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ABSTRACT OF THESIS 

 

HYBRID PARALLELIZATION OF THE NASA GEMINI ELECTROMAGNETIC 

MODELING TOOL  

 

Understanding, predicting, and controlling electromagnetic field interactions on 

and between complex RF platforms requires high fidelity computational electromagnetic 

(CEM) simulation.  The primary CEM tool within NASA is GEMINI, an integral 

equation based method-of-moments (MoM) code for frequency domain electromagnetic 

modeling.  However, GEMINI is currently limited in the size and complexity of problems 

that can be effectively handled.  To extend GEMINI’S CEM capabilities beyond those 

currently available, primary research is devoted to integrating the MFDlib library 

developed at the University of Kentucky with GEMINI for efficient filling, factorization, 

and solution of large electromagnetic problems formulated using integral equation 

methods.  A secondary research project involves the hybrid parallelization of GEMINI 

for the efficient speedup of the impedance matrix filling process.  This thesis discusses 

the research, development, and testing of the secondary research project on the High 

Performance Computing DLX Linux supercomputer cluster.  Initial testing of GEMINI’s 

existing MPI parallelization establishes the benchmark for speedup and reveals 

performance issues subsequently solved by the NASA CEM Lab.  Implementation of 

hybrid parallelization incorporates GEMINI’s existing course level MPI parallelization 

with Open MP fine level parallel threading.  Simple and nested Open MP threading are 

compared.  Final testing documents the improvements realized by hybrid parallelization. 

 

KEYWORDS: computational electromagnetics, method of moments, electric field 

integral equation, hybrid parallelization, high performance computing. 
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Chapter 1. Introduction 

1.1. Background 

Understanding, predicting, and controlling electromagnetic field interactions on 

and between complex RF platforms is essential to the design and analysis of various 

NASA communications and sensing systems. Electromagnetic interactions underlie 

various critical properties of such systems including antenna radiation patterns and 

impedances, near field distributions, instrument-platform interactions, link budgets, etc. 

Modern platforms are increasingly sophisticated and complex, and accurate 

electromagnetic modeling of these platforms in their deployed environment requires high 

fidelity computational electromagnetic (CEM) simulation tools. While NASA currently 

has significant capability in this area, existing and future design and analysis 

requirements exceed the capabilities of its existing CEM tools.  

The primary CEM tool within NASA is GEMINI (formerly EIGER [1]), which is 

maintained by the members of the CEM Laboratory [2] at NASA’s Johnson Space Center 

(JSC) in Houston.  GEMINI is an integral equation based method-of-moments (MoM) 

code for frequency domain electromagnetic modeling [3].  GEMINI is well tested and has 

been proven accurate and effective in a number of real world applications. However, 

GEMINI is currently limited in the size and complexity of problems that can be 

effectively handled.  The CEM Lab at JSC relies on a supercomputer with 476 processors 

and 1.9 terabytes of RAM.  The GEMINI tool currently relies on standard distributed LU 

decomposition techniques.  For this reason, the group’s simulation capabilities are 

currently limited to about 290,000 unknowns.   

A primary NASA research project at the University of Kentucky involves the 

integration of the sparse linear solution library, MFDlib, developed at the University of 

Kentucky, with GEMINI for efficient filling, factorization, and solution of large 

electromagnetic problems formulated using integral equation methods [4].  A secondary 

research project involves the hybrid parallelization of GEMINI for the efficient speedup 

of the filling process.  This thesis discusses the research, development, and testing of this 

secondary research project.  The next section identifies several problems that emphasize 

the need NASA has to extend its CEM capabilities beyond those currently available. 
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1.2. Motivation 

NASA’s Computational Electromagnetics (CEM) Laboratory has a strong 

reputation for providing reliable, accurate solutions for a wide range of practical 

electromagnetic problems.  Some of NASA-JSC CEM Lab’s recent activities include 

analyzing the flight termination system (FTS) antennas on four different vehicles: 

NASA’s ARES I-X Rocket (2008), SpaceX’s Falcon-9 rocket (2009), Orbital Science 

Corporation’s Taurus II Rocket (2010-2011), and SpaceX (2011).   

Analyzing the antenna systems on the Orion Abort Test Booster (ATB) was 

required in four frequency bands:  UHF, L-Band, S-Band, and C-Band.  See Figure 1. 

  

 

Figure 1:  Analyzing antenna systems on Orbital Sciences’ Orion Abort Test Booster 

 

NASA is studying C-band antennas mounted at different locations on an astronaut 

suit.  The entire astronaut can be modeled at UHF band using GEMINI.  See Figure 2. 

  

Figure 2:  Astronaut Extra Vehicular Activity (EVA) lunar surface studies 
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The NASA-JSC CEM Lab provided computational analyses to relocate Space-to-

Space Orbiter Radio (SSOR) and Wireless Video System (WVS) antennas to 

accommodate the Orbiter Boom Sensor System.  The purpose of the CEM analysis was 

to ensure that the antennas were located in regions that provided sufficient coverage to 

astronauts performing EVA maneuvers.  The analysis required the evaluation of 25 

different antenna locations on the vehicle, with each location requiring a CEM simulation 

analysis.  See antenna photo and CEM antenna simulation analysis in Figure 3. 

 

  

Figure 3:  UHF-band shuttle antenna placement analysis 

 

As indicated above, the CEM Laboratory at NASA’s Johnson Space Center has 

significant experience with and confidence in the GEMINI computational 

electromagnetics tool for a variety of electromagnetic modeling applications.  However, 

there is also a clear need to extend the capabilities of GEMINI in order to treat more 

complex problems.  While extensions to GEMINI would be desirable in a few areas, the 

most significant of these is the need to be able to model complex platforms in higher 

frequency bands (e.g., L-, S- and C-) than is currently possible. 

As mentioned previously, the primary research project to integrate the MFDlib 

library with GEMINI and the secondary research project (discussed in this thesis) to 

develop hybrid parallelization of GEMINI target the important need NASA has to extend 

its CEM capabilities beyond those currently available. 
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Chapter 2. Model 

2.1. Integral Equation Based Formulation using Method of Moments 

GEMINI employs an integral equation based method-of-moments code for 

frequency domain electromagnetic modeling.  The method-of-moments (MoM) is a 

numerical method of solving linear partial differential equations which have been 

formulated as integral equations [5].  It can be applied in many areas of engineering and 

science including fluid mechanics, acoustics, electromagnetics, fracture mechanics, and 

plasticity.  In this thesis, we consider MoM only for boundary integral equation 

formulations (BIEs) of time harmonic electromagnetic field scattering from piecewise 

homogenous dielectric and conducting materials. 

MoM for BIEs has become more popular since the 1980s because it enables the 

solution for fields at all points in space using only boundary values, rather than values of 

the fields throughout all of the space.  It is significantly more efficient in terms of 

computational resources for problems with a small surface/volume ratio.  Conceptually, it 

works by constructing a "mesh" over the modeled surface.  However, for many problems, 

the boundary element method (BEM) is significantly computationally less efficient than 

volume-discretization methods (finite element method, finite difference method, finite 

volume method).  Boundary element formulations typically give rise to fully populated 

matrices.  This means the storage requirements will tend to grow according to the square 

of the problem size, and the computational times will tend to grow as the cube of the 

problem size.  One way to reduce these costs is to use data-sparse solution methods such 

as those provided by the University of Kentucky MFDlib library [4].  Such strategies are 

not discussed in this thesis. 

BEM is applicable to problems for which Green's functions can be calculated. 

These usually involve fields in linear homogeneous media. This places considerable 

restrictions on the range and generality of problems suitable for boundary elements. 

Nonlinearities can be included in the formulation, although they generally introduce 

volume integrals which require the volume to be discretized before solution.  In some 

cases, this removes an oft-cited advantage of BEM. 
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2.2. EFIE Formulation for Perfect Electrical Conductors  

The Electric Field Integral Equation (EFIE) formulation has the advantage of 

being applicable to both open and closed bodies [6].  Let S denote the surface of an open 

or closed PEC scatterer with unit normal n̂ .  An electric field 
iE


 (due to an impressed 

source in the absence of a scatterer), is incident on and induces surface currents J


on S.   

 

Figure 4:  PEC with surface current  zyxJ  ,,


  

 

If S is open, J


is the vector sum of the surface current on opposite sides of S and, 

therefore, the normal component of J


must vanish on boundaries of S.  The scattered 

electric field 
sE


can be computed from surface current by 

 




AjE s   (1)  

 

where the magnetic vector potential is defined as  
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and the scalar potential is defined as 
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jkR

dS
R

e
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 (3) 

 

A harmonic time dependence (
tje 
) is assumed and  /2k , where λ is the 

wavelength.  'rrR


   is the distance between an arbitrarily located observation point r


and a source point 'r


 on S.  The surface charge density   is related to the surface 

divergence of J


through the equation of continuity 

 

jJS 


 (4) 

 

Enforcing the boundary condition 

 

  0ˆ  si EEn


 (5) 

 

on S, we obtain 

 

  iEAj tantan


 

 
(6) 

 

which constitutes the electric field integral equation (EFIE).  The EFIE method 

constitutes solving eq.(6) utilizing the magnetic vector potential [eq.(2)], scalar potential 

[eq.(3)], and continuity equation [eq.(4)]. 

Although the EFIE method has the advantage of being applicable to both open 

and closed bodies, it can be difficult to apply due to the kernel of the integral containing a 

singularity.  When computing self-interactions, the source and observation points are the 

same ( 'rr


 ) and the integrals contain a singularity at 0R . Transformations such as 

Duffy’s transformation of source coordinates can be used to remove the singularity [5]. 
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2.3. Discretization and Basis Functions 

The current J


on surface S can be approximated in terms of a series of vector 

basis functions  rf n


.  A discrete computational representation of the problem to be 

solved typically includes a mesh of some simple shape, together with parameter values 

that specify the physical properties in the material of each mesh element [7].  In EFIE 

formulations, continuous surface models employ surface “patches” with overlapping 

basis functions.  The patch shape of choice for discretization of a continuous surface is 

the planar triangular patch [8] displayed in Figure 5.  

 

 

Figure 5:  Discretization of spherical surface by triangular patches 

 

Planar triangular patches are capable of accurately conforming to any geometrical 

surface or boundary with the desired tolerance, are easily specified for computer input, 

and allow for varying patch density to accommodate small geometry features and sharp 

variation in anticipated current density. 

If the basis functions representing the surface current are not constructed such that 

their normal components are continuous across the patch edges, then the continuity 

equation [eq. (4)] requires the presence of point or line charges at the edges.  These 

fictitious charges, if present, can cause erroneous solutions in some cases and are to be 

avoided for that reason.  Thus, the basis function of choice for triangular patches is the 

RWG basis function (discussed in next section) which avoids difficulties at patch edges. 
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2.4. RWG Model 

The Rao-Wilton-Glisson (RWG) model uses a special set of vector basis 

functions  rf n


 which are suitable for use with the EFIE and a triangular mesh to 

approximate S [6].  The surface mesh is divided into triangular pairs with a common 

interior edge as shown in Figure 6. 

 

 

Figure 6:  Triangle pair and geometrical parameters associated with interior edge 

 

The vector basis function associated with the nth edge of a triangular pair as shown in 

Figure 6 is given by [5], [6], [8] 
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where ln is the length of the edge and An
±
 is the area of the triangle Tn

±
.  The current on S 

can be approximated in terms of the vector basis functions  rf n


 as 

 

 rfIJ n

N

n

n






1

 (8) 
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where N is the number of interior (non-boundary) edges and In is the coefficient 

(interpreted as the normal component of current density flowing past the nth edge).  If the 

vector basis functions  rfm


 are also used as testing functions at observation triangles for 

the EFIE [eq. (6)], then we obtain 

 

           dSrfrEdSrfrdSrfrAj
S

m

i

S

m

S

m  




 
(9) 

 

The testing integral over each triangle can be eliminated by using the surface vector 

calculus identity and approximating  , 
iE


, and A


 by their values at the observation 

triangle centroid yielding the EFIE equation 
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Substituting the current J


[eq.(8)] into the EFIE [eq. (10)] yields an N x N system of 

linear equations 
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The N x N system of linear equations can be written in matrix form as follows 

 

VIZ



~

 (12) 

 

where  mnZZ 
~

 is an N x N matrix (known as the impedance matrix),  nII 


 and  mVV 


 

are column vectors of length N, m is the index over N observation triangles, and n is the 

index over N source triangles.  Elements of Z
~

 and V


are given by [6] 
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and 
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Once the elements Zmn of the impedance matrix and the elements Vm of the column vector 

are determined, the N x N system of linear equations can be solved for the unknown 

current coefficients In.  Once solved, the current across the nth edge is found by  

 

 rfIJ nnn




 
(15) 

 

For plane wave incidence, the components of  rE i 
 are   
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where the components of the propagation vector k


 are 

 

0

00

00

cos

sinsin

cossin







kk

kk

kk

z

y

x







 (17) 

 

and  00 ,  defines the angle of arrival of the plane wave.   

The ability of surface S to scatter electromagnetic waves can be summarized into 

a single term, σ, known as the radar cross-section (RCS).  The RCS of surface S can be 

viewed as a ratio of the strength of the scattered wave from surface S to the scattered 

wave from a perfectly smooth sphere of cross sectional area of 1 m
2
.  After solving for 

the unknown currents, the RCS can be computed by [5] 
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where the plane wave  rE s 


 in the scattering direction is polarized in the ̂  or ̂  

direction.  The integral [eq. (18)] can be evaluated by substituting the expansion for the 

surface current density in terms of basis functions [eq. (8)].  This leads to 
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  (19) 

 

For a given pair of incident and scattering directions, there are four possible combinations 

of polarizations for the incident and scattered plane waves, so in general σθθ, σθϕ, σϕθ, and 

σϕϕ must be computed to characterize the scattering properties of the object.   
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To demonstrate, the EFIE method can be used on the spherical mesh geometry of 

Figure 5 to solve for the triangle edge currents.  Consider the spatial extent along the 

diameter of a 2-m sphere to be 0.4λ. A plane wave is incident from above the sphere, 

travelling down the z-axis, and polarized along the x-axis. 

 

 

Figure 7:  Plane wave travelling down z-axis and polarized along x-axis 

 

For a plane wave incidence at φ0 = 0, θ0 = 0, Eϕ = 0, Eθ = -1, the components of  rE i 
 are 
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and the components of the propagation vector k


 are 
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 (21) 

 

The incident plane wave is therefore in the -z direction and theta-polarized.  The incident 

plane wave has wavelength λ = 2 m / 0.4 = 5 m and frequency f = 60.0 MHz. 
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The triangle edge currents are solved as follows: 

1.  mVV 


 is filled; 

2. Impedance matrix  mnZZ 
~

 is computed (by matrix fill routine); 

3. Inverse impedance matrix 
1~ Z  is computed (by matrix factorization routine); 

4. Matrix equation VZI


1~   yields  nII 


 giving the current coefficients In for the 

triangle pair edges; 

5. Each current coefficient In is multiplied by the appropriate basis function  rfn


 

[eq.(15)] to determine the distribution of J


over the triangles in the mesh. 

 

Color density plots showing the distribution of J


over the triangle mesh as viewed from 

the north pole and south pole, respectively, are shown in Figure 8 and Figure 9. 

 

 

Figure 8:  Distribution of J over triangular mesh as viewed from north pole 
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Figure 9:  Distribution of J over triangular mesh as viewed from south pole 

 

The RCS scattering results (E plane φ = 0) for a 60 MHz incident plane wave impingent 

on the 1 meter radius PEC sphere is shown in Figure 10. 

 

 

Figure 10:  RCS plot for 60 MHz plane wave scattering on 1-m (0.2λ) radius PEC sphere 
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Chapter 3. NASA GEMINI Solver 

3.1. GEMINI Solver Structure and Existing MPI Parallelization 

Accurate electromagnetic (EM) analysis plays a critical role in NASA’s mission.  

The primary tool for this purpose within NASA is GEMINI.  GEMINI Solver calculates 

the primary electromagnetic quantities (e.g., currents) and secondary quantities of interest 

(e.g., far fields, etc.), if desired.  The general framework is open to many applications 

including antenna design, radio frequency design, and passive microwave device design.  

GEMINI Solver runs on a variety of platforms with a FORTRAN 2000 compiler, 

including Windows and Linux.  Additionally, GEMINI executes in parallel on machines 

using Message Passing Interface (MPI) libraries.  MPICH [9] by Argonne National 

Laboratory is a high performance, widely portable implementation of the MPI standard.  

MPI was developed to facilitate portable programming for distributed-memory 

architectures, where multiple processes execute independently and communicate data as 

needed by exchanging messages.  MPI provides a comprehensive set of library routines 

for managing processes and exchanging messages.  MPI is widely used in high-end 

computing, where problems are so large that a cluster of computers is needed to solve 

them.  Figure 11 depicts a simple MPI program running with four processes. 

 

 

Figure 11:  Parallelization with MPI processes 

 

The program tree for GEMINI Solver is shown in Table 1 on the next page. 
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Table 1:  GEMINI Solver program tree  

GEMINI Solver Program Tree 
 
Begin GEMINI Solver      
     CALL & RETURN ProjectModule%openPrimaryFiles     
     CALL & RETURN ProjectModule%readFromFile     
     CALL & RETURN ProjectModule%writeSimulationData     
     CALL SolutionModule%solution     
          CALL SolutionModule%nonperiodic/periodic    
          ! loop over frequencies 
               ! Begin “Fill the impedance matrix”    
               CALL GlobalMatrixModule%fillNormal   
               ! loop over observation elements --> loop over node sets for this observation element   
                    ! Begin “Moment method analysis”   
                    ! loop over source elements --> loop over node sets for this source element   
                         CALL LocalMatrixModule%fillMoM  
                         ! loop over observation points --> loop over the number of common regions  
                              CALL OperatorsModule%FillZMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasis%lambda(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                                   ! calculation: obsBasis%divLambda(iObs)*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillZMatrix 
                              CALL OperatorsModule%FillBetaMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasisCrossNormal(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillBetaMatrix 
                              CALL OperatorsModule%FillYMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasisCrossNormal(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                                   ! calculation: obsBasisCrossNormal(iObs) .dot. gradG(iQuad))*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillYMatrix 
                              CALL OperatorsModule%FillBetaTildeMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasis%lambda(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillBetaTildeMatrix 
                         ! end loop over the number of common regions --> end loop over observation points 
                         RETURN LocalMatrixModule%fillMoM  
     CALL & RETURN GlobalMatrixModule%localToGlobal 
                    ! end loop over node sets for this source element --> end loop over source elements 
                    ! End “Moment method analysis” 
               ! end loop over node sets for this observation element --> end loop over observation elements  
               RETURN GlobalMatrixModule%fillNormal 
               ! End “Fill the impedance matrix” 
               ! Begin “Fill the right hand side for each excitation group” 
               ! loop over excitation groups 
                    CALL & RETURN GlobalVector%fill 
                    ! loop over global wave sources --> loop over elements --> loop over node sets for this element 
                         LocalVectorModule%fillLocalSource 
                         LocalVectorModule%localToGlobal 
                    ! end loop over node sets for this element --> end loop over elements --> loop over global wave sources 
                    ! loop over voltage sources-> loop over node sets 
                         LocalVectorModule%fillLocalSource 
                         LocalVectorModule%localToGlobal 
                    ! end loop over node sets --> end loop over voltage sources 
                    CALL & RETURN ISISComplexSolverModule%solve 
                    CALL & RETURN ISISComplexVectorModule%gather 
                    CALL & RETURN SolutionModule%writeSolution 
               ! end loop over excitation groups 
               ! End “Fill the right hand side for each excitation group”             
          ! end loop over frequencies 
          RETURN SolutionModule%nonperiodic/periodic 
     RETURN SolutionModule%solution     
     CALL & RETURN ProjectModule%closeFiles  
End GEMINI Solver    
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3.2. Computing Platforms 

GEMINI is maintained by the members of the CEM Laboratory at NASA’s 

Johnson Space Center (JSC) in Houston, Texas.  The CEM Lab at JSC [2], shown below 

in Figure 12, relies on a supercomputer with 476 processors and 1.9 terabytes of RAM. 

 

Figure 12:  The CEM Laboratory at NASA’s Johnson Space Center 

 

The GEMINI tool currently relies on standard distributed LU decomposition techniques.  

For this reason, the group’s simulation capabilities are currently limited to about 290,000 

unknowns.  Simulations of that size require about 12 hours.  Due to space/cooling 

limitations within the CEM Lab, they can fit only five more supercomputer racks in the 

lab.  If the lab were filled to capacity with oct-core blade clusters with 8 GB 

RAM/processor, then the group could handle problems with up to 940,000 unknowns 

using GEMINI in its current configuration.   

GEMINI Solver is first built at the University of Kentucky within Visual Studio 

under MPI (MPICH) and tested in the ECE Electromagnetics Laboratory on a Dell 

workstation with an 8-core Intel Xeon CPU X5450 @ 3.00 GHz and 64.0 GB RAM 

running Windows-7.  Section 3.3.3 discusses the results of the initial MPI parallel testing.   
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Once the computing capacity of the Dell workstation is exceeded due to large size 

MoM problems, GEMINI Solver is built under MPI [10] and tested on the University of 

Kentucky HPC DLX Linux Cluster [11].  The DLX, shown in Figure 13, is a 

supercomputer cluster with 256 Nodes (4096 cores), ~95 Teraflops, Dell C6220 Server, 4 

nodes per 2U chassis, Dual Intel E5-2670 8 Core (Sandy Bridge) @ 2.6 GHz, 2 

sockets/node x 8 cores/socket = 16 cores/node, 64 GB/node of 1600 MHz RAM, 500 GB 

local (internal) SATA disk, Linux OS (RHEL). 

 

 

Figure 13:  The University of Kentucky HPC DLX Linux Cluster 

 

Sections 3.3.4 and 3.3.5 of this thesis present the results of MPI parallel testing on 

the DLX.  MoM problem sizes are increased to find GEMINI Solver’s limit on the DLX 

utilizing MPI parallelization.  Chapter 4 and Chapter 5 discuss the hybrid parallelization 

development and testing of GEMINI Solver’s existing course level MPI parallelization 

with Open MP (OMP) [12] fine level parallel threading.  MoM problem sizes are 

increased to find GEMINI Solver’s limit on the DLX for hybrid parallelization. 
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3.3. Preliminary MPI Testing 

3.3.1. Triangular Mesh Generation Using CUBIT 

Cubit 14.1 [13] by Sandia National Laboratory is used to generate a triangular 

surface mesh for a sphere with N triangle edges.  Table 2 shows the script for generating 

a triangular surface mesh for a 1-m radius sphere with 1.50 cm size mesh elements 

yielding 207,663 edges for testing a λ = 15.0 cm (f = 2.000 GHz) incident plane wave. 

Table 2:  Cubit Script to create a meshed sphere with mesh size lambda/10 

# This example creates a meshed sphere with mesh size lambda/10. 
#cubit 14.1 
reset  
create sphere radius 1 
surface 1 size .0150 
surface 1  scheme TriMesh 
mesh surface 1 

block 1 surface 1 

save as"C:/Users/bljo222/Desktop/EIGER ANTS/Gemini 

samples/sphere/spherebiggestmore.cub" overwrite 

export ideas "C:\Users\bljo222\Desktop\EIGER ANTS\Gemini 

samples\sphere\spherebiggestmore.unv" block all overwrite   

 

Ten triangular surface meshes are generated to test GEMINI Solver’s existing MPI 

parallelization.  Table 3 shows the triangular surface meshes for a 1-m radius sphere with 

varying size mesh elements from 1,083 edges to 342,087 edges.  Each surface mesh 

created by Cubit is exported as a universal “.unv” file. 

 

Table 3:  Ten triangular surface meshes for 1-m radius sphere with λ
2
 / ½ℓ

2
 ≈ 200 

Frequency, f 

(GHz) 

Wavelength, λ 

(cm) 

Mesh Element Size, ℓ 

(cm) 

Triangle Pair Edges, N 

(# unknowns) 

0.1499 200 20.0 1,083 

0.2998 100 10.0 4,455 

0.5996 50.0 5.00 18,162 

0.8994 33.3 3.33 41,415 

1.1992 25.0 2.50 74,211 

1.7988 16.7 1.67 167,652 

2.0000 15.0 1.50 207,663 

2.3984 12.5 1.25 298,863 

2.5000 12.0 1.20 326,430 

2.5624 11.7 1.17 342,087 
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3.3.2. Create GEMINI Solver Input Test Files Using EIGER ANTS 

EIGER ANTS [14] is used to import each mesh file and make a project suitable 

for exporting a GEMINI Solver “.eig” test input file.   EIGER ANTS projects are 

developed with the following designated properties: 

• Material:  εr = 1 (air) for PEC or εr = 4 (slate) for Dielectric 

• Frequency:  0.1499 GHz to 2.5624 GHz 

• Plane Wave:  ϕ0 = 0, θ0 = 0, Eϕ = 0, Eθ = -1 

• Far Field Scans:  ϕ = 0, 0 ≤ θ ≤ 180 and ϕ = 90, 0 ≤ θ ≤ 180 

Figure 14 shows an EIGER ANTS Project with 1.50 cm triangle mesh elements and a 

2.000 GHz incident plane wave.  The incident plane wave is in the -z direction and is 

theta-polarized. 

 

Figure 14:  EIGER ANTS Project:  ℓ = 1.50 cm / f = 2.000 GHz Incident Plane Wave 
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To complete a project, associations are made in EIGER ANTS.  The finished 

project is exported to a ”.eig” test input file.  Most ”.eig” input files are generated to test 

GEMINI Solver’s EFIE solutions.  A few input files are generated to test Gemini’s 

DIELECTRIC solutions.  PEC associations for EFIE solutions require (1) Outside Region 

association to mesh ID 1, (2) Material association to air, (3) Basis Function association to 

linear basis, and (4) Integral Equation association to EFIE.  Dielectric associations for 

DIELECTRIC solutions require (1) Outside Region association to mesh ID 1, (2) 

Material association to air (εr = 1), (3) Basis Function association to linear basis, (4) 

Integral Equation association to DIELECTRIC, (5) Inside Region association to mesh ID 

2, (6) Material association dielectric (εr = 4), (7) Basis Function association to linear 

basis, and (8) Integral Equation association to DIELECTRIC.  Figure 15 shows the steps 

in making an EFIE solution test input file for a PEC sphere.  Table 4 on next page shows 

the input files created to test GEMINI Solver. 

Step 1 Step 2 Step 3 

 

  

Step 4 Step 5 

  

Figure 15:  Steps in making/exporting an EFIE solution test input file for a PEC sphere 

 

  



22 

 

Table 4:  Input Files Generated to Test GEMINI Solver 

Frequency, f 

(GHz) 

Triangle Pair Edges, N 

(# unknowns) 
Solution Test GEMINI Solver Input Test File 

0.1499 1,083 EFIE spheresmaller0_1499GHz.eig 

0.1499 2,166 DIELECTRIC spheresmallerDIE0_1499GHz.eig 

0.2998 4,455 EFIE sphere0_2998GHz.eig 

0.2998 8,910 DIELECTRIC sphereDIE0_2998GHz.eig 

0.5996 18,162 EFIE spherebig0_5996GHz.eig 

0.5996 36,324 DIELECTRIC spherebigDIE0_5996GHz.eig 

0.8994 41,415 EFIE spherebiggerless0_8994GHz.eig 

0.8994 82,830 DIELECTRIC spherebiggerlessDIE0_8994GHz.eig 

1.1992 74,211 EFIE spherebigger1_1992GHz.eig 

1.7988 167,652 EFIE spherebiggermore1_7988GHz.eig 

2.0000 207,663 EFIE spherebiggestless2_0000GHz.eig 

2.3984 298,863 EFIE spherebiggest2_3984GHz.eig 

2.5000 326,430 EFIE spherebiggestmore2_5000GHz.eig 

2.5624 342,087 EFIE spherebiggestmost2_5624GHz.eig 

 

3.3.3. MPI Multi-Process Test Runs on Windows-7 

GEMINI Solver v1.0 (GSv1.0) is built within Visual Studio 2012 to run multiple 

MPI processes under Windows-7 on a Dell 8-core workstation.   Table 5 lists the test 

cases which are run successfully.  GEMINI Solver is run on each test case in Table 5 to 

solve for the triangular edge output currents.  MPI performance comparisons are run for 

cases N = 4K and 18K.  Testing for cases N > 42 K would not complete after seven days 

of processing on the Dell workstation.   

 

Table 5:  GEMINI Solver v1.0 test cases run under MPI for Windows-7 

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 
Solution Test 

# MPI 

Processes 

MPI Performance 

Comparison  

0.1499 1,083 EFIE 1 No 

0.1499 2,166 DIELECTRIC 1 No 

0.2998 4,455 EFIE 1 to 8 Yes 

0.2998 8,910 DIELECTRIC 1 No 

0.5996 18,162 EFIE 1 to 8 Yes 

0.5996 36,324 DIELECTRIC 1 No 

0.8994 41,415 EFIE 1 No 
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Matrix factor and fill performance comparisons are shown in Figure 16 for N=4K.  

As expected, the matrix factor time decreases as the number of MPI processes increases.  

Significant speedup is observed as the number of MPI processes increases.  However, the 

matrix fill time is approximately constant and unexpectedly long.  No speedup is 

observed as the number MPI processes increases. 

 

  

  

Figure 16:  Matrix factor & fill performance comparisons GSv1.0 (f=0.2998GHz/N=4K) 
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Matrix factor and fill performance comparisons are shown in Figure 17 for 

N=18K.  As expected, the matrix factor time decreases as the number of MPI processes 

increases.  Significant speedup is observed as the number of MPI processes increases.  

However, the matrix fill time is approximately constant and unexpectedly long.  No 

speedup is observed as the number MPI processes increases. 

 

  

  

Figure 17:  Matrix factor & fill performance comparisons GSv1.0 (f=0.5996GHz/N=18K) 
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3.3.4. Initial MPI Runtime Performance Measurements on DLX 

GEMINI Solver v1.0 is subsequently built on the University of Kentucky HPC 

DLX Linux Cluster [11] to run larger problems requiring many more MPI processes.  

The steps to build GSv1.0 on DLX are shown in Table 6. 

 

Table 6:  Building GEMINI Solver on University of Kentucky HPC DLX supercluster 

1. Make a directory called gemini on your /home/<username>/ directory on DLX.  

2. Copy the contents of the gemini folder to this new directory on DLX.  

3. This should be the directory structure: 

 
4. Unpack libs.tar.gz in /home/<username>/gemini/lib/linux/ using “tar xvzf libs.tar.gz”  

5. Rename the unpacked file libISIS_juggernaut.a to libISIS_dlx.a  

6. Copy the two files, makefile and make.options.dlx to /home/<username>/gemini/  

7. Make GEMINI_solver on DLX 

 

Table 7 lists the test cases which run successfully.  GEMINI Solver is run on each test 

case in Table 7 to solve for the triangular edge output currents. MPI performance 

comparisons are run for cases N = 41K, 83K, and 74K.  Testing for N > 168 K would not 

complete on the DLX supercluster within three days (maximum allowed time).   

 

Table 7:  GEMINI Solver v1.0 test cases run under MPI for Linux 

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 
Solution Test 

# DLX 

Nodes 

# MPI 

Processes per 

DLX Node 

# MPI 

Processes 

Performance 

Comparison 

0.8994 41,415 EFIE 1,2,3 16 16,32,48 Yes 

0.8994 82,830 DIELECTRIC 2,3,4,5,6 16 32,48,64,80,96 Yes 

1.1992 74,211 EFIE 2,3,4,5 16 32,48,64,80 Yes 

1.7988 167,652 EFIE 9 16 144 No 
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Matrix factor and fill performance comparisons are shown in Figure 18 for 

N=41K.  As expected, the matrix factor time decreases as the number of MPI processes 

increases.  Significant speedup is observed as the number of MPI processes increases.  As 

the number of MPI processes is doubled (16→32) and tripled (16→48), the speedup is 

likewise increased by a factor of approximately two and three, respectively.  The matrix 

fill time is approximately constant and unexpectedly long.  No speedup is observed as the 

number of MPI processes increases. 

 

  

  

Figure 18:  Matrix factor & fill performance comparisons GSv1.0 (f=0.8994GHz/N=41K) 
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Matrix factor performance comparisons are shown in Figure 19 for N=83K.  As 

expected, the matrix factor time decreases as the number of MPI processes increases.  

Significant speedup is observed as the number of MPI processes increases.  As the 

number of MPI processes is doubled (32→64) and tripled (32→96), the speedup is 

likewise increased by a factor of approximately two and three, respectively.  The matrix 

fill time is approximately constant and unexpectedly long.  No speedup is observed as the 

number MPI processes increases. 

 

  

  

Figure 19:  Matrix factor & fill performance comparisons GSv1.0 (f=0.8994GHz/N=83K) 
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Matrix factor and fill performance comparisons are shown in Figure 20 for 

N=74K.  As expected, the matrix factor time decreases as the number of MPI processes 

increases.  Significant speedup is observed as the number of MPI processes increases.  As 

the number of MPI processes is doubled (32→64), the speedup is likewise increased by a 

factor of approximately two.  The matrix fill time is approximately constant and 

unexpectedly long.  No speedup is observed as the number MPI processes increases. 

 

  

  

Figure 20:  Matrix factor & fill performance comparisons GSv1.0 (f=1.1992GHz/N =74K) 
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For the single N=168 K run with 144 MPI process, the factor time is reasonable at 

1.82 hours, but the fill time is too long.  The implementation of MPI parallelization in 

GEMINI Solver v1.0 successfully increases the matrix factorization performance, but has 

no observable effect on the matrix fill performance.  Matrix factor and fill performance 

results are presented to Nathan Champagne (author of GEMINI Solver) at the CEM 

group at NASA in Houston to guide in improving GEMINI Solver’s performance.  An 

improved version is subsequently developed for further testing. 

3.3.5. Improved MPI Runtime Performance Measurements on DLX 

Several issues including long project load time and long, constant matrix fill time 

are solved with the improved GEMINI Solver v2.0 (GSv2.0).  GEMINI Solver is run on 

each test case in Table 8 to solve for the triangular edge output currents.  Matrix fill times 

are significantly reduced with the improved version.  Testing for N > 208 K would not 

complete on the DLX due to excessive page swapping.  The total memory required for 

runs with N > 208 K exceeds the physical memory limit on each DLX node due to the 

very large problem sizes (mesh sizes).   

 

Table 8:  GEMINI Solver v2.0 test cases run under MPI for Linux 

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 
Solution Test 

# DLX 

Nodes 

# MPI 

Processes per 

DLX Node 

# MPI 

Processes 

Performance 

Comparison 

0.8994 41,415 EFIE 4,5,6 16 64,80,96 
Yes 

0.8994 41,415 EFIE 7,8,9 16 112,128,144 

0.8994 82,830 DIELECTRIC 6,7 16 96,112 
Yes 

0.8994 82,830 DIELECTRIC 8,9 16 128,144 

1.1992 74,211 EFIE 4,5,6 16 64,80,96 
Yes 

1.1992 74,211 EFIE 7,8,9 16 112,128,144 

1.7988 167,652 EFIE 9,10 16 144,160 
Yes 

1.7988 167,652 EFIE 11,12 16 176,192 

2.0000 207,663 EFIE 14,16 16 224,256 
Special 

2.0000 207,663 EFIE 28 8 224 
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Matrix factor and fill performance comparisons are shown in Figure 21 for 

N=41K.  As expected, the matrix factor time decreases as the number of MPI processes 

increases.  Significant speedup is observed as the number of MPI processes increases.  

The matrix fill time now decreases as the number of MPI processes increases.  Speedup is 

now observed as the number of MPI processes increases. 

 

  

  

Figure 21:  Matrix factor & fill performance comparisons GSv2.0 (f=0.8994GHz/N=41K) 
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Matrix factor and fill performance comparisons are shown in Figure 22 for 

N=83K.  As expected, the matrix factor time decreases as the number of MPI processes 

increases.  Significant speedup is observed as the number of MPI processes increases.  

The matrix fill time now decreases as the number of MPI processes increases.  Speedup is 

now observed as the number of MPI processes increases. 

 

  

  

Figure 22:  Matrix factor & fill performance comparisons GSv2.0 (f=0.8994GHz/N=83K) 
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Matrix factor and fill performance comparisons are shown in Figure 23 for 

N=74K.  As expected, the matrix factor time decreases as the number of MPI processes 

increases.  Significant speedup is observed as the number of MPI processes increases.  

The matrix fill time now decreases as the number of MPI processes increases.  Speedup is 

now observed as the number of MPI processes increases. 

 

  

  

Figure 23:  Matrix factor & fill performance comparisons GSv2.0 (f=1.1992GHz/N=74K) 
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Matrix factor and fill performance comparisons are shown in Figure 24 for 

N=168K.  As expected, the matrix factor time decreases as the number of MPI processes 

increases.  Significant speedup is observed as the number of MPI processes increases.  In 

addition, the matrix fill time decreases as the number of MPI processes increases.  

Speedup is observed as the number of MPI processes increases. 

 

  

  

Figure 24:  Matrix factor & fill performance comparisons GSv2.0 (f=1.7988GHz/N=168K) 
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Matrix factor and fill performance comparisons are shown in Figure 25 for 

N=208K.  The matrix factor time varies little as the number of MPI processes increases.  

The matrix fill time decreases as the number of MPI processes increases.  Speedup is 

observed as the number of MPI processes increases, but not as significantly as for 

previous test cases.  The large mesh size for N=208K could be a limiting factor in 

performance for 224, 256, etc. MPI processes.  Since the mesh is duplicated for each MPI 

process running on a node, reducing the number of processes per node while keeping the 

total number of MPI processes constant should decrease the matrix factor and fill times. 

 

  

  

Figure 25:  Matrix factor & fill performance comparisons GSv2.0 (f=2.0000GHz/N=208K) 
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Matrix factor and fill performance comparisons are shown in Figure 26 for N=208K 

using 224 MPI processes for 8 and 16 MPI processes per node.  As suspected, while 

holding the total number of MPI processes constant, reducing the number of MPI process 

per node reduces both the matrix fill and factor times.  Therefore, higher performance can 

be achieved for larger problems when the number of MPI processes per node is reduced.  

  

  

Figure 26:  Matrix factor & fill performance by MPIs/node GSv2.0 (f=2.0000GHz/N=208K) 
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The cases for N > 208K will not run on DLX with 16 MPI processes per node due 

to excessive page swapping.  However, reducing the number of MPI processes from 16 to 

8 (or less) will free up memory per node which should allow larger problems to execute.  

On the down side, efficiency suffers because cores not executing an MPI process are idle.  

On a supercluster such as DLX, this waste cannot be permitted (just ask Jerry Grooms!).  

To address the inefficiency problem, multiple threading of each MPI process can make 

use of otherwise idle cores.  For example, using four MPI processes per node with four 

threads per MPI process would use all sixteen cores per node, allowing larger problems 

to execute with shorter matrix fill and factor times.  See diagram in Figure 27. 

 

 

Figure 27:  Multi-threading of MPI processes 
 

Open MP (OMP) threading of the impedance matrix fill routine in GEMINI 

Solver will be explored in the next chapter.  Briefly, OMP threads can be created to 

parallelize loop routines within the matrix fill routine of each MPI process.  MPI 

currently provides course parallelization (process level) while OMP can provide fine 

parallelization (thread level) of the GEMINI Solver matrix fill routine.  Other methods 

utilizing the MFDlib library of data sparse methods have been developed to improve the 

GEMINI Solver matrix factorization beyond the scope of this work [4]. 
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3.4. GEMINI Post RCS Measurements 

GEMINI Post v2.0 (GPv2.0) is built for Windows-7 on the Dell workstation as well 

as on the University of Kentucky HPC Linux DLX Cluster.  Gemini Post generates the 

bistatic cross-section (RCS) pattern using eq. (19) for the solved currents of all test cases 

discussed in sections 3.3.3, 3.3.4, and 3.3.5.  Each RCS pattern is compared to the Mie 

Series solution.  The Mie Series is an analytical series used to calculate the RCS scattered 

solution for a plane wave incident on a sphere.  The Mie Series solution is given by  
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where  1S  and   2S  are the complex scattering amplitudes [15].  Often for purposes 

of illustration, one specifies the cases where 0  and 2/  , giving 
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Hence the quantities sought are the magnitudes   1S  and   2S .  Computation of the 

bistatic cross-sections using the Mie Series is performed using Walton C. Gibson’s 

MieScattered MATLAB program [16].  The magnitudes of the complex scattering 

amplitudes |S1(θ’)| and |S2(θ’)| are calculated by MieScattered to the optimal value of 

terms Nmax.  The optimal value Nmax is reached when further terms only improve the Mie 

Series solution by 0.01%.   Figure 28 on the next page shows two plots of the GEMINI 

Post RCS results with fits to the Mie Series for EFIE and Dielectric solutions for a 0.1499 

GHz plane wave incident on a 1-m sphere with a triangle surface mesh. 
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Figure 28:  GPv2.0 EFIE & Dielectric RCS results w/fit to Mie Series for f = 0.1499 GHz 

 

Comparisons of the RCS pattern generated by GEMINI Post are made to the Mie Series 

using the Chi-Square goodness-of-fit (GOF) [15] given by: 
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where iy  represents GEMINI Post RCS values, and 
*

iy  and  *2

iy  represent the Mie 

Series values and variance, respectively.  Table 9 displays the goodness-of-fit (GOF) 

between GEMINI Post RCS values and the Mie Series using Nmax terms [16].  The 

bistatic angle resolution is given by Δangle. 

 

Table 9:  GEMINI Post RCS results fit to Mie Series  

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 

Solution  

Test 

Quality  

of Fit 

Nmax 

Terms 

Δangle 

( ° ) 

σVV χ
2
 

GOF 

σHH χ
2
 

GOF 

0.1499 1,083 EFIE Excellent 4 1 0.103 0.080 

0.1499 2,166 DIELECTRIC Good 4 1 0.475 0.351 

0.2998 4,455 EFIE Excellent 7 1 0.008 0.007 

0.2998 8,910 DIELECTRIC Good 7 1 0.204 0.321 

0.5996 18,162 EFIE Excellent 13 1 0.009 0.010 

0.5996 36,324 DIELECTRIC Fair 13 1 2.123 2.308 

0.8994 41,415 EFIE Excellent 19 1 0.013 0.015 

0.8994 82,830 DIELECTRIC Poor 19 1 4.115 4.604 

1.1992 74,211 EFIE Excellent 25 1 0.018 0.019 

1.7988 167,652 EFIE Excellent 38 1 0.026 0.025 

2.0000 207,663 EFIE Excellent 42 0.5 0.055 0.054 

 

Appendix A contains the plots and goodness-of-fit statistics for all cases listed in Table 9.  
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Chapter 4. Hybrid Parallelization: Combining Open MP with MPI 

4.1. Why Open MP Multi-Threading? 

In this chapter hybrid parallelization is employed to decrease impedance matrix 

fill time and increase the problem size potential by reducing the number of MPI processes 

running on a node while utilizing all cores.  Hybrid parallelization incorporates Open MP 

(OMP) multi-threading within MPI processes.  Hybrid parallelization is most efficient 

when MPI processes work on a course level of parallelism and OMP is used with the 

shared address space of each MPI process for additional fine-grained parallelization [17].  

OMP enables the creation of shared-memory parallel threads within a program or 

process.  A thread is a runtime element that can execute a stream of instructions 

independently [18].  When the operating system creates a process, such as an MPI 

process, to execute a program, such as GEMINI Solver, it will allocate resources to that 

process.  If multiple threads work together to execute a program, they will share these 

resources, including the address space of the associated process.  OMP offers a structured 

approach to multi-threaded programming utilizing the fork-join programming model 

illustrated in Figure 29.  In this approach, the program starts a single thread of execution  

 

 

Figure 29:  The Open MP fork-join programming model 

 

referred to as the initial thread.  If the initial thread encounters an OMP parallel construct 

(fork), it creates a team of collaborating threads, becomes the master of the team, and 

Master Thread 



40 

 

works with the other team members to execute the code dynamically.  At the end of the 

parallel construct (join), only the initial thread, or master thread, continues; all other 

threads terminate.  Any portion of the program enclosed by a parallel construct (fork-join 

region) is known as a parallel region. 

Consider four MPI processes running on a node threaded with four OMP threads 

per each MPI process.  Figure 31 on the following page illustrates the 4-MPI / 4-OMP 

hybrid parallelization model for a node.  Instead of sixteen copies of the mesh, only four 

copies reside in node memory, one in the shared memory of each MPI process.  Each 

MPI process has four OMP threads working in parallel and sharing memory to 

accomplish many times more work than a single MPI process with no threading.  

Although only four MPI processes execute on the node, all sixteen cores are busy, 

increasing efficiency.   

OMP threading is well suited for parallelizing the loop structure found within the 

impedance matrix fill routine of GEMINI Solver.   Figure 30 shows a simplified diagram 

of the matrix fill loop structure used in the impedance matrix fill routine. 

 

Figure 30:  Loop structure of the GEMINI Solver impedance matrix fills routine 
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 MPI Process 0 

Open MP (Threads T0-T3) 

 

  

 MPI Process 1 

Open MP (Threads T0-T3) 

  

 MPI Process 2 

Open MP (Threads T0-T3) 

  

 MPI Process 3 

Open MP (Threads T0-T3) 

 Figure 31:  Hybrid Parallelization Programming:  Combining MPI/Open MP 
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Consider the EFIE test case with N = 1083 (f = 0.1449 GHz) from Table 4 

which has a mesh size of 722 triangular elements.  In executing the outermost loop of 

the impedance matrix fill routine, 722 loop iterations (elementCount) are performed 

serially.  During an outer loop iteration, the selected observation element is used with 

each of 722 source elements to compute and fill 722 local matrices.  In turn, each 

local matrix is used to update the global matrix. Because iterations of the outer loop 

can be made independent of each other, OMP threading can be successfully 

implemented.  Loop independence requires the results of one loop iteration do not 

depend on the results of any other loop iteration; otherwise a data race condition may 

occur.  A data race condition arises when two or more threads access the same shared 

variable without any synchronization to order the accesses, and at least one of the 

accesses is a write [18].  A quick check for independence can be made by executing 

the outer loop backwards and obtaining the same result [19].  GEMINI Solver’s 

matrix fill outer loop passes the independence test with modifications discussed later.  

Assuming loop independence, the 722 iterations can be divided into parallel groups 

with as little as two threads or as many as sixteen threads. OMP threads working in 

parallel can accomplish many more iterations in a given time than serial processing 

with no threading.  Table 10 shows the number of triangular elements in a mesh and 

the estimated number of loop iterations performed by each thread per number of 

OMP threads nt = 2, 4, 8, 16 for the EFIE cases listed in Table 4.   

Table 10:  Loop iterations per thread for nt = 2, 4, 8, and 16 OMP threads 

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 

# Triangular 

elements 

Loop Iterations Per Thread 

nt = 2 nt = 4 nt = 8 nt = 16 

0.1499 1,083 722 361 181 91 46 

0.2998 4,455 2,970 1,485 743 372 186 

0.5996 18,162 12,108 6,054 3,027 1,514 757 

0.8994 41,415 27,610 13,805 6,903 3,452 1,726 

1.1992 74,211 49,474 24,737 12,369 6,185 3,093 

1.7988 167,652 111,768 55,884 27,942 13,971 6,986 

2.0000 207,663 138,442 69,221 34,611 17,306 8,653 

2.3984 298,863 199,242 99,621 49811 24,906 12,453 

2.5000 326,430 217,620 108,810 54,405 27,203 13,602 

2.5624 342,087 228,058 114,029 57,015 28,508 14,254 
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Generally as the number of threads increase, parallel sharing increases and the time to 

execute the outer loop decreases. 

Envision implementing OMP threading in the loop structure used to fill the 

impedance matrix.  Figure 32 shows OMP threading of the outer loop of the 

impedance matrix fill routine with nt = 4.  The single threading of Figure 30 has been 

 

replaced with multiple threading.  For the first case in Table 10, each OMP thread works 

independently on a subset of about 181 iterations.  Since the threads work in parallel, the 

outer loop is effectively reduced from 722 iterations to 181 iterations, thus reducing the 

execution time.  However, execution time reduction also depends on “thread overhead 

 

Figure 32:  OMP parallelization of impedance matrix fill routine 
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cost” and “load balance”.  Generally, the reduction in execution time of the outer loop 

depends on three factors: 

 number of threads:  nt =2, 4, 8 or 16 

 thread overhead cost:  time cost related to creating and maintaining threads  

 load balance:  balance of workload among threads 

Increasing the number of threads typically increases loop performance and thereby 

reduces execution time.  However, increasing the number of threads also increases the 

overhead cost which reduces loop performance and lengthens execution time.   

Furthermore, if the workload is not evenly balanced among the team of threads, some 

threads can be idle while waiting for others to finish working, leading to inefficient 

execution and longer than needed execution times.  Therefore, optimizing execution time 

requires a balance between the number of threads created, thread overhead cost, and load 

balance.   

Speedup measures the ratio of execution time for single threading to execution 

time for multi-threading given by [18]: 

 

PT

T
S 1  (26) 

 

where T1 and Tp are the execution (wall clock) times required to perform loop iterations 

with one thread (sequential or serial processing) and p threads (parallel processing), 

respectively.  Parallel efficiency measures the reduction in execution time per thread for 

multi-threading compared to execution time for single threading given by: 

 

p

S
E   (27) 

 

where S is the speedup and p is the number of threads. 
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4.2. OMP Directives and Parallelization 

OMP consists of a set of compiler directives, runtime library routines, and 

environment variables to enable the creation of shared-memory parallel threads within a 

FORTRAN 2000 program.  An OMP directive is a specially formatted comment 

statement beginning with “!$OMP” which generally applies to the executable code 

immediately following it in a program [20].  OMP directives provide the means for the 

programmer to: create teams of threads for parallel execution, specify how to share work 

among the members of a team, declare both shared and private variables, and synchronize 

threads and enable them to perform certain operations exclusively.  Table 11 shows a few 

common OMP directives [21]. 

 

Table 11:  A few common OMP directives 

Create a team of threads which execute the enclosed code in parallel 
 

!$OMP PARALLEL 

< code to execute in parallel > 

!$OMP END PARALLEL 

 

Direct team of threads to execute iterations of the enclosed loop code in parallel 

 
!$OMP DO 

< loop code to execute in parallel > 

!$OMP END DO 

 

Create a team of threads and then direct team to execute iterations of the enclosed 

loop code in parallel 
!$OMP PARALLEL DO 

< loop code to execute in parallel > 

!$OMP END PARALLEL DO 

 

Restricts execution of the enclosed code to only one thread in the team 

 
!$OMP SINGLE 

< code to be executed by only one thread in the team > 

!$OMP END SINGLE 

 

Restricts execution of the enclosed code to one thread at a time 

 
!$OMP CRITICAL 

< code to be executed by one thread at a time > 

!$OMP END CRITAL 

 

OMP directives will be illustrated in the examples of the next two sections.  
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4.2.1. Using OMP on a Simple Printing Operation 

In the FORTRAN 2000 program shown in Table 12, the !$OMP PARALLEL 

directive creates a team of threads which execute in parallel.   Each thread displays its 

own thread identification (TID) asynchronously and then one thread displays the number  

Table 12:  FORTRAN 2000 program with OMP directive to execute code in parallel 

      PROGRAM HELLO 

C******************************************************************************** 

C   In this simple example, the master thread forks a parallel region.  All threads in the team obtain 

C   their unique thread number and print it.  The master thread only prints the total number of threads. 

C   Two OpenMP library routines are used to obtain each thread's number and the number of threads.  

C******************************************************************************** 

      INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM 

C*** OMP Directive:  Fork a team of threads giving them their own copies of variables. *** 

!$OMP PARALLEL PRIVATE(NTHREADS, TID) 
C*** Obtain thread number and print. *** 

      TID = OMP_GET_THREAD_NUM() 

      PRINT *, 'Hello World from thread = ', TID 

C*** Only one thread does this. *** 

!$OMP SINGLE 

      NTHREADS = OMP_GET_NUM_THREADS() 

      PRINT *, 'Number of threads = ', NTHREADS 

!$OMP END SINGLE 
C*** All threads join master thread (TID=0) and disband. *** 

!$OMP END PARALLEL 

      END 

 

of threads created.  When the team of threads encounter the !$OMP END PARALLEL 

directive, they join and disband except for the master thread.  By default the number of 

threads created equals the number of cores on the node.  Output is shown in Table 13. 

 

Table 13:  Sample output of FORTRAN 2000 program with OMP parallel execution 

Hello World from thread = 14 

Hello World from thread = 8 
Hello World from thread = 10 

Hello World from thread = 3 

Hello World from thread = 6 
Hello World from thread = 2 

Hello World from thread = 11 

Hello World from thread = 7 
Hello World from thread = 0 

Hello World from thread = 9 

Hello World from thread = 15 

Hello World from thread = 12 

Hello World from thread = 1 

Hello World from thread = 4 
Hello World from thread = 13 

Hello World from thread = 5 

Number of threads = 16 
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4.2.2. Testing OMP on a Matrix Multiply Operation 

In the next example, OMP is used to parallelize a fundamental, but important, 

problem:  multiplying an n by m matrix A with an m by p matrix B and storing the result 

in an n by p matrix C.  Implementing the solution to this example will demonstrate some 

key features of OMP used to parallelize loops which normally execute sequentially (one 

iteration at a time).  The formula for computing C = AB can be expressed as follows: 
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Thus the formula for computing each element of matrix C using a serial (one thread) 

implementation can be expressed as follows:  
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The serial (sequential) implementation of the matrix-matrix multiplication using 

FORTRAN 2000 is shown in Table 14 on the next page.  The loops initializing matrices 

A and B, zeroing C, and computing the elements of matrix C are all independent.  

Independence is tested by running all program loops in reverse [19].  Therefore, loop 

iterations can be executed simultaneously – each thread can work in parallel on its own 

loop iteration without affecting the others.  OMP will be used to parallelize these loops 

and reduce the execution times.  In addition to using the !$OMP PARALLEL directive 

to create a team of threads, the !$OMP DO directive can be used to direct the team of 

threads to execute the loop iterations in parallel.  The FORTRAN 2000 parallel 

implementation of the matrix-matrix multiplication using OMP is shown in Table 15 on 

the page following the next. 
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Table 14:  Serial FORTRAN 2000 program used to multiply two matrices 

   PROGRAM MMSL 

!============================================================================ 

!     This program sequentially multiplies matrix A by matrix B and places the results in matrix C.   

!============================================================================ 

   IMPLICIT NONE 

!     Declare variables.  Set NRA: # rows in A.  Set NCA: # columns in A.  Set NCB: # of rows in B. 

   INTEGER, PARAMETER :: NRA=32000000 

   INTEGER, PARAMETER :: NCA=20 

   INTEGER, PARAMETER :: NCB=40 

   INTEGER :: I, J, K 

   REAL, ALLOCATABLE :: A(:,:), B(:,:), C(:,:) 

!     Allocate arrays  

   ALLOCATE (A(NRA,NCA), B(NCA,NCB), C(NRA,NCB)) 

!     Initialize matrix A  

   DO I=1, NRA 

     DO J=1, NCA 

       A(I,J) = ((I)+(J)) 

     END DO 

   END DO 

!     Initialize matrix B  

   DO I=1, NCA 

     DO J=1, NCB 

       B(I,J) = ((I)*(J)) 

     END DO 

   END DO 

!     Zero matrix C  

   DO I=1, NRA 

     DO J=1, NCB 

       C(I,J) = 0 

     END DO 

   END DO 

!     Multiply matrix A by matrix B and store in matrix C 

   DO I=1, NRA 

     DO J=1, NCB 

       DO K=1, NCA 

         C(I,J) = C(I,J) + A(I,K) * B(K,J) 

       END DO 

     END DO 

   END DO 

!     Print results 

   PRINT *, '******************************************************' 

   PRINT *, 'Result Matrix:' 

   DO I=1, NRA 

     DO J=1, NCB 

       WRITE (*,'(2x,f10.2,$)') C(I,J) 

     END DO 

     PRINT *, ' ' 

   END DO 

   PRINT *, '******************************************************' 

   PRINT *, 'Done.' 

   PRINT *, ' ' 

   END PROGRAM MMSL 
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Table 15:  Parallel implementation of matrix multiplication using OMP 

   PROGRAM MMPL 

!============================================================================ 

!     This program uses OMP to multiply, in parallel, matrix A by matrix B and store in matrix C.   

!============================================================================ 

   IMPLICIT NONE 

!     Declare variables.  Set NRA: # rows in A.  Set NCA: # columns in A.  Set NCB: # of rows in B. 

   INTEGER, PARAMETER :: NRA=32000000, NCA=20, NCB=40, CHUNK=1 

   INTEGER :: TID, I, J, K, OMP_GET_NUM_THREADS,OMP_GET_THREAD_NUM 

   REAL (KIND=8) :: OMP_GET_WTIME, WSTIME  

   REAL, ALLOCATABLE :: A(:,:), B(:,:), C(:,:) 

!     Allocate arrays  

   ALLOCATE (A(NRA,NCA), B(NCA,NCB), C(NRA,NCB)) 

!     Get wall clock start time 

   WSTIME = OMP_GET_WTIME() 

!     FORK: Spawn a parallel region explicitly scoping all variables 

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(TID,I,J,K) 

   TID = OMP_GET_THREAD_NUM() 

   IF (TID .EQ. 0) PRINT *, 'Starting matrix multiply with ', OMP_GET_NUM_THREADS(),' threads' 

!     Initialize matrix A and matrix B using parallel threads on outer loop iterations 

!$OMP DO SCHEDULE(STATIC, CHUNK) 

   DO I=1, NRA 

     DO J=1, NCA 

       A(I,J) = ((I)+(J)) 

     END DO 

   END DO 

!$OMP END DO 

!$OMP DO SCHEDULE(STATIC, CHUNK) 

   DO I=1, NCA 

     DO J=1, NCB 

       B(I,J) = ((I)*(J)) 

     END DO 

   END DO 

!$OMP END DO 

!     Zero matrix C using parallel threads on outer loop iterations 

!$OMP DO SCHEDULE(STATIC, CHUNK) 

   DO I=1, NRA 

     DO J=1, NCB 

       C(I,J) = 0 

     END DO 

   END DO 

!$OMP END DO 

!     Multiply matrix A by matrix B and store in matrix C using parallel threads on outer loop iterations 

!$OMP DO SCHEDULE(STATIC, CHUNK) 

   DO I=1, NRA 

     DO J=1, NCB 

       DO K=1, NCA 

         C(I,J) = C(I,J) + A(I,K) * B(K,J) 

       END DO 

     END DO 

   END DO 

!$OMP END DO 

!     JOIN: End of parallel region  

!$OMP END PARALLEL 

!     Display elapsed time 

   PRINT *, 'Elapsed Time ', OMP_GET_WTIME() – WSTIME 

   END PROGRAM MMPL 
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In this example, shared and private variables are explicitly scoped within the !$OMP 

PARALLEL directive with the following properties: 

 SHARED – Only one copy of a shared variable exists.  All threads on a team can 

access and modify a shared variable [18].  Care must be taken to ensure two or 

more threads do not simultaneously write to a shared variable, otherwise a race 

condition may result.  Variables not specifically scoped within the parallel 

directive are shared by default.  In the current example, the variables representing 

the matrices A, B, and C are shared by all threads.  Each thread can access and 

update these matrices simultaneously; however, the same matrix element cannot 

be modified by two or more threads simultaneously, otherwise a race condition 

may occur.  

 PRIVATE – Each thread has its own copy of a private variable [18].  For 

example, when the team of threads executes a parallel loop using the !$OMP DO 

directive, each thread needs its own copy of the iteration variable.  In the current 

example, each thread has its own private copy of the thread identification number 

(TID) and loop iteration variables I, J, and K.  Each thread works in parallel on its 

own loop iteration.  For example, in computing the elements of matrix C, thread 1 

may be executing iteration I=2, J=4, K=1 while thread 7 is executing I=4, J=3, 

K=5 simultaneously, resulting in the concurrent update of elements C(2,4) and 

C(4,3) which will not cause a race condition. 

To test speedup and efficiency, the OMP parallel program shown in Table 15 is 

built and executed on the HPC DLX Cluster in serial (single threaded) and in parallel 

(multi-threaded) while measuring the execution time (a.k.a. wall clock time) for an 

increasingly larger number of rows in matrix A.  Increasing the number of rows in matrix 

A increases the load of the matrix-matrix multiplication problem.  The example in Table 

15 shows thirty-two million rows (NRA = 32,000,000).   
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Table 16 shows combinations to be tested for the number of threads and the 

number of rows of matrix A.  Five trials of serial and parallel execution are implemented.  

 

Table 16:  Threading - NRA Combinations 

Number of 

Trials 
Threading 

Number of  

Threads 

NRA 

(millions) 

5 Serial 1 16, 32, 64, 128 

5 Parallel 2 16, 32, 64, 128 

5 Parallel 3 16, 32, 64, 128 

5 Parallel 4 16, 32, 64, 128 

5 Parallel 5 16, 32, 64, 128 

5 Parallel 6 16, 32, 64, 128 

5 Parallel 7 16, 32, 64, 128 

5 Parallel 8 16, 32, 64, 128 

5 Parallel 9 16, 32, 64, 128 

5 Parallel 10 16, 32, 64, 128 

5 Parallel 11 16, 32, 64, 128 

5 Parallel 12 16, 32, 64, 128 

5 Parallel 13 16, 32, 64, 128 

5 Parallel 14 16, 32, 64, 128 

5 Parallel 15 16, 32, 64, 128 

5 Parallel 16 16, 32, 64, 128 

 

The Matrix multiplication program is performed for each threading-NRA combination.  

For example, NRA = 32M yields the following matrix C terms: 
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The average execution time is determined for each threading-NRA combination.  

Speedup and efficiency are then calculated using equations (26) and (27), respectively.  

Graphs of speedup and efficiency vs. number of threads for each NRA are fit with a 

polynomial to locate the maximum speedup (max point on polynomial curve).  Average 

execution times, speedup and efficiency calculations, and graphs for each NRA are 

shown on the following pages. 
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Serial and parallel execution times, speedup, and efficiency are shown in Table 17 

for the matrix multiplication program with NRA = 16M.  Graphs of speedup and 

efficiency vs. number of threads are shown in Figure 33.  

 

Table 17:  Matrix Multiply Serial and Parallel Execution Times for NRA = 16M 

Number of 

Trials 
Threading 

NRA 

(millions) 

Number of 

Threads 

Average 

Execution 

Time (s) 

Speedup 

S 

Efficiency 

E 

5 Serial 16 1 21.658 1.00 100% 

5 Parallel 16 2 12.104 1.79 89.5% 

5 Parallel 16 3 10.452 2.07 69.1% 

5 Parallel 16 4 9.414 2.30 57.5% 

5 Parallel 16 5 7.880 2.75 55.0% 

5 Parallel 16 6 6.836 3.17 52.8% 

5 Parallel 16 7 6.140 3.53 50.4% 

5 Parallel 16 8 5.780 3.75 46.8% 

5 Parallel 16 9 5.044 4.29 47.7% 

5 Parallel 16 10 4.858 4.46 44.6% 

5 Parallel 16 11 4.846 4.47 40.6% 

5 Parallel 16 12 4.850 4.47 37.2% 

5 Parallel 16 13 4.920 4.40 33.9% 

5 Parallel 16 14 5.964 3.63 25.9% 

5 Parallel 16 15 6.588 3.29 21.9% 

5 Parallel 16 16 7.670 2.82 17.6% 

 

  

Figure 33:  Speedup and efficiency vs number of threads for NRA = 16M  
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Serial and parallel execution times, speedup, and efficiency are shown in Table 18 

for the matrix multiplication program with NRA = 32M.  Graphs of speedup and 

efficiency vs. number of threads are shown in Figure 34.  

 

Table 18:  Matrix Multiply Serial and Parallel Execution Times for NRA = 32M 

Number of 

Trials 
Threading 

NRA 

(millions) 

Number of 

Threads 

Average 

Execution 

Time (s) 

Speedup 

S 

Efficiency 

E 

5 Serial 32 1 49.068 1.00 100% 

5 Parallel 32 2 29.908 1.64 82.0% 

5 Parallel 32 3 23.814 2.06 68.7% 

5 Parallel 32 4 19.418 2.53 63.2% 

5 Parallel 32 5 16.196 3.03 60.6% 

5 Parallel 32 6 13.978 3.51 58.5% 

5 Parallel 32 7 12.476 3.93 56.2% 

5 Parallel 32 8 12.016 4.08 51.0% 

5 Parallel 32 9 11.094 4.42 49.1% 

5 Parallel 32 10 10.706 4.58 45.8% 

5 Parallel 32 11 10.442 4.70 42.7% 

5 Parallel 32 12 10.924 4.49 37.4% 

5 Parallel 32 13 10.752 4.56 35.1% 

5 Parallel 32 14 11.906 4.12 29.4% 

5 Parallel 32 15 12.850 3.82 25.5% 

5 Parallel 32 16 14.988 3.27 20.5% 

 

  

Figure 34:  Speedup and efficiency vs number of threads for NRA = 32M  
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Serial and parallel execution times, speedup, and efficiency are shown in Table 19 

for the matrix multiplication program with NRA = 64M.  Graphs of speedup and 

efficiency vs. number of threads are shown in Figure 35.  

 

Table 19:  Matrix Multiply Serial and Parallel Execution Times for NRA = 64M 

Number of 

Trials 
Threading 

NRA 

(millions) 

Number of 

Threads 

Average 

Execution 

Time (s) 

Speedup 

S 

Efficiency 

E 

5 Serial 64 1 113.598 1.00 100% 

5 Parallel 64 2 69.004 1.65 82.3% 

5 Parallel 64 3 49.000 2.32 77.3% 

5 Parallel 64 4 40.564 2.80 70.0% 

5 Parallel 64 5 35.560 3.19 63.9% 

5 Parallel 64 6 30.694 3.70 61.7% 

5 Parallel 64 7 27.666 4.11 58.7% 

5 Parallel 64 8 26.646 4.26 53.3% 

5 Parallel 64 9 24.466 4.64 51.6% 

5 Parallel 64 10 24.128 4.71 47.1% 

5 Parallel 64 11 21.902 5.19 47.2% 

5 Parallel 64 12 22.024 5.16 43.0% 

5 Parallel 64 13 21.384 5.31 40.9% 

5 Parallel 64 14 20.918 5.43 38.8% 

5 Parallel 64 15 21.136 5.37 35.8% 

5 Parallel 64 16 21.476 5.29 33.1% 

 

  

Figure 35:  Speedup and efficiency vs number of threads for NRA = 64M  
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Serial and parallel execution times, speedup, and efficiency are shown in Table 20 

for the matrix multiplication program with NRA = 128M.  Graphs of speedup and 

efficiency vs. number of threads are shown in Figure 36.  

 

Table 20:  Matrix Multiply Serial and Parallel Execution Times for NRA = 128M 

Number of 

Trials 
Threading 

NRA 

(millions) 

Number of 

Threads 

Average 

Execution 

Time (s) 

Speedup 

S 

Efficiency 

E 

5 Serial 128 1 243.822 1.00 100% 

5 Parallel 128 2 138.812 1.76 87.8% 

5 Parallel 128 3 106.870 2.28 76.0% 

5 Parallel 128 4 85.240 2.86 71.5% 

5 Parallel 128 5 73.022 3.34 66.8% 

5 Parallel 128 6 63.840 3.82 63.7% 

5 Parallel 128 7 57.732 4.22 60.3% 

5 Parallel 128 8 57.538 4.24 53.0% 

5 Parallel 128 9 50.332 4.84 53.8% 

5 Parallel 128 10 48.812 5.00 50.0% 

5 Parallel 128 11 47.924 5.09 46.3% 

5 Parallel 128 12 46.412 5.25 43.8% 

5 Parallel 128 13 44.006 5.54 42.6% 

5 Parallel 128 14 44.344 5.50 39.3% 

5 Parallel 128 15 45.426 5.37 35.8% 

5 Parallel 128 16 47.496 5.13 32.1% 

 

  

Figure 36:  Speedup and efficiency vs number of threads for NRA = 128M  
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Table 21 shows the maximum speedup observed with the associated number of threads 

and efficiency for each NRA. 

 

Table 21:  Maximum Speedup for each NRA Value 

Number of 

Trials 
Threading 

NRA 

(millions) 

Number of 

Threads 

Maximum Speedup 

Smax 

Efficiency 

E 

5 Parallel 16 11 4.47 40.6% 

5 Parallel 32 11 4.70 42.7% 

5 Parallel 64 14 5.43 38.8% 

5 Parallel 128 14 5.50 39.3% 

 

Increasing the number of threads increases the performance of each loop and 

thereby reduces the execution time.  However, increasing the number of threads also 

increases the overhead cost which reduces loop performance and lengthens execution 

time.  A maximum is observed in the speedup vs. the number of threads.  In addition, 

increasing the number of threads decreased the efficiency as each new thread requires 

more resources than can be compensated for by speedup.  Speedup and efficiency have 

an inverse relationship.  A balance between speedup and efficiency will be sought. 

4.3. Integrating OMP into GEMINI Solver’s Matrix Fill Routine 

Open MP threading is well suited for parallelizing the loop structure found within 

the impedance matrix fill routine of GEMINI Solver.   Table 22 on the next page shows 

the GEMINI Solver program tree with the optimal location to incorporate OMP 

threading.  This location is optimal because (1) MPI is used only outside of the OMP 

parallel region [17] and (2) each OMP thread is dedicated to an observation element’s 

interaction with its source elements when calculating mnZ  [eq. (18)].  OMP threading can 

be implemented on the outer loop (loop over observation elements) of the matrix fill 

routine in two ways:   

 Simple OMP parallelism 

 Nested OMP parallelism.   

In the first case, a team of threads performs the iterations of the outer loop over 

observation elements.  In the second case, a team of parent threads performs the iterations 

of the outer loop over observations elements and each parent has its own team of 

daughter threads perform the iterations of the inner loop over source elements.  



57 

 

Table 22:  GEMINI Solver program tree with optimal OMP threading location 

GEMINI SOLVER Program Tree 
 
Begin GEMINI SOLVER      
     CALL & RETURN ProjectModule%openPrimaryFiles     
     CALL & RETURN ProjectModule%readFromFile     
     CALL & RETURN ProjectModule%writeSimulationData     
     CALL SolutionModule%solution     
          CALL SolutionModule%nonperiodic/periodic    
          ! loop over frequencies 
               ! Begin “Fill the impedance matrix”    
               CALL GlobalMatrixModule%fillNormal   
               ! loop over observation elements --> loop over node sets for this observation element   
                    ! Begin “Moment method analysis”   
                    ! loop over source elements --> loop over node sets for this source element   
                         CALL LocalMatrixModule%fillMoM  
                         ! loop over observation points --> loop over the number of common regions  
                              CALL OperatorsModule%FillZMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasis%lambda(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                                   ! calculation: obsBasis%divLambda(iObs)*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillZMatrix 
                              CALL OperatorsModule%FillBetaMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasisCrossNormal(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillBetaMatrix 
                              CALL OperatorsModule%FillYMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasisCrossNormal(iObs) .dot. srcBasis(iQuad)%lambda(jSrc))*G(iQuad)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                                   ! calculation: obsBasisCrossNormal(iObs) .dot. gradG(iQuad))*srcBasis(iQuad)%divLambda(jSrc)*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillYMatrix 
                              CALL OperatorsModule%FillBetaTildeMatrix 
                              ! loop over quadrature points --> loop over source nodes --> loop over observation nodes 
                                   ! calculation: obsBasis%lambda(iObs) .dot. (gradG(iQuad) .cross. srcBasis(iQuad)%lambda(jSrc)))*srcWghtJacobian(iQuad)*obsWghtJacobian 
                              ! end loop over observation nodes --> end loop over source nodes --> end loop over quadrature points 
                              RETURN OperatorsModule%FillBetaTildeMatrix 
                         ! end loop over the number of common regions --> end loop over observation points 
                         RETURN LocalMatrixModule%fillMoM  
     CALL & RETURN GlobalMatrixModule%localToGlobal 
                    ! end loop over node sets for this source element --> end loop over source elements 
                    ! End “Moment method analysis” 
               ! end loop over node sets for this observation element --> end loop over observation elements  
               RETURN GlobalMatrixModule%fillNormal 
               ! End “Fill the impedance matrix” 
               ! Begin “Fill the right hand side for each excitation group” 
               ! loop over excitation groups 
                    CALL & RETURN GlobalVector%fill 
                    ! loop over global wave sources --> loop over elements --> loop over node sets for this element 
                         LocalVectorModule%fillLocalSource 
                         LocalVectorModule%localToGlobal 
                    ! end loop over node sets for this element --> end loop over elements --> loop over global wave sources 
                    ! loop over voltage sources-> loop over node sets 
                         LocalVectorModule%fillLocalSource 
                         LocalVectorModule%localToGlobal 
                    ! end loop over node sets --> end loop over voltage sources 
                    CALL & RETURN ISISComplexSolverModule%solve 
                    CALL & RETURN ISISComplexVectorModule%gather 
                    CALL & RETURN SolutionModule%writeSolution 
               ! end loop over excitation groups 
               ! End “Fill the right hand side for each excitation group”             
          ! end loop over frequencies 
          RETURN SolutionModule%nonperiodic/periodic 
     RETURN SolutionModule%solution     
     CALL & RETURN ProjectModule%closeFiles  
End GEMINI SOLVER    

  

OMP 

Threading 

Here 
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4.3.1. Incorporating Simple OMP Parallelism into GEMINI Solver 

In the case of simple OMP parallelism, a team of threads is created to perform the 

iterations of the outer loop over observation elements.  Each thread uses a selected 

observation element and loops over each source element to compute a local observation-

source element interaction matrix, which in turn is used by the thread to update the global 

matrix.  Figure 31 shows simple outer loop parallelization of the matrix fill routine. 

 

 

Figure 37: Simple parallelization of GEMINI Solver matrix fill routine 

 

The integration of simple OMP parallelism into the FORTRAN 2000 matrix fill routine is 

displayed in Table 23 and Table 24 on the following pages. 

Several race conditions occur arising from OMP threading which cause moderate 

errors in the output edge currents.  These race conditions will be solved in the final MPI-

OMP hybrid parallelization of GEMINI Solver discussed in section 5.1 
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Table 23:  Simple OMP parallelization of FORTRAN 2000 matrix fill routine, part 1 

   SUBROUTINE fillNormal(project,freqIndex,gMatrix) 
! 
   < Declarations Omitted > 
   elementCount = project%elements%listSize() 
   freqPointer => project%frequencies%at(freqIndex) 
   modeIndex = freqPointer%modeIndex 
   omega = 2.0_dk*Constants%pi*freqPointer%frequency 
! 
!  Refresh obsBases for each observation element and scrBases for each source element 
   DO ip = 1,elementCount 
      oE => project%elements%at(ip) 
      obsBasis => project%obsBases%at(oE%type() + 1) 
      sE => project%elements%at(ip) 
      srcBasis => project%srcBases%at(sE%type() + 1) 
   ENDDO 
! 
!  Create a team of threads to execute code in parallel 
!$OMP PARALLEL                                                                                                                                                                                     & 
!$OMP SHARED(project,gMatrix,freqIndex, elementCount,freqPointer,modeIndex,omega)                                                                    & 
!$OMP PRIVATE(i_t,n_t,obsBasis,obsElement,obsNodeSetCount,obsNodeSet,obsNodeCount,obsArray)                                            & 
!$OMP PRIVATE(i_s,n_s,srcBasis,srcElement,srcNodeSetCount,srcNodeSet,srcNodeCount,commonRegions,regionCount)              &                                                      
!$OMP PRIVATE(obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM,obsIndex,srcIndex)                                     &    
!$OMP NUM_THREADS(NTHREADS) 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Threads Fork Here      
! 
!  Direct team of threads to execute iterations of outer observation element loop in parallel using dynamic scheduling 
!$OMP DO SCHEDULE(STATIC, CHUNK) 
! 
!  Loop over observation elements 
   DO i_t = 1,elementCount 
      obsElement => project%elements%at(i_t) 
      IF (.NOT. obsElement%contributesToRow .OR. obsElement%isGhost()) CYCLE 
      obsBasis => project%obsBases%at(obsElement%type() + 1) 
      obsNodeSetCount = SIZE(obsElement%nodeSets(:)) 
! 
!  Loop over node sets for this element 
      DO n_t = 1,obsNodeSetCount 
         obsNodeSet => obsElement%nodeSets(n_t)%object 
         obsNodeCount = obsElement%nodeCount(n_t) 
         CALL ObservationArrayStatic%create(obsElement,n_t,obsBasis,obsArray) 
! 
!  Loop over source elements 
            DO i_s = 1,elementCount 
               srcElement => project%elements%at(i_s) 
               IF (.NOT. srcElement%contributesToColumn) CYCLE 
               srcBasis => project%srcBases%at(srcElement%type() + 1)  
               srcNodeSetCount = SIZE(srcElement%nodeSets(:)) 
! 
!  Loop over node sets for this element 
               DO n_s = 1,srcNodeSetCount 
                  srcNodeSet => srcElement%nodeSets(n_s)%object 
                  IF (srcNodeSet%equation == NodeSetEquations%E_FEM) CYCLE 
                  srcNodeCount = srcElement%nodeCount(n_s) 
                  CALL CommonRegionStatic%create(obsNodeSet,srcNodeSet,commonRegions) 
                  regionCount = CommonRegionStatic%regionCount 
                  IF (regionCount == 0) CYCLE 
                  IF (obsNodeSet%equation == NodeSetEquations%HYBRID_SOURCES .OR.                                                                     & 
                        srcNodeSet%equation == NodeSetEquations%HYBRID_SOURCES) THEN 
                     CommonRegionStatic%regionCount = 1 
                     regionCount = 1 
                  ENDIF 
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Table 24:  Simple OMP parallelization of FORTRAN 2000 matrix fill routine, part 2 

! 
!  Create element-element interaction matrix 
                  CALL createLocals(regionCount,obsNodeCount,srcNodeCount,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)! 
!  Find element to element interaction 
                  CALL LocalMatrix%fill(project,omega,obsElement,n_t,obsArray,srcElement,n_s,commonRegions,                                      & 
                                                          obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM) 
! 
!  Thin material contribution 
                  IF (srcNodeSet%equation == NodeSetEquations%THIN_PEC_EFIE .OR.                                                                            & 
                        srcNodeSet%equation == NodeSetEquations%THIN_PEC_MFIE .OR.                                                                           & 
                        srcNodeSet%equation == NodeSetEquations%THIN_PEC_CFIE) THEN 
! 
                     CALL LocalMatrix%fill(project,omega,obsElement,n_t, obsArray,srcElement,n_s,                                                              & 
                                                             commonRegions,obsSourceFlag,obsJsourceJ)  
                  ENDIF 
! 
!  Place element interactions into global matrix 
                  IF (obsSourceFlag(1)) THEN 
                     obsIndex = 1 
                     srcIndex = 1 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s,               & 
                                                         srcNodeCount,srcElement%unknownJ(n_s),commonRegions,obsJsourceJ,gMatrix)        
                  ENDIF 
                  IF (obsSourceFlag(2)) THEN 
                     obsIndex = 1 
                     srcIndex = 2 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s,               & 
                                                         srcNodeCount,srcElement%unknownM(n_s),commonRegions,obsJsourceM,gMatrix) 
                  ENDIF 
                  IF (obsSourceFlag(3)) THEN 
                     obsIndex = 2 
                     srcIndex = 1 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s,              & 
                                                         srcNodeCount,srcElement%unknownJ(n_s), commonRegions,obsMsourceJ,gMatrix)             
                  ENDIF 
                  IF (obsSourceFlag(4)) THEN 
                     obsIndex = 2 
                     srcIndex = 2 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s,              & 
                                                         srcNodeCount,srcElement%unknownM(n_s), commonRegions,obsMsourceM,gMatrix)               
                  ENDIF 
               ENDDO 
            ENDDO 
         ENDIF 
         CALL ObservationArrayStatic%destroy(obsArray) 
      ENDDO 
   ENDDO 
!                
!$OMP END DO                
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Threads Join Here 
!$OMP END PARALLEL               
!               
   CALL deleteLocals(obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM) 
! 
!  Add lumped loads 
   CALL addLumpedLoads(project,omega,gMatrix) 
! 
   END SUBROUTINE fillNormal 
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Simple OMP parallelization of the GEMINI Solver v2.0 FORTRAN 2000 matrix 

fill routine is run on the test cases in Table 25 to solve for the output currents. 

 

Table 25:  Test cases run using simple OMP parallelization of GEMINI Solver v2.0 

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 

Solution 

Test 

OMP 

Parallelism 

# MPI 

Processes 

# OMP 

Threads 

Performance 

Comparison 

0.1499 1083 EFIE Simple 1 1,2,4,8,16 Yes 

0.2998 4455 EFIE Simple 8,16,32 1,2,4,8,16 Yes 

0.8994 41,415 EFIE Simple 8,16,32 1,2,4,8,16 Yes 

 

The matrix fill time, speedup, efficiency, and speedup-efficiency product (SEP) 

for each OMP threading case with one MPI process on N = 1083 unknowns are shown in 

Table 26.  The highest, most efficient speedup (SEP = 2.2) occurs for 8 threads.  Graphs 

of speedup and efficiency vs. threads are shown in Figure 38 and Figure 39, respectively. 

 

Table 26:  GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 1083 

OMP 

Threading 

N 

(unknowns) 

# MPI 

Processes 

# OMP 

Threads 

Execution  

Time (s) 

Speedup 

S 

Efficiency 

E 
SEP 

Serial 1083 1 1 7.91180 1.00 100.0% 1.0 

Parallel 1083 1 2 5.43418 1.46 72.8% 1.1 

Parallel 1083 1 4 3.18102 2.49 62.2% 1.5 

Parallel 1083 1 8 1.88971 4.19 52.3% 2.2 

Parallel 1083 1 16 2.06925 3.82 23.9% 0.9 

 

 

Figure 38:  Speedup vs number of threads for N = 1083 

  



62 

 

 

Figure 39:  Efficiency vs number of threads for N = 1083 

 

The highest speedup, projected from Figure 38, would occur for 12 threads.  However, its 

SEP ≈ 1.9 is less than that for 8 threads.   

The matrix fill time, speedup, efficiency, and SEP for each OMP threading case 

with 8, 16, and 32 MPI process on N = 4455 unknowns are shown in Table 27.  The 

highest, most efficient speedup (largest SEP) occurs for 8 threads.  Graphs of speedup 

and efficiency vs. number of threads are shown in Figure 40 and Figure 41, respectively. 

 

Table 27:  GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 4455 

OMP 

Threading 

N 

(unknowns) 

# MPI 

Processes 

# OMP 

Threads 

Execution  

Time (s) 

Speedup 

S 

Efficiency 

E 
SEP 

Serial 4455 8 1 35.80556 1.00 100.0% 1.0 

Parallel 4455 8 2 24.24482 1.48 73.8% 1.1 

Parallel 4455 8 4 13.61293 2.63 65.8% 1.7 

Parallel 4455 8 8 8.74592 4.09 51.2% 2.1 

Parallel 4455 8 16 10.20651 3.51 21.9% 0.8 

Serial 4455 16 1 28.71364 1.00 100.0% 1.0 

Parallel 4455 16 2 18.81764 1.53 76.3% 1.2 

Parallel 4455 16 4 10.20070 2.81 70.4% 2.0 

Parallel 4455 16 8 6.46964 4.44 55.5% 2.5 

Parallel 4455 16 16 7.61884 3.77 23.6% 0.9 

Serial 4455 32 1 15.70761 1.00 100.0% 1.0 

Parallel 4455 32 2 11.32628 1.39 69.3% 1.0 

Parallel 4455 32 4 6.60075 2.38 59.5% 1.4 

Parallel 4455 32 8 4.17962 3.76 47.0% 1.8 

Parallel 4455 32 16 4.86951 3.23 20.2% 0.7 
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Figure 40:  Speedup vs number of threads for N = 4455 

 

 

Figure 41:  Efficiency vs number of threads for N = 4455 

 

The highest speedup, projected from Figure 40, would occur for 11½ threads.  However, 

its SEP ≈ 1.8, SEP ≈ 2.0, and SEP ≈ 1.5 for 8, 16, and 32 MPI processes, respectively, are 

less than those corresponding to 8 threads. 
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The matrix fill time, speedup, efficiency, and SEP for each OMP threading case 

with 8, 16, and 32 MPI process on N = 41,415 unknowns are shown in Table 28.  The 

highest, most efficient speedup occurs for 4 or 8 threads.  Graphs of speedup and 

efficiency vs. number of threads are shown in Figure 42 and Figure 43, respectively.  

 

Table 28:  GEMINI Solver v2.0 Serial and Parallel Execution Times for N = 41,415 

OMP 

Threading 

N 

(unknowns) 

# MPI 

Processes 

# OMP 

Threads 

Execution 

Time (min) 

Speedup 

S 

Efficiency 

E 
SEP 

Serial 41,415 8 1 42.654 1.00 100.0% 1.0 

Parallel 41,415 8 2 31.058 1.37 68.7% 0.9 

Parallel 41,415 8 4 17.452 2.44 61.1% 1.5 

Parallel 41,415 8 8 12.747 3.35 41.8% 1.4 

Parallel 41,415 8 16 14.063 3.03 19.0% 0.6 

Serial 41,415 16 1 30.583 1.00 100.0% 1.0 

Parallel 41,415 16 2 23.712 1.29 64.5% 0.8 

Parallel 41,415 16 4 13.161 2.32 58.1% 1.4 

Parallel 41,415 16 8 8.966 3.41 42.6% 1.5 

Parallel 41,415 16 16 10.771 2.84 17.7% 0.5 

Serial 41,415 32 1 18.157 1.00 100.0% 1.0 

Parallel 41,415 32 2 14.305 1.27 63.5% 0.8 

Parallel 41,415 32 4 7.661 2.37 59.3% 1.4 

Parallel 41,415 32 8 5.815 3.12 39.0% 1.2 

Parallel 41,415 32 16 6.145 2.95 18.5% 0.5 

 

 

Figure 42:  Speedup vs number of threads for N = 41,415 
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Figure 43:  Efficiency vs number of threads for N = 41,415 

 

The highest speedup, projected from Figure 42, would occur for 11 threads.  However, its 

SEP ≈ 1.1, SEP ≈ 1.2, and SEP ≈ 1.0 for 8, 16, and 32 MPI processes, respectively, are 

less than those corresponding 4 or 8 threads. 

The speedup-efficiency product (SEP) bears some discussion.  Consider parallel 

cases with 16 MPI process on N = 4455 unknowns with the results given in Table 29. 

 

Table 29:  GSv2.0 Parallel Execution S, E, and SEP for N = 4455 

OMP 

Threading 

N 

(unknowns) 

# MPI 

Processes 

# OMP 

Threads 

Speedup 

S 

Efficiency 

E 
SEP 

Parallel 4455 16 1 1.00 100.0% 1.0 

Parallel 4455 16 4 2.81 70.4% 2.0 

Parallel 4455 16 8 4.44 55.5% 2.5 

Parallel 4455 16 11½ 5* 41%** 2.1 

*Estimated from fit to graph in Figure 40.     ** Estimated from fit to graph in Figure 41. 

 

The SEP takes into account both speedup and efficiency.  A single thread always yields 

the ideal efficiency 100%.  If 4 threads were 100% efficient, the speedup would be 4; 

however, the actual speedup is only 2.81, or 70.4% efficient.  Parallel execution with 4 

threads has 29.6% inefficiency and it gets worse as the number of threads increases.  

Although 11½ threads yield 5x speedup, the efficiency is only 41%.  To compare parallel 

execution cases, the effective speedup is measured using the speedup-efficiency product. 
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4.3.2. Incorporating Nested OMP Parallelism into GEMINI Solver 

In the case of nested OMP parallelism, a team of parent threads is created to 

perform the iterations of the outer loop over observations elements.  For each parent 

thread, a team of daughter threads is created to perform the iterations of the inner loop 

over sources elements.  Each daughter thread uses the selected observation element of its 

parent thread and its own source element to compute a local observation-source element 

interaction matrix, which in turn is used by the daughter thread to update the global 

matrix.  Figure 44 shows outer-inner loop nested parallelization of the matrix fill routine. 

 

 

Figure 44:  Nested parallelization of GEMINI Solver 

 

The integration of nested OMP parallelism into the FORTRAN 2000 matrix fill routine is 

displayed in Table 30 and Table 31 on the following pages.  The routine contains two 

nested parallel regions with enclosed parallel loops. 
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Table 30:  Nested OMP parallelization of FORTRAN 2000 matrix fill routine, part 1 

   SUBROUTINE fillNormal(project,freqIndex,gMatrix) 
! 
   < Declarations Omitted > 
   elementCount = project%elements%listSize() 
   freqPointer => project%frequencies%at(freqIndex) 
   modeIndex = freqPointer%modeIndex 
   omega = 2.0_dk*Constants%pi*freqPointer%frequency 

! 
!  Refresh obsBases for each observation element and scrBases for each source element 
   DO ip = 1,elementCount 
      oE => project%elements%at(ip) 
      obsBasis => project%obsBases%at(oE%type() + 1) 
      sE => project%elements%at(ip) 
      srcBasis => project%srcBases%at(sE%type() + 1) 
   ENDDO 
! 
!  Create a team of parent threads to execute code in parallel 
!$OMP PARALLEL                                                                                                                                                                                                  & 
!$OMP SHARED(project,gMatrix,freqIndex, elementCount,freqPointer,modeIndex,omega)                                                                                  & 
!$OMP PRIVATE(i_t,n_t,obsBasis,obsElement,obsNodeSetCount,obsNodeSet,obsNodeCount,obsArray)                                                          & 
!$OMP NUM_THREADS(obsNTHREADS) 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Parent Threads Fork Here      
!  Direct team of parent threads to execute iterations of outer observation element loop in parallel using dynamic scheduling 
!$OMP DO SCHEDULE(DYNAMIC, CHUNK) 
! 
!  Loop over observation elements 
   DO i_t = 1,elementCount 
      obsElement => project%elements%at(i_t) 
      IF (.NOT. obsElement%contributesToRow .OR. obsElement%isGhost()) CYCLE 
      obsBasis => project%obsBases%at(obsElement%type() + 1) 
      obsNodeSetCount = SIZE(obsElement%nodeSets(:)) 
! 
!  Loop over node sets for this element 
      DO n_t = 1,obsNodeSetCount 
         obsNodeSet => obsElement%nodeSets(n_t)%object 
         obsNodeCount = obsElement%nodeCount(n_t) 
         CALL ObservationArrayStatic%create(obsElement,n_t,obsBasis,obsArray) 
! 
!  Create a team of daughter threads to execute code in parallel 
!$OMP PARALLEL                                                                                                                                                                                                  & 
!$OMP SHARED(project,gMatrix,freqIndex, elementCount,freqPointer,modeIndex,omega)                                                                                  & 
!$OMP SHARED (i_t,n_t,obsBasis,obsElement,obsNodeSetCount,obsNodeSet,obsNodeCount,obsArray)                                                         & 
!$OMP PRIVATE(i_s,n_s,srcBasis,srcElement,srcNodeSetCount,srcNodeSet,srcNodeCount,commonRegions,regionCount)                            & 
!$OMP PRIVATE(obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM,obsIndex,srcIndex)                                                   & 
!$OMP NUM_THREADS(srcNTHREADS) 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Daughter Threads Fork Here      
!  Direct team of daughter threads to execute iterations of inner source element loop in parallel using dynamic scheduling 
!$OMP DO SCHEDULE(DYNAMIC, CHUNK) 
! 
!  Loop over source elements 
            DO i_s = 1,elementCount 
               srcElement => project%elements%at(i_s) 
               IF (.NOT. srcElement%contributesToColumn) CYCLE 
               srcBasis => project%srcBases%at(srcElement%type() + 1)  
               srcNodeSetCount = SIZE(srcElement%nodeSets(:)) 
! 
!  Loop over node sets for this element 
               DO n_s = 1,srcNodeSetCount 
                  srcNodeSet => srcElement%nodeSets(n_s)%object 
                  IF (srcNodeSet%equation == NodeSetEquations%E_FEM) CYCLE 
                  srcNodeCount = srcElement%nodeCount(n_s) 
                  CALL CommonRegionStatic%create(obsNodeSet,srcNodeSet,commonRegions) 
                  regionCount = CommonRegionStatic%regionCount 
                  IF (regionCount == 0) CYCLE 
                  IF (obsNodeSet%equation == NodeSetEquations%HYBRID_SOURCES .OR.                                                                                   & 
                        srcNodeSet%equation == NodeSetEquations%HYBRID_SOURCES) THEN 
                     CommonRegionStatic%regionCount = 1 
                     regionCount = 1 
                  ENDIF 
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Table 31:  Nested OMP parallelization of FORTRAN 2000 matrix fill routine, part 2 

! 
!  Create element-element interaction matrix 
                  CALL createLocals(regionCount,obsNodeCount,srcNodeCount,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM) 
! 
!  Find element to element interaction 
                  CALL LocalMatrix%fill(project,omega,obsElement,n_t,obsArray,srcElement,n_s,commonRegions,                                                    & 
                                                          obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM) 
! 
!  Thin material contribution 
                  IF (srcNodeSet%equation == NodeSetEquations%THIN_PEC_EFIE .OR.                                                                                           & 
                        srcNodeSet%equation == NodeSetEquations%THIN_PEC_MFIE .OR.                                                                                          & 
                        srcNodeSet%equation == NodeSetEquations%THIN_PEC_CFIE) THEN 
! 
                     CALL LocalMatrix%fill(project,omega,obsElement,n_t, obsArray,srcElement,n_s,                                                                             & 
                                                             commonRegions,obsSourceFlag,obsJsourceJ)  
                  ENDIF 
! 
!  Place element interactions into global matrix 
                  IF (obsSourceFlag(1)) THEN 
                     obsIndex = 1 
                     srcIndex = 1 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s,                              & 
                                                         srcNodeCount,srcElement%unknownJ(n_s),commonRegions,obsJsourceJ,gMatrix)        
                  ENDIF 
                  IF (obsSourceFlag(2)) THEN 
                     obsIndex = 1 
                     srcIndex = 2 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownJ(n_t),srcElement,n_s,                              & 
                                                         srcNodeCount,srcElement%unknownM(n_s),commonRegions,obsJsourceM,gMatrix) 
                  ENDIF 
                  IF (obsSourceFlag(3)) THEN 
                     obsIndex = 2 
                     srcIndex = 1 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s,                             & 
                                                         srcNodeCount,srcElement%unknownJ(n_s), commonRegions,obsMsourceJ,gMatrix)             
                  ENDIF 
                  IF (obsSourceFlag(4)) THEN 
                     obsIndex = 2 
                     srcIndex = 2 
                     CALL localToGlobal(modeIndex,obsElement,n_t,obsNodeCount,obsElement%unknownM(n_t),srcElement,n_s,                             & 
                                                         srcNodeCount,srcElement%unknownM(n_s), commonRegions,obsMsourceM,gMatrix)               
                  ENDIF 
               ENDDO 
            ENDDO 
!                
!$OMP END DO                
!   
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Daughter Threads Join Here 
!$OMP END PARALLEL               
!              
         ENDIF 
         CALL ObservationArrayStatic%destroy(obsArray) 
      ENDDO 
   ENDDO 
!                
!$OMP END DO                
!    
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Parent Threads Join Here 
!$OMP END PARALLEL               
! 
   CALL deleteLocals(obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM) 
! 
!  Add lumped loads 
   CALL addLumpedLoads(project,omega,gMatrix) 
! 
   END SUBROUTINE fillNormal 
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Simple and nested OMP parallelization of the GEMINI Solver matrix fill routine 

are each run back-to-back ten times on each test case in Table 32 to compare the 

performance of the two parallel methods.  The execution time for test cases are measured  

 

Table 32:  Test cases run to compare simple vs. nested OMP parallelism  

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 

Solution 

Test 

OMP Parallelism  

Comparison 

# Outer–Inner  

OMP Threads  

0.2998 4455 EFIE Simple vs Nested 4-0 vs. 2-2 

0.2998 4455 EFIE Simple vs Nested 16-0 vs. 4-4 

0.8994 41,415 EFIE Simple vs Nested 4-0 vs. 2-2 

0.8994 41,415 EFIE Simple vs Nested 16-0 vs. 4-4 

 

for simple and nested parallelism methods, and speedups compared.  Nested parallelism 

speedup compared to simple parallelism speedup is calculated using the performance 

comparison ratio given by: 

 

nested

simple

simple

nested

simple

nested

T

T
R

TT

TT

S

S
R 

/

/

1

1  (30) 

 

where equation (26) for speedup has been applied.  Tsimple and Tnested are the simple and 

nested execution times required to perform the matrix fill operation, respectively.  

Performance ratios with 3σ (99¾% interval = R ± 3σ) are shown in Table 33.   

 

Table 33:  Performance ratios comparing nested to simple parallelism speedup 

Case 
Edges, N 

(# unknowns) 
Nodes 

# MPI 

Processes 

Simple vs Nested 

OMP Threads 

Average Performance  

Ratio, R 

3σ 
(99¾%) 

1 4455 1 4 4-0 vs. 2-2 0.972 0.040 

2 4455 1 1 16-0 vs. 4-4 0.974 0.040 

3 41,415 1 4 4-0 vs. 2-2 0.945 0.030 

4 41,415 2 8 4-0 vs. 2-2 0.900 0.029 

5 41,415 4 16 4-0 vs. 2-2 0.889 0.022 

6 41,415 1 1 16-0 vs. 4-4 0.971 0.045 

7 41,415 2 2 16-0 vs. 4-4 0.973 0.042 

8 41,415 4 4 16-0 vs. 4-4 0.972 0.028 
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A color graph of the performance ratios with 99¾% confidence intervals for all 8 cases is 

shown in Figure 45. 

 

 

Figure 45:  Simple vs. Nested OMP Performance ratios with 99¾% intervals 

 

In all 8 cases, simple OMP threading slightly outperforms nested OMP threading.  The 

following considerations should be taken into account [18]: 

 Increased demand for forking and joining of threads at the inner parallel 

regions requires an extremely efficient thread runtime library and operating 

system support. 

 Synchronization overhead will increase because of the implicit barrier 

synchronization at inner parallel regions. 

 

Increased forking/joining demand and overhead are responsible for slightly poorer 

performance in nested OMP parallelism.  Any performance gained by threading the inner 

loop is overshadowed by increased forking/joining demand and overhead.  Thus, simple 

OMP threading will be used in the MPI-OMP hybrid parallelization of GEMINI Solver. 

  

R < 1   Simple OMP performance better than Nested OMP 

R > 1   Nested OMP performance better than Simple OMP 
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Chapter 5. Testing MPI-OMP Hybrid Parallelization 

5.1. Final Implementation  

Consider the results from section 3.3.4 on the performance tests for N = 208K 

using 224 MPI processes for both 16 and 8 MPI processes per node as shown in Table 34. 

 

Table 34:  N=208K case using 224 MPI processes for 8 and 16 MPIs/node 

Edges, N 

(# unknowns) 

# DLX 

Nodes 

# MPI 

Processes / 

DLX Node 

# MPI 

Processes 

Idle 

Cores 

Fill Time 

(hours) 

Factor Time 

(hours) 

207,663 14 16 224 0 1.44 2.13 

207,663 28 8 224 224 1.27 1.63 

 

Reducing the MPI processes from 16 to 8 per node decreases both the matrix fill and 

factor times.  Performance increase is attributed to the reduction in node memory needed 

by 8 MPI processes compared to 16.  However, reducing the number of MPI process per 

node results in 224 idle cores.  To minimize inefficiencies when reducing the number of 

MPI processes, the matrix fill routine can incorporate OMP threading to utilize idle cores 

and increase matrix fill performance.  A test done for N = 208K using 224 MPI processes 

with 8 MPI processes per node and 2 OMP threads yields the results in Table 35. 

 

Table 35:  N=208K case using 224 MPI processes with 8 MPIs/node and 2 OMP threads 

Edges, N 

(# unknowns) 

# DLX  

Nodes 

# MPI 

Processes / 

  DLX Node 

# MPI 

Processes 

# OMP 

Threads 

Fill Time 

(hours) 

Factor Time 

(hours) 

207,663 28 8 224 2 1.09 1.67 

 

Matrix fill performance improves as expected while matrix factor performance 

remains essentially constant as expected.  Implementation of MPI-OMP hybrid 

parallelization incorporates the existing MPI parallelization between concurrent MPI 

processes with simple OMP threading of the matrix fill routine within each MPI process.  

Figure 46 on the following page illustrates an example of hybrid parallelization using 

four MPI processes with four simple OMP threads per MPI process. 
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 MPI Process 0 

 

Open MP (Threads T0-T3) 

 

  

 MPI Process 1 

 

Open MP (Threads T0-T3) 

  

 MPI Process 2 

 

Open MP (Threads T0-T3) 

  

 MPI Process 3 

 

Open MP (Threads T0-T3) 

 Figure 46:  Illustration for 4-MPI / 4-Simple OMP hybrid parallelization 
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In building the final implementation of MPI-OMP hybrid parallelization of 

GEMINI Solver, several modifications need to be made to the original v3.0 program to: 

 add capability to measure the matrix fill execution time for each MPI process; 

 add fine level parallelization to the matrix fill routine with OMP threading; 

 resolve race conditions arising from OMP threading.   

The following GEMINI Solver program changes are made: 

1. Add a wall clock time measurement feature to the matrix fill routine contained 

within the solution_nonperiodic and solution_periodic subroutines of the 

solution_m.f90 module.  This tool allows measurement of the matrix fill time for 

each executing MPI process.  Modifications #4 through #6 listed in Appendix B 

add matrix fill time measurement capability for nonperiodic solutions while 

modifications #7 through #9 add this capability for periodic solutions. 

2. Parallelize the outer loop of the matrix fill routine on the following statements:  

DO i_t = 1,elementCount 

∙  ∙  ∙ 

ENDDO 

contained within the fillNormal subroutine of the globalmatrix_m.f90 module.  

Modifications #24 and #27 listed in Appendix B add OMP parallelization. 

3. Correct the OMP race condition occurring on the following statements:  

obsBasis => project%obsBases%at(obsElement%type() + 1) 

srcBasis => project%srcBases%at(srcElement%type() + 1) 

inside the outer observation element loop and inner source element loop, 

respectively, within the fillNormal subroutine of the of the globalmatrix_m.f90 

module.  The race condition causes the program to intermittently crash when one 

OMP thread attempts to deallocate memory that another thread had previously 

deallocated but had not had time to set the notification flag.  Modifications #1 and 

#23 listed in Appendix B solve the race condition.  
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4. Resolve the OMP race condition occurring on the following two statements:  

obsElement => project%elements%at(i_t) 

srcElement => project%elements%at(i_s) 

inside the outer observation element loop and inner source element loop, 

respectively, within the fillNormal subroutine of the of the globalmatrix_m.f90 

module.  The race condition causes a small intermittent error in the solution to the 

edge currents when two or more OMP threads write access the same variable 

simultaneously.  Modification #28 listed in Appendix B solves the race condition 

for the first statement and modification #29 solves it for the second statement.  To 

avoid the race condition, the modifications require use of an $OMP CRITICAL 

directive to force all threads to work one at a time when executing the above 

statements.  Unfortunately, this directive reduces the parallel performance of the 

matrix fill routine; however, no other solution can be found with the current 

structure of GEMINI Solver.  In the future design of GEMINI Solver, thread 

safety needs to be incorporated into subroutines executed by the above statements. 

5. Correct the race condition on the following statements:  

value = gMatrix%getValue(rowDOF,columnDOF) 

∙  ∙  ∙ 

CALL gMatrix%putValue(rowDOF,columnDOF,value) 

within the localToGlobal subroutine of the globalmatrix_m.f90 module.  The 

race condition causes a large error in the solution to the edge currents because two 

or more OMP threads often write to the gMatrix variable simultaneously.  Since 

gMatrix contains the global matrix, each thread must have sole access when 

updating this matrix.  Modifications #25 and #26 listed in Appendix B solve the 

race condition.  These modifications require use of the $OMP CRITICAL 

directive to force all threads to execute one at a time when writing to gMatrix.  

Although this directive reduces the parallel performance of the matrix fill routine; 

this solution must be implemented to protect the global matrix.  No way could be 

found around the need to force threads to access gMatrix one at a time. 
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6. Resolve intermittent race conditions caused by the following variables:  

CommonRegionStatic 

HomogenousGreensFunction 

LocalMatrix 

rs, unitNormal, l_vec, jac, srcWghtJacobian, srcArray            

G, Kphi, Kpsi, Pz, Qz, gradG, grad_Kphi, grad_Kpsi, grad_Pz, grad_Qz 

Ga, Gf, curl_Ga, curl_Gf 

xiTemp, wghtTemp 

classPointer 

located within various modules of GEMINI Solver.  Modifications #10 through 

#19 and #21 listed in Appendix B solve the race conditions caused when two or 

more OMP threads write access one of the above variables simultaneously.  These 

modifications require use of the $OMP TREADPRIVATE directive to ensure 

each thread receives its own a private copy of each above variable. 

Table 36 shows the test cases utilized in the final hybrid MPI-OMP parallelization of 

GEMINI Solver.  The first five test cases include a performance comparison between 

OMP threading and no OMP threading.  The performance comparison for the fifth test 

case can only be made for 32 nodes.  The memory requirements on 28 and 30 nodes do 

not allow execution without OMP threading.  The last two cases have large problem sizes 

requiring memory sizes that will not execute without OMP threading.  

 

Table 36:  Test cases for final implementation of hybrid MPI-OMP GEMINI Solver v3.0 

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 

Solution 

Test 

# DLX 

Nodes 

#MPI/node – 

#OMP Thread 

Combination 

OMP vs. No OMP 

Performance 

Comparison 

0.8994 41,415 EFIE 1,2,4 1-16, 2-8, 4-4, 8-2, 16-1 Yes 

1.1992 74,211 EFIE 4,8,12 1-16, 2-8, 4-4, 8-2, 16-1 Yes 

1.7988 167,652 EFIE 16, 20,24 1-16, 2-8, 4-4, 8-2, 16-1 Yes 

2.0000 207,663 EFIE 16, 20,24 2-8, 4-4, 8-2, 16-1 Yes 

2.3984 298,863 EFIE 28,30,32 2-8, 4-4, 8-2 Yes  

2.5000 326,430 EFIE 30,32 2-8, 4-4 No 

2.5624 342,087 EFIE 32 2-8 No 
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Allocating run time on the DLX requires following certain rules for batch job 

submission as well as waiting for resources to become available.  DLX batch scripts are 

created, with sanity checks [22], to execute run scripts, which in turn execute GEMINI 

Solver v3.0 test runs.  Sanity checks ensure that batch submission rules are followed.  

Without sanity checks, batch submissions could remain in que indefinitely, never being 

allocated run time.  Table 37 shows an example DLX batch script with sanity checks.   

 

Table 37:  DLX batch script with sanity checks 

   Linux Batch Script mpgs_batchall.sh 
 
#!/bin/sh 
 
pnodes=$1                    # number of physical nodes 
time=$2                      # max time in batch que 
cper_pnode=16           # cores per physical node (Compute) 
ncores=$(($cper_pnode*$pnodes))   # number of total cores requested 
 
# setup options 
rdir="/home/bljo222/gemini_v3/Test"  # SET PATH TO YOUR SBATCH SCRIPT AND OUTPUT FILE 
script=$rdir/mpgs_runall-1.sh 
outfil="$rdir/mpgs_screenall_p$pnodes-1.txt" 
 
# Select the queue and make sure run time meets requirements 
if [ $ncores -ge 512 ]; then 
   part="Short" 
   if [ $time -gt 1440 ]; then 
      echo "Time to long for Short queue. Exiting" 
      exit 
   fi 
elif [ $ncores -ge 65 ]; then 
   part="Med" 
   if [ $time -gt 10080 ]; then 
      echo "Time to long for Med queue. Exiting" 
      exit 
   fi 
elif [ $ncores -ge 16 ]; then 
   part="Long" 
   if [ $time -gt 43200 ]; then 
      echo "Time to long for Long queue. Exiting" 
      exit 
   fi 
else 
   part="debug" 
fi 
 
# Submit the batch job 
echo "sbatch --exclusive -p $part -t $time -N $pnodes -n $ncores -o $outfil $script $pnodes" 
sbatch --exclusive --no-requeue -p $part -t $time -N $pnodes -n $ncores -o $outfil $script $pnodes 

 

Once DLX resources become available, it is beneficial to run multiple tests while one has 

the resources.   DLX run scrips are created [23] to execute five MPI/node – OMP thread 

combinations for each test case in Table 36.  Table 38 shows an example DLX run script. 
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Table 38:  DLX run script to execute GEMINI Solver v3.0 test sets 

   Linux Run Script mpgs_runall.sh 
 
#!/bin/sh 
 
pnodes=$1     # number of physical nodes imported from ”mpgs_batchall.sh” 
source /etc/bashrc      # may need this to initialize module system 
module load mpi/openmpi/intel/1.8.2   # load MPI module 
#-------------------------------------------------------------------------------------------------------------------------------------------------- 
# Run Combo #1 (1 MPI/node & 16 OMP/MPI  processes) with OMP Nested Parallelism NOT Enabled 
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable 
tper_pnode=1    # MPI processes per physical node 
cper_vnode=16    # OMP threads  used by each MPI process 
vnodes=$(($tper_pnode*$pnodes))      # total number of MPI processes on all nodes 
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes\_v$vnodes\_cv$cper_vnode\_tp$tper_pnode 
mkdir -p  $wkdir 
cd $wkdir 
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt" 
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil 
#-------------------------------------------------------------------------------------------------------------------------------------------------- 
# Run Combo #2 (2 MPI/node & 8 OMP/MPI  processes) with OMP Nested Parallelism NOT Enabled 
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable 
tper_pnode=2    # MPI processes per physical node 
cper_vnode=8    # OMP threads  used by each MPI process 
vnodes=$(($tper_pnode*$pnodes))      # total number of MPI processes on all nodes 
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes\_v$vnodes\_cv$cper_vnode\_tp$tper_pnode 
mkdir -p  $wkdir 
cd $wkdir 
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt" 
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil 
#-------------------------------------------------------------------------------------------------------------------------------------------------- 
# Run Combo #3 (4 MPI/node & 4 OMP/MPI  processes) with OMP Nested Parallelism NOT Enabled 
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable 
tper_pnode=4    # MPI processes per physical node 
cper_vnode=4    # OMP threads  used by each MPI process 
vnodes=$(($tper_pnode*$pnodes))      # total number of MPI processes on all nodes 
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes\_v$vnodes\_cv$cper_vnode\_tp$tper_pnode 
mkdir -p  $wkdir 
cd $wkdir 
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt" 
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil 
#-------------------------------------------------------------------------------------------------------------------------------------------------- 
# Run Combo #4 (8 MPI/node & 2 OMP/MPI  processes) with OMP Nested Parallelism NOT Enabled 
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable 
tper_pnode=8    # MPI processes per physical node 
cper_vnode=2    # OMP threads  used by each MPI process 
vnodes=$(($tper_pnode*$pnodes))      # total number of MPI processes on all nodes 
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes\_v$vnodes\_cv$cper_vnode\_tp$tper_pnode 
mkdir -p  $wkdir 
cd $wkdir 
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt" 
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil 
#-------------------------------------------------------------------------------------------------------------------------------------------------- 
# Run Combo #5 (16 MPI/node & 1 OMP/MPI  processes) with OMP Nested Parallelism NOT Enabled 
exe="/home/bljo222/gemini_v3/Test/GEMINI_solver" # path to GEMINI Solver executable 
tper_pnode=16    # MPI processes per physical node 
cper_vnode=1    # OMP threads  used by each MPI process 
vnodes=$(($tper_pnode*$pnodes))      # total number of MPI processes on all nodes 
wkdir=/home/bljo222/gemini_v3/Test/solver_p$pnodes\_v$vnodes\_cv$cper_vnode\_tp$tper_pnode 
mkdir -p  $wkdir 
cd $wkdir 
infil="/home/bljo222/gemini_v3/Test/mpgs_inputall-1.txt" 
mpirun -n $vnodes --map-by ppr:$tper_pnode:node:pe=$cper_vnode --bind-to core -report-bindings $exe < $infil 
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5.2. GEMINI Solver Results 

GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is 

executed on the DLX cluster for the N = 41.4 K, f = 0.8994 GHz test case.  Table 39 

shows the average matrix fill time, factor time, and required memory per node for three 

trials of each configuration:  #DLX Nodes : #MPI processes/node : #OMP threads. 

 

Table 39:  GEMINI Solver v3.0 Matrix Fill & Factor Times for N=41.4K, f=0.8994GHz 

DLX 

Nodes 
MPIs/node 

OMP 

Threads 
# Cores 

Matrix Fill 

Time (min) 

Matrix Factor 

Time (min) 

Required  

Memory/node 

1 1 16 16 70.274 164.584 50.1% 

1 2 8 16 35.698 89.627 50.4% 

1 4 4 16 34.189 45.276 51.0% 

1 8 2 16 35.009 22.819 52.2% 

1 16 1 16 33.263 11.100 54.6% 

2 1 16 32 55.413 96.921 29.8% 

2 2 8 32 21.435 48.571 30.1% 

2 4 4 32 19.125 24.519 30.8% 

2 8 2 32 25.835 11.508 32.1% 

2 16 1 32 19.793 5.666 34.8% 

4 1 16 64 33.913 56.171 19.3% 

4 2 8 64 12.440 27.987 19.7% 

4 4 4 64 14.116 12.401 20.3% 

4 8 2 64 15.346 5.940 21.7% 

4 16 1 64 11.559 2.981 24.4% 

 

Matrix factor times follow earlier trends for MPI only parallelization.  Graphs of matrix 

fill times and required memory usage are shown in Figure 47 and Figure 48, respectively. 

 

 

Figure 47:  Matrix fill times vs. MPI-OMP combination for N=41.4K, f=0.8994GHz 
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Figure 48:  Required memory/node vs. MPIs/node for N=41.4K, f=0.8994GHz 

 

As the number of MPI processes per node is reduced by powers of two, OMP 

threads are increased by the same factor to compensate and share more of the 

computational workload.  As expected, each line graph in Figure 47 is relatively constant 

for all MPI-OMP combinations except the 1-16 combination.  At least 2 MPI processes 

per node must execute for OMP threading to be effective.  In addition, as the number of 

MPI processes per node is increased, the required physical memory usage per node 

should increase as more copies of the mesh are needed. As expected, each line graph in 

Figure 48 increases as the number of MPI processes increases.  When reducing the 

number of MPI processes, the matrix fill routine incorporates simple OMP threading to 

utilize idle cores and increase matrix fill performance.  Matrix fill time, speedup, and 

efficiency graphs comparing OMP threading to the same cases without OMP threading 

are shown in Figure 49 on the next page.  Matrix fill time comparing OMP threading to 

the same cases without OMP threading along with SEP tables are shown in Figure 50 on 

the page following next.  The highest, most efficient speedup occurs for 2 MPI processes 

and 8 OMP threads with SEP = 1.9, 1.8, and 1.6 for 1, 2, and 4 nodes, respectively.  The 

2-8 combination requires the least MPI processes per node for effective OMP threading, 

has the highest, most efficient speedup, and uses the least physical memory per node. 
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Figure 49:  OMP threading vs. No OMP threading for N=41.4K, f=0.8994GHz 
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Figure 50:  Matrix Fill Times:  OMP vs. No OMP for N=41.4K, f=0.8994GHz 
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GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is 

executed on the DLX cluster for the N = 74.2 K, f = 1.1992 GHz test case.  Table 40 

shows the average matrix fill time, factor time, and required memory per node for three 

trials of each configuration:  #DLX Nodes : #MPI processes/node : #OMP threads. 

 

Table 40:  GEMINI Solver v3.0 Matrix Fill & Factor Times for N=74.4K, f=1.1992GHz 

DLX 

Nodes 
MPIs/node 

OMP 

Threads 
# Cores 

Matrix Fill 

Time (min) 

Matrix Factor 

Time (min) 

Required  

Memory/node 

2 1 16 32 158.917 523.943 74.9% 

2 2 8 32 68.697 258.208 75.4% 

2 4 4 32 60.710 129.531 76.6% 

2 8 2 32 82.478 63.256 78.7% 

2 16 1 32 63.205 31.477 83.1% 

4 1 16 64 107.368 284.448 42.3% 

4 2 8 64 39.673 138.766 42.7% 

4 4 4 64 44.105 65.840 44.2% 

4 8 2 64 47.943 32.161 45.9% 

4 16 1 64 35.470 16.190 50.7% 

8 1 16 128 62.560 158.237 25.8% 

8 2 8 128 27.587 71.209 26.0% 

8 4 4 128 25.716 33.699 27.1% 

8 8 2 128 28.626 16.877 29.4% 

8 16 1 128 19.019 8.354 34.4% 

 

Matrix factor times follow earlier trends for MPI only parallelization.  Graphs of matrix 

fill times and required memory/node are shown in Figure 51 and Figure 52, respectively. 

 

 

Figure 51:  Matrix fill times vs. MPI-OMP combination N=74.2K, f=1.1992GHz 
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Figure 52:  Required memory/node vs. MPIs/node for N=74.2K, f=1.1992GHz 

 

As the number of MPI processes per node is reduced by powers of two, OMP 

threads are increased by the same factor to compensate and share more of the 

computational workload.  As expected, each line graph in Figure 51 is relatively constant 

for all MPI-OMP combinations except the 1-16 combination.  At least 2 MPI processes 

per node must execute for OMP threading to be effective.  In addition, as the number of 

MPI processes per node is increased, the required physical memory usage per node 

should increase as more copies of the mesh are needed. As expected, each line graph in 

Figure 52 increases as the number of MPI processes increases.  When reducing the 

number of MPI processes, the matrix fill routine incorporates simple OMP threading to 

utilize idle cores and increase matrix fill performance.  Matrix fill time, speedup, and 

efficiency graphs comparing OMP threading to the same cases without OMP threading 

are shown in are shown in Figure 53 on the next page.  Matrix fill time comparing OMP 

threading to the same cases without OMP threading along with SEP tables are shown in 

Figure 54 on the page following next.  The highest, most efficient speedup occurs for 2 

MPI processes and 8 OMP threads with SEP = 1.9, 1.6, and 1.8 for 2, 4, and 8 nodes, 

respectively.  The 2-8 combination requires the least MPI processes per node for effective 

OMP threading, has the highest, most efficient speedup, and uses the least physical 

memory per node. 
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Figure 53:  OMP threading vs. No OMP threading for N=74.2K, f=1.1992GHz 
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Figure 54:  Matrix Fill Times:  OMP vs. No OMP for N=74.2K, f=1.1992GHz 
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GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is 

executed on the DLX cluster for the N = 168 K, f = 1.7998 GHz test case.  Table 41 

shows the average matrix fill time, factor time, and required memory per node for three 

trials of each configuration:  #DLX Nodes : #MPI processes/node : #OMP threads. 

 

Table 41:  GEMINI Solver v3.0 Matrix Fill & Factor Times for N=168K, f=1.7998GHz 

DLX 

Nodes 
MPIs/node 

OMP 

Threads 
# Cores 

Matrix Fill 

Time (hr) 

Matrix Factor 

Time (hr) 

Required  

Memory/node 

16 1 16 256 3.924 12.911 52.3% 

16 2 8 256 1.394 6.194 53.2% 

16 4 4 256 1.291 3.117 55.5% 

16 8 2 256 1.298 1.537 60.5% 

16 16 1 256 0.956 0.773 70.3% 

20 1 16 320 3.443 10.204 43.2% 

20 2 8 320 1.166 5.102 45.3% 

20 4 4 320 0.972 2.510 47.2% 

20 8 2 320 1.115 1.251 51.3% 

20 16 1 320 0.688 0.640 62.7% 

24 1 16 384 2.912 8.667 37.4% 

24 2 8 384 0.945 4.253 38.6% 

24 4 4 384 0.853 2.117 41.0% 

24 8 2 384 0.878 1.062 46.7% 

24 16 1 384 0.603 0.537 56.5% 

 

Matrix factor times follow earlier trends for MPI only parallelization.  Graphs of matrix 

fill times and required memory/node are shown in Figure 55 and Figure 56, respectively. 

 

 

Figure 55:  Matrix fill times vs. MPI-OMP combination for N=168K, f=1.7998GHz 
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Figure 56:  Required memory/node vs. MPIs/node for N=168K, f=1.7998GHz 

 

As the number of MPI processes per node is reduced by powers of two, OMP 

threads are increased by the same factor to compensate and share more of the 

computational workload.  As expected, each line graph in Figure 55 is relatively constant 

except the 1-16 combination.  At least 2 MPI processes per node must execute for OMP 

threading to be effective.  In addition, as the number of MPI processes per node is 

increased, the required physical memory usage per node should increase as more copies 

of the mesh are needed. As expected, each line graph in Figure 56 increases as the 

number of MPI processes increases.  When reducing the number of MPI processes, the 

matrix fill routine incorporates simple OMP threading to utilize idle cores and increase 

matrix fill performance.  Matrix fill time, speedup, and efficiency graphs comparing 

OMP threading to the same cases without OMP threading are shown in Figure 57 on the 

next page.  Matrix fill time comparing OMP threading to the same cases without OMP 

threading along with SEP tables are shown in Figure 58 on the page following next.  The 

highest, most efficient speedup occurs for 2 MPI processes and 8 OMP threads with SEP 

= 2.0, 1.8, and 1.9 for 16, 20, and 24 nodes, respectively.  The 2-8 combination requires 

the least MPI processes per node for effective OMP threading, has the highest, most 

efficient speedup, and uses the least physical memory per node. 
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Figure 57:  OMP threading vs. No OMP threading for N=168K, f=1.7998GHz 
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Figure 58:  Matrix Fill Times:  OMP vs. No OMP for N=168K, f=1.7998GHz 
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GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is 

executed on the DLX cluster for the N = 208 K, f = 2.0000 GHz test case.  Table 42 

shows the average matrix fill time, factor time, and required memory per node for three 

trials of each configuration:  #DLX Nodes : #MPI processes/node : #OMP threads. 

 

Table 42:  GEMINI Solver v3.0 Matrix Fill & Factor Times for N=208K, f=2.0000GHz 

DLX 

Nodes 
MPIs/node 

OMP 

Threads 
# Cores 

Matrix Fill 

Time (hr) 

Matrix Factor 

Time (hr) 

Required  

Memory/node 

16 1* 16 256 – – – 

16 2 8 256 2.121 6.194 75.9% 

16 4 4 256 1.967 5.831 78.8% 

16 8 2 256 2.004 2.909 84.9% 

16 16 1 256 1.447 1.643 96.9% 

20 1* 16 320 – – – 

20 2 8 320 1.796 9.463 63.6% 

20 4 4 320 1.507 4.667 66.1% 

20 8 2 320 1.684 2.335 72.1% 

20 16 1 320 1.060 1.204 84.5% 

24 1* 16 384 – – – 

24 2 8 384 1.463 7.865 55.1% 

24 4 4 384 1.301 3.930 58.1% 

24 8 2 384 1.362 1.976 64.0% 

24 16 1 384 0.912 1.002 75.8% 
*The total MPI processes required for 208 K unknowns was not attainable with 1 MPI/node 

 

Matrix factor times follow earlier trends for MPI only parallelization.  Graphs of matrix 

fill times and required memory/node are shown in Figure 59 and Figure 60, respectively. 

 

 

Figure 59:  Matrix fill times vs. MPI-OMP combination for N=208K, f=2.0000GHz 

  



91 

 

 

Figure 60:  Required memory/node vs. MPIs/node for N=208K, f=2.0000GHz 

 

As the number of MPI processes per node is reduced by powers of two, OMP 

threads are increased by the same to compensate and share more of the computational 

workload.  As expected, each line graph in Figure 59 is relatively constant for all MPI-

OMP combinations utilized. However, the required MPI processes for 208 K unknowns 

were not attainable with the 1-16 combination.  At least 2 MPI processes per node must 

execute.  In addition, as the number of MPI processes per node is increased, the required 

physical memory usage per node should increase as more copies of the mesh are needed. 

As expected, each line graph in Figure 60 increases as the number of MPI processes 

increases.  When reducing the number of MPI processes, the matrix fill routine 

incorporates simple OMP threading to utilize idle cores and increase matrix fill 

performance.  Matrix fill time, speedup, and efficiency graphs comparing OMP threading 

to the same cases without OMP threading are shown in are shown in Figure 61 on the 

next page.  Matrix fill time comparing OMP threading to the same cases without OMP 

threading along with SEP tables are shown in Figure 62 on the page following next.  The 

highest, most efficient speedup occurs for 2 MPI processes and 8 OMP threads with SEP 

= 2.2, 2.0, and 1.9 for 16, 20, and 24 nodes, respectively.  The 2-8 combination requires 

the least MPI processes per node for effective OMP threading, has the highest, most 

efficient speedup, and uses the least physical memory per node. 
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Figure 61:  OMP threading vs. No OMP threading for N=208K, f=2.0000GHz 
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Figure 62:  Matrix Fill Times:  OMP vs. No OMP for N=208K, f=2.0000GHz 
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GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is 

executed on the DLX cluster for the N = 299 K, f = 2.3984 GHz test case.  Table 43 

shows the average matrix fill time, factor time, and required memory per node for three 

trials of each configuration:  #DLX Nodes : #MPI processes/node : #OMP threads. 

 

Table 43:  GEMINI Solver v3.0 Matrix Fill & Factor Times for N=299K, f=2.3984GHz 

DLX 

Nodes 
MPIs/node 

OMP 

Threads 
# Cores 

Matrix Fill 

Time (hr) 

Matrix Factor 

Time (hr) 

Required  

Memory/node 

28 1* 16 448 – – – 

28 2 8 448 3.072 19.794 88.8% 

28 4 4 448 2.502 9.819 93.0% 

28 8 2 448 2.627 6.120 99.6% 

28 16† 1 448 – – – 

30 1* 16 480 – – – 

30 2 8 480 2.861 18.503 83.0% 

30 4 4 480 2.276 9.163 87.2% 

30 8 2 480 2.681 5.049 95.6% 

30 16† 1 480 – – – 

32 1* 16 512 – – – 

32 2 8 512 2.788 18.981 79.3% 

32 4 4 512 2.179 8.601 84.4% 

32 8 2 512 2.611 4.435 91.7% 

32 16† 1 512 – – – 

*The total MPI processes required for 299 K unknowns was not attainable with 1 MPI/node 

†The total memory required per node for 299 K unknowns was exceeded for 16 MPIs/node 

 

Matrix factor times follow earlier trends for MPI only parallelization.  Graphs of matrix 

fill times and required memory/node are shown in Figure 63 and Figure 64. 

 

 

Figure 63:  Matrix fill times vs. MPI-OMP combination for N=299K, f=2.3984GHz 
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Figure 64:  Required memory/node vs. MPIs/node for N=299K, f=2.3984GHz 

 

As the number of MPI processes per node is reduced by powers of two, OMP 

threads are increased by the same to compensate and share more of the computational 

workload.  As expected, each line graph in Figure 63 is relatively constant for all MPI-

OMP combinations utilized. However, the required MPI processes for 299 K unknowns 

were not attainable with the 1-16 combination and the total memory required per node for 

299 K unknowns was exceeded for the 16-1 combination.  In this case, at least 2 MPI 

processes but no more than 8 MPI processes can execute on a node.  In addition, as the 

number of MPI processes per node is increased, the required physical memory usage per 

node should increase as more copies of the mesh are needed. As expected, each line 

graph in Figure 64 increases as the number of MPI processes increases.  When reducing 

the number of MPI processes, the matrix fill routine incorporates simple OMP threading 

to utilize idle cores and increase matrix fill performance.  Matrix fill time, speedup, and 

efficiency graphs comparing OMP threading to the same cases without OMP threading 

are shown in Figure 65 on the next page.  Matrix fill time comparing OMP threading to 

the same cases without OMP threading along with SEP tables are shown in Figure 66 on 

the page following next.  The highest, most efficient speedup occurs for 2 MPI processes 

and 8 OMP threads with SEP = 1.5 for 32 nodes.  GEMINI Solver would not execute 

with less than 32 nodes in single threading mode (no OMP threading). The 2-8 
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combination requires the least MPI processes per node for effective OMP threading, has 

the highest, most efficient speedup, and uses the least physical memory per node. 

 

 

 

 

Figure 65:  OMP threading vs. No OMP threading for N=299K, f=2.3984GHz 
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Figure 66:  Matrix Fill Times:  OMP vs. No OMP for N=299K, f=2.3984GHz 
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GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is 

executed on the DLX cluster for the N = 326 K, f = 2.5000 GHz test case.  Table 44 

shows the average matrix fill time, factor time, and required memory per node for three 

trials of each configuration:  #DLX Nodes : #MPI processes/node : #OMP threads. 

 

Table 44:  GEMINI Solver v3.0 Matrix Fill & Factor Times for N=326K, f=2.5000GHz 

DLX 

Nodes 
MPIs/node 

OMP 

Threads 
# Cores 

Matrix Fill 

Time (hr) 

Matrix Factor 

Time (hr) 

Required  

Memory/node 

30 1* 16 480 – – – 

30 2 8 480 3.440 25.070 97.5% 

30 4 4 480 2.851 13.115 99.6% 

30 8† 2 480 – – – 

30 16† 1 480 – – – 

32 1* 16 512 – – – 

32 2 8 512 3.370 22.700 92.1% 

32 4 4 512 2.592 11.503 97.4% 

32 8† 2 512 – – – 

32 16† 1 512 – – – 
*The total MPI processes required for 326 K unknowns was not attainable with 1 MPI/node 

†The total memory required per node for 326 K unknowns was exceeded for 8 and 16 MPIs/node 

 

Matrix factor times agree with earlier values for MPI only parallelization.  Graphs of 

matrix fill times and required memory/node are shown in Figure 67. For the maximum 

allowable 32 nodes on the DLX cluster, the total memory required per node is >92%. 

 

  

Figure 67:  Matrix fill times & memory usage for N=326K, f=2.5000GHz 
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GEMINI Solver v3.0, incorporating hybrid MPI/Simple OMP parallelization, is 

executed on the DLX cluster for the N = 342 K, f = 2.5624 GHz test case.  Table 45 

shows the average matrix fill time, factor time, and required memory per node for three 

trials of each configuration:  #DLX Nodes : #MPI processes/node : #OMP threads. 

 

Table 45:  GEMINI Solver v3.0 Matrix Fill & Factor Times for N=342K, f=2.5624GHz 

DLX 

Nodes 
MPIs/node 

OMP 

Threads 
# Cores 

Matrix Fill 

Time (hr) 

Matrix Factor 

Time (hr) 

Required  

Memory/node 

32 1* 16 512 – – – 

32 2 8 512 4.371 31.489 99.5% 

32 4† 4 512 – – – 

32 8† 2 512 – – – 

32 16† 1 512 – – – 

*The total MPI processes required for 342 K unknowns was not attainable with 1 MPI/node 

†The total memory required per node for 342 K unknowns was exceeded for 4, 8, and 16 MPIs/node 

 

Matrix factor times agree with earlier values for MPI only parallelization.  Graphs of 

matrix fill times and required memory/node are shown in Figure 68.  For the maximum 

allowable 32 nodes on the DLX cluster, the total memory required per node is ≈100%. 

 

  

Figure 68:  Matrix fill times & memory usage for N=342K, f=2.5624GHz 

 

Test cases with N > 342 K unknowns will not run on the DLX cluster because the total 

memory required per node exceeds 100%.s  
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5.3. GEMINI Post Results 

Comparisons of the RCS pattern generated by GEMINI Post are made to the Mie 

Series using the Chi-Square goodness-of-fit (GOF) [15] given by equation (25).  Table 46 

displays the goodness-of-fit (GOF) between GEMINI Post RCS values and the Mie 

Series using Nmax terms.  The bistatic angle resolution is given by Δangle. 

 

Table 46:  GEMINI Post RCS results fit to Mie Series  

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 

Solution  

Test 

Quality  

of Fit 

Nmax 

Terms 

Δangle 

( ° ) 

σVV χ
2
 

GOF 

σHH χ
2
 

GOF 

0.8994 41,415 EFIE Excellent 19 1 0.013 0.015 

1.1992 74,211 EFIE Excellent 25 1 0.018 0.019 

1.7988 167,652 EFIE Excellent 38 1 0.026 0.025 

2.0000 207,663 EFIE Excellent 42 0.5 0.055 0.054 

2.3984 298,863 EFIE Excellent 51 0.5 0.061 0.060 

2.5000 326,430 EFIE Excellent 53 0.5 0.063 0.059 

2.5624 342,087 EFIE Excellent 54 0.5 0.060 0.056 

 

A plot of Nmax vs. N for the Goodness-of-Fit results is shown in Figure 69.  The curve 

follows the trend NN ~max . 

 

 

Figure 69:  Nmax vs. Number of Unknowns 

 

Appendix A holds the plots and goodness-of-fit statistics for all cases listed in Table 46. 
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Chapter 6. Conclusion & Future Direction 

6.1. Conclusion 

The highest, most efficient speedup for the test cases listed in Table 36 occurs for 

the combination of 2 MPI processes and 8 OMP threads.  Table 47 shows the SEP results 

for all 2-8 MPI-OMP combinations for which comparison runs could be performed. 

 

Table 47:  Results for best MPI-OMP combinations of matrix fill routine 

Frequency, f 

(GHz) 

Edges, N 

(# unknowns) 

Solution 

Test 

Best MPI – OMP 

Combination 

# DLX 

Nodes 

Average 

SEP 

0.8994 41,415 EFIE 2-8 1,2,4 1.8 

1.1992 74,211 EFIE 2-8 4,8,12 1.8 

1.7988 167,652 EFIE 2-8 16,20,24 1.9 

2.0000 207,663 EFIE 2-8 16,20,24 2.0 

2.3984 298,863 EFIE 2-8 32 1.5 

 

The 2-8 combination affords the following advantages: 

 minimum MPI processes needed per node for effective OMP threading;  

 highest, most efficient speedup; 

 least physical memory usage per node. 

The largest problem size of 342 K unknowns could only be executed on 32 nodes 

with the 2-8 combination.   DLX policy allows a maximum of 32 nodes per user.  For 

problem sizes beyond 342 K, more than 32 nodes will be needed.  

6.2. Future Direction 

To achieve the highest, most efficient speedup in the GEMINI Solver matrix fill 

routine, utilize hybrid MPI-OMP parallelization with 2 MPI processes and 8 OMP 

threads per node.  In addition, explore the use of high power clusters with more than 16 

cores per node and test different MPI-OMP combinations to find the highest, most 

efficient speedup combinations.  Furthermore, solve the OMP race condition requiring 

modifications #25 and #26 listed in Appendix B without using an OMP CRITICAL 

directive.  Finally, explore the utilization of hybrid MPI-OMP parallelization within the 

GEMINI Solver matrix solver routine to supplement the current integration of the 

University of Kentucky MFD library of advanced solution methods.  
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Appendix A   GEMINI Post RCS Results Fit to Mie Series 

Figure 70 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.1499 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
). Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

0.1499 

Unknowns 

1,083 

Solution 

EFIE 

Nmax Terms 

4 

Agreement 

Excellent 

σVV χ2 GOF 

0.103 

σHH χ2 GOF 

0.080 
 

 

Figure 70:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.1499 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS result 
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Figure 71 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.1499 GHz 

with fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit 

(GOF) statistics indicate Gemini results are in good agreement with the Mie Series.  VV 

and HH linear scatterplots show a good correlation between Gemini RCS values, yi, and 

Mie Series values, yi*.  However, a minor lack of fit is observed by the scatter in the 

linear values up to ≈ 4 m
2
. 

 

Frequency (GHz) 

0.1499 

Unknowns 

2,166 

Solution 

DIELECTRIC 

Nmax Terms 

4 

Agreement 

Good 

σVV χ2 GOF 

0..475 

σHH χ2 GOF 

0.351 
 

 

Figure 71:  (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.1499 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results 
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Figure 72 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.2998 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

0.2998 

Unknowns 

4,455 

Solution 

EFIE 

Nmax Terms 

7 

Agreement 

Excellent 

σVV χ2 GOF 

0.008 

σHH χ2 GOF 

0.007 
 

 

Figure 72:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.2998 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 73 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.2998 GHz 

with fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit 

(GOF) statistics indicate Gemini results are in good agreement with the Mie Series.  VV 

and HH linear scatterplots show a good correlation between Gemini RCS values, yi, and 

Mie Series values, yi*.  However, a slight lack of fit is observed by the scatter in the 

linear values up to ≈ 5 m
2
. 

 

Frequency (GHz) 

0.2998 

Unknowns 

8,910 

Solution 

DIELECTRIC 

Nmax Terms 

7 

Agreement 

Good 

σVV χ2 GOF 

0.204 

σHH χ2 GOF 

0.321 
 

 

Figure 73:  (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.2998 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results 
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Figure 74 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.5996 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

0.5996 

Unknowns 

18,162 

Solution 

EFIE 

Nmax Terms 

13 

Agreement 

Excellent 

σVV χ2 GOF 

0.009 

σHH χ2 GOF 

0.010 
 

 

Figure 74:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.5996 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 75 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.5996 GHz 

with fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit 

(GOF) statistics indicate Gemini results are in fair agreement with the Mie Series.  VV 

and HH linear scatterplots show a fair correlation between Gemini RCS values, yi, and 

Mie Series values, yi*.  However, a clear lack of fit is observed by the scatter in the linear 

values up to ≈ 10 m
2
. 

 

Frequency (GHz) 

0.5996 

Unknowns 

36,324 

Solution 

DIELECTRIC 

Nmax Terms 

13 

Agreement 

Fair 

σVV χ2 GOF 

2.123 

σHH χ2 GOF 

2.308 
 

 

Figure 75:  (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.5996 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results 
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Figure 76 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 0.8994 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

0.8994 

Unknowns 

41,415 

Solution 

EFIE 

Nmax Terms 

19 

Agreement 

Excellent 

σVV χ2 GOF 

0.013 

σHH χ2 GOF 

0.015 
 

 

Figure 76:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=0.8994 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 77 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post Dielectric RCS results (dB referenced to 1 m
2
) for f = 0.8994 GHz 

with fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit 

(GOF) statistics indicate Gemini results are in poor agreement with the Mie Series.  The 

Mie Series values tend to underestimate the Gemini values.  VV and HH linear 

scatterplots show a significant lack of fit by the scatter observed in the linear values up to 

≈ 10 m
2
. 

 

Frequency (GHz) 

0.8994 

Unknowns 

82,830 

Solution 

DIELECTRIC 

Nmax Terms 

19 

Agreement 

Poor 

σVV χ2 GOF 

4.115 

σHH χ2 GOF 

4.604 
 

 

Figure 77:  (Upper-Left) Gemini Dielectric RCS results vs. Mie Series for f=0.8994 GHz  

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini Dielectric RCS results 
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Figure 78 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 1.1992 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

1.1992 

Unknowns 

74,211 

Solution 

EFIE 

Nmax Terms 

25 

Agreement 

Excellent 

σVV χ2 GOF 

0.018 

σHH χ2 GOF 

0.019 
 

 

Figure 78:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=1.1992 GHz 

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 79 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 1.7988 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

1.7988 

Unknowns 

167,652 

Solution 

EFIE 

Nmax Terms 

38 

Agreement 

Excellent 

σVV χ2 GOF 

0.026 

σHH χ2 GOF 

0.025 
 

 

Figure 79:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=1.7988 GHz 

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 80 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.0000 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

2.0000 

Unknowns 

207,663 

Solution 

EFIE 

Nmax Terms 

42 

Agreement 

Excellent 

σVV χ2 GOF 

0.055 

σHH χ2 GOF 

0.054 
 

 

Figure 80:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.0000 GHz 

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 81 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.3984 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

2.3984 

Unknowns 

298,863 

Solution 

EFIE 

Nmax Terms 

51 

Agreement 

Excellent 

σVV χ2 GOF 

0.061 

σHH χ2 GOF 

0.060 
 

 

Figure 81:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.3984 GHz 

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 82 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.5000 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

2.5000 

Unknowns 

326,430 

Solution 

EFIE 

Nmax Terms 

53 

Agreement 

Excellent 

σVV χ2 GOF 

0.063 

σHH χ2 GOF 

0.059 
 

 

Figure 82:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.5000 GHz 

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Figure 83 shows VV (φ = 0°, 0° ≤ θ ≤ 180°) and HH (φ = 90°, 0° ≤ θ ≤ 180°) 

plots of GEMINI Post EFIE RCS results (dB referenced to 1 m
2
) for f = 2.5624 GHz with 

fits to the Mie Series (dB referenced to 1 m
2
).  Chi-Square (χ

2
) goodness-of-fit (GOF) 

statistics indicate Gemini results are in excellent agreement with the Mie Series.  VV and 

HH linear scatterplots show a nearly perfect correlation between Gemini RCS values, yi, 

and Mie Series values, yi*. 

 

Frequency (GHz) 

2.5624 

Unknowns 

342,087 

Solution 

EFIE 

Nmax Terms 

54 

Agreement 

Excellent 

σVV χ2 GOF 

0.060 

σHH χ2 GOF 

0.056 
 

 

Figure 83:  (Upper-Left) Gemini EFIE RCS results vs. Mie Series for f=2.5624 GHz 

(Upper-Right) Chi-Square Goodness-of-Fit statistics 

(Lower) Linear scatter plots of Mie Series vs. Gemini EFIE RCS results 
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Appendix B   Final Implementation: Changes To GEMINI Solver v3.0 

 

MODIFICATION #1 

MODULE:  project_m.f90 

SUBROUTINE:  createBasisLists 

ENTRY AT ORIGINAL CODE LINE 831 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition:  Nathan Champagne’s recommendation to refresh project obsBases and 
!             scrBases to avoid race condition. 
! 
   CALL this%obsBases%refreshArray() 
   CALL this%srcBases%refreshArray() 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #2 

MODULE:  list_m.f90 

ENTRY AT ORIGINAL CODE LINE 46 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Modification:  Nathan Champagne’s recommendation to make refreshArray 
!                 nonprivate 
! 
      PROCEDURE :: refreshArray   
!      PROCEDURE, PRIVATE :: refreshArray 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #3 

MODULE:  solution_m.f90 

ENTRY AT ORIGINAL CODE LINE 25 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Use OMP Library 
! 
   USE OMP_LIB  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #4 

MODULE:  solution_m.f90 

SUBROUTINE:  solution_nonperiodic 

ENTRY AT ORIGINAL CODE LINE 119 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Declare wall clock time 
! 
   REAL (KIND=8) :: WTIME  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #5 

MODULE:  solution_m.f90 

SUBROUTINE:  solution_nonperiodic 

ENTRY AT ORIGINAL CODE LINE 222 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Get initial wall clock time 
! 
      WTIME = OMP_GET_WTIME()  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #6 

MODULE:  solution_m.f90 

SUBROUTINE:  solution_nonperiodic 

ENTRY AT ORIGINAL CODE LINE 223 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Calculate and display "Elapsed Time" for global matrix fill 
! 
      WTIME = OMP_GET_WTIME() - WTIME 
      WRITE (*,'(A,ES10.3E3)') '          Elapsed Time = ',WTIME 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #7 

MODULE:  solution_m.f90 

SUBROUTINE:  solution_periodic 

ENTRY AT ORIGINAL CODE LINE 333  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Declare wall clock time 
! 
   REAL (KIND=8) :: WTIME  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #8 

MODULE:  solution_m.f90 

SUBROUTINE:  solution_periodic 

ENTRY AT ORIGINAL CODE LINE 450   

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Get initial wall clock time 
! 
      WTIME = OMP_GET_WTIME()  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #9 

MODULE:  solution_m.f90 

SUBROUTINE:  solution_periodic 

ENTRY AT ORIGINAL CODE LINE 451   

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Calcualte and display "Elapsed Time" for global matrix fill 
! 
      WTIME = OMP_GET_WTIME() - WTIME 
      WRITE (*,'(A,ES10.3E3)') '          Elapsed Time = ',WTIME 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #10 

MODULE:  commonregion_m.f90 

ENTRY AT ORIGINAL CODE LINE 75 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of CommonRegionStatic for each OMP thread 
! 
!$OMP THREADPRIVATE(CommonRegionStatic) 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #11 

MODULE:  homogeneousgreensfunction_m.f90   

ENTRY AT ORIGINAL CODE LINE 43  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of HomogenousGreensFunction for each OMP thread 
! 
!$OMP THREADPRIVATE(HomogenousGreensFunction) 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
! 

 

MODIFICATION #12 

MODULE:  localmatrix_m.f90   

ENTRY AT ORIGINAL CODE LINE 84   

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of LocalMatrix for each OMP thread 
! 
!$OMP THREADPRIVATE(LocalMatrix) 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #13 

MODULE:  localmatrix_m.f90 

SUBROUTINE:  fillMoM   

ENTRY AT ORIGINAL CODE LINE 141  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of variables for each OMP thread 
! 
!$OMP THREADPRIVATE(rs,unitNormal,l_vec,jac,srcWghtJacobian,srcArray)             
!$OMP THREADPRIVATE(G,Kphi,Kpsi,Pz,Qz,gradG,grad_Kphi,grad_Kpsi,grad_Pz,grad_Qz)  
!$OMP THREADPRIVATE(Ga,Gf,curl_Ga,curl_Gf) 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #14 

MODULE:  localmatrix_m.f90 

SUBROUTINE:  fillMoMThin 

ENTRY AT ORIGINAL CODE LINE 642  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of each variable for each OMP thread 
! 
!$OMP THREADPRIVATE(rs,unitNormal,l_vec,jac,srcWghtJacobian,srcArray)             
!$OMP THREADPRIVATE(G,Kphi,Kpsi,Pz,Qz,gradG,grad_Kphi,grad_Kpsi,grad_Pz,grad_Qz)  
!$OMP THREADPRIVATE(Ga,Gf,curl_Ga,curl_Gf)  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #15 

MODULE:  brickelement_m.f90   

ENTRY AT ORIGINAL CODE LINE 288 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of each variable for each OMP thread 
! 
!$OMP THREADPRIVATE(xiTemp,wghtTemp)           
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #16 

MODULE:  prismelement_m.f90 

ENTRY AT ORIGINAL CODE LINE 272  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of each variable for each OMP thread 
! 
!$OMP THREADPRIVATE(xiTemp,wghtTemp)          
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #17 

MODULE:  quadrilateralelement_m.f90   

ENTRY AT ORIGINAL CODE LINE 220  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of each variable for each OMP thread 
! 
!$OMP THREADPRIVATE(xiTemp,wghtTemp)          
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #18 

MODULE:  triangleelement_m.f90   

ENTRY AT ORIGINAL CODE LINE 217 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of each variable for each OMP thread 
! 
!$OMP THREADPRIVATE(xiTemp,wghtTemp)          
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #19 

MODULE:  wireelement_m.f90   

ENTRY AT ORIGINAL CODE LINE 113   

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: A private copy of each variable for each OMP thread 
! 
!$OMP THREADPRIVATE(xiTemp,wghtTemp)          
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #20 

MODULE:  globalmatrix_m.f90 

ENTRY AT ORIGINAL CODE LINE 21   

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Use OMP Library 
! 
   USE OMP_LIB  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #21 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  fillNormal 

ENTRY AT ORIGINAL CODE LINE 64 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Modification:  Make classPointer keep it's value between calls to fillNormal 
!  Addition:  Make classPointer OMP Thread Private  
! 
!   CLASS(*), POINTER :: classPointer 
   CLASS(*), POINTER, SAVE :: classPointer => null()  
!$OMP THREADPRIVATE(classPointer) 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #22 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  fillNormal 

ENTRY AT ORIGINAL CODE LINE 65 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Variables needed for OMP threading 
! 
   INTEGER :: n_i,nodeSetCount,nodeCount,iNode 
   INTEGER :: obsTID, srcTID, obsNTHREADS, srcNTHREADS,CHUNK, numUnknowns 
   LOGICAL :: OMP_NESTED_FLAG 
   CLASS(ElementType), POINTER :: element 
   CLASS(NodeSetType), POINTER :: nodeSet 
   TYPE(MatrixParametersType), POINTER :: matrixParameter 
   matrixParameter => project%matrixParameters%at(1) 
   numUnknowns = matrixParameter%numUnknowns  
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 

 

MODIFICATION #23 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  fillNormal 

ENTRY AT ORIGINAL CODE LINE 77  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Nathan Champagne’s recommendation to reduce the number of OMP 
!            Critical Region directives needed to solve race conditions  
! 
   DO i = 1,elementCount 
      element => project%elements%at(i) 
      nodeSetCount = SIZE(element%nodeSets(:)) 
      DO n_i = 1,nodeSetCount 
         nodeSet => element%nodeSets(n_i)%object 
         nodeCount = element%nodeCount(n_i) 
         DO iNode = 1,nodeCount 
            IF(nodeSet%unknownFlags(1)) THEN 
               CALL element%unknownJ(n_i)%node(iNode)%dofIds%refreshArray() 
            ENDIF 
            IF(nodeSet%unknownFlags(2)) THEN 
               CALL element%unknownM(n_i)%node(iNode)%dofIds%refreshArray() 
            ENDIF 
         ENDDO 
      ENDDO 
   ENDDO 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #24 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  fillNormal 

ENTRY AT ORIGINAL CODE LINE 77 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: Set up for Open MP parallelization of outer observation element loop 
! 
!  Set chuck size per thread 
! 
   CHUNK=1 
! 
!  Disable nested parallelism 
!  
   OMP_NESTED_FLAG=.FALSE. 
   CALL OMP_SET_NESTED(OMP_NESTED_FLAG) 
! 
!  Display parallel environment 
! 
   IF (MPIWrapper%myIndex == 0) THEN    
     WRITE (*,'(10X,A,I6,A,I2,A,I3)') 'Unknowns = ',numUnknowns,               & 
                       '   Chunk =  ', CHUNK,                                  & 
                       '   MPI processes = ',MPIWrapper%numberOfProcessors     
      IF (OMP_GET_NESTED()) THEN 
         WRITE (*,'(10X,A,L5)') 'OMP Nested Parallelism ENABLED!' 
      ELSE 
         WRITE (*,'(10X,A,L5)') 'OMP Nested Parallelism NOT enabled!'     
      ENDIF 
   ENDIF 
! 
!  Outer observation element loop forks here  
! 
!$OMP PARALLEL                                                                  & 
!$OMP SHARED(project,gMatrix,freqIndex)                                         & 
!$OMP SHARED(elementCount,freqPointer,modeIndex,omega)                          & 
!$OMP PRIVATE(obsTID,i_t,n_t)                                                   & 
!$OMP PRIVATE(obsElement,obsBasis,obsNodeSetCount,obsNodeSet,obsNodeCount)      & 
!$OMP PRIVATE(obsArray)                                                         & 
!$OMP PRIVATE(srcTID,i_s,n_s)                                                   & 
!$OMP PRIVATE(srcElement,srcBasis,srcNodeSetCount,srcNodeSet,srcNodeCount)      & 
!$OMP PRIVATE(commonRegions,regionCount)                                        & 
!$OMP PRIVATE(obsSourceFlag,obsJsourceJ,obsJsourceM,obsMsourceJ,obsMsourceM)    & 
!$OMP PRIVATE(obsIndex,srcIndex)                                                 
! 
!  Dynamic Scheduling  
! 
!$OMP DO SCHEDULE(DYNAMIC, CHUNK) 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #25 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  fillNormal 

ENTRY AT ORIGINAL CODE LINE 81 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: OMP Critical Region required to eliminate race condition in  
!            obsElement => project%elements%at(i_t) 
! 
!$OMP CRITICAL  
      classPointer => project%elements%at(i_t) 
      SELECT TYPE(classPointer) 
      CLASS IS(ElementType) 
         obsElement => classPointer 
      END SELECT 
!$OMP END CRITICAL 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
 

MODIFICATION #26 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  fillNormal 

ENTRY AT ORIGINAL CODE LINE 123 (FEM) & LINE 200 (MoM)  

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Addition: OMP Critical Region required to eliminate race condition in  
!            srcElement => project%elements%at(i_s) 
! 
!$OMP CRITICAL  
      classPointer => project%elements%at(i_t) 
      SELECT TYPE(classPointer) 
      CLASS IS(ElementType) 
         srcElement=> classPointer 
      END SELECT 
!$OMP END CRITICAL 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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MODIFICATION #27 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  fillNormal 

ENTRY AT ORIGINAL CODE LINE 368  

! 

!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

! 

!  Addition: Outer observation element loop joins here 

! 

!$OMP END PARALLEL DO  

! 

!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

! 

 

MODIFICATION #28 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  localToGlobal 

ENTRY AT ORIGINAL CODE LINE 463 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Modification: Initialize value to zero rather than getting value from gMatrix  
!                to avoid OMP race condition 
! 
                  value = 0.0_dk 
!                  value = gMatrix%getValue(rowDOF,columnDOF) 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
 
MODIFICATION #29 

MODULE:  globalmatrix_m.f90 

SUBROUTINE:  localToGlobal 

ENTRY AT ORIGINAL CODE LINE 478 

! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
!  Modification: Update global matrix in OMP Critical Region to avoid OMP race 
!                condition 
! 
!$OMP CRITICAL  
                  value = value + gMatrix%getValue(rowDOF,columnDOF) 
                  CALL gMatrix%putValue(rowDOF,columnDOF,value) 
!$OMP END CRITICAL 
! 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
! 
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