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ABSTRACT 

 

PROTECTION FROM AORTIC ANEURYSM BY BMAL1 DELETION FROM 
SMOOTH MUSCLE CELLS 

 

 

Abdominal aortic aneurysm (AAA) is a devastating condition that occurs primarily 
among older people with high mortality when a rupture occurs. Currently there is no 
proven pharmacological therapy for AAA due to poor understanding of the underlying 
pathogenesis.  The brain and muscle transcription factor ARNT-like (Bmal1), which is 
known to regulate circadian rhythm, has been implicated in vascular pathologies 
including atherosclerosis and vascular remodeling, but its role in AAA has not been 
explored. 

Vascular smooth muscle is a central player in aneurysm formation and 
development because it is critical in all three aortic aneurysm hallmark processes 
including (a) degradation of elastin and extracellular matrix protein, (b) loss of medium 
layer smooth muscle cells, and (c) intense inflammatory cell infiltration. 

Here we report that smooth muscle-selective deletion of brain and muscle Arnt-
like protein-1 (Bmal1) potently protected mice from AAA induced by mineralocorticoid 
receptor (MR) agonist deoxycorticosterone acetate (DOCA) or Angiotensin II (ANG II) in 
the presence of high salt. Bmal1 was upregulated by DOCA-salt in the aorta.  Moreover, 
deletion of Bmal1 in smooth muscle selectively upregulated tissue inhibitor of 
metalloproteinase 4 (TIMP4) and also abolished DOCA-salt-induced elastin degradation 
and matrix metalloproteinase (MMP) activation. Mechanistically, Bmal1, when bound to 
TIMP4 promoter, suppressed the transcription of the promoter. Taken together, these 
results reveal an important but previously unexplored role of smooth muscle Bmal1 in 
DOCA plus salt-induced AAA. We suggest that TIMP4 constitutes a novel therapeutic 
target for AAA treatment.  

 

 

 

  



  

 
 

Keywords: Aortic Aneurysm, Bmal1, Vascular Smooth Muscle Cells, Matrix 
Metalloproteinases, Tissue Inhibitor of Metalloproteinases. 
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CHAPTER 1 

Introduction 

 

1.1. Aortic Aneurysm  

1.1.1. Definition  

Aortic Aneurysm (AA) is defined as the permanent and irreversible localized dilation of 

the aorta1. An aortic dilation is considered aneurysmal with an increase of a minimum of 

50% of the normal diameter2.  

1.1.2. Type 

1.1.2.1. Abdominal Aortic Aneurysm 

Abdominal aortic aneurysm (AAA) is the most common form. Here the dilation occurs in 

the infrarenal region of the aorta. It is most prevalent in men over the age of 65 and is 

the 14th leading cause of death in the United States. Aortic aneurysm rupture accounts 

for approximately 4500 deaths not including the 1400 deaths that occur due to surgical 

repairs to prevent rupture. This chronic enlargement of the aorta is often asymptomatic 

and frequently leads to rupture and death.  

1.1.2.2 Thoracic Aortic Aneurysm 
Another form for AA is thoracic aortic aneurysm (TAA); it is less common, occurring in 

approximately 6-10 per every 100,000 people. The incidence of TAA formation is similar 

in both genders and it occurs earlier in life than AAA. The majority of TAAs involve the 

aortic root and/or the ascending aorta. Most patients with TAAs are asymptomatic. Just 

like AAA, TAA is discovered during imaging screening. However, TAA progression is 

rather slow; it grows at a rate of approximately 0.1cm/year, and an intervention is 
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required only when the diameter reaches 5.0 cm to 5.5 cm3. The exceptions to this rule 

are patients with a family history of TAA that later became an acute aortic dissection and 

those with Loeys-Dietz syndrome. These patients have to undergo a surgical repair 

when the aortic diameter reaches 4.2 cm4. TAA has a strong genetic component, and 

five different TAAs have been identified.  Like AAA, hallmarks of TAA involve changes in 

the extracellular matrix (ECM).  

1) Marfan Syndrome (MFS): was first described in 1896 and later found to be an 

autosomal dominant genetic disorder in 19365. It is the most common genetic aortic 

disease, occurring at approximately four to six people per every 100,000. It is best 

known for its physical features which are pectus excavatum or sunken breastbone, 

arachnodactyly or long and slender fingers and toes, tall stature, and lens ectopia. MFS 

is caused by mutations in fibrillin-1(FBN1)6, a glycoprotein found in the ECM. It has been 

shown to regulate TGF-β activity. A mutation in FBN1 prevents TGF-β regulation and 

causing an increase in its activity7. 

2) Loeys-Dietz syndrome (LDS) is the most recent syndrome discovered. It was 

described in 2005 by Loeys et al8. Patients with LDS were initially misdiagnosed as 

having either MFS or vascular Ehlers-Danlos (vEDS) syndrome because of the similarity 

in phenotype with those two other syndromes. The most specific features to LDS are 

hypertelorism and wide uvula. LDS is divided in two different types: 1) facial 

dysmorphogenic type characterized by a cleft palate, micrognathia and craniosynostosis. 

2) vascular EDS-like syndrome characterized by visceral rupture, easy bruising, wide 

scars, joint laxity and translucent and velvety skin9. Other features have been described 

in LDS with recent research which includes facial milia and an increase in eosinophilic 

esophagitis as well as an increase inflammatory bowel disease10. LDS is caused by 

mutations in the transforming growth factor receptor 1 and 2 (TGFR1 and TFGR2). 
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Among the two, the most frequent mutation is the one found in TGFR29. The types of 

mutations do not lead to a specific type of LDS. Mutations in these two genes affect 

TGFβ signaling and each mutation affects the pathway differently and has been shown 

to also phosphorylate SMAD2 and subsequently activate the SMAD pathway11. 

3) vascular Ehlers-Danlos syndrome (vEDS) was first described in 1901 and classified 

as autosomal dominant in 194912. vEDS is less common than MFS occurring in one 

individual in every 250,000. Patients with vEDS present the following clinical features: 

thin skin with visible veins, easy bruising, thin pinched nose, thin lips, prominent ears, 

hollow cheeks, and tightness of skin of the face. These patients have a short lifespan 

with 50% risk of mortality at the age of 4813. vEDS is caused by mutations in type 3 

procollagen (COL3A1) gene which is the major collagen in blood vessels. These 

mutations cause weaknesses in the vasculature and the heart. In vEDS, the medium 

and large arteries are susceptible to rupture; they can dissect without any dilation.  The 

aortic root is not affected. Because vEDS also affects other organs, in pregnancy the 

enlarging uterus is susceptible to rupture in addition to other organs affected by an 

increase in pressure. The risk of mortality among these pregnant women due to rupture 

of the uterus is approximately 15%. Therefore, pregnant women with vEDS need to 

undergo an elective caesarian section at 32 weeks of gestation13. 

4) Turner syndrome was first described in the United States in 1938 and linked to 

monosomy in 19595. Tuner syndrome is cause by a partial or a complete monosomy of 

chromosome X (45 Xo). It is quite common occurring in one in every 2000-5000 women. 

The physical features of Tuner syndrome are: short stature, webbed neck and 

lymphedema. There are many diseases that are associated with individuals with Turner 

syndrome including cardiovascular disease which is a main cause of mortality in these 

patients. Only one percent of Turner conceptions survive. Those that survive are known 
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to develop aortic diseases as well as aortic aneurysm, elongation of the transverse arch, 

and aortic coarctation14. They also develop abnormalities in the heart such as bicuspid 

aortic valve and partial anomalous pulmonary venous return to the heart15. 

5) Familial thoracic aneurysm and dissection (FTAAD):  About 19% of individuals with 

aortic dissection have had a first-degree family member affected with the same disease 

that is not one of the genetic diseases mentioned above. It is believed that these 

individuals have mutation in genes that have an autosomal dominant inheritance with 

decreased penetrance. All these individuals are collectively placed in a group called 

familial thoracic aortic aneurysms and dissection (FTAAD); they present a variety of 

abnormalities, such that there is a large range of physical features among them16. 

Presently, three different genes with mutations have been identified in the population. 

First, mutations in the myosin heavy chain 11(MYH11) is expressed by smooth muscle 

cells and is part of the smooth muscle cell contractile apparatus. Mutations in this gene 

account for less than 2% of the FTAAD population. Second, mutations in smooth muscle 

actin alpha2 (ACTA 2) is also a part of the contractile apparatus in smooth muscle cells. 

Mutations of ACTA2 account for 14% of the FTAAD population17. Third are mutations in 

SMAD3 gene which has been recently described among this population18. Mutations in 

SMAD3 are thought to increase levels of CTGF, TGF-β1, and phosphorylated SMAD218. 

Patients with this mutation have physical features similar to LDS; however, these 

patients also have an increase in bone abnormalities. This syndrome is also called 

aneurysm and osteoarthritis syndrome (AOS), and accounts for approximately 2 % of 

FTAAD population. 

For the purpose of this study, we had focused on AAA rather than TAA, since the former 

is the most common of both types and it is primarily acquired, rather than genetic. 

Therefore, we will discuss the risk factors, mechanisms and treatments of AAA. 



  

5 
 

 

1.1.3. Risk Factors  

The risk factors associated with AAA are: age, sex, ethnicity, smoking and other 

predisposing factors. 

Age, sex and ethnicity: The risk of AAA increases dramatically after the age of 60. 

Approximately 1% of men between the age of 55 and 65 have a clinically relevant 

aneurysm. AAA is four to six times more common in men than in women, occurring 

approximately 10 years later in women. However, once AAA develops in women, the 

occurrence of AAA is more aggressive, and the aneurysm expands faster with a high 

probability of rupturing with a small diameter19. Lederle et al. showed that Caucasians 

were more prone to AAA than are African Americans 20. 

Smoking: One of the major risk factor of AAA formation is smoking. In a study from 

Lederle et al, they found that smoking accounted for 75% of all the AAA20. The number 

of years of smoking was found to be directly proportional to the onset of AAA21. 

Other predisposing factors: Hypertension has been shown to be a risk factor of AAA 

formation and rupture. AAA has been shown to be common in patients with 

atherosclerosis. It is also prevalent in patients with arteriosclerosis obliterans. Family 

history is also a risk factor with 4-fold increase in AAA when a first-degree family 

member is diagnosed with AAA. 

1.1.4. Mechanisms 

The mechanisms that lead to aortic aneurysm formation are not well understood. 

However, there have been many hallmarks associated with aortic aneurysm. The 

hallmarks of AAA are fragmentation of elastin in the aortic media and collagen 

degradation, leukocytic infiltration and vascular smooth muscle cells depletion22, 
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23.Elastin is a major component of the aortic wall with viscoelastic properties. It is most 

abundant in the aortic media where it is associated with smooth muscle cells. Collagen, 

another component of aortic wall, provides tensile strength to maintain structural 

integrity. Smooth muscle cells are the major cell type in the aorta. Smooth muscle cells 

and adventitial fibroblasts can synthesize all of the different components of the 

extracellular matrix24. The lack of a definite definition of aortic aneurysm has led to 

development of different animal models of aortic aneurysm. These models gave new 

and better perceptive in the pathogenesis of aortic aneurysm. These models have 

revealed that aortic aneurysm formation involves chronic inflammatory infiltration of 

macrophages, neutrophils, mast cells, T and B lymphocytes. Different cytokines and 

extracellular proteases have been shown to increase the inflammatory response and to 

cause vascular smooth muscle cells apoptosis and extracellular matrix degradation. 

Macrophages are the most common inflammatory cell in aortic aneurysm tissue. C-C 

chemokine receptor type 2 (CCR2) interactions with chemokine (C-C motif) ligand1 

(CCL2) mediates monocyte chemotaxis. MacTaggart et al investigated the role of CCR2 

in aortic aneurysm formation using CCR2-/- mice. When those mice were treated with a 

periaortic application of CaCl2 for 6 weeks, it was found those mice had an attenuation of 

aortic aneurysm25. These findings were similar to a previous study from Ishibashi et al 

using the ANGII model26. Myeloid differentiation factor 88 (MyD88) which also plays an 

important role macrophage infiltration, has been found to play a role in aortic aneurysm 

formation. Deficiency in MyD88 attenuates abdominal aortic aneurysm using the ANGII 

model27. Neutrophils have also been found in human and mice aortic aneurysm.  

Deletion of L-selectin, a molecule involved in neutrophil recruitment to inflammatory 

sites28, decreased aortic diameter after elastase infusion29. 
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Many different cytokines and chemokines have been studied in aortic aneurysm and 

their roles have been established. Transforming growth factor (TGF-β) inhibits 

inflammation, and stimulates collagen deposition. Systemic neutralization of TGF-β 

activity was found to increase AngII-induced aortic aneurysm and increase vascular 

smooth muscle cells death, elastin degradation and aortic rupture in C56BL/6 mice30. 

Administration of cyclosporine A, an immunosuppressant that promotes tissue 

accumulation and induces TGF-β, attenuates aortic aneurysm formation in an elastase 

model in rats and CaCl2 model in mice, while administration of anti TGF-β antibody 

abrogated the protective effects of cyclosporine  A31. 

Another critical cytokine that has been associated with aortic aneurysm is tumor necrosis 

factor (TNF-α). TNF-α has been found to be increased in plasma of patients with AAA32. 

TNF-α as well as other members of the TNF receptor superfamily have been found to be 

increased in human aortic aneurysm tissues33-35. When TNF-α-/- mice underwent 

periaortic application of CaCl2 for 6 weeks, those mice has shown complete protection 

from aortic aneurysm. These results has shown that TNF-α is big contributor in the 

formation of aortic aneurysm. 

Several interleukins have been associated with aortic aneurysm including IL1-β, IL-6, IL-

17 and IL-23. They have been found to be increased in human aortic aneurysm tissues. 

IL-6 is significantly increased in patients with AAA and TAA36. Using the elastase model 

to induce aortic aneurysm, deletion of IL-17 or IL-23 in mice attenuates aortic diameter 

and cytokine production37. Similarly, deletion of IL-1β in mice prevented aortic aneurysm 

formation38. 

Elastin degradation, an early event in AAA, causes dilation whereas collagen 

degradation causes rupture. Elastin and collagen are degraded by endopeptidases that 
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are secreted by smooth muscle cells and adventitial fibroblasts within the vascular wall 

by infiltrated lymphocytes and monocytes. Matrix metalloproteinases (MMPs) are 

endopetidases associated with AAA and are locally activated. Their actions are inhibited 

by tissue inhibitor of matrix metalloproteinases (TIMPs) which also increased during 

aneurysm formation, but TIMPs’ action is overwhelmed by a high increase of activated 

MMPs by other MMPs or plasmin. 

Another key event in the formation of an aneurysm is smooth muscle atrophy in the 

medial layer of the aortic wall. Smooth muscle cells contribute to the maintenance of the 

structural wall through production of various extracellular matrix proteins. They also play 

a role in vascular remodeling by expressing proteinases and their inhibitors. In the 

aneurysm pathology, SMC play a role in matrix synthesis, proteinase and inhibitor 

elaboration, and inflammatory cell recruitment. The imbalance between matrix 

metalloproteinases and their inhibitors is observed in aortic aneurysm, with the matrix 

metalloproteinase overwhelming their inhibitors,   is attributed to either an increase in 

matrix metalloproteinase production from smooth muscle cells or a decrease in tissue 

inhibitor production from smooth muscle cells39. SMCs produce different proteinases in 

response to different stimuli. Inflammation, shear stress, or injury to vessel walls lead to 

an increase of MMP3, MMP7, MMP9, and MMP12 in vivo40, 41.  

Studies have shown that smooth muscle cells play a role in matrix degradation in aortic 

aneurysm42. SMCs from aortic aneurysm tissue express a high level of MMP2 compared 

to non-aneurysmal aorta43. SMC constitutively express MMP2 and stimulation with 

platelet-derived growth factor (PDGF) further increases its expression44. PDGF also 

increases MMP12 expression in SMC45. The expression of MMP-9 and MMP-3 in SMC 

are induced by IL-1β and TNFα46. These cytokines have been shown to be increased in 

human aortic aneurysm tissue47. One of the final stages of AAA is medial degeneration. 
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The decrease in SMC in AAA has led researchers to hypothesize that the decrease in 

SMC in the media is a key player in the imbalance between the metalloproteinases and 

their inhibitors. Studies have shown that seeding of SMC prevents AAA formation. In a 

study conducted in rats, seeding of syngeneic VSMC endoluminally prevented aortic 

aneurysm increase after 8 weeks of aneurysmal aortic xenografts. The seeding also 

prevented MMP1, 3, 7, 9 and 12 mRNA increases. TIMPs1, 2, 3 were significantly 

increased when compare to their control48. A previous study from Losy et al. had also 

shown that seeding of VSMC prevented aortic aneurysm expansion in rats49. These 

studies suggest that SMC play a critical role in aortic aneurysm; therefore, there is a 

need to better understand the role that smooth muscle cells play in aortic aneurysm 

formation.  

1.1.5. Animal Models 
Animal models of aortic aneurysm are classified into three different groups: genetically 

predisposed animal models, chemical models, and physical models. 

1.1.5.1. Genetically predisposed animal models 
The blotchy mouse, which has been found to develop spontaneous aneurysms, has a 

mutation on the X chromosome resulting in a defect in cross-linking of collagen and 

elastin. The defective cross-liking is a result of an abnormal copper metabolism. These 

mice have abnormal connective tissue, skin color and neurological function50, they 

develop saccular and fusiform aneurysms mostly in the thoracic aorta51. These findings 

have led to the conclusion that copper is involved in aortic aneurysm formation. 

However, there has not been any evidence from human patients with aortic aneurysm 

that involved copper since copper levels remained unchanged in aortic aneurysm52, 53.  

Lysyl oxidase (LOX) is an enzyme involved in crosslinkage of elastin and collagen. 

Deficiency of Lox in mice causes thoracic aortic aneurysm rupture from the perinatal 
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period54. Apolipoprotein E (ApoE) and low-density lipoprotein (LDL) receptor knockout 

mice develop abdominal aortic aneurysm after being fed with high fat diet55. The 

Tsukuba hypertensive mouse, a transgenic mouse carrying a human gene for renin and 

angiotensinogen56, dies from aortic aneurysm rupture after drinking water containing 1% 

sodium chloride57. 

1.1.5.2. Chemical models 
Periarterial application of calcium chloride (CaCl2) solution to the infrarenal aorta causes 

aortic aneurysm formation. This model was first developed using the rabbit common 

carotid artery causing the local dilation of the artery. This was associated with loss of 

endothelial cells, degradation of the elastin lamina, intimal hyperplasia, and inflammatory 

infiltration. Subsequently, CaCl2 was applied to rabbit aorta. This model consists of 

applying 0.5M of CaCl2 around the infra-renal aorta for approximately 15 minutes with 

cotton gauze. This model has been demonstrated to induce medial damage and 

vascular remodeling, collagen degradation, and an increase in MMP activity. CaCl2 

induction does not lead to a spontaneous increase in aortic diameter. However, after 2 

weeks, the aortic diameter increased by more than 64%,  and increased more than 

113% during the third week58. Disruption of elastin lamina and an increase in the 

inflammatory response suggested that this model was clinically relevant since these 

same features are found in human AAA. Using this model, the role of different MMPs in 

aortic aneurysm formation has been better understood. Using genetically altered mice, 

Longo et al. have shown that MMP2-/- and MMP9-/- mice did not develop AAA. MMP9-/- 

mice developed aneurysm only after being infused with competent macrophages from 

the wild type mice59. These findings showed that MMP2 and MMP9 are both required to 

develop AAA. Longo et al. also determined the role of MMP12 using MMP12-/- mice; 

they had demonstrated that MMP12 attenuates dilation of the aorta60. Since MMP 
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activity is tightly regulated by TIMPs, the role of TIMPs has also been studied using this 

model. TIMP2-/- mice were found to have a smaller aortic diameter than their 

corresponding control after 6 weeks and had a lower level of MMP261, supporting 

evidence that TIMP2 activates MMP2. 

A modified model of CaCl2 was developed in order to accelerate AAA formation: calcium 

phosphate (CaPO4). In this model, the infrarenal of the aorta is incubated with CaCl2 for 

10 minutes followed by phosphate-buffered saline (PBS) for 5 minutes. This model   

increased aortic diameter 7 weeks after treatment. CaPO4 treatment caused an increase 

in apoptosis and inflammatory infiltration62. 

The elastase-induced model is also an important model. The procedure involves the 

insertion of a catheter in the infrarenal aorta through the iliac bifurcation. The aorta is 

then clamped at the level of the renal vein and the catheter ligated. Type I porcine 

pancreatic elastase in then introduced to the lumen and incubated for 5 minutes after 

which the flow is restored. Elastase infusion resulted in immediate dilation of the aorta 

and an aneurysm developed 2 to 5 days later. This outcome showed the involvement of 

medial elastolytic activity in aneurysm formation making this model a very useful model. 

This model has been used to investigate the role of hypertension, gender, and smoking 

in aortic aneurysm formation. To understand the role of hypertension in aortic aneurysm 

formation, aortic aneurysm was induced in normotensive Wistar-Kyoto rats (WKY) and 

hypertensive Wistar Kyoto rats (WKHT) using the elastase infusion model. Around day 

7, the aortic diameter was significantly larger within the hypertensive group than the 

normotensive group. Fourteen days after infusion, the aortic diameter increased even 

further in hypertensive rats. Although the normotensive rats had an increase in aortic 

diameter of over 100%, the genetically hypertensive rats had an increase in aortic 

diameter of over 200%63. These results suggested that hypertension contributes to the 
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expansion of aortic aneurysm. Gender was studied as a risk factor using the elastase-

infusion model. It has been demonstrated that when male rats are treated with 

exogenous estrogen, their aortic diameter was smaller than non-treated male rats. This 

decrease in aortic diameter was also seen in orchidectomized male rats. Hormone 

replacement in male rats that were surgically castrated showed an increase in aortic 

diameter while there was a decrease in aortic diameter in oophorectomized females. 

This decrease in aortic diameter was associated with a decrease in macrophage 

infiltration64. These data suggest that gonadal hormones regulate aortic aneurysm by 

altering macrophage infiltration. Smoking being a major risk factor of aortic aneurysm 

formation was investigated when C57BL/6 mice were exposed to cigarette smoke two 

weeks prior to elastase infusion and continuously until the aorta was harvested. Mice 

that were exposed to both cigarette smoke and elastase developed a larger aortic 

aneurysm compare to those that only were elastase infused. The increase in diameter in 

mice exposed to both was 60% greater than those that had elastase infusion65. The 

results confirmed the risks of cigarette smoking in aortic aneurysm development. This 

model was also used to look at the role of TIMPs in aortic aneurysm formation. When 

TIMP1-/- and their control underwent elastase infusion to induce aortic aneurysm, 

TIMP1-/- mice developed a larger aortic aneurysm compare to the control 14 days 

later66.  

Systemic angiotensin II infusion is a model described by Manning et al. and shares the 

same characteristics as human aortic aneurysm. In this model, AngII in an osmotic mini-

pump is implanted subcutaneously into LDL receptor-/- mice or ApoE-/- mice at a 

dosage of 1000ng/kg/min for 28 days. This model results in accelerated atherosclerosis 

and abdominal aortic aneurysm in the suprarenal aorta67. AngII induced aortic aneurysm 

results in medial degeneration and remodeling, inflammation, and thrombosis. Data have 
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shown an increase in inflammation and an increase in MMPs gene expression68. These 

characteristics are also seen in human aortic aneurysm, making this model a good 

model to study aneurysm. AngII infusion has a modest increase in blood pressure; this 

increase in blood pressure was shown to be independent of aortic aneurysm formation. 

When hydralazine was given to lower blood pressure in AngII infused ApoE -/- mice, 

blood pressure decreased; however, aortic aneurysm formation did not change69. The 

incidence of aortic aneurysm in these mice only decreased with pretreatment with 17β-

estradiol70. The renin-angiotensin system has been studied to understand its role in this 

model. When losartan, an AT1 receptor antagonist, was given in conjunction with AngII 

to ApoE-/- mice, aortic aneurysm formation was completely inhibited71. Candesarten, 

another AT1 receptor antagonist and Lisinopril, an ACE inhibitor, attenuated aortic 

aneurysm expansion72. When given an AT2 receptor antagonist PD123319, the 

incidence of aortic aneurysm increased as well as the severity71. However, 

spironolactone, an aldosterone receptor antagonist, there was no effect on aortic 

aneurysm formation73. Several drugs have been shown to attenuate aortic aneurysm 

formation and reduce incidence in this model: Doxycycline74, Vitamin E75, simvastatin76 

and rosiglitazone77. 

A mineralocorticoid agonist plus salt induces aortic aneurysm in mice. This model was 

first developed as a hypertension model and was later found to develop AAA in older 

mice (8 to 10 months). Subcutaneous implant of a 50 mg Deoxycorticosterone acetate 

(DOCA) pellet or an osmotic pump containing 200ng/kg/min of aldosterone in 

conjunction with water containing 0.9% NaCl and 0.2% KCl for 21 days with the DOCA 

pellet and 28 days with the osmotic pump leads to dilation of the aorta in the suprarenal 

aorta. This model requires high salt intake. Liu et al. had demonstrated that in the 

absence of high salt, mice did not develop any aneurysm. This model was shown to be 
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clinically relevant and to be age-dependent. The incidence and severity of AAA were 

significantly lower in young (10 weeks old) mice compare to older (10 months old) mice. 

This model shared the same characteristic as human aortic aneurysm: elastin and 

collagen degradation, MMP upregulation, vascular smooth muscle cells degeneration 

and inflammatory cells infiltration.  

1.1.5.3. Physical Models 
Different physical techniques have been used in order to create aortic aneurysm in 

animals. However, these techniques do not completely mimic human aortic aneurysm. 

Therefore they are used to develop new interventions for abdominal aortic aneurysm 

formation. These models have led to the development of techniques such as stent grafts 

and the improvement of the endovascular repair78.  

The crude method induces aortic aneurysm by physically damaging the vessel by either 

intramural injections of chemicals such as acetrizoate or using cryogenic probes, carbon 

dioxide lasers or resecting the media and adventitia of the aorta79-82. The aneurysms 

formed from these methods are usually saccular aneurysm or pseudoaneurysm. They 

are unpredictable in size, growth rate and rupture risk. 

The synthetic method requires replacing a segment of the aorta with interposition grafts 

made of synthetic or autologous materials. The aneurysms from this method are more 

consistent in shape and size83. 

The anterior patch model: in this model an elliptical patch of synthetic materials is placed 

after a longitudinal incision to the aorta to close the incision. This is one of the successful 

models of physical model of aortic aneurysm. A study from dogs that underwent the 

procedure had shown an anterior patch in the infrarenal of the aorta by suturing full 

thickness of the jejunal patches to the interior of the longitudinal aortic incision, 
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developed aortic aneurysm. This study was performed in order to determine the efficacy 

of the endovascular aortic repair84. This model was also used to determine the efficacy 

of a specific stent graft design. In this study a fusiform aortic aneurysm was formed 

using an iliac vein patch. This technique was shown to be realistic. Twenty-three dogs 

were used following this technique after developing aneurysm they were treated with 

Dacron stent grafts and followed up after 6 to 12 months. At 12 months, no leaks or flow 

to the sac of the aneurysm were detected and there was no further enlargement on the 

aneurysm85. 

1.1.6. Treatment 
Aortic aneurysms are often discovered after an X-ray, during an ultrasound or 

echocardiogram. Thereafter, ultrasounds are required to determine the size and the 

growth rate of the aneurysm. For small aneurysm, an ultrasound is required once every 

2 years, while larger aneurysms are observed every 6 to 12 months. A computed 

tomography (CT) or magnetic resonance angiogram (MRA) may be required for more 

detailed information, such as determining the position of the aneurysm in relation to the 

renal arteries or other organs. An angiogram is more useful to determine the size of the 

aneurysm, whether there is an aortic dissection or a blood clot. The importance of these 

screening tests is to estimate the risk that an aneurysm has for rupture and to evaluate 

the risk of rupture to the risk of surgery. The risk of mortality is about 80% for patients 

with a ruptured aorta by the time they reach the hospital. Those who undergo surgery 

have a perioperative mortality of approximately 50%. An aortic aneurysm is considered 

for surgery when the diameter reaches 5.5 cm. The surgery is either an open or 

endovascular repair (EVAR). An EVAR consists of placing an expandable stent graft in 

the aorta through the femoral artery. This technique led to a decrease in open surgery 

and improved patients’ survival. Therefore, it was found to be more successful than open 
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surgery. Candidates suitable for EVAR have a reduced morbidity and mortality. Patients 

with small aneurysms (less than 5.5 cm) are not at high risk of rupture. These patients 

are required to undergo pharmacotherapy to reduce the growth rate. Beta-blockers have 

been used in patients with hypertension and angina, they have been shown to 

significantly reduce the rate at which aneurysms grow86. Those that undergo antibiotic 

therapy to manage AAA need to have evidence of chronic inflammation in AAA. They 

also have to show inhibition of proteases and inflammation by antibiotics. These patients 

are also recommended to stop smoking. 

To date, the only therapy for AAA is through mechanical surgical repair. 

 Therefore, a thorough understanding of the molecular mechanism of aortic aneurysm is 

a pressing matter. 

1.2. Matrix Metalloproteinases 
 

Matrix metalloproteinases (MMPs) are members of a large family of proteases known as 

metzincin superfamily. They are also known as matrixins. They are calcium-dependent 

zinc-containing endopeptitases. Other members belonging to metzincin superfamily are 

serralysins, astacins, adamalysins or desintegrin metalloproteinases (ADAMS) and 

reprolysins87. Taken together, MMPs are capable of degrading all components of the 

extracellular matrix (ECM) and the basement membrane. They play an important role in 

tissue remodeling, angiogenesis, bone development, wound healing, and uterine 

biology. They have been shown to play a role in regulating the release and the activation 

of cytokines and chemokines, growth factors and antibiotic peptides and other bioactive 

molecules88-90. MMPs also play a role in different diseases: vascular diseases such as 

hypertension, atherosclerosis, aortic aneurysm and varicose veins, cancer and different 

types of inflammatory pathologies. 
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1.2.1. Classification 

To date, there are 28 MMPs classified among which 25 different MMPs have been 

identified in vertebrates, 24 of which are found in humans including two identical genes 

encoding for MMP23 called MMP23A and MMP23B91. MMPs are synthesized as prepro-

enzymes and secreted as pro-enzymes. They can be secreted form the cell or anchored 

to the plasma membrane which limits the catalytic activity to the extracellular space or to 

the cell surface. They consist of a pro-peptide domain that is uniquely conserved and 

contains a cysteine residue within the sequence that interacts with the catalytic zinc in 

the active site to maintain the latency of the enzyme. However, MMP23 lacks this linker 

peptide, but possesses proprotein at the C-terminal end of the propeptide, which is 

activated intracellularly by furin. MMPs are commonly classified based on their structure, 

their substrate and subcellular localization and are divided as followed: collagenases, 

stromelysins, matrilysins, gelatinases and furin- activatable MMPs.  

Because of their difference in sequence and substrate specificity MMP12, MMP19, 

MMP20 and MMP27 are not classified. MMP12 also known as macrophage 

metalloelastase is mainly expressed in macrophages and it is the potent elastolytic 

enzyme92. In humans, MMP19 is expressed in many different tissues and has shown to 

be a very potent degradative enzyme. It can also degrade gelatin, aggrecan and type IV 

collagen93. First isolated from a porcine enamel organ, MMP20 also known as 

enamelysin is secreted by odontoblast of the dental papilla and ameloblast94, 95.  Besides 

the fact that MMP20 is highly expressed in B-lymphocytes, and that it can degrade 

gelatin and casein, little information is known about human MMP27. However, it was first 

identified from chicken embyo fibroblasts96. 

MMP1, MMP8, and MMP13 degrade collagen. They are also called collagenase 1,2 and 

3 respectively. They are so called because of their ability to first unwind triple helical 
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collagen and then to cleave fibrillar collagen type I, II and III into characteristic 3/4 and 

1/4 fragments. Their hemopexin domain is essential for the degradation of the native 

collagen. Once this domain is removed, the MMPs are unable to carry out their catalytic 

abilities97. 

Matrilysins have 2 members MMP7 and MMP26 also known as matrilysins1 and 

matrilysins2 respectively. They lack the carboxy-terminal hemopexin domain. The have 

been involved in the degradation of ECM like laminin, entactin and type IV collagen. 

MMP7 has been shown to cleave cell surface molecules such as Fas-ligand, syndecan 1 

and E-cadherin to generate soluble forms. MMP26 is expressed in breast cancer cells98 

and is an activator of pro-MMP9 under pathological conditions99. 

Stromelysins have 3 members: MMP3, MMP10 and MMP11 also known as stromelysins 

1,2 and 3 respectively. They have a structural design similar to the collagenases; they 

can degrade many different ECM components but cannot cleave native collagen. MMP3 

and MMP10 have similar structure and possess the same substrate specificity. They are 

secreted as inactive proMMP, while MMP11 is distant in its structure and has very weak 

activity toward ECM. It is secreted as an active enzyme since it is activated 

intracellularly. MMP3 and MMP10 have the ability to remove the propeptide domain of 

the three procollagenases as well as proMMP9 and activate them.  

Gelatinases have two members: MMP2 or gelatinase A and MMP9 or gelatinase B. They 

play an important role in the remodeling of collagenous ECM. They possess three 

repeats of type II fibronectin located inside the catalytic domain, allowing them to 

degrade denatured collagens and gelatins. They degrade different components of the 

ECM such as collagen type I, IV, V, VII, IX, X, elastin, fibronectin, aggrecan, vitronectin 

and laminin100. They are also capable of degrading non-ECM molecules such as pro-
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TNFα101, TGFβ102 and MCP3103. They are expressed in fibroblasts, keratinocytes, 

endothelial cells, chondrocytes and monocytes.  Both MMP2 and MMP9 have been 

shown to play a role in many pathological diseases including inflammation, cancer, 

vascular disease such as artherosclerosis and aortic aneurysm, cancer and bone 

diseases. 

Furin-activable MMPs have two different subgroups: secreted MMPs and membrane-

type MMPs. They are called furin-activatable because they possess a prohormone 

convertase cleavage site or furin recognition site between the propeptide and the 

catalytic domain. 

Secreted MMPs has two members MMP21 and MMP28. In general, MMPs are secreted 

in the inactive form and the uniqueness of these enzymes is that they are activated 

intracellularly by a furin-like protease and secreted as active enzymes. MMP21is 

expressed in different tissues such as kidney, intestine and skin during embryonic 

development. MMP28 has not been well documented and its role is not clearly defined. It 

has been shown to play a role in various diseases such as cancer, multiple sclerosis and 

certain disease of the central nervous system. 

Membrane-type MMPs are classified into two groups: type I transmembrane MT-MMPs 

and glycosylphosphatidylinositol (GPI) MT-MMPs. These MMPs are located on the cell 

surface. Type I transmembrane MT-MMP are anchored to the plasma membrane 

through a transmembrane domain and the GPI MT-MMP through a GPI anchor. Type I 

transmembrane MT-MMPs members include MMP-14 or MT1-MMP, MMP-15 or MT2-

MMP, MMP16 or MT3-MMP and MMP24 or MT5-MMP. These type I transmembrane 

MT-MMP share the same structural domain. Synthesized a pre-pro enzymes, processing 

of the signal and prodomain occurs before they are secreted into the cell surface. GPI 
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MT-MMP include MMP17 or MT4-MMP and MMP25 or MT6-MMP; they also share the 

same structural domain. The GPI-anchoring peptide is a hydrophobic amino acid stretch 

at the C-terminus. When GPI-MMPs are secreted, they are secreted as pre-proenzyme 

anchoring this hydrophobic sequence. While MMP17 has a low enzymatic activity to 

cleave ECM components, MMP25 has been shown to cleave a broader range of ECM 

components; this includes gelatin, collagen IV, fibronectin, fibrin and proteoglycans. 

MMP25 is expressed in leukocytes, lung and spleen and MMP17 in brain, colon, ovary, 

testis and leukocytes.  

1.2.2. Regulation of MMP enzymatic activity 
MMPs are considered important regulators for “tissue homeostasis and immunity in the 

network of multidirectional communication within tissues and cells”104 because they can 

degrade a broad spectrum of substrate. Therefore, their activities are tightly regulated. 

MMP catalytic activity is tightly controlled at four different levels: 1) at the transcriptional 

and post translational level; 2) their compartmentalization; 3) MMP activation and 4) their 

inhibition by endogenous inhibitors i.e. tissue inhibitors of matrix metalloproteinases 

(TIMPs) and other non-specific proteinase inhibitors such as α2-macroglobulin.  

MMP gene expression is primarily regulated at the transcriptional level resulting in a low 

level of mRNA expression under normal physiological conditions. It has been recently 

reported that MMP post transcriptional stability is tightly regulated by cytokines, nitric 

oxide, or micro-RNA.  A common cis-element within the promoter region is shared 

amongst many of the MMP family members; supporting evidence that MMPs are co-

expressed or co-repressed by various stimuli, including inflammatory cytokines, growth 

factors, glucocorticoids, or retinoids105. The most surprising finding is the clear distinction 

in promoters of functionally related MMPs such as MMP2 and MMP9 or gelatinases and 

MMP1 and MMP8 or collagenases. Based on the composition of the cis-element, MMP 
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promoters are grouped into three different categories. The first category which includes 

most MMP promoters contains a TATA box and an AP-1 binding site; most of which 

have a PEA3-binding site adjacent to the AP-1 binding site. This PEA3 binding site is 

primarily responsible for controlling MMP transcription by cytokines and growth 

factors106. The second category is a category of MMP promoters that have a TATA box 

but do not have an AP1-binding site which allows for a more simple and distinct 

regulation of the promoter. The Third category is a category of MMP promoters that do 

not contain a TATA resulting with transcription starting at multiple sites. These MMPs 

include MMP2, MMP14, and MMP28107. Other factors that influence the transcriptional 

control of MMPs are epigenetic mechanisms such as DNA methylation and/or chromatin 

remodeling with histone acetylation. Hypermethylation  represses MMP Transcription108 

while hypomethylation is regulatory for MMP expression109, 110. In conclusion, different 

factors are required for MMP transcription:1) recruitment and cooperation of transcription 

factors, 2) chromatin remodeling factors, 3) histone-modifying enzymes and 4) basal 

transcription machinery to a promoter111. 

Recent studies show that posttranscriptional mechanisms are also involved in the control 

of MMP expression in response to certain cues. Overall et al. showed that in human 

gingival fibroblasts and prostate cancer, TGFβ extends the half-life of MMP2 and MMP9, 

and increases their levels112. Post-transcriptional mechanisms regulate MMP mRNA 

stability and require elements with specific sequences: multiple AU-rich elements (ARE) 

mostly located in the 3’ untranslated regions (UTRs). The stability is facilitated by trans-

acting RNA-binding proteins that interact with the ARE. Increase binding of HU protein 

family factors to ARE element enhances mRNA stability while binding of destabilizing 

proteins promotes mRNA degradation. MMP activity is compartmentalized where and 

how MMP is released and held in the pericellular environment is also an important 
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process especially for the regulation of MMP proteolysis. Secreted MMPs are often 

associated with the cell membrane which leads to substrate specificity in the pericellular 

space. MMP9 has been shown to be recruited and bind to CD44102. 

MMPs are synthesized as inactive enzymes in the pro-form or zymogens. Their 

activation consists of removing the pro-domain harboring a cysteine rich motif or 

cysteine switch. The conformational change in the pro-domain is what determines the 

activation of the pro-MMPs. This conformational change exposes the cysteine residue 

which in turn will allow the water to interact with the zinc ion in the active site. There are 

three different mechanisms known to initiate this event: 1) direct cleavage of another 

endoproteinase to remove the pro-domain; 2) allosteric reconformation of the pro-

domain and 3) modification of the pro-domain through chemical reaction such as with 

reactive oxygen species or nonphysiological reagents. Allosteric reconformation of the 

pro-domain and the chemical modification of the pro-domain can allow the enzyme to 

remove its own pro-domain by autoproteolysis113. Activation of pro-MMP is believed to 

be a process that involves multiple steps and take place in the pericellular membrane. 

The first step is the conformational change that causes the exposure of the cysteine-

switch and its subsequent disruption by interaction with the zinc ion. Partially activated 

MMP intermediates or other active MMPs remove the pro-domain through intra or 

intermolecular processing114.  Pro-MMP2 activation has been the most documented 

activation, and MT1-MMP or MMP14 plays a very important role. Pro-MMP2 forms a 

complex with TIMP2; this complex interacts with the catalytic domain of MT1-MMP via 

the N-terminal domain of TIMP2 and forms a cell membrane-associated ternary 

complex. The activation of pro-MMP2 is triggered by a second MT1-MMP which would 

cleave the pro-domain115. The activation is completed by autolytic cleavage by MMP-

2116. 
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In vitro studies have shown that pro-MMP can be activated by thiol-modifying chemical 

agents such as mercurial compounds, SDS, oxidized glutathione and reactive oxygen 

species. These agents cause activation of several pro-MMPs. Reactive oxygen species 

activate pro-MMP via interaction of oxidized thiol and the zinc ion in pro-enzyme and 

autocatalytic cleavage117.  Reactive oxygen species have also been shown to inactivate 

MMPs during increased inflammation118. Whether ROS can directly activate or inactivate 

MMPs in vivo has not been established. 

Pro-MMPs can also be activated via the intrinsic allostery of MMP molecule. Fujita et al. 

have demonstrated that pro-MMP7 can be activated pericellularly by tetraspanin CD151 

which is overexpressed in osteoarthritic articular cartilage. This increase in CD151 leads 

to an excess of MMP7 activity therefore causing cartilage destruction119. Later on, 

Geurts et al  demonstrated that pro-MMP9 activation with hemin or beta-hematin, the 

core constituent of hemozoin, resulted in autocatalysis of the prodomain mediated by 

allosteric interaction with the hemopexin domain120. 

In vitro studies have shown that pro-MMPs can be activated by a single member of 

either serine proteinases or other MMPs such as MMP3 and MMP14. However, in vivo 

studies show that activation of pro-MMPs can be trigerred by more than one mechanism 

and can involve more than one participant. This has been supported using animal 

models. MMP3 has been shown to activate pro-MMP9 in vitro. It was suggested that 

MMP3 may play a key role in pro-MMPs activation121. However, complete deletion of 

MMP3 in mice does not attenuate MMP2 or MMP9 activation after perivascular electric 

injury either in the carotid artery or the femoral artery122. Furthermore, it is well 

established that MT1-MMP plays a key role in pro-MMP2 activation. MT1-MMP deletion 

does not prevent pro-MMP2 activation in fibroblasts from MT1-MMP knockout mice after 

treatment with ascorbic acid123. Other supportive studies are: one from Lijnen at al who 
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have shown that in vivo plasminogen does not necessarily activate pro-MMP2 and pro-

MMP9 by using plasminogen deficient mice124 and another from Tchougounova et al 

who showed that chymase deficiency partially prevented pro-MMP2 and pro-MMP9 

activation125. These data strongly suggest that the mechanisms by which pro-MMPs are 

activated in vivo are still not clear. 

It has been well established in vivo that maintaining a balance between active MMPs 

and their inhibitors is critical in order to avoid diseases caused by uncontrolled ECM 

turnover, inflammation, dysregulated cell growth, and migration. There are two major 

inhibitors: tissue inhibitors of metalloproteinases (TIMPs) and α2-macroglobulin. Human 

α2-macroglobulin is a broad spectrum inhibitor. It inhibits almost all endopeptidase in the 

body fluids and blood by engulfing the entire enzyme; this complex is then cleared by 

LDL receptor related protein-1 mediated endocytosis126. In tissue there are four inhibitors 

known as TIMPs. Each TIMPs inhibit MMPs with a 1:1 molar ratio. TIMPs are broad 

spectrum inhibitors of MMPs, but they differ in their specificity. Data have shown that 

TIMP2, TIMP3 or TIMP4 can interact with pro-MMP2 and TIMP1 or TIMP3 with pro-

MMP9127. The role that TIMP2 plays when interacting with pro-MMP2 has been well 

established. However, the role of other TIMPs interaction is not known. Of all the TIMPs, 

only TIMP3 have shown to be the most relevant in vivo. Since TIMP3 deficient mice 

were shown to develop pulmonary alveolar enlargement and enhanced apoptosis in 

mammary gland duct epithelial cells with age128, while TIMP1 and TIMP2 deficient mice 

have not been seen with any abnormalities. TIMP4, which is the newest recognized 

addition to the TIMP family, has not been well studied. TIMP4 knockout mice were 

recently developed and thus far have shown to be normal 129. Other molecules have 

been shown to inhibit some MMPs. Procollagen C proteinase enhancer has been shown 

to be an inhibitor of MMP2130. MMP2, MMP9 and MMP14 activities can also be inhibited 
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by the glycosylphosphatidylinositol (GPI) anchored angiogenesis suppressor 

glycoprotein RECK131. 

1.2.3. Matrix Metalloproteinases and AAA 
Many MMPs have been implicated in human aortic aneurysms. MMP9 is the most 

studied. MMP9 is the most abundant elastolytic proteinase produced by human tissues 

in vitro and is highly expressed in macrophages infiltrated within the aneurysm tissue132. 

Data suggest that the size of the developing aneurysm is determined by the type of 

MMP within the aortic media133. Smaller aneurysms have higher level of MMP2 whereas 

medium and larger sized aorta and ruptured aneurysm have a higher level of MMP9132, 

134. The roles of MMP2 and MMP9 in aortic aneurysm have been well established. Longo 

et al. have reported a relationship between these two gelatinases in aortic aneurysm 

formation. They found that when MMP2-/- mice and MMP9-/- mice were treated with 

CaCl2, none of these mice had developed AAA. However, reconstitution of MMP9 by 

intravenous infusion of wild type mice macrophages into both mice resulted in AAA 

formation in MMP9-/- mice but not in MMP2-/- mice59. These data suggest that both 

MMP2 and MMP9 are required for AAA formation. Other MMPs have been implicated in 

AAA formation; these include MMP1, MMP3, MMP12, MMP13 and MT1-MMP. MMP1 

and MMP3 have been shown to be elevated in plasma of patients with AAA135. MMP12, 

MMP13 and MT1-MMP are increase in AAA tissue136-138, with MMP13 been highly 

expressed in medial smooth muscle cells136. Cigarette smoking, a major risk factor in 

aortic aneurysm, increases MMP1 in rabbits’ aortic tissue139. While MMP1 has been 

shown to be increase in sites of in human AAA tissue where collagen generation could 

be important140, other data have shown that there is no correlation between MMP1 level 

in the plasma and the size of the AAA141. Immunohistology demonstrated that MMP12 is 

more localized at the elastin fiber fragments142. Deficiency in MMP12 in mice was shown 
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to attenuate AAA growth after periaortic application of CaCl2, but does not affect MMP2 

and MMP9 expression138. MMP3 deficient mice were shown to have an attenuated aortic 

diameter, and the expression of MMP3 in the wildtype mice was co-localized with 

macrophage infiltrates143. 

Due to the high implication of MMPs in aortic aneurysm formation, many drugs that 

target MMPs and inhibit their activities have been studied as potential treatment for small 

aneurysm to prevent AAA expansion. Non-steroidal anti-inflammatory drugs (NSAID) 

have been widely used for their ability to suppress MMP expression and potentially 

reduce aortic aneurysm dilation. In a study conducted in rats, indomethacin treated rats 

had a decrease in MMP9 production and an attenuated aortic diameter after elastase 

infusion144. Marimastat, a synthetic molecule designed to mimic MMPs substrates, 

prevented MMP2 activation and elastin degradation in aortic organ culture145. 

Investigation of CGS27023A, a broad-spectrum MMP inhibitor, showed a reduction in 

aortic medial elastin degeneration and ectasia grade, suggesting that MMP inhibition can 

prevent or slow an aortic aneurysm progression146. Many studies have demonstrated 

that doxycycline treatment inhibits MMP synthesis; therefore, preventing elastin 

degradation and aortic aneurysm expansion. Doxycycline has the ability to bind to any 

MMP at the active zinc site causing a conformational change and loss of enzymatic 

activity147. Oral administration of doxycycline in AngII treated mice reduced the incidence 

of AAA as well as the severity of the aneurysm74. In a double-blind, randomized, 

placebo-controlled study, patients with small AAA that received doxycycline daily for 3 

months and were then monitored for 18 months had a decrease in aneurysm 

expansion148. However, this study was criticized at different levels. One point was the 

size of the diameter in the doxycycline group vs the placebo group. Within the 

doxycycline group, average diameter was 3.1cm which according to Baxter is 
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considered dilated but not aneurysmal, and the placebo group had a much larger 

diameter (3.5cm). The most significant point was that during the whole 18 months period 

there was no significant difference between the placebo group and the doxycycline 

group. Significance was only seen when both group were subdivided into different group 

6-12 month and 12-18 month149. Doxycycline had shown to be beneficiary in animal 

studies, but in human studies, different trials provided conflicting evidence150. Thus, the 

effectiveness of Doxycycline as a MMP inhibitor to treat small aneurysm is yet to be 

determined. 

1.3. Tissue Inhibitors of Metalloproteinases (TIMPs):  

1.3.1. Classification and regulation 
Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix 

metalloproteinases and are consequently important regulators of ECM turnover, tissue 

remodeling and cellular behavior151. There are four human paralogous genes that 

encodes for TIMPs1-4. The first TIMP was identifying in the 1970s and described as a 

small collagenase inhibitor because of its ability to inhibit collagenase produced in the 

media cultured human skin fibroblast152, human serum153, bovine cartilage and aorta154. 

It was then called “tissue inhibitor of metalloproteinases” for its ability to not only inhibit 

collagenases, but gelatinases and proteoglycanase as well155. Subsequently, other 

TIMPs were also discovered with the most recent being TIMP4. All four TIMPs inhibit all 

identified MMPs; but, their affinity varies with different MMPs. TIMP3 has a broader 

inhibition spectrum, and it can inhibit some members of the disintegrin 

metalloproteinases, ADAM and ADAMTs families. TIMPs also have other functions 

independent of inhibition of metalloproteinase. They can regulate cell proliferation, 

angiogenesis and plasticity. The structure, activity and biological function of all four 

TIMPs has been investigated thoroughly. 
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 All four TIMPs are similar in structure; they are about 40% identical in sequence. TIMP2 

and TIMP4 share the most similarity; they are about 50% identical in sequence, and 

TIMP1 shares around 41% of its sequence with other TIMPs156. The genes for TIMPs1, 

3, and 4 lay within an intron of the synapsin genes. Synapsins are genes that encode for 

neuro-specific phosphoproteins that coat the cytoplasmic surfaces of synaptic 

vesicles157. TIMP2 is the host for the gene DDC8 (differential display clone 8), a gene 

that is highly expressed in the testis during spermatogenesis158. The four TIMPs have 

two distinct domains, an N-terminus domain of about 125 amino acid residue and a C-

terminus with 65 amino acid residues. There are three disulfide bonds that stabilize the 

conformation of each domain159. The N-terminal domain has the ability to fold and 

function independently. N-TIMPs, which have the recombinant form of the N-terminal 

domain, are more stable in structure and are fully active inhibitors of MMPs and 

ADAMS160, 161.  Therefore, they are used to investigate different TIMPs properties. 

Although the four TIMPs share similarities in their structures, they do have differences in 

expression pattern. TIMPs 1, 3 and 4 are inducible and tissue specific while TIMP2 is 

more constitutive and ubiquitous. TIMP1 is mainly expressed in the reproductive system, 

TIMP3 is more seen in the heart, kidney, and thymus and TIMP4 is highly expressed in 

the cardiovascular system, as well as, kidney pancreas, colon, testes, brain and adipose 

tissue162. 

The four TIMPs are broad-spectrum inhibitors of all MMPs identified to date. However, 

their affinity and specificity differ among them. TIMP1 is the most restrictive TIMP in its 

ability to inhibit MMPs. TIMP1 inhibits MMP1, MMP3, MMP7 and MMP9; it has very low 

affinity for MMP14, MMP16, MMP19, MMP24 and the membrane-type MMPs. TIMP2 is 

the only TIMP that interacts on the cell surface with MT1-MMP and pro-MMP2, and  is 

required for the activation of pro-MMP2115. TIMP2 can also inhibit MMP2. TIMP2 thus 
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acts as both an MMP inhibitor and an activator. TIMP3 has a bigger spectrum of 

inhibition. It can also inhibit members of the ADAM and ADAMTs families while the 

activity of other TIMPs in this regard are limited161, 163.  

ADAMs (disintegrin and metalloproteinase motif) vary from MMPs in their domain 

structures and are very different in their catalytic domain sequences. They contain a 

disintegrin, cysteine-rich, EGF-like transmembrane domains C-terminal in their catalytic 

site and they are membrane-bound enzyme164. ADAMTs (disintegrin and 

metalloproteinase with thrombospondin motifs), are secreted proteins. They possess the 

disintegrin domain and different numbers of thrombospondin type1 motifs and other 

domain in their C-terminal domain165. TIMP1 and TIMP3 inhibit ADAM10163 and TIMP2 

inhibits ADAM12166. TIMP1 and N-TIMP4 inhibit ADAM 17167, and TIMP4 inhitbits 

ADAM28168. TIMP3 also inhibit ADAM12, 17, 28, and 33 as well as ADAMTs 1,2,4 and 

5. TIMPs usually inhibit MMPs and ADAMs using the N-terminal domain. However,  

TIMP1 and TIMP3 do not use their N-terminal domain to inhibit ADAM10169. 

1.3.2. TIMPs and AAA 
Disruption of the balance between MMPs and TIMPs may result in diseases associated 

with uncontrolled turnover of matrix, such as aortic aneurysm. The functions of TIMPs 

have been investigated to understand their role in AAA formation. TIMP1 mRNA has 

been found to be increased in human AAA tissues170 and in murine model of AAA171. 

TIMP1-/- mice after a periaortic treatment of CaCl2 were found to have an increase in 

aortic diameter compare to control66. Local overexpression of TIMP1 in the rats’ aortas 

prevented elastin degeneration and therefore prevented aneurysm formation172.  Three 

different TIMP1 single nucleotide polymorphisms (SNP) have identified in male 

Caucasian patients with AAA173. TIMP2, a cofactor in MMP2 activation, have been 

shown to prevent aortic aneurysm increase in genetically deleted TIMP2 mice model 
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with CaCl261. On the hand, overexpression of TIMP2 by recombinant adenovirus in rat 

aorta also prevented an increase in aortic diameter by preventing elastin 

degeneration174. These data are consistent with the complex function of TIMP2 in MMP2 

activation. An increase in TIMP2 has been shown to activate MMP2 activity; however an 

overexpression of TIMP2 inhibits MMP2 activity175. TIMP3-/- mice, when treated with 

ANGII, had an increase in aortic aneurysm formation and rupture176. While a role of 

TIMP1/2/3 in aortic aneurysm has been reported172, 174, 176, whether TIMP4 is involved in 

aortic aneurysm is unknown. Several lines of evidence implicate a role for TIMP4 in 

AAA: 1) it non-selectively inhibits MMP activity; 2) TIMP4 is down-regulated in 

intracranial aneurysms177; 3) a Promoter SNP in TIMP4 gene has been associated with 

Kawasaki disease, a systematic vasculitis178  and 4) TIMP4 is an inducible gene179. 

1.4. Molecular clock Bmal1 

1.4.1. Regulation 
Brain and muscle ARNT-like (Bmal1; also known as MOP3 in human or Arnt3 in mouse), 

is a member of the basic helic-loop-helix period-ARNT period-ARNT-single minded 

(bHLH-PAS) transcription factor family. It is an obligatory core clock gene and is 

essential for normal circadian rhythmicity in physiology and behavior180, 181. At the cellular 

level, Bmal1 forms a heterodimer with Clock, another member of the bHLH-PAS family, 

through their PAS protein-protein interaction domain. The heterodimer constitutes the 

positive limb of the circadian feedback loop machinery to initiate the transcription of 

target genes containing E-box cis-regulatory enhancer sequences and are highly 

selective for those with the sequence CACGTG182 including the period (per1, per2 and 

per3) paralogous member of the PAS protein family and cryptochrome (cry1 and 

cry2)182-184, members of the vitamin B2-based blue light photoreceptor/photolyase family. 

After delays imposed by transcription, translation and posttranslation modification, the 
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negative limb of the feedback loop is comprised of the heteromultimer formed by per, cry 

and other proteins that translocate back in the nucleus and directly abrogate the 

transcriptional activity of the Bmal1:Clock complex184-186. This inhibition is believed to be 

mainly caused by the Cry proteins, probably by repressing histone acetyl transferase 

(HAT) activity187, 188 while the translocation of the complex has been attributed to one or 

more per proteins184, 187. Phosphorylation of Per and Cry and subsequential degradation 

partly by casein kinase I epsilon and delta (CKI ε/δ) result in the Bmal1/Clock 

heterodimer being released from inhibition and therefore free to initiate transcription 

again189-191. The Bmal1/Clock heterodimer activates another core clock gene creating yet 

another positive and negative feedback loop. Bmal1/Clock still constitute the positive 

limb while rev-erbα, which codes for an orphan nuclear receptor192 constitutes the 

negative limb. Just like per and cry, rev-erbα contains E-box enhancer in the promoter 

region which allows binding and activation by Bmal1/Clock193, 194. Rev-erbα has been 

shown to inhibit Bmal1 transcription by binding the retinoic acid-related orphan response 

elements (ROREs) in the promoter region193, 195, 196. It has also been shown that 

disruption of rev-erbα significantly affects Clock and Cry1193. The rev-erbα negative limb 

is unlike the cry-per negative limb because it only inhibits Bmal1 instead of inhibiting the 

Bmal1/Clock Complex. The inhibitory effect of Cry-per on Bmal1/clock also acts to inhibit 

rev-erbα transcription. Competing with rev-erbα at the ROREs is Rorα; whereas rev-erbα 

acts to inhibit Bmal1 transcription, Rorα activates Bmal1 transcription through two 

conserved Rorα conserved elements197. More ROREs were shown to regulate Bmal1 

expression. Since the Rev-erb and the ROR families recognize the similar response 

element with opposite effect on Bmal1 transcription, Guillaumond et al. investigated the 

possibility that each member of the both families can regulate Bmal1 expression. Within 

the Rev-erb family both Rev-erbα and Rev-rebβ were shown to inhibit Bmal1 expression 
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and the RORs members (RORα, RORβ, RORγ) were shown to activate Bmal1 

transcription198. 

At the molecular level, the combination of transcription, translation and posttranslational 

modification of the core clock genes results in a daily rhythmic expression, or circadian 

rhythms of those genes. In mammalian physiology, circadian rhythm is driven by a 

central pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. 

The SCN is controled by photic cues from the retino-hypotalamic tract which in turn 

control and synchronizes clock genes in peripheral tissues. Although the SCN controls 

rhythmicity in the whole organisms, rhythmicity is also maintained within individual 

tissues and even at the cellular level199, 200. The phases within peripheral tissues have 

been shown to be delayed by approximately four hours from the SCN. Lesion of the 

SCN rendered rats behaviorally arrhythmic201. Hormonal signals such as glucocorticoids 

and restricted feeding can uncouple the phase of peripheral tissues from the SCN202, 203. 

In a study by Damiola et al., restricting mice from food during the day on a 12-h light/12-

h dark cycle resulted in a 12 hour shift of clock genes expression in the peripheral tissue 

while the expression in the SCN remained unchanged, and Stocklan et al. demonstrated 

that food restriction during the light not only shifts the phase of the clock genes 

expression by 10 hours after 3 days of restricted feeding in rats but it also alters their 

locomotor activities. Both findings from Damiola and Stocklan suggest that feeding is an 

important cue to determine clock genes expression pattern in peripheral tissues. 

Even though the circadian machinery in the SCN and peripheral tissues is well 

understood, the mechanisms downstream of the clock machinery that regulate 

metabolism and physiological processes is still being heavily investigated.  Ramsey et 

al. described in 2007 that there is an approximate of 5% to 10% of the transcriptome has 

shown to be have a 24 hour variation in the SCN, heart, vasculature and fat.  Since then, 
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more genes have been shown to be under control of the clock core genes now 

estimated at over 10%. Albumin gene D-site binding protein (DBP) belongs to the PAR 

leucine zipper transcription factor family; it increases the transcription of many genes 

containing an insulin-response element in the liver204. It is endogenously rhythmic and its 

expression is not influenced by light. DBP mRNA expression does not change with a 

short exposure to light. Deletion of DBP does not alter rhythmicity. However, mice 

lacking DBP have been display significant differences in circadian locomotor activity205. 

(Although DBP is a clock control gene, its regulation requires both Bmal1 and Clock).  

Another group of genes that are controlled by clock genes and are involved in metabolic 

processes such as lipid homeostasis in the vascular system is the peroxisome 

proliferator-activated receptor (PPAR)206. PPAR are member of the nuclear receptor 

superfamily and there have been three types of PPAR described: PPARα, 

PPARβ/PPARδ and PPARγ. PPARα, which is highly expressed in the liver and brown 

adipose tissue, acts as a lipid sensor in the liver. It activates the transcription of specific 

genes in response to an influx of fatty acids207 

Bmal1 and Clock are the two transcription factors that set off the circadian rhythm 

machinery. While the global deletion of Clock in mice does not affect circadian rhythm 

but affect the response to light208, global deletion of Bmal1 in mice disrupts behavior and 

molecular rhythm183. Bmal1 null mice have been shown to have a reduced lifespan and 

pathologies associated with pre-mature aging and an increase in oxidative stress. Bmal1 

is involved in vascular pathologies. It has been associated with prothrombotic 

phenotype209. A study from Somanath et al. had shown that when using the mesentery 

artery to induce thrombosis, the time to thrombotic occlusion in Bmal1 KO mice was 

shorter than in wildtype control. Bmal1 has been shown to play an important role in 

vascular pathologies210. It has been associated with flow dependent vascular 
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remodeling211, aortic vascular stiffness, transplant arteriosclerosis and increased 

superoxide and endothelial nitric oxide synthase uncoupling in aorta. 

1.4.2. Bmal1 and cardiovascular disease 
Bmal1 and other core clock genes are expressed in peripheral tissues212, including 

cardiovascular organs: heart, aorta and kidney213, 214. Data suggest that approximately 

10% of genes in peripheral organs exhibit circadian expression in the heart215, 216 and 

vascular tissues217. These data bring in a new perspective on the function of peripheral 

clocks in different organs or even at the cellular level. Heart rate, blood pressure, 

endothelial function, and fibrinolytic activity are all cardiovascular parameters that exhibit 

circadian variations. An alteration of Bmal1 has been shown to be involved in vascular 

pathologies210. When the germline Bmal1-/- mice underwent a chronic reduction in blood 

flow in the common carotid artery, those mice developed a wall thickness that was more 

pronounced then their littermate control. They had also developed vascular remodeling. 

However, instead of narrowing the lumen as observed with the control, those mice had 

an increase in lumen diameter which was accompanied with a development of a 

thrombosis211. Another study from Anea et al. had shown that Bmal1-/- mice have an 

increase in vascular stiffness and a decrease in compliance. They had also shown that 

Bmal1-/- mice have an increase of MMP2 and MMP9 activities 3 days after of common 

carotid artery ligation. MMP9 activity was also increase in non-ligated artery218. 

Transplant model demonstrated that a transplant of aorta from Bmal1-/- mice into control 

mice lead to transplant arteriosclerosis observed by intimal hyperplasia and wall 

thickness while the transplant had only induced inward remodeling between control and 

control219. Bmal1-/- mice had a reduced endothelial function due to an increase in 

oxidative stress220. 
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Circadian expression of clock genes has been shown to be expressed in vascular 

endothelial cells and in vascular smooth muscle cells214. Data has shown that VSMC 

stimulation with ANGII induces clock genes expression. The time of stimulation by AngII 

can be considered as a zeitbeger time in VSMC214. Xie et al. had demonstrated that 

tissue specific deletion of Bmal1 in smooth muscle cells lowered and altered blood 

pressure circadian rhythm221. Although, there are studies that have looked at the role of 

Bmal1 in vascular diseases, those studies involved a global knockout of Bmal1, making 

it difficult to assess the role that Bmal1 plays in the vasculature itself without altering its 

expression in other tissues and cells. Studies from Xie mentioned above are more 

insightful by looking at the role of smooth muscle Bmal1 in the regulation of blood 

pressure. Since they have used smooth muscle cells specific Bmal1 KO and blood 

pressure is regulated in small vessel such as mesenteric arteries and smooth muscle 

cells are the biggest component of those vessels. Therefore, a specific deletion of Bmal1 

in smooth muscle is most appropriate to study the role of Bmal1 in blood pressure 

regulation. Smooth muscle cells are big player in AAA formation and AAA ruptures have 

been shown to have time of the day variations. This could imply a role for clock genes in 

AAA formation. Whether Bmal1 plays a role in aortic aneurysm formation has not been 

showed yet. Therefore, there is the need to understand the role that smooth muscle 

Bmal1 could play in the formation of AAA. 

1.5. Scope of the dissertation 

Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by a 

permanent segmental, abnormal dilation of the aorta1. This permanent dilation is due to 

an increase in elastin and ECM degradation; an increase in inflammatory cell infiltration; 

and smooth muscle cells apoptosis22, 23.  In human AAA, MMP expression increases in 

VSMCs39, and thus play a central role in the development of AAA. MMPs degrade the 
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ECM of the vasculature including elastin, and the increase in MMPs is induced by an 

increase in inflammatory cells and cytokines, which are secreted by smooth muscle 

cells40, 41, 43, 46, 47. The precise mechanisms of aortic aneurysm formation are not well 

understood making it very challenging to develop a therapeutic treatment. Therefore, the 

only treatment has been an emergency surgery, which has a mortality rate of more than 

50%.  Therefore, deciphering the molecular mechanism underlying aneurysm formation 

is urgently needed in order to identify new pharmacological therapeutic targets.  

As previously mentioned, Bmal1 is an obligatory core clock gene and a transcriptional 

factor; it regulates genes essentials for normal circadian rhythm in physiology and 

behavior222. Bmal1 is expressed in the SCN and peripheral tissues including VSMC, and 

is essential for normal vascular functions223 . Alteration of Bmal1 has been associated 

with different vascular pathologies such as vascular stiffness218, transplant 

arteriosclerosis219 and flow-dependent vascular remodeling211. However, the role of 

Bmal1 in AAA formation has yet to be studied. AAA dissection and rupture have been 

shown to have circadian variability224, which would suggest an involvement of clock 

genes, and Bmal1 deletion has been shown to increase oxidative stress and MMPs, 

which are increased in human AAA VSMC43, 218, 220. Therefore, the purpose of this study 

was to investigate the role that vascular Bmal1 plays in AAA formation. The initial 

hypothesis was that Bmal1 deletion would exacerbate AAA formation. Therefore, we 

used smooth muscle cells specific Bmal1 knockout mice to test our hypothesis. 

However, the hypothesis was rejected because Bmal1 deletion from smooth muscle 

cells showed a complete protection from AAA formation. We moved to understand the 

mechanism of protection. 

Different experimental approaches were taken to understand and determine the 

mechanism of protection, and they are presented in chapter 2. The results and their 
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explanations are presented in chapter 3. The discussion and limitations of the project are 

presented in chapters 4. 
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CHAPTER 2 

Materials and Methods 

2.1. Experimental Design 

 

Figure 1: Diagram showing the time line and different methods used 
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2.2. Animals 
Four or eight to nine month old male smooth muscle cells Bmal1 Knockout mice (SM 

Bmal1-/-) and littermate control were used for this study. SM Bmal1-/- mice were 

generated by crossing Bmal1flox/flox mice with smooth muscle cell specific SM22α-Cre 

knocked-in mice; both were purchased from Jackson Laboratory. Homozygous 

Bmal1flox/flox mice possess a loxP sites flanking exon 8 which encode for Bmal1 binding 

site to E-box. To generate the SM22α-Cre knocked-in mice, a modified Cre recombinase 

under the control of SM22α promoter was introduced into B6SJLF2 donor oocytes. 

When Bmal1flox/flox mice were crossed with SM22α-Cre transgenic mice, the presence of 

Cre resulted in the deletion of the flanked exon 8 of Bmal1. Since SM22α has been 

shown to be smooth muscle cells specific225, it is expressed in aorta, esophagus, 

intestine, trachea and uterus. SM22α is also expressed in the heart and skeletal 

muscles226. Bmal1 is specifically deleted in smooth muscle cells including the aorta. 

C57B6/J mice used in this study were purchased from Jackson Laboratories. They were 

left for acclimatization for 2 weeks in light box: The light box is set for 12:12 light cycle: 

12 hours of light and 12 hours of dark. The light was set to be turned on at 6:00am and 

turned off at 6:00pm. The mice were killed at 4 different time point: ZT5, ZT11, ZT17, 

ZT23 were ZT stand for  Zeitgeber Time: the number of hours after the light is turned on; 

making ZT5 and ZT11 day time and ZT17 and ZT23 night time. 

2.3 DOCA/AngiotensinII pump implantation plus salt 
To induce Aortic Aneurysm, a 50 mg Deoxycorticosterone Acetate pellet (DOCA, 21-day 

release, Innovative Research of America, Sarasota, FL) or 1000 ng/kg/day Angiotensin II 

(Sigma-aldrich, St. Louis, MO) in osmotic minipump (Alzet mini pump 28 days release, 

Alzet, Cupertino, CA) was administered subcutaneously; the mice were also given 

drinking water containing 0.9% NaCl and 0.2% KCl for 21 days for DOCA and 28 days 
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for Angiontensin II plus salt. To perform the surgery, mice were anesthetized by 

inhalation of isoflurane mixed with oxygen (3% isoflurane and 97% oxygen). Mice were 

placed in the prone position with continuous anesthesia. Hair from the cervical area was 

removed using Nair shaving cream and lateral incision was made. There, a pouch was 

created to insert the pellet or the pump was placed subcutaneously in the thoracic spine 

area. The wound was closed with suture and the mice monitored for recovery227, 228. 

2.4 Blood Pressure measurement by tail cuff 
Prior to DOCA or ANGII implantation, the systolic blood pressure was measured using a 

non-invasive tail cuff method with automated monitor (CODA6, Kent Scientific 

Corporation, Connecticut, USA). Mice are placed in a restrainer to keep mice from 

excessive movements with the tail still on the outside. The holder is then placed in a 

heated platform at 370C then two cuffs: the occlusion cuff (O cuff) and the volume 

pressure recording cuff (VPR cuff) are placed around the tail to record blood pressure. 

Blood pressure measurements were recorded for 5 consecutive days at the same time 

of the day and averaged. Unusually high or low blood pressure collected during the 5 

days were considered outliers and therefore excluded from the average blood 

pressure73. The measurements were repeated on the third week for DOCA plus Salt and 

on the fourth week for ANGII plus Salt.  

2.5. Aorta Inner diameter assessments by ultrasound 
The aorta inner diameter was first measured prior to DOCA or Angiotensin II pump 

implantation and monitored weekly thereafter. The inner diameter was measured via 

ultrasound imaging system using VEVO 2100. In order to perform the ultrasound, mice 

were first anesthetized by inhalation of isoflurane mixed with oxygen (3% isoflurane and 

97% oxygen). Upon loss of total locomotion, mice were placed in the supine position 

onto 37oC heated platform. The hair in the abdominal area was removed using Nair 
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shaving cream. Isoflurane was continuously maintained for the whole procedure. 

Warmed ultrasound transmission gel was placed in the entire shaved area and the 

transducer was placed just below the ribs cage. The maximal inner diameter of the aortic 

suprarenal area was measured from ultrasound image acquired from a cine loop of 100 

images. Hepatic artery, hepatic vein, and bile duct were used as marker to acquire 

image in the same location in each mouse227. 

2.6. Blood Sodium and Potassium Measurement 

After the mice were euthanized, freshly drawn blood from a cardiac puncture with a 

syringe was subsequently placed in an I-STAT E3+ cartridge (cat# SKU: 600-9004) 

without anti-coagulant. The cartridge was placed into a VetScan I-STAT1 handheld 

analyzer by ABAXIS and sodium and potassium concentrations were determined. 

2.7. mRNA isolation and Real-time PCR 
Aorta was removed from mice treated with DOCA plus Salt for 7 or 21 days and from 

non-treated mice. The aorta was then placed in RNAlater RNA stabilization Reagent 

(QIAGEN cat # 76106). RNA was extracted using RNeasy plus mini kit (QIAGEN) as 

follows: The whole aorta was placed in a homogenizer with 300µl of RLT buffer 

containing β-Mercaptoethanol (for each 1 ml of RLT buffer, we added 10 µl of β-

Mercaptoethanol), the tissue was homogenized until complete dissipation into the 

solution. Only debris of the tissue could be seen through the homogenizer. 580 µl of 

water and 20 µl of proteinase K (Invitrogen cat # AM2542) were then added followed by 

pipetting up and down for about 10 times using a syringe and needle. The sample was 

sucked up into the syringe and transferred in a 1.5 ml Eppendrof tube, then heated in a 

heating block at 550C for 10 minutes then centrifuged at 40C at full speed for 5 minutes. 

The supernatant was removed carefully without touching the pellet and transferred into a 

1.5 ml eppendrof tube. Then 400 µl of 100% ethanol was added to the sample and 
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mixed by pipetting up and down. Then 700 µl of the sample was transferred into RNeasy 

spin column and centrifuge at 8000xg for 15 seconds and the flow-through was 

discarded. The remainder of the sample was added to the same spin column and 

centrifuged. The flow-through was then discarded. 700 µl of RW1 buffer was added to 

the spin column then centrifuged for 15 seconds at 8000Xg, the flow-through was 

discarded. Then 500 µl of RPE buffer was added to the RNeasy spin column at 8000xg 

for 15 seconds. Another 500 µl of RPE buffer was added to the RNeasy spin column and 

centrifuged at 8000xg for 2 minutes. The flow-through and the collection tube were 

discarded and the column placed in a new collection tube and centrifuged for 1 minute at 

full speed to allow the membrane to dry. The collection tube was discarded and the spin 

column was placed in a new 1.5 ml collection tube and 30 µl of Rnase-free water was 

added directly to the spin column membrane and centrifuge for 1 min at 8000xg to elute 

the RNA. Then the RNA concentration was measured using a nanodrop. cDNA was 

generated by reverse transcriptase PCR as follows: 

-RNA, distilled water; random primer and dNTP were mixed together in a PCR tube and 

placed in a PCR machine: 

Step 1: 650C for 5 minutes 

While step 1 was running, in an epperdorf tube 5x buffer, RNaseout, RT and water were 

mixed together and placed in the PCR tube while sample was in set 2. 

Step 2: 40C for 5 minutes 

Step 3: 370C for 1 hour  

Step 4: 700C for 15 minutes  

Step 5: 40C  
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cDNA generated was then diluted with distilled water for a final concentration of 10ng/µl. 

The amount of RNA added depended on the concentration of RNA and the total amount 

of desired cDNA generated with the maximum amount being 5000ng. 

For real time PCR, the samples were prepared as followed: 

Forward primer, Reverse primer, 5x buffer, MgCl2, dNTP, SYB green, Taq Pol and water 

were mixed: vortexed and centrifuged together in a 1.5 ml epperdorf tube. 22µl mixture 

was then aliquoted in 96 well PCR plate (Phenix Research Products, USA lot# 466568) 

and 3µl or 30ng of the cDNA was added in each well. The plate was centrifuged and 

placed in PCR machine with the following steps: 

Step1: 950C for 3 minutes 

Step2: 950C for 15 seconds 

Step3: 600C for 1 minute 

Step4: Go to step 2 40 times 

Step5: Melt curve 60.0 to 95.0 with 0.5 increase for 5 seconds 

Step6: 200C for 5 minutes 

Real-time PCR was performed for quantification of genes expression of tissue inhibitor 

of metalloproteinases (TIMPs)1, 2, 3 and 4, the mineralocorticoid receptor (MR), Bmal1, 

Rev-erb, Per1, and Cry1. 

2.8. Immunohistochemistry 
For immunohistochemistry studies, the aorta was fixed first by incubating the sample in 

70% alcohol for 48 hours then in 5% formaldehyde for 24 hours, following which it was 

embedded in paraffin. With the use of a microtome, the embedded tissues were cut in 
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series with a thickness of 5µm. Once a section was cut, with the use of a pencil it was 

held then placed in warmed water and picked up with a slide. Finally the tissue’s slides 

were placed on a heated platform to dry.  

The tissue was first stained for elastin with an elastin staining kit (Van Gieson staining, 

Richard-Allan Scientific CAT # 87017). Samples were deparaffinized by heating at 600C 

for 2 hours, this was followed by a series of incubation for hydration: 2 times in xylene for 

15 min each time, 2 times in 100% ethanol for 5 minutes each times then in 95% ethanol 

for 5 min and 85% ethanol for 5 minutes followed by 70% and 50% ethanol for 5 minutes 

and water for 5 minutes. Samples were stained in working elastic stain solution for 30 

minutes then rinsed in running tap water for 1 minute. The samples were then 

decolorized in working differentiating solution followed by a rinsed in tap water. The 

samples were then placed in sodium thiosulfate solution for 1 minute, then rinse with 

water for 3 minutes. They were then stained with Van Gieson stain solution for 3 minutes 

followed twice by dehydration in anhydrous alcohol for 1 minute each then cleared in 

clearing reagent 3 times for 1 minute each and mounted. 

For TIMP4 staining, the section were deparaffinized, rehydrated, and treated with low pH 

antigen retrieve buffer (Vector Laboratory, Burlingame, CA) to retrieve antigen. Sections 

were treated with 3% H2O2 to quench endogenous peroxidases. After blocking 

endogenous background with Avidin/Biotin blocking kit (Vector/Laboratories) and non-

specific binding (normal goat serum, Vectastain ABC Kit), slides were incubated with the 

TIMP4 primary antibodies (AssayBioTech) overnight at 4oC. Slides were then incubated 

with biotinylated secondary antibody (VECTASTAIN, ABC kit, elite). This incubation was 

followed by signaling detection which required samples to be subjected to the procedure 

of VECTASTAIN Elite ABC system (Vector Laboratories). Immunoreactivity was 
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visualized by DAB (DAKO North America Inc, Carpinteria, CA) followed by 

counterstaining with hematoxylin. 

2.9. Gel Zymography 
The aorta was freshly dissected and equilibrated in PBS for 30 minutes, then incubated 

in Krebs buffer for 24 hours at 370C. The medium containing MMPs loaded in a 2% 

gelatin zymogram gel : 10% gel (Acrylamide 29:1, 4x Separate gel buffer pH 8.8, gelatin, 

10% APS, TEMED), stacking gel (Stacking buffer, Acrylamide 29:1, 10% APS, 

TEMED).The gel ran at 100v until the dye front reached the bottom of the gel. It was 

then incubated 2 times in wash buffer (1M Tris, 1 M CaCl2, 10mM ZnCl2, 2% Na2N3, 

Triton X-100) at 370C with shaking, followed by incubation in reaction buffer (1M Tris, 1 

M CaCl2, 10mM ZnCl2, 2% Na2N3, Triton X-100) at 370C overnight. After incubation, the 

gel was washed 3 times with water at room temperature with shaking, stained with 

GelCode Blue Safe Protein and destained with water. The gel was scanned for 

visualization. 

2.10. In Situ Zymography 

To detect MMP/Gelatinases activities, the slides containing sections of paraffin 

embedded aorta were heated at 59oC overnight, deparaffinized in xylene and rehydrated 

in graded alcohol. Samples were incubated with a DQ gelatin fluorescein conjugate 

(EnzChek Gelatinase/Collagen Assay Kit, Molecular Probes CAT# E12055). Samples 

were first equilibrated in reaction buffer (0.5 M Tris-HCl, 1.5 M NaCl, 50mM CaCl2, 2 mM 

sodium azide, pH 7.6) for 5 minutes. Substrate was prepared by dissolving 1mg DQ 

gelatin in 1.0 ml of water then further diluted (1:200) in reaction buffer to make the 

reaction mixture. Each sample was incubated with 100µl of the reaction mixture at 370C 

for 2 hours in the dark. The slides were then washed with PBS 3 times for 2 minutes 

each. The slides were then fixed in 4% formaldehyde for 10 minutes in the dark washed 
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with PBS 3 times for 5 minutes each. The slides were then counterstain with DAPI then 

mounted229. 

2.11. ChIP Assay 
Freshly dissected aorta was allowed to equilibrate in PBS for 30 minutes and fixed in 1% 

formaldehyde in PBS for 1 hour, following which 2% glycine in PBS was added in the 

sample. The tissue was frozen in liquid nitrogen and pulverized until a powder was 

formed. Then lysis buffer (0.1 M NaCl, 50mm Mop-NaOH pH 7.0, 1M EGTA, 0.1% 

Tween 20, 2mM MgCl2,0.5mM DTT(TCEP) was added to the sample and allowed to 

equilibrate at room temperature. The sample was centrifuged and the pellet collected 

and washed twice with the lysis buffer. The sample was then treated with mung bean 

nuclease at room temperature followed by sonication (36% power) and centrifugation at 

4oC. The supernatant was diluted 10 fold in CHIP dilution buffer (5% sodium 

deoxycholate, Triton X-100, 0.5 M EDTA, 1M Tris HCl pH8.0, 5M NaCl) supplemented 

with proteases and phosphatases inhibitor (PMSF, aprotinin, leupeptin, pepstatin, DTT, 

NaF, Na3VO4). Salmon sperm DNA/protein A/G 50% slurry was added to pre-clear the 

sample with rotation at 40C. Sample was then centrifuged and the supernatant collected 

and incubated with immunoprecipitating 3ug Bmal1 or non-specific IgG overnight at 40C. 

Salmon sperm DNA/ protein G-agarose slurry was added to collect Ab/Histone complex 

by rotation at 40C. The sample was centrifuged and the pellet was collected. A series of 

washes followed: 2 times wash with low salt (10% SDS,Triton-X100, 0.5M EDTA, 1M 

Tris-HCl pH 8.0, 5M Nacl), 2 times High salt (10% SDS,Triton-X100, 0.5M EDTA, 1M 

Tris-HCl pH 8.0, 5M Nacl), 2 times LiCl (5M LiCl, NP-40, Deoxychloric Acid, 0.5M EDTA, 

1MTris-HCl pH 8.0) and 3 times 1X TE(1M Tris-HCl, 0.5 M EDTA). The 

immunocomplexes were eluted by adding elution buffer (1M Tris-HCl pH 8.0, 5M NaCl, 

0.5M EDTA, 10% SDS) to the pelleted complex, then centrifuged following which the 
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supernatant was collected. 5M NaCl was added to the supernatant and histone crosslink 

reverse by heating at 650C. 0.5 M EDTA, 1M Tris-Cl pH 6.5 and 10mg/ml of proteinase K 

were added to the sample which was followed by incubation at 450C. DNA was extracted 

by 1 volume of phenol/chloroform and twice by half volume of straight chloroform. 1/10 

Volume of 3M NaOac, 2 volumes of 100% ethanol and 1 ul of glycogen were added to 

the DNA extract which was stored at -800C. Then the product centrifuged at 40C. The 

pellet was washed with 75% ethanol and resuspended in TE. 

1 µl of the sample used for PCR as followed: 

Step1: 94o for 3:00 

Step2: 94o for 0:30 

Step3: 55o for 1:00 

Step4: 72o for 0:30 

Step5: Go to step2 for 40 times 

Step6: 72o for 10:00 

The product was run in 1.5% agarose gel 

2.12. TIMP4 Promoter Cloning 
A mouse Bacterial Artificial Chromosome (BAC) clone containing the mouse TIMP4 

promoter was purchased from Lifetechnologies. A small portion of the glycerol stock was 

streaked on a LB plate containing 12.5µg/ml chloramphenicol and incubated at 37oC 

overnight. A single colony was isolated and incubated in 10ml of LB 12.5µg/ml 

chloramphenicol at 37oC overnight with shaking. The culture was in 1.5 ml tubes and 

centrifuged for 1 minute at 14000 rpm. The supernatant was discarded. The pellet was 
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resuspended in 200 µl of solution I (50 mM Tris pH 8.0 with HCl, 10 mM EDTA, 

100µg/ml RNase A). Then 200 µl of solution II (200 mM NaOH, 1%SDS) was added and 

gently mixed, it was followed by adding 200 µl of solution III (3.0 M Potassium Acetate, 

pH 5.5). The sample was mixed by inverting the tube gently. A white precipitate had 

formed. The tube was then centrifuged for 10 minutes at 14,000rpm. The supernatant 

was transferred to a new tube without transferring any pellets. 900 µl of 100% ethanol 

was added to the supernatant and mixed well by inverting the tube, followed by 

centrifugation for 20 minutes at 14,000 rpm. The supernatant was removed and 

discarded. 100 µl of ice cold 75% ethanol was added to the pellet then centrifuged for 30 

sec. The supernatant was completely removed from the pellet and dried for 20 minutes. 

The pellet was resuspended in 50 µl of distilled water. 1 µl of the sample was used for 

PCR to amplify the product as followed: 

Step1: 94o for 3:00 

Step2: 94o for 0:30 

Step3: 55o for 1:00 

Step4: 72o for 2:00 

Step5: Go to step2 for 40 times 

Step6: 72o for 10:00 

1 µl of the sample was used to verify the product in 1.5% agarose gel. 

The PCR product was then ligated to a TA vector as follows: in a 0.5 µl PCR tube, 5 µl of 

2x Rapid Ligation Buffer was mixed, 1µl of the vector, 1 µl of the PCR product and 1µl of 

T4 DNA ligase and nuclease free water was added to a final volume of 10µl. The 
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reaction was mixed by pipetting and incubated at room temperature for 1 hour at room 

temperature. 

Tube containing E. coli competent cells was placed on ice until thawed. The cells were 

mixed by gently flicking the tube. 50 µl of cells was transferred in the tube containing the 

ligation reaction. The tube was then gently flicked and placed on ice for 20 minutes. The 

tube was placed in a water bath at 420C for 50 seconds and placed on ice for 2 minutes. 

900µl of SOC medium was added to the reaction and incubated for 1.5 hours at 37oC 

with shaking. 100 µl of the transformation culture was plated in a LB plate containing 

ampicillin/IPTG/X-Gal then incubated overnight at 37oC. A single colony was picked and 

incubated in 10ml of LB 12.5µg/ml chloramphenicol at 37oC overnight with shaking. The 

culture was in 1.5 ml tubes and centrifuged for 1 minute at 14000 rpm. The supernatant 

was discarded. The pellet was resuspended in 200 µl of solution I. Then 200 µl of 

solution II was added and gently mixed, followed by adding 200 µl of solution III. The 

sample was mixed by inverting the tube gently. A white precipitate had formed. The tube 

was then centrifuged for 10 minutes at 14,000rpm. The supernatant was transferred to a 

new tube without transferring any pellets. 900 µl of 100% Ethanol was added to the 

supernatant and mixed well by inverting the tube, followed by centrifugation for 20 

minutes at 14,000 rpm. The supernatant was removed and discarded. 100 µl of ice cold 

75% ethanol was added to the pellet then centrifuged for 30 sec. The supernatant was 

completely removed from the pellet and dried for 20 minutes. The pellet was 

resuspended in 50 µl of distilled water. One µl of the sample was used to verify the 

product by PCR as previously discribed. The sample was then digested with KPNI and 

XHOI and ran in a 1.5% agarose gel to verify the product. 

The insert (product) was cut from the gel and placed in a 1.5 ml tube. 10µl of the 

membrane binding per 10µg of gel solution was added then vortexed and incubated at 
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65oC until the gel was completely dissolved. The dissolved gel mixture was transferred 

into SV Minicolumn inserted in a collection tube and incubated at room temperature for 1 

minute. The mixture was then centrifuged at 16,000xg for 1 minute. The flow-through 

was discarded. 700µl of the membrane solution with ethanol was added and centrifuge 

at 16,000xg for 1 minute. Another 500µl of membrane solution was added and 

centrifuged at 16,000xg for 5 minutes. The flow-through was discarded and the column 

was centrifuged for 1 minute with lid open. The minicolumn was transferred into a new 

1.5 ml tube and 50 µl of nuclease-free water was added to the column and incubated at 

room temperature for 1 minute then centrifuged at 16,000xg for 1 minute. While running 

this experiment, the pGL3 vector was also digested using KPNI and XHOI. Then the 

DNA purified from the cut gel was ligated to the digested pGL3 vector at 37oC for 1 hour. 

The ligated product was then transfected into competent E.coli cells as described above. 

A single colony was picked from a freshly streaked plate and inoculated in 5 ml LB 

medium containing chloramphenicol overnight at 370C with shaking. The culture was 

diluted 1/500 in LB medium and 200 µl of the diluted culture was inoculated with 100 ml 

of medium at 370C overnight with shaking. Culture was transferred into plastic centrifuge 

tube. The bacterial cells were harvested by centrifugation at 6000 x g for 15 min. at 40C. 

The bacteria were resuspended in 10 ml Buffer P1; 10 ml of buffer P2 was added, then 

mixed vigorously by inverting 6 times, then incubated at room temperature for 5 min. 

Chilled Buffer P3 was then added to the lysate, and mixed vigorously by inverting 6 

times. The lysate was poured into the barrel of the QIAfilter cartridge then incubated at 

room temperature for 10 min. without inserting the plunger. The cap was then removed 

from the cartridge and the plunger inserted slowly and the cell lysate was filtered into a 

50 ml tube. Then 2.5 ml of buffer ER was added to the filtered lysate and mixed by 

inverting the tube 10 times, then incubated on ice for 30 min. QIAGEN-tip 500 was 
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equilibrated by adding 10 ml Buffer QBT and allowed the column to empty by gravity 

flow. The filtered lysate was placed into the QIAGEN-tip and allowed to enter the resin 

by gravity flow. The QIAGEN-tip was washed 2 times with 30 ml Buffer QC. The DNA 

was eluted with 15 ml of Buffer QN, then precipitated by adding 10.5 ml of isopropanol. It 

was then mixed and centrifuged at 15,000 x g for 30 min at 40C. The supernatant was 

removed. The DNA pellet was washed with 5 ml of 70% ethanol and centrifuged at 

15,000 x g for 10 min. The supernatant was removed without disturbing the pellet. The 

pellet was air-dried for 10 minutes and redissolved in 500 µl of Buffer TE. Then the DNA 

concentration was measured using the nanodrop and the Plasmid aliquoted and stored 

at -800C. 

2.13. TIMP4 Promoter Assay 
The aorta of SMC Bmal1-/- and their littermate control were used to isolate vascular 

smooth muscle cells. The cells were transfected with pGL3-TIMP4 luciferase vector and 

TRL-SV 40 Renillla vector with Lipofectamine-Plus reagent (Life technologies). Cells 

were first plated in twelve wells plate and incubated for 48 hours until the cells were 

about 70% confluent. The medium was then changed to OPTI-medium for 3 hours 

incubation at 370C. The DNA was pre-complexed with the plus reagent mixed and 

incubated at room temperature for 15 min. In a second tube, Lipofectamine reagent was 

diluted into OPTI-medium; next, this was combined with the precomplexed DNA, mixed 

and incubated for 15 minutes at room temperature. The DNA-Plus –Lipofectamine 

Reagent was added to each well containing fresh medium. The complexes was was 

incubated overnight at 370C. The medium was then removed and incubated for 24 hour 

at 370C with DMEM.  After transfection was completed, the medium was removed and 

passive lysis buffer (Promega CAT# E1941) was added to each well followed by shaking 
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at room temperature. The lysed cells were centrifuge at 40C and the supernatant was 

kept for the reading of the luciferase and renilla.  

2.14. TIMP4 ELISA 

2.14.1 Sample Preparation 
After isolating the aorta from mice, the tissue was snap-frozen with liquid nitrogen and 

stored at -800C until protein extraction. To extract protein from aorta, the frozen tissue 

was homogenized using rotor homogenizer and RIPA buffer (25mM Tris HCl pH 7.6, 

150mM NaCl, 1% NP-40, 1% sodium deoxylatecholate, 0.1% SDS) containing proteases 

at 40C. The samples were centrifuged for 10 minutes at 16000g at 40C. The supernatant 

was aliquoted and the protein concentration was measured by BCA protein assay with 

Pierce BCA Protein Assay Kit. 

2.14.2. ELISA 
The capture antibody was diluted to working concentration in PBS. A 96-well microplate 

was coated with 100 µl of the diluted capture antibody in each well. The plate was 

sealed and incubated overnight at room temperature. The next day, the capture antibody 

was aspirate from the wells and washed with wash buffer (0.05% Tween 20 in PBS, pH 

7.2-7.4) 3 times. The plates was then blocked by adding 300 µl of block buffer (1% BSA 

in PBS, pH 7.2-7.4) and incubated at room temperature for 1 hour; this step was 

followed by washing the plate with wash buffer 3 times. 100 µl of the sample or 

standards in reagent diluent (50mM Tris, 10mM CaCl2, 0.15M NaCl2, 0.05 Brij 35, pH 

7.45-7.55) per well was added on the plate. The plate was covered and incubated at 

room temperature for 2 hours. The standards were prepared by making a six point 

standard curve with 2 fold serial dilutions with a highest concentration being 10,000 

pg/mL and the lowest concentration 313 pg/mL. The plate was washed 3 times with 

wash buffer after incubation. 100 µl of detection antibody diluted in reagent diluent was 
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added in each well. The plate was covered and incubated for 2 hours at room 

temperature. The plate was then washed 3 times with was buffer. Then 100µl of the 

working dilution of streptavidin-HRP was added to each well. The plate was covered first 

adhesive strip then with aluminum foil to avoid light and incubated for 20 minutes at 

room temperature. After 20 minutes, the plate was washed three times with wash buffer. 

100µl of substrate solution was added to each well and left to incubate for 20 minutes at 

room temperature, the plate was again covered with aluminum foil to avoid light. 50 µl of 

stop solution was added to each plate and tapped gently for mixing. The optical density 

of each well was determined using a microplate reader. To correct imperfections in the 

plate, 540nm wavelength was subtracted from the readings at 450nm. 

2.15. Statistical Analysis 

All data were expressed as mean ± S.E.M. Unpaired Student t-test was used for 

comparison between two groups. One-way ANOVA followed by Newman-Keul’s post-

hoc analysis was used for the comparison among multiple groups. Two-way ANOVA 

with repeated measures was used for comparison among multiple groups. Chi Square 

analysis was used for comparing AAA, TAA, and rupture incidence. A P value of <0.05 

was considered significant. A P value of >0.05 was considered non-significant (NS).  

2.16. Study approval.   
All animal procedures were approved by the Institutional Animal Care and Use 

Committee of University of Kentucky. 
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Gene Primer Sequence Application

   MR Forw ard   5'-ATGGAAACCACACGGTGACCT-3'   Real Time PCR

Reverse   5'-AGCCTCATCTCCACACACCAAG-3'   Real Time PCR

  TIMP1 Forw ard   5'-CCAGAGCCGTCACTTTGCTT-3   Real Time PCR

Reverse   5'-AGGAAAAGTAGACAGTGTTCAGGCTT-3'   Real Time PCR

  TIMP2 Forw ard   5'-ACGCTTAGCATCACCCAGAAG-3   Real Time PCR

Reverse   5'TTGGGACAGGGAGTGATCTTG-3'   Real Time PCR

  TIMP3  Forw ard   5'ATCCCCAGGATGCCTTCTG-3'   Real Time PCR

 Reverse   5'-CCCTCCTTCACCAGCTTCTTT-3   Real Time PCR

  TIMP4  Forw ard   5'-TGTGGCTGCCAAATCACCA-3'   Real Time PCR

 Reverse   5'-TCATGCAGACATAGTGCTGGG-3'   Real Time PCR

  Bmal1 Forw ard   5′-CACTGTCCCAGGCATTCCA-3′   Real Time PCR

Reverse   5′-TTCCTCCGCGATCATTCG-3′   Real Time PCR

  Cry1 Forw ard   5′-TCGCCGGCTCTTCCAA-3′   Real Time PCR

Reverse   5′-TCAAGACACTGAAGCAAAAATCG-3′   Real Time PCR

  Per1 Forw ard   5′-TCGAAACCAGGACACCTTCTCT-3′   Real Time PCR

Reverse   5′-GGGCACCCCGAAACACA-3′   Real Time PCR

  Rev-erbα Forw ard   5′-CCCTGGACTCCAATAACAACACA-3′   Real Time PCR

Reverse   5′-GCCATTGGAGCTGTCACTGTAG-3′   Real Time PCR

  TIMP4 Forw ard   5'-CCT ACT TGT TTT ACA CAT GGA ACC-3'   CHIP 1 

Reverse   5'-GTT TAC AGA CAG CAA AAT TTA CCC TT-3'   CHIP 1 

  TIMP4 Forw ard   5'-CAC CGC TAA GAA GAT TTT TGT TCT-3'   CHIP 2

Reverse   5'-TGA ACT GGA CAG AGA TAG GCC T-3'   CHIP 2 

  TIMP4 Forw ard   5'-TAA GAA AGT AAA CGC TTT CCC AA-3'   CHIP 3 

Reverse   5'-ATC AGC TCA GCC TTG TCA CTT-3'   CHIP 3 

  TIMP4 Forw ard   5'-AAG CCA CAC TAG CAG GTG AAG-3'   CHIP 4 

Reverse   5'-CGA ACT CTT TTC TCC ATT AAG TAG GA-3'   CHIP 4 

  TIMP4 Forw ard   5'-TGA CAT CCT TCC CTA CCA CC-3'   CHIP 5 

Reverse   5'-CAA GAG CTA GTG AAG GGA AGC A-3'   CHIP 5

  TIMP4 Forw ard   5'-TTT GGT CAA TTT GTC AAA ATA CAA TG-3'   Cloning TIMP4 Promoter

Reverse   5'-GAC ACT GCA GAG CCC CAG-3'   Cloning TIMP4 Promoter

Table 1: List of Primers 
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CHAPTER 3 

RESULTS 
 

3.1. Deletion of Bmal1 in vascular smooth muscle cells protects from 
mineralocorticoid agonist plus salt induced aortic aneurysm 
Liu et al. had previously demonstrated that administration of mineralocorticoid receptor 

agonists, deoxycorticosterone acetate (DOCA) or aldosterone, when combined with high 

salt, induces aortic aneurysms227.  To determine the role of vascular smooth muscle 

Bmal1 in aortic aneurysm formation, we administered DOCA plus salt to 4-month old 

male SM-Bmal1-/- and littermate control mice for 21 days. The increase in the external 

diameter of the abdominal and thoracic aorta by DOCA and salt administration was 

significantly suppressed in the SM-Bmal1-/- mice (Fig.2A).  Eight out of 26 control mice 

had over a 50% dilation in abdominal aorta; however only one out of 25 SM-Bmal1-/- had 

this.  None of the SM-Bmal1-/- mice showed thoracic aorta dilation (Fig.2 A). The 

incidence of aortic aneurysms was significantly decreased from 30.7% in control mice to 

4% in the SM-Bmal1-/- mice (P<0.01); the incidence of thoracic aortic aneurysms (TAA) 

was decreased from 11.5% in control mice to 0% in the SM-Bmal1-/- mice ; and rupture 

incidence went from 7.6% to 0% (Fig. 2B).  Fig. 3 shows photographs of a normal aorta 

from the SM-Bmal1-/- mice and a typical aneurysmal aorta from the control mice 

administered with DOCA and high salt.  

Mineralocorticoid receptors agonists plus salt induced aortic aneurysm in mice showed 

that AAA formation and severity was aged dependent; therefore, we investigated 

whether deletion of Bmal1 in smooth muscle will still afford the same protection in older 

(8 months) mice. A dramatic protective effect by Bmal1 deletion was observed. 

Ultrasound quantification of the intraluminal diameter of the abdominal aorta illustrated 

that DOCA plus salt induced a time- dependent dilation in the control mice and that 
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dilation was significantly suppressed in the SM-Bmal1-/- mice. The increase in the 

intraluminal diameter (Fig. 4A; P<0.001) and external diameter (Fig. 4B; P<0.001) of 

aorta were much more pronounced in control mice than in SM-Bmal1-/- mice. The aortic 

aneurysm incidence was drastically decreased from 68.7% in the control to 0% in SM-

Bmal1-/- mice (P<0.001), and TAAs were decreased from 31.2% in control mice to 0% in 

SM-Bmal1-/- mice (P<0.05) (Fig. 4C). Moreover, no rupture occurred in the 16 SM-

Bmal1-/- mice while 2 of 16 control mice died of rupture (Fig. 4C). Fig. 5 shows 

photographs of a normal aorta from the SM-Bmal1-/- mice and a typical aneurysmal aorta 

from the control mice administered aldosterone and high salt. 
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Figure 2: Four month old SM-Bmal1-/- mice are protected from DOCA-salt induced 
aortic aneurysm.  

(A) Quantification of abdominal and thoracic aortic outer diameter in control and SM-
Bmal1-/- mice after 3 weeks of DOCA plus salt (B)  Incidence of AAA,TAA and aortic 
rupture after DOCA plus salt administration (3 weeks). Two-way ANOVA followed by 
Bonferroni’s post-hoc analysis was used for statistics in A. Chi Square was used for 
comparing AA incidence in B. *: P<0.05, **P<0.01, NS: No significance. 
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Figure 3: Representative pictures of aortas 

Representative pictures of aortas with connected hearts and kidneys from 4 month old 
(A) WT and (B) KO mice after 3 weeks of DOCA plus salt 
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followed by Bonferroni’s post-hoc analysis was used for statistics in A and B. Chi Square was 
used for comparing AA incidence in C. *: P<0.05, ***P<0.001, NS: No significance. 

 

Figure 4: Eight month old SM-Bmal1-/- mice are protected from DOCA- salt induced 
aortic aneurysm 
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Figure 5: Representative pictures of aortas 

Representative pictures of aortas with connected hearts and kidneys from 8 month old  
(A) WT and  (B) KO mice after 3 weeks of DOCA plus salt 
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3.2. Deletion of Bmal1 in vascular smooth muscle cells has no effect on plasma 
sodium, mineralocorticoid receptor mRNA, and blood pressure. 

Since DOCA plus salt model of aortic aneurysm was shown to be dependent on high salt 

intake and to work through the mineralocorticoid receptor, we first investigated whether 

Bmal1 deletion in smooth muscle cell prevents plasma sodium increase in response to 

DOCA plus salt. We measured plasma sodium before and after DOCA plus salt 

administration in control and SM-Bmal1-/- mice. The plasma sodium concentration was 

similar in control and SM-Bmal1-/- mice after DOCA plus salt treatment (Fig 6). We also 

measured plasma potassium and found similar decrease in plasma potassium in both 

control (P<0.05) and SM-Bmal1-/- mice (Fig.7; P<0.01). These results suggest that 

Bmal1 deletion from smooth muscle cells does not affect sodium retention or potassium 

excretion. Therefore, this is not a mechanism to account for the protection observed in 

SM-Bmal1-/- mice.  Second, we investigated the possibility that deletion of Bmal1 in 

smooth muscle cells may decrease mineralocorticoid receptor (MR) expression in the 

aorta since DOCA plus salt model of AAA is dependent on MR227 . We therefore looked 

at both Bmal1 and MR mRNA expression in different regions of the aorta including the 

arch, descending, suprarenal, and infrarenal aorta in wild type mice ZT5, ZT11, ZT17 

and ZT23 (Fig.8). There was no significant difference in Bmal1 and MR mRNA 

expression among the different regions. Even in the suprarenal aorta, where AAA occurs 

in mice, Bmal1 and MR mRNA was unchanged. Bmal1 and MR mRNA had a trend 

towards a time-dependent variation in their mRNA expression, and, in particular, there 

was an inverse temporal correlation between Bmal1 and MR mRNA expression, 

indicating that Bmal1 may negatively regulate MR expression. This hypothesis was 

investigated by looking at aortic MR mRNA expression in control and SM-Bmal1-/- mice 

before and after 7 days of DOCA and salt treatment at ZT17 (Fig.9). DOCA and salt 

suppressed MR mRNA expression in the aortic arch (P<0.05) and descending aorta of 
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control mice (P<0.001).  A trend for downregulation of MR mRNA was found in 

suprarenal and infrarenal aorta. Deletion of smooth muscle Bmal1 had little effect on MR 

mRNA expression in the aorta before and after DOCA-salt treatment except for the 

descending aorta where deletion of smooth muscle Bmal1 significantly decreased MR 

mRNA expression (Fig.9; P<0.01).  

As DOCA plus salt administration increases blood pressure and hypertensive patients 

have high prevalence of aortic aneurysms230, 231 , we examined blood pressure in control 

and SM-Bmal1-/- mice by the tail cuff method to investigate whether the protective effects 

of Bmal1 deletion were associated with inhibition of DOCA plus salt induced increases in 

blood pressure. First, 4-month-old SM-Bmal1-/- mice had lower blood pressure than 

control mice (Fig.10A; P<0.001), consistent with our previous telemetry results.  

Interestingly, there was no difference in basal blood pressure between 8-month-old SM-

Bmal1-/- mice and control mice (Fig 10B).  Second, perhaps more important, both SM-

Bmal1-/- and control mice , regardless of their ages, increased their blood pressure to a 

similar extent in response to DOCA or Aldo plus salt, suggesting that deletion of Bmal1 

in smooth muscle has little effect on DOCA or Aldo plus salt-induced hypertension.  
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Figure 6: Deletion of Bmal1 from smooth muscle cells does not affect plasma 
sodium level 
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Figure 7: Deletion of Bmal1 from smooth muscle cells does not affect 
plasma potassium level 
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Figure 8: Deletion of Bmal1 in smooth muscle has little effect on basal and DOCA-
salt-induced MR expression in suprarenal aorta 

Aortas were isolated at ZT5, 11, 17, and 23 from ten-week-old C57BL/6J mice (A 
through D) Aortas were then cut into arch, thoracic, suprarenal, and infernal aorta. 
Relative expressions of MR and Bmal1 mRNA were normalized to 36B4 mRNA 
expression. Two-way ANOVA followed by Bonferroni’s post-hoc analysis was used for 
statistics in (A through D; N=4).  
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Figure 9: Deletion of Bmal1 in smooth muscle has little effect on basal and DOCA-
salt-induced MR expression in suprarenal aorta 

Aortas were isolated at ZT5 from ten-week-old SM-Bmal1-/- and WT littermates 
administered with DOCA-salt for 7 days (A through D). Aortas were then cut into arch, 
thoracic, suprarenal, and infernal aorta. Relative expressions of MR mRNA were 
normalized to 36B4 mRNA expression. One-way ANOVA followed by Newman-Keuls’ 
post-hoc analysis was used for statistics in (A through D; N=3 to 4). *P<0.05; **P<0.01; 
***P<0.001. NS: not statistically significant. 
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Figure 10: Bmal1 deletion does not affect DOCA plus salt induced hypertension 

(A) Systolic blood pressure from 4 months old control and SM-Bmal1-/- mice before and 
after 21days after DOCA plus Salt treatment (B) Systolic blood pressure from 8 months 
old control and SM-Bmal1-/- mice before and after 21 days of DOCA plus Salt treatment . 
Two-way ANOVA was used by Bonferroni’s post-hoc correction.**P<0.01, 
***P<0.001,NS: No significance 
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3.3. Deletion of Bmal1 from smooth muscles cells prevents MMP activation 
triggered by DOCA plus salt administration and elastin degradation 

One hallmark of aortic aneurysm is elastin degradation which leads to aortic dilation and 

subsequently to aortic rupture. We therefore investigated whether Bmal1 deletion eased 

DOCA plus salt induced Verhoeff's Van Gieson (EVG) elastin staining. DOCA-salt 

induced elastin degradation (Fig 11; P<0.001), and deletion of BMAL1 in smooth muscle 

effectively prevented mice from DOCA-salt induced elastin degradation (Fig 11). 

Matrix Metalloproteinases (MMPs), in particular MMP2 and MMP9, have been 

demonstrated to play a major role in elastin degradation in aortic aneurysms232 . 

Therefore, we investigated the effect of deletion of BMAL1 in smooth muscle on DOCA 

plus salt-induced MMP activation. We used in situ zymography to measure MMP activity 

in abdominal aortic cryosections from SM-Bmal1-/- and control mice administered with 

DOCA and salt for 7 days (Fig.12). In the absence of DOCA and salt, little MMP activity 

was detected in aorta from both SM-Bmal1-/- mice and controls. In the presence of 

DOCA and salt, however, a large MMP activity was readily detected in aorta from control 

mice, but not in SM-Bmal1-/- mice (Fig.12), suggesting that deletion of Bmal1 in smooth 

muscle prevents mice from DOCA-salt-induced elastin degradation through inhibiting 

MMP. We also used in situ zymography to measure MMP activity in paraffin-embedded 

abdominal aortas from mice administered DOCA and salt for 21 days. A similar dramatic 

protective effect of deletion of Bmal1 in smooth muscle on DOCA-salt-induced MMP 

activation was also observed in paraffin-embedded aortas (Fig. 13). It should be pointed 

out that using in situ zymography to detect MMP activity in fixed, paraffin-embedded 

tissue has been well described229 . However, the detected MMP activity in paraffin-

embedded aortic section was only found in aortic thrombosis area, which is different 

from what we reported in aortic cryosections where MMP could be readily detected in 

the media of smooth muscle layer227 , probably reflecting that less MMP activity was 
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preserved in paraffin-embedded tissue229. Regardless of these differences, it is clear that 

both data indicate a critical role of smooth muscle BMAL1 in DOCA-salt-induced MMP 

activation. 
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Figure 11: Bmal1 deletion from smooth muscle cells prevents DOCA plus salt 
induced elastin degradation 

(A) Elastin integrity in control and SM-Bmal1-/- mice after 21 days of DOCA plus salt 
administration. (B): Quantification of elastin breaks per surface area, Two-way ANOVA 
followed by Bonferroni’s post-hoc analysis. ***P<0.001 .Scale bar:  at lower 
magnification: 500μm, higher magnification 100μm 
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Figure 12: Bmal1 deletion from smooth muscle cells prevents DOCA plus salt 
induced gelatinases activation in the aorta 

In situ zymography of cryosections of abdominal aorta from SM-Bmal1-/- mice and WT 
littermates administered with DOCA-salt for 7 days. Scale bar: 100μm. 
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Figure 13: Deletion of Bmal1 in smooth muscle protects mice from DOCA-salt-
induced MMP activation 

In situ zymography (e through h and m through p) and phase contrast microscopy (a 
though d and I through l) of abdominal aortic cross-sections from SM-Bmal1-/- mice (I 
through p) and WT littermates (a through h) with (c, d, g, h, k, l, o, and p) or without 
DOCA-salt administration (a, b, e, f, i, j, m, and n). Scale bar:  at lower magnification: 
500μm, higher magnification: 100μm. 
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3.4. Deletion of Bmal1 in smooth muscle selectively increases TIMP4 expression 
in abdominal aorta  

The protective effect of deletion of Bmal1 in smooth muscle may be attributable to 

inhibiting/downregulating MMP2/MMP9 and/or to activating/upregulating tissue TIMPs. 

To investigate which mechanism(s) is (are) operating in SM-Bmal1-/- mice, we 

determined aortic MMP2 and MMP9 activities in SM-Bmal1-/- and control administered 

DOCA and salt for 7 days by gel zymography, a simple but sensitive method to detecting 

MMP activity under a condition at which MMPs are dissociated from bound TIMPs233. 

Consistent with the results of in situ zymography, a significant or a trend towards 

increase in proMMP2, MMP2, proMMP9, and MMP9 activities was detected in control 

mice treated with DOCA-salt (Fig. 14A through E). Surprisingly, in sharp contrast to the 

result of in situ zymography, deletion of BMAL1 in smooth muscle had little effect on 

DOCA-salt-induced proMMP2, MMP2, proMMP9, and MMP9 activities. Moreover, a 

significant or a trend towards increase in basal proMMP2, MMP2, proMMP9, and MMP9 

activities was found in SM-Bmal1-/- mice relative to that in control mice (Fig. 14A through 

E). Since in gel zymography is to detect MMP activity under a condition that all MMPs, 

including proMMPs, are activated by SDS, the activity of MMPs detected by in gel 

zymography actually is proportional to the level of MMPs protein in samples regardless 

they are active or inactive234 . In contrast, in situ zymography is only to detect active 

MMPs. Thus, these results suggest that the activity of MMPs, but not the level of MMPs, 

is suppressed by the deletion of BMAL1 in smooth muscle. We then investigated the 

possibility that the overall inhibition of MMP activity detected by in situ zymography is 

attributable to enhanced expression of tissue inhibitors of MMPs (TIMPs). TIMPs are 

specific inhibitors of MMPs that control the local activities of MMPs in tissues151, 235. Four 

TIMPs (TIMP1, TIMP2, TIMP3, and TIMP4) have been identified and characterized so 

far in mammals, and all four TIMPs can inhibit active forms of all MMPs with distinct 
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affinity and potency156, 236. Five different approaches were taken to rigorously test 

whether and/or which TIMP(s) in aorta is affected by deletion of Bmal1 in smooth muscle 

and/or by DOCA or Aldo plus salt in vivo and ex vivo. 

First, we determined mRNA expression of all four TIMPs in aorta in SM-Bmal1-/- and 

control mice administered with DOCA and salt for 7 days. All four TIMP transcripts were 

found in mouse aorta but among the four TIMPs, Timp4 was the most abundant (Figure 

15). The order of relative abundance for the four TIMPs in mouse aorta were TIMP4 > 

TIMP3 >TIMP2 >TIMP1. The basal level of TIMP4 was 508-, 427-, and 311-fold higher 

than TIMP1, TIMP2, and TIMP3 in control mouse aorta, respectively. Moreover, among 

four TIMPs, TIMP4 was selectively upregulated in mouse aorta from SM-Bmal1-/- mice. 

There was a trend towards increased TIMP4 mRNA expression in the aorta from WT 

mice but it did not reach statistical significance. Interestingly, a significant increase in 

TIMP4 mRNA expression was found in aorta from SM-Bmal1-/- mice after DOCA plus 

salt treatment. (Fig. 15; P<0.01). The level of TIMP4 was 1,014-, 2,035-, and 559-fold 

higher than the levels of TIMP1, TIMP2, and TIMP3 in aorta in SM-Bmal1-/- mice after 

DOCA-salt administration, suggesting that TIMP4 may play a major role in inhibiting 

DOCA-salt-induced MMP activation. While little changes were found in TIMP1 and 

TIMP2 mRNA expression in response to deletion of Bmal1 in smooth muscle and/or 

DOCA-salt, a significant increase in TIMP3 mRNA was found in both SM-Bmal1-/- mice 

and WT littermates in response to DOCA-salt treatment. However, deletion of Bmal1 in 

smooth muscle downregulated TIMP3 mRNA expression before and after DOCA-salt 

administration, suggesting that TIMP3 unlikely accounts for the protective effect of 

deletion of BMAL1 in smooth muscle on DOCA-salt-induced AAA.  

Second, we determined the mRNA expression of all four TIMPs in an aortic organ 

culture in the presence of Aldo (10 nM) and high salt (additional 10 mM NaCl) to 
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investigate whether DOCA and salt directly or indirectly act on the aorta.  The mRNA 

expression pattern of TIMP1, TIMP2, TIMP3, and TIMP4 in response to Aldo and salt  

observed in ex vivo organ culture (Fig. 16) was similar to that found in vivo although the 

extent of increases in TIMP4 mRNA expression were somewhere different. These data 

not only verified that deletion of Bmal1 in smooth muscle selectively upregulated TIMP4 

mRNA expression in aorta, but demonstrated that Aldo and salt was able to directly act 

on aorta ex vivo. Third, we determined TIMP4 mRNA expression in aorta from SM-

Bmal1-/- mice and WT littermates administered with DOCA-salt for 21 days (Fig.17). 

Again, TIMP4 was found to be significantly upregulated by deletion of Bmal1 in smooth 

muscle (P<0.01) and could be further elevated by DOCA-salt in SM-Bmal1-/- mice 

(P<0.05), but not in WT littermates (P<0.001). (Fig.17). Interestingly, the level of TIMP4 

increase induced by DOCA-salt was higher at 21 days than at 7 days (182% increase at 

7 days vs. 85% increase at 7 days), indicating that DOCA-salt-induced TIMP4 

upregulation in SM-Bmal1-/- mice is time-dependent. 

Fourth, we determined TIMP4 protein expression in aorta by ELISA in SM-Bmal1-/- mice 

and WT littermates administered with DOCA-salt for 7 days to investigate whether 

TIMP4 mRNA upregulation leads to its protein upregulation. Quantitative data showed 

that deletion of Bmal1 in smooth muscle increased TIMP4 protein expression (Fig. 18; 

P<0.001). However, TIMP4 protein was not further increased in aorta by DOCA and salt, 

which is different from its mRNA upregulation.  

Finally, we determined TIMP4 protein expression by immunohistochemistry in aorta from 

SM-Bmal1-/- mice and WT littermates administered with DOCA and salt for 21 days to 

investigate the localization of TIMP4 in abdominal aorta. TIMP4 protein was dramatically 

upregulated in the media smooth muscle layer of the aorta in SM-Bmal1-/- mice before 

and after DOCA-salt administration (Fig. 19). There was no obvious increase in TIMP4 
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immunostaining in aorta from WT mice after DOCA-salt treatment, which agrees with 

quantitative data by real-time PCR and ELISA. 

Taken together, these data indicate that selective upregulation of TIMP4 by deletion of 

Bmal1 in smooth muscle may be responsible for its protective effect on DOCA or Aldo 

plus salt-induced MMP activation, elastin degradation, and AAA formation. 

 

 

Figure 14: Lack of suppression on the MMP2/9 activities by Bmal1 deletion from 
smooth muscle cells 

(A); Representative gel zymography from the medium in which aortas from control and 
SM-Bmal1-/- were incubated after 7 days of DOCA plus salt (B): Pro-MMP2 quantification 
from gel zymography(n=4) (C): Active MMP2 quantification from gel zymography (n=4) 
(D): Pro-MMP9 quantification from gel zymography (n=4) (E): Active MMP9 
quantification from gel zymography . Two-way ANOVA followed by Bonferroni’s post-hoc 
analysis **P<0.01, NS: No Significance 
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Figure 15: Deletion of Bmal1 in smooth muscle selectively upregulates TIMP4 
mRNA expression in aorta 
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Figure 16: Deletion of Bmal1 in smooth muscle selectively upregulates TIMP4 
mRNA expression in aorta. 
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Figure 17: Deletion of Bmal1 in smooth muscle upregulates TIMP4 
mRNA expression in aorta 
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mice and WT littermates before and after DOCA-salt for 7 days. One-way 
ANOVA followed by Newman-Keuls’ post-hoc analysis was used for statistics 
(N=4) ***P<0.001. NS: not statistically significant 

 

Figure 18: Deletion of Bmal1 in smooth muscle upregulates TIMP4 protein 
expression in aorta 
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Figure 19: Deletion of Bmal1 in smooth muscle upregulates TIMP4 protein 
expression in aorta 

Representative immunostaining of TIMP4 in paraffin-embedded suprarenal aortic cross-
sections in SM-Bmal1-/- mice and WT littermates before and after DOCA-salt for 21 days. 
Scale bar:  at lower magnification (a, c, e, and g): 500 μm, higher magnification (b, d, f, 
and h): 100μm. 
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3.5. Bmal1 is upregulated in aorta by DOCA and salt. 

It is clear that smooth muscle Bmal1 is critically involved in DOCA plus salt-induced 

MMP activation, elastin degradation, and AAA formation, which probably involves 

TIMP4. However it is unclear how smooth muscle Bmal1 is regulated by DOCA plus salt. 

To address this important mechanistic issue, we first investigated whether smooth 

muscle Bmal1 mRNA responds to DOCA-salt. An over 6-fold increase in Bmal1 mRNA 

expression was found in the aorta from mice administered with DOCA-salt for 7 days 

compared to that in control aorta (Figure 20; P<0.001), suggesting that DOCA-salt-

induced Bmal1 mRNA upregulation precedes and accounts for its protein upregulation.  

To investigate the mechanism by which Bmal1 is upregulated by DOCA-salt, we 

determined Per1, Cry1, and Rev-erbA mRNA expression in aorta of mice administered 

with DOCA and salt for 7 days as Bmal1 is negatively regulated by Per1, Cry1, and Rev-

erbα under physiological conditions222. We found that DOCA-salt administration had little 

effect on Per1 mRNA (Fig.21), significantly increased Cry1 transcripts (Fig. 22; P<0.01), 

but downregulated Rev-erbα transcript (Fig. 23; P<0.001), suggesting that DOCA-salt 

upregulates Bmal1 through suppressing Rev-erbα in aortic smooth muscle.  
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Figure 20: Bmal1 is upregulated after DOCA plus salt treatment 
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Figure 21: Per1 is not affected by DOCA plus salt treatment. 
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Figure 22: Cry1 mRNA increases with DOCA plus salt treatment 
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Figure 23: DOCA plus salt treatment negatively affect Rev-erbα mRNA 
expression 
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3.6. Identification of TIMP4 as a new target of Bmal1 in aorta.         
To identify the molecular mechanism by which deletion of Bmal1 in smooth muscle 

upregulates TIMP4 mRNA and protein, we tested the possibility that Bmal1 may directly 

bind to TIMP4 gene promoter and suppressed its transcription.  

First, to determine whether Bmal1, as a transcriptional factor, directly binds TIMP4 

promoter, we analyzed the mouse TIMP4 promoter DNA sequence and identified 

several canonical E-boxes (CANNTG, where N can be any nucleotide) that Bmal1 can 

potentially bind to (Fig. 24). To determine whether Bmal1 binds to these putative E-

boxes, we performed chromatin immunoprecipitation (ChIP) assays in aortas from WT 

mice. The results showed that Bmal1 bound to the TIMP4 promoter at E-box 2 through 

E-box 7 except for E-box 5 (Fig. 25). 

Second, to investigate whether the binding of Bmal1 to the TIMP4 promoter regulates its 

activity, we cloned a 2-kb mouse TIMP4 promoter, inserted it into a luciferase reporter 

vector (pGl3-TIMP4p-luc), and transfected the pGl3-TIMP4P-luc vector into aortic 

vascular smooth muscle cells isolated from SM-Bmal1-/- and WT littermate mice. In WT 

cells, the TIMP4 promoter exhibited a 6-fold increase in luciferase activity over the pGL3 

luciferase vector (Fig. 26 A). In contrast, when transfected into in Bmal1-deficient cells, 

the TIMP4 promoter activity was further increased by 9-fold over that in WT cells 

(Fig.26B), suggesting that TIMP4 transcription is suppressed by Bmal1 in WT cells. The 

effective deletion of Bmal1 was verified by quantification of its mRNA (Fig. 27).  

Third, to investigate whether the observed Bmal1-mediated TIMP4 transcriptional 

suppression translates to its mRNA suppression, we determined TIMP4 mRNA 

expression in WT and Bmal1-deficient cells and found that TIMP4 mRNA exhibited a 27-

fold increase over that in WT cells (Fig. 28;P<0.05), suggesting that Bmal1 suppresses 
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TIMP4 promoter activity and mRNA expression in cultured vascular smooth muscle 

cells.  

Fourth, to investigate whether Rev-erbA, a negative regulator of Bmal1222 , is involved in 

upregulation of TIMP4 by deletion of Bmal1 in smooth muscle in response to DOCA-salt, 

we determined Rev-erbα mRNA expressions in aorta from SM-Bmal1-/- mice and WT 

littermates administered with DOCA-salt for 7 days. Deletion of Bmal1 in smooth muscle 

or administration of mice with DOCA-salt alone had similar potency in suppressing Rev-

erbα transcript (Fig.29; P<0.001), but combination of both of them further suppressed 

Rev-erbα transcript (Fig.29; P<0.05), suggesting that their inhibitory mechanisms are 

different. These results also suggest a possibility that Rev-erbα suppresses TIMP4 

under physiological conditions and downregulation of Rev-erbα by deletion of Bmal1 in 

smooth muscle or administration of mice with DOCA-salt abolishes this suppression and 

results in TIMP4 upregulation. To test whether Rev-erbα binds to the TIMP4 promoter to 

suppress its transcription, we searched Rev-erbα response elements (AGGTCA) in the 

2-kb mouse TIMP4 promoter but we were unable to find one (Z. Guo and M. Gong, 

unpublished observation), suggesting that it is unlikely that Rev-erbα directly binds to the 

TIMP4 promoter to suppress its transcription. 

Finally, we were intrigued by the fact that Bmal1, generally thought of as a transcriptional 

activator, suppress TIMP4 transcription. To address this important issue, we determined 

Cry1 mRNA expression in aorta from in SM-Bmal1-/- mice and WT littermates 

administered with DOCA and salt for 7 days as it has been shown Cry1 can interact with 

Bmal1 to switch Bmal1 from a transcriptional activator to a transcriptional repressor237. If 

this is involved in Bmal1 to regulation of TIMP4, the Cry1 transcript should be 

upregulated. The results supported this possibility (Fig.30).  
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Figure 24: TIMP4 Promoter contains E-boxes                             

Schematic diagram of 2-kb mouse TIMP4 promoter showing 7 E-boxes and ChIP-PCR 
primers. E1-E7: E-box1-7; F (forward)/R (reverse) primers.  
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Figure 25: Bmal1 binds to TIMP4 promoter 

Representative aortic tissue ChIP PCR showing that Bmal1 binds to TIMP4 promoter at 
E-box 2, 3, 4, 6, and 7, but not E-box 5.  
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Figure 26: Deletion of Bmal1 increases TIMP4 promoter activity in smooth muscle 
cells 

(A) TIMP4 promoter activity relative to pGL3-basic vector in WT aortic VSMC. (B) TIMP4 
promoter activity in aortic VSMC from SM-Bmal1-/- mice and WT littermates. Student’s t 
test was used for statistics in A and B. **P<0.01,***P<0.001 
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Figure 27: Bmal1 is deleted in Bmal1 KO VSMC 
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Figure 28: TIMP4 expression is increased in aortic VSMC 
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Figure 29: Deletion of Bmal1 in smooth muscle downregulates Rev-
erbα mRNA expression in aorta 
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Figure 30: Deletion of Bmal1 in smooth muscle upregulates Cry1 
mRNA expression in aorta 
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3.7. Deletion Bmal1 in vascular smooth muscle cells protects from Angiotensin II 
plus salt-induced aortic aneurysm 
We have seen that deletion of Bmal1 in smooth muscle showed a dramatic protection 

from DOCA plus salt induced aortic aneurysm. Moreover, such protective effect was 

associated with prevention of the massive MMP activation and up-regulation of TIMP4. 

These results suggest that the up-regulated TIMP4 may inhibit the overall MMP activity 

to provide the protection. Since the activation of MMP is believed to be responsible for 

the final degradation of ECM and aortic dilation, a key event can be triggered by 

divergent up-stream insults. Therefore, we determined whether Bmal1 deletion could 

provide a broad protection from aortic aneurysm triggered by divergent insults.  

To test this possibility, we used a modified model of ANGII induced aortic aneurysm. We 

administered ANGII for 28 days followed by salt for 14 days in SM-Bmal1-/- and littermate 

controls. Ultrasound quantification of the intraluminal diameter of the abdominal aorta 

showed a modest time-dependent dilation after ANGII alone in control mice, this dilation 

further increased with the presence of high salt. As expected, the abdominal aortic 

dilation was suppressed in SM-Bmal1-/- (Fig.31 A; P<0.01). The maximal external 

diameter was more pronounced in control mice than SM-Bmal1-/- (Fig. 31 B). The 

incidence of aortic aneurysm was significantly decrease from 56.2% in control vs 0% in 

SM-Bmal1-/-   (P<0.01), and TAAs were decreased from 31.2% in control vs 0% in SM-

Bmal1-/- (P<0.05). No rupture occurred in SM-Bmal1-/- out of 11 mice while 2 rupture 

occurred within the control group out of 16 mice (Fig. 31 C). Fig. 32 shows photographs 

of a normal aorta from the SM-Bmal1-/- mice and a typical aneurysmal aorta from the 

control mice administered with ANGII and high salt.  

We had also examined blood pressure increase in those mice which showed that ANGII 

alone increases blood pressure in both SM-Bmal1-/-and control mice (Fig. 33; P<0.001). 
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However, after ANGII blood pressure increased but remained lower in SM-Bmal1-/- than 

control mice (P<0.01).          
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Figure 31: Eight month old SM-Bmal1-/- mice are protected from Angiotensin II 
followed by salt induced aortic aneurysm 

(A) Quantification of inner abdominal aortic diameter by ultrasound in control and SM-
Bmal1-/- mice prior to and after ANGII- salt (B) Quantification of abdominal and thoracic 
aortic outer diameter in control and SM-Bmal1-/- mice after 4 weeks of  ANGII followed by 
2 weeks salt (C) Incidence of TAA, AAA and aortic rupture after 4 weeks of  ANGII 
followed by 2 weeks salt administration (6 weeks). Two-way ANOVA followed by 
Bonferroni’s post-hoc analysis was used for statistics in A and B. Chi Square was used 
for comparing AA incidence in D. *: P<0.05, **P<0.01, NS: No significance. 
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  Figure 32: Representative pictures of aortas from 8 month old mice after ANGII 

 Representative pictures of aortas with connected hearts from 8 month old (A) WT and 
(B) KO mice after 4 weeks of ANGII followed by 2 weeks of salt 
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Figure 33: Bmal1 deletion does not affect Angiotensin II induced 
hypertension 
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3.8 SM Bmal1 heterozygous mice are not protected from DOCA plus Salt induced 
Aortic Aneurysm 

 
We wanted to determine whether both copy of Bmal1 in smooth muscle cells are 

required for the protection that we have observed in DOCA plus salt induced model of 

aortic aneurysm and ANGII plus salt induced model of aortic aneurysm. To answer this 

question, we used 8 month old SM-Bmal1+/- and littermate control mice and administered 

DOCA plus salt for 21 days. We found that the control mice had a time dependent 

increase in maximal intraluminal diameter, and the SM-Bmal1+/- mice had a modest but 

significant decrease (Fig. 34 A; P<0.05). The incidence of abdominal aortic aneurysm 

formation went from 50% in control mice to 35.7% in SM-Bmal1+/- mice and in TAAs from 

41.6% to 35.7%. One rupture occurred in the SM-Bmal1+/- out of 14 and 2 occurred in 

control mice (Fig. 34 B). Although, there is a decrease in maximal intraluminal diameter 

of the abdominal aorta and a decrease in aortic aneurysm incidence, overall the 

decrease in incidence did not reach significance. This suggests that to see a complete 

protection from aortic aneurysm, both copies of Bmal1 have to be deleted in smooth 

muscle cells. Fig. 35 shows photographs of aortas from the SM-Bmal1+/- and the control 

mice administered with DOCA and high salt. We had also measured blood pressure 

which shows no change between SM-Bmal1+/- and the control mice before and after 

DOCA plus salt (Fig.36).  
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Figure 34: Eight month old SM-Bmal1+/- mice are not protected from DOCA- salt 
induced aortic aneurysm 

(A) Quantification of inner abdominal aortic diameter by ultrasound in control and SM-
Bmal1+/- mice prior to and after DOCA- salt (B) Incidence of TAA, AAA and aortic rupture 
after DOCA plus salt administration (3 weeks). Two-way ANOVA followed by 
Bonferroni’s post-hoc analysis was used for statistics in A. Chi Square was used for 
comparing AA incidence in B. *: P<0.05, NS: No significance.  
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                     Figure 35: Representative pictures of aortas 
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Figure 36: One Copy of Bmal1 does not affect mineralocorticoid receptor 
agonists induced hypertension 
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CHAPTER 4 

Discussion 

4.1. Overview of the study 
AAA is a complex multifactorial disease of unknown etiology. AAA is characterized by 

different features including MMP activation, elastin degradation, inflammation, oxidative 

stress and smooth muscle cell atrophy. Smooth muscle cells have been considered the 

epicenter of AAA formation since they modulate early and late events that lead to aortic 

rupture238.  Since AAA is so complex and the causative effects are unknown, a direct 

therapeutic target has proven challenging to develop. Therefore, there is an urgent need 

to better understand the disease and find a therapeutic target. Disruption of the Bmal1 

gene is associated with vascular diseases as well as metabolic diseases. However, the 

actual role that Bmal1 plays in vascular smooth muscles cells has not been established.  

We hypothesized that Bmal1 plays a critical role in AAA formation. We deleted Bmal1 in 

vascular smooth muscle cells and found that this protects from AAA formation. The 

protection is independent of blood pressure increase.  Therefore, we tested other 

molecular mechanisms and found that Bmal1 deletion increases TIMP4 expression in 

the vasculature which in turn inhibits MMP2 and MMP9 activities. This inhibition prevents 

elastin degradation and aortic dilation, protecting against AAA formation.  Thus, this 

study identifies Bmal1 as new key player in the pathogenesis of AAA.  

4.2. Bmal1 is ubiquitously expressed and has a specific function in the 
vasculature  
 

The embryonic global Bmal1 knockout, or conventional, Bmal1 knockout mice have a 

shorter lifespan and display signs of early aging and age-related pathologies239. They 

also have impaired glucose tolerance, reduced insulin secretion, and are susceptible to 

diabetes. They have abnormal bone calcification, eye pathologies and 
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neurodegeneration240-242. Finally, they display phenotype such as infertility and increased 

sensitivity to chemotherapy243, 244. Mechanistically, these phenotypes may be caused by 

an increase in oxidative stress and MMP activities.  

Since Bmal1 is expressed in different parts of the brain and in peripheral tissues 

including smooth muscle cells. Researchers have recently been investigating the role 

that Bmal1 plays in vascular diseases. Anea et al. have shown that when the carotid 

arteries of Bmal1 Knockout mice were ligated, Bmal1 knockout mice had higher 

remodeling than control mice211. Other studies have demonstrated that deletion of Bmal1 

in mice causes increased vascular superoxide and endothelial NO synthase 

uncoupling220. However, these studies involved the germline global deletion of Bmal1, 

making it challenging to determine whether these pathologies resulted from Bmal1 

function in the vasculature or a systemic disruption from multiple systems. One effective 

approach to distinguish the tissue specific role of Bmal1 vs. the systemic function of 

Bmal1 would be tissue specific deletion of Bmal1. 

 In order to investigate the role that Bmal1 might play in specific tissues, investigators 

have generated tissue specific Bmal1 knockout mice.  Thus far, there have been no 

reports of early aging and shorter lifespan in these tissue specific knockouts.  However, 

there have been multiple reports that suggest Bmal1 regulates metabolism.  Deletion of 

Bmal1 in skeletal muscle does not lead to loss of locomotor activities as seen in the 

conventional Bmal1 knockout mice. Relative to WT mice, the skeletal muscle specific 

Bmal1knockout mice have a normal lifespan, a slight increase in bodyweight, altered 

muscle glucose metabolism, and muscle insulin resistance245. Mice lacking Bmal1 in the 

liver have normal local insulin sensitivity , normal total body fat content, and 

hypoglycemia246. Mice with Bmal1 deletion in the pancreas have normal bodyweight, 

fasting hyperglycemia, severe glucose intolerance and diabetes247. Mice with a deletion 
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of Bmal1 in adipose tissue have normal local insulin sensitivity but develop obesity248. 

Mice lacking Bmal1 in the heart have a cardiomyopathy and have early mortality249. 

When smooth muscle cell specific Bmal1 knockout mice were used to determine the role 

of Bmal1 in blood pressure regulation, Bmal1 in smooth muscle cells was shown to be 

required for normal amplitude and time-of-day variations of vascular smooth muscle 

contraction and normal blood pressure circadian rhythms221. Thus, these studies suggest 

that the use of tissue specific Bmal1 abrogates systemic effects of Bmal1 deletion from a 

prenatal stage. Therefore, in order to determine the role of vascular Bmal1 in AAA 

pathogenesis, we selected to use smooth muscle specific Bmal1 knockout mice.  

4.3. Smooth muscle cells initiate events leading to AAA formation and rupture 

In order to avoid the systemic effects of the global Bmal1 knockout mice, we used 

smooth muscle cell specific Bmal1 knockout mice.  Smooth muscle cells are the major 

cell type in the aorta250, and they modulate early events of AAA formation238.  Ailawadi et 

al. had demonstrated that SM22 alpha and smooth muscle alpha actin, which are 

smooth muscle cell markers, are decreased in the formation of AAA using the elastase 

model. They had also observed an increase in MMP2 and MMP9 in smooth muscle238. 

Smooth muscle is a source of elastolytic activities, which are thought to be the initial 

event in AAA formation. Isolated smooth muscle cells from AAA synthesize higher levels 

of MMP2 and MMP9 than non-aneurysmal tissues132, 251-253. Furthermore, they also 

secrete inhibitors of MMPs. Secretion of TIMP1 from smooth muscle cells has been well 

described24. This increase in metalloproteases by smooth muscle cells and the 

subsequent degradation of the elastin are part of the initial event of AAA formation. This 

is followed by an infiltration of inflammatory cells in the vasculature. Lee et al. have 

reported an increase in other metalloproteinases such as MMP1 and MMP3 after 

smooth muscle cell interaction with monocytes254 . This increase has been attributed to 
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an IL-1 dependent mechanism254. Increase in inflammatory cytokines such as IL-1 and 

IL-6 further intensifies the expression of MMPs and their inhibitors255. Reactive Oxygen 

Species (ROS) in smooth muscle cells also play an important role in the AAA formation. 

ROS also lead to smooth muscle cell apoptosis. Li et al. had demonstrated that H2O2 is 

the major species that leads to a depletion of smooth muscle cell population in the 

aorta256. The depletion of smooth muscle cell leads to the expansion and rupture of the 

aorta.  Together, these observations suggest that smooth muscle cells are key players in 

AAA formation and rupture.  Using smooth muscle specific Bmal1 knockout, we 

demonstrated that deletion of Bmal1 in smooth muscle cells abolishes AAA formation 

and subsequently we have identified smooth muscle Bmal1 as a new player in the 

formation of AAA. 

4.4. Gelatinases MMP2 and MMP9, and TIMP4 play a role in AAA formation 

To gain insight into the protective mechanism from deletion of Bmal1, we focused on 

MMPs. The degradation of the elastin layer due to an imbalance between MMPs and 

their endogenous inhibitors is one of the hallmarks of AAA257. Our data showed that 

smooth muscle specific Bmal1 knockout mice are protected from DOCA plus salt 

induced elastin degradation. Two well characterized elastin degrading enzymes in AAA 

formation are MMP2 and MMP9258. Both MMPs are first secreted as inactive 

proenzymes and are then activated by other MMPs259. MMP2 is predominantly produced 

locally by smooth muscle cells and adventitial fibroblasts, and to a lesser extent from 

macrophages, while MMP9 is primarily produced by macrophages260. Longo et al. 

investigated the importance of MMP2 and 9 in aortic aneurysm formation using MMP2 

Knockout mice and MMP9 knockout mice, and concluded that both MMP2 and MMP9 

were necessary for aortic aneurysm formation59, since inhibition of either MMP2 or 

MMP9 or both resulted from complete protection from AAA formation. In accordance 
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with these results, our data demonstrated that MMP2 and MMP9 activities are inhibited 

in the aorta of smooth muscle cells Bmal1 knockout mice after DOCA plus salt 

administration.  This suggests that MMP inhibition is part of the mechanism by which 

smooth muscle Bmal1 knockout mice are protected from developing AAA. These results 

support numerous studies implicating MMP2 and MMP9 as major players in the 

formation of AAA and rupture. 

Under normal physiological conditions, the activities of MMPs are tightly regulated by 

TIMPs. An imbalance between MMPs and TIMPs favoring MMP activation leads to an 

increase in vascular remodeling, vascular diseases such as atherosclerosis261, and AAA 

formation. This indicates that TIMPs play an important role in aortic aneurysm formation. 

Among the four TIMPs that have been identified, TIMPs 1, 2, and 3 play an important 

role in AAA formation. Three polymorphisms in TIMP1 have identified; two of these have 

been associated with AAA in patients173. Mice lacking TIMP1 develop larger aneurysms 

after elastase infusion than control mice66, and local overexpression of TIMP1 inhibits 

elastin degradation, aortic aneurysm formation and rupture in rats. On the other hand, 

deletion of TIMP2 attenuated aortic aneurysm formation in mice61 while an 

overexpression in TIMP2 inhibited aortic aneurysm formation in rats174. Whereas the role 

of TIMP1 is clearly understood as inhibitory for MMPs, the role of TIMP2 remains 

ambiguous, probably due to the double influence of TIMP2 on MMP2:  an increase in 

TIMP2 activates proMMP2 and an overexpression of TIMP2 inhibits MMP2 activation175. 

Global deletion of TIMP3 in mice causes an increase in aortic aneurysm formation176.  

Our data by in situ zymography clearly showed that MMP activities were inhibited in 

SMC-Bmal1-/- mice. We had also seen that TIMP4 was the only TIMP upregulated and 

TIMP4 is a strong inhibitor of gelatinases 179. Thus, TIMP4 likely inhibited MMP2/9 

activity in vivo. Future studies with TIMP4 knockout mice will be necessary to definitively 
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conclude this.  The role of TIMP4 in aortic aneurysm formation has not previously been 

reported. This study implicates TIMP4 in the protective mechanism of Bmal1deletion in 

smooth muscle cells against AA formation on the basis of the following observations.  In 

the absence of Bmal1, TIMP4 mRNA and protein increases significantly. TIMP4 is the 

most abundant among all the TIMPs in the aorta. In response to DOCA or Aldo plus salt, 

TIMP1, 2, and 4 mRNA do not respond (i.e., increase) to the treatment. DOCA plus salt 

increases TIMP3 mRNA in vivo. These results are similar with data found in dilated aorta 

from patients with aortic aneurysm, where the TIMP3 mRNA was the only TIMPs 

upregulated among the four TIMPs262, which suggests a compensatory mechanism. 

TIMP4 is a new target for Bmal1 in the aorta through binding several E-boxes. Within the 

promoter, TIMP4 does not contain a TATA box, but contains an initiator sequence and 

relatively few identifiable transcription–factor-binding consensus motifs263, 264 and we 

have identified several E-boxes within the promoter. Promoter assays have shown 

increased TIMP4 promoter activity in the absence of Bmal1 in smooth muscle cells, 

while the presence of Bmal1 attenuated the promoter activity.  

4.5. Hypertension is not a risk factor for AAA formation and does not account for 

the protection in SMC-Bmal1 Knockout mice 

Decreasing blood pressure is unlikely a mechanism underlying the protective effect from 

aortic aneurysm in SMC-Bmal1-/- mice. Hypertension was widely described as a risk 

factor for AAA formation. However, recent evidence argues this concept. Using the 

ANGII model to induce aortic aneurysm, Manning et. al had demonstrated that 

doxycycline, a broad spectrum inhibitor of MMPs, had significantly reduced AAA 

formation in LDL receptor knockout mice. However, doxycycline had no effect on ANGII 

induced hypertension74. Although vitamin E75 and 17β estradiol70 had attenuated AAA 

formation in APOE knockout mice using ANGII, no difference was observed in systolic 
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blood pressure with vs. without treatment. DOCA plus salt, a model that has widely been 

used to induce hypertension, has recently been described as a model that also induced 

AAA227. In this model, losartan and enalapril decreased the systolic blood pressure after 

DOCA plus salt treatment, but did not alter the rate of aortic aneurysm formation227. 

More studies using genetically deleted genes have supported the evidence that 

hypertension is not a risk factor for AAA formation. A genetic deletion of uPA265, 

osteopontin266 and BLT267 in ApoE knockout mice had decrease AAA formation after 

ANGII infusion, but had no effect on systolic blood pressure.268 Further investigation in 

castrated ApoE male mice showed a decrease in AAA formation and no change in 

systolic blood pressure268, 269. The Tsukuba hypertensive mice, which develop AAA after 

high salt intake, did not differ in systolic blood pressure after high salt intake when 

compare to the control57. Thus in a variety of different experimental settings AAA 

formation occurs independently of increased blood pressure. 

Nevertheless, we determined whether SMC-Bmal1 KO mice had altered blood pressure.  

Our data showed that the protection we observe in smooth muscle knockout mice is 

independent of blood pressure increase. Although the knockout mice have a lower basal 

systolic blood pressure, the blood pressure in response to DOCA plus salt increases in 

both control and the knockout mice with the same amplitude. Therefore, AAA formation 

is independent of blood pressure increase and the protection seen in smooth muscle 

Bmal1 Knockout mice is independent of blood pressure. Indeed, other investigators have 

demonstrated that lower blood pressure after DOCA plus salt treatment does not protect 

from AAA formation227.  

4.6. Abdominal aortic aneurysm formation is not a circadian related disease 

Our data identified TIMP4, a gene not related to clock genes, as a new target for Bmal1.  

As a transcription activator, Bmal1 not only regulates the expression of clock genes, but 
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also regulates the expression of many other genes. Many of the Bmal1 targeted genes 

are related to metabolism. Through a genome-wide profiling, Hatanaka et al. have found 

that Bmal1 regulated 10 to 15% of all transcripts including clock genes in different 

tissues270. Therefore, disruption of Bmal1 may result in disruption of regulated genes, 

leading to different disorders circadian or non-circadian related. Bmal1 has been 

associated with hypertension271. Diseases such as hypertension or stroke are 

considered to be circadian related diseases, because they disturb a 24 hour pattern and 

they also have circadian pattern of symptoms. In AAA, the rupture has diurnal variations. 

Most patients with ruptured AAA are admitted in early morning with a peak between 8:00 

am and 10:00 am, the lowest admittance of patients have been between 2:00 pm and 

4:00 pm272. This pattern had mirrored the circadian rhythm of systolic blood pressure273.  

Here, we see that disruption of Bmal1 in the vasculature leads to protective effects from 

AAA formation. Since Bmal1 is a core clock gene and regulate other clock genes, 

diseases associated with Bmal1 could be interpreted as circadian or clock related 

disease. Although, the rupture of AAA is circadian in pattern, AAA formation will not be 

considered circadian. In AAA formation, the integrity and structure of the aortic wall is 

destroyed and is independent of the variation of time. Therefore, AAA formation would 

not be considered as a circadian related disease. 

4.7. Limitations of the study and future directions 

By using smooth muscle cell specific Bmal1 knockout mice, we have avoided the 

systemic effect of the prenatal global deletion of Bmal1 in mice. However, the effect of 

deleting Bmal1 at the embryonic stage in smooth muscle still remains. Yang et al. have 

developed an inducible global Bmal1 knockout mouse to overcome the effect of deletion 

of Bmal1 at the embryonic stage. Although, these mice had a complete loss of 

rhythmicity in all tissues, they displayed phenotypes that were different from the 
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conventional Bmal1 knockout mice. These mice had a normal lifespan, normal blood 

glucose and, though they display some sign of early aging such as ocular abnormalities, 

they retain fertility, normal body weight, and normal organ size274. These mice had 

additional phenotypes that were opposite to the conventional Bmal1 knockout mice in 

hair growth and atherogenesis. The inducible Bmal1 knockout mice had increased 

growing follicles across all ages and a consistent expression of Ccnd1 and Mik67 genes, 

hair growth promoting genes, in the skin274. The difference in phenotypes between the 

inducible Bmal1 mice and the conventional Bmal1 mice as was suggested by Yang et al. 

may be attributed to an important role that Bmal1might play during the embryonic stage. 

Therefore, deletion of Bmal1 during that stage might be the contributing factor to early 

aging and subsequent phenotypes. Hence, a future goal would be the use of an 

inducible smooth muscle cell specific Bmal1 to investigate AAA formation.  

Our data suggest that the absence of Bmal1 in the vasculature is beneficial since Bmal1 

protects from AAA and decreases blood pressure.   However, targeting smooth muscle 

cells Bmal1 for therapeutic treatment would be damaging because blood pressure loses 

its rhythmicity in such animals221. Therefore, the best target may be TIMP4, which our 

data demonstrated to be downstream of Bmal1 and may contribute to protection from 

AAA. However, the present study fails to conclusively demonstrate a direct involvement 

of TIMP4 in aortic aneurysm formation. The other TIMPs 1, 2 and 3 have been 

demonstrated to play a role in aortic aneurysm formation, but the role of TIMP4 has yet 

to be adequately explored. The best approach to determine the role that TIMP4 plays in 

aortic aneurysm formation would be to use TIMP4 knockout mice, TIMP4 transgenic 

mice, or to locally overexpress TIMP4 on the aorta and administer DOCA plus salt to 

induce aortic aneurysm. TIMP4 knockout mice have been generated and have been 

shown to be susceptible to myocardial infraction followed by a right ventricular wall 
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rupture and death129. However, these mice have not yet been available for purchase to 

the public. Our findings predict that using TIMP4 knockout mice to induce aortic 

aneurysm, would lead to an increase in rate of AAA formation after DOCA plus salt or 

Angiotensin II plus salt; while using TIMP4 transgenic mice or local overexpression of 

TIMP4 would lead to a protection from AAA formation. 

We were unable to precisely demonstrate the mechanism by which Bmal1 regulates 

TIMP4 expression. Multiple lines of evidence show that Bmal1 acts as a transcription 

factor when bound to an E-box. While we have shown that Bmal1 binds to TIMP4 

promoter and the absence of Bmal1 increases TIMP4 promoter activity, we have also 

shown that deletion of Bmal1selectively increases TIMP4 expression (Fig. 15-19). These 

data suggest that Bmal1 acts as a break on theTIMP4 promoter. Determining whether or 

not Bmal1 directly regulates TIMP4 expression has been challenging.  One suggested 

mechanism of regulation was that Rev-erb could act as a repressor. Bmal1 regulates 

Rev-erb by binding to E-box at the promoter region, and Rev-erb in turn inhibits Bmal1 

by binding to a response element. Therefore, we explored the possibility that Rev-erb in 

the presence of Bmal1 would bind to TIMP4 promoter and repress its expression. 

However, TIMP4 does not contain a rev-erb response element in its promoter region. 

Another mechanism envisions the possibility that the interaction between Bmal1 and 

Cry1, which has been shown to act as a repressor237, could repress TIMP4 expression. 

Although, our results have demonstrated an upregulation of Cry1 in the absence of 

Bmal1, which is consistent  with the study from Kondratov et al, more work is  needed to 

confirm that it is the interaction between Bmal1 and Cry1  represses TIMP4 expression.  

It will also be important to explore the mechanism for the increase in Bmal1mRNA 

expression after DOCA plus salt treatment. Aldosterone and angiotensin II have been 

shown to induce Bmal1 circadian rhythmicity in H9c2 cardiomyoblasts and vascular 
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smooth muscle cells respectively214, 275. Our Data have shown that Bmal1 expression 

increases in response to DOCA plus salt (Fig. 20), whether this increase is an actual 

increase, or a shift in rhythmic expression, has not been determined in this study. Bmal1 

expression fluctuates during the day and the expression pattern could have shifted after 

DOCA plus salt treatment. Therefore, to address this question the expression of Bmal1 

in the aorta should be examined prior to and after DOCA plus salt/ aldosterone and salt 

or ANGII plus salt administration in mice at different times of the day. The data could be 

further tested by looking at Bmal1 expression in VSMC at different times of the day with 

or without aldosterone and high salt or ANGII plus salt treatment.  

One last issue that has not been explored in this study would be to determine whether 

deletion of Bmal1 in smooth muscle protects from aortic aneurysm across different 

models of aortic aneurysm. We have shown that smooth muscle cell specific Bmal1 

knockout mice are protected from DOCA plus salt induced AAA and from angiotensin II 

plus salt. The DOCA plus salt model has been used for decades to study hypertension, 

but it has only been recently shown that it can also induce aortic aneurysm227. ANGII 

plus salt has only been used in our study. Models of aortic aneurysm using angiotensin II 

have used apoE knockout mice or LDR knockout mice to induced AAA. Therefore, the 

use of other chemically induced models such as calcium chloride and elastase will 

determine how broad the protection extends. Both models depend upon different 

mechanisms but an increase in MMP2 and MMP9 is seen in these models. In this study, 

we have concluded that the protection is partially due to an increase in TIMP4 

expression. Since TIMP4 inhibits both MMP2 and MMP9, we hypothesize that smooth 

muscle cell Bmal1 knockout mice will be protected or show an attenuation from aortic 

aneurysm induced by calcium chloride or elastase infusion. 
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4.8. Conclusions 

In this study, we have identified Bmal1 has a key player in the formation of AAA and 

identified a potential mechanism. We have therefore demonstrated that: 1) Vascular 

smooth muscle cell deletion of Bmal1 protects from aortic aneurysm formation. 2) 

Vascular smooth muscle cell deletion of Bmal1 does not affect MR expression before 

and after DOCA plus salt in the aorta except for the descending aorta. 3) Vascular 

smooth muscle cell deletion of Bmal1 does not affect plasma sodium. We then explored 

the mechanism and found the following: 1) Vascular smooth muscle cell deletion of 

Bmal1 prevents DOCA plus salt induced MMP2/MMP9 increase in vivo. 2) Vascular 

smooth muscle cell deletion of Bmal1 selectively increases TIMP4 expression. 3) Bmal1 

binds to TIMP4 promoter and Bmal1 presence represses TIMP4 expression. 4) The 

protection seen in this model is independent of blood pressure increase. 
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