ORIGINAL CODE LINE 368

!

!>>>

!>>>

!

! Addition: Outer observation element loop joins here

!

!$OMP END PARALLEL DO

!

!>>>

!>>>

!

MODIFICATION #28

MODULE: globalmatrix_m.f90

SUBROUTINE: localToGlobal

ENTRY AT ORIGINAL CODE LINE 463

!
!>>>
!>>>
!
! Modification: Initialize value to zero rather than getting value from gMatrix
! to avoid OMP race condition
!
 value = 0.0_dk
! value = gMatrix%getValue(rowDOF,columnDOF)
!
!>>>
!>>>
!

MODIFICATION #29

MODULE: globalmatrix_m.f90

SUBROUTINE: localToGlobal

ENTRY AT ORIGINAL CODE LINE 478

!
!>>>
!>>>
!
! Modification: Update global matrix in OMP Critical Region to avoid OMP race
! condition
!
!$OMP CRITICAL
 value = value + gMatrix%getValue(rowDOF,columnDOF)
 CALL gMatrix%putValue(rowDOF,columnDOF,value)
!$OMP END CRITICAL
!
!>>>
!>>>
!

126

References

[1] N. J. Champagne, R. M. Sharpe and J. W. Rockway, "EIGER: Electromagnetic Interactions

GEneRalized," in Department of Defense High Performance Computing Modernization

Program Users Group Conference 2001, Biloxi, 2001.

[2] NASA, "Computational Electromagnetics Laboratory," [Online]. Available:

https://www.nasa.gov/centers/johnson/engineering/human_space_vehicle_systems/

computational_electromagnetics_laboratory/index.html. [Accessed 11 February 2017].

[3] D. R. Wilton, "Computational Methods," in Scattering: Scattering and Inverse Scattering in

Pure and Applied Science, London, Academic Press, 2002, pp. 316-365.

[4] X. Xu and R. J. Adams, "Sparse matrix factorization using overlapped localizing LOGOS

modes on a shifted grid," IEEE Transactions on Antennas and Propagation, vol. 60, no. 3,

pp. 1414-1424, 2012.

[5] K. F. Warnick, "Integral Equations and the Method of Moments," in Numerical Methods for

Engineering, 1st ed., Provo, Scitech Publishing, 2011, pp. 151-209.

[6] S. A. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic Scattering by Surfaces of

Arbitrary Shape," IEEE Transactions on Antennas and Propagation, vol. 30, no. 3, pp. 409-

417, 1982.

[7] K. F. Warnick, "Introduction," in Numerical Methods for Engineering, 1st ed., Provo,

Scitech Publishing, 2011, pp. 1-35.

[8] W. L. Stutzman and G. A. Thiele, "CEM for Antennas: The Method of Moments," in

Antenna Theory and Design, 3rd ed., Hoboken, John Wiley & Sons, Inc., 2013, pp. 641-645.

[9] Argonne National Laboratory, "MPICH: A High-Performance, Portable Implementation of

MPI Version 1.4.1p1," 24 August 2011. [Online]. Available:

http://www.mpich.org/static/tarballs/1.4.1p1/. [Accessed 13 July 2014].

[10] Open MPI Development Team, "Open MPI: Open Source High Performance Computing,"

[Online]. Available: https://www.open-mpi.org/. [Accessed 4 March 2017].

[11] University of Kentucky I.T.S., "The Lipscomb High Performance Computing Cluster,"

[Online]. Available: http://www.uky.edu/its/hpc/hardware. [Accessed 11 February 2017].

[12] OpenMP Architecture Review Board, "OpenMP," [Online]. Available:

http://www.openmp.org/. [Accessed 4 March 2017].

127

[13] Sandia National Laboratory, "The CUBIT Geometry and Mesh Generation Toolkit Version

14.1," 13 January 2014. [Online]. Available: https://cubit.sandia.gov/public/14.1/Cubit-14.1-

announcement.html. [Accessed 5 August 2014].

[14] J. B. Grant, "EIGER ANTS (Electromagnetic Interactions GEneRalized Advanced

Numerical Tools & Services) v2.7," ANT-S, Livermore, 2000.

[15] G. T. Ruck and et. al., "Spheres," in Radar Cross Section Handbook, 1st ed., New York;

London, Plenum Press, 1970, pp. 141-202.

[16] W. Gibson, "Scattered Field of a Conducting and Stratified Sphere," 30 April 2013. [Online].

Available: http://www.mathworks.com/matlabcentral/fileexchange/20430-scattered-field-of-

a-conducting-and-stratified-spheres/content/mie.zip. [Accessed 16 May 2014].

[17] B. Chapman, G. Jost and R. van der Pas, "Using OpenMP in the Real World," in Using

OpenMP, 1st ed., Cambridge, The MIT Press, 2008, pp. 191-242.

[18] B. Chapman, G. Jost and R. van der Pas, "Overview of OpenMP," in Using OpenMP, 1st

ed., Cambridge, The MIT Press, 2008, pp. 23-34.

[19] B. Chapman, G. Jost and R. van der Pas, "Troubleshooting," in Using OpneMP, 1st ed.,

Cambridge, The MIT Press, 2008, pp. 243-276.

[20] B. Chapman, G. Jost and R. van der Pas, "Writing a First OpenMP Program," in Using

OpenMP, 1st ed., Cambridge, The MIT Press, 2008, pp. 35-50.

[21] B. Chapman, G. Jost and R. van der Pas, "OpenMP Language Features," in Using OpenMP,

1st ed., Cambridge, The MIT Press, 2008, pp. 51-124.

[22] J. C. Young, DLX Batch Script with Sanity Checks, Lexington: University of Kentucky,

2015.

[23] J. C. Young, DLX Run Script to Execute GEMINI Solver v3.0 Test Sets, Lexington:

Univeristy of Kentucky, 2015.

128

Vita

PLACE OF BIRTH New York City, New York

DEGREES AWARDED Ph.D., Experimental Nuclear Physics, May 1994

University of Kentucky

 M.S., Experimental Nuclear Physics, December 1991

University of Kentucky

 B.S., Physics, December 1990

University of Kentucky

PROFESSIONAL POSITIONS Professor of Physics (Retired), 1995-2013

Kentucky Wesleyan College

 Visiting Professor of Physics, 2008-2009

University of Kentucky

 Research Fellow in Medical Physics, 1999-2000

Vanderbilt University Medical Center

SCHOLASTIC HONORS Teacher of the Year, 2007

Kentucky Wesleyan College

 Achievement in Education, 2004

Kentucky Society of Professional Engineers

 Teacher of the Year, 2003

Kentucky Wesleyan College

 Graduate Fellowship, 1991-1994

National A.N.N. Fellowship Program

 Graduate Fellowship, 1990-1991

University of Kentucky Graduate School

NAME ON FINAL COPY Buxton L. Johnson, Sr.

	HYBRID PARALLELIZATION OF THE NASA GEMINI ELECTROMAGNETIC MODELING TOOL
	Recommended Citation

	Title Page
	Abstract of Thesis
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Background
	1.2. Motivation

	Chapter 2. Model
	2.1. Integral Equation Based Formulation using Method of Moments
	2.2. EFIE Formulation for Perfect Electrical Conductors
	2.3. Discretization and Basis Functions
	2.4. RWG Model

	Chapter 3. NASA GEMINI Solver
	3.1. GEMINI Solver Structure and Existing MPI Parallelization
	3.2. Computing Platforms
	3.3. Preliminary MPI Testing
	3.3.1. Triangular Mesh Generation Using CUBIT
	3.3.2. Create GEMINI Solver Input Test Files Using EIGER ANTS
	3.3.3. MPI Multi-Process Test Runs on Windows-7
	3.3.4. Initial MPI Runtime Performance Measurements on DLX
	3.3.5. Improved MPI Runtime Performance Measurements on DLX

	3.4. GEMINI Post RCS Measurements

	Chapter 4. Hybrid Parallelization: Combining Open MP with MPI
	4.1. Why Open MP Multi-Threading?
	4.2. OMP Directives and Parallelization
	4.2.1. Using OMP on a Simple Printing Operation
	4.2.2. Testing OMP on a Matrix Multiply Operation

	4.3. Integrating OMP into GEMINI Solver’s Matrix Fill Routine
	4.3.1. Incorporating Simple OMP Parallelism into GEMINI Solver
	4.3.2. Incorporating Nested OMP Parallelism into GEMINI Solver

	Chapter 5. Testing MPI-OMP Hybrid Parallelization
	5.1. Final Implementation
	5.2. GEMINI Solver Results
	5.3. GEMINI Post Results

	Chapter 6. Conclusion & Future Direction
	6.1. Conclusion
	6.2. Future Direction

	Appendix A GEMINI Post RCS Results Fit to Mie Series
	Appendix B Final Implementation: Changes To GEMINI Solver v3.0
	References
	Vita

