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ABSTRACT OF DISSERTATION 
 
 
 

GENETIC ANALYSIS OF SERF GENE FUNCTION IN Drosophila melanogaster 
AND ITS CONTRIBUTION TO A FLY MODEL OF SPINAL MUSCULAR 

ATROPHY 

 

The Serf gene is evolutionarily highly conserved but its biological function is not known 
in any organism. In human, SERF1/H4F5 was first identified as a modifier of the disease 
Spinal Muscular Atrophy (SMA). SMA is caused by mutations in the Survival Motor 
Neuron 1(SMN1) gene leading to diminished levels of the Smn protein. More than 90% of 
patients with the most severe form of SMA have deletions that remove SERF1 as well as 
mutaions within SMN1. Hence, loss of Serf activity is hypothesized to exacerbate SMA 
disease progression. The primary motivation of this thesis was to test this intriguing but 
yet unverified hypothesis using a model organism, Drosophila melanogaster.  

To genetically manipulate Serf activity I created deletion, overexpression and knockdown 
alleles of Serf.  I found that Serf is non-essential for viability in Drosophila and that null 
mutants have no obvious developmental defects. However, the loss of Serf gene activity 
results in diminished adult locomotion.  In addition, Serf null mutants show lower Smn 
protein abundance.  As Smn mRNA levels do not change with Serf manipulation, 
regulation likely occurs at the level of Smn protein translation or stability. 

I tested the impact of Serf in SMA by altering Serf expression in a fly SMA model 
harboring equivalent Smn point mutations as those that cause SMA in human patients. I 
found that diminished Serf levels exacerbate the observed mutant phenotype in growth, 
development and viability which correlates with decreased Smn protein abundance. 
Importantly, the simple overexpression of Serf in certain Smn mutant backgrounds 
increases the Smn protein abundance, which in some cases, correlates with a partial 
rescue of the associated phenotypic defects. In addition to being required for maximal 
Smn abundance, I found that Serf gene expression directly correlates with the abundance 
of toxic α-synuclein protein seen in a fly Parkinson’s disease model. These data support a 
role for Serf in protein homeostasis relevant to proteins active in at least two distinct 
neurodegenerative diseases. 

My study has also revealed that Serf influences lifespan in Drosophila. Loss of Serf 
reduces lifespan by 20-30% whereas ubiquitous overexpression of Serf results in an 
equivalent extension of the normal lifespan. Lifespan extension occurs even when Serf 
overexpression is restricted to muscles, neurons or only adult tissues. Change in lifespan 
with Serf manipulation inversely correlates with the accumulation of poly-ubiquitinated 
protein aggregates, a marker of tissue aging. These aggregates are marked with 
Ref(2)p/p62, a target of autophagy. Analysis of expression of several genes in the 



 
 

autophagy pathway suggests that Serf expression may promote longevity, at least in part, 
by upregulating the life-extending autophagy pathway. Serf gene expression also 
correlated with a modest resistance to oxidative stress and changes in the abundance of a 
mitochondrial marker protein, mitofusin, suggesting the possibility that Serf activity may 
impact mitochondrial function. Taken together, these studies establish Serf as a modifier 
of the Smn-limited SMA phenotype and reveal previously unknown roles for the Serf 
gene in Drosophila mobility and lifespan. 

Key words: Serf, Smn, Spinal Muscular Atrophy, Lifespan, Protein abundance. 
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Chapter 1: Introduction 

1.1 Spinal Muscular Atrophy: Spinal Muscular Atrophy (SMA), the leading genetic 

cause of human infant (Homo sapiens) mortality is caused by homozygous loss of the 

gene Survival Motor Neuron 1 (SMN1). This disease affects one in every 10,000 

livebirths, one in every 50 being a carrier (Pearn 1980, Ogino, Leonard et al. 2002). It is 

characterized by the loss of motor neurons in the anterior horn region of the spinal cord 

leading to progressive muscle atrophy, paralysis and death. To date, there is no effective 

treatment for this debilitating disease. However, advances in medical technology and the 

molecular understanding of the disease pathogenesis has expanded the scope of therapy. 

Addressing critical unanswered questions in the biology of the disease is necessary for 

further therapeutic development. 

1.1.1 Clinical manifestation and molecular pathogenesis 

          SMA is clinically divided into four types based on the age of disease onset and 

extent of motor functions loss: 1) type I (severe); 2) type II (intermediate); 3) type III 

(mild); 4) type IV (very mild ) (Russman 2007, Wang, Finkel et al. 2007). About 50% of 

patients diagnosed with SMA have the most severe form, type I, which is also known as 

Werdnig-Hoffman-disease (Markowitz, Tinkle et al. 2004). Type I SMA affects patients 

before 6 months of age and death occurs within first 2 years of life. Patients have no 

control of head movement and are unable to sit without support. Difficulty in breathing, 

poor feeding capabilities combined with decreased airway protection and increased risk 

of aspiration pneumonia are major causes of morbidity and mortality. Type II, the 

intermediate form, shows onset by 7 to 18 months of age. Patients can sit without aid but 

unable to walk and death occurs during adolescence. Type III, the mild Kugelberg-
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Welander disease, starts after 18 months of age where patients usually attain maximum 

motor milestones including walking and live up to adult age. The adult onset type IV is 

the mildest form that begins in the second or third decade of life and shows mild motor 

impairment without respirational and nutritional problems. 

          SMN was first identified as the SMA disease causing gene in 1995 (Lefebvre, 

Burglen et al. 1995), soon after the disease locus was mapped to chromosome 5q13 

(Brzustowicz, Lehner et al. 1990, Melki, Abdelhak et al. 1990). There are two versions of 

the SMN gene, SMN1 (Telomeric) and SMN2 (Centromeric). There is always one copy of 

the SMN1 gene per haploid genome, although the copy number of the SMN2 gene is 

variable (1-6 copies) in the human population due to duplication and gene conversion 

events (Lunn and Wang 2008). The SMN1 and SMN2 genes differ by 5 nucleotides only 

one of which resides in the 1.7 kb coding region.  This coding sequence change does not, 

however, alter the amino acid sequence (Lefebvre, Burglen et al. 1995, Burglen, 

Lefebvre et al. 1996). Both genes contain 9 exons and 8 introns and code for a 38 kD 

protein with 294 amino acid. The SMN1 gene is expressed ubiquitously in all somatic 

tissues and is highly phylogenetically conserved (Schrank, Gotz et al. 1997, Miguel-

Aliaga, Culetto et al. 1999, Paushkin, Charroux et al. 2000). 

      In spite of the presence of multiple Smn coding genes in the human genome, 

homozygous loss of SMN1 has been shown to cause SMA in 98% cases (Hahnen, Forkert 

et al. 1995, Lefebvre, Burglen et al. 1995).These patients always retain at least one copy 

of SMN2. However, SMN2 transcripts undergo alternative splicing due to a C to T 

transition at position six of exon seven resulting in exon skipping, giving rise to a 

truncated protein (fig. 1.1)(Lorson, Hahnen et al. 1999, Lorson and Androphy 2000). As 
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only about 10% of SMN2 pre-mRNA is properly spliced to produce the functional full 

length SMN protein (Lefebvre, Burglen et al. 1995), SMN2 alone cannot compensate for 

the loss of the SMN1 gene.  
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Figure 1.1 Schematic representation of SMN1 and SMN2 splicing and its impact at 

the protein level. Magnified view of exon 6-8 of SMN1 and SMN2 pre-mRNA. The C-T 

transition in SMN2 favors exon 7 skipping (90%) while 10% full length SMN2 is formed. 

Therefore, 90% of SMN2 protein is truncated and is rapidly degraded. SMN1 pre-mRNA 

on the other hand is properly spliced and produces 100% functional protein. 
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          SMN is a multi-domain protein (figure 1.2) consisting of an N terminal lysine (K)-

rich domain, a central Tudor domain, a C-terminal tyrosine-glycine (YG)-box and the 

exon 7 encoded domains (Renvoise, Khoobarry et al. 2006). The Tudor domain, highly 

conserved among different RNA binding proteins, mediates SMN’s interaction with 

arginine-glycine (RG)-motifs of several proteins including the Sm core proteins of 

UsnRNP complexes [Reviewed in (Meister and Fischer 2002, Gubitz, Feng et al. 2004)]. 

LSm/Sm proteins constitute the core of the spliceosomal U rich snRNP complexes by 

binding onto their target snRNA molecules in the form of a heptameric ring (Hermann, 

Fabrizio et al. 1995, Salgado-Garrido, Bragado-Nilsson et al. 1999).  

          Although the LSm/Sm ring structure assembles spontaneously in presence of their 

target snRNA in vitro (Raker, Plessel et al. 1996, Raker, Hartmuth et al. 1999), inside 

cells it is tightly regulated by a large macromolecular entity, called the SMN complex. 

The SMN protein interacts with itself and eight other proteins including Gemin 2-8 and 

Unrip to form this huge 1MDa complex (Meister, Buhler et al. 2000, Otter, Grimmler et 

al. 2007). In this complex SMN directly binds Gemin 2, 3, 5 and 7 whereas Gemin 4, 6,8 

and Unrip interacts indirectly with Smn (Baccon, Pellizzoni et al. 2002, Paushkin, Gubitz 

et al. 2002, Pellizzoni, Baccon et al. 2002, Gubitz, Feng et al. 2004). In addition to the 

SMN complex components, SMN protein directly interacts with many other proteins that 

serve as substrates for the complex. The Gemin5 protein is known to contain 13 WD-

repeat domains and hence is thought to serve as a platform for direct interaction among 

the substrates, like the set of seven LSm/Sm proteins and the SMN core in the complex 

(Paushkin, Gubitz et al. 2002). The Sm proteins are known to be methylated by the 

methylosome which produces symmetrical dimethyl arginines that directs them to the 
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SMN complex (Meister, Buhler et al. 2001); (Friesen, Paushkin et al. 2001). The SMN 

complex binds the LSm/Sm proteins to promote the formation of the heptameric ring 

structure of the Sm-core proteins. (Meister, Buhler et al. 2001, Meister and Fischer 2002, 

Pellizzoni, Yong et al. 2002). Newly transcribed (m7G)-capped U rich snRNAs are 

exported to the cytoplasm where they bind to the SMN complex containing the Sm-core 

proteins. The SMN complex then transfers the Sm-core onto the UsnRNAs to generate 

the UsnRNP particle. This step is required for cap hyper-methylation of UsnRNAs to 

form the (m3G)-cap structure necessary for its nuclear import. The SMN complex 

remains bound to the UsnRNP particles until they are imported back to nucleus, thus 

assisting in essentially all steps of UsnRNP biogenesis (Paushkin, Gubitz et al. 2002). 

The assembly of the functional U rich snRNP complex involved in pre-mRNA splicing is 

the best characterized housekeeping function of the SMN protein. 
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Figure 1.2 The exon boundaries of the SMN1 gene and domain structure of the SMN 

protein. Top: SMN protein is encoded by 9 exons, the coding region is shown in grey 

and the untranslated regions in purple. Bottom: The black bars indicate the domains 

required for oligomerization of SMN; the Tudor domain is shown in brown; the poly-

proline domains are in green, the orange box represents YG box domain and the 

cytoplasmic targeting motif is shown in black.  
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          Inhibited snRNP assembly due to SMN deficiency has been shown in SMA 

patients and disease models (Pellizzoni, Yong et al. 2002, Gabanella, Butchbach et al. 

2007). With the help of biochemical in vitro assay for ATP dependent snRNP assembly 

and changes in the relative levels of snRNAs have been shown to occur with reduced 

SMN abundance, a change that is believed to underlie the splicing defects. (Pellizzoni, 

Yong et al. 2002, Gabanella, Butchbach et al. 2007). SMA patient derived cell lines show 

reduced accumulation of a subset of UsnRNPs (major class- U1, U2 and U4 snRNPs) 

correlated with diminished SMN levels (Wan, Battle et al. 2005). This feature is 

recapitulated in the brain and spinal cord of a mouse SMA model, such that the degree of 

snRNP assembly impairment correlates with the disease severity (Gabanella, Butchbach 

et al. 2007). Here, the level of radiolabeled U1-snRNA, immune-precipitated from in 

vitro U1-snRNP assembly reaction mix was shown to reduce in the tissue extracts of 

SMA mice (Mus musculus) as compared to the control mice.  Inhibited snRNP 

biosynthesis has also been shown to cause specific loss of motor neurons in Xenopus and 

zebrafish embryonic model (Winkler, Eggert et al. 2005). Moreover, restoration of 

normal snRNP levels by injecting purified UsnRNPs into SMN or Gemin-2 deficient 

embryos, provides phenotypic rescue in both Xenopus tropicalis and zebrafish (Danio 

rerio) models. Similarly genetic introduction of a functional SMN derivative capable of 

snRNP assembly rescued the SMA phenotype with correlated increase in the snRNP and 

snRNA levels in mice (Winkler, Eggert et al. 2005, Workman, Saieva et al. 2009). 

Consistent with inhibited spliceosomal snRNP biosynthesis, widespread changes in the 

alternate splice forms in various tissues of SMA mice, not just neuronal tissue, were 

observed (Zhang, Lotti et al. 2008). However, another study concluded SMN deficiency 
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appears to preferentially reduce the assembly of minor U12 dependent snRNPs 

(Gabanella, Butchbach et al. 2007, Zhang, Lotti et al. 2008). For instance, altered 

splicing and mRNA expression of a U12 intron containing SMN target, Stasimon, is seen 

in the motor circuit of SMA mice (Lotti, Imlach et al. 2012). This target gene is 

necessary for SMN dependent motor circuit function in flies (Drosophila melanogaster) 

and Zebrafish, thereby postulating a mechanistic basis for motor neuron selectivity in 

SMA (Lotti, Imlach et al. 2012). 

          Other functions of SMN critical for motor neuron survival have also been 

postulated. It has been shown that SMN localizes in the ribonucleoprotein granules 

within the growth cones and neurites of cultured primary or ES cell derived motor 

neurons (Fan and Simard 2002, Zhang, Xing et al. 2006). The observation that these 

granules undergo bidirectional transport to the neuronal processes and growth cones 

(Zhang, Xing et al. 2006) leading to the hypothesis that SMN is necessary for localized 

RNA processing and translation of proteins within long neurons. Evidence in support of 

this idea comes from the finding that diminished SMN level reduces β-actin mRNA and 

protein titers in the axons and growth cones, possibly by inhibiting transportation of β-

actin containing ribonucleoprotein complexes containing SMN (Rossoll, Kroning et al. 

2002, Rossoll, Jablonka et al. 2003). The deficiency of β-actin causes axonal outgrowth 

and pathfinding defect in SMA cell culture (Zhang, Pan et al. 2003) and the zebra fish 

model system (McWhorter, Monani et al. 2003). In addition, SMN interacts with Profillin 

IIa (Lambrechts, Braun et al. 2000), the predominant neuronal isoform of an actin 

binding protein (Sharma, Lambrechts et al. 2005) in distinct granules within the neurites 

and growth cones. Neuronal Profillin IIa regulates actin dynamics and axonal outgrowth. 
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Mutant SMN fails to interact with Profillin IIa(Sharma, Lambrechts et al. 2005). A 

number of Drosophila melanogaster models of SMA have also demonstrated defective 

neuromuscular junction and skeletal muscle features (Chan, Miguel-Aliaga et al. 2003, 

Gunadi, Sasongko et al. 2008) thereby postulating specific roles for SMN protein in 

maintaining the integrity of neuromuscular junctions. 

          While the SMN1 transcript is efficiently spliced to produced full-length SMN 

protein, the major product of SMN2 pre-mRNA splicing is a truncated SMN∆7 transcript 

(Lorson, Hahnen et al. 1999, Lorson and Androphy 2000) which gives rise to a smaller 

protein lacking YG-box domain responsible for self-association (Talbot, Ponting et al. 

1997, Lorson, Strasswimmer et al. 1998, Martin, Gupta et al. 2012) (Lorson, 

Strasswimmer et al. 1998). SMN self-association and integration into the larger SMN-

Gemin complex stabilizes the SMN protein by inhibiting its degradation via the ubiquitin 

proteasome pathway (Chang, Hung et al. 2004, Burnett, Munoz et al. 2009). 

Consequently the SMN∆7 protein is very unstable and cannot protect motor neurons from 

SMN1 loss (Burnett, Munoz et al. 2009). In addition to the SMN2 product, there are a 

number of SMA disease states arising from deletion or point mutation of the YG box 

domain of SMN1 (Burghes 1997) that diminishes SMN self-association, complex 

formation and hence its stability (Praveen, Wen et al. 2014, Gupta, Martin et al. 2015). 

1.1.2 Genetic modifiers of SMA 

Genetic modifiers of a disease reflect allelic distinctions in the genetic 

background of individuals that enhance or suppress the primary phenotype (Suzuki, 

Kashiwagi et al. 2004). Certain modifiers protect the affected individual from expressing 

the full disease phenotype, a phenomenon known as incomplete penetrance (of the 
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primary mutant allele). There are several different ways by which genetic modifiers can 

influence the primary disease gene. They can directly alter the expression of the disease 

causing gene by affecting mRNA/protein synthesis, processing or stability. Alternatively 

the modifier protein can impact different aspects of the biological function of the 

causative protein relevant to the disease pathogenesis. SMA is a monogenic human 

disorder with a wide range of severity. The identification of novel genetic modifiers 

modulating the SMA phenotype can expand our understanding of this devastating genetic 

disorder and may lead to the development of novel screening or therapeutic approaches. 

       The SMN2 gene is the main modifier of SMA severity identified to date and hence 

the primary target of therapy. While all SMA patients carry homozygous loss of SMN1 

gene function, the SMN2 copy number varies from at least one up to six  within European 

population because of gene duplication or conversion (Wirth, Brichta et al. 2006, Wirth, 

Brichta et al. 2006, Khoo and Krainer 2009, Alias, Bernal et al. 2011). As the SMN2 

gene produces a small amount of functional SMN protein it is not surprising that disease 

severity reduces with SMN2 dosage (Feldkotter, Schwarzer et al. 2002, Wirth, Brichta et 

al. 2006). Within certain populations, sequence variations within the SMN2 cis-regulatory 

elements influence the SMN2 gene transcription or exon 7 splicing increase or decrease 

the amount of full length SMN2 product and hence modify the disease phenotype (Wirth, 

Brichta et al. 2006). In addition, changes in the expression of trans-regulatory factors like 

splice enhancers (SF2/ASF) or repressors (hnRNP A1) also act on SMN2 expression by 

influencing SMN2 splicing (Nlend Nlend, Meyer et al. 2010) thereby modifying the 

disease. The expression of SMN2 transcript also depends on the level of methylation and 

acetylation found on the CpG islands within SMN2 promoter which varies and negatively 
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correlates with the disease severity in patients with identical SMN2 copy number (Wirth, 

Brichta et al. 2006, Hauke, Riessland et al. 2009).  

          Increasing the expression of full length SMN protein from the SMN2 gene, has 

been the major focus of SMA therapeutics. It has been targeted by promoting appropriate 

splicing of the SMN2 transcript by technologies involving small RNA based 

reprogramming of splicing; for example- antisense oligonucleotide, bidirectional RNA 

technology and trans-splicing (Skordis, Dunckley et al. 2003, Baughan, Shababi et al. 

2006, Dickson, Osman et al. 2008, Khoo and Krainer 2009, Coady and Lorson 2010). 

The use of small molecules in increasing exon 7 inclusion during SMN2 splicing, 

although found to be beneficial in vitro, did not have much effect in vivo (Arnold and 

Burghes 2013). However, small molecules like quinazoline derivatives have been shown 

to act as a SMN2 promoter activating compound that successfully increases SMN levels 

in vitro and in SMN∆7 mouse model (Cai, Ash et al. 2005, Butchbach, Singh et al. 

2010). In addition, inhibitors of histone deacetylase (HDACi) like VPA that upregulate 

SMN2 transcription in vitro have been shown to improve motor function and increase 

survival by 15-30% in animal models (Brichta, Hofmann et al. 2003, Sumner, Huynh et 

al. 2003, Hahnen, Eyupoglu et al. 2006, Riessland, Brichta et al. 2006, Avila, Burnett et 

al. 2007, Garbes, Riessland et al. 2009, Riessland, Ackermann et al. 2010). 

          An analysis of the transcriptome of siblings with identical SMN1/SMN2 genetic 

make-up but different phenotypic expression, one being affected and the other 

asymptomatic, revealed another protective modifier of SMA in human, Plastin3. Plastin 

3 or PLS3, an F actin bundling protein that influences the G/F actin ratio is necessary 

during axonal growth and pathfinding (Dent and Gertler 2003, Oprea, Krober et al. 
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2008). Genetic interaction between PLS3 and SMN have been shown to be conserved in 

Caenorhabditis. elegans and Drosophila where RNAi mediated knockdown of PLS3 

enhanced SMN loss of function defects in both invertebrate systems (Chang, Dimlich et 

al. 2008, Dimitriadi, Sleigh et al. 2010). PLS3 overexpression has been shown to rescue 

the axonal growth defect in Zebrafish SMA model with diminished SMN level (Oprea, 

Krober et al. 2008, Hao le, Wolman et al. 2012) as well as in cultured motor neurons 

from SMA mouse embryo (Oprea, Krober et al. 2008). A mouse model of SMA 

overexpressing PLS3 revealed that the NMJs of SMA mice are defective in F-actin 

associated cellular processes like axonal connectivity at the NMJ, which is rescued by 

PLS3 overexpression. PLS3 overexpression counteracts the poor axonal connectivity 

observed in SMA NMJs and facilitates maturation of the neuromuscular junctions 

(NMJs) (Ackermann, Krober et al. 2013). Thus PLS3 establishes a classic example of a 

genetic modifier, the discovery of which significantly expanded the knowledge about 

molecular pathogenesis of the disease. 

          In addition to identifying modifier genes from patient population, unbiased genetic 

screens were also undertaken in an attempt to uncover new modifiers in powerful 

invertebrate models. Both Drosophila and C. elegans have one copy of SMN ortholog, 

the loss of which causes larval lethality, positively correlated with alterations in the 

architecture and activity of the neuromuscular junctions (Miguel-Aliaga, Culetto et al. 

1999, Chan, Miguel-Aliaga et al. 2003, Rajendra, Gonsalvez et al. 2007, Chang, Dimlich 

et al. 2008, Dimitriadi, Sleigh et al. 2010). In Drosophila neuronal or muscle specific 

expression of SMN is sufficient to significantly rescue larval lethality with correlated 

improvement in the neuromuscular phenotypes (Chang, Dimlich et al. 2008). Similarly in 



14 
 

C. elegans loss of function of SMN causes larval lethality and neuromuscular defects. The 

neuromuscular defects are rescued by expressing transgenic SMN in the neurons but 

muscle specific expression of SMN does not rescue them as effectively (Briese, Esmaeili 

et al. 2009). Loss of function alleles in both of these systems therefore serve as very good 

models to screen for genetic modifiers. A P element insertion screen in Drosophila 

revealed 17 enhancers and 10 suppressor of SMA, a subset of which were shown to affect 

SMN dependent NMJ phenotype (Chang, Dimlich et al. 2008). Among these was a type 

II receptor of BMP signaling pathway, wishful thinking (wit), the insertion mutant of 

which enhanced SMA NMJ defects (Chang, Dimlich et al. 2008). They further showed 

that altered expression of other members of the BMP pathway, Mad and Dad, which 

increase BMP signaling rescues NMJ defects associated with SMN loss of function 

(Chang, Dimlich et al. 2008). A subsequent genome-wide RNAi screen in C. elegans 

identified four new modifier genes namely ncbp-2 (Cap binding protein 20), flp4-

(FARFamide family neuropeptide protein), grk-2 (G protein coupled receptor kinase), 

and T02G5.3 (gene of unknown function) the knockdown of which enhanced the growth 

defect associated with SMN loss of function allele (Dimitriadi, Sleigh et al. 2010). 

Moreover depletion of ncbp-2 and flp-4 showed conservation in enhancing SMA defects 

in the Drosophila system (Dimitriadi, Sleigh et al. 2010). Conversely many SMA 

enhancing modifiers initially identified in the Drosophila P element insertion screen 

(Chang, Dimlich et al. 2008) were found to enhance the growth and neuromuscular 

function defect of a SMN loss of function allele in C. elegans (Dimitriadi, Sleigh et al. 

2010). The C. elegans study on SMA modifiers (Dimitriadi, Sleigh et al. 2010) also 

proposed an interaction map of SMA modifiers showing two basic biological processes 
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impacting the SMA state. These are endocytosis and translational control and are 

hypothesized to coordinate synaptic activity and receptor signaling with local translation 

during neuronal development and maintenance (Kong, Wang et al. 2009, Dimitriadi, 

Sleigh et al. 2010). Impaired synaptic vesicles release consistent with defects in synaptic 

vesicle endocytosis at the NMJs has been documented in severe SMA mice (Kong 2009). 

However, what features of SMN function are responsible for these defects and whether 

SMN is involved in the possible functional interaction of endocytosis and local 

translational regulation is not yet known. 

1.1.3 The SERF gene- A candidate modifier of SMA  

          In spite of the advances made in understanding SMA, some critical questions 

remain to be answered. Why are reduced SMN levels specifically detrimental for motor 

neuron survival? Does SMN have a non-snRNP assembly function critical for motor 

neuron maintenance or activity?  What is the mechanistic basis for variable severities 

seen in SMA?-Genetic studies, such as candidate modifier genes identification and 

analysis offers the means to address some of these questions. 

          The SERF coding gene in humans, H4F5, was first discovered in a population 

genetic screen for genetic modifiers of SMA (Scharf, Endrizzi et al. 1998). SERF/H4F5 

is located adjacent to the SMN locus within a 500 kb inverted duplication of chromosome 

5 (Fig 1.3).  Two copies are present, 6.5 kb upstream of both SMN1 (telomeric copy) and 

SMN2 (centromeric copy) (Scharf, Endrizzi et al. 1998). The majority of type I SMA 

patients have deletions in the 5q13 locus that remove SMN1 and adjacent sequences 

leaving SMN2 and adjacent markers intact. Marker C212, used to define SMA deletion is 

located 13kb upstream of SMN exon1 (Scharf, Endrizzi et al. 1998). Scharf et al. showed 
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that this marker is embedded within the last intron of SERF/H4F5, 3 kb upstream of 

H4F5 exon 3b. They showed that 94% of the type I SMA patients carried SMN1 deletions 

extending through C212 and hence including part or all of H4F5. Exon3b of H4F5 is 

actually 5 kb closer to SMN1 than C212 and therefore the frequency of H4F5 is possibly 

under-represented in this study. Deletions within another neighboring gene NAIP, were 

not correlated with the SMA phenotype.  Based on these observations SERF/H4F5 was 

proposed to be a significant candidate modifier of SMA severity (Scharf, Endrizzi et al., 

1998). 

          The SERF gene is phylogenetically highly conserved. SERF gene codes for two 

alternate isoforms due to alternate splicing. In human the larger 1.8 kb isoform codes for 

110 amino acids protein whereas the shorter 0.7 kb codes for a protein 62 amino acid 

long. The shorter isoform, more commonly found across species, is ubiquitously 

expressed including the central nervous system in humans (Scharf et al., 1998). The 

longer isoform also shows similar expression profile (Scharf et al., 1998). Based on a 

Kyte-Doolittle secondary protein structure analysis program, they predicted that the 

SERF protein forms a helix-turn-helix structure rich in lysine and arginine residues and 

potentially has nucleic acid binding properties. This protein does have a low level of 

homology with the RNA binding domain of matrin-cyclophilin, a protein known to co-

localize with spliceosomal snRNPs and other components of splicing machineries 

(Mortillaro and Berezney 1998) and the yeast SERF protein co-purifies with two known 

splicing factors, Prp8 and Brr2.  To date, however, no biological function is known or 

predicted for SERF in any organism. It is not uncommon to find genes in eukaryotic 
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organisms that encode conserved proteins with no known biological function. SERF 

encodes one of these mysterious proteins possibly important for human health. 

 

 

Figure 1.3 Genetic map of the SMA locus. The chromosomal 5q13 region containing 

two large inverted chromosomal fragment (black horizontal bar). The telomeric copy 

contains the SMN1 gene (shown in blue) and the centromeric copy contains the SMN2 

gene. The SERF1 genes (shown in red) are located adjacent to SMN1 and SMN2. The 

multicopy microsatellite markers are shown in red.  
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1.2 SERF function in protein homeostasis 

Apart from Serf’s connection with SMA, it was found to be implicated in the 

‘protein misfolding diseases’, in which mutations within a specific peptide or protein leads 

to its improper folding and aggregation into highly organized aggregates called amyloids 

(Chiti and Dobson 2006, Vendruscolo, Knowles et al. 2011). In an attempt to identify 

positive regulators of amyloid protein aggregation, Van-Ham et al. used a C.elegans 

model of poly-Q expansion disease and performed a chemical mutagenesis screen to 

identify loss of function mutations that suppress aggregate formation and related toxicity 

(van Ham, Holmberg et al. 2010). They found that point mutation and deletion mutation 

of the C. elegans ortholog of human SERF, MOAG-4, greatly reduced the amount of the 

Poly-Q aggregates and the locomotion defect, associated with Poly-Q toxicity in these 

worms (van Ham, Holmberg et al. 2010). Two other disease related proteins, amyloid-β 

(Alzheimer’s disease) and α-synuclein (Parkinson’s disease), showed reduced amount of 

aggregated proteins in MOAG-4 mutant worms. In addition, they analyzed the different 

oligomeric states of the Poly-Q aggregates that differed in size and SDS solubility in wild 

type and MOAG-4 mutants and found that soluble compact aggregate intermediates are 

significantly reduced in the mutant worms (van Ham, Holmberg et al. 2010). In a follow-

up study by Falsone et al., 2012, the shorter isoform of SERF was shown to promote 

amyloid assembly of diverse structurally unrelated aggregation prone proteins in an in-

vitro system. Presence of SERF was shown to accelerate the process of initial nucleation 

of the fibers and also to increase the accumulation of large aggregated species (Falsone, 

Meyer et al. 2012). Thus, together these studies propose that SERF functions in promoting 
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amyloid aggregation, however, SERF’s natural function in the absence of these exogenous 

disease causing proteins remained largely unexplored.  

One hypothesis is that the SERF protein functions within the cellular protein 

homeostasis network, since a growing pool of evidence supports the idea that amyloid 

aggregation is an active cell surveillance mechanism that protects cells from toxic 

misfolded proteins (Chen, Retzlaff et al. 2011). It has been shown, for instance, that 

soluble misfolded oligomers of amyloid-β peptide, but not the larger aggregates, confer 

cytotoxicity possibly initiated by membrane permeabilization (Glabe 2006). Moreover, 

cytoplasmic inclusions of mutant androgen receptor protein (AR) involved in spinobulber 

muscular atrophy was shown to confer a cytoprotective role (Taylor, Tanaka et al. 2003). 

Terminal aggregation of misfolded proteins is thought to be necessary for their autophagy 

mediated removal from cells (Welchman, Gordon et al. 2005). In fact, soluble and 

insoluble protein aggregates have been shown to partition between distinct subcellular 

compartments,- that specify their subsequent proteolytic degradation by either the 

ubiquitin proteasomal system (UPS) or autophagy, respectively (Kaganovich, Kopito et 

al. 2008). Thus factors involved in the process of protein aggregation and turnover might 

functionally interact to maintain the quality of the cellular proteome. Given SERF’s 

hypothesized function in amyloid aggregation, it is conceivable that SERF could 

influence other aspects of protein homeostasis. 

1.3 SERF’s genetic interaction with Ubiquitin Proteasome pathway factors in yeast: 

          Saccharomyces cerevisiae does not have a SMN homologue but contains a single 

copy of the SERF gene which codes for a small protein, 69 aa in length. In yeast the 

SERF gene (ySERF) is non-essential and has been found to co-purify with two essential 
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splicing factors Ppr8p, Brr2p (Krogan, Cagney et al. 2006). The ySERF protein’s 

association with Prp8p and Brr2p implies its potential role in modulating their function 

and hence in cellular splicing. However, based on our previous analysis we think, ySERF 

has only a minor, if any, role in cellular splicing (Ghosh & Rymond unpublished). A 

systematic genome wide screen to identify ySERF’s genetic interactions revealed 

previously unknown genetic associations of ySERF with a Ub protease and a Ub-protease 

cofactor, UBP6 and BRE5, respectively (Rymond & Boone, unpublished). UBP6 is a 

ubiquitin protease that physically associates with the proteasome and functions to recycle 

and maintain the cellular free pool of ubiquitin (Hanna, Leggett et al. 2003). BRE5 and its 

associated ubiquitin protease UBP3 is required for selective autophagic degradation of 

ribosomes under nutrient starvation. (Kraft, Deplazes et al. 2008). Interestingly, Prp8p is 

the only known spliceosomal component undergoing ubiquitination (Bellare, Kutach et 

al. 2006). Its Ub conjugation is known to stabilize the U4/U6-U5 tri-snRNP level by 

suppressing Brr2p mediated U4/U6 unwinding (Bellare, Small et al. 2008). The recovery 

of ySERF with these Ub-sensitive effectors of post-transcriptional regulatory factors and 

its genetic interactions with cellular proteolytic factors suggest a possible role in 

ubiquitin-proteasome system (UPS) or other ubiquitin-sensitive steps in protein function 

or removal. 

1.4 Hypotheses about SERF gene function: 

 The primary motivation behind my dissertation project is to provide the very first test of 

the hypothesis that SERF is an authentic modifier of the SMA phenotype. Given SERF’s 

hypothesized function in protein homeostasis pathways (protein aggregation and 

degradation), it is conceivable that SERF could be relevant to the stability of the Smn 
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protein, which depends upon oligomerization to prevent its ubiquitin-directed protein 

degradation by the proteasome (Burnett, Munoz et al. 2009). To test this idea, I will use 

the Drosophila melanogaster model system and, in my studies, also investigate the 

uncharacterized biological function of eukaryotic SERF protein. Drosophila 

melanogaster provides an excellent invertebrate model system to address these questions 

as it is readily amenable to genetic manipulation. Moreover, unlike human cells, SMN 

and SERF are single copy genes in Drosophila (henceforth, Smn and Serf, according to 

established fly nomenclature rules). Also, the established fly SMA model display 

conserved features of the disease pathogenesis and provides an ideal system for genetic 

interaction studies. With this study I hope to shed light on how SMN activity may be 

regulated in SMA and potentially add to the clinical targets used for disease screening or 

intervention. In addition, investigation of the natural function of Serf protein in 

Drosophila could potentially provide insight into the evolutionary significance of its 

conservation. 

Hypothesis 1: The phylogenetically conserved Serf gene is important for the normal 

growth, development or physiology of Drosophila melanogaster. 

Hypothesis 2: The Serf gene modulates SMA severity by stabilizing SMN protein 

abundance.  

Specific Aims: The major specific aims of my dissertation are to determine: i) if altered 

Serf expression(deletion, overexpression and knock down) effect Drosophila viability, 

development, locomotion behavior, adult lifespan and stress response; ii) if Serf 

genetically interacts with Smn in the Smn-limited fly model of SMA. 
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Chapter 2: The Serf gene in Drosophila is non-essential for viability or fertility. 

2.1 Introduction  

          The putative modifier of SMA, SERF1, is conserved across species but the natural 

biological function is not known in any organism. What we know from studies in human 

patients and the C. elegans model of human neurodegenerative diseases is that SERF 

might have a potential role in SMA pathogenesis and protein homeostasis (Scharf, 

Endrizzi et al. 1998, van Ham, Holmberg et al. 2010). Although in S. cerevisiae 

(Kastenmayer, Ni et al. 2006) and C. elegans, SERF is non-essential for viability (van 

Ham, Holmberg et al. 2010), whether it is essential in insects or higher organisms is not 

known. Therefore, the logical question to ask was- is the Serf gene essential for viability 

or development in Drosophila melanogaster? A standard reverse genetic approach was 

used to answer this question. This required the creation of null mutants of Serf in 

Drosophila.  The likely Serf ortholog was first identified by sequence comparison and 

then deletion alleles were created by imprecise P element excision (O’Brochta et al., 

1991). To complement the Serf deletion study I created a Serf cDNA transgenic for UAS-

GAL4 based mis-expression studies. In addition, a UAS-Serf RNAi construct was also 

used for knocking down Serf in GAL4 driven manner. This chapter is focused on 

describing the generation and preliminary characterization of these various Serf alleles. 

Specifically, the molecular analyses at the transcript and protein expression levels are 

presented along with quantitative analysis of viability and locomotor activity of the 

mutants at various developmental stages.  
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2.2 Results 

2.2.1 Identification of the Serf orthologue in Drosophila melanogaster 

          The small EDRK rich factor or Serf family of proteins is highly conserved across 

phylogeny.  There are 2 copies of the SERF1 gene in humans- SERF1A and SERF1B. 

Both genes encode two protein products due to alternative splicing, a longer isoform 

(Accession number: NP_001171558), 110 amino acids in length, and a shorter isoform 

(Accession number: NP_075267), 62 amino acids in length. We sought to identify the 

Drosophila ortholog of SERF1 by searching for homology with both the long and the 

short isoforms of human SERF1 protein sequence using BLASTP. We identified a 

Drosophila gene, CG17931 (FlyBase ID: FBgn0038421, Accession number: 

NM_001300436.1), that encodes a protein showing maximum homology with the shorter 

isoform of SERF1 protein. The existence of this gene product is also reported in the 

FlyBase EST cDNA clones (FBtr0083323). This protein shows 81% sequence similarity 

and 65% sequence identity with the human presumptive ortholog over 80% of the 

sequence Fig. 1A. The longer isoform of the human SERF1, when aligned with the 

protein sequence of CG17931, showed 78% similarity and 65% identity over 60% of the 

sequence – the reduced homology is due to the missing carboxyl terminal amino acids in 

the fly protein. 

          Given this sequence similarity with the human SERF1 protein, we named the gene 

encoded by CG17931 as Serf. Shown in the figure below (Fig 1A) is the deep 

conservation in the protein sequences of the Serf orthologs from different eukaryotic 

species. As shown in the representative sequence alignment, the N terminal segment of 
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this small protein is highly conserved among species ranging from budding yeast (S. 

cerevisiae), to plants (Arabidopsis thaliana) to humans (Homo sapiens).  

 

Fig 2.1. The SERF1 gene is phylogenetically highly conserved.  Multiple sequence 

alignment of the Drosophila Serf protein with orthologs from different taxa using Muscle 

multiple alignment program that uses log-expectation scoring function. Alignment shows 

the deepest evolutionary conservation within the N terminal region. ‘*’ (Asterisk) 

indicates identical residues; ‘:’ (Colon) indicates conservation among groups with 

strongly similar properties; ‘.’ (Period) indicates conservation among groups with weakly 

similar properties. Color code: Red- Small hydrophobic; Blue-Acidic; Magenta- Basic-H; 

Green- Hydroxyl, Sulfhydryl, Amine, G.  
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2.2.2 Generation of the Serf deletion allele by P-element excision  

          The Serf deletion mutants were created by a P-element mobilization screen 

(O'Brochta, Gomez et al. 1991). P elements are natural autonomous transposable 

elements in Drosophila, 2907 bps in length with 31 bp terminal inverted repeats and 11 

bp sub-terminal inverted repeats. Collections of fly strains are available with P-element 

insertions at specific sites covering much of the fly genome (Bellen, Levis et al. 2011).  

When mobilized by co-expression of functional P-transposase, the P-element can be 

precisely excised, leaving a wildtype gene copy or imprecisely excised, resulting in local 

deletions or partial element excisions or other chromosomal rearrangements.   

       The P-element insertion line CG17931EY09918, obtained from the Bloomington Stock 

Center, harbors an insertion in the 5’ untranslated region, 150 bases upstream of the 

transcription start site of the CG17931/Serf gene (Fig 2.2B). The scheme of crosses that 

served to mobilize this P element is described in figure 2.2A. The mobilization screen is 

based on the loss of y+ and w+ marker genes carried by the P element which, when 

excised, changes the body color and  eye color from wild type brown and red to yellow 

and white, respectively. First, at the P0 generation the transposase expressing ∆2-3 line 

was crossed with the P element insertion line, CG17931EY09918, to create progeny 

expressing the active transposase carrying the P-element. The P element mobilizes in the 

somatic and germline cells of these progeny. Several males from this progeny displaying 

mottled red and white eyes due to somatic excision events and a few balancer females 

(yw, Ly/TM3 Sb) were crossed at the P1 generation. Four hundred such bulk P1 crosses 

with multiple males in each were set. Excision alleles were identified in the progeny of 

the P1 crosses by the simultaneous loss of y+ and w+ markers. For each P1 vial, three 
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excision flies (male or female) were isolated and individually crossed with balancer flies, 

thus establishing the F1 generation. A total of three hundred and forty eight P1 vials were 

screened to establish 2 or 3 F1 crosses for each vial named as A, B and C. Balanced 

siblings from each F1 cross were then mated to establish the stocks of individual excision 

events at the F2 generation. Two hundred and ninety six F2 stocks were established to 

screen for Serf deletion and precise excision lines.  

 DNA was extracted from homozygous P-element excision adult fly lines to score 

for Serf deletion by the polymerase chain reaction (PCR) using primers flanking the 

native Serf locus. Figure 2.2B describes the location of these primers on the scale map of 

the Serf gene. A description of the primer pairs and their predicted amplicon sizes based 

on the genotypes are described in table 2.1.  For each primer set, DNA isolated from a 

completely wild type line (WT) and the initial P element insertion line (EY09918) were 

used as controls. A control pair of primers from a different locus (Unpaired3 gene) was 

used to test the quality of the genomic DNA extracted from each of the lines. Different 

sets of Serf specific primers were used (see Table 2.1) for identification of potential 

deletions, cross-verification of the results from each primer set and isolating deletions 

that are contained within the gene coding region. The primer set 2 (A+C) and 3 (A+B) 

were used for preliminary screening candidate deletions. ‘A’ binds to the first intron 

within the Serf gene. Paired with primer C that binds to the first exon, it amplifies a 

region spanning the P element insertion site and paired with B which binds within the 

first intron amplifies from the first intron most proximal to the transcription initiation site. 

Absence of an amplicon for both sets of primers would be suggestive of a deletion event 

causing loss of one or both primer binding sites.   
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Figure 2.2C shows a representative gel image of the PCR based screen. Analysis of this 

figure is summarized in Table 2.2. Using primer pair A+C and A+B, here I determine 

that the DNA corresponding to lane 10 or 16 (same DNA samples in both lanes but used 

in PCR with different sets of primers) and 12 or18 are potential precise excisions while 

DNA that corresponds to lanes 9 or 15 and 11 or 17 with no amplicons for either primer 

sets represent potential Serf deletions. In summary I identified 12 potential deletions, 56 

potential precise excisions and 4 lines with left-over P element at the insertion site 

(Example not shown here).  

          Further characterization with primer pairs 4, 5 and 6 (See Table 2.1) reveals that 

only 2 out of the 12 lines contained the deletion within Serf coding region. One example 

is shown in figure 2.2C (lane 20) where a candidate deletion produced a band of 500 bps, 

instead of 1500 bps with primer set C+H (H binds to a region beyond Serf gene) 

suggesting that the deletion within this line is possibly confined within the Serf region 

and takes out most of the coding region (Serf∆10a, also called 10a). The other smaller 

deletion produced about 1000 bps amplicon with C+H (data not shown), instead of 1500 

bps, suggesting about 500 bps within the Serf coding region is possibly lost in this line 

(Serf∆6c, also called 6c). 

          Next we sequenced 5 lines, 2 candidate deletions (10a, 6c) and 3 candidate precise 

excisions (8b, 13a, 26b) to identify the deletion boundaries and verify wildtype Serf 

sequence in the candidate precise excision lines. As predicted by our PCR analysis the 

mutant 6c was found to be a 571 bps deletion within the Serf locus that includes the Serf 

transcription start site, the first intron and most of the second exon which codes for most 

of the Serf protein (Fig 2.2B). Mutant 10a is similar but deletes 1051 bps within the Serf 
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gene including the start codon, the whole of the coding region and a portion of the 3’ 

untranslated region (Fig 2.2B). Given the loss of much/all of the Serf coding sequence, 

the 6c and 10a alleles were chosen as null alleles for subsequent development and 

behavior studies. In the precise excision controls, the Serf coding region is intact and as 

commonly seen with P-element excision, a12 bps P-element derived inverted repeat is 

present at the site of the original insertion. The precise excision line PE26B was chosen 

as an isogenic control for the null alleles in our subsequent experiments.  Since the two 

Serf deletion mutants are viable and fertile I conclude that Serf is not an essential gene of 

Drosophila melanogaster. 
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Fig 2.2. Generation of the Serf deletion lines by P element excision screen: (A) The 

scheme of crosses to drive P element excision and generate potential excision lines for 

screening. (B) Illustration of the Serf gene structure, mapped to the scale on chromosome 

3, right arm. The Serf gene is located at 3R: 16357535..16359466 in the minus orientation 



30 
 

and contains 3 exons, shown in boxes and 2 introns shown in bars. The gray region 

within the boxes indicate protein coding sequence. The small bars indicate the primer 

binding sites for PCR based screening. The triangle indicate the site (3R: 16359291) of P 

element insertion. The bars below correspond to the Serf deletions 10a and 6c, the two 

independently derived lines. The deleted region for each mutant is shown by the gray bar 

and the numbers flanking them indicate the nucleotide positions within the Serf genomic 

locus- the 1st nucleotide of the 1st exon being positioned at chromosomal co-ordinate 

16359466. (B) Representative agarose gel image showing PCR based screening. 

Amplifications with different sets of primers are indicated below the lanes. Lanes 1, 7 

and 13 contains the wild type control (yw); lanes 2, 8 and 15 contains the P element 

insertion line SerfEY09918 ; Lanes 3-6, 9-12 and 15-18 contains test samples in the same 

order for 3 different primer sets.  Lane 20 shows amplification from Serf∆10a locus with 

primer set C+H; lane 21 shows molecular weight marker. 
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Table 2.1 describes the primer pairs used in the excision screen with predicted 

amplicon sizes for the respective genotypes (EY00918 represents the initial 

SerfEY09918 P element insertion line). For preliminary screening (representative shown in 

figure 2.2C) primer set 2 and 3 were used. Primer set 3, 4 and 5 were used for further 

characterization of the potential deletions identified from the preliminary screens. ‘-’ 

represents absence of a band and ‘+/-’ represents absence or presence of a band for which 

the amplicon size cannot be predicted. 

Set Primer 

Pair 

Spanned region 

contains 

Predicted Size (bps) 

WT EY09918 Precise 

Excision 

Serf 

Deletion 

1 Control Unpaired 3 region 300 300 300 300 

2 A+C P element insertion 

site 

500 - 500 - 

3 A+B 1st intron 328 328 328 - 

4 D+E 2nd exon 106 106 106 +/- 

5 G+F 3rd exon 460 460 460 +/- 

6 C+H Entire coding 

region 

1500 - 1500 +/- 
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Table 2.2 summarizes the analysis of the representative gel image in figure 2.2C 

showing a preliminary PCR based screen. ‘+’ & ‘-’ represents presence and absence of 

an amplicon, the predicted sizes of which are described in table 2.1. Amplifications from 

the control and test DNA samples were run in the same order for all three primer pairs. 

Lanes for the corresponding genotypes are indicated in parenthesis. Test DNA samples 

corresponding to the lanes 10 & 16 and 12 & 18 produce band predicted for precise 

excision with both primer sets, hence these are strong candidates for precise excision 

alleles. Similarly, the test DNA samples corresponding to the lanes 9 & 15 and 11 & 17 

fails to produce a band with either primer set as expected for the potential deletion 

mutants. Hence, these two DNA samples are strong candidates for Serf specific deletion. 

Primer Pair Control DNA 

Samples 

Test DNA Samples 

WT EY09918 Potential Precise 

excision 

Potential Serf 

deletions 

Control (lanes 

1-6) 

+ (lane 

1) 

+(lane 2) + + 

A+C (lanes 7-

12) 

+(lane 

7) 

-(lane 8) +(lanes 10,12) -(lanes 9,11) 

A+B (lanes 13-

18) 

+(lane 

13) 

+(lane14) +(lanes 16,18) -(lanes 15,17) 
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2.2.3 Generation of Serf cDNA expression alleles 

          Apart from the null mutants we also created a Serf cDNA expression allele in flies. 

This line was not only necessary to complement our genetic studies with the null mutant, 

but also served as a rescue line for complementation experiments. Moreover, we wanted 

to know if tissue or developmental stage specific mis-expression of the Serf cDNA 

construct would produce a mutant phenotype. In order to do so, we employed the 

standard UAS-GAL4 bipartite gene expression tool in Drosophila.  

          The UAS-GAL4 system takes advantage of the GAL4 based transcriptional 

regulation of galactose inducible genes like GAL10 and GAL1 in yeast, which depends 

on the binding of GAL4 transcription factor to four related 17 bps sequences collectively 

known as the Upstream Activating Sequences (UAS). Here the expression of the gene of 

interest, the responder, is controlled under the UAS element, which in this case is five 

tandemly arrayed and optimized GAL4 binding sites. The GAL4 gene is expressed in a 

separate transgenic, the driver, where it’s expression in spatially and temporally 

controlled. Crossing these two lines would produce progeny where the responder gene 

will be expressed in a pattern that matches the GAL4 expression pattern in the respective 

driver (Figure 2.3). One of the major strengths of this approach is the astounding array of 

the driver lines that have been created by the enhancer-trap GAL4 construct generated by 

Brand and Perrimon, 1993.  This allows us to use a wide diversity of genomic regulatory 

sequences to drive gene expression in almost every major tissue type in Drosophila. A 

number of modifications were done to the UAS-GAL4 system to increase the specificity 

of the spatial and temporal regulation of gene expression. In our study (described in 

chapter 3) we have also used the Geneswitch-GAL4 drivers that use a GAL4-progesteron 



34 
 

receptor human p65 activation domain chimera, where the GAL4 activity is induced upon 

binding to an appropriate ligand and the UAS-responder is subsequently expressed (Han 

et al., 2000;Osterwalder etal.,2001;Roman etal.,2001) (Figure 4) . 

          We created the UAS-Serf cDNA transgenic line by cloning and genomic insertion. 

The Serf cDNA clone (SD16330: was obtained from Bloomington stock center, 

FlyBaseID: FBcl0276419) as a clone within the pOT2 vector. I sub-cloned the Serf 

cDNA sequence into the pUAST vector (described in materials and methods) which was 

then used for embryo injection by Duke University Model System Genomics. We used 

the AttB40 fly line for targeted injection at the 25C6 site (Bateman et al., 2008), located 

on the right arm of the 2nd chromosome. 
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Fig 2.3. Schematic representation of the UAS-GAL4 system (Adapted and modified 

from Duffy 2002). Females carrying the UAS responder gene (UAS-GFP), when mated 

with males carrying the GAL4 driver (RE-GAL4) produces the following progeny. A) 

The progeny with either wild type chromosomes or one copy of UAS-GFP, do not 

express GFP as there is no GAL4 protein to turn on the UAS-GFP transgene. B) The 

progeny carrying both the driver and responder elements express GFP, as the GAL4 

protein binds UAS and activates GFP transcription. The GFP is expressed in a segmental 

pattern in the depicted embryo as GAL4 protein expression is restricted within the 

corresponding segments by the regulatory element (RE). C) The progeny with only the 
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RE-GAL4 driver transgene expresses GAL4 in a segmental pattern in the depicted 

embryo, but does not have the UAS-GFP to activate.  

 

Fig 2.4 Schematic representation of the Geneswitch GAL4 system (Adapted and 

modified from Duffy 2002). A slight modification to the standard UAS-GFP system, 

where the GAL4 is fused with a hormone responsive element. (A) In the presence of the 

drug RU486 the fusion GAL4 protein can bind to the UAS and activate the responder 

gene. (B) In the absence of the drug RU486 the fusion GAL4 protein is incapable of 
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binding to UAS and hence cannot activate the responder. This modification fine tunes the 

temporal regulation of gene expression. 

2.2.4 Validation of the Serf deletion and cDNA expression alleles 

        Next I validated the Serf alleles by assessing transcript and protein expression in 

flies that contain the null allele or that express the Serf cDNA. To assess the levels of Serf 

mRNA I used northern blotting. Fifteen µg of total RNA extracted from whole flies were 

analyzed for the presence of Serf transcript. Figure 2.5A shows the results of the northern 

blot analysis with radiolabeled probe complementary to regions in the second exon of the 

Serf transcript which constitutes bulk of the Serf coding region. The level of ribosomal 

RNA in 15µg of total RNA is presented to show the quality of RNA yield for each line, 

also used as loading control. Here I detect a band for the wild type control w1118 (lane 1) 

and the precise excision control PE26B (lane 3) which disappears in the P-element 

insertion mutant SerfEY09918 (lane 2) and in both of our Serf deletion mutants Serf∆10a 

(lanes 4 & 7) and the Serf∆6c (lane 5). Since, this particular band diminishes to a level 

below detection in the Serf deletion and insertion mutants and is restored in the precise 

excision line (while ribosomal RNA is present in all samples), I conclude that this band 

represents the Serf transcript. 

       In a similar way I compare Serf expression in flies containing wildtype levels of Serf 

mRNA with wildtype flies containing a second, cDNA copy of Serf driven by the Act5c-

GAL4 driver.  This widely used driver appears to provide high level gene expression in 

essentially all tissues throughout development (Duffy 2002).  Compared to the driver 

only control lacking the Serf cDNA (lane 6) the two independent Serf cDNA expression 
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lines 6c and 27a (Lane 8 & 9, respectively) produced 3.2 fold and 2.55 fold more Serf 

mRNA, respectively, after normalization for loading differences using the rRNA control. 

       To assay for protein expression from each of our Serf mutants, I extracted total 

protein from whole flies and performed western blots using a polyclonal antibody against 

the N-terminus of the human Serf protein which cross-reacts with the fly protein. In both 

of the Serf deletion mutants I have created, the translational start codon is lost along with 

either bulk of the coding sequence (Serf∆6c) or essentially all of it (Serf∆10a). Therefore, I 

expect these two deletion mutants to be complete null alleles. As shown in the figure 

(Figure 2.5B) the lower band of the doublet for the YW, Act5c GAL4 and the PE26B 

lines (Lanes 1, 2 & 4), which runs below 15 KD band in a 15% polyacrylamide gel, 

corresponds to Serf, since it becomes undetectable in the P element insertion line 

SerfEY09918 and the two Serf deletion lines 10a and 6c (Lanes 3, 6 & 7). The Serf protein is 

not highly abundant in adult wild type flies but gets 4.1 fold overexpressed (compare lane 

1 and 4) when the UAS-Serf cDNA is trans-activated under the ubiquitous Act5c-GAL4 

driver (Lane 5). Similar levels of the β-tubulin band is observed across all the Serf lines. 
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Fig 2.5 Molecular analysis of Serf alleles. (A) Northern blot probed against Serf 2nd 

exon in Serf alleles. Ribosomal RNA shown as a loading control. Relative levels of Serf 

transcript is indicated below each lane. (B) Western blot with anti- human Serf peptide 

antibody in Serf alleles. -tubulin is shown as a loading control. Relative levels of Serf 

protein in indicated below each lane. 
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2.2.5 Generation and validation of a Serf RNAi knockdown allele 

In addition to the Serf deletion allele, we created an RNA interference (RNAi)-mediated 

conditional knockdown of Serf using the same UAS-GAL4 system as described above. 

We obtained the UAS-hp-CG17931 (Serf) construct from the Vienna Drosophila RNAi 

center, a publicly available genome-wide library of Drosophila RNAi transgenes (Dietzl 

et al., 2007). The strategy is to express short inverted repeat segments of a target gene’s 

transcript under the control GAL4 so as to target the RNA interference pathway. We 

expressed the UAS-hp-Serf construct under the ubiquitous Actin5c-GAL4 driver.  Figure 

6a shows the Serf transcript in the Act5c-GAL4 driver only control line which decreases 

to the level below detection upon ubiquitous expression of the UAS hp-Serf construct. 

Figure 6B shows Serf protein levels expressed in the GAL4 driver control and 

knockdown lines (Lane 1 & 2). The Serf protein level relative to a nonspecific band in 

the same blot decreases about 10 fold in the knockdown line compared to the control. 
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Fig 2.6. Molecular analysis of Serf RNAi mediated knockdown line. (A) Northern blot 

of Serf transcript probed against sequences from Serf 2nd exon. Ribosomal RNA is shown 

as a loading control. (B) Western blot showing Serf protein levels. A non-specific band 

(ns) in the same blot in the corresponding wells has been used for normalization.  
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2.2.6. Viability during development is unaltered in flies with different Serf alleles. 

          The first thing we learned by generating the Serf null mutants is that Serf in 

Drosophila is non-essential for viability and fertility. Indeed, the deletion, the global 

knockdown or the global overexpression of Serf did not cause any obvious defect during 

development. However, reduced viability can be masked by the large number of flies 

used in our standard propagation.  Therefore, to be more quantitative, I measured the 

viability of the different Serf lines in terms of percentage of pupation and adult eclosion. 

          Figure 2.7A describes the comparison of the percentages of pupation and pupal 

eclosion between the Serf deletion (Serf∆10a) and precise excision control (PE26B). Data 

shows that the PE26B and Serf∆10a lines form 68% and 64% pupae respectively which is 

not statistically different (P value=.5899, n=310 for PE26B and 326 for Serf∆10a ). 

However, a laboratory wild type control line w1118 shows 90% pupation in this assay 

confirming that other factors (like handling) do not influence the viability observed in our 

experimental lines. Measurement of percentage of pupal eclosion however showed that 

very similar proportion of pupae eclosed into adults for all the lines; 96%, 100% and 99% 

for the w1118, PE26B and Serf∆10a respectively. Overall, it appears that genetic differences 

between the w1118 and the other two possibly contributes to the reduced larval viability, 

but their difference does not correlate with presence or absence of Serf. Therefore I 

conclude that the loss of Serf gene function is of little or no consequence to viability up to 

the point of eclosion. 

          Figure 2.7 B shows the viability of ubiquitous Serf knockdown (Act5c GAL4> 

UAS-hp-Serf) and overexpression flies (Act5c GAL4> UAS Serf) in comparison to an 

isogenic GAL4 driver control. Here I see that the GAL4 driver control shows 68% 
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pupation while 98% of those pupae form adults. Compared to that, in the Serf knockdown 

flies 86% larvae form pupae, out of which 90% eclose as adults. In the Serf 

overexpression flies on the other hand 89% larvae form pupae and a 100% of those 

eclose as adults. Although, there is no statistical difference in the percentage pupation 

and pupal eclosion between the knockdown and overexpression group (P value >.05, 

n=186), percentage pupation is significantly reduced in the Act5c-GAL4 control (P 

value=.001) This result is surprising and one possibility is that the GAL4 protein might 

interfere with other cellular processes in the absence of a UAS responder within the 

driver only line. Overall these data show that global knockdown or overexpression of Serf 

does not cause viability defect in flies which is consistent with the results from Serf 

deletion flies. However, percentage pupation is significantly different between the 

deletion and Serf knockdown flies (P value<.0001), but these two lines are derived from 

two completely different genetic backgrounds and hence cannot be compared directly to 

each other. 
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Figure 2.7: Viability of Serf mutants during development is not impaired. (A) 

Percent pupation (% pupae) and percent pupal eclosion (% adults) in the Serf deletion 

flies (Serf∆10a) vs the precise excision flies (PE26B). The w1118 line is used as a 

laboratory wild type control. More than 300 larvae per genotype were scored in groups of 

20.(B) Percent pupation and percent adult eclosion in the Act5cGAL4 driven Serf 

overexpression (Act5cGAL4>UAS Serf) flies and Serf knockdown 

(Act5cGAL4>UAShpSerf) flies in comparison to Act5cGAL4 driver only control and a 

laboratory wild type control (w1118). One hundred and eighty six larvae were scored for 

the knockdown and overexpression lines and one hundred and thirty seven larvae for the 

Act 5c GAL4 control. 
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2.2.7 Flies with various Serf alleles do not show mobility defect at larval stage. 

          As one feature of health and neuromuscular function, we measured locomotion in 

flies with normal, elevated or abolished Serf expression. In larvae, locomotion is a 

complex behavior, commonly assayed by measuring numbers of peristaltic waves 

generated in the larva per unit time as they move forward. For this assay we used early 3rd 

instar larvae (i.e., obtained 96hrs post egg laying). As shown in the figure (Fig 8A) the 

average body wall contraction per minute is 48.61 for the precise excision line and 48.88 

for the Serf∆10a line. Obviously, these two lines were not significantly different from each 

other (P value=.9126, Unpaired student t-test).  These results are similar to what has been 

reported by other groups for wild type laboratory strains (Heckscher, Lockery et al. 2012, 

Nichols, Becnel et al. 2012).  

 In Fig 2.8, we compared the Actin5c GAL4 driven ubiquitous Serf overexpression 

line and Serf RNAi knockdown line with the Act5cGAL4 driver only control for average 

body wall contractions per minute.  We find that all three lines showed similar mobility, 

scoring 58.53, 59.46 and 58.00 contractions per minute in the driver only, Serf RNAi 

knock down and Serf overexpression backgrounds, respectively.  While these genetically 

related lines are indistinguishable, these do differ significantly from the values seen 

above for the precise excision mutant (P value=.0013, unpaired t-test), indicating that 

genetic features other than Serf expression influence larval mobility.  Nevertheless, based 

on our observations we conclude that neither the absence of Serf nor its global 

overexpression have a readily detectable impact on larval mobility.  
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Figure 2.8: Serf mutants do not show larval body wall contraction defects. (A) 

Average body wall contractions per minute in Serf deletion (Serf∆10a) larvae vs the precise 

excision (PE26B) larvae. There is no significant difference between the two groups (P 

value=.9126, n=20 for each genotype, Unpaired student t-test). (B) Average body wall 

contractions per minute in ubiquitous Serf overexpression (Act5cGAL4>UAS Serf) 

larvae and Serf knockdown (Act5cGAL4>UAS-hp-Serf) larvae in comparison to the 

driver only control (Act5c GAL4). There is no significant difference between the control 

and the overexpression group (P value=0.7883, n=15 for each genotype, Unpaired t-test) 

or the control and the knockdown group (P value=0.8871, n=15 for each genotype, 

Unpaired t-test). 
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2.2.8 Loss of Serf gene activity causes climbing impairment in adult flies. 

          Fly climbing activity is known to be compromised with adult age and in mutants 

with neuromuscular defects (Martinez, Javadi et al. 2007). Since the loss of Serf activity 

is implicated as exacerbating a neuromuscular disease, SMA, we performed climbing 

assays to learn whether changes in Serf gene expression affected the fly climbing 

behavior.   In essence,12-flies were placed in a graduated cylinder, tapped to drop them to 

the bottom, and the time required for 50% of the group to climb 17.5 cms from the 

bottom of the cylinder was measured at three different age groups (1 week. 2 week and 4 

week post eclosion).  At least 100 male flies of each genotype were assayed at each time 

point, grouped into 10 cohorts.  

          For all genotypes tested the time for climbing increases with age showing a decline 

in the climbing performance with age (Figure 9). The w1118 line served as the fully 

wildtype control. This line takes an average of around 10 seconds to climb the specified 

distance when 1 week old and increases up to about 45 seconds when 4 week old. The 

Act5c-GAL4 driver only control behaved similarly to the w1118 line, a mean of around 14 

seconds to climb when 1 week old which increases to an average of around 43 seconds at 

4 week old age, showing that the GAL4 expression by itself did not impact the climbing 

behavior. The ubiquitous Serf overexpression flies (Act5cGAL4>UAS Serf) performed 

very similar to the driver only control.  Interestingly, when Serf is  deleted 

(Act5cGAL4;Serf∆10a) the average time required for climbing increased significantly in 

all three age group flies, averaging around 30 seconds at 1 week old age and about 105 

secs when 4 week old (P value<<.0001, unpaired student t-test), indicating that the Serf 

null flies are impaired in locomotor function. To confirm that the climbing impairment is 
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solely caused by loss of the Serf gene, we expressed the Serf cDNA in the Serf deletion 

background (Act5cGAL4>UAS Serf, Serf∆10a) and asked if the climbing defect could be 

reverted. We indeed found that the climbing performance in the Serf null flies reverted 

back to wild type levels upon ubiquitous expression of the Serf cDNA construct (P 

value<.0001, unpaired student t-test). At 1 week old age the average time required for 

climbing was restored back to 12 secs, which at 4 week old age increases to 30 secs 

similar to the wild type. Therefore, we concluded that Serf gene in Drosophila is critical 

for sustaining normal locomotor function in adults while it does not appear to impact 

locomotion at the larval stage.  This is the first report in any organism of a Serf-

dependent biological function.   
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Fig 2.9. Serf deletion causes impairment of climbing performance in adult 

Drosophila. Graph showing the average time required by 50% of flies in each cohort to 

climb 17.5 cms at three different ages. For each genotype at each time point n=10 (10 

cohorts, each consists of 12-15 flies). The w1118 line serves as a completely wild type 

control. The Act5c GAL4 line is the driver only control. The Serf deletion flies 

(Act5cGAL4; Serf∆10a) require significantly longer time to climb the specified distance at 

all time points (P value <.0001, unpaired Student’s t test), which is then rescued to 

normal by Act5c-GAL4 driven Serf cDNA expression in these flies (Act5c GAL4>Serf, 

Serf∆10a). 
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2.3 Conclusions and discussion 

        In summary, my initial studies revealed several important things about the Serf gene 

in Drosophila melanogaster. Here I show that the Serf gene is non-essential for 

Drosophila development and viability, similar to C. elegans and S. cerevisiae. Altered 

Serf levels do not impact the locomotion behavior at the larval stage, however, adult 

climbing ability is impaired with loss of Serf. Thus, for the first time Serf is being 

described as having a biological impact in any model system, since loss of Serf has been 

shown to be benign in C. elegans and is not reported to cause any growth defect in yeast. 

Climbing ability of flies gradually declines with age and has long been used as measure 

for age related changes in Drosophila (Ganetzky and Flanagan 1978, Martinez, Javadi et 

al. 2007). Genetic alterations causing alteration in the locomotor phenotype of flies 

involve pathologies of muscle, peripheral neuron or central nervous system (Scholz and 

Singleton 2008). Therefore, the impaired locomotor phenotype is often documented in 

neuromuscular or age related neurodegenerative disease models in flies (Feany and 

Bender 2000); (Sofola, Kerr et al. 2010, Pandey and Nichols 2011). Since Serf is 

implicated in SMA and neurodegenerative diseases, the finding that loss of Serf 

diminishes climbing ability in flies, might point to Serf’s importance in maintaining 

neuronal, muscular or neuromuscular functioning in Drosophila possibly relevant in 

SMA pathogenesis. Thus despite its non-essential role for development and viability, 

here I identify, for the first time, an important function of Serf in Drosophila physiology. 

It also opens up the possibility that Serf might have other necessary function during adult 

life in flies. 
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          Molecular analysis suggests that Serf is not a particularly abundant protein in flies.  

The mod-encode tissue RNA-seq data from Drosophila also reports moderate level of 

expression of the Serf transcript, although expressed ubiquitously (Gelbert, W.M, 2013, 

Flybase high-throughput expression Pattern). However, when trans-activated under the 

Act5c promoter in a UAS-GAL4 system, I could not drive more than a 2-3 fold 

overexpression of this gene. This suggests that the Serf promoter is also almost equally 

active as the Act5c. In contrast about 5 fold overexpression was achieved with the same 

driver at the protein level. It is possible that Serf mRNA is differentially translated in 

different tissues, therefore the total transcript levels might not be directly correlated with 

the total protein levels expressed within tissues. In fact human studies have shown that 

alternate SERF isoforms differentially express in different tissues (Scharf et al., 1998). 

          With the creation of different Serf alleles in flies I have also created tools for 

dissecting Serf’s role in modulating SMA phenotype in Drosophila, which is the major 

goal of my thesis. The SMA disease model in flies is known to display viability defects, 

growth defect, developmental arrest or larval locomotion defect in flies (Chan et al.,, 

2003, Chang et al., 2008; Garcia, E.L 2013, RNA; Praveen et al., 2014). Here I show that 

flies with alternate alleles of Serf do not show major developmental defects or larval 

locomotion problem. It will be interesting to look at, when combined with Smn mutants 

Serf alleles can modify Smn dependent mutant phenotypes in flies or not. Any potential 

exacerbation or amelioration of SMA related phenotypes would clearly reflect genetic 

interaction of Serf with Smn, since a mutant Serf allele, by itself, do not cause any 

problem. A hypomorphic allele of Smn (Smne33) that shows muscle specific reduction in 

the Smn protein level, has been shown to display flightlessness while development and 
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viability is not impacted (Rajendra et al., 2007). The fact that Serf null mutant is deficient 

of climbing without affecting viability during early development, therefore, could be 

related to subtle changes in Smn protein abundance pointing to the relevance of Serf in 

SMA pathogenesis. Thus my initial finding is consistent with Serf’s predicted impact in 

SMA. 

2.4 Materials and methods  

2.4.1 Fly strains and maintenance  

The following genotypes are used in this chapter: (i) w1118; (Xia, Fakler et al.) y w; 

{Act5C-GAL}25FO1/ CyO, y+   (Xia, Fakler et al.) [(i) & (Xia, Fakler et al.) are 

obtained from Bloomington Stock Center]  ;  (iii) {UAS-hp-SERF}100894 (Xia, Fakler 

et al.) (SERF RNAi line- Vienna Drosophila RNAi Center);  (Ruan, Tang et al.) UAS-

SERF cDNA; (v) Serf∆10a (vi) Precise excision 26B. Flies were cultured in 25̊C 

humidified chamber under constant light condition. Vials or bottles containing semi 

defined medium, as described by Bloomington Drosophila Stock Center (Backhaus et 

al.,, 1984), were used for all experiments in this study. The specific crosses performed in 

this chapter to obtain the progeny (larvae or adults) of required genotypes are described 

in table 2.3. 
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Table 2.3 describes the specific crosses performed, to obtain the progeny of required 

genotypes for different assays conducted in this chapter. 

Stage 

collected  

Cross description Progeny genotype 

collected 

1st instar 

larva 

Act5c GAL4/TM3 Ser GFP x w1118 Act5c GAL4/+ 

Act5c-GAL4/TM3 Ser GFP x UAS-Serf (cDNA) UAS-Serf (cDNA)/+, Act5c-

GAL4/+ 

Act5c-GAL4/TM3 Serf GFP x UAS-hp-Serf 

(RNAi) 

UAS-hp-Serf(RNAi)/+, Act5c 

GAL4/+ 

Adult Act5c-GAL4/Cyo x w1118 Act5c-GAL4/+ 

Act5c-GAL4/Cyo x UAS-Serf (cDNA) UAS-Serf (cDNA)/Act5c-GAL4 

Act5c-GAL4/Cyo x UAS-hp-Serf (RNAi) UAS-hp-Serf(RNAi)/ Act5c 

GAL4 

Act5c-GAL4/Cyo GFP x w1118 Act5c-GAL4/+ 

Act5c-GAL4/Cyo GFP, Serf∆10a x Serf∆10a Act5c-GAL4/+, Serf∆10a 

Act5c-GAL4/Cyo GFP, Serf∆10a x  UAS-Serf 

cDNA, Serf∆10a 

Act5c-GAL4/UAS-Serf (cDNA), 

Serf∆10a 
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2.4.2 Cloning of UAS-Serf-cDNA construct 

The Serf cDNA clone (SD16330) was obtained from Bloomington stock center 

(FlyBaseID FBcl0276419). The full length cDNA was cloned in pOT2 vector within 

5’EcoRI and 3’ XhoI site. The cDNA construct was amplified from this vector including 

the 3’ XhoI site from the vector backbone and a 5’ BamH1 site was introduced through 

the 5’oligo. These two sites were used to insert the PCR product into the pUAST vector 

(Brand, A.H. 1993 Development) which was then used for embryo injection by Duke 

University Model System Genomics Center injection facility. Oligonucleotides used in 

this cloning are described in table 2.4. 

 

Table 2.4 describes the oligonucleotides used for amplifying the Serf-cDNA from 

pOT2 vector for cloning into pUAST vector. 

Oligo name Sequence 

5’SERFcDNAoligo AAAAAAGGATCCAAAAATGACACGCGGCAAC 

3’SERFcDNAoligo ATTTAGGTGACACTATAGAACTCGAG 

 

2.4.3 Northern blot  

Total RNA was extracted from 20 adult flies (equal number of males and females in each 

set) by homogenizing them in TRIzol reagent (Ambion, Life Technologies) using plastic 

pestles and appropriate micro-centrifuge tubes (GeneMate Microtubes, Bio Express). 

Homogenization was done keeping the samples on ice, followed by 2 consecutive 

chloroform extraction and precipitation using isopropanol. 15ug of total RNA was 
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resolved on a 1% agarose-formaldehyde gel followed by transfer onto Immobilon NY+ 

membrane (Millipore) and hybridization with random prime labeled probes (Invitrogen) 

against Serf (See Table 2.5 for specific probe information). The radioactive signals were 

visualized with a Typhoon 8600 Phosphoimager and quantified with ImageQuant 5.2 

software (GE Healthcare Life Sciences, Pittsburgh,PA). Ribosomal RNA on the 

membrane after transfer was scanned and used as loading controls.  

Table 2.5 describes the oligonucleotides used for amplifying segments of Serf gene 

used for synthesizing radiolabeled probes for northern blot experiment. 

Template Primer pairs for amplifying probe template Size of probe 

template 

Serf 

Exon1(CG17931 

Exon1Fw+Rv) 

5’- CATTTTTAAGGCTCCTTCTTGG-3’ and 5’- 

CAACTTCGAATGCTCGAAAAG-3’   
136 bps 

Serf 

Exon2(D&E) 

5’-CTGGCCTTCCTTTGCTCCA- 3’ and 5’- 

GCGGCAACCAACGAGACCT- 3’ 
106 bps 

Serf 

Exon3(F&G) 

5’- CTTTCTGTCGGCTGCATATTATG- 3’ and 

5’- AGTTAATGCGGGAGAAGCAGA- 3’ 
460 bps 

 

2.4.4 SDS PAGE and western blots  

Protein extracts were made from 1 week old adult flies, 12-14 flies for each extract with 

equal numbers of  males or females, by grinding them in 1X Lamelli buffer (2% SDS; 

10% Glycerol; 60 mM Tris-Cl pH 6.8; 0.01% w/v bromophenol blue), 20µl per fly. 

Grinding is done on ice for 3-4 minutes until cuticle remains, followed by heating at 90̊C 
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for 10 minutes. Supernatant were collected after spinning the samples at full speed for 5 

minutes in a table top centrifuge and stored at -80C̊. Equal amount of protein in terms of 

volume of extract per fly (usually 1 fly worth of protein i.e. 20µl), were resolved on 15% 

SDS-PAGE for detecting Serf and β-tubulin. The gels were blotted on .45µ PVDF 

membrane (Millipore Corp. MA) and membranes were probed with rabbit polyclonal 

antisera against Serf (1:1000 dilution; generated against human N terminal human SERF 

peptide, gift from Dr. Stefan Stamm, University of Kentucky) and mouse monoclonal 

anti-β tubulin (1:1000 dilution; Developmental Studies Hybridoma Bank, E7-s). The 

primary antibodies were detected with alkaline phosphatase conjugated goat anti-mouse 

IgG antibodies (1:5000 dilution; Life Technologies) or goat anti-rabbit IgG (1:5000 

dilution; Sigma). Detection of alkaline phosphatase based signals is done either using 

BCIP/NBT substrate (Promega) followed by scanning the colored blot using HP G4050 

scanning machine or AmershamTM ECF substrate for western blotting (GE Healthcare, 

Life Sciences) followed by scanning of the fluorescent signal by the typhoon scanner 

(Emission Filter526 SP Fluorescein, Cy2, AlexaFluor 488, PMT-600, Sensitivity-high). 

Densitometric analysis of the blots were done with Image Quant 5.2 software. 

2.4.5 Viability and growth Assay 

 Viability assay was also performed as previously described (Praveen et,al 2014). 

Synchronized eggs were collected on apple juice agar plates (1:3 diluted frozen apple 

juice concentrate, 2.2% Drosophila agar, 2.5% sucrose in dH2O) where they hatch to the 

1st instar larval stage (24 hrs). First instar larvae were either directly picked (when all 

larvae are of identical genotype) under dissecting microscope (Leica) or screened for the 

absence of GFP (when the population has mixed genotypes) and picked under a light 
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microscope attached with a UV lamp. Specific numbers of larvae were picked and 

transferred in a scoop of cornmeal food (semi defined medium, as described by 

Bloomington Drosophila Stock Center, Backhaus et al.,, 1984) which is then carefully 

placed inside the standard food vials (same composition). Small vials containing 15-20 

larvae were placed in 25C temperature and humidity controlled chambers and monitored 

for pupae formation and adult eclosion, until at least 100 larvae were scored. The number 

of pupae formed and adults eclosed were counted. Percent larvae pupated and percent 

pupae eclosed into adults were measured for each line and statistically analyzed as 

described in 2.4.8. 

2.4.6 Larval mobility Assay 

Body wall contractions per minute (Nichols, C.D. 2012 J. Vis. Exp; Heckscher, E.S. 

2012, J. Neuroscience) were measured in 96 hrs post egg laying larvae. Collection of 

synchronized 1st instar larvae was done as described for viability assay (2.4.5). The food 

containing the staged larvae were scooped out from the vials with a spatula, 72 hours 

after collection (96 hrs post egg laying). The larvae were then carefully separated from 

the food on a small Petri dish, washed in 1X PBS briefly and placed on fresh apple juice 

plates warmed to room temperature. After acclimatization for 1 minute the body wall 

contractions were counted under a light dissecting microscope (Leica) for one minute. 

Twenty larvae for each genotype were assayed like this. Mean body wall contractions for 

each genotype were then analyzed for statistical significance as described in 2.4.8. 

2.4.7 Adult Climbing assay 

The gross locomotor function of adult flies were assessed by climbing assay as 

previously described (Martinez, V.G. 2007, Developmental Neurobiology). This assay 
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was performed at room temperature in a glass cylinder placed underneath a light source. 

About 100 flies for each genotype grouped into 10 cohorts of 10-12 male flies per 

genotype were placed in a 250 ml glass cylinder and gently tapped to the bottom. The 

time taken by 50% flies to climb 150 ml mark (17.5 cms from the bottom) of the cylinder 

was recorded and compared between the experimental and the control groups. 5 repeated 

measurements were taken with at least 10 cohorts from each genotype.  Means of the 5 

repeats from each cohort were obtained to calculate the average between the cohorts for 

statistical analysis (described in 2.4.8). 

2.4.8 Statistical analyses 

The viability assay dataset were analyzed for statistical significance by the two sample t-

test between percentages. Rest of the data in this chapter are analyzed for statistical 

significance using two-tailed Unpaired Student’s t-test. For all statistical tests P<0.05 

were considered significant. For all graphs, data are represented as the mean ± the 

standard deviation of mean (Becker, Semler et al.) and significant difference is expressed 

as: ‘*’- P value between 0.01-0.05; ‘**’- P value between 0.001-0.01; ‘***’ P 

value<.001. 
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Chapter 3: Drosophila lifespan is sensitive to the levels of Serf expression 

3.1 Introduction 

          So far, I have shown that the Serf gene in flies is non-essential for viability. Flies 

with altered levels of Serf progress through all developmental stages although the adults 

show reduced climbing ability. The next question I wanted to ask is whether adult flies 

with alternate alleles of Serf- wild type, deletion and overexpression, have comparable 

lifespans. Adult lifespan is commonly assayed as a measure of organismal aging. Genetic 

intervention of the lifespan of an organism can provide insight into the gene function in 

the age-related changes of cellular processes.  

          Aging, although most commonly defined as a progressive and irreversible decline 

in organismal performance, is not just a build-up of detrimental changes over time but a 

dynamic and well-regulated process. Research over the past 100 years has, however, shed 

some light onto the biological processes that impact aging at a cellular- and organismic-

level. For instance, restriction of nutrient intake is known to enhance longevity in many 

species (Guarente and Kenyon 2000, Partridge and Gems 2002). Inhibition of  different 

nutrient sensing signaling pathways like Insulin/IGF signaling (IIS) and target of 

rapamycin (TOR) has been shown to extend organismal lifespan in a manner similar to 

dietary restriction  (Guarente and Kenyon 2000, Partridge and Gems 2002, Tatar, Bartke 

et al. 2003, Kapahi, Zid et al. 2004). The IIS pathway negatively regulates a plethora of 

factors involved in oxidative, thermal and metabolic stress resistance which are shown to 

mediate the lifespan extension caused by mutations that reduces IIS pathway activity 

(Giannakou and Partridge 2007). Both the IIS and TOR pathways inhibit autophagy, a 

known quality control process that promotes the clearance of damaged proteins and 
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damaged cytoplasmic organelles. Genetic inhibition in autophagy is seen to reduce 

lifespan and enhanced autophagy is associated with increased lifespan (Madeo, 

Zimmermann et al. 2015). 

 Here I examine the contribution of the Serf gene to adult lifespan in Drosophila 

melanogaster. I also test Serf’s impact on the oxidative stress response and, a known 

marker of mitochondrial function that declines during aging (Wallace 2005). 

3.2 Results 

3.2.1 Life-span is shortened in Serf deletion flies. 

I used a standard Drosophila lifespan assay to determine if the loss of the Serf protein 

altered adult lifespan. The Serf deletion flies (Serf∆10a) were compared with an otherwise 

isogenic precise excision line, called PE26B, containing a functional Serf gene. Age 

matched male and female PE26B and Serf∆10a flies were maintained under optimized 

culture conditions and the number of viable flies recorded each day until 100% of the 

flies were dead. Each line had 100 flies of each sex in 5 cohorts (20 flies per cohort) and 

maintained in a temperature controlled room under a 12 hr-12hr light/dark cycle. In 

figures 3.1A and D, I present the survival curves of Drosophila females and males, 

respectively. I find that the maximum survival of the control group is 53 days for females 

and 57 days for males, with a 50% survival of 43 days in males and 35 days in females. 

In comparison, the lifespans of both females and males of the Serf∆10a line were 

significantly shorter (P value < .0001), the maximum lifespan and 50% survival time 

being 36 days and 27 days in females and 49 days and 29 days in males, respectively. 

Figure 3.1 B, E shows the mean 50% survival between the 5 cohorts in females and males 
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respectively. Here, the mean 50% survival of the female Serf∆10a flies were reduced by 

22.15% whereas that of male mutants were reduced by 35.48%. Figure 3.1 C and F 

shows the average lifespan which is the mean of the maximum survival obtained from 

each cohort. The female deletion mutants showed reduction in average lifespan by 

20.25% whereas the male mutants showed 20.81% reduction. These results show that 

while Serf activity is not required for viability, it is needed to maintain the typical 

lifespan of Drosophila melanogaster, thus providing the first indication for a biological 

importance of this highly conserved protein in normal aging. 
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Fig. 3.1 Serf null flies show reduced lifespan. (A, D) Survival curves for female and 

male Serf∆10a flies in comparison to the PE26B age matched controls. Percent survival is 

plotted on the Y axes and age in days on the X axes.  Survival curves of the Serf∆10a flies, 

both females and males, are significantly different from the PE26B controls (P<.0001 for 

both females and males, Kaplan Meier survival analysis,). (B, E) Graph representing the 

mean 50% survival of the Serf∆10a and PE26B flies, females and males respectively. For 

both sexes the mean 50% survival of the deletion group is significantly reduced as 

compared to the controls (Females- P value=.0007, n=5, unpaired student t-test; Males- P 

value<.0001, n=5, unpaired student t-test). (C, F) Graph representing the average survival 

of the Serf∆10a and PE26B flies, females and males respectively. For both sexes the 

average survival of the deletion is significantly reduced as compared to the controls 
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(Females- P value<.0001, n=5, unpaired student t-test; Males- P value=.0018, n=5, 

unpaired student t-test). 

3.2.2 Global overexpression of Serf increases lifespan. 

In the previous chapter, I showed that expression of the UAS-SERF cDNA with the 

ubiquitous Actin5c-GAL4 driver increased Serf expression by approximately 4 fold 

(Fig2.5).  Prior to using this derivative for our longevity assay we backcrossed this strain 

and the Actin-5c GAL4 control line with w1118 for 5 generations to limit genetic 

background differences (Spencer, C.C. 2003 Aging Cell). More than 150 flies with 

genotype Actin5c-GAL4>UAS-Serf (Serf overexpression) and Actin5c-GAL4/+ 

(negative control) were collected and grouped into cohorts of 10-12. In figure 3.2 A and 

D, I present the survival curve showing that the maximum lifespan of the control group is 

70 days in females and 75 days in males, whereas the 50% survival is 53 days in females 

and 50 days in males. When Serf is overexpressed both females and males lived 

significantly longer (p value< .0001) with maximum length of survival increasing to 83 

days in females and 85 days in males and 50% survival going up to 69 days in females 

and 62 days in males. We observe an increase in the 50% survival among females by 

30.09% and that among males by 25.46% (Figure 3.2 B, E). The average survival is also 

increased in the overexpression group (Figure 3.2 C and F), where the females showed an 

increase by 22.79% and males by 11.6%.  These results complement the Serf deletion line 

study and established Serf’s impact in fruit fly physiology as a longevity promoting 

factor. 
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Fig. 3.2 Ubiquitous Serf overexpression increases lifespan (A, D) Survival curves for 

female and male Act5c GAL4 driven Serf over-expression flies respectively, in 

comparison to the age matched Act5c GAL4 driver only controls. Percent survival is 

plotted on the ordinates and age in days on the abscissa. Survival curves of the Act5c 

GAL4>Serf flies, both females and males, are significantly different from the Act5c 

GAL4 driver only controls (P<.0001 for both females and males, Kaplan Meier survival 

analysis) (B, E) Graph representing the mean 50% survival of the Act5c GAL4>Serf and 

Act5c-GAL4 flies, females and males respectively. For both sexes the mean 50% survival 

of the overexpression group is significantly increased as compared to the controls (P 

value<.0001, unpaired student t-test; females: n=15 for control; n=16 for overexpression 
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and males n=14 for both control and overexpression). (C, F) Graph representing the 

average survival of the Act5c GAL4>Serf and Act5c-GAL4 flies, females and males 

respectively. For both sexes the average survival of the overexpression group is 

significantly increased as compared to the controls (Females- P value<.0001, unpaired 

student t-test; Males- P value=.0033 females: n=15 for control; n=16 for overexpression 

and males n=14 for both control and overexpression). 

3.2.3 Tissue specific overexpression of Serf and its impact on fly longevity. 

In order to refine our understanding of Serf’s impact in fly longevity I overexpressed the 

cDNA under tissue specific drivers and measured their lifespan in comparison to isogenic 

driver only controls.  Muscles and neurons were particularly interesting to us because- i) 

activation of cellular processes impacting longevity has been well characterized within 

these tissues; and ii) Serf ‘s implication in the neuromuscular and neurodegenerative 

diseases, raises its potential importance within these tissues. 

3.2.3.1 Serf overexpression in muscles increases lifespan. 

I used isogenized Mhc-GAL4 driver flies (Demontis and Perrimon 2010) to overexpress 

Serf in all muscles throughout development and adult life. Analysis of Serf protein 

expression by western blot of adult thoracic muscles shows 1.97 and 2.78 fold increased 

expression in males and females respectively (Fig 3.3G). The lifespan assays for females 

and males were done with more than 150 flies for each genotype grouped into 12 cohorts 

each with 10-12 flies. From the survival curves as shown in Figure 3.3 A and D, we can 

see that the maximum and the 50% survival of the overexpression females is significantly 

(P value <.0001) increased to 82 days and 49 days as compared to 61 days and 39 days in 

the control females. The impact was less obvious but statistically significant (P 
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value=.00347) in  males where the maximum and 50% survival are increased from 64 

days and 42 days in controls to 72 days and 46 days in the overexpression group. Figure 

3.3 C and F shows the average lifespan which is the mean of the maximum survival 

obtained from each cohort. I found 24.57% increase in the 50% survival among female 

overexpression flies whereas 9.26% increase among males when compared with 

respective controls.  The average lifespan of the overexpression group increased by 

32.52% in females and 14.86% in males. These results show that Serf overexpression 

only in muscles is sufficient to mediate lifespan extension in adult flies, suggesting a role 

for Serf in influencing the cellular processes in muscles involved in determining lifespan. 
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Fig. 3.3 Muscle specific Serf overexpression increases lifespan. (A, D) Survival curves 

for female and male Mhc-GAL4 driven Serf over-expression flies respectively, in 

comparison to the age matched Mhc-GAL4 driver only controls. Percent survival is 

plotted on Y axes and age in days on X axes. Survival curves of the Mhc-GAL4>Serf 

flies, both males and females, are significantly different from the Mhc-GAL4 driver only 

controls (Females-P<.0001; Males-P<.004 Kaplan Meier survival analysis.) (B, E) Graph 

representing the mean 50% survival of the Mhc-GAL4>SERF and Mhc-GAL4 flies, 

females and males respectively. The mean 50% survival of the female overexpression 

group is significantly increased as compared to the controls (P value=.0018, n=12, 

unpaired student t-test), however, it is not statistically significant in males (P 

value=.1655, n=12, unpaired student t-test). (C, F) Graph representing the average 

survival of the Mhc-GAL4>Serf and Mhc-GAL4 flies, females and males respectively. 

For both sexes the average survival of the overexpression group is significantly increased 

as compared to the controls (Females- P value<.0001, n=12, unpaired student t-test; 
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Males- P value=.0043, n=12 unpaired student t-test). (G) Western blot analysis of Serf 

protein in adult thoracic muscles of Mhc-GAL4>Serf and Mhc-GAL4 flies. The α-tubulin 

protein is used as loading control and Serf levels relative to α-tubulin is indicated below 

each lane.  

3.2.3.2 Serf overexpression in neurons increases lifespan. 

Isogenized Elav-GAL4 driver flies and UAS-Serf cDNA flies were crossed to drive pan-

neuronal overexpression of Serf throughout development and adult life. Analysis of Serf 

protein expression by western blotting of protein extracts prepared from adult brains 

shows 2.27 fold and 2.59 fold overexpression in males and females respectively (Fig 

3.4G). The lifespan assays for females and males were done with more than 180 flies for 

each genotype grouped into 15 cohorts each with 10-12 flies. From the survival curves 

(Fig 3.4 A&D) we can see that the lifespan of the overexpression group is significantly 

increased in both females and males (Females: P value <.0001; Males- P value<.0001) 

compared to the controls. The control flies show a maximum lifespan and 50% survival 

of 68 days and 45 days respectively in females and that for the males are 75 days and 46 

days, respectively. In the overexpression group the maximum lifespan increases to 83 

days in females and 87 days in males while the 50% survival increases to 60 days in 

females and 54 days in males. The mean 50% survival increases in the overexpression 

flies by 33.18% in the females (Fig 3.4B) and 17.06% in the males (Fig 3.4E), whereas, 

the average lifespan of the overexpression females and males increases by 21.67% (Fig. 

3.4 C) and 19.18% in males (Fig. 3.4 F). Therefore, it is obvious from the results that Serf 

overexpression only in neurons is sufficient to mediate lifespan extension suggesting a 

potential role of Serf in longevity determining cellular activities within neuronal tissue. 
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Fig. 3.4 Neuronal specific Serf overexpression increases lifespan.  (A, D) Survival 

curves for female and male Elav-GAL4 driven Serf over-expression flies respectively, in 

comparison to the age matched Elav-GAL4 driver only controls. Percent survival is 

plotted on the Y axes and age in days on the X axes. Survival curves of the Elav-

GAL4>Serf flies, both males and females, are significantly different from the Elav-GAL4 

driver only controls (Females-P<.0001; Males-P<.0001 Kaplan Meier survival analysis.) 

(B, E) Graph representing the mean 50% survival of the Elav-GAL4>Serf and Elav-

GAL4 flies, females and males respectively. The mean 50% survival of the 

overexpression group is significantly increased, in both females and males, as compared 

to the respective controls (P value<.0001, n=15, unpaired student t-test). (C, F) Graph 

representing the average survival of the Elav-GAL4>Serf and Elav-GAL4 flies, females 

and males respectively. For both sexes the average survival of the overexpression group 

is significantly increased as compared to the controls (P value<.0001, n=15, unpaired 

student t-test) (G) Western blot analysis of Serf protein in adult brain of Elav-GAL4>Serf 
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and Elav-GAL4 flies. The α-tubulin protein is used as loading control and Serf levels 

relative to α-tubulin is indicated below each lane.  

3.2.4 Serf overexpression during adult life and its impact on longevity. 

Our results indicate that flies show lifespan extension with both global and tissue-specific 

enhanced expression of Serf throughout development. To investigate Serf’s influence 

when overexpressed only in adult tissues I used the gene-switch system. The GeneSwitch 

system is a modified version of the standard UAS-GAL4 system where the GAL4 

activator is replaced by a GAL4-progesteron receptor fusion protein which trans-activates 

target genes in a RU486 (Mifepristone) dependent manner, imparting temporal regulation 

on gene expression. The fusion GAL4 is now called a gene-switch protein and is 

expressed under a tissue specific enhancer/promoter for spatially controlled gene 

expression. In our experiments we expressed the UAS-Serf cDNA only in adult tissues by 

feeding the adult flies RU486 throughout life (See figure 2.4 for illustration). We 

compared genetically identical flies fed with either the drug or the vehicle and compared 

their lifespans. We used a ubiquitous daughterless GeneSwitch driver and a fat-body 

specific GeneSwitch driver to examine the impact of Serf overexpression in all adult 

tissues and in only adult fat bodies in determining lifespan. 

3.2.4.1 Global Serf overexpression exclusively in adult tissues is sufficient to extend 

lifespan. 

The daughterless-GAL4 geneswitch driver line (DaGS-GAL4) was isogenized with w1118 

line, the same way as all other by back-crossing for 5 generations. The driver flies were 

crossed with the UAS-Serf cDNA flies and the progeny containing both of these elements 

were collected. More than 150 males and females were grouped into 12 cohorts with 12-
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13 flies in each and reared on food containing RU486 or the vehicle. In order to make 

sure that the drug is turning on Serf overexpression I looked at the Serf protein levels in 

the drug treated and vehicle treated groups by western blot. Protein analysis shows an 

average of 3.31 fold and 2.89 fold overexpression in drug-fed males and females relative 

to respectively (Fig 3.5 D & H, respectively). Figure 3.4 A and D shows the survival 

curves combining all the cohorts of females and males respectively. Here the untreated 

controls show a maximum lifespan of 51 days in females and 61 days in males with 50% 

survival of 30 days in females and 41 days in males. Lifespan analysis showed that the 

RU486 treated females lived significantly longer as compared to the vehicle treated group 

(P value<.0001) where their maximum lifespan and 50% survival increased to 61 days 

and 39 days, respectively . The males of the overexpression group on the other hand 

showed a  more mild impact (maximum lifespan 70 days, 50% survival 45 days) , 

although statistically significant (P value=.00189). Figure 3.5 B and F shows the average 

50% survival between the cohorts from the two groups where the drug treated females 

show an increase of 19.24% and the males showed an 11.56% increase. Moreover, the 

average lifespan of the overexpression group increased both in females (fig. 3.5 C) and 

males (fig 3.5 G) by 15.41% and 11.94% respectively. These data showed that increased 

Serf expression in adult tissues during aging is beneficial and is sufficient for promoting 

longer lifespan, suggesting a potential function of the Serf gene in influencing the onset 

or the process of aging. 
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Fig.3.5 Global Serf overexpression in only adult tissues extend lifespan. (A, D) 

Survival curves of DaGS-GAL4>SERF flies with and without RU486 treatment in 

females and males respectively. Percent survival is plotted on the Y axes and age in days 

on the X axes. Survival curves of the drug treated flies, both males and females, are 

significantly different from the vehicle treated controls (Females-P<.0001; Males-

P=.00189 Kaplan Meier survival analysis.) (B, E) Graph representing the mean 50% 

survival of the RU486 treated and vehicle treated DaGS-GAL4>Serf flies, females and 

males respectively. The mean 50% survival of the overexpression group, both females 

and males, is significantly increased as compared to the controls (Females: P 

value=.0014; Males: P value=.011; n=12; unpaired student t-test). (C, F) Graph 

representing the average survival of the RU486 treated and vehicle treated DaGS-

GAL4>Serf flies, females and males respectively. For both sexes the average survival of 

the overexpression group is significantly increased as compared to the controls (Females- 

P value<.0001, n=12, unpaired student t-test; Males- P value=.0033, n=12 unpaired 
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student t-test). (G, H) Western blot analysis of SERF protein in adult extracts of DaGS-

GAL4>Serf flies with and without RU486 treatment in females and males respectively. 

The α-tub band is shown as a loading control. Relative level of Serf with respect to α-tub 

is indicated below each lane.  

3.2.5.2 Mis-expression of Serf in only adult fat bodies does not alter life-span. 

The adult fat body in Drosophila performs a plethora of functions that includes energy 

homeostasis, storage and immune functions. Moreover, fat bodies form a non-

autonomous circuit with the brain in which the insulin like signaling factors secreted by 

the fat body function to modulate adult longevity in a diet dependent manner (Bai et al.,, 

2012). Therefore, the adult fat bodies were of particular interest to investigate a possible 

cell-non-autonomous effect of Serf in mediating lifespan extension. We used isogenic fat 

body GeneSwitch driver line (FBGS-GAL4) to cross with the UAS-Serf cDNA line and 

the progeny collected were either fed a diet that contained RU486 or only the drug 

vehicle. About 150 flies, females and males each, were examined in groups of 12-15 in 

10 sex-specific cohorts. Consistent with the whole body study, the analysis of Serf 

protein levels shows 5.48 fold and 4.68 fold overexpression in the abdominal extracts 

(highly enriched with fat-bodies) of females and males respectively. Figure 3.6 A & E 

shows the survival curves of females and males, respectively. Here the untreated control 

flies show a maximum lifespan of 71 days in females and 72 days in males with a 50% 

survival of 47 days in both. The drug fed experimental group, both females and males, 

survived very similar to the controls where the maximum lifespan is 72 days for females 

and 75 days for males while the 50% survival is 46 days in males and 47 days in females. 

We observed no statistical difference in the average 50% survival (Fig. 3.6 B and F) and 
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average lifespan (Fig 3.6 C and G) between the two groups. These results suggest that the 

effect of Serf in promoting longevity in adult flies is not cell-autonomous or in other 

words it is important in which cells or tissues Serf activity is enhanced in order to assure 

longevity. 

 

 

Fig.3.6 Serf overexpression only in adult fat bodies does not impact lifespan (A, D) 

Survival curves of FBGS-GAL4>Serf flies with and without RU486 treatment in females 

and males respectively. Percent survival is plotted on the Y axes and age in days on the X 

axes. Survival curves of the drug treated flies, both males and females, are statistically 

indistinguishable from the vehicle treated controls. (P value>.05 Kaplan Meier survival 

analysis.) (B, E) Graph representing the mean 50% survival of the RU486 treated and 

vehicle treated FBGS-GAL4>Serf flies, females and males respectively. The mean 50% 

survival of the overexpression group, both females and males, does not differ 
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significantly from the controls (P value>.1 n=12; unpaired student t-test). (C, F) Graph 

representing the average survival of the RU486 treated and vehicle treated FBGS-

GAL4>Serf flies, females and males respectively. For both sexes the average survival of 

the overexpression group is not significantly different from the controls (P value>.1, 

n=12, unpaired student t-test). (G, H) Western blot analysis of Serf protein in the 

abdominal extracts of FBGS-GAL4>Serf flies with and without RU486 treatment in 

females and males respectively. Data shows about 2 fold and 5 fold overexpression upon 

RU486 feeding in females and males respectively. The α-tub band is shown as a loading 

control. The relative level of Serf with respect to α-tub is indicated below each lane. 

3.2.6 Impact of altered Serf on survival under oxidative stress 

Increased load of oxidative damage is one of the several factors that drives the 

organismal decline observed with aging (Pacifici and Davies 1991). In many instances 

longevity extending genetic interactions operate by providing resistance against increased 

oxidative stress. For example in most mammalian models lifespan extension achieved by 

calorie restriction is associated with reduced levels of oxidized protein, lipid, DNA, 

reduced rate of reactive oxygen species (ROS) production and increased resistance to 

oxidative stress (Sun, Muthukumar et al. 2001, Bokov, Chaudhuri et al. 2004, 

Richardson, Liu et al. 2004, Harper, Salmon et al. 2006). My data so far is consistent 

with Serf acting as a longevity promoting factor. I next investigated whether the changes 

in lifespan observed with manipulation of Serf gene expression operate under conditions 

of free radical mediated oxidative damage. If so, the Serf deletion flies might be expected 

to show hypersensitivity to this stress while flies that expressed excess Serf might show 

increased resistance to induced oxidative damage. Paraquat feeding is an established 
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method of inducing free radical driven oxidative damage (Rzezniczak, Douglas et al. 

2011).  Paraquat interferes with mitochondrial electron transport chain complex-I to 

increase ROS production which then cyclically causes more mitochondrial damage and 

more ROS production. 

3.2.6.1 Serf deletion flies show shortened lifespan even under paraquat induced 

oxidative stress. 

Flies, 24 hours old from the Serf∆10a and PE26B adult flies were fed paraquat containing 

food their sensitivity to oxidative stress. Approximately 100 flies of each genotype and 

sex were grouped into 10 independent cohorts of 10-11 flies each and the number of dead 

flies was counted every 12 hours until all had died. Figure 3.7 A and B shows the 

survival curves under oxidative stress in females and males respectively. The lifespan of 

wildtype adults flies is reduced from about 60 days to 10 days with paraquat treatment. I 

found that in the Serf deletion group, both females and males the maximum survival time 

is slightly reduced to 164-176 hrs (6-7 days). In addition, the 50% survival time is 

reduced in the deletion group by 33.77% in females and 20% in males as compared to the 

respective controls. Statistical analysis of the survival curves show that the Serf deletion 

flies are significantly more sensitive to oxidative stress (P value<.0001 for females, P 

value=.0019 for males) when compared to the wildtype. 
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Fig. 3.7 Survival under paraquat induced oxidative stress is reduced in Serf deletion 

flies. (A) Survival curve for Serf∆10a females in comparison to PE26B controls upon 

paraquat feeding. Survival under oxidative stress is significantly reduced in deletion 

females (P value<.0001, Kaplan Meier survival analysis). (B) Survival curve for Serf∆10a 

males in comparison to PE26B controls upon paraquat feeding. Under oxidative stress 

male survival in modestly but significantly reduced (P value=.0019, Kaplan Meier 

survival analysis). 
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3.2.6.2 Global Serf overexpression females show modest increase in lifespan under 

paraquat induced oxidative stress. 

We performed the complementary experiment to test the effect of Serf overexpression on 

longevity under paraquat induced oxidative stress. This was done using Act5c GAL4 

driven cDNA Serf overexpression as previously described (section 3.2.6.1). The 50% 

survival under oxidative stress in females was increased by 11.11 % in the 

overexpression group compared to the controls. Statistical analysis of the survival curves 

show that the female Serf overexpression group lives modestly but significantly longer (P 

value=.0157) compared to the control. The change observed in males was not significant 

(P value =0.56).  To our surprise I found that in males paraquat toxicity completely 

abolished the lifespan extension we had observed previously upon Serf overexpression 

under normal condition. While the increased lifespan observed with global 

overexpression of Serf under normal conditions is considerable, the increased survival 

under these genotoxic conditions was negligible. Nevertheless, the decrease in survival 

noted in the Serf mutant in the presence of paraquat and the weakly enhanced survival in 

the female flies that overexpress Serf under this condition suggest a contribution of the 

Serf protein to the animal viability under stress conditions.  
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Fig. 3.8 Survival under paraquat induced oxidative stress is modestly increased in 

global Serf overexpression females but not in males. (A) Survival curve for Act5c-

GAL4>Serf females in comparison to Act5c-GAL4 driver only controls upon paraquat 

feeding. Survival under oxidative stress is modestly but significantly increased in deletion 

females (P value= .0157, Kaplan Meier survival analysis). (B) Survival curve for Act5c-

GAL4>Serf males in comparison to Act5c-GAL4 driver only controls upon paraquat 

feeding. Survival under oxidative stress is not changed in overexpression males compared 

to the controls. 

 

 

 

 

 



80 
 

3.2.7 The ubiquitous Serf overexpression flies show increased abundance of a 

mitochondrial marker protein, mitofusin. 

The observation that the Serf deletion and overexpression flies show altered sensitivity to 

paraquat suggests that mitochondrial activity might be altered in these flies, since 

mitochondria are responsible for mediating the effect of paraquat induced toxicity. Rana 

et al., 2012 has shown that the overexpression of an E3 ubiquitin ligase, Parkin, in adult 

flies extends normal lifespan that correlates with increased mitochondrial activity (Rana, 

Rera et al. 2013). Parkin plays a role in mitochondrial quality control by enhancing the 

fission/fragmentation of damaged organelles for their subsequent degradation by 

autophagy (Youle and van der Bliek 2012, Ashrafi and Schwarz 2013). In order to do so, 

Parkin ubiquitinates a mitochondrial outer membrane protein, mitofusin (Mfn- a 

mitochondrial fusion promoting factor) for its degradation by the proteasome promoting, 

fragmentation of the dysfunctional mitochondria. In their study Rana et al., found that the 

steady state levels of Mfn are reduced in both young and old Parkin overexpression flies 

and that this increased expressed correlates well with increased mitochondrial activity 

(Rana et al., 2012). Figure 3.9 shows the western blot analysis of Mfn protein in Serf 

overexpression flies in comparison to the control in adults at 1 week and 5 weeks of age. 

The neuronal Elav protein was used for normalization. Mfn protein abundance increases 

between 1 week and 5 weeks independent of genotype, consistent with earlier reports 

(Rana et al., 2012).  However, the relative abundance of Mfn protein (Mfn/Elav) is 

greater by about 2.5 fold at 1 week in the Serf overexpression line compared to the GAL4 

driver control (compare lanes 1 and 3). This difference is also seen at 5 weeks, where the 

Serf overexpression group shows about 2 fold increase compared to the control (compare 
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lanes 2 and 4). These results contrast with what was seen with Parkin overexpression, 

where Mfn levels were reduced (Rana et al., 2012). Nonetheless, the data indicates 

possible alteration in the structure or activity of mitochondria in the Serf overexpression 

flies, which might relate to their oxidative stress response and longevity. 

 

Fig. 3.9 Mitofusin (Mfn) protein abundance increases in ubiquitous Serf 

overexpression flies. Western blot analysis of adult whole female fly extracts at 1 week 

and 5 week old ages with rabbit anti-mitofusin and rat anti-Elav (loading control) 

antibodies in GAL4 driver control (Act5c-GAL4, Lanes 1 & 2) and Serf overexpression 

(Act5c GAL4>Serf, Lanes 3 & 4) flies. Relative levels of Mfn with respect to Elav is 

indicated below each lanes. 
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3.3 Conclusions and discussion 
 

          The major take home message from this portion of my study is that increased Serf 

gene expression promotes longevity while loss of Serf reduces lifespan in Drosophila. 

The data suggest that Serf may act in a non-autonomous manner to promote life-span 

extension. Genetically imposed changes in Serf expression resulted in modest changes in 

oxidative stress resistance that may correlate with alteration in mitochondria structure.   

          I observed that females were more sensitive to Serf-dependent lifespan changes 

than males.  Such sex-specific differences are commonly reported in the literature (Lints, 

Bourgois et al. 1983). I also found that the different wildtype control strains used in my 

Serf deletion and overexpression studies showed Serf-independent differences in lifespan. 

Specifically the precise excision control showed a 30% decrease in longevity compared 

with the Act5c-GAL4 control. Previous studies have shown similar ill-defined lifespan 

differences (ranges between 60-80 days) among multiple wildtype Drosophila strains 

(Lints, Bourgois et al. 1983, Orr and Sohal 2003). Therefore, as done here, it is critical to 

use near isogenic lines for comparison when scoring for the impact of a specific gene 

(e.g., Serf) on lifespan.  The reciprocal effect of loss of Serf or overexpression of Serf on 

lifespan compared with isogenized controls strongly supports my contention that Serf is a 

longevity factor in Drosophila melanogaster.  

          Since Serf has been implicated in neuromuscular and neurodegenerative diseases 

(Scharf et al.,, 1998, Van-Ham et al., 2010, Falsone et al.,, 2012) and loss of muscles and 

neuronal activity are important features of aging (Mattson and Magnus 2006, Demontis, 

Piccirillo et al. 2013), it was interesting to learn that Serf overexpression in muscles and 
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neurons was sufficient for lifespan extension. However, I cannot rule out the non-cell-

autonomous or systemic effect of muscle or neuronal specific serf overexpression in other 

tissues, which could be relevant to the increased lifespan in these flies. For instance, 

enhanced FOXO signaling in muscles systemically increase the expression of its target 

4E-BP in other tissues by regulating food intake and insulin release. The systemic 

enhancement of 4E-BP activity reduces the accumulation of poly-ubiquitinated protein 

aggregates in brain, retina, adipose tissues, which is linked to the lifespan extension 

observed in these flies (Demontis & Perrimon, 2010). Another example is the neuronal 

upregulation of the AMP activated protein kinase, which induces autophagy in the brain 

and also non-cell autonomously in the intestinal epithelium thereby improving protein 

homeostasis during aging and extending lifespan (Ulgherait, Rana et al. 2014). These 

instances point to the possibility that muscle or neuronal overexpression of Serf might 

exert non-cell-autonomous effect in other tissues to mediate its lifespan extending impact. 

However, the finding that overexpression of Serf in adult fat-bodies does not influence 

lifespan, bolsters the fact that it is important which tissues have the enhanced levels of 

Serf so as to exert its beneficial effect in longevity. 

          Among the best characterized pathways having major contribution in lifespan 

determination are the nutrient sensing IIS and TOR signaling pathways (Kenyon 2010, 

Evans, Kapahi et al. 2011). These pathways, the central regulators of metabolism, 

interact with each other to control various cellular processes including cell growth, 

mRNA translation, ribosome synthesis, expression of metabolism related and stress 

response genes and autophagy in response to environmental cues like availability of 

nutrients (Kenyon 2005);(Schmelzle and Hall 2000, Karpac and Jasper 2009). Since, 
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these signaling pathways govern the metabolic adaptation of an organism to 

environmental changes, they play a crucial role in determining organismal lifespan 

(Karpac and Jasper 2009, Evans, Kapahi et al. 2011). The activation of the evolutionarily 

conserved stress responsive Jun-N terminal Kinase (JNK) pathway has also been shown 

to exert protective effect under normal physiological condition and also under oxidative 

stress by extending lifespan (Wang, Bohmann et al. 2003, Libert, Chao et al. 2008). The 

finding that JNK activation operates by reducing IIS signaling, at multiple levels of the 

IIS pathway, provides a link between the environmental challenges (stress inducers that 

activate JNK) and cellular metabolic regulation (mediated by IIS) in the determination of 

organismal lifespan. Among several other major known determinants of lifespan is the G-

protein coupled receptor methuselah, the loss of which extends lifespan by imparting 

resistance to paraquat driven oxidative stress, starvation stress and tolerance to high 

temperature (Lin, Seroude et al. 1998). Upregulation of the histone deacetylase Sir2 

(Rogina and Helfand 2004) and loss of mitochondrial co-transporter Indy (Rogina and 

Helfand 2013) also extends lifespan that involves the calorie restriction pathway 

(Rapaport, Brunner et al. 1998, Rogina and Helfand 2004, Wang, Neretti et al. 2009). 

Whether these perturbations interact with IIS to mediate their effect on longevity is still 

unclear (reviewed in (He and Jasper 2014)).  

           Whether Serf function in lifespan extension is dependent on any of these known 

longevity pathways is not known. The extent to which these major ‘aging genes’ extend 

lifespan is comparable with that found in the case of enhanced Serf activity. For example 

the loss of function of Chico (IIS receptor substrate) and methuselah causes 48% (Clancy, 

Gems et al. 2001) and 35% (Lin, Seroude et al. 1998)increase in lifespan in females. In 



85 
 

my study I have seen a 33.18%, 32.52% and 30% increase in female lifespan with Serf 

overexpression in neurons, muscles and globally, respectively. Given such robust effect 

of Serf overexpression it is conceivable that Serf activity interacts with major lifespan 

determining pathways. Muscle specific overexpression of FOXO, the transcription factor 

negatively regulated by the IIS pathway, increases Drosophila lifespan (Demontis and 

Perrimon 2010) similar to Serf.  Therefore, one possibility is that Serf functions 

downstream of IIS pathway. The C. elegans study has shown that Serf driven changes in 

the level of amyloid aggregation does not depend on DAF-16/FOXO in a Poly-Q 

expressing neurodegenerative disease model (Van-Ham et al., 2010), suggesting Serf 

might act either downstream to FOXO or in a parallel pathway to regulate amyloid 

aggregation. Importantly, Serf in C. elegans does not influence the normal lifespan. 

Therefore, if the lifespan extending effect of Serf is mediated by reduced IIS pathway 

remains to be an open question in Drosophila. 

           In contrast to the lifespan extending interventions that impart robust resistance to 

paraquat induced oxidative stress including reduced IIS signaling, enhanced JNK activity 

and loss of methuselah, Serf overexpression correlated with only a modest protection 

against the oxidative damage caused by paraquat feeding. Antioxidants like copper-Zn 

Superoxide Dismutase and Catalase increase Drosophila lifespan by directly imparting 

protection against free radical damage and therefore provides robust resistance against 

oxidative damage (Kirby et al.,, 2002; Missirlis, et al., 2001, Parkes et al.,, 1998). Our 

data therefore indicates that Serf is possibly not a direct mediator or regulator of 

oxidative stress response in flies. However, modest improvement in the free radical 
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induced stress management could partially contribute in the lifespan extending effect of 

Serf.  

          The finding that the level of mitofusin (Mfn) protein abundance increase in the 

long lived Serf overexpression flies, indicates an alteration in the mitochondrial structure 

and function possibly pertaining to the improvement in their oxidative stress response 

during normal course of aging. In contrast to our finding, Rana et al., has shown before 

that the lifespan extending effect of Parkin overexpression in adult tissues correlates with 

reduced accumulation of the Parkin substrate, Mfn, in aging flies, suggesting enhanced 

turnover of damaged mitochondria from cells with enhanced Parkin activity (Rana, Rera 

et al. 2013). Our finding that Mfn abundance increases in Serf overexpressing flies 

apparently suggesting that damaged mitochondria accumulates in these flies. However, it 

is important to mention that mitochondrial quality control is a complex phenomenon that 

depends on the level of mitochondrial fission and fusion (Youle and van der Bliek 2012). 

Mfn protein is known to function in and is required for the mitochondrial fusion reaction 

(Hales and Fuller 1997, Hermann, Thatcher et al. 1998, Rapaport, Brunner et al. 1998). 

Overexpression of Mfn in human cells has been shown to increase mitochondrial fusion 

and gives rise to long interconnected network of mitochondrial filaments (Santel and 

Fuller 2001). Therefore, increased level of Mfn in the Serf overexpression flies possibly 

relates to increased mitochondrial fusion and reduced fragmentation, which seems to be 

beneficial in the context of their longer lifespan. In fact, mitochondrial hyper-fusion has 

been shown to have cytoprotective roles under starvation stress and other physiological 

condition (Figge, Osiewacz et al. 2013). Moreover, according to a mathematical model 

predicted by systems biology age dependent adaptation to reduce mitochondrial fission 
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extends lifespan (Figge, Reichert et al. 2012). Together, these point to the possibility that 

the mitochondrial structure and function could be altered in the Serf overexpression flies 

which might relate to the longevity promoting effect of Serf.  

3.4 Materials and methods 
 

3.4.1 Fly strains and maintenance 

 The following genotypes are used in this chapter: (i) w1118; (Xia, Fakler et al.) y w; 

{Act5C-GAL}25FO1/ CyO, y+   (Xia, Fakler et al.); (iii) elav-GAL  (c155)   (X); (Ruan, 

Tang et al.) Fat body-GS GAL4; [(i)-(Ruan, Tang et al.) obtained from Bloomington 

Stock Center]  (v)  daughterless-GS GAL4 (Obtained from Dr. David Walker laboratory, 

University of California, Loss Angeles); (vi) {mhcF3-580-GAL4} {mhcF3-580-RFP}/ 

SM6    (Xia, Fakler et al.) (Obtained from Dr. Thomas Gajewski lab, University of 

Chicago)  (vii) {UAS-hp-Serf}100894 (Xia, Fakler et al.) (SERF RNAi line- Vienna 

Drosophila RNAi Center);  (viii) UAS-SERF cDNA; (ix) Serf∆10a (x) Precise excision 

26B [ (viii)-(x) generated in our lab; described in Chapter 2]. The fly strains (Xia, Fakler 

et al.)-(viii) were isogenized in the w1118 genetic background by backcrossing for 5 

generations. Flies were cultured in 25C humidified chamber with 12 hours light dark 

cycle. Vials or bottles containing semi defined medium, as described by Bloomington 

Drosophila Stock Center (Backhaus et al.,, 1984), were used for all experiments in this 

study. The specific crosses performed in this chapter to obtain the progeny (larvae or 

adults) of required genotypes are described in table 3.1. 
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Table 3.1 describes the specific crosses performed, to obtain the progeny of required 

genotypes for the different assays conducted in this chapter. 

 

Stage 

collected  

Cross description Progeny genotype 

collected 

Adult Act5c-GAL4/Cyo x w1118 Act5c-GAL4/+ 

Act5c-GAL4/Cyo x UAS-Serf (cDNA) UAS-Serf (cDNA)/Act5c-GAL4 

Mhc-GAL4(Xia, Fakler et al.) x UAS-hp-Serf 

(RNAi) 

UAS-Serf (cDNA)/Mhc-GAL4 

Mhc-GAL4(Xia, Fakler et al.) x w1118 Mhc-GAL4/+ 

Elav-GAL4(I) x UAS-Serf (cDNA) Elav-GAL4/+, UAS-Serf 

(cDNA)/+ 

Elav-GAL4(I) x w1118 Elav-GAL4/+ 

daGS-GAL4(Xia, Fakler et al.) x UAS-Serf 

(cDNA) (geneswitch driver) 

UAS-Serf (cDNA)/daGS-GAL4 

FBGS-GAL4(Xia, Fakler et al.) x UAS-Serf 

(cDNA) (geneswitch driver) 

UAS-Serf (cDNA)/FBGS-GAL4 

 

3.4.2 Lifespan assay 

 Longevity measurements were performed as described by Demontis and Perrimon, 2011. 

Males and female flies of the correct genotype were collected separately within 24 hrs 

from eclosion and reared at a density of 10-15 flies per vial on standard food as described 
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before, at 25 ̊C humidified incubator with 12 hours light dark cycle. For our experiments 

with the GeneSwitch driver containing lines, adult flies were fed standard food 

containing 160µg/ml RU486 (Mifepristone, Sigma), prepared by adding 50ul of stock to 

the surface of freshly made food vials (Ren, C. 2009, Exp Gerontology). RU486 stock 

solution was prepared in ethanol and 50ul ethanol solvent was applied in the control food 

vials. All the food vials were air-dried for 48 hours for the ethanol to evaporate (Detailed 

protocol is available online at (http://towerlab.usc.edu/). Dead flies were counted every 

day and the food was changed every alternate day. For each experimental genotype and 

control group, at least two independent cohorts of flies, raised at different times from 

independent crosses, were analyzed. 

3.4.3 Paraquat assay  

The paraquat induced oxidative stress assay was performed as described previously by 

Cai et al.,, 2011.  Male and female flies of the appropriate genotypes were collected and 

reared in the same manner as done for the lifespan assay except that the food was 

replaced with cellulose acetate plugs (Genesee Scientific, San Diego, CA) saturated with 

2% sucrose plus 5 mM Paraquat. Flies were kept in a 25°C humidified incubator with 12 

hrs light dark cycle. Viability was monitored every 12 hrs until all flies were dead. 

3.4.4 Western blots 

Protein extracts were made separately from 12 to 15 individuals at 1- and 5-weeks age 

(for Mfn protein analysis) for age matched, males or females by grinding them in 1X 

Lamelli buffer (2% SDS; 10% Glycerol; 60 mM Tris-Cl pH 6.8; 0.01% w/v bromophenol 

blue), 20µl per fly. Grinding is done on ice for 3-4 minutes until only the cuticle remains, 

followed by heating at 90̊C for 10 minutes. Supernatant were collected after spinning the 

http://towerlab.usc.edu/
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samples at 15,000 x g for 5 minutes in a table top centrifuge and stored at -80̊C. Equal 

amounts of protein in terms of volume of extract per fly (usually 1 fly worth of protein 

i.e. 20µl), were resolved using 15% or 7.5% SDS-PAGE for detecting Serf or mitofusin 

(Mfn), respectively. The gels were blotted on .45µ PVDF membrane and membranes 

were probed with rabbit polyclonal antisera against human Serf (1:1000 dilution; 

generated against human N terminal Serf peptide, gift from Dr. Stefan Stamm, University 

of Kentucky), rabbit polyclonal anti-Drosophila Mfn (1:5000 dilution; generous gift from 

Dr. Alex Whitworth, University of California, LA) and rat anti- Drosophila Elav (1:5000 

dilution, Developmental Studies Hybridoma Bank, 7E8A10). The rabbit primary 

antibody was detected using alkaline phosphatase conjugated goat anti-rabbit IgG 

(1:5000 dilution; Sigma). The rat antibody was detected using horseradish peroxidase 

conjugated goat anti-rat IgG (1:5000 dilution, Santa Cruz). Detection of alkaline 

phosphatase based signals involved colorimetric method using BCIP/NBT substrate 

(Promega) substrate. To detect the HRP based signals SuperSignal West Pico reagents 

were used (Thermo Fisher Scientific) followed by development on X-ray films (CL-

XPosureTM Film, 5 x 7 inches, Thermo Scientific). The colored blots and films were 

scanned using Kodak Image Station 2000R. The ImageQuant software was used to 

perform densitometry analysis of the scanned blots. 

3.4.5 Statistical analyses 

 The lifespan data were analyzed using the R-survival package {Ziehm, 2013 #33}. The 

program utilizes Kaplan Meier curves and log rank tests {Rich, 2010 #34} to compare the 

survival curves between the experimental and control groups. For all other statistical 

analysis two tailed Unpaired Student’s t-test was used. For all statistical tests P<0.05 
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were considered significant. For all graphs, data are represented as the mean ± the 

standard deviation of mean (Becker, Semler et al.) and significant difference is expressed 

as: ‘*’- P value between 0.01-0.05; ‘**’- P value between 0.001-0.01; ‘***’ P 

value<.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

Chapter 4: The Serf gene in Drosophila enhances autophagy 

4.1 Introduction 

So far I have shown that Serf in Drosophila is required for normal adult fly climbing 

ability and lifespan. Climbing naturally declines with age due to combined loss of 

muscular and neuronal activity. The fact that loss of Serf impairs climbing performance at 

every age, combined with its impact on lifespan raises the possibility that Serf depletion 

enhances tissue aging. Gradual deterioration of protein quality control contributes to age 

related functional decline in tissues (Koga, Kaushik et al. 2011), at least in part due to the 

accumulation of toxic, poly-ubiquitinated protein aggregates (Lindner and Demarez 

2009). These aggregates serve as a marker for tissue-aging and have been observed in 

organisms from flies to humans. These structures appear to accumulate due to decreased 

clearance efficiency by autophagy in aged tissue (Rubinsztein et al., 2006). In fact, 

genetic enhancement of autophagy by transgenic overexpression of pro-autophagy gene 

ATG5 in mice (Pyo, Yoo et al. 2013) or autophagy stimulator HLH30 in C. elegans is 

sufficient to extend lifespan. This was observed by Demontis and Perrimon in Drosophila 

where lifespan extension was partially achieved by promoting autophagy and subsequent 

clearance of the poly-ubiquitinated protein aggregates from the adult muscles (Demontis 

and Perrimon, 2010). Since Serf is predicted to play a role in the protein quality control, I 

hypothesized that the changes in lifespan observed with Serf gene manipulation might 

correlate with changes in autophagy. This chapter addresses this hypothesis. 



93 
 

4.2 Results 

4.2.1 The Short lived Serf deletion mutants show increased accumulation of poly-

ubiquitinated aggregates in adult thoracic muscles. 

          The Serf deletion flies show an average (between males and females) of about 28% 

reduction in the normal adult lifespan compared to the precise excision (i.e., wildtype) 

controls. The survival curves of the Serf deletion flies and the isogenic controls start to 

deviate between 3-4 weeks of age when the Serf deletion flies begin to die off at a high 

rate. To learn if there is a difference in the amount of poly-ubiquitinated aggregates in the 

muscles I imaged flies of both genotypes at 1 and 4 weeks after eclosion. 

Figure 4.1A shows the representative fluorescent microscopic images of tissue sections 

from the precise excision control (PE26B) and Serf deletion (Serf∆10a) at one and four 

using an anti-ubiquitin primary antibody and an AF594-labeled secondary antibody. As 

expected, the amount of these aggregates increases over time in both the control and the 

deletion lines. However, the amount of aggregate is greater in the Serf deletion strain 

compared to the wildtype control at both time points.     

           Figure 4.1B shows quantification of the aggregate accumulation expressed in 

terms of the total aggregate area as a percentage of the total tissue surface area. The 

control line at 1-week of age shows an average of .07% of the surface area aggregates 

while in the  Serf deletion this value  by 5.05 fold to cover approximately  0.34% of the 

tissue surface (P=.0145, n=10). At 4 weeks, 0.55 % of the tissue surface in the wildtype is 

composed of poly-ubiquitinated aggregates and this value increases 2.78-fold to 1.54% in 

the Serf deletion background. This difference is reproducible and statistically significant 

(P=.0004, n=10). 
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          Figure 4.1C presents a measure of aggregate size, the average number of pixels per 

particle. The average particle size increases in both genotypes between one week and four 

weeks.  However, we do not observe any change in the average size of the particles 

between the two genotypes. Therefore, the total number of aggregates increase in the 

short-lived Serf deletion mutant background, but apparently not their average sizes. 
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Fig 4.1. Serf deletion flies show increased accumulation of age related poly-

ubiquitinated protein aggregates in flight muscles. A) Representative sections of adult 

flight muscles at 1 week and 4 week age from WT (precise excision line PE26B) and the 

Serf∆10a mutant stained with flies stained with anti-ubiquitin antibody and detected with 

fluorescent conjugated secondary antibody. Protein aggregates are shown in red. B) 

Quantification of aggregate abundance in terms of total particle area as a percentage of 

the total muscle area. At both time points the Serf∆10a mutant shows significant increase 

in the percentage of particle covered area compared to the control (P=.0145 at 1 week; 

P=.0004 at 4 weeks; Repeat measures ANOVA, n=10 flies per genotype per time point; 

at least 8 sections per fly were used). C) Quantification of aggregate size in terms of 

average pixels per particle. The mean particle size does not significantly differ between 

Serf∆10a and the control group (P=.1972 at 1 week; P=.0726 at 4 week, Unpaired t-test, 

n=10 per genotype per time point). 
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 4.2.2 Serf overexpression reduces accumulation of poly-ubiquitinated aggregates. 

          The ubiquitous overexpression of Serf increases fly lifespan by approximately 

30%. The survival curves of the Serf overexpression flies and the isogenic controls start 

to separate out at around 35 days when the percentage of survival of the controls begins 

to decline rapidly. I wanted to know if there is a correlated distinction in the amount of 

poly-ubiquitinated aggregates in the muscles of these two groups and therefore I 

performed a time course study of this marker in 1 week, 4 week and 7 week old animals. 

          Figure 4.2A shows the representative fluorescent-microscopic images of tissue 

sections from the driver only control (Act5c GAL4) and ubiquitous Serf overexpression 

(Act5c GAL4>Serf) flies at 1 week, 4 week and 7 week old age. Numerous aggregates 

were found in both genotypes, however, the amount is reduced in the Serf overexpression 

background compared to the driver only control at every time point. As shown in figure 

4.2B, the 1 week old Act5c-GAL4 control line shows an average of 0.139% surface area 

in aggregates which decreases in the Serf overexpression group to.07% , however not 

statistically significant (P=.3377, n=6). At 4 weeks of age1.02% of the control tissue area 

presents as aggregates while Serf overexpression group shows about a 40% decrease to 

an average of 0.59% of tissue surface. Again, however, this difference is not statistically 

significant (P=.3606, n=6. At 7 weeks the Act5c-GAL4 control accumulates a great load 

of aggregates covering an average of 2.5% of its tissue area, whereas, the Serf 

overexpression group shows by 2.45 fold and presents only 1.02% tissue surface with 

aggregates (Figure 4.2B). This difference is statistically significant (P value=.0121, n=9). 

          Figure 4.2C shows the average aggregate size in terms of the number of pixels per 

particle using these same animals Here I find that the average sizes of the protein 
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aggregates are slightly but significantly reduced in the Serf overexpression flies, both at 4 

weeks (14.85%, P=.0379, n=6 per genotype) and at 7 weeks (14.57%, P=.0048, n=9 per 

genotype) compared to the driver only control.  Together, these data show that Serf 

overexpression not only extends the lifespan of flies but reduces the accumulation of an 

accepted marker of tissue aging.  
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Fig 4.2.Ubiquitous Serf overexpression flies show reduced accumulation of age 

related ubiquitinated protein aggregates in the flight muscles. A) Representative 

immune-fluorescent images of adult flight muscle sections at 1 week, 4 weeks and 7 

weeks age from the driver only control (Act5c GAL4) and Serf overexpression (Act5c 

GAL4>Serf)  flies stained with anti-ubiquitin antibody and detected with fluorescent 

conjugated secondary antibody. Protein aggregates are shown in red. B) Quantification of 

aggregate abundance in terms of total particle area as a percentage of the total muscle 

area. The Serf overexpression group showed consistent decrease in the percentage of 

particle covered area as compared to the controls at all time points, however, it is 

statistically significant at 7 week old age (P=.0121; Repeated Measures ANOVA; n=9, at 

least 8 sections per fly were used). C) Quantification of aggregate size in terms of 

average pixels per particle. The mean aggregate size also decreases significantly in the 4 
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weeks (P=.0379, n=6, at least 8 sections per fly) and 7 weeks of age (P=.0048, n=9, at 

least 8 sections per fly) Serf overexpression flies as compared to the controls. 

4.2.3 Total ubiquitinated protein amounts are increased in the Serf deletion and 

reduced in Serf overexpression adult flies. 

          Since we found that the poly-ubiquitinated aggregates, observed microscopically, 

are increased in the Serf deletion mutant and decreased in the overexpression flies, we 

wanted to know if this change reflected differences in the total ubiquitinated protein 

levels in adult tissues. Therefore, I isolated proteins from whole body extracts of 2 week 

and 4 week old flies and performed western blot using the anti-poly-ubiquitin antibody 

(Perrimon et al., 2010). I observe that the overall amounts of ubiquitination increases 

from 2 weeks to 4 weeks in both PE26B control (Fig. 4.3Acompare lanes 1-3 and 5-7, 

where 1 & 5 represents 2 weeks and 3 & 7 represents 4 weeks) and the Serf∆10a mutant 

flies( compare lanes 2-4 and 6-8, where 2 & 6 represents 2 weeks and 4 & 8 represents 4 

weeks). However, the deletion mutant group (Lanes 2, 4, 6 & 8) consistently showed 

greater anti-ub staining compared to the controls (Lanes 1, 3, 5 & 7) at both time points 

and for both the sexes.  In contrast, the levels of α-tubulin loading control remain roughly 

similar under all conditions. This observation indicates that the absolute level of protein 

ubiquitination increases in the Serf deletion mutant. 

          In contrast to the Serf deletion results, I find that overexpression of Serf reduces the 

ubiquitinated protein accumulation that occurs in the older animals (Figure 4.3B).  While 

it is true that both the control (lanes 1-3 and 5-7, where 1 & 5 represents 2 weeks and 3 & 

7 represents 4 weeks) and Serf overexpression flies (lanes 2-4 and 6-8, where 2 & 6 

represents 2 weeks and 4 & 8 represents 4 weeks) show an increase in ubiquitination at 4 
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weeks compared to two weeks, the increase is noticeably less in the Serf overexpression 

background regardless of the sex.  In addition, we note a curious change in the pattern of 

ubiquitinated proteins when Serf protein levels vary.  In the Serf deletion, not only is the 

overall anti-ubiquitin signal increased, but also more signal is found associated with the 

high molecular weight protein bands. Consistent with that, in overexpression flies, most 

of the high molecular weight protein bands diminish greatly along with the reduction of 

the overall ubiquitin signal. Another important point to note here is that the PE26B and 

the Act5c-GAL4 control flies show very obvious difference in the ubiquitin signal. The 

level of signal obtained from the Act5c-GAL4 control is equivalent to that of the Serf 

deletion line. One possibility is that different genetic background show differences in the 

level of total ubiquitinated protein and whether this observation is consistent between 

different experiments will be addressed in the discussion section for this chapter. 
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Figure 4.3 Total ubiquitinated protein levels are increased in Serf deletion and 

reduced in Serf overexpression adult flies. Western blot images of adult whole fly 

extracts at 2 week and 4 week old ages with anti-ubiquitin and anti-α-tubulin (Loading 

control) antibodies in males and females separately. A. The Serf deletion (Serf∆10a: Lanes 

2, 4, 6 and 8) and precise excision (PE26B: lanes 1, 3, 5 & 7) control flies were compared 

for relative levels of total ubiquitinated proteins in males (Lanes 1-4) and females (Lanes 

5-8). B. The Serf overexpression (Act5c GAL4>Serf: Lanes 2, 4, 6 and 8) and driver only 

controls (Act5c GAL4: lanes 1, 3, 5 & 7) flies were compared for relative levels of total 

ubiquitinated proteins in males (Lanes 1-4) and females (Lanes 5-8). 
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4.2.4 Impact of altered Serf expression on autophagy 

                The Serf deletion and overexpression flies showed increased and decreased 

abundance of poly-ubiquitinated protein aggregates in their muscles, respectively (Fig 4.1 

& 4.2). Such complexes are cleared from fly tissues by autophagy (Perrimon 2010; 

Korolchuk et al., 2009; Rubinsztein, 2006.). Upregulation of autophagy is thought to 

extend normal lifespan, at least in part, by the efficient clearance of these potentially 

toxic aggregates (Perrimon 2010). Therefore, I investigated whether autophagy is altered 

with Serf deletion or overexpression.  

         I first asked if autophagy induction by starvation is altered with Serf deletion or 

overexpression. Induction of autophagy upon nutrient deprivation is a conserved life 

sustaining phenomenon across species (Reviewed in Mizushima, 2007). In Drosophila, 

larval fat-bodies undergo robust induction of autophagy in response to starvation as fat 

bodies readily sense nutrient availability (Reviewed in Mauvezine et al., 2014; Scott et 

al., 2004). Autophagy can be observed by the accumulation of Lysotracker+ vesicles 

(Neufeld et al., 2008) representing the final digestive compartments of the autophagy 

pathway (Scott et al., 2004).  In contrast to “induced autophagy”, the phenomenon of 

“basal autophagy” is different in its most simplistic view, by being a constitutive process 

which clears defective cytosolic components in adult muscles even in the absence of 

starvation (Reviewed in Mizushima, 2007). Therefore, while results from starvation 

induced autophagy cannot be directly correlated with protein aggregate accumulation in 

non-starved adult Serf tissues, it will give us an idea if Serf generally impacts the 

autophagic process. Later in this chapter I will address whether Serf influences “basal 

autophagy” in adult tissues.  
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4.2.4.1 The short lived Serf deletion flies show decreased abundance of Lysotracker 

positive autophagy-related vesicles in the larval fat bodies. 

          Since the Serf deletion mutant shows shortened lifespan and increased abundance 

of poly-ubiquitinated aggregates, autophagy may be less efficient in this genetic 

background. Here I test whether starvation induced autophagy is diminished in the Serf 

deletion mutant compared to the wildtype control. Figure 4.3A shows fluorescent 

microscopic images of representative larval fat body cells from the precise excision 

control (PE26B: panel a-c & a'-c') and the Serf deletion mutant (Serf∆10a: panel d-f & d'-

f') at the 3rd instar stage. The Lysotracker positive   yvesicles are shown in red and the 

nuclei in blue. The fat body cells undergo an abrupt switch from no Lysotracker positive 

puncta in fed state state (panel a-f) to numerous Lysotracker positive vesicles when 

starved (panel a’-f’), in both genotypes. Compared with the control, the Serf deletion line 

consistently shows fewer red punctate structures and the vesicles appear smaller in size.  

These data are quantified in figures 4.3B and C with abundance expressed as the number 

of visible puncta normalized per nuclei in the field.  The average sizes are measured in 

pixels. I find that the control larvae form on average about 20.73 vesicles per nucleus, 

whereas the deletion mutant shows about 10.39 per nucleus. This 1.99 fold reduction in 

vesicle number after starvation is y6statistically significant (P value=.0351, n=5). The 

average particle size is also reduced by 2.59 fold in the deletion group compared to the 

control (P value=.0103, n=5). These data strongly suggest that, at least in larval fat 

bodies, the autophagy response to starvation is less robust in the Serf deletion mutant. 
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Fig 4.4. Serf deletion larvae show reduced size and abundance of lysotracker 

positive vesicles after induction of autophagy. A) Representative images from the 

precise excision control (PE26B) and the deletion (Serf∆10a) group. Red: Lysotracker; 

Blue: DAPI. B) Quantification of the abundance of Lysotracker positive puncta as 

measured by number of puncta per nucleus, which is significantly reduced in the deletion 

group compared to the controls (P value =.0351; n=5). C) Quantification of the size of the 

vesicles. The average size of the vesicles significantly reduces in the deletion group 

compared to the controls (P value =.0103; n=5 genotype).   
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4.2.4.2 The long lived Serf overexpression flies show an increased autophagic 

response to starvation. 

                    Since the Serf overexpression flies show decreased abundance of poly-

ubiquitinated aggregates, it is conceivable that the autophagic response is more robust in 

this background. Figure 4.4A shows the representative images of fat body cells 

documenting Lysotracker positive vesicles from the driver only control (Act5c-GAL4: 

panel a-c & a'-c' ) and the Serf overexpression line (Act5c-GAL4>Serf: d-f & d'-f'). Once 

again, we find few or no Lysotracker positive in the fed state, regardless of genotype, 

while starvation induces the autophagy resulting in the production of many Lysotracker 

positive vesicles. Figure 4.4B and C shows the quantification of the abundance of the 

Lysotracker positive vesicles and their average sizes respectively. The driver only control 

was found to form an average of 32.37 vesicles per cell, whereas the Serf overexpression 

line showed 43.73 vesicles per nucleus on an average. Although it appears that the 

number of Lysotracker stained vesicles increases slightly in the Serf overexpression line, 

the difference is not statistically significant (P value=.5056, n=5). The vesicle size does 

not differ significantly between the two genotypes. Taken together with the results 

presented above, it appears that while the absence of Serf dampens the autophagic 

response to starvation, excessive Serf is unlikely to stimulate autophagy much beyond 

that normally seen with nutrient deprivation in larval fat bodies.   
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Fig 4.5. Serf overexpression has little impact on the number of Lysotracker positive 

vesicles upon starvation-induced autophagy in larval fat bodies. A) Representative 

images from the driver only control (Act5c-GAL4) and the Serf overexpression group 

(Act5c-GAL4>Serf) group. Red: Lysotracker; Blue: DAPI. B) Quantification of the 

abundance of Lysotracker positive puncta as measured by number of puncta per nucleus, 

which is slightly increased in the overexpression group compared to the controls but is 

not statistically significant (P value=.5056; Unpaired t test, n=5 per genotype). C) 

Quantification of the size of the vesicles. The average size of the vesicles did not change 

in the overexpression group as compared to the controls (P value=.8177; unpaired t test, 

n=5 genotype). 
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4.2.4.3 Increased Ref(2)P protein abundance indicates that autophagy is impaired in 

the absence of Serf. 

The Lysotracker staining assay results strongly suggest that deletion of Serf reduces the 

autophagic response to starvation. I wanted to further validate this finding by assaying for 

the accumulation of a protein called Ref(2)P, a known target of autophagy (Mauvezin, 

Ayala et al. 2014).  Ref(2)P is the Drosophila ortholog of human p62, a protein that binds 

to the poly-ubiquitinated proteins  and the complex is recruited to the autophagosomes 

(Wooten et al., 2006).  While assisting in poly-ubiqutinated protein recruitment, 

p62/Ref(2)P is also degraded with the autophagosome cargo (Bjorkoy, Lamark et al. 

2005) (Klionsky, Elazar et al. 2008). Since p62/Ref(2)P is constitutively expressed, this 

protein accumulates when autophagy is impaired by mutation to genes required for 

autophagy, such as Atg61(Shravage et al., 2013). Therefore, the accumulation of Ref(2)P 

is viewed as a reliable marker of reduced autophagic flux (Bjorkoy, Lamark et al.,2005; 

Klionsky, Elazar et al., 2008). 

I assayed the relative levels of Ref(2)P in the starved larval fat bodies of Serf deletion and 

overexpression flies in comparison to the controls. Figure 4.4A shows western blot 

images of Ref(2)P (and α-tubulin loading control) from the Serf deletion (Serf∆10a) mutant 

and the precise excision (PE26B) control larvae. In this assay I used the Atg61mutant as a 

positive control for Ref(2)P accumulation. I looked at the Ref(2)P protein level both 

under fed (Lanes 1-3) and starved (Lanes 4-6) conditions. When fed, there is no induction 

of autophagy, and expect to see the 85 KD band for Ref(2)P protein. The Ref(2)P is 

observed in the wildtype (PE26B precise excision) preparation under fed conditions and, 

as expected, the abundance of this is greatly reduced after starvation (compare lanes 2 & 
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5).  In contrast, when autophagy is arrested by the Atg61mutation, Ref(2)P levels are 

elevated and present under both fed and starved conditions (compare lanes 1 & 4).  In 

contrast with this wildtype control strain, with the Serf mutant, we observe Ref(2)P in 

both the fed and starved animals (compare lanes 3 & 6), although the level of 

accumulation is much less than what is seen when autophagy is fully arrested with the 

Atg61mutant.  These observations indicate that the level of Ref(2)P clearance and hence 

the efficiency of the autophagy pathway is reduced in the absence of Serf. 

 Figure 4.4B describes the results obtained with the Serf overexpression (Act5c 

GAL4>Serf) and control (Act5c-GAL4) larvae, under fed (Lanes 1-3) and starved (Lanes 

4-conditions. Very low levels of Ref(2)p were detected in the Act5c-GAL4 flies with or 

without Serf overexpression under both fed and starved condition. Therefore no 

conclusion could be made about the impact of Serf overexpression on starvation induced 

autophagy.  
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Figure 4.6 The relative levels of Ref(2)P protein increases in the starved Serf 

deletion larvae. Western blot images of larval protein extract with anti Ref(2)P and anti 

α-tubulin (loading control). A) Serf deletion (Serf∆10a: Lanes 3&6) and precise excision 

control (PE26B: Lanes 2&5) larvae are compared for relative Ref(2)P levels. The Atg61 

group (Lanes 1&4) served as positive control for Ref(2)P accumulation. Lanes 1-3 shows 

fed group; lanes 4-6 shows starved group. The number under each lane indicates relative 

Ref(2)P levels with respect to α-tubulin. B) Serf overexpression (Serf∆10a: Lanes 1&4) 

and GAL4 driver control (PE26B: Lanes 2&5) larvae are compared for relative Ref(2)P 

levels. The Atg61 group (Lanes 3&6) served as positive control for Ref(2)P accumulation. 

Lanes 1-3 shows fed group; lanes 4-6 shows starved group.  
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4.2.4.4 Serf expression modulates the relative expression of several autophagy genes 

in young adult flies. 

          The Serf deletion flies are short-lived and accumulate more poly-ubiquitinated 

protein aggregates in the muscles whereas the Serf overexpression flies are long-lived and 

accumulate fewer poly-ubiquitinated aggregates compared to their respective isogenic 

controls. One explanation is that the basal level autophagy is either reduced in the 

deletion flies or enhanced in the overexpression flies leading to increased or decreased 

aggregate accumulation. To test, I studied the relative expression of Atg1, Atg5, Atg6, 

Atg7 and Atg8a in these flies at four different ages in their adult life. The evel of 

autophagy gene expression has previously been shown to change with animal age and in 

absence of autophagy inducing stimulus such starvation.  The basal level of autophagy 

correlates with the clearance of protein aggregates from multiple types of adult tissue 

(Simonsen et al., 2008; Perrimon et al.,2010; reviewed in Rubinsztein et al., 2011). 

Therefore, I predict that relative expression of autophagy genes in adult tissues will 

decrease with Serf deletion and increase with Serf overexpression.     

           Adult flies from both the experimental and control genotypes at four different ages 

were used to prepare cDNA for quantitative PCR analysis. The α tubulin transcript was 

used as an internal control for mRNA abundance. Figure 4.5A shows the fold change in 

the relative expression of the 5 autophagy genes in the Serf deletion group (Serf∆10a) 

compared with the precise excision control (PE26B) at weeks one, two, three and five. 

The Atg5, Atg7 and Atg6 genes show a trend of reduction in the relative expression in the 

mutant. The Atg5 gene shows an average of 27.42%, 21.71%, 12.4% and 28.82% 

reduction at the four respective ages, however, the reduction is statistically significant at 
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only 1 week old time point (P value<.05, n=3). Similarly, the Atg7 gene shows decreases 

by 34.01%, 33.35%, 40.7% and 32.86% at the respective time points. The decrease is 

statistically significant at 1 week (P<.05, n=3) and 3 week (P<.05, n=2) old age. The 

change in relative expression for the Atg6 gene is less obvious. Only at 5 weeks is 

expression significantly reduced (20.25% (P<.01, n=2). In contrast, the Atg1 gene shows 

a trend of increased relative expression by 22.6%, 16.18%, 21.4% and 19.85% for the 4 

age groups, however, none of these are statistically significant. The Atg8a gene stayed 

relatively unaltered, except at 3 weeks where it showed significant increase by 28.1% (P 

value<.01, n=2). Taken together, the data suggest that the absence of Serf impacts 

expression of certain autophagy genes, with the messages of two, Atg5 and Atg7 

providing the best evidence for consistent under-representation in the mutant background.   

In the Serf overexpression line I find that 4 out of 5 genes, Atg1, Atg5, Atg6 and Atg7 

show significant upregulation in the relative gene expression levels at weeks one and two 

(Figure 4.5B). As shown in the figure, the relative expression of Atg1, Atg5, Atg6 and 

Atg7 genes increases by 56.75% (P values<.0001, n=3), 112.6% (P value<.01, n=3), 

52.3% (P values<.0001, n=3) and 107.65% (P values<.0001, n=3), respectively at 1 week 

old age, and 40.4% (P value<.0001,n=2), 143.4% (P value<.01, n=2), 58% (P values<.05, 

n=2)  and 114.4% (P value<.0001, n=2), respectively at 2 week old age. However, this 

increase in expression is no longer obvious after 2 weeks. Moreover the expression of 

autophagy genes are generally found to decrease as the flies get older, irrespective of the 

genotype. In summary, four out of the five Atg genes tested show significant increases in 

mRNA abundance in with Serf overexpression, suggesting an enhancement of basal level 
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autophagy during early life consistent with the decreased abundance of poly-

ubiquitinated protein aggregates seen above. 

 

 

Fig 4.7: Autophagy genes are differentially expressed in Serf deletion and 

overexpression flies. Real time PCR of autophagy gene transcripts (Atg1, Atg5, Atg6, 
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Atg7 and Atg8a) performed at 4 different time points. Relative expression levels are 

calculated by normalizing with alpha tubulin expression level. Fold changes of relative 

transcript levels in the experimental group are quantified with respect to the control group 

as shown in the bars. Significance of fold change is calculated with respect to no change 

in expression between the two groups i.e fold change =1 (shown by the red dashed line). 

A) Fold change of relative expression in the Serf deletion (Serf∆10a) flies with respect to 

the precise excision control (PE26B). The Atg5 and Atg7 genes show a consistent trend 

of reduced expression at all time points in the Serf deletion flies however it is statistically 

significant at only certain time points indicated by the stars. (‘*’ P value <.05; ‘**’ P 

value <.01; Unpaired t test, n=3 for 1week, n=2 for the rest). B) Fold change of relative 

expression in the Serf overexpression (Act5c-GAL4>Serf) flies with respect to the driver 

only control (Act5c-GAL4). The Atg1, Atg5, Atg6 and Atg7 genes show a consistent and 

significant upregulation of relative expression at 1 week and 2 week time points in the 

Serf overexpression flies, however, no difference is observed at the 3 week and 5 week 

time points between the two groups.  (‘*’ P value <.05; ‘**’ P value <.01; ‘***’ P value 

<.001, Unpaired t test, n=3 for 1week, n=2 for the rest). 
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4.2.4.5 The autophagy substrate Ref(2)P tags the poly-ubiquitinated protein 

aggregates in muscles and its accumulation increases and decreases with Serf 

deletion and overexpression, respectively. 

          So far, my data show that the expression of several autophagy genes is enhanced in 

adult flies with Serf overexpression while the Serf deletion flies show modest reduction in 

the expression of a couple of genes. To learn whether this change correlates with altered 

basal level autophagy in adults muscles, here I test for co-localization of Ref(2)P with the 

poly-ubiquitin protein aggregates as well as the overall Ref(2)P accumulation in this 

tissue. Since Ref(2)P is a known target of autophagy that binds and recruits poly-

ubiquitinated autophagy substrates into autophagosomes (Wooten et al., 2006), its co-

localization with protein aggregates would indicate that the aggregates are autophagy 

substrates (Mauvezin et al., 2014; Perrimon et al., 2010). In, addition accumulation of 

Ref(2) eP is indicative of reduced autophagic flux (Mauvezin et al., 2014). 

           Figure 4.8 shows confocal images of anti-Ref(2)P and anti-Ubiquitin (Ub) 

antibody stained adult thoracic muscles where Ref(2)P and Ub proteins are visualized 

with green and red fluorescent conjugated secondary antibodies, respectively. Here I used 

young (1 week old) and old (5 week old) muscles from both Serf deletion (Serf∆10a, panel 

A) and Serf overexpression (Act5c-GAL4>Serf, panel B) flies along with their respective 

age-matched isogenic controls. Several points can made based on these images.  First, 

most of the Ub-positive aggregates in red co-localize with Ref(2)P signals in green in 

both genotypes at both time points (Merged panels in fig 4.8A and 4.8B). However, the 

number of particles that do not overlap increases at 5 week old time point for both 

genotypes. Second, for both the Serf deletion mutant (Fig 4.8A) and overexpression flies 
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(Fig. 4.8B) there is an increase in green and red puncta from 1 week to 5 week aged 

muscles, similar to what has been shown before (Fig 4.1A and Fig 4.2A). Third, the 

muscles of the Serf deletion strain (Serf∆10a) show greater numbers of green and red 

puncta at both time points compared to the precise excision control (PE26B) (Fig 4.8A). 

In contrast, while the 1 week old muscles look very similar, the Serf overexpression 

(Act5c>GAL4) muscles show an obvious decrease in the number of both types of puncta 

at 5 week old age, compared to the driver only control (Act5c-GAL4), (Fig 4.8B). 

          Figure 4.6C and D shows the quantification of Ref (2)P positive aggregates for Serf 

deletion and overexpression groups, respectively. As shown in the figure (Fig 4.8C) the 

percentage of total Ref(2)P positive particle area significantly increases in Serf∆10a 

compared to the PE26B control at both 1 week (0.02% in PE26B and 0.197% in Serf∆10a; 

P value= 0.0074; n=5 per genotype) as well as 5 week old age (0.48% in PE26B and 

1.139% in Serf∆10a; P value= .0062; n=5 per genotype). On the other hand, while the 1 

week old Serf overexpression flies show reduction in the of aggregates containing the 

Ref(2)P signal compared to the GAL4 control (Fig 4.8D) this difference  is not 

statistically significant (0.01% in Act5c>Serf and 0.04% in Act5c GAL4, P value=.5866; 

n=5 per genotype). However, the reduction becomes significant at 5 week old age when 

the Serf overexpression flies show 0.31% of the tissue area as Ref(2)P positive, compared 

to  0.627% in the GAL4 control group (P value=.0323; n=5 per genotype). These data 

support that Ref(2)P turn-over in adult muscles is reduced in the Serf deletion flies while 

increased in the Serf over-expression flies. The fact that the poly-ubiquitinated protein 

aggregates are tagged with Ref(2)P indicates that the autophagic clearance of these 
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aggregates is decreased in Serf deletion and increased in Serf overexpression flies 

compared with wildtype flies. 

 

Figure 4.8 The accumulation of Ref(2)P positive protein aggregates in the adult 

thoracic muscles increases in Serf deletion and decreases in Serf overexpression 

flies. Adult muscles tissues immunostained with rabbit anti-Ref(2)P and mouse anti-poly-
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ubiquitin antibodies that are detected with goat anti-rabbit FITC conjugated (Krogan, 

Cagney et al., 2008) and goat anti-mouse AF594 conjugated (Vernace, Arnaud et al., 

2007) secondary antibodies. A) Representative confocal images of the precise excision 

control (PE26B) and Serf deletion (Serf∆10a) muscles showing Ref(2)P positive 

aggregates in green, poly-Ub positive aggregates in red and co-localization of both as 

yellow signal in the merged panel. B) The same as described in ‘A’ for the Act5c-GAL4 

control and Serf overexpression muscles (Act5c GAL4>Serf). C) and D) Quantification 

of Ref(2)P positive aggregates in terms of total aggregate covered area as a percentage of 

the total tissue surface area for the Serf deletion and Serf overexpression group 

respectively. 
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4.3 Conclusions and discussion 

          The major conclusions from this portion of my study are- i) the abundance of a 

tissue aging marker, the poly-ubiquitinated protein aggregates, increases and decreases in 

the Serf deletion and overexpression flies respectively; and  ii) changes in the level of 

autophagy correlate with the increase and decrease of aggregate build up in flies with 

altered Serf expression. Both of these observations correlate with the reduction and 

extension of lifespan we observed with Serf deletion and overexpression, respectively 

(Chapter 3). 

          The accumulation of intracellular inclusions or aggregates of non-functional 

proteins is a characteristic feature of all aged organisms (Reviewed in Koga et al., 2011).  

The autophagy/lysosome system is the major intracellular protein degradation system that 

removes aggregates of damaged proteins (Rubinsztein et al., 2006). Decreased 

autophagic activity with age has been described in different animal models from 

invertebrate to mammals and contributes partly to the age dependent accumulation of 

protein aggregates in all tissues (Reviewed in Koga et al., 2011). In fact, cellular 

functions that influence organismal lifespan have been shown to exert regulatory role on 

autophagy. For instance, functional autophagy is required for the lifespan extending 

effect of the mutations in the nutrient sensing TOR signaling pathway both in C. elegans 

and Drosophila (Hansen et al., 2008; Katewa et al., 2011). The expression of autophagy 

genes are shown to be necessary for maintaining the longer lifespan of the insulin/IGF 

signaling (IIS) pathways mutants, like daf-2 in C. elegans (Hars, Qi et al. 2007) 

(Melendez et al., 2003). Muscle specific upregulation of the FOXO transcription factor, a 

downstream signaling component of the IIS pathway (Ortholog of C. elegans DAF-16) in 
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Drosophila,  is sufficient to extend lifespan that correlates with enhancing the autophagic 

turnover of age related protein aggregates from muscles (Perrimon 2010). My 

observations that altered levels of Serf in flies correspond to the changes in autophagy in 

a manner that correlates with their lifespan, is consistent with the established role of 

autophagy in the determination of organismal lifespan. Moreover, it is also consistent 

with the fact that autophagy plays a role in the clearance of the age related poly-

ubiquitinated aggregates. However, my study does not address whether Serf integrates 

with any other known pathways that modulate autophagy and lifespan. It will be 

intriguing to test if Serf driven changes in autophagy and lifespan could be influenced by 

mutations in the TOR or IIS pathway factors.  

          The magnitude of autophagy gene activation with Serf overexpression differed 

between the Atg genes assayed. The expression levels of Atg5 and Atg7 genes were most 

sensitive to altered levels of Serf, followed by Atg6 and Atg1. The question that naturally 

arises is whether expression changes in a few genes in the pathway can bring about 

changes in the overall pathway. The proteins coded by these genes performs distinct 

function in the autophagy pathway. The different steps that comprise the autophagy 

pathway are induction, cargo recognition & selection, vesicle formation, autophagosome-

vacuole fusion and cargo breakdown & release of the degradation products in the cytosol 

(Congcong, He 2009). The Atg1 gene codes for a kinase, the activation of which is 

required for induction of autophagy. The Atg8 protein is the key component of the 

vesicle forming machinery that interacts with the cargo complex via the adaptor protein 

p62/SQSTM1 (Drosophila Ref(2)P) which binds to and selects the cargo for inclusion 

into the growing phagophore.  Thus Atg8 is important for both cargo selection and 
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vesicle formation. Following the induction step Atg8 protein gets modified by lipidation 

required for its incorporation into the phagophore membrane. The Atg6 protein is the 

component of the class III phosphatidyl inositol complex required for Atg8 lipidation and 

the nucleation and assembly of the initial phagophore membrane. Atg5 is the core 

member of the ubiquitin like conjugation system that forms the Atg12-Atg5-Atg16 

complex, essential for membrane elongation and expansion of the forming 

autophagosome. Atg12 is activated by Atg7 (E1 like activating enzyme), transferred to 

Atg10 (E2 like conjugating enzyme) and attached to the substrate protein Atg5. The 

Atg12-Atg5 complex then interacts with Atg16, a coiled coil protein that links this 

complex to the phagophore membrane.  

          All the Atg genes (includes many more not discussed here) are not subject to 

transcriptional regulation (Liang et al., 2013). Transcriptional activation of specific set of 

Atg genes have been shown to be required for autophagy induction under different stress 

conditions (Congcong, He 2009). For instance, under starvation stress the Atg8 gene 

expression is rapidly upregulated in yeast and in certain mammalian cells (Huang et al., 

2000; Egami et al., 2005). Bernard et al., has shown that stimulation of autophagy under 

nutrient limiting condition requires transcriptional activation of Atg1, Atg7 and Atg8 

genes (Bernard et al., 2015. Moreover, it has been proposed that the amount of Atg7 

protein is rate limiting in the Atg8-lipidation (Bernard et al., 2015). Also, the activation 

of autophagy downstream of the mTOR pathway has been shown to involve p73 

mediated transcriptional upregulation of Atg5, Atg7 and UVRAG genes (Rosenbluth et al., 

2009)s. These data together supports the idea that selective transcriptional upregulation of 
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Atg genes is sufficient for induction of autophagy. Therefore, the changes in the Atg gene 

expression with altered levels of Serf is likely to influence the level of autophagy in cells. 

             While discussing the significance of this part of my study, it is also important to 

mention some peculiarities that I have observed in some of the assays. For instance the 

two different control genetic backgrounds used in our study, PE26B and Act5c-GAL4, 

show different levels of total ubiquitinated proteins. The intensity of the ubiquitin 

staining in the western blot assay is much higher in the Act5c-GAL4 line compared to the 

PE26B line. This observation is consistent in our other assays- immunostaining of age 

related protein aggregates with anti-poly-ubiquitin and anti-Ref(2)P antibodies. In both 

assays, the GAL4 driver control showed about 2 fold increase in the total aggregate 

covered tissue area when compared with the PE26B control. It is possible that the level of 

aggregate accumulation differ between different genetic backgrounds, may be because 

various other factors contribute to the rate of their formation and clearance and the limit 

to which the aggregates could be tolerated. Comparison of the experimental group with 

the corresponding isogenic control therefore becomes essential. Another noticeable point 

is that the amount of the age related protein aggregates observed by Ref(2)P staining is 

lower than that observed with poly-ubiquitin staining. This might suggest that all the 

poly-ubiquitinated bundles are not tagged with Ref(2)P. In fact, in older tissues I have 

observed poly-ubiquitin stained red puncta not overlapping with a green signal for 

Ref(2)P. Since, some of these poly-ubiquitinated protein bundles are extracellular 

whereas Ref(2)P is exclusively intracellular, Ref(2)P might not get access to the 

extracellular aggregates. Alternately, there may be simply more poly-ubiquitinated 

aggregates than available Ref(2)P, especially in the old tissue.  
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          In summary, the data obtained from this chapter is consistent with Serf’s predicted 

role in protein homeostasis. I show the first implication of Serf in a proteolytic process, 

autophagy. My data also show that Serf expression counteracts accumulation of age 

related protein aggregates, which could be achieved partly by enhancing autophagy. At a 

superficial level, this appears contradictory to Serf’s proposed role in promoting initial 

amyloid complex formation (Van-Ham 2010; Falsone 2012), however, it is hypothesized 

that formation of amyloid aggregates and their sub-compartmentalization in cell occurs to 

facilitate their subsequent degradation by autophagy (Kaganovich, Kopito et al. 2008). 

Therefore, it is possible that Serf’s positive impact in complex formation favors 

autophagy, which in naturally aging tissue helps clearing up the toxic aggregates. 

4.4 Materials and Methods 

4.4.1. Fly strains and maintenance 

The following genotypes are used in this chapter: (i) w1118; (Xia, Fakler et al.) y w; 

{Act5C-GAL}25FO1/ CyO, y+  (Xia, Fakler et al.) [(i) & (Xia, Fakler et al.) are 

obtained from Bloomington Stock Center] (iii) UAS-SERF cDNA;  (Ruan, Tang et al.) 

Serf∆10a; (v) PE26B [ (iii)-(v) are generated in lab as described in chapter 2]. Flies were 

cultured in 25C humidified chamber with under 12 hr light/dark cycle. Vials or bottles 

containing semi defined medium, as described by Bloomington Drosophila Stock Center 

(Backhaus et al.,, 1984), were used for all experiments in this study. The specific crosses 

performed in this chapter to obtain the progeny (larvae or adults) of required genotypes 

are described in table 4.1. 
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Table 4.1 describes the specific crosses performed, to obtain the progeny of required 

genotypes for the different assays conducted in this chapter. 

Stage 

collected  

Cross description Progeny genotype 

collected 

1st instar 

larva 

Act5c GAL4/TM3 Ser GFP x w1118 Act5c GAL4/+ 

Act5c-GAL4/TM3 Ser GFP x UAS-Serf (cDNA) UAS-Serf (cDNA)/+, Act5c-

GAL4/+ 

Adult Act5c-GAL4/Cyo x w1118 Act5c-GAL4/+ 

Act5c-GAL4/Cyo x UAS-Serf (cDNA) UAS-Serf (cDNA)/Act5c-GAL4 

 

4.4.2 Tissue sectioning  

For frozen/cryo sectioning of adult whole flies, wings and legs were clipped off while 

flies were anesthetized in CO2 and immediately transferred into small amount of tissue 

embedding media (Tissue-TEK O.C.T. Compound, Sakura Finetek, CA) on a glass slide 

to coat each fly with the media evenly throughout the body minimizing bubble formation. 

The media coated flies were then transferred into Tissue-Tek cryomolds (Sakura Finetek, 

CA) containing the embedding media and placed in the base of the mold in appropriate 

orientation for longitudinal sectioning avoiding bubble formation. 5-6 flies were arranged 

side by side in each mold. The molds are then placed on a flat surface at -80̊C for 

immediate freezing. Frozen molds were stored in -80̊C freezer until sectioned. Tissue 

sectioning (7 µm each) was performed on Leica CM 1850 cryostat machine using gelatin 

coated (Coating solution: 0.1% gelatin and .001% chromium potassium sulfate in ddH20) 
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glass slides (VWR Micro Slides, Superfrost plus 25 x 75). For whole mount experiments 

whole thoraces were cut off from the rest of the body of anesthetized flies in PBS in a 

dissecting dish (Pyrex spot plate: plate 9 cavity 85 × 100 mm Fisher Applied Scientific) 

followed by 5 minutes fixation in fixing solution (4% methanol free paraformaldehyde, 

0.2% Triton-X 100 in PBS). The thoraces were then transferred into PBS and cut into two 

longitudinal halves, each half was cut into two smaller chunks (as previously described in 

Hunt L.C 2013, Nature Protocols). Dissected tissues were immediately transferred into 96 

well plate to follow up with immunofluorescence procedure.    

 4.4.3 Immunofluorescence 

Immunofluorescence was performed either on serial frozen sections or on whole mounts 

of adult thoracic muscles following the previously described procedure (Hunt L.C 2013, 

Nature Protocols). Tissues were fixed in fixing solution (4% methanol free 

paraformaldehyde, 0.2% Triton-X 100 in PBS) for 20-30 mins at room temperature 

followed by three 5 minutes washes in wash buffer (0.2% Triton-X 100 in PBS) and 30 

minutes blocking in blocking buffer ( 5% BSA in wash buffer) at room temperature. 

Incubation in primary antibody is done for overnight at 4̊C. Mouse anti mono and 

polyubiquitinated Conjugates, mAb (FK2) (1:1000 dilution, Enzo Lifesciences) and 

Rabbit anti-Ref(2)P (A generous gift from Dr. Whitworth, UCLA) primary antibodies 

were used at a dilution of 1:100 in the blocking buffer. After 4 washes each for 20 

minutes, anti rabbit FITC conjugated and anti-mouse AF594 conjugated secondary 

antibodies (1:500 dilution in blocking buffer) were used for 5-6 hours at room 

temperature.   Following incubation the samples are again washed 4 times 20 minutes 

each. The slides with tissue sections are mounted in 70% glycerol with antifade agent for 
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imaging in Nikon ECLIPSE E800 fluorescent microscope. The whole mounts tissues are 

mounted in 1% low melting agarose in imaging dish (Fluoro DishTM, WPI.Inc.) for 

imaging with Nikon ECLIPSE Ti confocal microscope. 

4.4.4 SDS PAGE and Western Blotting 

SDS PAGE and western blots were performed following the procedure as described in 

chapter 2 (section 2.4.4). Age matched adult flies, males and females separately (12-15 

flies for each) and synchronized 3rd instar larvae were used for extracting total protein 

(for protein extraction details see chapter 2). Mouse anti mono and polyubiquitinated 

Conjugates, mAb (FK2) (1:1000 dilution, Enzo Lifesciences), mouse monoclonal α-

tubulin (1:1000 dilution; Developmental Studies Hybridoma Bank 12G10 anti-alpha 

tubulin -s) and Rabbit polyclonal anti-Ref(2)P (A generous gift from Dr. Whitworth, 

UCLA)primary antibodies were used at a dilution of 1:1000 in the blocking buffer. 

Alkaline phosphatase conjugated polyclonal goat anti-mouse IgG (1:5000 dilution, Life 

Technologies) and goat anti-rabbit secondary IgG (1:5000 dilution, Sigma) were used for 

BCIP/NBT based detection. Membranes are scanned using HP G4050 scanning machine 

followed by analysis with Image Quant 5.2 software. 

4.4.5 Lysotracker staining 

Lysotracker staining was used to visualize induction of autophagy in larval fat bodies 

upon starvation. Larval starvation and Lysotracker staining was performed as previously 

described (Scott, R.C. 2004 Developmental Cell). About 20 second instar larvae were 

transferred to vials containing fresh fly food (Recipe: see Chapter 2, section 2.4.5) 

supplemented with yeast paste. 24 hours later larvae are either dissected immediately 

(fed) or after starving them for 4 hours (starved). For starvation larvae were transferred in 
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small petri plates (VWR Petri Dish, 60 x 15 mm) with 20% sucrose soaked filter paper on 

its base. Fat bodies from fed and starved larvae were dissected in PBS on glass slides 

(VWR Micro Slides 25 x 75 mm). Dissected fat bodies were then transferred on a fresh 

slide with a few drops of 100µM Lysotracker Red DND-99(Invitrogen) and 1µM DAPI 

in PBS. After incubation for 2 minutes fat bodies were transferred to PBS on a fresh 

slide, covered with glass cover slips (Electron Microscopy Sciences, 22 x 22 mm) and 

immediately photographed live on Nikon ECLIPSE E800 fluorescent microscope. 

4.4.6 Real time quantitative RT-PCR 

Total RNA was extracted from 12-14 adult flies (equal number of males and females in 

each) by homogenizing them with plastic pestles in appropriate micro-centrifuge tubes in 

TRIzol reagent (Ambion, Life Technologies) on ice followed by 2 consecutive 

chloroform extraction and precipitation using isopropanol. Total RNA was DNase treated 

prior to cDNA synthesis. 0.5-1.0 µg RNA was then used for cDNA synthesis using 

MMLV Reverse Transcriptase 1st-Strand cDNA Synthesis Kit (Epicentre) following 

manufacturer’s guidelines. 45 cycle real time PCR was performed with 1:5 diluted cDNA 

using FastStart SYBR Green Master (Roche) on a LightCycler 96 Real-Time PCR 

System (Roche, Indianapolis, IN). For all experiments, three biological replicates were 

analyzed. The relative transcript abundance was normalized to expression of the 

housekeeping genes α-tubulin84B. The primers used in this study are described in table 

4.2. 
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Table 4.2 describes the primers used in the q-RT-PCR experiments. 

Genes Primer Pairs 

Alpha- 

Tubulin84B 

5’-GCTGTTCCACCCCGAGCAGCTGATC-3’ and 5’-

GGCGAACTCCAGCTTGGACTTCTTGC-3’ 

Atg1 5’-CGTCTACAAAGGACGTCATCGCAAGAAAC-3’ and 5’-

CGCCAAGTCGCCGCCATTGCAATACTC-3’ 

Atg5 5’-CCTGCGAATCTATACAGACGATGAC-3’ and 5’-

AGCTCAGATGCTCGGACATCCATTG-3’ 

Atg6 5’-TGCACGCAATGGCGGAGTTATCTTTGC-3’ and 5’-

CAGCTCCGCTTTCAGCTTAAAAGCAGC-3’ 

Atg7 5’-TGCCTTTCTGCTTCAGCAATGTCC-3’ and 5’-

GGCCCCATTTTGCCATTTTTATTTAG-3’ 

Atg8a 5’-TCGCAAATATCCAGACCGTGTGCCCGTC-3’ and 5’-

GCCGATGTTGGTGGAATGACGTTGTTCAC-3’ 

 

4.4.7 Image J analysis 

Fluorescent microscopic and confocal images were analyzed using Fiji-Image J software. 

For fluorescent microscopic images, each images were opened with Image-J followed by 

the series of actions as described below: open image>Convert to 8-bit> select the tissue 

by marking the outline with freehand selection tool> analyze> measure to obtain the 

tissue surface area measurements (used for normalization) in pixel units> edit to clear the 

outside> image> adjust> threshold-adjust the threshold so as to select the particles only 

and hit apply> analyze particles by setting limits for circularity and particle size which 
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then gives a data sheet with pixel unit measurements for each particle> save the sheet. 

For confocal image analysis the same set of actions were performed on a z-projected 

image of the series of images obtained for each tissue. To do that- open image> 

Stacks>Z-project with maximum intensity>color>split channels to obtain Z-projected 

image for each channel (blue, green and red)>save each as tiff file>open image again and 

conduct the analysis steps as described above.  

4.4.8 Statistical analyses 

Immunostaining results obtained from serial tissue sections were statistically analyzed for 

calculating significance using repeat measure ANOVA. Immunostaining results from 

confocal images and Atg gene expression data were analyzed for statistical significance 

calculations using two-tailed Student’s t-test. For all statistical tests P<0.05 were 

considered significant. For all graphs, data are represented as the mean ± the standard 

deviation of mean (Becker, Semler et al.) and significant difference is expressed as: ‘*’- 

P value between 0.01-0.05; ‘**’- P value between 0.001-0.01; ‘***’ P value<.001. 
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Chapter 5: The Serf gene modifies SMA in a Drosophila disease model. 

 

5.1 Introduction  

          A major goal of my dissertation is to test the long existing hypothesis that Serf is a 

genetic modifier of the disease Spinal Muscular Atrophy (SMA). With establishing the 

set if alternative Serf alleles, I created tools to test this hypothesis in the Drosophila 

model of SMA. In humans, deletion of the Serf gene along with Smn1 mutation correlates 

with the most severe form of SMA, Type I (Scharf et al., 1998). SMA severity is 

inversely related to Smn protein abundance (Lefebvre et al., 1997) which is regulated, at 

least in part, by the ubiquitin-proteasome pathway (Burnett et al., 2008). Consequently, 

we hypothesize the loss of Serf activity enhances the disease phenotype by diminishing 

Smn protein abundance. 

          This chapter describes a series of genetic interaction studies using previously 

characterized Smn mutants in genetic backgrounds containing normal, diminished, or 

enhanced Serf protein abundance. We assessed viability at the larval and pupal stages and 

locomotion at the larval stage. Furthermore we investigated the impact of Serf expression 

on Smn protein abundance in the Smn mutant backgrounds to learn whether or not the 

presence or absence of Serf impacts the levels of the biologically limiting Smn protein. 

  5.2Results 

 5.2.1 Genetic interaction between Serf and Smn 

          Genetic interaction between Serf and Smn was tested by altering the levels of Serf 

expression in a previously described fly SMA model. Our study uses Smn missense 

mutants (SmnD20V, SmnT205I, SmnV72G, SmnG206S, SmnY203C) created by the Matera lab 
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(Praveen et al., 2014). Each of these mutations is equivalent to a mutational change 

within one copy of the human SMN1 gene which causes SMA in patients who have lost 

the second functional SMN1 copy (typically by deletion). Praveen et al., modeled this 

hemizygous mutant state by introducing the Smn point mutations in a single copy trans-

gene in a genetic background homozygous for the Smn null allele, SmnX7(SmnX7, Flag –

SmnTg; Tg: transgene). SmnX7 is a deletion mutant that removes the promoter region and 

the entire Smn open reading frame of the fly Smn gene (Change et al., 2008). The fact 

that the individual Smn point mutants show different degrees of phenotypic severity 

allows us to score for both enhancement or relief of the mutant phenotypes after 

manipulation of Serf gene expression. 

          For our overexpression studies, we constitutively expressed the UAS-Serf cDNA 

under a Act5c-GAL4 driver transgene in a background homozygous for the SmnX7 

deletion and bearing a single copy of one of the Smn point mutations or an equivalent 

wild type Smn transgene. For the complementary Serf depletion experiments, we 

performed RNAi mediated knockdown of Serf using UAS-Serf RNAi (hpSerf) under 

Act5c-GAL4 driver in a hemizygous Smn mutant background. The RNAi knockdown 

approach was used rather than our Serf deletion mutant for practical reasons. The Serf 

gene and the Smn gene reside near one another on the right arm of third chromosome, 

making assembly of the double mutants technically difficult.   

5.2.1.1 The larval and pupal viability of Smn missense mutants is reduced upon 

ubiquitous Serf knockdown. 

          The w1118 line served as a wild type control in my experiments (Fig. 5.1).  Here 

approximately 90% of the larvae form pupae and essentially all pupae eclose to viable 
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adults. When Serf is ubiquitously knocked down in this background viability remains 

roughly similar, about 86% larvae form pupae and all of the pupae appear to eclose to 

adults. The SmnX7 homozygous flies are larval lethal. A single SmnWT transgenic construct 

shows good rescue of SmnX7 lethality with 85% larvae surviving to the pupal stage and 

about 97% of the pupae eclosing into adults. Knocking down Serf in the 

SmnWT/SmnX7background shows a minor reduction in pupation, from 85% to 81%, 

however, pupae eclosion decreases considerably from 97% to 74%. Overall, percentage 

of adults produced from the SmnWT/SmnX7line reduces from 82% to about 65% upon Serf 

knockdown. Therefore, Serf knockdown in the hemizygous Smn flies significantly 

reduced the percentage of pupae eclosing into adults (P<.0001) and the overall proportion 

of adults produced in this line (P=.00614). 

 The viability of the Smn missense mutants vary considerably (Fig 5.1 A, B and 

C). To test whether Serf knockdown exacerbates the reduced viability observed in 

hemizygous Smn point mutants, we picked Smn mutants that show comparatively milder 

effect. As previously reported (Praveen et al.,2014) the D20V mutant is the weakest 

among all and shows comparable viability as the SmnWT construct. In the hemizygous 

D20V line about 69% larvae forms pupae and 90% of the pupae eclose. Thus D20V line 

produces about 59% viable adults. When Serf is knocked down in the D20V mutant, it 

shows a robust effect of reducing the percentage of pupation from 69% to 47%, which is 

statistically significant (P<.001). More effectively the percentage of pupal eclosion 

significantly drops from 90% to about 4% (P<.0001), thereby giving rise to only about 

2% viable adults instead of 59% (P<.0001).  
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          Similar results were obtained with the V72G and T205I mutants. Without altering 

Serf expression levels, the V72G and T205I mutants shows 71% and 83% pupation 

respectively. Upon Serf knockdown the V72G line shows a further reduction in pupation, 

from 71% to 37%. Although the change is still statistically significant, the impact of Serf 

knockdown on T205I pupation was somewhat weaker as pupation was reduced from 83% 

to 70%. Both of these Smn mutants are severely impaired in adult eclosion. The V72G 

mutant by itself is pupal lethal and, consequently, no impact of reduced Serf abundance 

on pupal vitality could be measured.  However, in the T205Imutant 28% of the pupae 

eclose as adults and this is completely abolished with Serf knockdown.  Together, these 

results show that Serf knockdown in hemizygous Smn missense mutant background 

reduces viability supporting the hypothesis that loss of Serf exacerbates the SMA 

phenotype. 



133 
 

 

Fig. 5.1 Ubiquitous Serf knockdown reduces viability of Smn mutants. A) The 

percentage of 1stinstar larvae reaching up to pupal stage with normal Serf expression (WT 

Serf) or ubiquitous Serf knockdown (Act5c-GAL4>Serf RNAi) in WT Smn 

(SmnWT/WT), Smn hemizygous (SmnWT/SmnX7) and hemizygous Smn missense mutant 

backgrounds (SmnD20V/ SmnX7 , SmnT205I/SmnX7 , SmnV72G/SmnX7). B)The percentage of 

pupae eclosing as adults with and without Act5c-GAL4 driven Serf knockdown in the 

Smn mutants described in part A. C) The percentage of larvae reaching adulthood with 
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and without Act5c-GAL4 driven Serf knockdown in the different Smn mutants as 

described in A. 

5.2.1.2 Serf knockdown in the mild Smn mutants reduces their larval body size. 

          The severe Smn mutants with a larval lethal phenotype also have small larval body 

size (Praveen et al., 2014).  Drosophila bearing weaker Smn alleles such as D20V, T205I 

and V72G generally progress to the pupal stage and were not reported to have smaller 

body size. Since we observed exacerbation of the reduced viability of the D20V, T205I 

and V72G mutants after Serf knockdown, we were interested to know if the larval body 

size of these mutants was also reduced.  To investigate this issue,  I collected larvae from 

hemizygous WT (flies with Flag-SmnWT transgene, also called SmnWT or WT), 

D20V,T205I and V72G lines with and without Serf knockdown at 96 hrs and 120 hrs post 

egg laying and measured the two dimensional area of the larvae from pictures captured 

after killing them in ethanol. For comparison, normal larval sizes were measured from the 

homozygous SmnWT (WT/WT) line. In addition, the impact of ubiquitous Serf knockdown 

(Act5c GAL4>Serf RNAi) on the larval body size was also tested by comparing them 

with the WT/WT larvae. 

          Figure 3A shows representative images of larvae for each genotype with and 

without Serf knockdown. Figure 3B shows quantification of the average body area at 96 

hrs and 120 hrs post egg laying, respectively. As shown in the figure, Serf knockdown in 

a wild type Smn background does not influence the normal larval body size of the 

homozygous SmnWT line (WT/WT).  When the Smn level is reduced to half in the 

hemizygous SmnWT larvae (WT/SmnX7) at 96 hrs and 120 hrs post egg laying, the body 

sizes are reduced by 6.37% (P>.05) and 15.04% (P<.0001) compared to the WT/WT 
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larvae, respectively. However, with knocking down Serf in the WT/SmnX7 genetic 

background their size does not change significantly at either time point. The Smn D20V 

and T205I mutants show WT/SmnX7 larval sizes at both time points when Serf is present. 

However, after Serf knockdown both Smn mutants show significant reductions in average 

size (i.e., 24.05% and 22.29%, respectively (P value <.0001 and P<.001) at 96 hrs post 

egg laying. Surprisingly, the average body area of the strongest mutant, V72G, is not 

reduced with Serf depletion at 96 hr. After 120 hours, the Smn D20V and T205I larvae 

size differences look more similar to the WT/SmnX7control, with 8.58% and 6.45% 

reductions respectively after Serf knockdown.  This observation indicates that while 

growth appears to be slowed, the animals eventually “catch up” to approach normal size.  
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Fig. 5.2 Ubiquitous Serf knockdown in Smn mutant background results in reduced 

larval body area. A) Representative images showing average larval body sizes with and 

without Serf knockdown (Act5c GAL4>Serf RNAi) in the Smn mutant hemizygous 

backgrounds (WT/SmnX7, D20V/SmnX7, T205I/SmnX7, V72G/SmnX7) at 96 hrs and 120 hrs 

post egg laying. Larvae homozygous for the Flag-SmnWT transgene (WT/WT) is compared 

with ubiquitous Serf knockdown larvae with wild type Smn (Act5c GAL4>Serf RNAi) 

showing no impact of Serf knockdown on larval body size. B) Quantification of the 

average body area at 96 hrs and 120 hrs post egg laying showing a decrease with Serf 
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knockdown in D20V/SmnX7 and T205I/SmnX7 lines .(At 96 hrs, D20V/SmnX7:P 

value=.0133, Unpaired t-test, n=15; T205I/SmnX7:P value =.0331 Unpaired t-test, n=15 

for both genotype; At 120 hrs., D20V/SmnX7: P value= 0.0994; T205I/SmnX7:P 

value=0.268; Unpaired t-test, n=15 for each). 

5.2.1.3 Serf knockdown in the Smn mutants does not impact the larval molting at 

2nd-3rd instar transition. 

The observation that Serf knockdown reduces larval body size of the D20V and T205I 

hemizygous mutants led us to ask whether this growth defect occurs due to 

developmental delay in which the mutant larvae are restricted to the second instar stage 

after depletion of Serf. The morphology of larval mouth hook is a standard means to stage 

larval development. The number and size of the teeth present on the mouth hook vary 

between different stages and does not overlap (Alpatov 1929, Okada 1963). In the first 

instar stage there are no teeth; in the second instar stage there are a few (3-4) teeth 

whereas numerous teeth on the mouth hook represents a third instar stage larva (Alpatov 

1929). 

I dissected mouth-hooks at 96 hrs post egg laying from the WT, D20Vand T205I 

hemizygous larvae with and without ubiquitous Serf knockdown (n=10 per genotype). At 

this time point, all thewild type animals are in the 3rd instar stage. I found that 100% of 

the dissected SmnWT hemizygous larvae show mouth-hooks typical for a 3rd instar larva 

(Fig. 3A). Likewise, Serf knockdown in this background does not arrest development and 

all the larvae dissected are at the 3rd instar stage (Fig 3A’). The D20V and T205I 

hemizygous larvae looks identical to the SmnWT larvae, with mouth hook structures 

typical for a third instar stage larva (Fig 3B & 3C). This does not change with Serf 
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knockdown in these two mutants (Fig 3B’ & 3C’), even though they show a much 

smaller body size at 96 hrs post egg laying compared with wildtype animals. Therefore I 

conclude that the reduction in the larval body size observed with Serf knockdown is due 

to growth impairment but is not due to failure to reach the 3rd instar stage.  It is possible, 

however, that the larval molts of the mutant animals differ in timing with and without 

Serf depletion. 
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Fig 5.3: Representative larval mouth hook images from WT/SmnX7 (A-A’), 

D20V/SmnX7(B-B’), Y205I/SmnX7 (D-D’) lines at 96 hrs post egg laying with wild type 

levels of Serf (WT Serf: A,B,C) and ubiquitous Serf knockdown (Act5c GAL4>Serf 

RNAi: A’,B’,C’). Numerous teeth on the mouth hooks represents 3rd instar larval stage. 
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5.2.1.4 Knockdown of Serf does not impair larval locomotion in the mild Smn 

mutants. 

          Drosophila that express the weak Smn mutant alleles, D20V, T205I and V72G, do 

not show impaired larval locomotion. Since I found that Serf knockdown in these mutants 

reduces their viability (Fig. 5.1) and larval body size (Fig 5.2), I wanted to know whether 

or not larval locomotion is impaired after Serf deletion. Since the interpretation of simple 

mobility traces on an agar surface is complicated when body sizes differ, an alternative 

measure of larval mobility was used. Independent of size, forward progression occurs by 

a peristaltic pulse of body wall contraction and this can be used to score for locomotion 

(REF). For each genotype, 3rd instar larvae (96 hrs post egg laying) were used to 

determine the number of body wall contractions per minute. 

          As shown in the figure below (Fig.5.4), the Flag-SmnWT homozygous larvae 

(WT/WT), with and without Serf knockdown show similar mobility. Animals with wild 

type and reduced levels of Serf average 58.5 and 58 contractions per minute, respectively. 

Similar to the homozygotes, the hemizygous WT/SmnX7 line also show equivalent larval 

movement with and without Serf knockdown, an average of 58 and 55 contractions/ 

minute (P value=.1002 n=15). However, it was surprising to note that 50% reduction of 

Smn in the hemizygous line did not reduce their locomotion performance.  Likewise, all 

the Smn mutants with normal levels of Serf show similar range of average contractions 

like the homozygous of hemizygous SmnWT. The D20V, T205I and V72G hemizygous 

mutants make an average of 55.87, 54 and 52.86 contractions per minute respectively. 

When Serf is knocked down in these mutants they make 60, 55.69 and 56.14 contractions 

per minute, on an average, respectively. The changes observed with and without Serf 
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knockdown are not statistically significant (P values= 0.1508, 0.5171 and 0.2830 for 

D20V/X7, T205I/X7 and V72G/X7 respectively, n=15 for each). Therefore I conclude that 

Serf knockdown in the mild Smn mutant flies does not cause a locomotion defect at the 

larval stage. 
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Fig 5.4. Smn mutants with ubiquitous Serf knockdown do not show larval 

locomotion defects. Average body wall contractions per minute were measured at 96 hrs 

post egg laying (n=15 for all genotypes) in Smn wild type homozygous (WT/WT), 

hemizygous (WT/SmnX7) and missense mutant (D20V/SmnX7, T205I/SmnX7, V72G/SmnX7) 

flies with wild type levels of Serf (WT Serf) or with ubiquitous Serf knockdown (Act5c 

GAL4>Serf RNAi). Smn mutants do not show significant differences in the average 

number body wall contractions per minute after Serf knockdown 
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5.2.1.5 Ubiquitous Serf overexpression does not rescue viability of majority of Smn 

mutants. 

         In the complimentary experiment I ubiquitously overexpressed Serf and asked 

whether the compromised viability of the Smn missense mutants could be rescued by the 

increased Serf abundance (Fig 5.4 A, B, C). In this experiment I included the two severe 

Smn mutants that are larval lethal, G206S and Y203C as well as the milder D20V, T205I 

and V72G mutants. Serf overexpression without any alteration to the Smn locus did not 

change the proportion of larvae producing pupae or the percentage of pupae eclosing as 

adults when compared with flies with wild type Serf. In both cases about 90% of the 

larvae forms pupae and all the pupae scored formed adults. The line hemizygous for the 

SmnWT transgene (SmnWT/SmnX7) produces 85% pupae with 97% of the pupae eclosing as 

adults. When Serf is overexpressed in this line, I found that 86% of the larvae form pupae 

and 98% of the pupae eclose as adults. Thus, percentage of larvae reaching adulthood 

under normal Serf levels and with increased Serf in SmnWT/SmnX7 background remains 

essentially the same, 82% and 84% respectively indicating that increased Serf protein 

abundance is not sufficient to suppress the reduced viability 

          . The larval lethality of the G206S and Y203C mutants could not be rescued with 

Serf overexpression. None of the mutant larvae, with or without Serf overexpression 

reach pupation. For the V72G mutant, equal proportion of larvae reach pupation (71%) 

with normal or elevated levels of Serf and none of these pupae eclose as adults. For the 

T205I mutant the percentages of pupae and adults also remained roughly the same with 

and without Serf overexpression. With normal Serf expression, the T205I mutant 

produces about 83% pupae with 28% of these pupae form viable adults. With Serf 
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overexpression the T205I mutant form 89% pupae with 20% of those eclose. Overall, 

larvae from the T205I line progress through development to form equivalent percentages 

of adults, 9% and 11%, with and without Serf overexpression respectively. 

          In contrast to the results presented above, the percentage of D20V that form pupae 

does increase from 69% to 82% with Serf overexpression which is subtle but statistically 

significant (P=.021, n=106).  Unexpectedly, however, pupal eclosion in this background 

is significantly reduced with enhanced Serf expression (70% vs 90% with normal Serf 

levels, P value=.0013). Therefore, roughly equivalent proportion of larvae develop to 

adulthood in the D20V background (59% and 52%) with wild type and increased levels 

of Serf expression, respectively. This suggests that the increased proportion of pupae that 

form in the D20V background with overexpressed Serf probably do not emerge as adults. 

Overall, these data indicate that increased Serf expression is not sufficient to rescue the 

decreased viability of the majority Smn mutant flies, but, might have some beneficial 

effect in the weak D20V allelic background. This observation is indeed consistent with 

our Serf knockdown results where the D20V line was found to be most sensitive to 

reduced Serf levels and showed a robust exacerbation of decreased viability. 
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Fig.5.5 Ubiquitous Serf overexpression does not affect the viability of the Smn 

mutants. A) The percentage of 1st instar larvae reaching upto pupal stage normal Serf 

expression (WT Serf) or ubiquitous Serf overexpression (Act5c-GAL4> Serf) in WT Smn 
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(SmnWT/WT), Smn hemizygous (SmnWT/SmnX7) and hemizygous Smn missense mutant 

backgrounds (SmnD20V/ SmnX7, SmnT205I/SmnX7, SmnV72G/SmnX7, SmnG206S/SmnX7, 

SmnY203C/SmnX7). B) The percentage of pupae eclosing as adults with and without Act5c-

GAL4 driven Serf overexpression in the different Smn mutants as described in A. C) The 

percentage larvae that develop to adulthood with and without Act5c-GAL4 driven Serf 

overexpression in the different Smn mutants as described in panel A.  

5.2.1.6 The reduced larval size phenotype of the severe Smn mutants is partially 

restored with Serf overexpression. 

          The severe Smn alleles, G206S and Y203C, show greatly reduced larval body size, 

similar to the homozygous null mutant SmnX7 (Praveen et al.,, 2014). This is expected 

since very little Smn protein can be detected in flies bearing these mutations.  The 

introduction of the SmnWT transgene into homozygous SmnX7mutant flies significantly 

rescues this phenotype (Praveen et al.,, 2014). We were curious to know if Serf 

overexpression could improve growth in the hemizygous Smn G206S and Y203C mutant 

lines. Therefore, I overexpressed Serf in hemizygous WT, G206S and Y203C backgrounds 

and in the homozygous wildtype control and measured larval size as above. Figure 4A 

shows representative images of larval sizes which are quantified for the test population in 

Fig. 4B. I find that that the SmnWT /SmnX7 larvae are 6.37% (P value=0.4575, n=15,) and 

15.04% (P<.0001, n=15) smaller in size compared to the SmnWT /SmnWT larvae at 96 hrs 

and 120 hrs post egg laying, respectively. When Serf is overexpressed in SmnWT/SmnX7 

line, the larvae show 16.10% (P value=0.0718, n=15) and 23.97% (P value <.0001, n=15) 

body size increases at 96 hrs and 120 hrs, respectively, thereby becoming similar to the 

SmnWT /SmnWT group. However, Serf overexpression in a background a wildtype Smn 
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transgene does not change larval size when compared with the naturally SmnWT/SmnWT 

homozygous group.  

          The G206S and Y203C hemizygous larvae show 54.86% (P<.0001, n=15,) and 

68.43% (P<.0001, n=15) reduction in the average body area compared to SmnWT /SmnX7 

larvae, respectively, consistent with a previous finding (Praveen et al.,, 2014). Serf 

overexpression in this hemizygous G206S background increases this size by 27.11% (P 

value>.05, n=15) and 39.83% (P value <.01, n=15) at 96 hrs and 120 hrs, respectively. A 

more robust impact of Serf overexpression can be seen with the Y203C mutant where Serf 

increases the relative body size by150.1% and 139.1% at 96 hrs and 120hrs, respectively 

(P value <0.0001 for both time points, n=15), respectively. Taken together, we find that 

ubiquitous overexpression of Serf partially restores the reduced larval size of Smn 

mutants. 
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Fig. 5.6 Ubiquitous Serf overexpression in the severe Smn mutants increases larval 

body size. A) Representative images showing average larval body sizes with and without 

Serf overexpression (Act5c GAL4>Serf) in SmnWT hemizygous (SmnWT/SmnX7) and Smn 

missense mutant hemizygous backgrounds (SmnG206S/SmnX7, SmnY203C/SmnX7  ) at 96 hrs 

and 120 hrs post egg laying. Age matched larvae homozygous for the Flag-SmnWT 

transgene (WT/WT) and unaltered Smn locus with ubiquitous Serf overexpression (Act5c 

GAL4>Serf) show normal larval body sizes at the respective time points. B) 

Quantification of the average body area at 96 hrs and 120 hrs post egg laying showing 

increase with Serf overexpression in WT/SmnX7, G206S/SmnX7 and Y203C/SmnX7 lines. 

(At 96 hrs, Y203C/SmnX7: P value <0.0001, Unpaired t-test, n=15; WT/SmnX7& 

G206S/SmnX7: P value >.05, Unpaired t-test, n=15 for both genotype; At 120 hrs, 

WT/SmnX7 & Y203C/SmnX7: P value <0.0001, Unpaired t-test, n=15 for both ; 

G206S/SmnX7: P value <.005, Unpaired t-test, n=15 ).  
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5.2.1.7 Serf overexpression increases the body size of the severe Smn mutants but 

appears not to have a obvious impact on development. 

As Serf overexpression partially restores the reduced body size of the G206S and Y203C 

hemizygous larvae, I wanted to know if this reflects simple growth improvement or 

rescue from a possible developmental delay in larval molts (Garcia, Lu et al. 2013). To 

address this question, I first asked if the small body size of the G206S and Y203C 

hemizygous mutants is consistent with the developmental stage predicted for larvae 96 

hours after egg laying. As represented in the figure (Fig.5.6), at 96 hours post egg laying 

the mouth hooks of all the SmnWT hemizygous larvae (Fig. 5.6A) dissected (n=10) display 

numerous teeth demonstrating that the 3rd instar stage has been reached. Likewise, Serf 

overexpression in the SmnWT line (fig.6A’) showed 100% of these larvae with 3rd instar 

specific mouth hook features. Although the G206S and Y203C hemizygous larvae are 

much smaller in size than the SmnWT at 96 hrs post egg laying, most animals still display 

the mouth hook features of the 3rd instar stage (Fig 6B & 6D, respectively). However, 1 

in 10 larvae for the G206S genotype (Fig 6C) and 2 in 10 for the Y203C genotype (Fig 

6D) showed mouth hook structures more similar to the 2nd instar stage, likely indicating 

slowed development. As anticipated the developmentally delayed larvae showed the 

smallest body size in the population. Although Serf overexpression significantly 

improves the average larval body size of these two mutants, we still find 2nd instar stage 

larvae in similar proportions (1 in 10 larvae dissected) for both the G206S (fig 6C’) and 

Y203C (fig 6E’) mutants. Therefore, the 3rd instar larval molt delay observed in the 

G206S and Y203C hemizygous background is not greatly advanced by Serf 

overexpression. 
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Fig 5.7. Representative larval mouth hook images from WT/SmnX7 (A-A’), G206S/SmnX7 

(B-C’), Y203C/SmnX7 (D-E’) lines at 96 hrs post egg laying with wild type levels of Serf 

(WT Serf: A,B,C,D,E) and ubiquitous Serf overexpression (Act5c GAL4>Serf: 

A’,B’,C’,D’,E’). Numerous teeth on the mouth hooks (A, A’, B, B’,D & D’) represents 

3rd instar larval stage and the smaller mouth hooks with 3-4 teeth (C,C’,E & E’) 

represents 2nd instar stage. 
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5.2.1.8 Overexpression of Serf improves locomotion in the severe Smn mutants. 

          The severe alleles of Smn, G206S and Y203C, cause severe larval locomotion 

defects (Praveen et al., 2014). As shown above (Fig 5.6) Serf overexpression in these 

mutants significantly increases their body size. I next wanted to determine whether Serf 

overexpression also improves locomotion of the mutant larvae.   

            As shown below (Fig. 5.8), the SmnWT homozygous larvae (WT/WT), with and 

without Serf overexpression shows similar levels of crawling efficiency with 58.5 and 

59.5 contractions per minute, respectively. The hemizygous line with 50% wild type Smn 

performs equally well as the homozygous wild type, with 55.36 contractions per minute 

and does not change with Serf overexpression (average at 54 contractions/minute). So, 

although Smn is present at only ½ the normal dosage, it does not affect the larval 

crawling efficiency and Serf overexpression in these animals does not appreciable 

influence this parameter. In contrast, the Y203C and G206S Smn mutants average at 13.9 

and 13.75 contractions per minute, roughly 1/4th the rate of the wildtype. This is 

consistent with the previous report (Praveen et al., 2014), however here the locomotion is 

assayed using a new method not used before. When Serf is overexpressed in Y203C and 

G206S mutant backgrounds mobility increases to 32.8 and 28 contractions per minute, 

respectively. This >2-fold increase in locomotion with enhanced Serf expression is 

statistically significant (P<.0001, n=15). Therefore I conclude that the simple increase in 

Serf abundance is sufficient to partially suppress two phenotypic defects of this Smn-

limited SMA model, namely, larval size and locomotion.   
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Fig 5.8 Ubiquitous Serf overexpression improves locomotion in the severe Smn 

mutants. Body wall contractions per minute were measured at 96 hrs post egg laying in 

homozygous (WT/WT) , hemizygous (SmnWT/SmnX7) and missense mutant 

( SmnY203C/SmnX7, SmnG206S/SmnX7) flies with wild type levels of Serf (WT Serf) or with 

ubiquitous Serf overexpression (Act5c GAL4>Serf). The Y203C and G206S mutants are 

severely locomotion impaired. Serf overexpression in these mutants results in partial but 

statistically significant improvements in mobility (P<.0001, n=15, unpaired t test). 

5.2.2 Impact of Serf on the Smn protein abundance 

          Together, our data so far reveal genetic interactions between Serf and Smn such 

that the altered Serf abundance modulates certain aspects of the Smn mutant phenotype.  

The Matera group previously showed that, similar to human SMA, the Drosophila 

multiple Smn mutants produce unstable Smn proteins. Since Serf has been implicated in 

protein homeostasis (Van-Ham et al.,2010), one possible explanation for our results is 
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that Serf expression stabilizes the residual Smn protein in the mutant background thereby 

reducing the severity of the SMA-like disease state.      

5.2.2.1 The Serf deletion flies show reduced Smn protein abundance. 

          To test the impact of Serf on wild type Smn abundance, I compared the Smn protein 

levels in wildtype and Serf deletion flies. Figure 5.9A shows a representative Smn 

western blot image using endogenous β-tubulin as a normalization control. The Serf 

deletion mutant (Act5c-GAL4, Serf∆10a: Lane 3) shows a 50.8% reduction in the relative 

Smn abundance as compared to the control (Act5c-GAL4: Lane 1). To know whether this 

reduction is due to the loss of Serf gene, I expressed the Serf cDNA in the Serf deletion 

mutant ( Act5c-GAL4>Serf, Serf∆10a: Lane 4) and asked if this is sufficient to recover 

normal Smn protein levels. I found that Serf cDNA expression indeed full restores Smn 

protein abundance in this genetic background. However, Serf cDNA expression in an 

otherwise wildtype background (Act5c-GAL4>Serf: Lane 2) does not elevate Smn 

protein levels above what is found in the control wildtype. Equivalent results were 

obtained with three independent replicates and the average changes in the Smn protein 

abundance are summarized in the table below (Table 5.1). 
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Table 5.1 Table shows average fold change in the relative Smn protein level in the 

Serf mutants from 4 biological replicates. 

Genotypes Average fold change in 
Smn level ± SEM 

P values  

Act5c-GAL4 1   

Act5c-GAL4>Serf 1.05±0.078 .5452  

Serf∆10a 0.564 ± 0.048 <.0001  

Act5c-GAL4>Serf, 
Serf∆10a 

0.925 ±0.032 .0575  

 

          To determine whether the lower Smn abundance in the Serf deletion mutant is 

likely due to transcriptional differences, I performed semi-quantitative RT- PCR on the 

total RNA extracted from the adults of each genotype (Fig 5.9B). The Smn mRNA was 

normalized to α-tubulin mRNA and the fold change with Serf manipulation calculated. 

The Act5c-GAL4 driver line (Fig. 5.4B, Lanes 1 & 2) served as the negative control with 

unmanipulated Serf expression. Here I see that while the Serf deletion mutant (Fug. 5.4B, 

Lanes 5&6) showed a slight increase in Smn mRNA abundance (1.34 fold) the Smn 

protein level is actually reduced by half (Fig. 5.4A, Lane 3). With Serf overexpression in 

a wildtype background Smn protein essentially stays at normal levels (Fig 5.4A, Lane 2) 

while Smn mRNA is again slightly increased (1.21 fold). In the Serf deletion mutant with 

Serf overexpression (Fig.5.4B, Lane 7&8), the Smn mRNA remains unchanged while 

Smn protein is recovered to normal level (Fig. 5.4A, Lane 4). As Smn mRNA levels do 

not correlate with the observed Smn protein abundance changes, it appears likely that Serf 

primarily modulates Smn expression at the level of protein synthesis or stability. 
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Fig 5.9. The relative Smn protein level is reduced in the Serf deletion flies without 

altering the relative Smn mRNA levels. A) Representative western blot showing Smn 

protein abundance in the Act5c-GAL4 driver control (Lane 1), Serf overexpression 

(Act5c GAL4>Serf; Lane 2), Serf deletion mutant (Act5c GAL4, Serf∆10a; Lane 3) and 

the rescue line (Act5c GAL4>Serf, Serf∆10a; Lane 4). The level of β-tubulin expression 

was used as a loading control. The fold change in relative Smn protein expression with 

respect to the WT is shown below the lanes. B. Semi-quantitative RT- PCR analysis of 

mRNA abundance in the respective lines tested for protein. 1x and 3x cDNA amounts 

were used for PCR from each genotype. The α-tubulin transcript was used as an internal 

control. Fold change in the relative Smn transcript abundance in Serf overexpression 

group (Lanes 3 &4), Serf deletion group (Lanes 5&6) and the rescue group (Lanes 7&8) 

with respect to the control group (Lanes 1&2) has been shown below the respective 

bands. 
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5.2.2.2 Serf knockdown in a Smn mutant line moderately reduces Smn protein 

abundance.  

          We were curious to know whether the reduction in the viability and larval growth 

observed in the Smn mutants with altered Serf expression correlates with changes in Smn 

protein abundance. To test, we assessed the relative level of Smn protein in larvae at 96 

hrs post egg laying in the presence of normal Serf and after Serf knockdown. 

          Figure 5.10 shows the Smn protein levels in Smn mutants with and without Serf 

knockdown. Knocking down Serf in the SmnWT hemizygous background (Lane 3) 

corresponds to a slight decrease in the Smn abundance (0.73 fold) as compared to those 

with normal amount of Serf (Lane 2).  Similar to what was shown before (Praveen et al.,, 

2014), the D20V Smn mutant line (Lane 4) shows normal levels of Smn protein. With 

Serf knockdown, I see a reduction in the Smn protein level (0.256 fold) in D20V 

background (Lane 5). This is consistent with the observed exacerbation of the Smn 

phenotype in these animals.  Similarly, the T205I mutant also show reduction in the Smn 

protein levels (0.276 fold) with Serf knockdown, however, the variability of this 

reduction is much greater for this line. For the V72G mutant, the Smn protein level is 

already undetectable and therefore we could not measure further decrease with Serf 

knockdown. The variability of these results between 3 different biological replicates and 

the average values and statistical significance are summarized in the table below (Table 

5.2). 
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Table 5.2 Table Shows average fold change in the relative Smn protein level in Smn 

missense mutants with and without Serf knockdown from 3 biological replicates. 

 

Genotypes Average fold change in 
Smn level ± SEM 

P value 

SmnWT/SmnX7 1 .1739 

Act5c-GAL4>SerfRNAi, 
SmnWT/SmnX7 

0.884± 0.07 

SmnD20V/SmnX7 1 .0036 

Act5c-GAL4>SerfRNAi, 
SmnD20V/SmnX7 

0.3963 ± .098 

SmnT205I/SmnX7 1 .519 

Act5c-GAL4>SerfRNAi, 
SmnT205I/SmnX7 

.8106 ± .268 
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Fig 5.10 Ubiquitous Serf knockdown reduces Smn protein abundance in SmnD20V 

mutant. Western blot analysis of Smn protein abundance in hemizygous Smn wild type 

(SmnWT/SmnX7) and mutant larvae (SmnD20V/SmnX7, SmnT205I/SmnX7, SmnV72G/SmnX7) with 

and without Act5c-GAL4 driven Serf knockdown. The SmnWT transgenic homozygous is 

shown as a wild type control. The level of α-tubulin expression is shown as a loading 

control. The fold change of relative Smn protein expression in the Smn mutant larvae 

knocking down Serf with respect to those with wild type Serf is shown below each pair of 

lanes, except for V72G pair where the protein expression is diminished to undetectable 

levels. 

5.2.2.3 Serf overexpression partially restores Smn protein abundance in certain Smn 

mutants.  

         While Serf overexpression in the Smn mutant background had little or no impact on 

adult viability, the most severe mutants, G206S and Y203C, showed significant 

improvement in larval size and locomotion with enhanced Serf expression. It is 

worthwhile mentioning here that, consistent with our observations, the milder Smn 

mutants including D20V and T205I were previously reported to have essentially wildtype 



159 
 

levels of Smn protein while the more severe mutants showed nearly undetectable levels 

of Smn protein (Praveen et al., 2014). In order to know whether the partial suppression of 

the SMA phenotype upon Serf overexpression was accompanied by an increase in Smn 

protein abundance, we assessed the whole series of Smn mutants by western blot (Fig 

5.11).  

          Serf overexpression in a wild type Smn background does not alter Smn protein 

abundance (Fig 5.11A). However, when Serf is overexpressed in the hemizygous SmnWT 

line (Lane 2), I see an increase in the Smn abundance by 1.53 fold (Lane 3). This trend is 

also seen with the T205I mutant (2.11fold increase, lane 4), the D20V mutant (2.19 fold 

increase, Lane 6) and the G206S mutant (1.93 fold, Lane 14). For the V72G and Y203C 

mutants, however, I could not reproducibly visualize the Smn protein band. The average 

fold differences observed in these mutants with Serf overexpression in three independent 

replicates are summarized in the table below (Table 5.3). While the exacerbation of the 

Smn mutant phenotype with Serf loss is strongly correlative, It increased Smn protein 

abundance with Serf overexpression does not tightly correlate with the degree of 

phenotypic restoration. That being said, the G206S mutant does show significant 

improvement in Smn protein abundance, size and larval locomotion with enhanced Serf 

levels. Also, the D20V mutant shows slight improvement in viability when Serf is over-

expressed and Smn protein levels increase after Serf overexpression in this mutant 

background. 
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Table 5.3 Table shows average fold change in the relative Smn protein level in Smn 

missense mutants with and without Serf overexpression from at least 2 biological 

replicates. 

 

Genotypes Average fold change in Smn level 
± SEM 

P value 

SmnWT/SmnX7 1 .0542 

Act5c-GAL4>Serf, 
SmnWT/SmnX7 

2.11 ± .9645 

SmnD20V/SmnX7 1 .0645 

Act5c-GAL4>Serf, 
SmnD20V/SmnX7 

1.94 ± .25206 

SmnT205I/SmnX7 1 .1213 

Act5c-GAL4>Serf, 
SmnT205I/SmnX7 

1.86 ±.439 

SmnG206/SmnX7 1 .0707 

Act5c-GAL4>Serf, 
SmnG206S/SmnX7 

2.82 ±.8898 

 

         I also scored the Smne33 for changes in Smn protein abundance with Serf 

overexpression. The Smne33 mutant is a hypomorphic Smn allele (Rajendra Et al. 2007) 

which causes severe atrophy of indirect flight muscles and motor neuron routing defects 

in adult flies rendering them flightless. The Smne33 allele was generated by imprecise 

excision of a P element inserted 94 bps upstream of the Smn transcription start site. The 

Smn protein abundance in the e33 mutant is specifically reduced in the thoracic muscles 
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for unknown reasons. We overexpressed Serf ubiquitously in the Smne33 mutant and 

studied its impact on the Smn mRNA and protein expression within thoracic muscles. 

         Figure 5.11B shows the level of Smn protein abundance in the wild type ( Act5c-

GAL4 control; Lane 1), the Smne33 mutant (Act5c-GAL4, Smne33; Lane 2) and Smne33 

with ubiquitous Serf overexpression flies (Act5c-GAL4>Serf,Smne33; Lane 3). Here I 

see reduction in the amount of Smn protein in Smne33 muscle extract (0.43 fold) as 

compared to the driver only control. When I overexpressed Serf in these flies I found 

significant restoration to 0.74 fold of the normal level. This result was reproducible 

within 3 independent replicates and the average changes are summarized in the table 

below (Table 5.4).  This change did not correlate with alterations in the Smn mRNA level 

as monitored by semi-quantitiative PCR. 

Table 5.4 Table shows average fold change in the relative Smn protein level in 

Smne33 with and without Serf overexpression. 

Genotypes Average fold change in Smn level 

Act5c-GAL4 1 

Act5c-GAL4, Smne33 .528 

Act5c-GAL4>Serf, Smne33 .983 

 

However, unlike the previous report (REF) I do not observed a reduction in Smn mRNA 

in the Smne33 background. The basis for this discrepancy is unclear.  We do note, 
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however, that increase Serf expression in not sufficient to restore flight to the Smn e33 

mutant flies (data not shown). 

 

 

Fig 5.11. Ubiquitous Serf overexpression in a few Smn mutants shows moderate 

increase in the diminished Smn protein abundance. A) Western blot analysis of Smn 

protein abundance in hemizygous Smn wild type (SmnWT/SmnX7) and mutant larvae 

(SmnT205I/SmnX7, SmnD20V/SmnX7, SmnV72G/SmnX7, SmnG206S/SmnX7, SmnY203C/SmnX7) with 

and without Act5c-GAL4 driven Serf overexpression. The SmnWT transgenic homozygous 

is shown as a wild type control. The level of α-tubulin expression is shown as a loading 

control. The fold change of relative Smn protein expression in the Smn mutant larvae 

overexpressing Serf with respect to those with wild type Serf is shown below each pair of 

lanes. B) Western blot of Smn protein with extracts from adult thoracic segments of 
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Act5c-GAL4 driver control (Lane 1), Smne33 mutant (Act5cGAL4, Smne33, Lane 2) and 

Serf overexpression in Smne33 mutant (Act5cGAL4>Serf, Smne33,Lane 3) lines. β-tubulin 

levels are shown as loading control. Fold change of relative Smn protein levels in each 

genotype with respect to the control is shown below each lane. B’) Semi-quantitative RT-

PCR analysis of mRNA abundance in the respective lines tested for protein. 1x and 3x 

cDNA amounts were used for PCR from each genotype. The α-tubulin transcript was 

used as an internal control. Fold change in the relative Smn transcript abundance in the 

Smne33 mutant group (Lanes 3 &4) and Serf overexpression in the Smne33 mutant group 

(Act5cGAL4>Serf, Smne33; Lanes 5&6) with respect to the control group (Act5cgal4/+, 

Lanes 1&2) has been shown below the respective bands. 

5.2.2.4 The Serf gene is necessary for maximum α-synuclein protein accumulation in 

a fly model of Parkinson’s disease.  

          Serf has been shown to promote α-synuclein aggregate formation in C. elegans 

model of Parkinson’s disease and in-vitro (Van-Ham et al., 2010, Falsone et al., 2012). 

Here, I have shown that Serf expression in Drosophila is necessary for maximum Smn 

protein abundance in wild type and Smn mutants. In C. elegans that loss of Serf does not 

impact α-synuclein protein abundance (Van-Ham et al., 2010), only aggregate size.  Here 

I investigated the impact of Serf on  α-synuclein protein and transcript levels in a 

Parkinson’s fly model. 

          Figure 5.12A shows a western blot of α-synuclein in brain extracts.  In each case, a 

human mutant form of α-synuclein A30P in a pan-neuronal manner under the Elav-GAL4 

driver (Feany, M.B. 2000 Nature).Drosophila genome does not have an endogenous α-

synuclein gene and in an otherwise wild type background the transgenic human α-
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synuclein expressing flies show a unique protein band (lanes 1&2). I introduced the 

Serf∆10a null deletion allele either in combination with the P-element insertion mutant, 

SerfEY09918 (lanes 3&4) or a different null mutant Serf∆6c (lanes 5&6) or as a homozygous 

null (lanes 7&8) in the α-synuclein expressing transgenic line. In all cases, the human α-

synuclein proteins decreases roughly 3 to 8 fold when Serf expression is compromised. 

        As the P element insertion site is outside of the ORF, some level of Serf activity 

might persist and contribute to the milder impact of this construct on the α-synuclein 

protein abundance. In contrast, the Serf∆10a/Serf ∆6c and homozygous Serf∆10a are both 

complete null and shows a more robust effect. However, there was no notable changes in 

α-synuclein transcript abundance with or without Serf expression. While contrasting with 

the C. elegans results (Van-Ham et al., 2010) these data are consistent with Serf’s impact 

on Smn abundance, suggesting that Serf might regulate the expression of these two 

proteins (Smn and α-synuclein) at the level of protein synthesis or stability. 
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Fig 5.12 The loss of Serf in a fly model of Parkinson’s disease correlates with the 

reduction of α- synuclein protein abundance but not the transcript levels. A) 

Western blot image showing α-synuclein protein levels in flies expressing human α-

synuclein in neuronal tissue with wild type Serf (Elav GAL4> α-synuclein ) or with 

different combinations of Serf alleles (Serf∆10a and Serf∆6c are null alleles whereas 

SerfEY09918 represents the P element insertion allele). Two biological replicates for each 

genotype are shown. Elav protein in the corresponding lanes are shown as loading 

control. The values under the lanes corresponding to the genotypes indicate the mean α-

synuclein protein levels relative to Elav between the two replicates. B) Semi-quantitative 

RT-PCR image showing α-synuclein transcript levels from flies with the same genotypes 

as used for the protein analysis. 3x and 1x amount of cDNAs were used for each 

genotype. The level of α-tub84B transcript serves as the internal control. The numbers 

indicate the mean α-synuclein transcript levels relative to α-tub84B between the two 

reactions for each genotype. 
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5.3 Conclusions and discussion 

The major conclusion from this portion of my dissertation is that the Serf gene is a 

genetic modifier of SMA in the Drosophila melanogaster disease model. Similar to what 

was proposed in humans, reduced Serf expression enhances the mutant phenotype. And, 

while experimentally increased Serf gene expression cannot compensate for the absence 

of Smn activity, it does partially suppress some phenotypic defects associated with 

diminished Smn activity. While my study did not address the molecular basis for this 

interaction, our data is consistent with the view that the Serf gene is required for the 

maximal Smn protein abundance, the protein which is limiting in SMA patients. 

Furthermore our data rule out a mechanism acting through transcription or RNA stability 

and argue for Serf having a direct impact on protein synthesis or, more likely (see below), 

Smn protein stability. 

          The fly SMA disease model established by Praveen et al. served as a valuable 

system for testing genetic interaction between Serf and Smn. Here, the very same Smn 

amino acid substitutions found in human SMA patients are expressed in Drosophila 

through mutation of the endogenous fly gene. The mutations reside in distinct functional 

domains and represent a wide range of phenotypic severities providing the scope for 

easily and quantitatively scoring exacerbation and suppression of phenotypes. In my 

study, I found that the mild mutant alleles SmnD20V and SmnT205I proved most valuable to 

quantify the impact of diminished Serf expression on growth and development, since with  

normal Serf expression, these Smn mutants progress through all developmental stages. In 

contrast, the more severe mutants, SmnG206S and SmnY203C provided a more sensitive 

background for monitoring the impact of Serf overexpression on growth and larval 
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mobility as the weaker Smn mutants were phenotypically normal in these assays. 

Interestingly, the SmnD20V mutant was the most sensitive in the viability assays performed 

with knocking down and overexpressing Serf. While Serf overexpression could not rescue 

the larval lethality associated with SmnG206S and SmnY203C mutants, it improved the 

proportion of larvae pupating, modestly but significantly, only in the SmnD20V line. This is 

consistent with the observation that knocking down Serf showed the greatest reduction in 

viability at the larval and pupal stages in the SmnD20V mutant.  

          Since, the point mutations reside in the distinct functional domains of the Smn 

protein, it allows us to hypothesize a basis for the exacerbation and amelioration of 

associated phenotypes that we observed with manipulating Serf abundance. The severe 

larval lethal mutations SmnG206S and SmnY203C reside in the YG box domain necessary for 

self-association and complex formation with the Gemins and other proteins. It has been 

shown by Praveen et al. that the amount of Smn protein is greatly reduced in these lines 

giving rise to a more severe phenotype. The SmnT205I mutation, although present within 

the YG box domain, has been shown to only slightly reduce the amount of Smn protein 

(Praveen et al., 2014), which is consistent with a less severe mutant phenotype. On the 

other hand the SmnD20V mutation is located in the Gemin2 binding domain and does not 

associate with diminished Smn protein abundance, thereby explaining a weaker impact 

on the mutant phenotype. Our data show that while increased Serf protein could not 

restore normal level of Smn protein and associated larval lethality in the SmnG206S and 

SmnY203C mutants it increased the Smn protein abundance in the SmnD20V and SmnT205I 

flies. At least for the SmnD20V mutant, this increased Smn protein level correlate with an 

improvement of pupation. However, reduced level of Serf in the SmnD20V and SmnT205I 
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mutants associated with an exacerbation of mutant phenotypes in both cases, which 

correlates with a further reduction in the Smn protein level. Therefore, together the data 

support the hypothesis that Serf driven changes in the SMA phenotypes is caused, at least 

partly due to altered Smn protein abundance. Why Serf improves Smn protein in the 

milder allelic background but not in the severe mutants is not understood clearly. One 

possibility is that, since the YG box mutant SmnG206S and SmnY203C are impaired in self-

oligomerization, making more Serf would not help in stabilizing these mutant proteins, if 

Serf does so by promoting Smn self-association. Conversely, SmnD20V and SmnT205I 

mutants produce Smn protein capable of self-oligomerization and in these backgrounds 

increased Serf protein might act on stabilizing the Smn protein. Moreover, the fact that 

increased Smn level phenotypically benefit SmnD20V but not SmnT205I possibly points to 

Serf’s relevance in the mechanism by which SmnD20V mutation function. Praveen et al. 

showed that SmnD20V protein is deficient in Gemin2 binding. Therefore it is possible that 

increased Serf protein promotes SmnD20V self-association into multimeric complex which 

is more efficient in Gemin2 binding. On the other hand, the SmnT205I protein has been 

shown to self-associate and interact with Gemin3 (Praveen et al., 2014), and the reason 

behind the reduced viability in this mutant is unclear.  The observation that the increased 

SmnT205I protein with Serf overexpression does not correlate with a viability improvement 

in this mutant might imply that the effect of this mutation does not depend on the amount 

of available Smn protein.  

          The other interesting thing we learned from the genetic interaction test is that the 

larval growth and locomotion of the SmnG206S and SmnY203C mutants significantly 

improved with Serf overexpression although the larval lethality is not rescued. From our 
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mouth hook assay we learned that 90% of the small size SmnG206S and SmnY203C larvae 

correspond to 3rd instar stage, although the remaining 10% showed 2nd instar specific 

mouth hook features. This implies that the severe Smn mutations possibly give rise to 

developmental delay or arrest in a certain proportion of the mutant population. The 

proportion that reaches 3rd instar stage within specified time are growth impaired since 

they do not reach the wild type third instar size and die before pupation. With Serf 

overexpression in these severe mutants we still see about equivalent proportion of larvae 

in the second instar stage, however, the proportion that reach 3rd instar stage grow 

significantly bigger than the mutants with normal level of Serf. It is known that in order 

for the larva to undergo the metamorphic molt (pupation), the larva is required to attain a 

critical weight (Mirth et al.,2005). Since the SmnG206S and SmnY203C mutants are smaller in 

size and die as 3rd instar, it is conceivable that they fail to attain the critical weight and 

hence cannot undergo metamorphosis. Serf overexpression in these mutants significantly 

improve their growth but that is probably not sufficient for initiating the metamorphic 

molt. However, the positive correlation between Serf expression and the larval growth of 

Smn mutants is corroborated by the observation that reduced level of Serf in the milder 

Smn mutants, SmnD20Vand SmnT205I, corresponds to reduced larval body size. 

           The improvement of larval growth in the severe Smn mutants, the SmnG206S and 

SmnY203C, also associates with improved locomotion with Serf overexpression. Whether 

or not the locomotion impairment in these Smn mutants correspond to abnormal synaptic 

transmission or morphology at the larval NMJ, has not been described by Praveen et.al. 

However, the Smn73Ao null mutant, first described by Chan et al., 2013, is known to have 

locomotion defect that correlates with reduced excitatory post synaptic current and 
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disorganized synaptic boutons at the larval NMJ. In contrast, the locomotion impairment 

associated with the neuronal and muscle specific Smn knockdown in flies do not directly 

correlate with diminished synaptic transmission, but associates with aberrations in the 

long-term homeostasis of the synaptic activity (Timmerman et al., 2012). This is 

consistent with the mice report where motor neuron specific SMN knockdown caused 

reduced synaptic transmission in mice at post-natal day 8 (PND-8) but got 

overcompensated by PND 10-12 to show increased end-plate potentials and quantal 

content than the control (Park et al., 2010). Thus this implies that the homeostatic 

compensation of the synaptic transmission defect that occurs over developmental period 

is disrupted upon reduced SMN level in the motor neuron in mice (Park et al., 2010). The 

observation that Serf modulates the locomotion phenotype in Smn mutants raises the 

possibility that it affects some of the NMJ properties in these mutants. Although I did not 

study the NMJ morphology and activity in the Smn missense mutants with or without 

altered Serf, I attempted to study synaptic transmission in the Serf mutants as well as the 

SmnE33 mutant (Rajendra et al., 2007) with and without Serf knockdown (Appendix fig. 

A-3). My preliminary data showed that the SmnE33 mutant and the global Serf knockdown 

mutant display significantly increased EPSPs at the larval NMJ, while Serf knockdown in 

the SmnE33 mutant rescues the defect to normal. Such a complex genetic interaction is 

difficult to interpret. I suspect that the increased EPSPs observed in the Smn mutant and 

the Serf knockdown larvae at late 3rd instar stage could be due to aberrant homeostatic 

compensation as observed in mice (Park et al., 2010).  However, the Serf null mutant did 

not result in the same phenotype and looked almost identical to the control. Homeostatic 

compensation in the null mutant might explain this apparently discrepancy between the 
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null and the knockdown allele. Nevertheless, these preliminary observation might suggest 

potential impact of Serf on larval NMJ thereby affecting Smn activity at the synapse in a 

SMA model. Whether locomotion impairment in the SmnG206S and SmnY203C model 

correspond to similar NMJ defects and Serf driven rescue of the mobility phenotype 

correlates with an alteration of the NMJ properties, therefore becomes an important 

question to address.  

          Consistent with the phenotypic improvement with enhanced Serf in the SmnG206S 

we found a partial restoration of Smn protein, however, the impact of Serf on SmnY203C 

mutant protein could not be determined as it is undetectable on a western blot, with or 

without Serf over expression. Since the SmnG206S mutant protein is oligomerization 

deficient, it is curious to imagine how enhanced Serf might be impacting its abundance. 

One possibility is that it stabilizes the mutant protein by preventing its degradation 

through the Ubiquitin proteasome system. Alternatively, Serf could also stabilize the 

maternally deposited wild type Smn protein by either promoting its oligomerization or 

preventing its degradation.  

          The underlying mechanism of Serf dependent changes in Smn protein abundance is 

unknown. Our data shows that in the Serf mutant Smn gene expression is not reduced but 

the protein expression is diminished. In addition, Serf driven restoration of Smn protein 

in the SmnE33 mutant is not associated with increase in the RNA level. Our data on Serf’s 

impact on protein abundance also extend beyond the Smn protein and shows that for at 

least another protein α-Syn, associated with the Parkinson’s disease, loss of Serf greatly 

diminishes its protein abundance without correlated changes in the transcript levels. 

Together these data suggest that Serf dependent changes in the protein level likely acts 
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through protein synthesis or stability. Given Serf’s previously described involvement in 

the amyloid protein assembly in C. elegans and in vitro (Van-Ham et al.,2010; Falsone et 

al.,2012) it is possible that Serf positively impact Smn and α-Syn protein stability by 

promoting their oligomeric assembly. Alternatively Serf might directly impact the half-

lives of these proteins by either preventing their ubiquitination or their delivery to the 

proteasome, since both the Smn and α-Syn are known to be degraded by the UPS 

(Burnett et al., 2008; Liu et al., 2003). It is known from the α-Syn study that Serf does 

not itself incorporate into the amyloids but promote their growth, so we think that it 

might act like a chaperone protein to promote multimeric assembly of these proteins, 

hence rendering them more stable. Although our Smn self-association assay was not 

successful, we have seen Serf dependent changes in Smn post translational modification 

by phosphorylation (Appendix Fig. A-1), which might be relevant for assembly into the 

huge protein complex. Therefore, modulation of Smn interaction with the Gemins by 

altered level of Serf might provide an alternate hypothesis to Serf and Smn interaction in 

the cells. The idea here is that Serf driven stabilization of Smn protein might result from 

accelerated Smn complex formation by increased interaction with the Gemins. All these 

ideas can be tested and requires future attention for a better understanding about how Serf 

and Smn interact within cells to modify SMA phenotypes.  

5.4 Materials and Methods 

5.4.1 Fly strains and maintenance 

The following genotypes are used in this chapter: (i) w1118; (Xia, Fakler et al.) y w; 

{Act5C-GAL}25FO1/ CyO, y+  (Xia, Fakler et al.) [(i) & (Xia, Fakler et al.) are 

obtained from Bloomington Stock Center] (iii) UAS-Serf cDNA (generated in lab); 
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(Ruan, Tang et al.){UAS-hp-Serf}100894 (Xia, Fakler et al.) (Serf RNAi line- Vienna 

Drosophila RNAi Center); (v) SmnX7/TM6.tb.GFP; (vi) Smnx7 , SmnWT/TM6.tb.GFP; (vii) 

Smnx7 , SmnD20V/TM6.tb.GFP; (viii) Smnx7 , SmnT205I/TM6.tb.GFP; (ix) Smnx7 , 

SmnV72G/TM6.tb.GFP; (x)Smnx7, SmnG206S/TM6.tb.GFP; (x) Smnx7 , SmnWT/TM6.tb.GFP; 

(Zhang, Xing et al.) SmnE33  [(v)-(Zhang, Xing et al.) are generously gifted by Dr. 

Gregory Matera, University of North Carolina, Chapel Hill]. Flies were cultured in 25C 

humidified chamber under constant light condition. Vials or bottles containing semi 

defined medium, as described by Bloomington Drosophila Stock Center (Backhaus et 

al.,, 1984), were used for all experiments in this study. The description of the crosses 

performed to obtain the required genotypes used in this chapter is provided in table 5.5 - 

5.8 

Table 5.5 describes the generation of Act5c-GAL4-SmnX7 recombinant line. 

Step Cross Progeny selected 

1. ♀w1118, Act5c GAL4/+ x ♂ w1118, SmnX7/TM3 w1118, SmnX7/Act5c-GAL4 

2. ♀ w1118, SmnX7/Act5c-GAL4 x ♂ w1118, Ly/TM3 w1118, Act5c-GAL4- 

SmnX7/TM3 (Red eye) 

3. w1118, Act5c-GAL4- SmnX7/TM3 (40 individual fly) 

x w1118, Ly/TM3       

w1118, Act5c-GAL4- 

SmnX7/TM3 

4. w1118, Act5c-GAL4- SmnX7/TM3 x Smnx7/TM6 tb 

GFP 

select lines producing no non-

TM3 and non-TM6 flies 

(Lethal) 
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Table 5.6 describes the generation of w1118, UAS-Serf (cDNA)/Cyo GFP, Act5c-

GAL4- SmnX7/TM3 Ser GFP line. 

Step Cross Progeny selected 

1. ♀ w1118, Act5c-GAL4- SmnX7/TM3 x ♂ w1118, 

Sp/Cyo-GFP, Di/TM3 Ser GFP 

w1118, +/Cyo-GFP, Act5c-

GAL4- SmnX7/Di 

2. ♀ w1118, UAS-Serf (cDNA) x ♂ w1118, Sp/Cyo-GFP, 

Di/TM3 Ser GFP 

w1118, UAS-Serf (cDNA)/Sp, 

TM3 Ser GFP/+ 

3. ♀w1118, +/Cyo-GFP, Act5c-GAL4- SmnX7/Di x ♂ 

w1118, UAS-Serf (cDNA)/Sp, TM3 Ser GFP/+ 

w1118, UAS-Serf (cDNA) 

/Cyo-GFP, Act5c-GAL4- 

SmnX7/TM3 Ser GFP 

4. w1118, UAS-Serf (cDNA) /Cyo-GFP, Act5c-GAL4- 

SmnX7/TM3 Ser GFP (individual fly) x w1118, 

Sp/Cyo-GFP, Di/TM3 Ser GFP 

Make a stock from each 

single fly 
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Table 5.7 describes the generation of w1118, UAS-hp-Serf (RNAi)/Cyo GFP, 

SmnTg/TM3 Ser GFP line (Tg represents Smn transgene, either wt or the various 

point mutants -D20V/T205I/V72G). 

Step Cross Progeny selected 

1. ♀ w1118, SmnTg/TM3 x ♂ w1118, Sco/Cyo-GFP, 

Sb/TM3 Ser GFP 

w1118, +/Cyo-GFP, 

SmnTg/TM3 Ser GFP 

2. ♀ w1118, UAS-hp-Serf (RNAi) x ♂ w1118, Sco/Cyo-

GFP, Sb/TM3 Ser GFP 

w1118, UAS-hp-Serf 

(RNAi)/Cyo GFP, +/TM3 

Ser GFP 

3. ♀ w1118, +/Cyo-GFP, SmnTg/TM3 Ser GFP x w1118, 

♂ UAS-hp-Serf/Cyo GFP, +/TM3 Ser GFP 

♀ w1118, UAS-hp-Serf 

(RNAi) /Cyo-GFP, 

SmnTg/TM3 Ser GFP 
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Table 5.8 describes the specific crosses performed, to obtain the progeny of required 

genotypes for the different assays conducted in this chapter. (Tg represents Smn 

transgene either wildtype or the various point mutants-

/D20V/T205I/V72G/Y203C/G206S) 

Stage 

collected  

Cross description Progeny genotype 

collected 

1st instar 

larva 

Act5c GAL4/TM3 Ser GFP x w1118 Act5c GAL4/+ 

Act5c-GAL4/TM3 Ser GFP x UAS-Serf 

(cDNA) 

UAS-Serf (cDNA)/+, Act5c-

GAL4/+ 

Act5c-GAL4/TM3 Serf GFP x UAS-hp-Serf 

(RNAi) 

UAS-hp-Serf(RNAi)/+, Act5c 

GAL4/+ 

Smnx7 , SmnTg/TM6.tb.GFP x Smnx7/ 

TM6.tb.GFP 

Smnx7 , SmnTg/ Smnx7 

w1118, UAS-Serf (cDNA) /Cyo-GFP, Act5c-

GAL4- SmnX7/TM3 Ser GFP x Smnx7 , 

SmnTg/TM6.tb.GFP 

w1118, UAS-Serf (cDNA)/+, 

Act5c-GAL4- SmnX7/ Smnx7 , 

SmnTg 

w1118, UAS-hp-Serf (RNAi) /Cyo-GFP, Smnx7, 

SmnTg/TM3 Ser GFP x w1118, Act5c-GAL4- 

SmnX7/TM3 Ser GFP  

w1118, UAS-hp-Serf 

(RNAi)/+, Smnx7 , SmnTg/ 

Act5c-GAL4- SmnX7 
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Table 5.8 continued.. 

Adult Act5c-GAL4/Cyo x w1118 Act5c-GAL4/+ 

Act5c-GAL4/Cyo x UAS-Serf (cDNA) UAS-Serf (cDNA)/Act5c-

GAL4 

Act5c-GAL4/Cyo x UAS-hp-Serf (RNAi) UAS-hp-Serf(RNAi)/ Act5c 

GAL4 

Act5c-GAL4/Cyo GFP x w1118 Act5c-GAL4/+ 

Act5c-GAL4/Cyo GFP, Smne33 x UAS-Serf 

(cDNA), Smne33 

Act5c-GAL4/ UAS-Serf 

(cDNA), Smne33 

Act5c-GAL4/Cyo GFP, Smne33 x  Smne33 Act5c-GAL4/+, Smne33 

 

5.4.2 Viability and growth assay 

Viability assay was performed as described in chapter 2, section 2.4.5. In short, At least 

100 synchronized 1st instar larvae of required genotype were collected on a small amount 

of the standard fly cornmeal food which was then carefully placed inside fly food vials 

for letting the larvae to develop into pupae and adults. The total number of pupae and 

adult formed per genotype is calculated and expressed as a proportion of the total number 

of larvae (% pupation, % larvae reaching adulthood) and pupae (% pupae eclosed). To 

monitor growth, food containing the staged larvae were scooped out from vials with a 

spatula at 96 and 120 hours post egg laying. The larvae were then carefully separated 

from the food on a small petri dish, washed in 1X PBS briefly and transferred in 100% 

ethanol for 10 minutes to kill them. Staged larvae were then aligned on glass slides for 
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imaging under 10X magnification. Larval body area measurements were performed using 

Image-J software as described in 5.4.6 and statistical analysis is described in 5.4.8. 

5.4.3 Larval mobility assay 

Larval mobility assay is performed as described in chapter 2, section 2.4.6.  In short, 

synchronized (96 hrs post egg laying) 3rd instar larvae were collected and placed on apple 

juice agar plates for 1 minute of acclimatization followed by the counting of the body 

wall contractions  for another 1 minute. At least 15 larvae for each genotype were 

assayed and the average body wall contractions/minute were measured and statistically 

analyzed (5.4.8).  

5.4.4 SDS PAGE and western blots 

SDS PAGE and western blots were performed following the procedure as described in 

chapter 2, section 2.4.4. 1 week old adult flies, males and females separately (12-15 flies 

for each) and synchronized 3rd instar larvae (96 hrs post egg laying) were used for 

extracting total protein. Mouse monoclonal anti-fly Smn (Chang et al., 2008) (1:1000 

dilution, generous gift from Dr. Anindya Sen, UMASS), mouse monoclonal α-tubulin 

(1:1000 dilution; Developmental Studies Hybridoma Bank 12G10 anti-alpha tubulin -s) 

and mouse monoclonal anti-β tubulin (1:1000 dilution; Developmental Studies 

Hybridoma Bank, E7-s), mouse monoclonal anti-human alpha synuclein (Feany et al., 

2000) (1:1250; BD Biosciences) and rat anti-Elav (1:5000; Developmental Studies 

Hybridoma Bank, 7E8A10) primary antibodies were used. Alkaline phosphatase 

conjugated polyclonal goat anti-mouse IgG (1:5000 dilution, Life Technologies) and 

horseradish peroxidase conjugated goat anti-rat IgG (1:5000 dilution, Santa Cruz) 

secondary antibodies were used. Alkaline phosphatase based signals were detected by 
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BCIP/NBT color development substrate (Promega) or AmershamTM ECF substrate (GE 

Healthcare, Life Sciences) based detection of the fluorescence signal. HRP based signals 

were detected by SuperSignal West Pico reagents (Thermo Fisher Scientific) followed by 

development on X-ray films (CL-XPosureTM Film, 5 x 7 inches, Thermo Scientific). 

Colored membranes and developed X-ray films are scanned using HP G4050 scanning 

machine and fluorescence signals are scanned by the Typhoon scanner (Emission 

Filter526 SP Fluorescein, Cy2, AlexaFluor 488, PMT-600, Sensitivity-high) followed by 

densitometric analysis with Image Quant 5.2 software.  

5.4.5 Semi-quantitative RT-PCR 

Reverse transcriptase PCR was done to analyze the expression level of Smn and α-

synuclein transcript in flies with various Serf alleles in otherwise wild type or in Smn 

mutant background. The Total RNA extracted (for RNA extraction procedure see chapter 

2, section 2.4.3) was DNase treated and 0.8 ug was subjected to reverse transcription 

using the MMLV Reverse Transcriptase 1st-Strand cDNA Synthesis Kit (Epicentre), and 

the levels of gene expression were then examined by PCR using first-strand cDNA as 

template. The α-tub84B transcript was used as an internal control. The primer pairs are 

described in table 5.9.   
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Table 5.9 describes the primer pairs used in semi-quantitative RT-PCR. 

Genes Primer Pairs 

SMN 5’-TTCTGGATGACTTGGGAGTCT-3’ and 5’-

CGGAACCAGTATCCTTCAAAG-3’ 

α-synuclein 5’-ATGGATGTATTCATGAAAGGACT-3’ and 5’-

TTAGGCTTCAGGTTCGTAGTCT-3’ 

α-tubulin 84B 5’-GCTGTTCCACCCCGAGCAGCTGATC-3’ and 5’-

GGCGAACTCCAGCTTGGACTTCTTGC-3’ 

 

5.4.6 Image J analyses 

Image J software was used to perform larval body area measurements. Following are the 

sets of action performed to obtain the measurements- file>open image> select the straight 

line tool to draw a straight line following the traces on the graph sheet (each side of the 

square=1 mm) in the background of each image> analyze> set scale by putting the known 

distance an unit corresponding to the pixels selected by the straight line and then hit 

global> select the ‘freehand selection’ tool to mark the outline of the 

larva>analyze>measure- this will produce a datasheet with the larval body area 

measurement.  

5.4.7 Statistical analyses 

The viability assay dataset were analyzed for statistical significance by the two sample t-

test between percent. Rest of the data in this chapter are analyzed for statistical 
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significance calculations using two-tailed Unpaired Student’s t-test. For all statistical 

tests P<0.05 were considered significant. For all graphs, data are represented as the mean 

± the standard deviation of mean (Becker, Semler et al.) and significant difference is 

expressed as: ‘*’- P value between 0.01-0.05; ‘**’- P value between 0.001-0.01; ‘***’ P 

value<.001. 
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Chapter 6: Discussion  

          SMA is an untreatable devastating disease affecting numerous children worldwide. 

In spite of our significant progress in unravelling the cause and the mechanism of SMA 

pathogenesis, we are still lacking understanding about many critical questions. Why 

diminished SMN is specifically detrimental to motor neuron survival? Why different 

forms of SMA exist?  The Drosophila model of SMA has proven to be a powerful 

invertebrate system to address these questions and major discoveries were made 

concerning the molecular pathogenesis of the disease.  

          The Drosophila SMA model significantly contributed to the understanding of SMN 

dependent NMJ abnormalities in the pathogenesis of the disease (Chan, Miguel-Aliaga et 

al. 2003). Some of the key features of the SMA NMJs were first discovered in the fly 

model. For instance, the disorganized and reduced number of synaptic motor neuron 

boutons, reduced clustering of the neurotransmitter receptor subunit GluRIIA and 

reduction in the excitatory post synaptic current were identified as the hallmark of the 

disease, the rescue of which requires SMN activity in both neurons and muscles (Chan, 

Miguel-Aliaga et al. 2003). The abnormal architecture and activity of SMA NMJs 

correlate with greatly impaired motor functioning, slow growth and developmental 

defects in late developmental stages ( late larval and pupal), (Chan, Miguel-Aliaga et al. 

2003, Chang, Dimlich et al. 2008, Praveen, Wen et al. 2014).These mutant phenotypes 

serve as useful quantitative means for studying genetic modifiers and for conducting 

large scale screening  to test therapeutic compounds (Yankner, Lu et al. 2008). 
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         The discovery of 17 enhancers and 10 suppressors of SMA using the Exelixis 

Collection of transposon-induced mutations in Drosophila (Parks, Cook et al. 2004, 

Thibault, Singer et al. 2004) demonstrates the power of this invertebrate model to predict 

previously unknown genetic interactions of SMN (Chang, Dimlich et al. 2008). Sixteen 

out of these 27 modifiers (Table 6.1) showed cross species conservation in C. elegans 

SMA model demonstrating parallel enhancement or suppression of phenotypes pointing 

at the conserved features of the genetic network pertinent to the development of the 

disease (Dimitriadi, Sleigh et al. 2010). For instance increased BMP signaling improves 

the NMJ defects in SMA flies (Chan, Miguel-Aliaga et al. 2003) with correlated increase 

in the neuromuscular activity in terms of pharyngeal pumping in C. elegans SMA model 

(Dimitriadi, Sleigh et al. 2010). As another example, the protective SMA modifier PLS3 

identified initially in SMA patients (Dent and Gertler 2003, Oprea, Krober et al. 2008), 

when knocked down in SMA flies, reduces the number of synaptic motor neuron bouton 

numbers at the larval NMJ demonstrating the conservation of this SMA modifier between 

flies and humans. A recent study by the Matera group showed that specific Smn point 

mutations exert similar effects on humans and flies in terms of reduced viability and 

locomotion impairment and show a consistent corresponding range of phenotypic 

severities in the two systems (Praveen, Wen et al. 2014). 

          Adding to the value of using the Drosophila SMA model for studying the genetic 

modifiers, my study have shown that the Serf gene modifies the SMA phenotypes 

associated with disease severity in flies. This finding supports the human data that SERF 

deletion exacerbates the effects of SMN1 mutation in the most severe forms of SMA. In 

addition my data show that increased Serf expression improves certain SMA-associated 
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phenotypes like decreased growth and locomotion. I propose that the genetic interactions 

between Serf and Smn in flies parallel their interaction in humans. 

6.1 The SMN biology and potential impact of Serf 

          The mammalian SMN protein resides within a large (>1 mDa) multimeric 

complex, the core of which is made up of SMN tetramer that directly or indirectly 

interacts with eight other proteins including Gemins and Unrip (Meister, Buhler et al. 

2000, Otter, Grimmler et al. 2007). The N terminal region of SMN (codons 13-44) binds 

Gemin 2 (Liu, Fischer et al. 1997) while Smn domains coded by exon 2b (52-91) and 

exon 6 (242-279) form the domain required for Smn dimerization and further 

oligomerization (Lorson, Strasswimmer et al. 1998) (Young, Man et al. 2000)). 

Drosophila contains a single copy SMN gene that codes for a highly conserved 

homologue (Miguel-Aliaga, Chan et al. 2000). It forms a very simple SMN complex in 

the cell comprised of only Gemin2, 3 and 5 and the Smn tetramer, sufficient for 

mediating the conserved steps of spliceosomal snRNP assembly function (Kroiss, Schultz 

et al. 2008).  
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Fig 6.1 The SMN complexes in mammals and Drosophila. The numbers represent 

specific Gemin proteins ( eg 2: Gemin 2, 3: Gemin 3 etc.). U: Unrip. 

          Diminished SMN protein abundance impairs SMN-directed function but which 

SMN activity is the most critical for development of SMA is unknown. A lot of attention 

has been given to its best characterized function in spliceosomal snRNP assembly and it 

is thought that aberrant splicing of disease-relevant transcript(s) (isoforms specific to 

motor neurons) could be causative to neuronal selectivity in SMA. Reduced snRNP 

levels and impaired snRNP assembly has been documented in SMA patient derived cells 

as well as in animal models (Pellizzoni, Yong et al. 2002, Gabanella, Butchbach et al. 

2007). Biochemical assays testing the ability of SMN to assemble Sm proteins onto 

snRNA has been used to show strong correlation between the disease severity and the 

extent of snRNP assembly impairment (Gabanella, Butchbach et al. 2007). In addition, 

defective SMN complex function in SMA mice tissues has been shown to preferentially 

reduce the accumulation of a minor class U11-snRNP (Gabanella 2007). More recently, 

Lotti and colleagues identified a U12 intron containing conserved gene Stasimon in 

Drosophila as being a SMN target which has essential function in the motor circuit 
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(Lotti, Imlach et al. 2012). However, a more broad spectrum and non-uniform alteration 

of the stoichiometry of snRNA and splicing of numerous genes due to SMN deficiency 

has been documented in all cells including motor neurons (Zhang, Lotti et al. 2008). 

Whether or not Serf, as a modifier of SMA phenotype, influences the SMN dependent 

splicing changes is unknown. The yeast ySERF, although co-purifies with two essential 

splicing factors, Prp8 & Brr2, does not have obvious impact on general splicing (Ghosh 

and Rymond, unpublished). However importantly, yeast does not have SMN homologue; 

therefore if SERF genetically interacts with SMN to influence cellular splicing could not 

be tested. Studies in Drosophila has shown that levels of spliceosomal snRNA do not 

change in larval-lethal Smn-null mutants, suggesting that larval lethality is not associated 

with global depletion of spliceosomal snRNP and splicing (Rajendra, Gonsalvez et al. 

2007). Furthermore, transgenic expression of low levels of wild type SMN fully rescued 

the larval mobility and viability of Smn null mutants but not the snRNA levels (Praveen, 

Wen et al. 2012; Garcia et al. 2016). The expression level of four minor-class intron 

containing gene, reduced in Smn-null did not correlate with transgenic expression of wild 

type Smn (Praveen, Wen et al. 2012). Moreover, a RNA-seq based study showed that the 

bulk changes in the expression of minor intron containing transcripts in Smn-null larvae 

is contributed by the developmental arrest of this mutant, thus arguing against a minor-

intron splicing dependent etiology of SMA (Praveen, Wen et al. 2012, Garcia, Lu et al. 

2013). Together, these studies in Drosophila suggest that the snRNP assembly function 

of Smn can be uncoupled from the reduced organismal motility and viability observed 

with reduced Smn activity (Praveen, Wen et al. 2012, Garcia, Lu et al. 2013). Based on 

these observations, I predict that the Serf dependent modulation of SMA phenotype, 
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especially the mobility and viability defects, are not mediated by broad defects in splicing 

in flies. 

Non-canonical functions of SMN protein have also been postulated providing hypothesis 

for motor neuron specificity in SMA. The finding that SMN localizes to the 

ribonucleoprotein granules (Fan and Simard 2002, Zhang, Xing et al. 2006) undergoing 

bidirectional transport along the long neurons (Zhang, Xing et al. 2006) led to the 

hypothesis that SMN functions in localized RNA processing and translation within 

neurons, necessary for proper neuronal development and NMJ function. In support of this 

idea, reduced SMN protein that co-localizes with β-actin containing RNA-protein 

complexes (Rossoll, Kroning et al. 2002, Rossoll, Jablonka et al. 2003) was shown to 

diminish β-actin mRNA and protein levels in axons and growth cones with correlated 

axonal outgrowth and pathfinding defects (Zhang, Pan et al. 2003).  

It is conceivable that Smn contribution to NMJ activity could be modulated by Serf. 

Although I did not test the effect of Serf on NMJ morphology, limited studies were 

performed to test the electrophysiological properties of the Smn mutant and wild type 

NMJs with and without altered Serf expression (Appendix Fig. 3). We found that the 

hypomorphic Smne33 mutant and the Serf RNAi knockdown mutant displays increased 

excitatory post synaptic potential (EPSP) at the larval NMJ.  Paradoxically however, Serf 

knockdown in the Smne33 mutant background brought the EPSPs back to the wild type 

range. Such a response is hard to interpret.  In addition, I saw an inconsistency in the 

EPSP responses of the Serf knockdown and Serf null mutant where the knockdown 

showed hyperactivity while the deletion mutant displayed wild type like activity. 
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Therefore, Serf dependent changes in the larval NMJ, both morphology and activity, 

needs to be characterized more critically 

In spite of the controversy about the features of SMN function most pertinent to the 

disease pathogenesis, it is a known fact that amount of available active SMN protein is 

critical for the motor neuron survival. The SMN protein is known to be ubiquitinated and 

degraded by the proteasome (Burnett, 2008). The major product of the SMN2 gene, 

SMN∆7, is deficient in oligomerization activity (Lorson et.al 1999, Young et.al 2000b) 

and binding to Sm core proteins (Pellizzoni, Charroux et al. 1999) and is known to have a 

two-fold shorter half-life in the cell compared to the full length protein (Burnett, Munoz 

et al. 2009). Incorporation of the SMN protein into oligomers and association with the 

Gemin complex reduce its rate of turn-over (Burnett, Munoz et al. 2009). In fact, SMN∆7 

can be stabilized by co-expressing the full length SMN suggesting that this derivative 

may be stabilized by its inefficient association with the full length protein (Le, Pham et 

al. 2005). In general, mutations that inhibit Smn protein oligomerization or Gemin 

complex assembly shorten SMN protein half-life (Burnett, Munoz et al. 2009). All these 

results strongly establish the idea that oligomerization and complex formation is the key 

to regulating SMN protein stability in cell. 

I have shown that the level of Smn protein in flies is sensitive to the level of Serf 

expression, such that the Smn protein level changes with manipulating Serf without 

correlated change in the mRNA level. This suggested that Serf impact Smn protein 

expression post-transcriptionally, possibly at the level of synthesis or stability. Similar to 

its effect on Smn, we have also shown that the loss of Serf activity in flies greatly reduces 

the level of the α-synuclein peptide in vivo acting through a post-transcriptional event. 
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The α-synuclein, similar to Smn, self-oligomerizes to form long fibrillar amyloid 

complexes which renders them stable inside the cells. Therefore, one possibility is that 

Serf enhances stability of these proteins by promoting their assembly into complexes. 

 The proteins that are known to be involved in the process of protein complex assembly 

are the molecular chaperones (Makhnevych, Houry 2011). The HSP90 protein, for 

instance, functions in the assembly of seven different protein complexes- snoRNP, RNA 

polymerase II, phosphatidylinositol-3 kinase related protein kinase, telomere complex, 

kinetochore, RNA induced silencing complex (RISC) and 26S proteasome (Makhnevych, 

Houry 2011). More than 20 different co-chaperones and cofactors regulate the activity of 

HSP90 in these processes (Makhnevych, Houry 2011). In addition HSP90 has also been 

suggested in modulating the growth of α-synuclein amyloid fibril in an ATP dependent 

manner (Falsone et al. 2009). It has been shown that in presence of ATP, HSP90 favors 

the fibrillar growth of the α-synuclein protein over oligomeric species in an in vitro assay 

system. Other chaperone proteins have also been identified to have positive impact on the 

amyloid assembly process. For example, the formation of amyloid inclusions of 

expanded polyQ huntingtin protein was found to be increased in mammalian cells with 

increased expression of human HSP40, Hdj2 (Wyttenbach et al., 2000). In a follow up in-

vitro study, the chaperones HSP70 and HSP40 were found to suppress oligomeric 

assembly of expanded polyQ peptide while promoting its fibrillar growth (Wacker et.al 

2004). Given Serf’s implication in promoting polyQ peptide and α-synuclein assembly 

into amyloid complexes (Van Ham et al. 2010; Falsone et al. 2012), together with our 

finding that it contributes in stabilizing cellular proteins (Smn and α-synuclein), imply 

that Serf could function as a molecular chaperone in the cell thereby affecting protein 
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complex assembly and stability. Such a cellular function of Serf could explain its 

relevance in SMA as well as its potential to impact neurodegenerative protein toxicity 

diseases in humans. It is important to note here that the C. elegans report on Serf has 

shown that the suppression of polyQ aggregation by Serf/MOAG4 deletion is not 

mediated by the HSF1 protein- the activator of a number of heat shock protein genes, 

including HSP70 (Van Ham et al. 2010). This study hypothesized that Serf in C. elegans 

might function downstream of HSF1 protein as loss of HSF1 could not suppress the 

effect of Serf/MOAG4 deletion on polyQ aggregation. Alternatively Serf/MOAG4 could 

be part of a parallel chaperone system, yet to be identified.  

Stabilization of cellular proteins could also be achieved by inhibiting their degradation 

pathways. The SMN protein is degraded by the UPS (Burnett, Munoz et al. 2009) while 

the α-synuclein protein is targeted to both UPS or autophagy pathway for degradation 

(Pan et al. 2008). Therefore, antagonistic effect of Serf on these pathways or to the 

process of ubiquitination that tags the substrates for pathway specific turn over might 

explain Serf’s impact on protein stability. According to my analysis Serf expression 

positively correlates with increased autophagy although it stabilizes the amount for 

cellular SMN and α-synuclein protein. Therefore, Serf might negatively impact UPS 

either by inhibiting ubiquitination or by preventing the delivery of the targets to 

proteasome. 

 Consistent with this idea, Boone and Rymond found in yeast that deletions of the Serf 

gene partially suppressed null mutations in the UBP6, the proteasomal ubiquitin protease 

and null mutations in the BRE5-encoded ubiquitin protease interacting protein, active in 

autophagy, suggesting that Serf activity might antagonize these catabolic pathways.  That 
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is, if ubiquitin-directed protein turnover is compromised, the presence of Serf may further 

stabilize the residual complexes while Serf removal may promote enhanced turnover of 

selective proteins as appears to be the case with α synuclein and Smn in flies. The 

interpretation of the yeast results may be a bit more nuanced, however, since the serf, 

ubp6 and bre5 mutants show only mild growth defects and prior work has established 

that the intrinsic proteasome activity actually increases in the absence of the Ubp6 

ubiquitin hydrolase (Hanna et al. 2006) although the resulting catabolism of ubiquitin 

results in a ubiquitin starvation phenotype with consequences on all ubiquitin-directed 

cellular events including proteasome-directed protein turnover.  In addition, while Serf 

may antagonize ubiquitin-mediated proteolysis, the Serf protein itself appears to be a 

target for modification by the ubiquitin-like molecule, SUMO (Sung, Lim et al. 2013), a 

protein modification often associated with protein stabilization.  While similar in size to 

both ubiquitin and SUMO, we find no evidence to suggest that Serf itself is covalently 

ligated to other proteins. A single band of predicted size is found in yeast when Serf is 

epitope tagged (Rymond, unpublished) and while the antibody raised against Serf binds 

Serf and multiple background bands in both flies and yeast, in the serf deletion 

background only the actual Serf band is lost. Nonetheless, the genetic interaction of Serf 

with the ubiquitin dependent proteolytic pathway factors supports the potential link 

between Serf and the protein turn-over processes and hence raises the possibility that Serf 

dependent protein stabilization could involve antagonistic effect on these pathways. 

Total cellular ubiquitinated proteins include substrates of autophagy and UPS as well as 

stable proteins that acquire this posttranslational mark for regulatory purposes (Reviewed 

in Hochstrasser, 1996; Dunn and Hickey, 2003).  I have presented evidence that 
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autophagy decreases after Serf deletion consistent with observed general accumulation of 

ubiquitinated proteins. But whether specific UPS substrates such as Smn are more 

heavily ubiquitinated in the Serf deletion background was not tested. Pharmacological 

(Belozerov, Ratkovic et al. 2014) or genetic approaches (Belote & Fortier 2002; Nezis, 

Simonsen et al. 2008) could be employed for investigating the possible link between Serf 

and the proteasome using fly in-vivo system or cell culture. 

6.2 Serf function in protein homeostasis 

The implication of Serf in the fibrillar aggregation of disease associated proteins in vivo 

and in vitro (Van Ham et al. 2010; Falsone et al. 2012), together with the finding that Serf 

in flies impacts specific protein abundance potentially by influencing their stability, 

makes it a likely candidate for functioning in the protein homeostasis network. The 

pathways governing the protein homeostasis network has been studied extensively for 

elucidating the mechanisms of protein toxicity diseases. The implications from my 

findings point to the possibility that protein homeostasis factors could also be important 

players in the modulation of an apparently unrelated disease like SMA.  

Our knowledge of the cellular factors and processes that contribute to the formation, 

regulation and clearance of protein aggregates in protein toxicity diseases is far from 

complete. The identification of modifiers of amyloid aggregation has contributed to our 

understanding of this topic. For instance, an RNAi screen in a poly-Q expansion disease 

model in C. elegans identified 180 genes that, when suppressed, increased the 

accumulation of intracellular inclusions (Nollen, Garcia et al. 2004). These genes were 

clustered into five major groups based on their cellular function. These include genes 

involved in RNA metabolism, protein synthesis, protein folding, protein degradation and 



193 
 

protein trafficking - pathways proposed to underlie a homeostatic system that buffers the 

impact of toxic protein aggregates (Nollen, Garcia et al. 2004). A similar study in C. 

elegans using an aggregation-prone version of the human α-synuclein protein identified 

80 genes that when knocked down increased aggregate formation. Majority of these 

modifiers were vesicle trafficking genes that are expressed in ER/Golgi complex and 

vesicular compartments, suggesting a protective role for endomembrane transport system 

in α-synuclein toxicity (van Ham, Thijssen et al. 2008). These genes are also relevant to 

autophagy which is a membrane dependent process and is active in the clearance of the 

terminal insoluble aggregates in cells (Ref from defense powerpoint). Surprisingly very 

few of these modifier genes were components of the proteasome or protein chaperones 

and also did not show a general overlap (except for one gene that overlapped, mentioned 

but not described in the Van Ham 2008 article) with the modifiers identified in the poly-

Q aggregation screen by Nolen et al, suggesting that the detoxification of the poly-Q 

expansion proteins and α-synuclein may be handled differently, at least in C. elegans.  

 

While speculation is abundant, comparatively little is truly known about the proteins that 

naturally contribute to protein aggregation. SERF/MOAG-4 is therefore amongst the rare 

modifiers of aggregation that assists in the formation of larger insoluble aggregates in C. 

elegans and in vitro (Van-Ham et al. 2010; Falsone et al. 2012). The fact that it impacts a 

variety of aggregation prone proteins in a similar manner indicates that common cellular 

processes are involved in the assembly of amyloid complexes (Van-Ham et al. 2010; 

Falsone et al. 2012). The reduction of cellular inclusion formation upon loss of 

SERF/MOAG-4 activity with correlated rescue of toxicity suggests that the natural 
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SERF/MOAG-4 function contributes to the disease phenotype. Contrary to this idea, Van 

Ham et al. argued that since loss of SERF/MOAG-4 inhibited the formation of toxic 

soluble aggregate intermediates, it resulted in the suppression of the associated 

cytotoxicity while reducing the assembly of larger complexes (Van Ham et al. 2010). In 

the follow up in vitro biochemical study Falsone et al. showed consistent results where 

Serf accelerated the nucleation of the fibrillar precursors (oligomeric intermediates) 

resulting in the rapid growth of larger fibrils (Falsone et al. 2012). Studies associated with 

Alzheimer’s disease have shown that the soluble oligomeric forms of the Aβ peptide 

exerts neurotoxicity, both in animal model and cell culture system, while the large 

amyloid fibrils are phenotypically benign (He, Zheng et al. 2012) (Shankar, Li et al. 

2008). A G-protein coupled receptor, Gprk-2, has been shown to reduce α-synuclein 

inclusion formation in Drosophila while increasing the neurotoxicity suggesting the 

protective role of inclusion formation under disease condition (Chen and Feany 2005). 

Thus it was hypothesized that SERF could be a factor involved in the protein homeostasis 

network that functions to actively aggregate misfolded proteins as part of a cellular 

strategy to protect itself from the increased load of toxic oligomeric misfolded proteins. A 

chaperone like activity therefore fits the model of conserved cellular function of SERF. 

As discussed in the section before, specific chaperone systems has been shown to 

promote cellular inclusion formation in the protein toxicity disease models (Wyttenbach 

et al., 2000).  

Contrary to the observations in C. elegans, where SERF/MOAG-4 did not impact 

organismal survival, I find that in Drosophila the loss of Serf activity results in a 25-30% 

reduction in adult lifespan while increased Serf expression extend Drosophila lifespan by 
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roughly the same value.  Another longevity factor AGE-1 has been identified in 

nematodes to impact Poly-Q aggregation, however, its functions is opposite to that of 

SERF in impacting lifespan. The inactivation of AGE-1 extends lifespan and delays the 

formation of intracellular inclusions in a Poly-Q expansion model (Morley, Brignull et al. 

2002).  AGE-1  encodes a PI3 kinase in the insulin signaling (IIS) pathway that 

negatively regulates the DAF-16/FOXO and HSF1 transcription factors (Hsu, Murphy et 

al. 2003). The age-1 mutation activates DAF-16/FOXO that thereby upregulates a 

number of longevity promoting genes, including chaperones having protective influence 

on proteotoxic stress. When Van Ham et.al enquired the genetic interaction between 

SERF/MOAG4 and IIS pathway effectors, DAF16/FOXO and HSF1in modifying 

inclusion formation, they found that suppression of aggregation by moag-4 deletion does 

not require DAF16 or HSF1 activity (van Ham, Holmberg et al. 2010). Thus they 

predicted that SERF/MOAG4 either functions downstream or independent of 

DAF16/FOXO mediated IIS pathway.  

The muscle specific activation of DAF16/FOXO in flies have been documented to extend 

lifespan, at least partially by enhancing the autophagy mediated clearance of naturally 

occurring age related aggregates (Demontis and Perrimon 2010). Similar to that, my data 

show that the reduction and extension of fly lifespan correlates with an apparent decrease 

in autophagy in the absence of Serf and an increase in autophagy when Serf activity is 

enhanced, respectively. The Serf related changes in autophagy also correlates with the 

clearance of the age-related poly-ubiquitinated aggregates from the adult muscles such 

that enhanced autophagy could partly be responsible for the rapid removal of the 

aggregates by Serf activation. There is compelling evidence that the induction of 
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autophagy functions as a protective quality control response to increased aggregation 

prone proteins in disease conditions (Williams, Jahreiss et al. 2006, Rubinsztein, 

Gestwicki et al. 2007). Therefore it is conceivable that a protein homeostasis factor like 

Serf might operate like a chaperone to assemble selective proteins into larger complex, 

naturally or under disease condition, thereby inducing autophagy that acts, at least in part, 

to remove protein aggregates from tissues and extend lifespan.  

The loss of SERF/MOAG-4 in C. elegans reduces the aggregation but apparently not the 

stability of α-synuclein expressed from an ectopic human disease gene. In flies, I observe 

that the protein accumulation of the same α-synuclein is greatly diminished in the 

absence of Serf. While I do not know the basis for this difference, the results are not 

necessarily contradictory since it is possible that the fly system is simply more efficient in 

removing the ectopically expressed α-synuclein when not stabilized through Serf-

mediated oligomerization. For SMN protein, lack of oligomerization and assembly into 

larger complex prompts it towards its UPS mediated degradation (Burnett, Munoz et al. 

2009). Since both SMN and α-synuclein is destabilized with Serf deletion, one possibility 

is that they are rapidly turned over by the UPS when they are not assembled into 

complexes in absence of Serf. Intriguingly, this is opposite to the impact of Serf deletion 

on natural poly-ubiquitinated aggregates which gets stabilized, at least partly, due to 

inhibition of autophagy. However, the hypothesis that Serf acts to promote assembly of 

protein complexes, may be by a chaperone like activity might explain its antagonistic 

effect on UPS and autophagy mediated degradation of proteins. It is thought that amyloid 

assembly is an active homeostatic response to increased load of misfolded proteins that 

induces autophagy for the subsequent clearance of the terminal aggregates (Williams, 
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Jahreiss et al. 2006, Rubinsztein, Gestwicki et al. 2007) (Kaganovich et al. 2009; 

Watanabe et al. 2011). So, Serf driven amyloid aggregation under disease condition or 

assembly of functional protein complexes under normal condition might relate to 

autophagy induction. In fact larger multiprotein complexes are required to be formed at 

different steps in the autophagy pathway (Levine & Klionsky, 2004) where Serf function 

could be important. On the other hand, inhibition of proteasome function has been shown 

to increase the accumulation of amyloid complexes (Wooten et al. 2006). Since Serf 

promotes aggregate formation, it might have a negative impact on UPS activity.  So, in 

effect my hypothesis is that Serf promotes assembly of protein complexes that 

counteracts UPS while inducing autophagy that acts, at least in part, to remove protein 

aggregates from tissues and extend lifespan.  

Increasing pool of studies are pointing at the integration of the two apparently disparate 

cellular proteolytic pathways- the UPS and autophagy. For instance, pharmacological 

inhibition of the proteasome has been shown to induce compensatory increase in the 

autophagic pathway (Du et al. 2009; Zhu et al. 2010, Pandey et al. 2007). There are co-

chaperone and adaptor molecules like CHIP, BAG and p62 proteins that are known to 

interact with both pathways and determine the fate of the substrate proteins for 

degradation through one pathway versus the other (Shin et al. 2005; Gamerdinger et al. 

2011; Wooten et al. 2006). In addition, cellular processes like the unfolded protein 

response in the ER has been shown to suppress UPS activity and favor autophagic 

pathway (Ding et.al, 2007). Therefore, it is not hard to imagine that cellular function of 

Serf might antagonistically affect UPS and autophagy. Future determination of how Serf 
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functions at a biochemical level may enrich our understanding of how autophagy and 

UPS are coordinated within the cell. 

6.3 Limitations and future prospects 

SERF, the phylogenetically highly conserved gene, when deleted in Drosophila is 

phenotypically benign. Loss of function mutants of this non-essential gene are viable 

through all developmental stages.  This is not unusual, however, as only about 3600 

genes out of approximately 17000 annotated genes (21.17%) in the Drosophila genome 

are projected to be essential for viability (Brizuela, Elfring et al. 1994, Miklos and Rubin 

1996). One reason for the non-essential role of a gene in an organism is functional 

redundancy. Whether loss of Serf function is compensated in flies is not known, but two 

other Serf like proteins are encoded by fly genome. These two proteins are encoded by 

two adjacent genes CG18081 and CG15715 on chromosome 3L (Fig 6.2A).  Their 

biological functions are not known. These two proteins contain C-terminal zinc finger 

domain and similar proteins are also found in humans and C. elegans. At least the human 

Serf-like protein named ZNF706 or HSPC038 has been shown to physically interact with 

a chloride channel protein ICln and is speculated to direct its membrane translocation in 

response to cell swelling necessary for the regulation of cell volume (Dossena, Gandini et 

al. 2011). Figure 6.1 shows the multiple sequence alignment of these Serf like proteins 

from human, C. elegans, Drosophila together with Serf proteins from different 

organisms. 
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Fig: 6.2 The Serf like genes. A) The Genetic locus of the Serf like genes CG18081 and 

CG15715. The genes are located on the left arm of chromosome 3 (3L). The scale 

presented here correspond to the molecular map of chromosome 3L. B) Multiple 

sequence alignment of Serf like proteins and Serf from different organisms using Muscle 

multiple alignment program. Y=yeast, D=Drosophila, C=C. elegans, H= human; the –L 

designation is for Serf-like, a: CG18081 and b: CG15715. 

Both of these proteins show similar level of homology with the Drosophila Serf protein 

(65% similarity and 43% identity within 29% query coverage), the human SERF1a 
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longer isoform (55% similarity and 32% identity within 32% query coverage) and the 

SERF2 protein (68% similarity and 43% identity within 38% percent covered alignment). 

Therefore, we cannot rule out the possibility that there could be certain levels of 

functional overlap between Serf and these Serf like proteins compensating for the impact 

of loss of Serf. However, both the proteins show differences in the highly conserved N-

terminal region of the Serf protein. They also show only low level of homology with the 

shorter isoform of the Serf protein (aligns with only 11% of the human Serf shorter 

isoform) which is more commonly found among species. Therefore, these two genes 

cannot be considered as the human Serf homologue in flies. 

My study, being the first line of investigation on Serf function in any model system, 

provides information about a variety of phenotypes. Although non-essential for viability, 

I have shown that Serf activity in flies is necessary for normal locomotor function, adult 

lifespan and survival under oxidative stress. The mechanisms behind the manifestations 

of lack or excess amount of Serf is not clearly understood. For instance, whether 

abnormality in the neuronal, muscular or neuromuscular junction properties underlie the 

climbing deficiency in Serf deletion flies is not known. My data points to the possibility 

that accelerated muscle aging could be responsible partly for the loss of muscle activity 

and climbing deficiency in the Serf deletion flies. However, whether Serf is directly 

affecting neuronal and muscle activity or has a more direct influence on the sensory 

function are still open questions. Furthermore, we do not know if these activities 

contribute to maintaining normal lifespan or survival under stress. My preliminary 

attempt to get mechanistic understanding of Serf’s effect on longevity pointed at the 

autophagy pathway modulation as a potential basis for the altered tissue aging and 
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lifespan in Serf deletion and overexpression flies. In order to find out the degree to which 

autophagy contributes to Serf mediated life span extension further experiments need to be 

done. It would be informative to know if inhibiting autophagy pathway (Li, Hou et al. 

2009; Denton, Shravage et al. 2009) abrogates Serf’s life extending impact, for instance. 

In addition to autophagy, my data have also implied potential Serf dependent changes in 

the mitochondrial structure and function pertinent to lifespan determination and oxidative 

stress response. The finding that the mitochondrial marker protein Mfn is stabilized in the 

long lived flies with excess Serf is intriguing since the level of Mfn is indicative of the 

degree of mitochondrial fusion versus fission and determine the structure of cellular 

mitochondrial network (Detmer & Chan 2007). It is very likely therefore that cells with 

altered level of Serf would have alteration in the mitochondrial dynamics and the 

resulting morphology. Whether this is true and how that relates to functional changes in 

the cellular activity and organismal lifespan, requires future experimentation. Given that 

the mitochondrial quality control (MQC) is governed by both UPS and autophagy 

pathways (Twig, Hyde et al. 2008; Taylor & Rutter 2011) it will be very interesting to 

know whether Serf activity influences MQC to modulate organismal survival under 

normal and oxidative stress condition. 

My study has generated a refined hypothesis about cellular function of Serf. The idea that 

Serf promotes assembly of protein complexes like a molecular chaperone/cofactor which 

induces autophagy and counteracts UPS activity demands rigorous experimental testing. 

In the context of SMA the first essential thing to test is whether Serf influences SMN 

complex formation by promoting SMN-SMN interaction or interaction with other 

partners like Gemins. A cell culture based approach where differentially tagged SMN 
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proteins could be co-immuno-precipitated with itself or with Gemins (Praveen et al. 

2014), with and without Serf knocked down, can be used to address the question. This is 

an important question to address for a complete understanding of the genetic interaction 

between Serf and SMN. In addition, I proposed that destabilization of SMN and α-

synuclein in absence of Serf requires proteasome. If this is true, pharmacological 

inhibition of proteasome (Belozerov, Ratkovic et al. 2014) in absence of Serf should 

stabilize both proteins. How Serf activity relates to autophagy induction is a harder 

question to answer. Specifically whether Serf driven protein complex assembly induces 

autophagy would be difficult to test. One way could be using a Serf deletion protein 

toxicity disease background where inclusion formation is inhibited and test the level of 

autophagy gene expression as a marker for basal level autophagy as compared to when 

Serf activity is intact. Relative to a completely normal animal, inclusion forming model 

should have upregulation of autophagy genes when Serf is wild type. However when Serf 

is deleted and inclusion formation is abrogated, relative level of autophagy would 

decrease in these animals. This would be supportive of the idea that autophagy induction 

is a homeostatic response to inclusion formation and when Serf deletion reduces 

inclusion formation the autophagic response is also inhibited. Although, it is important to 

remember that multi-protein complexes are involved in autophagy pathway and Serf 

might influence it directly to modulate the pathway. Therefore, my findings and their 

implications with regard to Serf’s involvement in autophagy clearly opens up a variety of 

avenues for further research.  

The studies related to Serf’s role in protein toxicity diseases in flies were limited in my 

dissertation. Although preliminary, but the data are consistent with the notion that Serf in 



203 
 

flies might modulate neuro-toxicity diseases. A variety of these amyloid diseases have 

been successfully modelled in the fly system. Using my Serf deletion, overexpression or 

knockdown fly models, one could test if Serf has a general role in modifying these 

diseases for a better understanding of the conserved nature of such predicted function. In 

conclusion, it is evident that our understanding about the natural function of Serf and the 

molecular basis for its SMA modifying effect is far from complete. Further investigation 

about Serf function has a lot of potential to increase our understanding about different 

aspects of cellular processes involved in the pathogenesis of human diseases. 

 

Fig 6.3 A Model for cellular function of Serf. Based on our analysis of Serf in 

Drosophila melanogaster and previous knowledge it is proposed that Serf protein 

functions like a chaperone in cell to promote the assembly of larger protein complexes. 

This process is thought to positively impact autophagy mediated protein turnover, which 

is, at least partly, responsible for reducing the natural accumulation of poly-ubiquitinated 

proteins in aging tissues and extend lifespan. On the other hand, protein complex 

assembly might counteract UPS activity and help to stabilize specific proteins like SMN 
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and α-synuclein thereby modifying SMA and Parkinson’s disease (protein toxicity 

diseases). 
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Table 6.1 List of SMA modifier genes (Dimitriadi et.al, 2010). 

Ce Gene Dm Gene Hs Gene Change/Affect Ce Change/Affect 
Dm 

Plst-1 Fim Plastin 3 (PLS3) RNAi/Cmpx Gr, 

Enh pump 

Lof/Enh 

daf-4 Wit TGFβ Receptor 
(BMPRII) 

RNAi/Enh Pump Lof/Enh 

kcnl-2 SK SK Channel (KCNN3) RNAi/Enh Gr, Sup 
Pump 

Lof/Enh 

nhr-25 Usp NHR LRH-1 (NR5A2) RNAi/Sup Pump OE/Enh 

uso-1 p115 Vesicle docking 
(USO1) 

RNAi/Enh Gr OE/Sup 

nhr-85 Eip75B NHR RevErb 
(NR1D2) 

RNAi/Enh Gr Lof/Enh 

atf-6 Atf6 Atf6 trans. Factor 
(ATF6) 

RNAi/Enh Gr ?/Sup 

egl-15 Btl FGF receptor 
(FGFR3) 

RNAi/Enh Gr Lof/Enh 

ape-1 CG18375 p53 inhibition 
(PPP1R13) 

RNAi/Enh Gr ?/Enh 

nekl-3 Nek2 NIMA Family Kinase 
(NEK7) 

RNAi/Enh Gr OE/Sup 

atn-1 Actinin a-actinin (ACTN) RNAi/Sup Gr OE/Enh 

cash-1 CG33172 Striatin (STRN) RNAi/Cmpx Gr Lof/Enh 

dlc-1 Cut up Dynein light chain 
(DYNLL2) 

RNAi/Cmpx Gr Lof/Sup 

ncbp-2 CBC20 Cap binding (CBP20) RNAi/Enh Gr & Pump Lof/Enh 

grk-2 Gprk GRK Kinase 
(ADRBK1) 

RNAi/Enh Gr & Pump nd 

flp-4 FMRF Neuropeptide (NPFF) RNAi/Enh Gr Lof/Enh 

T02G5.3 none none RNAi/Enh Gr, Sup 
Pump 

nd 
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The list is divided into three sections corresponding to SMA modifiers identified 

originally in humans, Drosophila and C. elegans. The species and the gene names are 

indicated in first three columns. The effect of RNAi mediated knockdown of the genes in 

C. elegans are indicated in column 4. The effect of changes in the gene expression in 

Drosophila transposon insertion lines are mentioned in column 5. RNAi: RNAi 

knockdown; Lof: Loss of function, decreased function or antisense; OE: 

overexpression, ?: Unclear; Enh: Enhanced Smn loss of function defects; Sup: Suppressed 

Smn loss of function defects; Cmpx: Complex genetic interaction; nd: Not determined. 

Column 4 includes C. elegans assays used to test SMA modifier activity- Gr: Growth 

defect; Pump: Pharyngeal pumping activity defect. 
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Table 6.2 A: Insertion mutants of Drosophila that enhances Smn73A0 dependent 

lethality, adopted from Chang et.al 2008. 

Enhancers    

Exelixis 
insertion 

Corresponding 
gene(s) 

Gene Name 
(Symbol) 

Annotated function of the human 
homolog 

d00712 CG4376 a-actinin (Actn) F actin binding protein 

CG4380 ultraspiracle (usp) Nuclear hormone receptor 

CG4325 NA Contains a ring domain 

d03336 CG10706 small conductance 
calcium activated 
potassium channel 
(SK) 

Calcium dependent K+ channel 

d04197 CG32796 brother of iHog 
(boi) 

Binds and mediates response to 
hedgehog 

CG33950 terribly reduced 
optic lobes (trol) 

Neuroblast proliferation 

d05295 CG34414 sprint (sprint) Ras GTPase binding 

f01369 CG6414 N/A Contains Esterase lipase domain 

f04448 CG33172 N/A Contains WD repeats 

f05849 CG1835 N/A Localized to the preacrosome regions of 
spermatids 

d00698 CG17323 N/A Glucronosyltransferase 

CG17322 N/A Glucronosyltransferase 

CG17324 N/A Glucronosyltransferase 

d05779 CG18375 N/A p53 binding protein apoptosis 

d00985 CG34379 N/A F actin binding 

CG8589 N/A Nucleic acid binding 

f04249 CG11450 net Transcription factor 

  



208 
 

Table 6.2A Continued. 

 

d02492 CG10776 wishful thinking 
(wit) 

BMP type II receptor 

d09170 CG5361 N/A Alkaline phosphatase 

CG6203 (Fmr1) mRNA binding 

d09801 CG8127 Ecdysone-induced 
protein 75B 
(Eip75B) 

Nuclear hormone receptor 

f02477 CG1927 N/A N/A 

f06201 CG1927 N/A N/A 

f02864 CG32134 breathless (btl) FGF receptor 
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Table 6.2B The Drosophila insertion mutants that suppressors of Smn73Ao 

dependent lethality, adopted from Chang et.al 2008. 

Supressors    

Exelixis 

insertion 

Corresponding 
gene(s) 

Gene Name (Symbol) Annotated function of the 
human homolog 

D00184 CG4320 raptor mTOR binding protein 

CG4717 Multiple inositol 
polyphosphate 
phosphatase 2 (Mipp2) 

Phosphatidyl inositol 
phosphatase 

CG5905 Neprilysin 1 (Nep1) Metalloendopeptidase 

E02369 CG10701 Moesin (Moe) Cytoskeleton association 

D03478 CG17256 Nek2 Mitosis/meiosis, cell cycle 

CG1422 p115 Protein transport, vesicle 
docking 

F02345 CG6998 cut up Cytoskeleton motor 

D10763 CG1697 rhomboid-4 (rho-4) EGK signaling activation 

CG1561 N/A Contains a kinase domain 

C05057 CG3136 Atf6 Transcription factor responsive 
to ER stress 

D02302 CG11200 N/A Calbonyl reductase (NADPH) 

CG8920 N/A Tudor domain/nucleic acid 
binding 

CG13868 N/A N/A 
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Table 6.2B Continued. 

E00818 CG12214 N/A Tubulin polymerization 

F05549 CG13775 N/A GTPase activity 

F06260 CG10561 N/A Polyamine oxidase 

 

For both tables (6.2A and 6.2B), gene assignments are ambiguous in some cases due to 

the site of transposon insertion. ‘d’ or ‘f’ designated strains represent GAL4 inducible 

lines; ‘c’ or ‘e’ designated strains are not GAL4 inducible. Drosophila candidate SMA 

modifier genes, respective human homologues and their annotated functions are depicted 

in columns 2, 3 & 4 of tables 6.2A & B. 
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APPENDIX 

A hyper-phosphorylated form of Smn protein appears to accumulate in the Serf 

deletion mutant.  

          The Smn protein is known to be post translationally modified by phosphorylation 

( Bella, V.L. 2004, Biochemical and Biophysical Research communications) and Smn 

phosphorylation by enzyme Protein Kinase A (PKA) is known to regulate its complex 

formation ( Burnett, B.G. 2009, Mol Cell). In our western blot assays for Smn protein, we 

observed a smeary doublet pattern that varied between genotypes. To address this, I used 

alkaline Lambda phosphate to investigate which bands were sensitive to 

dephosphorylation and how the phosphorylation pattern may differ in the presence of 

absence of Serf. This assay was performed on Smn protein extracted from adult flies. 

           The Serf deletion mutant (Serf∆10a) and the precise excision control (PE26B) flies 

were used to extract protein under non-denaturing condition (0.1% NP40, 1X protease 

inhibitor cocktail in 1X PBS, 20ul extraction buffer per fly), either in presence or absence 

of a phosphatase inhibitor mix (10mM sodium orthovandate+50mM Sodium fluoride). 

200 units of Lambda PP enzyme was used to treat 40 ul of protein extract in 50ul reaction 

mix (1X NEBuffer for PMP, 1mM MnCl2) for 45 minutes at 30̊C. Western blotting of the 

Smn protein was used to monitor the effect of phosphatase treatment on band migration 

(mouse monoclonal anti-Smn antibody- a generous gift from Dr. Anindya Sen, UMASS, 

1:1000 dilution and alkaline phosphatase conjugated goat anti-mouse secondary, 1:5000 
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dilution, Life Technologies; AmershamTM ECF substrate for western blotting, GE 

Healthcare, Life Sciences). 

         Figure 1 shows that the Smn protein forms a doublet of two very closely migrating 

bands where the upper band is predominant in both the wild type and Serf deletion lines. 

It is important to mention here that such a banding pattern is not typically seen in the 

literature, where an affinity purified rabbit anti-fly Smn antibody (Rajendra et.al, 2007; 

Praveen et.al 2014) has been used instead of the mouse monoclonal anti-fly Smn 

antibody used in this study. The mouse monoclonal anti-fly Smn antibody (Chang et.al 

2008) has only been used in tissue immunostaining experiments before. Smn protein 

from the Serf deletion mutant (Serf∆10a: lanes 3,4,7 & 8), however, shows slightly 

different banding pattern compared to the precise excision control (PE26B: lanes 1, 2, 5 

& 6). In the Serf deletion line, both the upper and lower bands of Smn migrate slightly 

slower compared to the bands observed in the  wild type sample (compare lanes 1-3 and 

5-7 where 1 & 5 represents wild type and 3&7 represents Serf deletion). Upon Lambda 

PP treatment, the Smn bands are re-distributed almost equally between the upper and 

lower bands for both the genotypes (compare 5-6 for wild type and 7-8 for Serf deletion 

where 5 & 7 represents samples before treatment and 6 & 8 represents samples after 

phosphatase treatment). In addition, the enzyme treatment also causes the Smn bands in 

the precise excision control and the Serf deletions to co-migrate (Compare 8-9 where 8 

represents Serf deletion and 9 precise excision, both enzyme treated).  This effect of 

phosphatase treatment is abolished when the protein extracts contain phosphatase 

inhibitor (compare 1-2 for wild type and 3-4 for Serf deletion where 1 & 3 represents 

samples before treatment and 2& 4 represents samples after phosphatase treatment) 
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confirming the alterations in Smn banding observed in presence of phosphatase is 

specifically due to the presence of this enzyme.  

          These data show that the slightly upward shift of Smn bands in the Serf deletion 

mutant is due to phosphorylation. In addition, consistent with our previous observation, 

based on mass loading, I observe reduced levels of Smn protein in the Serf deletion line 

compared to the precise excision control. Both the reduced abundance and the mobility 

shift of Smn protein observed in the Serf mutant line could be restored upon Serf cDNA 

expression in the mutant line (Chapter 5, Fig. 5.9A). Therefore, hyper-phosphorylation of 

Smn observed in the Serf deletion background may reflect a change other than total Serf 

abundance. 

 

Figure A-1. Phosphatase treatment changes the banding pattern on Smn in 

Drosophila. Analysis of Smn protein with mouse anti-Smn antibody in adult whole fly 

extracts, prepared in presence or absence of phosphatase inhibitor. Western blot image 

shows the effect of Lambda protein phosphatase (Lambda PP) treatment in fly extracts 

with and without wild type Serf. 

The detection of Smn-EYFP - Smn protein interaction is inefficient and inconsistent 

by co-immunoprecipitation. 

Since Smn certain Smn mutations are known to influence oligomerization (and hence 

Smn stability), I attempted to assay Smn-Smn interaction by co-immuno precipitation. 
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Smn-EYFP expressing flies with wild type, enhanced and reduced levels of Serf were 

assayed.   (lysis/binding buffer-50 mM Tris-HCl pH 8.5, 150 mM Nacl, 1% NP-40 and 

1X protease inhibitor cocktail, 100 flies in 1 ml buffer). About 3 mg total protein (300µl) 

was used to incubate with 100 µl antibody-bound protein-A agarose beads (6 µg mouse 

anti-GFP 4C9 antibody, Developmental Studies Hybridoma Bank, per 300 µl beads in) at 

4̊C for overnight. The beads were precipitated (4000 rpm for 2 mins) and supernatant 

saved as unbound fraction. After washing the beads for 5 times with the same buffer (1 

ml each), the antibody precipitated protein complexes were extracted in 120µl of 1X SDS 

sample buffer (bound fraction). 10% of the total and unbound fraction and 30% of the 

bound fraction were used for western blot. Protein fractions were separated in 7.5% SDS 

PAGE for visualizing the SMN-EYFP fusion protein (mouse anti-GFP 4C9 antibody, 

DSHB,1:10,000 dilution) and 10% SDS PAGE for assessing the endogenous Smn protein 

(mouse monoclonal anti-Smn antibody 1:1000 dilution). Alpha tubulin in each fraction 

was detected as an internal control (mouse monoclonal α-tubulin, 1:1000 dilution; 

DSHB-12G10 anti-alpha tubulin). 

     Figure 2A & B shows the results of the assay, done with overexpression and 

knockdown of Serf, respectively. Flies expressing Smn-EYFP with wild type Serf serve 

as the control for both experiments. In both the experiments considerable proportion of 

the Smn-EYFP protein (that corresponds to the band which is absent in case of the non-

Smn-GFP negative control) was precipitated as shown in the anti-GFP blot. The level of 

Smn-EYFP protein found in the bound fraction (30% bound fractions presented) is 

equivalent with that in the total fraction (10% total protein presented) for the Serf 

overexpression group (Fig 2A, compare lanes 2-5 and 3-6, where 2 & 3 represents total 
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protein and 5 & 6 represents bound fraction) as well as Serf knockdown group (Fig 2B, 

compare lanes 2-5 and 3-6, where 2 & 3 represents total protein and 5 & 6 represents 

bound fraction). This also suggests that approximately 1/3rd of the total Smn-EYFP 

protein got precipitated in both the experiments. The unbound fractions (Fig. 2A and 2B-

lanes 7, 8, 9 for both) also show obvious de-enrichment of the Smn-EYFP protein, 

suggesting that most of the fusion protein got precipitated. 

          The anti-Smn blots show the band corresponding to the endogenous Smn protein 

but not the fusion protein, because the upper portion of the blot containing higher 

molecular weight Smn-EYFP was cut off. The total and unbound fractions from both the 

experiments show equivalent amount of endogenous Smn except for the wild type control 

in the knockdown group show reduced level of Smn in the unbound fraction (Fig 2A and 

2B, compare lanes 1-7, 2-8 and 3-9 where 1, 2, 3 represent total protein fractions and 7,8 

and 9 represent unbound protein fractions). The upward shift of the endogenous Smn 

band usually observed with Serf depletion (Appendix figure 1) is also not seen in Smn-

EYFP expressing flies with Serf knockdown. The Smn protein observed in the bound 

fraction would indicate the fraction of the endogenous Smn that co-precipitates with 

Smn-EYFP fusion. In case of the overexpression group I identified a minor band specific 

to the Smn-EYFP expressing flies (Fig. 2A, lanes 5 and 6) showing that a very small 

proportion of endogenous Smn precipitated with the EYFP fused Smn. As predicted for 

flies with Serf overexpression with normal level of Smn, the co-precipitated fraction of 

Smn was roughly equivalent between the overexpression and the wild type control. 

However, for the Serf knockdown group, I could not specifically detect a band 

corresponding to the endogenous Smn in the bound fractions of the GFP expressing lines 
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(Fig. 2B, lanes 4,5 & 6). Therefore, I could not determine if knockdown of Serf alters in-

vivo Smn-Smn self-interaction in this assay.   

 

Fig. A-2. Co-immuno precipitation of Smn from Smn-EYFP expressing fly extract 

with wild type, enhanced or reduced levels of Serf. Anti-GFP, anti-Smn and anti-α-

tubulin primary antibodies were used to detect Smn-EYFP fusion, endogenous Smn and 

α-tubulin protein from the same fractions as indicated below the lanes. A) Smn-EYFP 

flies with Serf knockdown were compared with wild type and no-GFP controls. B) Smn-

EYFP flies with Serf overexpression were compared with wild type and no-GFP controls.  

Altered levels of Serf might modify the neuromuscular defect of Smn mutants.   

Imlach et.al has shown that a Smn null mutant has aberrant neurotransmitter release at the 

larval neuromuscular junction (NMJ). Stimulation of the motor neuron innervating the 6th 

muscle of the 3rd segment of 3rd instar Smn mutant larvae shows significant increase in 

the evoked excitatory post synaptic potential (EPSP) (Imlach W.L. 2012 Cell). This 

finding is consistent with a presynaptic change in the neurotransmitter release from the 

motor neurons of the NMJs of Smn mutants (Imlach W.L. 2012 Cell). I wanted to know 

if Serf mutants show similar aberration in neuromuscular function. In addition, I seeked 

to learn if altered Serf levels in Smn mutants modifies the larval NMJ phenotype. 
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We measured the evoked EPSPs at the larval NMJ according to the protocol described by 

Imlach et.al, 2012; Imlach & McCabe 2009. Figure 3A shows the average EPSPs from 

larvae that express the various Serf alleles. I find that the Serf overexpression (Act5c-

GAL4>Serf) and Serf deletion (Serf∆10a) larvae show average EPSPs very similar to the 

Act5c-GAL4 control, however, the Serf knockdown larvae (Act5c GAL4> Serf RNAi) 

show a significant increase in EPSP response (P=.03, n=10), similar to the Smn mutants. 

Although, the Serf deletion larvae behave differently than the knockdown larvae it is 

important to note that the Serf deletions were not compared with their isogenic precise 

excision control PE26B. Without this comparison we cannot conclude whether the Serf 

deletion larvae truly behave like wild type or not. If this is true, then the aberration in the 

knockdown line might have resulted from potential off-target effect of the RNAi 

construct or it is possible that the null allele shows an adaptation response to the altered 

neuromuscular activity that might occur due to loss of Serf. 

When the hypomorphic SmnE33 homozygous and hemizygous (SmnE33/Smn73Ao, where 

Smn73Ao is a null allele) larvae were tested, they exhibited the anticipated increased 

evoked EPSPs at their NMJ (Fig. 3B), consistent with the previous report (Imlach et.al 

2012). Ubiquitous overexpression of Serf in the SmnE33 larvae did not impact this 

phenotype (Fig. 3B), however, knockdown of Serf in the hemizygous SmnE33 larvae 

(Act5c-GAL4>Serf RNAi, SmnE33/Smn73Ao) reverted their EPSPs back to the normal level 

(P=.03, n=10). This suppression of NMJ defect by Serf knockdown in the Smn mutants is 

difficult to understand, especially when flies with Serf knockdown by itself appears to 

increase the EPSP response. Nonetheless, this observation might reflect a complex 

genetic interaction between Serf and Smn to modify the neuromuscular junction 
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properties when Serf is lost and Smn levels are presumably further reduced. Additional 

work is required to better understand this issue. 

 

Figure A-3. The Smn and Serf mutants display aberrant EPSPs at the larval NMJ. 

Wandering 3rd instar stage larvae containing various Serf and Smn alleles (n=10 for each 

genotype) were used for measuring voked EPSPs at the 6th muscle of their 3rd body 

segment. A) Average EPSPs from Serf overexpression (Act5c GAL4> Serf), knockdown 

(Act5c GAL4> Serf RNAi) and null larvae (Serf∆10a) are compared with a wild type 

(Act5c-GAL4) driver only control. Statistical significance values as measured by two 

tailed Student’s t-test are indicated for genotypes being compared. B) Average EPSPs 

from SmnE33 homozygous (SmnE33 ) and hemizygous (SmnE33 / Smn 73Ao) larvae were 

measured and compared with when Serf is overexpressed (Act5c GAL4> Serf, SmnE33 ), 

and knocked down (Act5c GAL4> Serf RNAi, SmnE33 / Smn 73Ao) in them. Statistical 

significance value, as measured by two tailed Student’s t-test, is indicated for genotypes 

being compared. 
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