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ABSTRACT OF DISSERTATION 

PRECISION DAIRY FARMING TECHNOLOGY SOLUTIONS FOR 
DETECTING DAIRY COW DISEASE TO IMPROVE DAIRY COW WELL-BEING 

Dairy cow health is multifactorial and complex.  High producing dairy cows have 
been described as metabolic athletes, but metabolic and infectious diseases around 
calving affect many cows.  These diseases have drastic negative effects on dairy cow 
well-being, milk production, and dairy farm economics.  Early disease detection could 
potentially improve disease management, treatment, and future prevention techniques.  
The first objective of this research was to evaluate the use of activity, lying behavior, 
reticulorumen temperature, and rumination time determined by precision dairy farming 
technologies to detect transition cow diseases including hypocalcemia, ketosis, and 
metritis.  The second objective was to evaluate the ability of activity, body weight, 
feeding behavior, lying behavior, milking order, milk yield and components, 
reticulorumen temperature, and rumination time determined by precision dairy farming 
technologies to predict clinical mastitis cases.  The last objective of this research was to 
evaluate the precision dairy farming technologies used in Objective 3 to predict 
subclinical cases. 
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Chapter 1: 

Review of Literature 

I. Disease Overview 

Dairy cow health is multifactorial and complex.  High producing dairy cows have 

been described as “metabolic athletes,” but 30 to 50% of cows are affected by a 

metabolic or infectious disease around calving (LeBlanc, 2010).  Cows are highly 

susceptible to metabolic and infectious disease during the transition period, or the 

period from 3 weeks before to 3 weeks after calving (Huzzey et al., 2007, Mulligan 

and Doherty, 2008).  The transition period is marked by a series of adaptations to the 

demands of lactation.  These adaptations are described as homeorhetic, or long term 

physiological adaptations to changes in state (i.e. the transition from dry to lactating) 

(DeGaris and Lean, 2009).  Transition dairy cows are immunosuppressed and often 

have to deal with sudden dietary changes that cause metabolic problems.  This fragile 

group of cows is also likely to experience environmental stressors, like routine group 

changes that are associated with dairy farm management of dry and lactating cows.  

These effects combined with the stress of parturition lead to a period of great risk for 

production diseases right after parturition.  Dairy cow diseases signify a cow’s 

inability to cope with the metabolic demands of high production.  Unfortunately, 

these diseases cause economic losses to the dairy industry and are an animal welfare 

concern (Mulligan and Doherty, 2008).   

Ketosis, fatty liver, hypocalcaemia, retained placenta, metritis, and displaced 

abomasums (discussed in more detail below) are linked etiologically.  Unfortunately, 
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this interrelationship regularly results in “cascade effects” that increase the incidence 

of infectious and production diseases, reduce fertility, reduce milk production, and 

increase lameness incidence.  The complex interaction of transition cow diseases, 

their relationship with nutrition, and their effects on social behavior and attitude make 

prevention and control of these diseases difficult (Mulligan and Doherty, 2008).   

Metabolic events starting two weeks before calving have effects on reproductive 

performance months later (LeBlanc, 2010).  Therefore, early identification of disease 

may be especially useful during this time (Huzzey et al., 2007, LeBlanc, 2010).   

The probability of death is highest in the first month of lactation for both 

primiparous and multiparous cows.  Cows are under great metabolic stress during this 

time and may be more vulnerable to disease.  Risk factors for death in this period 

include retained placenta, milk fever, displaced abomasum, and mastitis for 

multiparous cows.  Risk factors for death in the first month of lactation in 

primiparous cows include mastitis, retained placenta, and displaced abomasum.  Milk 

fever, ketosis, and displaced abomasum increased the risk of culling while, 

interestingly, retained placenta decreased the risk (Hertl et al., 2011).   

a. Mastitis

i. Cause

Mastitis is the inflammation of the mammary gland (Harmon, 1994, Bramley et 

al., 1996).  Mastitis can occur as a result from physical trauma and chemical irritants 

(Bramley et al., 1996), but most often it occurs when microorganisms enter the teat 

opening into the udder (Bramley et al., 1996, Janzekovic et al., 2009).  Because this route 
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of inflammation is almost always the cause of mastitis in dairy cows, the term mastitis 

implies the presence of a microorganism (Bramley et al., 1996).  This inflammation is the 

cow’s way of attempting to destroy or neutralize the infectious agents and their toxins in 

order to heal (Bramley et al., 1996).   

Mastitis is a complex disease (Harmon, 1994, Hertl et al., 2011).  The three major 

factors involved in mastitis include the cow as the host, microorganisms as the causative 

agent, and the environment, which influences the cow and the microorganisms (Bramley 

et al., 1996).  The severity and consequences of mastitis are a result of the pathogenicity 

of the pathogen involved and the host’s response.  Therefore, identifying the causative 

pathogen is helpful in understanding treatment, culling, and other management decisions 

(Hertl et al., 2011). 

Mastitis-causing bacteria can be categorized as major or minor pathogens.  Major 

pathogens commonly isolated from cows with mastitis include Staphylococcus aureus, 

coliforms, and streptococci (Erskine et al., 1987).  Infections by these organisms cause 

only moderate inflammation and SCC increases.  Mastitis caused by minor pathogen 

infections do not commonly cause clinical mastitis or major milk yield decreases 

(Harmon, 1994).  High SCC herds ( ≥ 700,000 cells/mL) had a higher prevalence of 

contagious pathogens than low SCC herds ( ≤ 150,000 cells/mL) (Erskine et al., 1987). 

1. Environmental

Environmental mastitis is caused by pathogens that primarily reside in the cow’s 

environment, not in other infected mammary glands.  Unfortunately environmental 

mastitis presents some complex problems for dairy producers (Smith et al., 1985).  The 
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cow’s environment influences the type and number of bacteria to which they are exposed, 

but also their ability to resist mastitis.  Management of the cow’s environment can reduce 

pathogen exposure and increase mastitis resistance (Bramley et al., 1996), particularly 

since bedding often serves as an exposure point to these pathogens (Rowbotham and 

Ruegg, 2016b).  Herds with environmental mastitis problems may be able to control the 

problem with better sanitation or correcting a poorly functioning milking system (Smith 

et al., 1985).   

However, environmental mastitis is a multifaceted disease with risk factors 

associated with both the environment and the cow’s immune system (Rowbotham and 

Ruegg, 2016a).  One-third of clinical mastitis cases caused by environmental pathogens 

were severe, accounting for 75% of severe cases.  Clinical mastitis cases caused by 

Gram-positive bacteria were mostly mild to moderate and did not typically cause a severe 

reaction (Oliveira et al., 2013). 

Environmental pathogens include coliforms and environmental streptococci 

(Smith et al., 1985, Erskine et al., 1987, Bramley et al., 1996).  Commonly isolated 

coliform bacteria include E. coli, Klebsiella pneumonia, Klebsiella oxytoca, Enterobacter 

aerogenes, and species of Citrobacter, Serratia, and Proteus (Smith et al., 1985).  

Environmental pathogens are the predominant cause of clinical mastitis cases on 

modern dairy farms (Pinzón-Sánchez and Ruegg, 2011, Oliveira et al., 2013, Rowbotham 

and Ruegg, 2016b).  The most prevalent pathogens isolated in a study evaluating 

treatment outcomes were environmental streptococci (18%), followed by Escherichia coli 

(10%), and Klebsiella spp. (8%) (Pinzón-Sánchez and Ruegg, 2011).   
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Escherichia coli caused 62% of new Gram-negative mastitis cases in one study.  

Mastitis caused by environmental streptococci were typically caused by Streptococcus 

uberis (44%) and Streptococcus dysgalactiae (35%) (Oliver et al., 1993). 

The most commonly isolated pathogens in primiparous cows were E. coli and 

Streptococcus spp.  The same held true for multiparous cows, but Gram-negative 

infections outweighed Gram-positive infections (Hertl et al., 2011).  Diagnosis of mastitis 

caused by environmental pathogens is difficult because of the short duration (Smith et al., 

1985).  Gram-negative pathogens release endotoxins, increasing the risk of death in cows 

with mastitis caused by this pathogen group (Hertl et al., 2011). 

Current mastitis control methods are more effective against contagious pathogens 

than environmental.  In well managed herds without contagious pathogen problems, 

environmental mastitis may still continue to be a problem (Bramley et al., 1996). 

2. Contagious

Cows are exposed to contagious mastitis pathogens during milking when teats of 

healthy cows are exposed to bacteria present in milk from previously milked cows with 

infected quarters (Rowbotham and Ruegg, 2016b).  Contagious mastitis-causing bacteria 

include Streptococcus agalactiae, mycoplasma species, and Staphylococcus aureus.  

Infected udders are the main reservoir for both bacteria, but Staph. aureus also colonizes 

the teat canal and chapped teat skin.  Staphylococcus aureus has been isolated from heifer 

quarters before and after calving, creating a source of new infections to the herd.  

Contagious pathogens survive readily in the udder and usually present themselves as 

subclinical and chronic infections (Bramley et al., 1996). 
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Some strains of Staphylococcus aureus may produce enterotoxins that cause 

nausea, vomiting, and abdominal cramps when ingested by humans.  However, if milk is 

cooled properly, pasteurized, and handled correctly during processing, this danger is 

trivial (Bramley et al., 1996). 

All three contagious pathogen groups are transmitted mostly during milking time.  

Mycoplasma is difficult to treat and is often underdiagnosed because it is difficult to 

identify in many mastitis diagnostic laboratories.  Bulk tank culturing has been used to 

screen herds to determine mycoplasma presence.  If a positive culture occurs, cows with 

clinical and subclinical mastitis should be individually cultured and removed from the 

bulk tank.  If removal of these cows’ milk from the bulk tank create a bulk tank negative 

sample, then the producer can suspect that the mycoplasma cows were identified 

correctly.  However, frequent bulk tank cultures should continue to occur for 

mycoplasma to ensure all infected cows have been identified (Fox et al., 2005). 

3. Opportunistic

Coagulase-negative-staphylococci (CNS) and Corynebacterium bovis cause a 

two- to three-fold increase in SCC.  This relatively small increase in SCC may protect the 

gland from more pathogenic pathogens (Bramley et al., 1996).  Udder infection 

interference seems to be a common phenomenon.  Resisting new naturally occurring 

infections occurs in already-infected quarters.  Colonization by C. bovis reduced the risk 

of infection by other bacteria (though the effect was small).  Minor pathogens in general 

were less able to establish an infection when a major pathogen was already colonized in 

the gland.  Coagulase-negative staphylococci (CNS) species create resistance to major 

pathogen infection in the gland (Rainard and Poutrel, 1988).  

6 



Common coagulase-negative-staphylococci isolated from udders include: 

Staphylococcus chromogenes, Staphyloccocus hyicus, Staphyloccocus warneri, 

Staphyloccocus epidermidis, Staphyloccocus simulans, Staphyloccocus xylosus, and 

Staphyloccocus sciuri (Bramley et al., 1996). 

ii. Effects

1. General

During mastitis, milk lactose, fat, and protein content decrease while salt, somatic 

cells, fatty acids, whey proteins, and bacterial load increase.  Mastitis negatively affects 

product quality (Bramley et al., 1996, Chagunda et al., 2006b, Bansal et al., 2007) and 

thus may harm the image of the dairy industry to consumers (Hogeveen et al., 2010a).  

Bramley et al. (1996) explained that the dairy industry must supply milk that is free of 

antibiotics or adulterants, low in bacteria and SCC, and excellent in quality and flavor to 

maintain a positive consumer image.  Mastitis also compromises animal welfare 

(Chagunda et al., 2006b, Hogeveen et al., 2010a). 

2. Subclinical

Subclinical mastitis constitutes an animal with an udder infection but no visible 

health changes.  Because it cannot be detected by the human eye, cytological and 

bacteriological and biochemical milk tests are the only way to detect it (Bramley et al., 

1996, Janzekovic et al., 2009).  Smith et al. (1985) explained that only 40% of 

intramammary infections caused by contagious pathogens resulted in clinical mastitis 

while the rest remained in a subclinical state.  Subclinical mastitis is the most prevalent 

form of mastitis most herds experience, but many producers are unaware of the grave 
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consequences of this disease because there are no outward signs.  Subclinical mastitis 

causes the greatest overall loss to dairy producers because of decreased production 

resulting from undetected infections (Bramley et al., 1996). 

The level of subclinical mastitis in a herd can be monitored through individual 

cow and bulk tank somatic cell count, particularly in a herd dealing with contagious 

mastitis (Smith et al., 1985).  Somatic cell count (SCC) represents the number of white 

blood cells or leukocytes in milk, although some other cells are included in this count in 

small numbers.  Polymorphonuclear neutrophils (PMN) are the predominant leukocyte 

present in milk from infected quarters.  Their purpose is to phagocytize the causative 

pathogens (Bramley et al., 1996).  Subclinical mastitis involves milk yield decrease and 

increased SCC.  Somatic cell count is the most common measurement of milk quality and 

udder health because it is most affected by intramammary infections (Harmon, 1994, 

Bramley et al., 1996).  Cows with no mastitis have only slight fluctuations in SCC 

throughout their lactation (Janzekovic et al., 2009) so a drastic change is indicative of 

mastitis.  Polymorphonuclear neutrophils may result in mammary secretory tissue 

damage.  In an in-vitro study, Capuco et al. (1986) treated tissue cultures with intact, 

lysed, and phagocytising PMNs.  All PMN types caused mammary epithelial damage, but 

phagocytising PMNs caused the greatest damage.   

 Milk from uninfected quarters will typically have a SCC < 200,000 cells/mL 

(Bramley et al., 1996).  In a study evaluating dairy herds using Dairy Herd Improvement 

Association monthly SCC testing, 16 herds were considered low SCC herds ( ≤ 150,000 

cells/mL) and 16 were considered high SCC herds ( ≥ 700,000 cells/mL) based on their 
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12-month mean SCC.  The 365-day rolling herd average was 8,164 and 5,900 kg for the 

low and high SCC groups, respectively (Erskine et al., 1987).   

High SCC milk will have decreased lactose and fat content.  Casein, the primary 

protein used in cheese production, is reduced in high SCC milk.  However, total milk 

protein content changes only slightly during subclinical mastitis because whey proteins 

(serum albumin, immunoglobulins, transferrin, and lactoferrin) increase when the 

membranes that normally prevent blood serum proteins from entering the milk are 

destroyed.  This destruction also allows sodium and chloride increase in high SCC milk, 

but potassium decreases as it passes to lymph between secretory cells.  Calcium in milk is 

mostly tied to casein micelles, thus calcium content is also decreased in high SCC milk 

(Bramley et al., 1996).  

N-acetyl-β-D-glucosaminidase (NAGase) is released into milk in response to 

mammary epithelial injury, which occurs during mastitis.  However, PMNs also release 

NAGase.  If PMN are in the process of lysing, 22% of milk NAGase could be attributed 

to PMNs (Capuco et al., 1986).   

Subclinical mastitis is also related to clinical mastitis occurrence (Lam et al., 

2009).  However, cows able to resist the pathogens may not develop clinical mastitis 

(Janzekovic et al., 2009). 

3. Clinical

Subacute clinical mastitis includes udder or milk abnormalities, or both.  

Although subacute clinical mastitis can vary in severity, flakes, clots, and watery milk are 

the most obvious abnormalities.  Unlike in subacute clinical mastitis, heat, swelling, and 
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pain occur in acute mastitis.  Acute mastitis is the sudden onset of these signs plus 

grossly abnormal milk, decreased milk yield.  Cows may also experience fever, anorexia, 

reduced rumen function, rapid pulse, dehydration, weakness, and depression.  Peracute 

mastitis means the onset of mastitis is rapid and the signs are severe.  Chronic mastitis 

has a long duration and may remain in a subclinical state indefinitely or it may alternate 

between subclinical and clinical states (Bramley et al., 1996).  When mastitis becomes 

toxic and affects the whole animal, death can occur. 

Approximately 50% of lactating cows have pathogenic bacteria in an average of 

two quarters and 1 to 3% of cows will show symptoms of mastitis at any point in time 

(Janzekovic et al., 2009). Within a 90 day period, 21% of cows had a clinical mastitis 

recurrence (Oliveira et al., 2013). 

Clinical mastitis significantly decreases milk yield for a prolonged duration 

(Rajala-Schultz et al., 1999b, Gröhn et al., 2004).  Daily milk loss during the first two 

weeks after a clinical mastitis varied from 1.0 to 2.5 kg, but overall loss was between 110 

and 552 kg, depending on parity and DIM.  The reduction in 305-day milk from clinical 

mastitis was 1.8 to 7.4%.  When clinical mastitis occurs in late lactation, milk yield losses 

begin two to four weeks before the clinical signs appear, implying that subclinical 

mastitis occurs for a few weeks before clinical signs appear.  Even after a clinical mastitis 

case is cleared, a cow will likely not be able to reach her pre-mastitis yield for the rest of 

her lactation (Rajala-Schultz et al., 1999b).  Gröhn et al. (2004) cited that milk losses 

were greatest soon after clinical mastitis detection but started weeks before clinical signs 

appeared. 
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Milk yield loss from clinical mastitis varies by causative pathogen.  In first 

lactation cows, Staph aureus, E. coli, and Klebsiella spp. caused the greatest declines in 

yield.  In cows ≥ 2 parities, Streptococcus spp., Staph. aureus, E. coli, Klebsiella spp., 

and A. pyogenes caused the greatest milk yield losses (Gröhn et al., 2004). 

However, measuring clinical mastitis’ effects on milk yield are complex because 

cows with mastitis tend to have greater milk yields than those who do not get mastitis 

(Rajala-Schultz et al., 1999b, Gröhn et al., 2004).  The pre-mastitis daily milk yield of 

cows with mastitis was 0.7 to 1.9 kg more than the yield of cows without mastitis.  

Therefore, interpreting lower milk yield in cows with mastitis simply as a loss caused by 

clinical mastitis would likely underestimate the actual effect (Rajala-Schultz et al., 

1999b). 

Odds ratio for pregnancy risk in cows with mastitis ≤ 21 days before AI, ≤ 30 

days before AI, 31 to 60 days before AI, and ≥ 61 days before AI were 0.48, 0.81, 0.88, 

and 0.96, respectively (Loeffler et al., 1999).  Hertl et al. (2010) explained that clinical 

mastitis occurrence around the time of artificial insemination (AI) decreases the 

probability of conception with the interval from 14 days pre-AI to 35 days post-AI being 

the most sensitive.  Clinical mastitis occurring 15 or more days before or 36 or more days 

after AI was not associated with the probability of conception.  However, clinical mastitis 

caused by gram-negative pathogens occurring between 8 and 14 days pre-AI was 

associated with a 32% lower conception probability compared to cows with no clinical 

mastitis in that same time period.  Gram-positive or Gram-negative clinical mastitis 

occurring from 1 to 7 days pre-AI was associated with a 50% reduction in conception 

probability.  Additionally, clinical mastitis caused by Gram-negative pathogens between 
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0 and 7 days post-AI was associated with a probability of conception decrease of 80% 

whereas Gram-positive infections decreased conception probability by 47%.  These 

results imply that clinical mastitis, particularly cases caused by Gram-negative pathogens, 

interfere with oocyte fertilization or embryonic development.  While a decreased 

probability of conception at first AI is an important finding, mastitis may also may affect 

future breedings because cows that fail to conceive on their first breeding often have a 

more difficult time conceiving in subsequent breedings also.  Cows with clinical mastitis, 

severe lameness, or pneumonia during the first month after calving were 5.4 times more 

at risk of having delayed resumption of ovarian activity after calving (Opsomer et al., 

2000).  

The probability of mortality in both primiparous and multiparous cows with 

clinical mastitis was greatest in the first month of lactation.  Risk of death in primiparous 

cows was greater in the month of the clinical mastitis case and tapered off after the 

mastitis case ended.  However, each subsequent case increased the risk of mortality.  

Cows with their first clinical mastitis case were 3.9 times more likely to die that month 

than a cow without mastitis, cows with their second clinical mastitis case were 8.2 times 

more likely to die in the same month than a cow without clinical mastitis.  This result 

implies a cumulative effect of clinical mastitis on cow’s ability to survive in the herd.  In 

multiparous cows, clinical mastitis caused by Gram-negative pathogens throughout 

lactation increased the risk of mortality whereas mastitis caused by other organisms did 

not affect the risk of mortality (Hertl et al., 2011). 

Clinical mastitis increased the risk of culling regardless of how many cases a cow 

had or at what point they occurred during her lactation.  A producer may choose to 
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replace a cow with several clinical mastitis cases with a healthier first lactation animal 

(Hertl et al., 2011).   

iii. Economic Impact

Maintaining good udder health is important for the entire production chain - from 

producer to consumer (Hogeveen et al., 2010a).  Mastitis is the most costly disease on 

dairy farms worldwide.  Even though exact costs differ between countries and regions, 

the same economic principles apply.  However, producers underestimate its cost and do 

not perceive it as expensive.  Economic damage is spread throughout the year and the 

most important costs (decreased milk production and increased risk of culling) are not 

directly visible to the producer (Hogeveen et al., 2010a).  Additionally, opportunity costs 

are perceived at less value compared to out-of-pocket expenses (Thaler, 1981).  Loss 

aversion, where people tend to prefer avoiding losses to acquiring gains, likely applies to 

producers in relation to deciding milk quality measures to implement (Hogeveen et al., 

2010a) 

Some differences in udder health from farm to farm can be explained by climate, 

age of barn, or breed of cow, but much of it depends on producer behavior.  Choosing to 

implement a behavior and the precision with which the behavior is executed are 

important parts of the puzzle.  Not all measures to reduce mastitis losses are cost-

effective.  However, when farmers are shown a positive net benefit of one or more 

mastitis prevention methods, the expectation by industry representatives is that the 

producer will do it.  However, that is not always the case.  Producers have scarce 

resources to distribute among suggested improvements and udder health improvements 

may not always top the list.  They also may have different goals, economic behaviors, or 
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cost evaluations.  Producers may avoid minimizing avoidable losses because their goals 

include more than maximizing profit like job satisfaction or increasing herd size.  Lower 

milk prices may influence motivation to make changes (Hogeveen et al., 2010a). 

In 1996, the cost of mastitis was estimated at $185 per cow annually, which 

totaled $1.8 billion in costs to the United States dairy industry annually.  The average 

production loss per lactation for one infected quarter was considered to be 725 kg, 

making milk loss the largest economic loss related to mastitis.  However, other losses are 

caused by discarded abnormal milk, milk withheld from cows treated with antibiotics, 

replacement cow costs, reduced cull cow value, increased labor, and the costs of drugs 

and veterinary services.  Costs associated with antibiotic residues in human foods, milk 

quality control, dairy manufacturing, nutritional effects in milk, milk degradation, and the 

interference of genetic progress in the dairy industry are more difficult to account for 

(Bramley et al., 1996).  

Huijps et al. (2008) cited the cost of a case of mastitis for a cow on a farm with an 

average production of 8,500 kg/cow at € 210.  Fifty-five percent of this cost was 

attributed to subclinical mastitis.  However, mastitis prevention costs were not included 

in this model under the assumption that they would be beneficial for the whole herd.  

Producers in this same study estimated the losses resulting from mastitis at € 

78/cow/year, but also attributed subclinical mastitis to be the largest cost. 

However, “disease costing” estimates like that of Bramley et al. (1996) fail to 

provide information to guide action, then the computation of an aggregate financial sum 

does not in itself represent useful information. Instead, economic disease analyses need to 

focus on the relationship between the variables about which decisions have to be made 
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(output losses and control expenditures) (McInerney et al., 1992).  Also, discount rates 

for each individual may not equal the interest rate and tend to vary with the size and 

required wait of the reward (Thaler, 1981).  Most disease estimates, mastitis in particular, 

use average economic losses from a clinical case and only look at the herd’s recorded 

clinical mastitis cases, which may not paint the whole picture on each individual farm 

(Huijps et al., 2008). 

Huijps (2009) cited that producers underestimated the economic losses from 

mastitis when asked about their own farm.  Five producers estimated their economic 

losses closely to the calculated losses from the researchers.  However, 33 farmers 

underestimated the economic losses by > 25%.  No one overestimated the economic 

losses by > 25%.  In a similar survey study, only 8% of producers estimated their losses 

from mastitis correctly, while 20% overestimated and 72% underestimated the losses 

(Huijps et al., 2008).  Some producers value their opportunity cost at 0.  Even in research-

based models, some factors are difficult to account for, e.g. labor (Huijps et al., 2008). 

In a stochastic model, Bewley et al. (2010a) estimated the cost of a case of 

mastitis to range between $112 and $316 with a mean of $206 and $163 for primiparous 

and multiparous cows, respectively.  The most recent estimate for mastitis was $310 for 

primiparous cows and $340 for multiparous cows.  For both groups, decreased milk 

production comprised the majority of the losses ($136 and 138 for primiparous and 

multiparous, respectively) (Liang, 2013). 

iv. Prevention and treatment
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A healthy udder always produces milk free of pathogens so pathogen 

identification means it came from a source outside of the udder (Janzekovic et al., 2009).  

Understanding historical bacteriological culture results can help producers optimize 

treatment of future mastitis cases.  However, 10 to 50% of (Oliver et al., 1993, Lam et al., 

2009, Rowbotham and Ruegg, 2016a) quarter milk samples from cows with clinical 

mastitis yield no growth.  No growths can occur because there are too few bacteria 

present, pathogens are present but require special media to grow (e.g. Mycoplasma spp.) 

(Lam et al., 2009), or because of latent infections or shedding cycles (Sears et al., 1990).   

Solely basing mastitis control on treatment of clinical mastitis is ineffective 

(Neave et al., 1966), but effective treatment and efficient prevention measures could be 

sustainable (Chagunda et al., 2006b).  Eliminating existing infections and preventing or 

greatly reducing the rate of new infections are the two main factors that should be 

accounted for in a mastitis control program (Neave et al., 1966, Janzekovic et al., 2009).  

Good control measures include reducing the animal’s susceptibility of infection and 

reducing her exposure to pathogens.  Cows should be housed in a clean and comfortable 

environment and should be milked in a parlor with well-functioning and maintained 

equipment (Neave et al., 1966).  Even an effective mastitis control program may still 

allow 15 to 20% of the herd to be infected, though (Janzekovic et al., 2009) because 

complete mastitis eradication is currently not feasible. 

Most new mastitis cases occur during the first month of lactation when cows are 

more susceptible to infection (Janzekovic et al., 2009), particularly those caused by 

environmental pathogens (Bramley et al., 1996, Dosogne et al., 2002).  The susceptibility 

of individual cows to severe coliform mastitis has been associated with the impairment of 
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PMN function (Dosogne et al., 2002).  Susceptibility is greatest during the two weeks 

after dry off and during the two weeks before calving.  After drying off, milk removal is 

terminated, udder pressure increases, teat dipping is discontinued, and phagocyte function 

is impaired.  As calving nears, colostrum forms and can leak, non-specific immune 

factors in mammary secretions are reduced, physiological stress occurs, and accumulation 

of colostral components that interfere with leukocyte function occurs (Bramley et al., 

1996).    

Treating all quarters of all cows at dry off is one method to reduce established 

infections from lactation and prevent new dry period infections.  Penicillin-streptomycin 

mixtures and cloxacillin in slow release bases eliminated greater than 90% of 

staphylococcal infections present at dry off (Neave et al., 1966). However, Staph. aureus 

is notoriously resistant to penicillin (Erskine et al., 1987). 

Coliform mastitis vaccines are commercially available to producers and use gram-

negative core antigens to produce non-specific immunity against endotoxic mastitis 

(Ruegg, 2005).  Using a J5 vaccine can protect against severe coliform mastitis, likely 

through inducing a hyper-responsiveness in the mammary gland that is mediated by local 

memory cells (Dosogne et al., 2002).   Researchers have presented successful results in 

both challenge (Hogan et al., 1999, Wilson et al., 2007) and naturally occurring mastitis 

studies (González et al., 1989).  Wilson et al. (2007) cited that cows vaccinated with a J5 

bacterin before an E. coli intramammary challenge cleared the E. coli from their milk 

“almost immediately,” while control cows shed E. coli in milk for 24 hours.  Milk from 

vaccinated cows was approximately 10% of the SCC in controls following challenge.  At 

21, 36, 48, 60, 72, 84, 96, 108, and 132 hours post-challenge, SCC in challenged control 
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quarter milk was significantly greater than that of vaccinates.  Although milk production 

losses between the groups were only significantly different for one day post-challenge (- 

7.7 kg versus + 0.5 kg in controls and vaccinates, respectively), vaccinates lost about 3 

kg/day less milk than controls. 

Right before an intramammary E. coli challenge, J5-specific serum IgG1 (P < 

0.01) and IgG2 (P = 0.07) responses were greater in cows that received subcutaneous J5 

bacterin vaccination compared to controls.  Twelve hours post-challenge, J5-specific 

serum IgM response in controls was greater than that in vaccinates (P = 0.07), but serum 

IgG1 and IgG2 were not statistically different among treatment groups during this time 

(Wilson et al., 2007).  Intramammary immunization with a J5 vaccinate enhanced 

immunoglobulin G and M titers in serum and whey on the first day of lactation compared 

with cows that only received subcutaneous immunizations.  Immunoglobulin G titers in 

serum were also greater at 30 days dry and at 14 and 21 DIM for cows that received 

intramammary immunization than for cows that were vaccinated by subcutaneous 

injections only (Hogan et al., 1997).  In an E. coli 727 intramammary challenge study, 

Hogan et al. (1999) also found elevated serum immunoglobulin G titers against whole-

cell E. coli J5 antigen at calving in heifers vaccinated with an E. coli J5 bacterin 

compared to those who were not.  Clinical mastitis severity and duration were reduced in 

heifers vaccinated with an E. coli J5 bacterin compared with placebo-injected heifers.  

Bacteria counts were also less in milk from challenged quarters from vaccinated heifers 

than in control heifers at 12, 15, and 48 hours post-challenge.  Researchers used a 

prospective cohort study to establish that cows vaccinated with the E. coli J5 vaccine 
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were five times less likely to suffer from clinical coliform mastitis than unvaccinated 

cows during the first 90 DIM.   

Reducing teat end exposure to mastitis-causing pathogens, through good bedding 

management and milking hygiene, can reduce mastitis incidence (Bey et al., 1999).  

Rates of environmental mastitis increase during periods of hot and humid weather, which 

can be associated with increased bedding bacteria numbers and possible increased 

susceptibility in heat-stressed cows (Bramley et al., 1996). 

Fortunately, Strep ag can now be eradicated from herds with mastitis management 

and Staph. aureus can be eradicated or reduced to low levels.  Contaminated milking 

machines, udder clothes, and milkers’ hands are common routes of contagious pathogen 

transmission (Bramley et al., 1996). 

Although parlor hygiene will not cure existing mastitis infections, it can prevent 

the spread of contagious pathogens from cow to cow.  Sufficient parlor hygiene includes 

wearing rubber gloves rinsed in disinfectant between cows, examining foremilk with a 

strip cup, and post-dipping with an effective disinfectant that is gentle on teat skin (Neave 

et al., 1966).  Low SCC herds ( ≤ 150,000 cells/mL) were more likely to use post-dip and 

dry cow treat all quarters of all cows than high SCC herds ( ≥ 700,000 cells/mL) (Erskine 

et al., 1987). 

Culling cows with chronic mastitis is recommended (Neave et al., 1966).  

However, van Asseldonk et al. (2010) discovered that producers actually viewed culling 

cows with consistently high SCC as a last resort, but agreed that it was an effective way 

to avoid SCC penalties. 
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Cow cleanliness has been associated with bulk tank SCC (Bey et al., 1999, 

Schreiner and Ruegg, 2003, Ellis et al., 2007), implying that cow hygiene is more than a 

cosmetic issue on dairy farms and is actually related to mastitis (Ellis et al., 2007).  

Logically, cleaner cows should have lower SCC, but “clean” is a subjective term (Reneau 

et al., 2005).  Reneau et al. (2005) worked to develop and evaluate a simple scoring 

system for dairy cow hygiene and evaluate if the scores were associated with somatic cell 

score (SCS).  These researchers cited that udder-hind limb hygiene was positively and 

significantly associated with SCS, but tail head, lateral aspect of the thigh, and ventral 

aspect of the abdomen were not.  For each standard deviation increase in herd mean 

udder, hind limb, or udder-hind limb composite score, mean herd SCS increased by 0.13, 

0.17, and 0.17, respectively.  Each one-unit increase in udder-hind limb composite 

hygiene score was associated with a 40,000 to 50,000 cells/mL bulk tank SCC increase.  

Similarly, Schreiner and Ruegg (2003) found that dirtier udders and hind limbs were 

positively associated with SCS, but udder hygiene was more strongly associated with 

SCS.  A positive relationship between herd bulk tank SCC and cow cleanliness score was 

discovered in both organic and conventional herds (Ellis et al., 2007).   

Hygiene scores increased with increasing parity, likely because udders in older 

cows are closer to the ground providing more of an opportunity to contact manure.  In 

order to prevent this, cows should not be rushed when being moved and alleys should be 

kept clean.  Hygiene scores improved as DIM increased (Reneau et al., 2005).  

In a study evaluating hygiene differences between seasons and between organic 

and conventional farming systems, increasing cow hygiene was more strongly associated 

with bulk tank SCC in organic herds than conventional.  Cows became dirtier when going 
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from summer grazing to winter housing, likely because they have greater space and lying 

restrictions.  High- and mid-production cows were less likely to be clean than low-

yielding or all lactation groups.  Cows housed on bedded packs with straw were more 

likely to be dirty than those housed in freestalls.  However, cows in organic herds were 

more likely to be clean when housed in bedded packs with straw than conventional cows.  

Dry cows were cleaner than lactating cows in August and October, but this result was 

lessened when cows were not on pasture (Ellis et al., 2007).  

Dairy professionals commonly use the “knee test” to evaluate the comfort of a 

lying surface, but it can also be used to evaluate cleanliness.  Upon standing, if there is 

manure or wetness on the evaluator’s knees, the bed base is too wet so more bedding is 

needed.  The ideal bedding is cheap, dry, comfortable, clean, does not support bacterial 

growth, is compatible with the existing manure handling system, and never has to be 

changed.  Although meeting all these criteria is not feasible, every producer’s goal must 

be to meet as many as possible at all times.  Bacteria need moisture, organic nutrients, 

and appropriate temperature to survive and grow.  One major disadvantage of organic 

bedding material is that it can support bacterial growth well because they contain more 

nutrients.  In addition, fine bedding particle size supports faster bacterial growth and 

sticks to udders and teats more readily.  Bedding that looks and feels clean may still have 

high bacterial counts.  During the summer, the ambient temperature is warm enough to 

allow bacterial growth even before manure contamination.  Bedding with greater 

bacterial counts increases the risk of mastitis (Bey et al., 1999).     

Sand is the ideal bedding from a bacteriologic standpoint because bacteria 

numbers are lower than in organic bedding and sand can tolerate greater bacterial 
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numbers but not increase mastitis.  However, sand needs to be well managed by ensuring 

it is deep and smoothed over for cow comfort.  Sand can be washed and re-used (Bey et 

al., 1999). 

Teat disinfection is one of the most important preventive measures in mastitis 

control, but has no control on mastitis cases that already exist.  Teat dip should cover the 

whole teat, not just the teat end.  Dipping uses less dip than spraying and has a better 

chance of covering the entire teat when applied.  Teat dip cups should be cleaned 

regularly to prevent contamination.  Chemical compounds used in teat dips include 

iodophors, quaternary ammonium compounds, chlorhexidine, hypochlorite, and dodecyl 

benzene sulphonic acid (Blowey and Edmondson, 1996). 

When a cow with mastitis is milked, mastitis-causing bacteria remain on the liners 

and can be transmitted to cows (Blowey and Edmondson, 1996).  Post-dipping is 

recommended by dairy advisors, is simple to perform, and is economical (Oliver et al., 

1993).  Post-dipping controls contagious mastitis (Oliver et al., 1993, Blowey and 

Edmondson, 1996) while pre-dipping controls environmental mastitis.  Pre-dip needs to 

remain on the teats for at least 30 seconds.  Post-dip removes bacteria transmitted during 

the milking practice and should be applied as soon as possible after cluster removal 

(Blowey and Edmondson, 1996).  Oliver et al. (1993) cited 49% less new mastitis cases 

caused by major pathogens in cows that were pre- and post-dipped versus those who were 

only post-dipped (P < 0.01). 

Rough or chapped teat skin can be a reservoir for mastitis-causing pathogens.  

Emollients like lanolin and glycerin are added to disinfectants to protect and heal cracked 

teats (Blowey and Edmondson, 1996). 

22 
 



b. Metritis

i. Cause

Metritis is a severe inflammatory reaction involving all layers of the uterus 

including the endometrial mucosa and submucosa, muscularis, and serosa (BonDurant, 

1999).  Metritis usually occurs in the first week postpartum and is often associated with 

retained placenta (Sheldon, 2004) and Caesarian sections (Hussain et al., 1990).  Clinical 

signs of metritis include pyrexia, fetid pus within the uterine lumen, vagina, or 

discharging from the vulva (Sheldon and Dobson, 2004), and delayed uterine involution 

(Sheldon, 2004, Sheldon and Dobson, 2004).   

Uterine bacterial infections disrupt the function of the uterus, ovaries, and higher 

control centers in the hypothalamus and pituitary glands.  These infections also 

compromise animal welfare and can cause sub-fertility or even infertility (Sheldon and 

Dobson, 2004).  Mahnani et al. (2015) explained that a case of metritis increased days 

open and number of inseminations per conception by 16.4  and 0.1 per cow per lactation, 

respectively.  Metritis cost a mean of $162.3 per case in that same study. 

LeBlanc et al. (2002) explained that cows in their third or greater lactation were at 

greater risk of clinical endometritis than cows in their second or first lactation 

(prevalence of 21, 13, and 12%, respectively, P < 0.001).  Twins, retained placenta, and 

metritis were all associated with increased risk of endometritis (odds ratios of 8.6, 4.9, 

and 4.6, respectively; P < 0.001). 

The incidence of clinical metritis with the definition of a fetid, reddish-brown 

vaginal discharge and a rectal temperature ≥ 39.5°C was 18.5% (Drillich et al., 2001), 
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similar to the 18% cited by Bartlett et al. (1986).  Etherington et al. (1984) cited a clinical 

metritis incidence rate of 25.9% and Markusfeld (1987) cited an even greater incidence at 

36%.   

Although metritis and endometritis are often named interchangeably, each has a 

clear definition (Sheldon, 2004).  Endometritis is a superficial inflammation of the 

endometrium only, extending only to the stratum spongiosum (BonDurant, 1999).  The 

clinical sign of endometritis is mucopurulent vulvar discharge 21 DIM or later (Sheldon 

and Noakes, 1998).  LeBlanc et al. (2002) defined clinical endometritis as the presence of 

purulent or foul discharge, or cervical diameter greater than 7.5 cm between 20 and 33 

DIM, or mucopurulent discharge after 26 DIM, when cows are examined between 20 and 

33 DIM and vaginoscopy is performed.  The prevalence of endometritis was 16.9% using 

this definition.  However, when vaginoscopy was not performed and diagnosis was based 

on history, inspection and palpation, presence of mucopurulent or purulent discharge on 

the perineum, cervical diameter > 7.5 cm, and presence of a uterine horn ≥ 8 cm in 

diameter, endometritis prevalence was 14.6%. 

The uterus is sterile throughout pregnancy because the vulva, vestibule, vagina, 

and cervix act as physical barriers to bacteria ascending the genital tract (BonDurant, 

1999, Sheldon, 2004, Sheldon and Dobson, 2004).  When the vulva is relaxed and the 

cervix is dilated during and just after parturition, bacteria from the animal’s environment 

can contaminate the uterine lumen.  The amount of bacterial contamination a cow has 

post-partum is dependent on bacterial numbers and the animal’s defense mechanisms 

(Sheldon, 2004).  Neutrophils are the primary phagocytic barrier in response to bacterial 

invasion, and the inflammatory barriers include the non-specific defense molecules like 
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lactoferrin and acute phase proteins.  Neutrophils are the earliest and most important 

phagocytic cell recruited from the peripheral circulation to the uterine lumen, killing 

internalized bacteria and contributing to the formation of pus when the phagocytes die 

(Sheldon and Dobson, 2004).   

Pathogens most often associated with clinical disease are Arcanobacterium 

pyogenes, Escherichia coli, Fusobacterium necrophorum and Prevotella 

melaninogenicus.  Arcanobacterium pyogenes produces a growth factor for F. 

necrophorum, F. necrophorum produces a leukotoxin, and P. melaninogenicus produces 

a substance that inhibits phagocytosis (Sheldon, 2004, Sheldon and Dobson, 2004).   

ii. Effects

1. Clinical

The most useful signs of uterine infection are the presence of fetid pus within or 

discharging from the vulva and delayed uterine involution.  The routine method for 

examining the contents of the vagina is to withdraw the discharge for inspection 

manually.  This technique is fast, cheap, and allows for volume quantification and odor 

detection.  The secretion can be scored, where 0 represents clear or translucent mucus; 1 

represents clear mucus containing flecks of white pus; 2 represents < 50 mL exudate 

containing ≤ 50% white or cream pus; and 3 represents > 50 mL exudate containing ≥ 

50% white, cream, or bloody pus.  The vaginal mucus odor can be scored 0 for no odor 

and 3 if a putrid odor is present.  The character and odor scores can then be summed to 

give a score ranging from 0 to 6 (Sheldon, 2004) 
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Cows with clinical endometritis had a reduced overall relative pregnancy rate of 

27% and a decrease in 21-d pregnancy rate from 20 to 14.6%.  The median time to 

pregnancy was 32 days longer in cows with clinical endometritis than in cows without it.  

Cows with clinical endometritis were also 1.7 times more likely to be culled for 

reproductive failure than cows without clinical endometritis (LeBlanc et al., 2002).   

Odds ratios for pregnancy risk in cows with metritis 2 to 21 days after AI, 0 to 1 

day after AI, ≤ 30 days before AI, and ≥ 31 days before AI were 0.17, 0.93, 0.52, and 

0.82, respectively (Loeffler et al., 1999). 

Metritis was protective against culling while displaced abomasums and clinical 

mastitis increased the risks of culling (Hertl et al., 2011). 

2. Subclinical 

Monitoring rectal temperatures post-partum alone to diagnose metritis is less reliable 

than including an examination for abnormal uterine discharge because pyrexia is not 

consistently associated with pathogenic bacteria in the uterine lumen.  Rectal temperature 

is often greater than the accepted normal range during the first 10 days after parturition 

(Sheldon, 2004).  Fever occurs in response to detection of pro-inflammatory cytokines by 

receptors in the brain, which stimulate a coordinated neural response in the hypothalamus 

and brainstem to reset the thermostatic body temperature set point (Saper and Breder, 

1994). Although fever indicates inflammation, additional clinical signs are necessary to 

identify a uterine bacterial infection (Sheldon et al., 2004).  In a study evaluating the 

rectal temperature and uterine health of 90 dairy cows during the first 10 DIM, the 

greatest mean daily temperature was two days post-calving.  The authors contributed this 
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spike in temperature to the tissue damage associated with parturition because a uterine 

bacterial infection was not likely to have become established that quickly (Sheldon et al., 

2004). 

In 90 cows with rectal temperatures monitored daily, 26% had temperatures 

greater than 39.4°C, which the authors considered a fever, within the first 10 days 

postpartum.  The mean or maximum rectal temperature during the first 10 days 

postpartum was not a good indicator of the number of bacteria in the uterus, or the 

presence of recognized pathogens, although fever was more common in cows that had 

Prevotella spp. isolated from their uterus (Sheldon et al., 2004). 

iii. Prevention and treatment

Unfortunately, even well-managed farms have enough bacteria for uterine 

contamination, and factors other than the environment determine whether or not a cow 

will get a uterine infection (Sheldon, 2004).  Using historical data of risk factors for 

uterine disease to select cows for further examination at routine fertility visits may be 

beneficial so that treatment can be targeted and unnecessary use of antibiotics can be 

avoided (Sheldon, 2004). 

Systemic antibiotic treatment of toxic puerperal metritis is important (Smith et al., 

1998).  Ideally, therapy for uterine infections should: 1) eliminate bacteria from the 

uterus, 2) not inhibit the normal uterine defense mechanism, and 3) not cause further 

adulteration of milk or meat for human consumption.  Most intra-uterine treatments 

available fail to meet one or more of these criteria, therefore systemic antibiotic treatment 

may be more effective.  Negative interactions between antibiotics and the uterine 
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environment, the inhibition of the uterine defense mechanism by irritating drugs, and a 

questionable efficacy of antibiotics within the inflamed uterine wall are why intrauterine 

antibiotic treatment is ineffective (Paisley et al., 1986).  Tetracycline (intrauterine 

infusion of 1500 mg oxytetracycline hydrochloride solution), prostaglandin 

(intramuscular injection of 500 µg of cloprostenol), and estrogen (intramuscular injection 

of 3 mg estradiol benzoate per 500 kg estimated bodyweight) treatments had clinical 

success rates of 73, 68 and 62%, respectively, after the first treatment (Sheldon and 

Noakes, 1998). 

iv. Economic impact

In a stochastic model, Bewley et al. (2010a) estimated the cost of a case of 

metritis to range between $169 and $441 with a mean of $210 and $295 for primiparous 

and multiparous cows, respectively. The most recent estimates for a case of metritis were 

$176 for primiparous cows and $186 for multiparous cows.  For both groups, veterinary 

and treatment costs comprised the majority of the losses at $89 per case (Liang, 2013). 

c. Hypocalcemia

i. Cause

Hypocalcemia, or milk fever, is a metabolic disorder in which homeostatic 

mechanisms fail to maintain normal blood calcium (Ca) concentrations at the onset of 

lactation (Goff and Horst, 1997). Blood Ca in the adult cow is maintained between 2.0 

and 2.5 mmol/L (8.5 and 10 mg/dL) (Jorgensen, 1974, Goff, 2008).  Typically, the lowest 

blood Ca concentration occurs between 12 and 24 h after calving (Goff, 2008).   
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Clinical milk fever incidence in the United States is 4% (McLaren et al., 2006) to 

6% and increases with increasing parity (Rajala-Schultz et al., 1999a).  However, nearly 

25% of heifers and 50% of older cows will have blood Ca concentration < 2 mmol/L 

(Goff, 2008).  Subclinical hypocalcemia (< 2.0 mmol/L serum within 48 h post-partum) 

occurred in 25%, 41%, 49%, 51%, 54%, and 42% of first, second, third, fourth, fifth, and 

sixth parity cows, respectively in a study conducted in Iowa (Reinhardt et al., 2011).  

Hypocalcemia is associated with older cattle (Jorgensen, 1974, DeGaris and Lean, 2009) 

that absorb less dietary Ca and may have less exchangeable bone calcium, cattle who 

ingest high Ca dry cow rations, cattle with reduced feed intake at parturition, over-

conditioned cows, high producing cows, and cows with increased estrogen and 

glucocorticoids at parturition that may reduce serum Ca (Jorgensen, 1974).   

Over-conditioned cows (body condition score >3.5, on a scale of 1–5) are at 

increased risk of hypocalcaemia (Heuer et al., 1999). Dystocia is also an important cause 

of peri-parturient recumbency (DeGaris and Lean, 2009). 

Cows may lose more than 50 g of blood Ca per day to milk at the onset of 

lactation.  Before calving, cows only require about 30 g of Ca, which equates to 15 g in 

fecal and urinary loss and 15 g to fetal growth.  Cows can only afford to lose about half 

of their circulating blood Ca reserves before hypocalcaemia occurs.  To meet the 

increased demands, the cow must increase absorption from the rumen or intestines and 

increase mobilization from tissue, especially bone reserves of Ca, as circulating blood Ca 

reserves are limited.  “Most” cows have some degree of hypocalcaemia at calving 

(DeGaris and Lean, 2009). 
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Clinical hypocalcemia, or milk fever, can be defined as a total blood Ca level < 

1.4 mmol/L.  Subclinical hypocalcemia can be defined as a total blood Ca between 1.4 

and 2.0 mmol/L.  Both are risk factors for other diseases including mastitis, ketosis, 

retained placenta, displaced abomasum, and uterine prolapse (DeGaris and Lean, 2009). 

ii. Effects

1. Clinical

Clinical and subclinical hypocalcemia are considered “gateway diseases” and greatly 

reduce the chance for full productivity during that lactation (Goff, 2008, Mulligan and 

Doherty, 2008).  Hypocalcemia reduces rumen and abomasal motility, increasing the risk 

of displaced abomasums.  Hypocalcemia reduces feed intake so that greater body fat 

mobilization occurs in early lactation.  Hypocalcemia also reduces muscle contraction, 

including the teat sphincter muscle which is responsible for teat closure after milking, 

increasing the risk of mastitis (Goff, 2008).  Clinical hypocalcaemia (total blood Ca < 1.4 

mmol/L) and subclinical hypocalcaemia (total blood Ca 1.4–2.0 mmol/L) are risk factors 

for many of the important diseases of lactation including mastitis, ketosis, retained 

placenta, displaced abomasum, and uterine prolapse (DeGaris and Lean, 2009). 

2. Subclinical

iii. Prevention and treatment

Extracellular Ca will be lost to milk at the start of lactation, which must be 

replaced to prevent blood Ca from decreasing also.  A healthy cow will withdraw Ca 

from bone and increase the absorption efficiency of dietary Ca, forcing her into a state of 

lactational osteoporosis.  Bone Ca mobilization is regulated by parathyroid hormone, 
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which is produced any time there is a decrease in blood Ca (Goff, 2008).  Cows are at an 

increased risk of hypocalcemia post-calving when pre-calving diets are Ca-deficient 

because of the gradual loss of Ca stores.  Although data is lacking, DeGaris and Lean 

(2009) explained that post-calving diets high in Ca combined with increased passive 

absorption from Ca stores are protective against milk fever.   

Milk fever prevention depends partly on nutrition.  Recumbency can be caused by 

hypocalcemia, hypomagnesemia, hypophosphatemia, ketosis associated with twins, 

musculo-skeletal injury predisposed by calving and hypocalcemia, and, less frequently, 

peracute mastitis or other infections (DeGaris and Lean, 2009). 

Reducing the number of cations (sodium, potassium, calcium, and magnesium) 

present in feeds may help reduce hypocalcemia post-partum (Goff, 2008).  Cows fed a 

low Ca diet (< 20 g of Ca/d) during the dry period cannot meet Ca maintenance and fetal 

skeletal development requirements.  A negative Ca balance stimulates the secretion of 

parathyroid hormone before calving, which activates bone osteoclasts to stimulate bone 

Ca resorption, and activates renal tubules to resorb urinary Ca and to begin producing 

calcitriol before calving.  When these Ca homeostatic mechanisms are active post-

calving, they prevent a severe decline in plasma Ca concentration in the lactating cow 

(Goff and Horst, 1997, Goff, 2008).  In order to benefit from this prophylactic effect, 

close up dry cow diets should be low in calcium and high in phosphorous to successfully 

prevent hypocalcemia (Boda and Cole, 1954, Jorgensen, 1974).  Reducing Ca 

concentration in a dry cow ration means that high Ca forages like alfalfa should be 

removed and replaced with low Ca forages like corn silage or grass hays (Goff and Horst, 

1997). 
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Hypocalcaemia cannot be entirely prevented by ration formulation.  Recumbency 

is often caused by hypocalcaemia, but other significant causes include hypomagnesaemia, 

musculo-skeletal injury predisposed by calving and hypocalcaemia, ketosis associated 

with twinning, hypophosphataemia and a number of less frequent problems such as 

peracute mastitis and other infections.  Dystocia is a major cause of periparturient 

recumbency (DeGaris and Lean, 2009). 

Keeping potassium as close to the dry cow NRC requirement as possible (about 

10 g/kg or 1.0% diet K) is a good preventive practice for hypocalcemia.  Adding chloride 

to the ration to counteract the effects of even low dietary K on blood alkalinity can help 

reduce subclinical hypocalcemia.  Chloride concentration should be about 5 g/kg (0.5%) 

less than the concentration of K in the diet (Goff, 2008). 

Hypocalcemia can make a cow unable to stand up because Ca is necessary for 

nerve and muscle function (Goff, 2008).  “Crush syndrome” can occur on the appendages 

under the weight of the cow when recumbent in just 4 hours.  The cow’s weight cuts off 

the blood supply to the muscles and nerves, followed by necrosis of these tissues 

resulting in the downer cow syndrome.  The fastest way to restore plasma Ca 

concentration is to administer Ca salts (commonly Ca borogluconate) intravenously.  

Commercial preparations for intravenous use supply from 8.5 to 11.5 g Ca per 500 mL 

and may also contain sources of magnesium, phosphorous (often as ineffective 

phosphite), and glucose (dextrose).  The most effective intravenous Ca dose is 2 g Ca per 

100 kg body weight.  If administered too rapidly, fatal arrhythmia of the heart can occur 

and the heart may stop, so Ca should be administered at a rate of 1 g/min.  Intravenous Ca 

treatments elevate blood Ca above normal for about 4 h (Goff, 2008). 
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Oral Ca supplementation can force Ca across the intestinal tract through passive 

diffusion between intestinal epithelial cells.  The assumption when using oral Ca 

supplementation is that the cow’s ability to use active Ca transport across intestinal cells 

is inadequate to maintain normal blood Ca concentrations.  The best results are obtained 

with Ca doses between 50 and 125 g (Goff, 2008). 

iv. Economic impact

In a stochastic model, Bewley et al. (2010a) estimated the cost of a case of milk 

fever to range between $72 and $172 with a mean of $114 for multiparous cows (with the 

assumption that primiparous cows are not likely to have milk fever). The most recent 

estimate for milk fever was $166 for multiparous cows.  Veterinary and treatment costs 

comprise the largest portion of the loss at $85 per case (Liang, 2013). 

d. Ketosis

i. Cause

Ketosis is a disease related to carbohydrate and fat metabolism and is 

characterized by increased concentrations of ketone bodies in blood (ketonemia), urine 

(ketonuria), and milk (ketolactia).  The major ketone bodies are betahydroxybutyrate 

(BHBA), acetoacetate, and acetone.  Ketosis can be classified as subclinical or clinical 

and as a primary or secondary disease (Geishauser et al., 1998).  Higher producing cows 

are at greater risk of ketosis, which comes with a temporary milk yield decrease, so if 

they do not develop ketosis their milk yield would be even greater (Detilleux et al., 1994, 

Rajala-Schultz et al., 1999a). 
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Clinical ketosis incidence in the United States is between 2 and 3% (McLaren et 

al., 2006, Seifi et al., 2011), but is greater in third or greater parity cows (6%, P = 0.02) 

(Seifi et al., 2011).  However, subclinical ketosis incidence is 54% in week one and 47% 

in week two post-partum (McLaren et al., 2006).  

ii. Effects 

1. Clinical 

The gold standard of determining subclinical ketosis status is the measurement of 

BHBA in blood plasma or serum (McLaren et al., 2006).  The optimum BHBA cut-point 

based on maximum total sensitivity and specificity for clinical ketosis was 1200 μmol/L 

in the first week post-partum (Seifi et al., 2011). 

Postpartum BHBA increases have been associated with decreased milk production 

and milk protein content (Duffield et al., 2009) and increased risk for culling, clinical 

ketosis, and displaced abomasum (Seifi et al., 2011).  LeBlanc et al. (2005) cited the odds 

of a left displaced abomasum were 8 times greater in cows with serum BHBA ≥1200 

μmol/L.  Cows with milk BHBA concentration ≥ 1200 μmol/L were 3.4 times more 

likely to develop a left displaced abomasum.  Walsh et al. (2007) explained that the herd 

prevalence of anovulation increased by 2.1% for every 10% increase in the herd 

prevalence of subclinical ketosis in the first week postpartum.  Cows with BHBA 

concentrations ≥ 1200 μmol/L were also 4.7 times more likely to develop clinical ketosis 

(Seifi et al., 2011). 
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 Ketolac® BHB strips (Hoechst, Unterschleißheim, Germany) were 92 and 72% 

sensitive at detecting subclinical ketosis using 500 and 100 mmol BHBA/L milk 

thresholds, respectively (Geishauser et al., 1998). 

Cows with clinical ketosis were 11 times more at risk of developing delayed 

ovarian function (Opsomer et al., 2000). 

2. Subclinical

Subclinical ketosis develops in response to a poor adaptive response to negative 

energy balance and the liver is overwhelmed with non-esterified-fatty-acids (NEFA).  

Cows that experience subclinical ketosis after the first seven DIM may have better 

adapted to the effects of decreased dry matter intake in the periparturient period but are 

not able to sustain using energy stores for increased milk production in early lactation.  

However, cows that develop subclinical ketosis within the first week postpartum likely 

experienced poor adaptation to negative energy balance through calving and into 

lactation (McArt et al., 2012). 

Subclinical ketosis starts at serum or plasma BHBA concentrations greater than 

1,000 μmol/L.  However, setting an appropriate subclinical threshold using serum or 

plasma BHBA is somewhat arbitrary (Duffield et al., 2009).  Duffield et al. (2009) 

explained that defining hyperketonemia in order to predict health risk in early lactation 

dairy cows begins at a BHBA serum concentration ≥1,200 μmol/L.   

Subclinical ketosis incidence has been cited at 43% (McArt et al., 2012) and 

ranged from 26 to 56% with peak subclinical ketosis incidence at 5 DIM (McArt et al., 

2011).  Cumulative subclinical ketosis incidence ranged from 46 to 59% (Duffield et al., 

35 



1998), but likely underestimated the true incidence because cows were only tested once 

weekly.   

Subclinical ketosis increases the risk of displaced abomasum (DA) and metritis 

(Duffield et al., 2009, Ospina et al., 2010), which could increase culling risk.  In the first 

30 DIM, 0.3% of cows without ketosis developed a DA while 6.5% of cows with 

subclinical ketosis developed a DA.  Cows that tested positive for subclinical ketosis 

were 19.3 times more likely to develop a DA than cows without ketosis.  Of the cows that 

developed a DA, cows diagnosed with subclinical ketosis for the first time between 3 and 

5 DIM were 6.1 times more likely to develop the DA compared to cows first testing 

positive at 6 or more DIM.  Each 0.1 mmol/L increase in BHBA was associated with an 

increased risk of developing a DA by 30 DIM by a factor of 1.1 (P < 0.01) (McArt et al., 

2012).  

Also in the first 30 DIM, 5.4% of cows with subclinical ketosis were culled or 

died compared to only 1.8% for cows without subclinical ketosis.  Cows with subclinical 

ketosis were 3 times more likely to die or be culled than cows without ketosis.  The 

median time from first positive subclinical ketosis diagnosis to removal from the herd 

was 9 days, but ranged from 2 to 24 days.  Cows diagnosed with subclinical ketosis for 

the first time from 3 to 7 DIM were 4.5 times more likely to be removed from the herd 

than the cows first testing positive at 8 or later DIM (P < 0.01) (McArt et al., 2012).   

Cows without ketosis produced 1.2 kg/cow/day more than cows with subclinical 

ketosis in the first 30 days of lactation (P < 0.01).  Cows diagnosed with subclinical 

ketosis for the first time between 3 and 7 DIM produced 0.7 kg/cow/milking more during 
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the first 30 DIM compared to cows diagnosed for the first time between 8 and 16 DIM (P 

= 0.04) (McArt et al., 2012).   

Cows with a BHBA of 2.4 mmol/L, where a BHBA of 1.2 to 2.9 represented 

subclinical ketosis were 3 times more likely to develop a DA, > 50 times more likely to 

be culled, and was expected to produce 180 kg less milk in the first 30 DIM compared to 

a cow with a BHBA of 1.2 mmol/L (McArt et al., 2012). 

iii. Prevention and treatment

Seifi et al. (2011) explained that the risks of clinical ketosis in cows with BCS of 

≥ 3.75, between 3.25 and 3.5, and ≤ 3.0 were 10.7%, 3.1% and 1.3%, respectively (P < 

0.01). 

Administering a monensin controlled-release capsule (Duffield et al., 1998, 

Petersson-Wolfe et al., 2007) or supplementing cows three weeks before expected 

calving with a monensin premix (Petersson-Wolfe et al., 2007) significantly decreased 

serum BHBA concentrations in early lactation when compared to control cows.  Duffield 

et al. (1998) explained that using a controlled-release monensin capsule reduced BHBA 

concentrations by 20% in the first 3 weeks post-partum.  Petersson-Wolfe et al. (2007) 

cited similar results with a reduction of BHBA by 17% and 28% for weeks one and two 

post-partum, respectively.  

iv. Economic impact

In a stochastic model, Bewley et al. (2010a) estimated the cost of a case of ketosis 

to range between $55 and $167 with a mean of $78 and $106 for primiparous and 

multiparous cows, respectively.  The most recent estimate for ketosis was $80 for 
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primiparous cows and $92 for multiparous cows.  For both groups, veterinary and 

treatment costs comprised the majority of the losses at $52 per case (Liang, 2013). 

II. Disease detection using precision dairy farming technologies

a. Background

As average herd size increases, time producers can devote to each animal 

decreases (Schulze et al., 2007, Ipema et al., 2008, Bewley, 2010, Brandt et al., 2010) as 

the administrative, technical, organizational, and logistic workload for the producer 

increases (Berckmans, 2004).  Livestock production today requires the desire to look 

beyond economic goals (Frost et al., 2003, Berckmans, 2004).  Consumer pressure and 

concern for animal well-being and health, efficient and sustainable farming, food safety 

and quality, and control of zoonotic diseases, pathogens, and medical treatments has 

altered decision-making processes on farms (Berckmans, 2004, Schukken et al., 2008, 

Bewley, 2010).  Dairy operations also have narrower profit margins than in the past 

because the government is less involved in regulating agricultural commodity prices.  In 

turn, dairy producers need to increase efficiency, which can increase profit (Bewley, 

2010, 2012).  Because of the aforementioned major industry shifts, on-farm decision 

making is changing and dairy cow monitoring tools will likely increase in importance 

(Berckmans, 2004, Schulze et al., 2007, Ipema et al., 2008, Bewley, 2010) to help make 

decisions that previously were based solely on producer experience and judgement.  

Unfortunately, on-farm decisions are riddled with complexities, many of which the 

effects have to be estimated or guessed at by the producers (Frost et al., 2003). One way 

to counteract these problems is through the use of automated monitoring systems 

(Chagunda et al., 2006b). 
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Throughout history, agricultural techniques have advanced to support larger 

populations, With the growth of the non-farming population alongside an increase in 

living standards, agriculture’s role and function has been transformed (Marchesi, 2012).  

Precision agriculture refers to the use of technologies to increase efficiency and reduce 

environmental damage in crop farming.  Precision livestock farming applies the precision 

agriculture principles to animals, focusing on individual animal production and 

environmental impact (Laca, 2009).  One goal of precision livestock farming to develop 

in-line systems that monitor animals objectively, continuously, and automatically, 

without adding stress on the animals (Berckmans, 2004).   Precision dairy farming (PDF) 

is the use of technologies to measure physiological, behavioral, and production indicators 

on individual animals to improve management and farm performance (Bewley, 2010, 

2012).  This type of management system relies on the observation that the animal herself 

is the important part of the biological production process at hand (Berckmans, 2004).   

Objective physiological measures of animal responses to environmental stressors 

can be used to evaluate the degree of stress and consequent adaptations to that stress 

(Hahn et al., 1990).  Animals are complex and respond differently at different moments 

of time compared to their herdmates.  Outside of precision livestock farming, animals are 

commonly considered an “average of a population” thus creating a steady-state system.  

Within precision livestock farming, however, each animal can be treated as its own CIT 

system (Complex, Individual, and Time-variant) (Berckmans, 2004).  Real-time data 

from PDF technologies could be incorporated into decision support systems to facilitate 

decision making when multiple data sources are necessary (Bewley, 2010). 
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The goals of PDF are maximizing individual animal potential, early disease 

detection, and maximizing preventive care instead of medical treatments.  Perceived 

benefits of PDF technologies include increased efficiency, reduced costs, improved milk 

quality, minimized environmental impacts, and improved animal health and well-being.  

Additionally, information from PDF technologies could potentially be incorporated into 

genetic evaluations for traits targeted at improving subsequent generations’ health, well-

being, and longevity (Bewley, 2010).  Marchesi (2012) explained that implementing an 

animal monitoring system is both a moral and commercial interest to producers because it 

helps them satisfy the animal’s needs. 

To date, PDF evaluations have focused mainly on automated estrus detection, 

aimed to supplement or replace visual estrus detection (Dolecheck et al., 2015).  

Precision Dairy Farming technologies also have the potential to detect disease early, 

maximizing individual animal potential.  Disease detection in the past has relied on 

producers observing clinical signs, but once clinical signs are displayed, it is often too 

late to act effectively.  Clinical signs are often preceded by physiological changes that are 

undetectable with human senses, but may be possible with PDF and could allow 

producers to intervene sooner (Bewley, 2012).  Technologies may alert producers to cows 

at risk for a disease instead of the existing disease detection method of identifying cows 

that are already sick (Itle et al., 2015). 

Many disease cases go unnoticed because veterinary examination is the gold 

standard of disease detection, are conducted relatively infrequently on most dairy farms 

(Urton et al., 2005). Instead, dairy producers often rely on their experience and 

judgement to identify sick animals, but human perception of a cow’s condition is limited 
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(Bewley, 2010).  Additionally, some diseases do not present obvious signs (Weary et al., 

2009).  Even worse, sometimes, by the time an animal does display outward signs of 

illness or stress, it is too late to intervene.  Physiological changes typically occur before 

clinical symptoms, though.  If a producer were able to detect these physiological changes, 

interventions could occur sooner (Bewley, 2010).  Even when individual monitoring is 

employed on farms, behavioral indicators used to detect illness are often based simply on 

the experience and intuition of the producer and tend to be unreliable (Weary et al., 

2009). 

Producers can examine real time data and reports to identify abnormal deviations 

from a baseline (Bewley, 2010).  However, the data itself is meaningless unless it is 

transformed into a good decision management program.  Thus, the producer remains a 

critical factor in good animal management and  technologies will only support, not 

replace, the producer (DeGaris and Lean, 2009, Bewley, 2010, Marchesi, 2012).  The 

ability to combine computer systems with the strengths and abilities of the producer is 

where the potential benefits of PDF systems lie (Marchesi, 2012).  

However, to achieve success using precision livestock farming processes, three 

conditions apply.  First, animal variables should be monitored continuously and the data 

should be analyzed consistently.  The definition of “continuously” depends on the animal 

variable of interest, like weight, activity, drinking and feeding behavior, feed intake, body 

temperature, etc. Second, a reliable prediction or expectation on how the animal will 

respond to the change must be available constantly.  Lastly, this prediction should be 

coupled with the technology measurements in an algorithm to monitor or manage the 
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animals automatically, and to monitor animal health or welfare or make desired system 

changes (Berckmans, 2004). 

Often, each individual process involved in livestock production is controlled 

separately.  Integrated management systems can control multiple, and ideally all, the 

interrelated processes involved in production.  Each of the various processes within a 

dairy is usually controlled by one or more open-loop control systems, which has limited 

consideration for the effects that it has on other parts of the process.  Management 

systems where various processes are integrated so that the production system is managed 

as a whole closed-loop system is a solution to the problems current systems being used 

on-farm create (Frost et al., 2003). 

Daily milk yield recording, milk component monitoring, pedometers, automatic 

temperature recording devices, milk electrical conductivity monitors, and automatic 

estrus detection monitors, and daily body weight systems are currently available for 

producers to implement on-farm (Bewley, 2010).  Bewley (2010) explained that other 

“theoretical” PDF systems may be able to measure: jaw movements, ruminal pH, 

reticular contractions, heart rate, animal positioning and activity, vaginal mucus and 

electrical resistance, feeding behavior, lying behavior, odor, glucose, acoustics, 

progesterone, individual milk components, color, infrared udder surface temperatures, 

and respiration rates.  Excitingly, just six years later, many of these technologies are 

already available and being researched.  Because the rapid development and availability 

of new PDF continues to grow, they are becoming more feasible for producers to 

implement in their own herds (Bewley et al., 2010b, Bewley, 2012).  
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Although the technology required to achieve fully automated dairy systems is 

available, multidisciplinary and innovative research is required to achieve its application.  

The bottleneck for application is the availability of reliable sensor systems because the 

required algorithms to go along with them can be developed (Berckmans, 2004).  

Unfortunately, the dairy industry is relatively small, which limits corporate willingness to 

invest in developing technologies exclusively for dairy farms.  Thus, technology 

development is instead driven by the availability of a technology in other industries and 

then transferred to the dairy industry, regardless of the actual needs (Bewley, 2010, 

2012). 

Precision dairy farming technologies provide great opportunities to improve dairy 

herd management systems and may improve individual animal management (Bewley, 

2010, Singh et al., 2014).  However, the data itself is not useful unless it is interpreted 

and used effectively in decision making (Bewley, 2012, Singh et al., 2014).  Bewley 

(2012) explained that the “majority” of data management systems currently available are 

not used to their full potential.  Other PDF limitations include: slow adoption rates, 

erroneous animal reads, equipment failure, the amount of data may overwhelm systems 

during data transfer, a lack of validated research results, and cows are normally housed in 

a restricted spacial area (Singh et al., 2014). 

b. Economics

On-farm decision-making tool adoption rates have been scarce in the dairy 

industry as of yet.  Still, the dairy industry allows for great success using decision science 

because: 1)  it is characterized by considerable price, weather, and biological variation 

and uncertainty; 2) PDF technologies designed to collect data for decision making 
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abound; and 3) fluid milk is difficult to differentiate, increasing the need for producers to 

differentiate themselves through their business models (Bewley et al., 2010a). 

Precision dairy farming technology adoption may be more feasible as larger dairy 

operations rely more on less skilled labor and can take advantage of discounts related to 

economies of size (Bewley, 2010).  Increasing labor costs relative to capital costs may 

drive adoption of PDF (Rutten et al., 2013).  Interestingly, (Bewley et al., 2010b) showed 

that the profitability of investment in an automated body condition scoring system largely 

depended on what happens with the technology once it has been purchased. 

Before investing in a PDF technology, a farm-specific economic analysis is 

recommended to ensure that the investment is sound.  Decision support tools allow 

producers to make better investment decisions by considering these decisions at a 

systems level (Bewley, 2012).  Stochastic simulation models account for more of the risk 

and uncertainty inherent to dairy farming.  The results will therefore represent that there 

is uncertainty in the profitability of some investments.  Although results from this type of 

economic analysis can be useful, the producer’s level of risk aversion will ultimately 

determine whether the investment should occur (Bewley et al., 2010b). 

Even though major production and economic losses result from increased SCC, 

adoption of better SCC control practices may be difficult to achieve.  Adopting and 

implementing management practices to control SCC requires a behavioral change, which 

requires awareness, intention, and action.  Producers may already understand 

inefficiencies in their farms, but quantifying the effect may motivate them to make 

changes.  Farmers with high bulk tank SCC were aware of their situation and, therefore, 

the authors deemed them unlikely to change their actions even if they were provided with 
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specific economic consequences.  However, the concept of the “value of information” 

implies that additional information adds to knowledge which allows for a more informed 

decision making process  (van Asseldonk et al., 2010).   Precision dairy farming 

technologies may provide this added information.  

c. Parameters measured by precision dairy farming technologies

i. Temperature

Body temperature is influenced by health, environment, ambient temperature, 

eating behavior, drinking behavior, estrus, and the pregnancy status of an animal (Bewley 

et al., 2008).  Fever, or a body temperature over a predefined threshold, is an indicator of 

disease (Leon, 2002, Burfeind et al., 2010).  Fever is a complex physiological response to 

infection and inflammation.  Once the body recognizes a pathogen invasion, 

macrophages and other immune cells release cytokines which signal the hypothalamus to 

increase the thermal set point.  Although the mechanism of cytokine action remains 

unclear through studies in mice, this reaction causes body temperature to increase to 

match the increased thermal set point (Leon, 2002). 

Producers often implement rectal temperature recording into their disease 

detection system (Schutz and Bewley, 2009, Burfeind et al., 2010, Vickers et al., 2010).  

The accuracy of commercially available electronic rectal thermometers is within 0.1°C 

(Vickers et al., 2010).  However, several limitations to rectal temperature recording do 

exist.  The first is that the presence of the recorder may affect temperature by making the 

animal nervous (Simmons et al., 1965, Bewley and Schutz, 2010).  Other limitations 

include air in the rectum, failure to insert the probe deeply, and the creation of ulcers in 

45 



the rectum from forceful insertion.  Ambient temperature also has an effect and accuracy 

is related to the competency of the recorder (Aalseth, 2005).   

Fever is described as a rise in body temperature above the “normal” range.  Fever 

is a common, but complex, physiological response to infection, inflammation, and trauma 

aimed at the host’s survival (Leon, 2002).  Generally, average daily body temperatures 

for cattle fall within a range of 38 to 39.4°C (Lefcourt et al., 1999, Aalseth, 2005, 

Benzaquen et al., 2007).  Temperatures can vary between individual cows in the same 

conditions and can vary within cows throughout a day (Simmons et al., 1965, Lefcourt et 

al., 1999).   

Manual collection of rectal temperatures is the most common method of obtaining 

body temperatures in practice because of the ease of measurement and low purchase costs 

of rectal thermometers (Aalseth, 2005).  Furthermore, because restraining animals to 

collect temperature data by manual means may cause stress that alters temperature, a 

reliable method of collecting temperatures without human intervention is likely to 

provide a more accurate measure of temperature in dairy cattle (Hahn et al., 1990). 

Pararectal temperature rose when the four study cows stood and decreased when 

they laid down.  The opposite occurred in subcutaneous temperature where a 

thermometer was placed under the skin behind the shoulder (Simmons et al., 1965).   

Firk et al. (2002) suggested that the value of a temperature monitor is highly 

dependent on its location.  Body temperature has been monitored in dairy cattle in several 

anatomical locations including the rectum, tympanic and skin portion of the ear, vagina, 

reticulorumen, intraperitoneal cavity, udder skin, and milk.  Internal temperature 
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measurement sites may be more useful indicators of body temperature because they are 

not as readily affected by ambient conditions (Hahn et al., 1990).  However, water 

consumption temporarily, but dramatically, decreases reticulorumen temperatures 

(Simmons et al., 1965, Brod et al., 1982, Bewley et al., 2008).  In fistulated sheep, 

microbial activity decreased when injected intra-ruminally with 2 liters of 0°C water, 

which did not occur for the 10, 20, and 30°C water treatments.  For the 0, 10, 20 and 

30°C water treatments, temperatures did not return within ± 0.5°C to baseline rumen 

temperature for 108, 96, 96 and 72 minutes (Brod et al., 1982). 

Simmons et al. (1965) cited that the mean pararectal, subcutaneous, and reticular 

ternperatures over four days  were 38.4 ± 0.3°C, 35.6 ± .8°C, and  38.8 ±  1.2°C., 

respectively.  Pararectal and subcutaneous temperatures consistently dropped between 6 

pm and 7:30 pm, likely related to water ingestion.  One cow on the study showed greater 

variation in her pararectal and subcutaneous temperatures than the other cows.  

Observationally, she drank more often throughout the day and had a more nervous 

temperament than the other three, which the authors stated as a reason for her 

temperature variation. 

In a Canadian study evaluating rectal temperature measurements to determine 

intra- and inter-investigator variability and to determine the effects of penetration depth 

into the rectum and defecation on measured body temperature, repeated rectal 

temperatures by a single researcher were consistent (39.5 ± 0.1°C).  Correlation between 

two researchers was high (r = 0.98; P < 0.001).  However, temperatures were 0.4°C ± 

0.2°C greater when the probe was inserted deeper into the rectum (P < 0.001).  

Temperature around defecation varied, with some cows having a difference of ≥ 3.0°C 
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after defecation while others had a difference of ≥ 3.0°C before defecation and some had 

no difference before or after defecation (Burfeind et al., 2010).   

Reticular temperatures decrease when cows drink water and take 1.5 (Simmons et 

al., 1965) to 3.5 hours (Bewley et al., 2008) to return to the pre-drinking temperature.  

Simmons et al. (1965) observed reticular temperatures as low as 32°C after water 

consumption.  

Automatic temperature recording may allow producers to detect disease, estrus, 

heat stress, and the onset of calving earlier than currently possible (Bewley et al., 2008).  

Body temperature has commonly been used to detect fever, heat stress, and the onset of 

calving for many years.  However, core body temperature is desired, but is fundamentally 

difficult to obtain and rectal temperature only approximates core body temperature.  

Taking rectal temperatures may cause stress that alters the temperatures so a reliable 

method with no human intervention may be a more accurate measure.  Attempts to 

measure body temperature of cattle have been made at various anatomical locations 

including rectum, ear (tympanic), vagina, reticulum-rumen, and milk (Bewley and 

Schutz, 2010).   

Adams et al. (2013) explained that cows with clinical mastitis had 6.7 times 

higher odds of having a reticulorumen temperature 0.8°C above their baseline within 4 

days of diagnosis compared to control cows (76.9% specificity and 67.0% sensitivity).  

However, reticulorumen temperature was not different for cows diagnosed with metritis 

compared to control cows. 
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Cows with retained placentas averaged 0.1°C greater temperature than matched 

control cows (P < 0.001) (Vickers et al., 2010). Cows with puerperal metritis underwent a 

significant rectal temperature increase 24 hours before clinical signs (reaching 39.2 ± 

0.05°C on the day of clinical diagnosis) (Benzaquen et al., 2007). 

In a Canadian study, rectal and vaginal temperatures were highly correlated (r = 

0.81; P < 0.01) in the 1,393 temperatures recorded for 29 fresh cows.  However, rectal 

and vaginal temperatures were only moderately correlated (r = 0.46; P < 0.01) for the 556 

temperatures recorded from the 13 peak lactation cows in this study.  The correlation 

difference may have been because the fresh cows exhibited a larger temperature range 

(37.7 to 40.5°C) compared with peak-lactation cows (37.9 to 39.6°C) (Vickers et al., 

2010).  

Healthy cows and cows with retained placentas both showed diurnal rhythms in 

their vaginal and rectal temperatures, with increases in the afternoon and decreases 

during the morning (Vickers et al., 2010).  Diurnal variations in temperatures may be 

attributed to individual cow or breed characteristics and ambient weather conditions 

(Bewley et al., 2008).  Some limitations to vaginal temperature monitoring are logger 

movement (particularly around calving when the vaginal cavity was enlarged), influx of 

ambient air, expulsion from the vagina (Vickers et al., 2010). 

Reticular temperatures were lowest between noon and 4:00 PM (39.4°C) and 

between 8:00 AM and noon (39.5°C).  In contrast, reticular temperatures were greatest 

between 8:00 PM and midnight (40.2°C) and between midnight and 4:00 AM (40.3°C) 

(Ipema et al., 2008). 
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In an E. coli intramammary mastitis challenge, ruminal temperature peaked 

between 40.5°C and 41.0°C and remained above 40.0°C for two hours (AlZahal et al., 

2011).  Reticular temperature of cows diagnosed with mastitis deviated more than 3 

standard deviations from baseline temperature in 45.7% of cows in another study 

(Bewley and Schutz, 2010). 

ii. Lying time and activity

Accelerometers measure three different movements: side-to-side, up and down, and 

front to back, and are thus provide more information than pedometers.  A decrease in 

activity could be a sign of illness (Marchesi, 2012). 

In dairy cattle, lying down is a high-priority behavior, which ensures that the 

necessary time to rest and ruminate is achieved.  Danish researchers restricted time to 

feed access and explained that this restriction decreased time spent on all activities, but 

the proportion of time spent feeding and time spent on social contact remained constant.  

Yet the proportion of time spent lying increased.  Therefore, the authors concluded that 

the priority for the behaviors studied were lying, followed by eating and social contact 

(Munksgaard et al., 2005).  Lying time has been referenced between 10.5 and 11 hours 

per cow per day (Ito et al., 2009, Bewley et al., 2010c, Cyples et al., 2012, Medrano-

Galarza et al., 2012).   

Changes in lying behavior may be related to a state of chronic stress (Ladewig 

and Smidt, 1989).  Reduced mobility and increased rest may be strategy of energy 

conservation in order to allow more energy to be spent on fighting the infection and to 

allow the full development of a fever, which may help the animal recover (Aubert, 1999). 
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Cook et al. (2007) video recorded lying behavior of 14 dairy cows over all 

seasons and discovered that mean lying time decreased from 10.9 to 7.9 hours/day from 

the coolest to the hottest session recorded because of heat stress (P < 0.01).  Additionally, 

cows with greater locomotion scores (using a 1 to 4 scale where 1 represents non-lame 

and 4 represents severely lame) lied down more (2.9, 4.0, and 4.41 hours/day for 

locomotion scores 1, 2, and 3, respectively; P < 0.01 between 1 and 2; P = 0.02 between 1 

and 3), indicating that pain may increase lying time. 

Canadian researchers challenged 19 cows with an E. coli lipopolysaccharide and 

cited that baseline lying time (averaged from the two days before mastitis induction; 

707.0 minutes/day) was higher than the day of induction (633.3 minutes/day; P = 0.005).  

Lying time increased on the two days after infusion (743.1 and 726.3 minutes/day for 

days one and two after infusion, respectively), but not significantly (Cyples et al., 2012).  

In a behavioral study of cows with naturally-occurring clinical mastitis, cows with 

clinical mastitis laid down more than control cows on the day after mastitis detection 

(707.5 versus 742.5 minutes/day, P = 0.04).  However, no difference was observed in 

lying times of animals with mastitis that had been treated with antibiotics and control 

animals (Medrano-Galarza et al., 2012). 

While physical discomfort may decrease dairy cow lying time, lying on hard 

surfaces may also exacerbate pain caused by mastitis, causing lying time to decrease 

during mastitis (Cyples et al., 2012).  Chapinal et al. (2013) explained that lying down at 

the time when the most severe signs of local inflammation occur causes pain, forcing 

cows to stand for longer periods during mastitis. 
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 Total daily standing time was 20% longer for cows later diagnosed with clinical 

ketosis during the week before calving (14.3 ± 0.6 vs. 12.0 ± 0.7 h/d) and 35% longer on 

the day of calving (17.2 ± 0.9 vs. 12.7 ± 0.9 h/d) compared to those without ketosis, but 

no differences were observed postpartum.  Cows later diagnosed with clinical ketosis also 

stood up fewer times (14.6 ± 1.9 vs. 20.9 ± 1.8 bouts/d) and stood for longer periods 

(71.3 min/bout vs. 35.8 min/bout) than cows without clinical ketosis on the day of 

calving (Itle et al., 2014).  Cows with ketosis behave in a subordinate fashion (Itle et al., 

2014), causing them to be less motivated to engage in behaviors that are energetically 

expensive like changing position from lying to standing (Susenbeth et al., 2004) or 

competing for feed (Goldhawk et al., 2009).  Ketosis is a progressive disease associated 

with gradual changes in non-esterified fatty acids and blood glucose, starting in the 

prepartum period and progressing toward the more severe fatty liver disease (Bobe et al., 

2004).  Other researchers cited that postpartum activity was reduced among cows that 

were diagnosed with subclinical ketosis (502.20 ± 16.5 vs. 536.6 ± 6.2) (Liboreiro et al., 

2015). 

Cows diagnosed with metritis had reduced postpartum activity (512.5 ± 11.5 vs. 

539.2 ± 6.0 arbitrary unit) (Liboreiro et al., 2015).     

iii. Feeding time

Edwards and Tozer (2004) explained that cows with ketosis had lower activity (P 

< 0.01) than healthy cows up to 5 DIM, but then actually became more active after 12 

DIM.  The difference in activity may have been due to sick cows having lower appetites, 

spending less time at the feed bunk, and spending more time lying down. 
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During the week before, week after, and two weeks after calving, the dry matter 

intake (DMI) of cows with subclinical ketosis was 18, 26, and 20% lower that the DMI of 

cows without subclinical ketosis after calving (P < 0.01).  Cows with subclinical ketosis 

also visited the feeder 18, 27, 28, and 16% fewer times during two weeks before, one 

week before, one week after, and two weeks after calving and spent less time at the 

feeder the same weeks (Goldhawk et al., 2009). 

Cows with severe metritis consumed less feed than healthy cows beginning 2 

weeks before calving and continued to consume less dry matter through three weeks post-

partum.  Cows with mild metritis ate less dry matter compared with healthy animals 

during the week before calving and throughout the 3-wk postpartum period.  The odds of 

severe metritis increased by 2.87 for every 1 kg decrease in DMI during the week before 

calving.  The odds of severe metritis increased by 1.72 for every 10-min decrease in 

feeding time during the week before calving.  During the two weeks before calving, 

healthy cows displaced others from the feed bins 16.8 ± 1.74 times/d compared with 

severely metritic cows who only displaced others on average 12.2 ± 1.58 times/d  (P = 

0.06) (Huzzey et al., 2007).   Urton et al. (2005) also explained that cows with acute 

metritis spent 24 minutes less at the feed bunk compared to those without acute metritis 

between 12 days pre-calving to 19 days post-calving (P < 0.01).  In this study, the odds 

of a cow having metritis increased by 1.97 for every 10-minute decrease in average daily 

feeding time. 

Hansen et al. (2003) cited a linearly negative relationship between feed intake and 

plasma calcium level in cows with induced hypocalcaemia. 

iv. Rumination time
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Rumination is defined as the regurgitation of fibrous ingesta from the rumen to 

the mouth, re-mastication, followed by swallowing and returning of the material to the 

rumen.  Dairy cows normally ruminate for eight to nine hours a day when measured by 

visual observation.  Researchers in a Vermont study fitted steers with a facemask that 

restricted all jaw movement for ten hours a day during the study period.  When the 

facemask was removed, the steers were offered hay, but the animals instead chose to 

ruminate (Welch, 1982).  A more recent study using rumination collars by Kaufman et al. 

(2016) cited rumination times of 7 and 8 hours for primiparous and multiparous cows, 

respectively. 

Rumination is affected by diet, including feed digestibility, neutral detergent fiber 

intake, forage quality (Welch and Smith, 1970), and particle size (Welch, 1982).  

Rumination time decreases with acute stress (Herskin et al., 2004) and disease (Welch, 

1982, Hansen et al., 2003). 

Researchers have estimated rumination based on direct visual observations, but 

systems now exist to automate this process (Schirmann et al., 2009).  Automated 

rumination-monitoring system was validated by comparing values from a rumination 

logging device with those from a human observer for 51 two-hour observation periods on 

27 Holstein cows.  Rumination times from the electronic system were highly correlated 

with those from human observation (R = 0.93), indicating that the automated system 

accurately monitored rumination in dairy cows (Schirmann et al., 2009). 

Kansas researchers studied nine Angus-Hereford cows and observed that high 

cortisol levels (above 22 ng/mL, the mean of the group) were highly correlated with less 

time spent ruminating (r = − 0.85, P < 0.01).  Cortisol is released when an animal is 
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stressed, therefore an association between stress and decreased rumination may exist 

(Bristow and Holmes, 2007).  However, decreases in rumination may not always occur 

around stress.  A study examining behavioral changes related to increased stocking 

density reported that at 100% stocking density, 95.1% of rumination occurred within a 

stall, but as stocking density increased to 142%, only 87.3% of rumination occurred 

within a stall.  However, overall rumination time did not decrease between any of the 

stocking densities (P > 0.05) (Krawczel et al., 2012). 

In an E. coli challenge with 20 cows, rumination decreased (P < 0.05) on the day 

of mastitis induction and gradually increased to levels before the induction during the 

following two days (Fogsgaard et al., 2012).  Canadian researchers evaluated the effects 

of a non-steroidal anti-inflammatory drug on the pain mitigation of mastitis and 

discovered that an E. coli lipopolysaccharide challenge did not affect daily rumination 

time, recorded by neck-mounted rumination loggers.  However, when diurnal patterns 

were taken into account, an interaction between time and rumination recorded in two-

hour intervals was significant (P < 0.01) where cows spent less time ruminating after the 

challenge, but made up for it later in the day (Fitzpatrick et al., 2013).  Siivonen et al. 

(2011) also conducted an E. coli challenge to evaluate rumination behavioral changes 

around mastitis and concluded that the mean time spent ruminating decreased between 

four and eight hours post-challenge compared to the control day (222 versus 252 for 

control and induction days, respectively).   

Cows diagnosed with metritis had reduced postpartum daily rumination time (416 

vs. 441 minutes/day) (Liboreiro et al., 2015).  Induced hypocalcaemia resulted in reduced 

rumination time, possibly related to the anti-peristaltic esophageal movements during 
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rumination (Hansen et al., 2003) or decreased ruminal contractions (Jorgensen et al., 

1998) because Ca is required for muscle contractions (Hansen et al., 2003). 

Kaufman et al. (2016) explained that cows with greater rumination time the week 

before calving was associated with decreased odds of ketosis.  The odds of a cow getting 

ketosis and another health problem increased when rumination time decreased from 1 

week before calving to one week after.  Rumination time decreased in primiparous and 

multiparous cows from two weeks prepartum and began to increase from weeks 1 to 2 

postpartum.  The increase postpartum may represent changes in dry matter intake.  

Clément et al. (2014) explained that rumination was a small, but significant, contributor 

in dry matter prediction.  However, rumination time within weeks and cows are variable, 

making it difficult to use rumination time to predict dry matter intake.  

Primiparous cows ruminated less than multiparous cows 3 and 4 weeks 

postpartum (Kaufman et al., 2016).  Maekawa et al. (2002) visually observed rumination 

times and explained that primiparous cows ruminated 52 minutes per day less than 

multiparous in mid-lactation. 

v. Milk bacteriology, yield, and components

Dairy cattle economic efficiency is closely related to milk production (Dohoo and 

Martin, 1984) because production losses decrease producer revenue.  Unfortunately, 

mastitis has a long lasting effect on milk yield (Rajala-Schultz et al., 1999b).  Bar et al. 

(2008) explained that even after an infection was cured, milk yield remained depressed 

for two months.  Additionally, cows may be unable to reach their pre-mastitis milk yield 
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after a clinical mastitis case throughout their entire lactation (Rajala-Schultz et al., 

1999b). 

Canadian researchers examined the effects of subclinical mastitis on milk yield 

and discovered that each unit increase in log SCC was associated with a 6.2% milk yield 

loss (Dohoo and Martin, 1984).  Cobo-Abreu et al. (1979) concluded that cows with 

mastitis produced significantly less milk in the lactation when the mastitis occurred 

compared with their lifetime average milk production (P < 0.05).   

French researchers developed a mastitis simulation model using data from three 

herds and determined that overall losses amounted to 49,000 kg per 100 Holstein cows 

and 35,000 kg per 100 Friesian cows with clinical mastitis, which was 8 and 7% of total 

projected production.  The model did not include discarded milk loss.  The authors 

concluded that one-third of cows experienced no significant response relative to control 

cows (a loss of 22 kg for cows with clinical mastitis).  However, the other two-thirds of 

study cows experienced substantial milk losses between the week of mastitis occurrence 

and the five weeks following (144 kg) or experienced substantial milk loss extended 

throughout their lactation (911 kg) (Lescourret and Coulon, 1994). 

A Finnish study examined milk yield changes around clinical mastitis and 

observed that milk yield began to decline four weeks before clinical mastitis detection.  

Milk yield of cows with clinical mastitis dropped below that of the healthy cows in the 

first two weeks after diagnosis.  After this two-week period, yield gradually increased, 

but it did not reach the level it was at more than four weeks before the onset of mastitis 

during the rest of the lactation.  However, the yield decrease of the cows with clinical 

mastitis was not significantly different from the healthy cows.  Overall, total lactation 
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milk yield loss caused by mastitis varied between 294 and 552 kg under the assumption 

of a 305-day lactation with clinical mastitis occurrence on day seven.  Milk loss increased 

with increasing parity with older cows suffering greater losses.  Milk loss among parity 1, 

2, 3, and 4 or higher cows was 4.6, 4.1, 6.9, and 7.4% of the overall lactation yield, 

respectively (Rajala-Schultz et al., 1999b).   

Milk loss resulting from clinical mastitis may depend on the number of affected 

quarters and the number of clinical mastitis occurrences throughout the lactation.  A 

Dutch study reported that first parity cows with clinical mastitis in only one quarter lost 

40 kg as opposed to second parity cows that lost 140 kg.  Milk loss in first and second 

parity cows infected in only one quarter did not change with increased months in 

lactation.  In second parity cows, milk yield was more significantly reduced when three 

or more cases of clinical mastitis were observed compared with two cases.  Milk loss in 

month eight of the second lactation was 527 kg (8.1%) and 214 kg (3.3%) for three or 

two cases, respectively (Houben et al., 1993). 

In a 6-month study on a 1700-cow Michigan Holstein dairy farm, total milk loss 

over all clinical cases of mastitis was 341 kg.  Of that loss, decreased production 

accounted for 92 kg and milk withheld accounted for 249 kg.  First lactation cows 

maintained a significantly lower milk loss than ≥ 2 parity (177 kg versus 369 kg for first 

and ≥ 2 parity cows, respectively; P < 0.01).  Milk withheld from first parity cows was 

also significantly less than milk withheld from ≥ 2 parity cows (102 versus 269 for first 

and ≥ 2 parity cows, respectively; P < 0.01) (Bartlett et al., 1991). 

Using bacteriological culturing as a mastitis diagnostic method requires samples 

to be taken correctly.  Samples collected at the quarter level are ideal.  Selecting cows to 
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culture can be done through cow-level SCC information and then quarters can be further 

determined through CMT or quarter-level SCC.  Selecting cows with at least two 

consecutive SCC samples > 200,000 cells/mL based on monthly SCC testing enables 

more cows harboring Staph. aureus to be detected (Lam et al., 2009).   

Eighty-seven percent of 113 cases had the same CMT score for milk strippings 

and foremilk fractions while 11% had a greater value in stripping, and only 3% had a 

lower value (Peris et al., 1991). 

Using molecular methods of pathogen detection is becoming increasingly 

common, mostly through polymerase chain reaction (PCR) technology.  A particular 

bacterial species is determined through DNA amplification and visualization.  Molecular 

methods are expensive and labor-intensive.  Real-time PCR assays may be developed for 

both detection and quantification of mastitis pathogens in milk.  Beyond pathogen 

identification, molecular methods can differentiate bacterial strains within a species, 

allowing researchers to understand differences in virulence, epidemiology, and cure rates.  

Using PCR for mastitis detection is not readily available in all laboratories and is costly.  

Other molecular methods could also be used to genotype mastitis-causing pathogens, 

including pulse field gel electrophoresis, ribotyping, random amplified polymorphic 

DNA, amplified fragment length polymorphism, and multi locus sequence typing (Lam et 

al., 2009). 

Even slightly abnormal milk means there is a problem within that udder quarter so 

it should be detected in order for appropriate action to be taken (Lam et al., 2009). 
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A simple, inexpensive, and fast way to estimate SCC cow-side is the California 

Mastitis Test (CMT).  The CMT is a semi-quantitative SCC measure using 3% sodium 

lauryl sulphate to form a viscous mixture with the DNA of disrupted cells in milk.  

Practically, a CMT could be used to detect the affected quarter of a cow with a high SCC 

or to evaluate treatment success (Lam et al., 2009).   

Direct SCC measurement is more accurate than a CMT, but is more expensive 

and not always available cow-side (Lam et al., 2009).  Evaluating SCC by the DeLaval 

cell counter (DeLaval International AB, Tumba, Sweden) produced similar results to 

counting cells via microscopy and thus may be effectively employed as a mastitis 

detection tool at least in buffaloes (Bansal et al., 2007). 

Mastitis is not the only disease affecting milk yield or components, however.  

Milk yield began to decrease 6 d before clinical ketosis diagnosis and remained lower (P 

< 0.01) than that of healthy cows (cows without ketosis, displaced abomasums, or 

digestive disorders) until at least d 10 after diagnosis (Edwards and Tozer, 2004).  

Cornell researchers cited that milk loss started 4 weeks before and continued for at least 2 

weeks after a clinical ketosis diagnosis.  The daily milk loss was greatest within the first 

2 weeks after diagnosis: 3, 4, 3, and 5 kg/d for parities 1, 2, 3, and ≥ 4, respectively.  The 

overall production loss during lactation was between 126 and 535 kg per cow.  Cows 

without clinical ketosis in parity 1 yielded 1 kg less milk/day and cows in parity 4 or 

greater yielded 2 kg less milk/day than cows with clinical ketosis in the same parity 

(Rajala-Schultz et al., 1999a).  In another study, cows with clinical ketosis produced 

141.1 kg more 305-d yield than cows without clinical ketosis, but production was 44.3 kg 

less over 17 d following diagnosis (Detilleux et al., 1994).  However, Rowlands and 
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Lucey (1986) cited a 7% decrease in peak milk yield but overall no difference in 305-d 

yield.  In contrast, Dohoo and Martin (1984) explained that a case of clinical ketosis 

increased milk production by 2.5%.  The authors contributed this beneficial effect to the 

initial treatment of cows with clinical ketosis with malt or propylene glycol.  However, it 

is likely that the cows with ketosis were higher yielding and were able to continue 

milking more even after ketosis, which was also the case in (Rajala-Schultz et al., 1999a).   

Average daily milk production during the first 21 d after calving did not differ 

between cows with subclinical ketosis compared to those without (Goldhawk et al., 

2009).  Higher producing cows are at greater risk of ketosis, which comes with a 

temporary milk yield decrease, so if they do not develop ketosis their milk yield would be 

even greater (Detilleux et al., 1994, Rajala-Schultz et al., 1999a). Milk yield began to 

decrease 6 d before clinical ketosis diagnosis and remained lower (P < 0.01) than that of 

healthy cows (cows without ketosis, displaced abomasums, or digestive disorders) until at 

least d 10 after diagnosis (Edwards and Tozer, 2004).  Cornell researchers cited that milk 

loss started 4 weeks before and continued for at least 2 weeks after a clinical ketosis 

diagnosis.  The daily milk loss was greatest within the first 2 weeks after diagnosis: 3, 4, 

3, and 5 kg/d for parities 1, 2, 3, and ≥ 4, respectively.  The overall production loss during 

lactation was between 126 and 535 kg per cow.  Cows without clinical ketosis in parity 1 

yielded 1 kg less milk/day and cows in parity 4 or greater yielded 2 kg less milk/day than 

cows with clinical ketosis in the same parity (Rajala-Schultz et al., 1999a).  Detilleux et 

al. (1994) explained that cows with clinical ketosis produced 141.1 kg more 305-d yield 

than cows without clinical ketosis, but production was 44.3 kg less over 17 d following 

diagnosis.  However, Rowlands and Lucey (1986) cited a 7% decrease in peak milk yield 
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but overall no difference in 305-d yield.  In contrast, (Dohoo and Martin, 1984) explained 

that a case of clinical ketosis increased milk production by 2.5%.  The authors 

contributed this beneficial effect to the initial treatment of cows with clinical ketosis with 

malt or propylene glycol.  However, it is likely that the cows with ketosis were higher 

yielding and were able to continue milking more even after ketosis, which was also the 

case in (Rajala-Schultz et al., 1999a). 

Canadian researchers discovered that milk production was less in cows identified 

with severe or mild metritis during the first three weeks after calving.  The decreased 

yield is likely a consequence of the decreased dry matter and water intake observed after 

calving in the cows with severe and mild metritis (Huzzey et al., 2007).  Mahnani et al. 

(2015) explained that a case of metritis reduced 305-d milk yield by 129.8 ± 41.5 kg per 

cow per lactation.  In contrast, Wittrock et al. (2011) cited no difference in milk yield 

between cows with metritis and those without. 

vi. Lactose

Lactose concentration decreases with mastitis, mainly because of the reduced 

synthesis capacity of damaged tissue.  Because lactose is a milk osmotic regulator, 

decreased milk yield follows decreased lactose concentration.  Conversely, fat and casein 

appear to increase during mastitis, but this change mostly occurs because the milk yield 

decrease is greater than the decrease in fat and casein synthesis (Burriel, 1997). 

Vanlandingham et al. (1941) explained that mastitis changes the synthetic and 

secretory mechanism of milk secretion and increases the permeability of cell membranes.  

Chlorine, lactose, chlorine-lactose number, and casein number changes occurred 
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simultaneously during mastitis.  The chlorine-lactose number was preferred over either 

chlorine or lactose alone to determine mastitis.  Evaluating changes in the percentage of 

chlorine and lactose with corresponding changes in the chlorine-lactose number based on 

quarter differences in the same udder were recommended as valid methods for detecting 

chronic mastitis. 

Lactose percent in buffalos with mastitis was a better indicator of mastitis than 

electrical conductivity in a study on buffaloes.  Using electrical conductivity to detect 

mastitis was 84% effective in discriminating milk from cows with mastitis (Bansal et al., 

2007).  

Kester et al. (2014) explained that lactose concentration decreased in cows 

challenged with Strep. uberis on days 3, 4, 5, and 6 post-challenge compared to controls, 

but was significantly different only on day 3 (P < 0.05).  After intramammary antibiotic 

therapy, lactose concentration from challenged cows returned to levels comparable to 

control cows.  In an intravenous endotoxin-induced mastitis challenge, milk lactose 

concentration was depressed for three milkings post-challenge (P < 0.05) (Shuster et al., 

1991). 

Although lactose concentration decreased with increasing mastitis severity, 

Berning and Shook (1992) explained that lactose was “not useful for mastitis detection.”  

Lactose was least responsive to changes in bacterial status.  Somatic cell count and 

NAGase were more responsive than lactose. 

vii. Lactate dehydrogenase and N-acetyl-β-D-glucosaminidase
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Biosensor assays for milk enzymes allow for improved, automated, real-time, in-

line mastitis detection (Chagunda et al., 2006a).  Milk’s heterogeneous composition 

limits the use of spectrophotometry, particularly because composition may vary 

considerably between samples.  Milk is also an opaque and colloidal solution of proteins 

that both scatter and absorb light.  However, enzyme analyses have been performed using 

spectrophotometry with success in determining mastitis (Larsen, 2005). 

Lactate dehydrogenase (LDH) is an enzyme that is released in the milk when 

epithelial cells in the udder are destroyed during mastitis (Marchesi, 2012).  Lactate 

dehydrogenase is part of the glycolytic pathway and mediates the oxidative and reductive 

connection between pyruvate and lactic acid (Larsen, 2005).  Because LDH level 

increases with mastitis, it has attracted attention as being a mastitis detection indicator 

(Larsen, 2005).  However, great variation in LDH, N-acetyl-β-D-glucosaminidase 

(NAGase), and SCC exists between cows (Chagunda et al., 2006a). 

Chagunda et al. (2006a) evaluated the relationship between LDH, NAGase, and 

SCC during periods of mastitis.  In healthy animals, Jersey cows had a 38% and 55% 

greater NAGase activity than Danish Holsteins and Danish Reds, respectively (P < 0.01).  

Parity also had little effect on LDH, NAGase, and SCC in healthy cows.  In cows with 

clinical mastitis, however, Danish Holsteins had a 22% and 28% greater LDH activity 

than Danish Reds and Jerseys, respectively (P < 0.05).  Cows with clinical mastitis had 

the greatest SCC, NAGase, and LDH in parity three.  From first to third parity, LDH 

activity and NAGase activity increased by 51% and 38%, respectively.  In general, SCC, 

LDH, and NAGase were greatest at calving then decreased until 30 to 40 DIM.  After 

reaching its nadir level at 30 DIM, SCC gradually increased for the duration of the 
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lactation.  However, LDH and NAGase reached their nadir levels at 34 and 40 DIM, 

respectively, but remained almost constant after 50 and 60 DIM, respectively.  Eight days 

before clinical mastitis signs appeared, LDH, NAGase, and SCC increased by 56%, 30%, 

and 8%, respectively.  Three days after clinical mastitis was treated, LDH, NAGase, and 

SCC decreased by 32%, 19%, and 7%, respectively. 

In cows with clinical mastitis, the correlation between LDH and SCC was greater 

than in healthy cows (r = 0.76 and 0.48, respectively).  Somatic cell count and NAGase 

were lower in healthy cows than in cows with clinical mastitis also (r = 0.41 and 0.59, 

respectively).  The sensitivity and specificity of using LDH and NAGase to detect clinical 

mastitis was between 73 and 95%, depending on the thresholds used.  The specificity for 

classifying cows without clinical mastitis was between 92 and 99% using LDH and 

NAGase.  Using LDH as a mastitis indicator was better than NAGase, but both enzymes 

were similarly capable in classifying healthy cows as healthy (Chagunda et al., 2006a). 

viii. Electrical conductivity

Electrical conductivity is a solution’s ability to conduct an electric current 

between two electrodes.  The concentration of anions and cations, specifically Na+, K+, 

and Cl-, determines the electrical conductivity in milk.  In the mammary alveoli, the 

sodium pumps in the basolateral membrane of the cells, pump Na into the extracellular 

fluid and K into the cells.  Na and K are transported passively between the milk and 

alveoli through the apical membrane.  Sodium and Cl move into the milk and K and 

lactose move into the extracellular fluid through destruction of tight junctions 

(Janzekovic et al., 2009).  When a cow has mastitis, the electrical conductivity of her 

milk increases because of the increased Na and Cl (Janzekovic et al., 2009), or salt 
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(Bansal et al., 2007), concentration.  In dairy cattle, if electrical conductivity is greater 

than 6.5 mS/cm or if the difference between the quarters is higher than 1 mS/cm, mastitis 

is likely.  In 44 cows with a milk electrical conductivity of less than 6.5 mS/cm, 80% had 

SCC less than 400,000 cells/mL (Janzekovic et al., 2009). 

Electrical conductivity accuracy in determining mastitis has been estimated at 

80% (Janzekovic et al., 2009).  However, milk fraction can affect results even beyond the 

effects of mastitis on milk.  In ewes, the foremilk fraction consistently had a 1.7 times 

greater electrical conductivity than the stripping fractions (P < 0.01).  Because the 

stripping fraction has a greater fat content, electrical conductivity could be decreased.  In 

order to avoid fat issues, producers could measure electrical conductivity in skimmed 

samples.  The machine milk fraction was different from foremilk and stripping fractions 

(P < 0.01) (Peris et al., 1991). 

Milk from buffaloes with mastitis had significantly higher electrical conductivity 

than buffaloes without mastitis.  Electrical conductivity could correctly differentiate 63% 

of quarters with and without mastitis (Bansal et al., 2007).   

ix. Milk leukocyte differential

Elevated bulk milk PMN proportion is hypothesized to indicate increased 

prevalence of mastitis.  On-farm, however, high PMN milk may have different 

implications than those associated with milk of similar SCC (Kelly et al., 2000). 

Kelly et al. (2000) cited a Pearson’s correlation coefficient of 0.88 between SCC 

and PMN for 103 individual milk samples (P < 0.001).  A regression coefficient of 0.69 

between SCC and PMN was obtained from 203 individual bulk tanks SCC (P < 0.001).  
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However, bulk tank samples with a SCC between 450,000 to 550,000 cells/mL had 

sizable variation in PMN content.  Somatic cell count and PMN levels increased at the 

end of lactation (P < 0.01). 

Dosogne et al. (2003) evaluated lymphocytes and monocytes in milk and cited a 

coefficient of correlation of 0.81 (P < 0.05).  For the PMN population, a coefficient of 

correlation of 0.90 (P < 0.01) was obtained between low cytometric and microscopic 

differential leukocyte count.  In early lactation, the percentage of lymphocytes and 

monocytes was greater and the percentage of mature macrophages and PMN were lower 

than in the other stages of lactation (P < 0.01).   

Pillai et al. (2001) explained that quarters with greater SCC also had greater total cell 

count, mononuclear leukocyte count, and PMN count.  Interestingly, quarters with high 

SCC, mononuclear leukocyte count, total cell count, and PMN count also had almost 

double the rate of bacterial infection.  The proportion of PMN ranged from 33 to 49% 

with a mean of 40% for infected quarters compared with 17 to 25% with a mean of 20% 

for uninfected quarters.  Polymorphonuclear leukocyte count had the greatest correlation 

with SCC and thus may be a good marker for the presence of bacterial infection in bovine 

quarters.  However, there was no correlation between the species of bacteria isolated and 

SCC, total cell count, mononuclear leukocyte count, or PMN count. 

III. Statistical analyses

a. Sensitivity/specificity

Reneau (1986) outlined the ideal clinical test as being able to establish the 

presence or absence of disease in every case screened without any false positives or false 
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negatives.  He also suggested that the ideal test would provide a correct diagnosis, data to 

aid in prognosis, an indication of subclinical disease, data that may indicate possible 

disease reoccurrence, and would also be able to monitor treatment effects.   

Correctly identified events are considered true positives (TP), non-alerted events 

are false negatives (FN), non-alerted non-events are true negatives (TN), and alerted non-

events are false positives (FP) (Firk et al., 2002).  Specificity is the probability that a 

negative sample is from a disease-negative cow.  Sensitivity is the probability that a 

positive alert is a true indicator of a disease (Hamann and Zecconi, 1998, Sherlock et al., 

2008, Hogeveen et al., 2010b).  Because sensitivity and specificity are interdependent, 

thresholds should be set to optimize both (Hogeveen et al., 2010b).  Specificity is equal to 

TN / (TN + FP) x 100.  Sensitivity is determined by the following equation: TP / (TP + 

FN) x 100 (Sherlock et al., 2008, Hogeveen et al., 2010b).  Accuracy, which can account 

for the prevalence of a disease whereas sensitivity and specificity cannot, can be 

determined by: [(TP + TN) / (TP + TN + FP + FN) X 100].  Accuracy depends on how 

strongly and closely the measured parameters are associated with the event, how 

accurately the technology measures the parameters, and how well the manufacturer 

algorithm processes the data to create useful alerts (Dolecheck et al., 2015). 

Positive predictive value is the proportion of true positives against the apparent 

positives (Hamann and Zecconi, 1998).  A true positive occurs when the event occurs 

with an alert from the automated detection system (Hogeveen et al., 2010b).  Negative 

predictive value is the proportion of true negatives against the apparent negatives 

(Hamann and Zecconi, 1998).  A true negative occurs when the event does not occur and 

an alert is not produced (Hogeveen et al., 2010b).  False positives, or type I errors, can 
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cause financial losses because healthy animals may be treated.  Conversely, false 

negatives, or type II errors, may leave sick animals untreated causing animal welfare 

problems and decreased milk yield and health throughout the lactation (Burfeind et al., 

2010). Therefore, although a 90% sensitivity may seem acceptable in a research setting, it 

would likely be inadequate when applied in a herd setting (Sherlock et al., 2008).   

Steeneveld et al. (2010) explained that a general complaint of producers using 

robotic milking systems was the “relatively large” amount of false alerts.  Even the most 

sensitive and specific test still needs to be available and affordable (Reneau, 1986).  To 

be a valuable commercial management tool, cow performance should be related to the 

potential improvement in management of subclinical disease (Nielen et al., 1995).   

Sensitivity and specificity of a disease detection tool depend on the disease 

definition (Nielen et al., 1995) and time window (Mollenhorst et al., 2012) in which alerts 

can be given.  Wider time windows will produce a higher sensitivity and specificity 

(Hogeveen et al., 2010b, Kamphuis et al., 2010), but they will also lose their practicality 

in a commercial setting (Kamphuis et al., 2010).   

The results of a survey of 139 Dutch producers that owned an automated milking 

system revealed that farmers preferred a clinical mastitis detection system that produced 

few false alerts and provided alerts for severe cases with enough time to take effective 

treatment action.  Producers preferred that time windows were set at a maximum of 24 

hours before clinical symptoms appear.  However, variation in responses to the survey 

varied greatly, suggesting that detection systems should be adaptable to match the 

conditions of each farm (Mollenhorst et al., 2012).  Kamphuis et al. (2010) used an alert 

time window < 24 hours, but the authors were not confident that it was the correct 
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window to use for other studies.  The use of a decision tree and this narrow time window 

resulted in 40% sensitivity and 99% specificity.  Rasmussen (2002) suggested that a 

clinical mastitis system should provide 80% sensitivity and 99% specificity and that time 

windows should be within 24 to 48 hours of a clinical mastitis event. 

Sensitivity and specificity will be lower if a new test disagrees with the 

comparison to the gold standard.  Disagreement between the gold standard and a new test 

is often interpreted as the test lacking capability.  However, the test could be better at 

detecting negatives, causing true negatives to display as false negatives (Nielen et al., 

1992).  This problem is made even more complex by the circumstance that neither the 

new test nor the gold standard detection methods may be ideal (Vickers et al., 2010).  A 

universally accepted gold standard does not exist, though.  Another limitation of an 

automated disease detection method is that clinical infections are infrequent, causing 

statistical analyses to be “weak” (Mein and Rasmussen, 2008).     

b. Logistic regression and artificial neural networks

Predictive models are built from “experience,” which means data is acquired from 

actual cases.  The data can be pre-processed and used to develop rules (in knowledge-

based expert systems) or serve as training data for statistical and machine learning 

models.  Two of the most popular machine learning methods are logistic regression and 

artificial neural networks (Dreiseitl and Ohno-Machado, 2002).   

Dichotomous classification is commonly used, where y can be either 0 or 1.  The 

xi are m-dimensional vectors, in which the components are called covariates and 

independent variables in statistics community or input variables in the machine learning 
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community.  The second approach to data classification is modeling P(y|x), which yields 

a class label for a data point, but also the probability of class membership (Dreiseitl and 

Ohno-Machado, 2002).   

k-Nearest neighbor method does not require details of model construction.  The 

number of nearest neighbors to include in the estimate of class membership is k and the 

model can be made more or less flexible by varying k.  The value of P(y|x) is calculated 

as the ratio of members of class y among the k nearest neighbors of x.  This method is 

advantageous because the neighbors can provide an explanation for the classification 

result.  However, the researcher needs to define a metric that measures the distance 

between data items, which is not always clear (Dreiseitl and Ohno-Machado, 2002). 

Support vector machines attempt to build consistent estimators from data.  

Performance of these systems have been shown to be equal or better than other machine 

learning algorithms (Dreiseitl and Ohno-Machado, 2002).   

Decision trees separates data into tree-like structures which allow for information 

gain.  The estimate of P(y|x) is the ratio of y class elements over all elements of the leaf 

node that contains data item x.  At each step, the combination of single best variable and 

optimal split-point is selected, but a multi-step lookahead that considers combinations of 

variables may obtain different or better results.  Decision trees are not black-box models 

and can easily be expressed as rules (Dreiseitl and Ohno-Machado, 2002).   

Logistic regression and artificial neural network both provide a functional form f 

and parameter vector α to express P(y|x) as P(y|x) = f(x,α).  The parameters α are based 

on dataset D usually by maximum-likelihood estimation.  In logistic regression, f is 
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known as the parametric method.  In artificial neural networks, f is considered non-

parametric or semi-parametric.  Coefficients and intercepts can be interpreted in logistic 

regression, but weights in neural networks cannot always be interpreted (Dreiseitl and 

Ohno-Machado, 2002). 

Model complexity is low in logistic regression, particularly when few interaction 

terms are used.  Performing variable selection is a way to reduce a model’s complexity 

and decrease the chances of overfitting, but may decrease the model’s flexibility.  Neural 

network models are more flexible and are more susceptible to overfitting, but methods 

like regularization and weight decay exist to prevent overfitting (Dreiseitl and Ohno-

Machado, 2002).   

Discrimination measures how well the classes in the set are separated.  Common 

measures of discrimination are sensitivity, specificity, accuracy, and area under the ROC 

curve.  Calibration determines how accurate the model probability estimate f(x,α) is to 

the true probability P(y|x).  Calibration measures how close the predictions of a given 

model are to the real underlying probability, which is almost always unknown and can 

only be estimated retrospectively by verifying the true binary outcome of the dataset.  

Calibration measures the similarity between two different estimates of probability 

(Dreiseitl and Ohno-Machado, 2002). 

White box models, including decision trees, k-nearest neighbor, and logistic 

regression, allow interpretation of model parameters.  Black box models, including 

support vector machines and artificial neural networks, can only be verified externally 

(Dreiseitl and Ohno-Machado, 2002).  Some machine learning techniques including 

random forest, linear discriminant analysis, and neural networks have shown promise for 
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using PDF technologies for estrus detection (Dolecheck et al., 2015).  Thus these 

methods may also produce reasonable results for other PDF applications. 

IV. Conclusions

 Dairy cow diseases, particularly during the transition period, are expensive and 

compromise cow well-being and milk production.  Current disease detection methods 

rely on visual observation.  However, early disease detection may allow producer 

intervention (e.g. antibiotic treatment), thus decreasing the negative economic and 

well-being implications of the disease.  Precision dairy technologies, or technologies 

that reside in and on cows to monitor individual cow physiology, production, and 

behavior, may be able to predict and detect disease and alert producers to cows with 

changes in the indicators monitored.   
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INTRODUCTION 

Dairy cow health is multifactorial and complex.  High producing dairy cows have 

been described as “metabolic athletes,” but 30 to 50% of cows are affected by a 

metabolic or infectious disease around calving (LeBlanc, 2010).  Cows are highly 

susceptible to metabolic and infectious disease during the postpartum period, or the 

period from 3 weeks before to 3 weeks after calving (Huzzey et al., 2007, Mulligan and 

Doherty, 2008).  Postpartum dairy cows are immunosuppressed and often have to deal 

with sudden dietary changes and environmental stressors like routine group changes 

associated with moving from dry to lactating.  These effects combined with the stress of 

parturition present great risk for production diseases right after parturition.   

Metritis is a severe inflammatory reaction involving all uterine layers 

(BonDurant, 1999).  Clinical signs of metritis include pyrexia, fetid pus within the uterine 

lumen, vagina, or discharging from the vulva (Sheldon and Dobson, 2004), and delayed 

uterine involution (Sheldon, 2004, Sheldon and Dobson, 2004).  Uterine bacterial 

infections compromise animal welfare and can cause sub-fertility or infertility (Sheldon 

and Dobson, 2004).  The most recent cost estimates for a case of metritis were $176 for 

primiparous cows and $186 for multiparous cows (Liang, 2013).  Clinical metritis 

incidence has been cited from 18 to 36% (Etherington et al., 1984, Bartlett et al., 1986, 

Markusfeld, 1987, Drillich et al., 2001). 

Hypocalcemia, commonly referred to as milk fever, is a metabolic disorder in 

which homeostatic mechanisms fail to maintain normal blood calcium (Ca) 

concentrations at the onset of lactation (Goff and Horst, 1997).  Blood Ca in the adult 
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cow is maintained between 2.0 and 2.5 mmol/L (8.5 and 10 mg/dL) (Jorgensen, 1974, 

Goff, 2008).  Typically, the lowest blood Ca concentration occurs between 12 and 24 h 

after calving (Goff, 2008).   

Clinical hypocalcemia incidence in the United States ranges from 4% (McLaren 

et al., 2006) to 6% and increases with increasing parity (Rajala-Schultz et al., 1999).  

However, nearly 25% of heifers and 50% of older cows will have blood Ca concentration 

< 2 mmol/L (Goff, 2008).  Subclinical hypocalcemia (< 2 mmol/L serum within 48 h 

post-partum) occurred in 25%, 41%, 49%, 51%, 54%, and 42% of first, second, third, 

fourth, fifth, and sixth parity cows, respectively in a study conducted by Reinhardt et al. 

(2011).  The most recent cost estimate for hypocalcemia was $166 for multiparous cows 

(Liang, 2013). 

Ketosis is a disease related to carbohydrate and fat metabolism and is 

characterized by increased concentrations of ketone bodies, including β-hydroxybutyrate 

(BHBA), in blood, urine, and milk.  The gold standard for determining subclinical ketosis 

status is the measurement of BHBA in blood plasma or serum (McLaren et al., 2006).  

The optimum BHBA cut-point based on maximum total sensitivity and specificity for 

clinical ketosis was 1.2 mmol/L in the first week post-partum (Seifi et al., 2011).  

Postpartum BHBA increases have been associated with decreased milk production 

(Duffield et al., 2009, McArt et al., 2012a) and increased risk for culling and displaced 

abomasum (Seifi et al., 2011, McArt et al., 2012b, a).  Cows with BHBA concentrations 

≥ 1.2 mmol/L were also 4.7 times more likely to develop clinical ketosis (Seifi et al., 

2011).  Higher producing cows are at greater risk of ketosis, which comes with a 

temporary milk yield decrease (Detilleux et al., 1994, Rajala-Schultz et al., 1999).   
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Clinical ketosis incidence in the United States is between 2 and 3% (McLaren et 

al., 2006, Seifi et al., 2011), but is significantly more common in third or greater parity 

cows (6%) (Seifi et al., 2011).  In McLaren et al. (2006), subclinical ketosis incidence 

was cited as 54% in week one and 47% in week two post-partum.  Subclinical ketosis 

incidence has been cited at 43% (McArt et al., 2012b).  The cost per case of 

hypocalcemia, based on blood BHBA concentration ≥ 1.2 mmol/L, was estimated at 

$134, $111, and $117 for primiparous, multiparous, and all animals, respectively (McArt 

et al., 2016). 

As average herd size increases, time producers can devote to each animal 

decreases (Schulze et al., 2007, Ipema et al., 2008, Brandt et al., 2010).  Consumer 

pressure and concern for animal well-being and health, efficient and sustainable farming, 

food safety and quality, and control of zoonotic diseases, pathogens, and medical 

treatments has altered decision-making processes on farms (Berckmans, 2004, Schukken 

et al., 2008, Bewley, 2010).  Dairy operations also have narrower profit margins than in 

the past because the government is less involved in regulating agricultural commodity 

prices.  In turn, dairy producers need to increase efficiency, which can increase profit 

(Bewley, 2012).  Because of these major industry shifts, on-farm decision making is 

changing and dairy cow monitoring tools will likely increase in importance (Berckmans, 

2004, Schulze et al., 2007, Ipema et al., 2008) to help make decisions that previously 

were based solely on producer experience and judgement.   

Precision dairy monitoring is the use of technologies to measure physiological, 

behavioral, and production indicators on individual animals to improve management and 

farm performance (Bewley, 2010.  This type of management system relies on the 
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observation that the animal herself is the most important part of the biological production 

process at hand (Berckmans, 2004).   

To date, precision dairy monitoring technology (PDMT) evaluations have 

focused mainly on automated estrus detection, aimed to supplement or replace visual 

estrus detection (Dolecheck et al., 2015).  Precision dairy monitoring technologies also 

have the potential to detect disease early, maximizing individual animal potential.  

Disease detection in the past has relied on producers observing clinical signs, but once 

clinical signs are displayed, it is often too late to act effectively.  Clinical signs are often 

preceded by physiological changes that are undetectable with human senses, but may be 

possible with PDMT and could allow producers to intervene sooner (Bewley, 2012).   

The objectives of this study were: 1) to quantify changes in rumination time 

(HRRUM), lying time (IQLT), standing time (IQSTAND), lying bouts (IQLB),  motion 

index (IQMI), number of steps (IQSTEPS), reticulorumen temperature (DVMRT), neck 

activity (HRACT), and milk yield (MY) around subclinical hypocalcemia (SHCA) 

subclinical ketosis (SKET), and clinical hypocalcemia (CHCA), clinical ketosis 

(CKET), and clinical metritis (CMET) during the first 14 DIM; 2) to evaluate 

differences in RU, LT, LB, RT, NA, and MY between cows with no disease, subclinical 

disease, and clinical disease; and 3) to determine the sensitivity and specificity of alerts 

created from RU, LT, LB, RT, NA, and MY for identification of fresh cow disease. 

MATERIALS AND METHODS 

This study was conducted from September 13, 2011 to May 3, 2013 at the 

University of Kentucky Coldstream Dairy.  Directly after calving, cows were moved into 

a tie-stall barn equipped with 10 dual chamber waterbeds (Advanced Comfort 
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technology, Inc., Reedsburg, WI), covered with sawdust.  If more than 10 study cows 

were housed at the same time, the newest cows were housed on rubber-filled mattresses, 

also covered with sawdust.  Cows were allowed access to an exercise lot for 1 h/d at 

1430, weather permitting.  Cows had ad libitum access to feed and water in each stall.  

Lactating cows were fed the lactating cow ration consisting of corn silage, alfalfa hay, 

concentrate mix, whole cottonseed, and alfalfa silage at 0600 and 1330 daily.  Cows were 

milked before the rest of the lactating herd 2X at 0430 and 1530, in one of two double-

two bypass parlors located in the same building.   

 General cow demographic information was obtained from PCDart (Dairy Records 

Management Systems, Raleigh, NC) records.  An intensive health evaluation occurred at 

0800 ± 2 hours from 1 to 14 DIM for every cow in the herd that calved during the study 

period.  Four researchers and farm employees, trained to conduct the health exams, were 

the only personnel to carry out the exams.  Cows with two lactations within the study 

period remained in the study for both lactations.  Every cow in the herd remained in the 

study from calving until 14 DIM and no voluntary culling occurred until cows left the 

study.  Cows were required to have 14 consecutive daily health checks to remain on the 

study and cows that died before 14 DIM were removed from the study (n = 4).  After the 

last health exam at 14 DIM, cows were removed from the study and joined the lactating 

herd housed in freestall barns.   

Disease diagnosis 

Serum calcium levels were evaluated on days 3, 7, and 14 postpartum.  

Approximately 10 mL of blood was collected aseptically from the coccygeal vein using a 

vacuum-sealed blood collection tube (Blood Collection Tube Vacutainer Glass 10 mL, 
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red; Becton Dickinson Canada Inc., Mississauga, ON, Canada) and 20-gauge needle 

(Needle Vacutainer Multiple Sample 21G × 1 in, Becton Dickinson Canada Inc., 

Mississauga, ON, Canada).  The blood was then centrifuged and refrigerated until 

analysis at the University of Kentucky Veterinary Diagnostic Laboratory within 1 d.  

Calcium was analyzed using a Calcium-Arsenazo assay (ACE Alera, Alfa Wassermann 

Diagnostic Technologies, LLC, West Caldwell NJ).  Subclinical hypocalcemia was 

defined as a serum Ca level < 8.55 ng/dL (Liboreiro et al., 2015). 

Clinical hypocalcemia was determined based on signs described by Kelton et al. 

(1998).  These signs included mild excitement without recumbency, nervousness, 

anorexia, weakness, and rapid heart rate, sternal recumbency, depression, fine muscle 

tremors, rapid heart rate, cold ears, decreased gastrointestinal activity, and dilated pupils, 

or lateral recumbency progressing to loss of consciousness, severe bloat, profound 

gastrointestinal atony, rapid heart rate, and a pulse that was difficult to detect.   

On days 3, 7, and 14, BHBA concentration was measured in a whole-blood 

sample left over from the blood drawn for the Ca test.  A Precision Xtra electronic 

handheld device (Abbott Laboratories, Chicago, IL, USA), validated by Iwersen et al. 

(2009), was used with ketone test strips that drew in 1.5 μL of blood into a sample well.  

Cows with BHBA ≥ 1.2 mmol/L were classified as SKET (Geishauser et al., 1998, 

McArt et al., 2012a, Kaufman et al., 2016).  Clinical ketosis was defined as a cow with 

any or all of the following symptoms: decreased feed intake, reduced milk production, 

lethargy, an empty-appearing abdomen, dehydration, abnormal licking, chewing 

incessantly on inanimate objects, incoordination, gait abnormalities, aggression, and 

bellowing (Merck Veterinary Manual, 2005).   
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Cows were classified as having clinical metritis if they had pyrexia, fetid pus 

within the uterine lumen, vagina, or discharging from the vulva (Sheldon and Dobson, 

2004).  Discharge, if excreted, was examined daily.  On days 3, 5, 7, 9, 11, and 14, cows 

were rectally palpated and the discharge was manually expelled for examination. 

The herd manager treated clinical diseases following farm protocol.  However, 

because evaluating treatment efficacy was not a goal of this research, treatment was not 

accounted for as a co-variate in any models.   

Precision dairy technologies 

The Milpro P4C (Milkline, Gariga di Podenzano, Italy) milking system provided 

milk yields per cow per milking.  The DVM Systems, LLC (Boulder, CO) bolus system 

monitored DVMRT using a passive RFID transponder (Phase IV Engineering, Inc., 

Boulder, CO) equipped with a temperature sensor queried twice daily by a panel reader 

placed in parlor entrances.  Boluses were inserted orally with a bolus gun.  HR Tags 

(SCR Engineers Ltd., Netanya, Israel) measured HRACT with a 3-axis accelerometer and 

rumination time HRRUM with a microphone and microprocessor, summarized into 2-h 

time blocks.  Cows were fitted with an HR tag, snugly hung around their necks.  

IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured IQLT, IQLB, IQSTAND, 

and IQMI with a 3-axis accelerometer, summarized into 15 min time blocks.  IceQubes 

were strapped to each cow’s left rear leg just above the fetlock.   

All cows were fitted with all PDMT ≥ 21 d before enrolling in this study.  All 

PDMT were monitored and replaced promptly when failure occurred, including dead 

batteries and broken tags.  Data that was not already missing from these time periods 

were deleted.  All computer clocks were set to synchronize with NIST Internet Time 
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Service (NIST, Gaithersburg, MD, USA) automatically, and time was manually verified 

on all computers on a weekly basis.   

Hourly temperature and relative humidity were obtained from Kentucky Climate 

Data, calculated through the University of Kentucky College of Agriculture via a 

Campbell Scientific Inc. (Logan, UT) 23× data logger, located 5.63 kilometers from the 

farm.  Temperature humidity index (THI) was computed using Eq. 2.1.  The maximum 

THI for each day was used in all analyses. 

THI = Temperature (°F) - (0.55 - (0.55 × Relative Humidity / 100)) × 

(Temperature (°F) - 58.8) (Eq. 2.1; NOAA, 1976).   

Data cleaning and statistical analysis 

Statistical analyses were conducted using SAS Version 9.3 (SAS Institute Inc., 

Cary, NC).  Milk yields < or > 4 standard deviations from the previous week’s average 

milk yield were removed, presumably caused by technology error from cow 

misclassification.  To account for decreased reticulorumen temperature caused by water 

bouts, DVMRT were removed if < 38.3ºC and if they were less than 4 standard 

deviations from the previous week’s average temperature.   

Milk yield, IQLB, IQBD, IQSTAND, IQMOT, IQLT, HRRUM, and HRACT, 

were each summed individually to create one value per variable per cow per day.  

Temperature humidity index and DVMRT were averaged to create one value per variable 

per cow per day.  If any variable amounted to 0 for the day, that variable was set as 

missing for that cow day. 

Cow days were removed if < 90% of each day’s IQLT, IQSTAND, IQMOT, 

HRRUM, and HRACT was recorded, but if a cow had > 90% of each day’s data, linear 
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interpolation was used to include the missing 10% from that day. In cases where less than 

24 hours of data were available, the percentage lying for that time period was used to 

calculate the percentage lying within 24 hours.  The UNIVARIATE procedure was used 

on these variables and the 1st and 99th percentile of all variables were removed.   

The previous day’s data was used for each PDMT variable to account for the 

timing of data availability to producers.  Because SKET was only measured on days 3, 7, 

and 14, all other days were removed from the SKET model to avoid the assumption that 

cows did not have SKET just because they were not sampled that day.  Although SHCA 

and CHCA were monitored separately throughout the study, these diseases were 

combined to create one hypocalcemia (HCA) variable because only 8 cases of CHCA 

were identified.  Therefore, all days remained in the model because CHCA was 

monitored daily, even though SHCA was only monitored on days 3, 7, and 14. 

The GENMOD procedure of SAS was used to evaluate the effects of breed, MY, 

PG, THI, DVMRT, HRRUM, HRACT, IQLT, IQLB, IQSTAND, and IQMI on disease 

status.  Disease status included: model 1) cows with SHCA, CHCA, or no hypocalcemia; 

model 2) cows with SKET, CKET, or no ketosis; and model 3) cows with CMET and 

cows without CMET.  Cows without HCA, SKET, CKET, or CMET each day were 

considered to be in the no HCA, SKET, CEKT, or CMET groups, respectively, and were 

treated as the reference group for all analyses.  The individual general linear models were 

used to screen for variables to include in the three multi-variable models and non-

significant variables (P ≥ 0.10) were not accounted for as co-variates in any models.  

Variables significant in these individual models were then included in a multi-variable 

model for each of the five disease models. 
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The LOGISTIC procedure of SAS was used to calculate ROC curves and 

determine probabilities of disease at each sensitivity and 1 – specificity.  Probabilities 

that represented approximately 80% sensitivity, 95% sensitivity, 80% specificity, and 

95% specificity were then used to determine alert levels in GENMOD.  All four 

probabilities were used for each of the HCA, SKET, CKET, and CMET final multi-

variable models in order to determine alerts at each probability.  If a probability was 

greater than the probability associated with the respective sensitivity or specificity, an 

alert was created.  Alerts were then used alongside human-detected disease detection in 

order to calculate sensitivity and specificity at the desired probabilities and to include 

these points on the ROC curves.  

Correctly identified events are considered true positives (TP), non-alerted events 

are false negatives (FN), non-alerted non-events are true negatives (TN), and alerted non-

events are false positives (FP) (Firk et al., 2002).  Specificity is the probability that a 

negative sample is from a disease-negative cow.  Sensitivity is the probability that a 

positive alert is a true indicator of a disease (Hamann and Zecconi, 1998, Sherlock et al., 

2008, Hogeveen et al., 2010).  Because sensitivity and specificity are interdependent, 

thresholds should be set to optimize both (Hogeveen et al., 2010).  Accuracy can account 

for the prevalence of a disease whereas sensitivity and specificity cannot.  Accuracy 

depends on how strongly and closely the measured parameters are associated with the 

event, how accurately the technology measures the parameters, and how well the 

manufacturer algorithm processes the data to create useful alerts (Dolecheck et al., 2015).  

Sensitivity, specificity, and accuracy for each final model were determined using Eq. 2.2, 

2.3 and 2.4 (Sherlock et al., 2008, Hogeveen et al., 2010). 
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Specificity = TN / (TN + FP) x 100 (Eq. 2.2). 

Sensitivity = TP / (TP + FN) x 100 (Eq. 2.3). 

Accuracy = [(TP + TN) / (TP + TN + FP + FN) X 100] (Eq. 2.4).  

RESULTS AND DISCUSSION 

This study included 90 Holstein, 19 crossbred, and 11 Jersey cows for 137 

lactations (17 cows entered the study for two lactations).  Fifty-four percent of cows 

calved in a bedded pack maternity barn bedded with straw while 46% calved in the dry 

cow pasture.  Forty-five percent of calves were bulls, 48% were heifers, 4% were male-

female twins, 1% were female-female twins, and 1% were male-male twins.  Most 

calvings did not require human assistance (79% and 21% for no help needed and human 

assistance required, respectively).  Eighty-seven percent of calves were born alive while 

13% were stillborn.   

Means for each PDMT variable within each disease status are displayed in Table 

2.1.  Dairy cattle lying time has been referenced between 10.5 and 11 hours per cow per 

day (Ito et al., 2009, Bewley et al., 2010c, Cyples et al., 2012, Medrano-Galarza et al., 

2012), which is greater than the mean of 9.56 h/d for all cow days in this study.  Cows in 

this study were housed in an outdated tie-stall facility and cow comfort was poor, which 

may have altered lying times.  Also, cows monitored in the referenced studies were not 

fresh and fresh cows may have different lying times than the rest of the herd, possibly 

caused by the stress of a new environment. 

Mean HRRUM in this study were between 5.99 and 6.31 for multiparous and 

primiparous cows, respectively.  In a previous study with the same herd, mean HRRUM 

was 6.4 h/d (Stone et al., 2016 In Review). This result was within the range of 4.8 to 8.4 
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h/d cited by Krause et al. (2002) and the 6.3 to 6.5 h/d range reported by Moallem et al. 

(2010).  However, HRRUM was less than the 8 to 9 h/d recommendation cited by Welch 

(1982) and Soriani et al. (2013).  Kaufman et al. (2016) cited collar-derived rumination 

times of 7 and 8 h for primiparous and multiparous cows, respectively.  Maekawa et al. 

(2002) observed that primiparous cows ruminated almost 1 h/d less than multiparous in 

mid-lactation.  However, the opposite was true in this study, where multiparous cows 

ruminated less than primiparous cows.   

Fresh cow HRRUM may differ from later-lactation HRRUM.  Rumination is 

affected by diet, including feed digestibility, neutral detergent fiber intake, forage quality 

(Welch and Smith, 1970), and particle size (Welch, 1982).  Fresh cows switch from a dry 

cow to a lactating cow ration, which may be the cause of the lower rumination times.  

Because diet information is not included in manuscripts, comparing rumination times 

between studies is difficult.  Rumination time also decreases with acute stress (Herskin et 

al., 2004) and disease (Welch, 1982, Hansen et al., 2003), which may also play a role in 

why fresh cow rumination times would be less than that of later lactation cows.  Dairy 

personnel usually associate a positive relationship between daily feed intake and RU 

because greater intakes may require more ruminal processing time (Schirmann et al., 

2012).  Krause et al. (2002) explained that a positive relationship between long particle 

DMI and rumination time also exists.  However, Canadian researchers discovered a 

negative relationship between RU and DMI in dry cows (r = - 0.18; P < 0.01), possibly 

because cows cannot eat and ruminate at the same time.   

Hypocalcemia 
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 Reticulorumen temperature (DVMRT), IQLT, HRRUM, MY, and PG were 

significant predictors of hypocalcemia (P = 0.09, P < 0.01, P < 0.01, P < 0.01, and P < 

0.01, respectively).  Because IQSTAND and IQLT are directly related (24 hours – 

IQSTAND should = IQLT), IQSTAND was not included in the multi-variable model.  

The HCA sample size was only 8 in the multi-variable model so MY was removed in 

order to include 25 HCA cases. Within the multi-variable model, HRRUM was a 

significant predictor of hypocalcemia (P < 0.01), but IQLT, DVMRT, and PG were not 

(P = 0.08, P = 0.13, and P = 0.38, respectively).  Lying time was a significant predictor in 

the model (P < 0.01).   

Cows with decreased HRRUM of 1 h/d were 0.64 times less likely to have HCA 

than cows without the increased lying time (Table 2.2).  The area under the curve for this 

multi-variable model was 0.84 (Figure 2.1), implying that this model was a good fit for 

detecting HCA.  This result is in agreement with a study where induced HCA resulted in 

reduced rumination time, possibly related to the anti-peristaltic esophageal movements 

during rumination (Hansen et al., 2003) or decreased ruminal contractions (Jorgensen et 

al., 1998) because Ca is required for muscle contractions (Hansen et al., 2003).   

Sensitivities, specificities, and accuracies of each multi-variable model are 

displayed in Table 2.3.  The threshold that produced the best accuracy in detecting HCA 

was still only 57.53%, with 93.88% sensitivity and 17.05% specificity.  Although this 

sensitivity means only 6 out of 100 cows with HCA are missed, it also means only 17 of 

the 100 cows a producer checks actually have HCA. 

Ketosis 
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 In the SKET univariate models, IQMI, IQSTEPS, and THI were significant 

predictors (P < 0.01, P < 0.01, and P = 0.03, respectively).  Only IQSTEPS was a 

significant predictor of subclinical ketosis in the multi-variable model (P < 0.01, P = 

0.29, and P = 0.16, for IQSTEPS, THI, and IQMI, respectively).  The area under the 

curve shown in Figure 2.2 was only 0.61, signifying that IQSTEPS alone was not much 

better than a coin toss to detect SKET. 

In the CKET univariate models, IQSTEPS and HRACT were significant 

predictors of CKET (P = 0.09 and P = 0.08, respectively).  However, only 2 cows with 

clinical ketosis remained in the model because HRACT data was missing compared to 27 

cases when only IQSTEPS was included.  When HRACT was removed from the model 

to leave only IQSTEPS, IQSTEPS was no longer considered significant at P = 0.09.  The 

area under the curve shown in Figure 2.3 was only 0.60. 

Higher producing cows have been referred to at greater risk of ketosis, which 

comes with a temporary MY decrease, so if they do not develop ketosis their milk yield 

would be even greater (Detilleux et al., 1994, Rajala-Schultz et al., 1999a).  In this study, 

MY was not a predictor of CKET or SKET, however. 

Itle et al. (2014) explained that daily standing time was 20% longer for cows later 

diagnosed with CKET during the week before calving (14.3 ± 0.6 vs. 12.0 ± 0.7 h/d), but 

no differences were observed postpartum.  Cows later diagnosed with CKET also stood 

up fewer times (14.6 vs. 20.9 bouts/d) and stood for longer periods (71.3 min/bout vs. 

35.8 min/bout) than cows without clinical ketosis on the day of calving (Itle et al., 2014).  

Cows with ketosis behave in a subordinate fashion (Itle et al., 2014), causing them to be 

less motivated to engage in behaviors that are energetically expensive like changing 
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position from lying to standing (Susenbeth et al., 2004) or competing for feed (Goldhawk 

et al., 2009).  Other researchers cited that postpartum activity was reduced among cows 

that were diagnosed with subclinical ketosis (502.20 ± 16.5 vs. 536.6 ± 6.2) (Liboreiro et 

al., 2015), which may explain why IQSTEPS was significant in the screening model.  

However, HRACT was not significant in the screening model.  Activity may have been 

hindered because the cows were housed in a tie-stall instead of a freestall or open pack 

facility. 

Kaufman et al. (2016) explained that the odds of a cow getting ketosis and 

another health problem increased when rumination time decreased from 1 week before 

calving to one week after.  However, the authors explained that the increase postpartum 

may represent changes in dry matter intake.  Rumination time (HRRUM) was not 

significant in the screening models for SKET or CKET, which may be because pre-

partum monitoring was not conducted and it may be difficult to detect differences 

without having a longer baseline before calving. 

The threshold that produced the best accuracy in detecting CKET was 96.55%, 

with 97.37% sensitivity and 6.06% specificity.  The threshold that produced the best 

accuracy in detecting SKET was 93.56%, with 98.14% sensitivity and 5.77% specificity.  

Although these sensitivities mean only 3 and 2 out of 100 cows with CKET and SKET, 

respectively, are missed, it also means only 6 of the 100 cows a producer checks actually 

have CKET or SKET. 

Metritis 

 Standing time (IQSTAND), IQLT, and HRACT were significant predictors of 

CMET (P = 0.01, P < 0.01, and P < 0.01, respectively.  Because IQSTAND and IQLT 
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are similar, IQSTAND was not included in the multi-variable model.  When the multi-

variable model was evaluated with HRACT and IQLT, only 2 cases of metritis remained 

in the model, due to missing data from HRACT.  Therefore, the final model left only 

IQLT so that 22 out of the 30 possible cases could be included.  Lying time was a 

significant predictor in the model (P < 0.01).  Cows with decreased IQLT of 1 h/d were 

0.46 times more likely to have CMET.  However, the area under the curve shown in 

Figure 2.4 was only 0.66, implying that IQLT was probably not the best predictor of 

metritis possible.  

Cook et al. (2007) explained that cows with greater locomotion scores (using a 1 

to 4 scale where 1 represents non-lame and 4 represents severely lame) lied down more, 

indicating that pain may increase lying time.  To the author’s knowledge, studies 

evaluating pain in cows with CMET have not been conducted, but there may be pain 

associated with this disease which would explain why IQLT was significant. 

Liboreiro et al. (2015) explained that cows diagnosed with metritis had reduced 

postpartum activity (512.5 ± 11.5 vs. 539.2 ± 6.0 arbitrary unit).  The results of the 

screening CMET model also show that HRACT was a significant predictor of CMET.  

Unfortunately, HRACT data was too sparse on days when cows had CMET to include it 

in the multi-variable model and thus a comparison cannot be made with this study.  

Contrary to the results of this study, Liboreiro et al. (2015) explained that cows diagnosed 

with metritis had reduced postpartum daily rumination time (6.93 vs. 7.35 h/d).   

The threshold that produced the best accuracy in detecting CMET was 86.00%, 

with 86.24% sensitivity and 51.85% specificity.  While these results are not ideal, they 
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unfortunately are the best combination of sensitivity, specificity, and accuracy 

determined through any of the fresh cow diseases monitored in this study.   

Limitations 

Sensitivity and specificity of a disease detection tool depend on the disease 

definition (Nielen et al., 1995) and time window (Mollenhorst et al., 2012) in which alerts 

can be given.  The results of a survey of 139 Dutch producers who owned an automated 

milking system revealed that farmers preferred a clinical mastitis detection system that 

produced few false alerts and provided alerts for severe cases with enough time to take 

effective treatment action.  Producers preferred that time windows were set at a 

maximum of 24 hours before clinical symptoms appeared (Mollenhorst et al., 2012).  

This timing was also agreed upon by Rasmussen (2002) who suggested time windows 

within 24 to 48 hours of the event.  Wider time windows will produce a higher sensitivity 

and specificity (Hogeveen et al., 2010b, Kamphuis et al., 2010), but they will also lose 

their practicality in a commercial setting (Kamphuis et al., 2010).  A 24-hour alert time 

window was chosen in this study for this reason.   

Rasmussen (2002) suggested that a clinical mastitis system should provide 80% 

sensitivity and 99% specificity.  Although the systems in this study were not used for 

clinical mastitis detection, similar expectations may be applied to other disease detection 

models also.  All of the models reached at least 80% sensitivity, but none of the models 

used in this study reached the specificity goal along with the sensitivity goal.  These goals 

may be too lofty at this point in the PDMT research stage, but there may be PDMT or 

algorithms that are able to reach them also.  
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Sensitivity and specificity will also be less if a new test disagrees with the 

comparison to the gold standard.  Disagreement between the gold standard and a new test 

is often interpreted as the test lacking capability.  However, the test could be better at 

detecting negatives, causing true negatives to display as false negatives (Nielen et al., 

1992).  This problem is made even more complex by the circumstance that neither the 

new test nor the gold standard detection methods may be ideal (Vickers et al., 2010).  A 

universally accepted gold standard does not exist, though.  Another limitation of an 

automated disease detection method is that clinical infections are infrequent, causing 

statistical analyses to be “weak” (Mein and Rasmussen, 2008).     

Examples IQLT for a cow with no diagnosed fresh cow disease, with SKET, and 

with all the diseases monitored in this study (SKET, CKET, CMET, and HCA) 

throughout the fresh period are displayed in Figure 2.5.  Differences in the three example 

cows are obvious in Figure 2.5a, but these are only one variable on three cows and do not 

take into account the cows who did not show as much variation around disease.  The cow 

in Figure 2.5b had all the diseases monitored in this study (SKET, CKET, CMET, and 

HCA) at some point in her 14-day study period.  This cascade of disease events is 

common in fresh cows and discerning which changes in each variable are a result of 

which disease difficult.  Cows may be recovering from one disease while they spiral into 

the next, not allowing time to recover and establish a new baseline to deviate from in 

order to be detected by a technology.  The cow in Figure 2.5d did not have any of the 

fresh cow diseases monitored in this study, yet still had variation in IQLT throughout her 

fresh period.   
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The cow in Figure 2.5c had SKET on days 3, 7, and 14, when BHBA was 

measured.  However, it is plausible that she had SKET on at least some of the days 

between also.  Blood samples for both SKET and SHCA were only obtained three times 

throughout the study for each cow, which was likely not often enough to detect all cows 

with these diseases.  Because clinical disease was monitored daily, days that disease went 

undetected were considered non-disease days.  However, some clinical diseases may 

have been overlooked or misclassified.  Postpartum cow diseases tend to build upon each 

other and some share similar signs, making distinction difficult.  Future studies should 

focus on a smaller time window within the fresh period and take more frequent diagnosis 

samples to ensure no diseases are missed. 

Several cows were treated before they showed signs of HCA because the herd 

manager knew each cow’s history and tried to be pro-active in disease prevention.  

Clinical diseases were also treated, which may have affected the rest of the fresh period 

for those cows.  Although this may have skewed the data for those cows, the welfare of 

the animal was considered a higher priority.  

CONCLUSIONS 

Some of the variables evaluated in this paper may be useful in detecting 

hypocalcemia, ketosis, and metritis.  However, the best area under the curve evaluated in 

this study was still only 0.84, implying that the best possible combination of variables 

was not achieved.  The generalized linear models for HCA, SKET, CKET, and CMET all 

included at least one variable from IceQubes, indicating this PDMT may be useful in 

detecting the diseases evaluated.  Technology manufacturers should continue to seek 

ways to monitor multiple variables at once and to improve upon the variables they 
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already monitor.  The PDMT used in this study have progressed from the time of this 

study and may be better able to predict disease than they were at this time.  Beyond 

refinements in what information is collected within each technology, actually collecting 

that data consistently is very important.  Missing data from both technology and human 

error required variables to be excluded from models, which may have provided better 

results if those variables had been included.  Overall, using PDMT to predict 

hypocalcemia, ketosis, and metritis is promising, but needs future work into evaluating 

the best variables and the best statistical methodology. 
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Table 2.1. Health status summary of cows enrolled in the intensive health cow checks from 1 to 14 DIM during a study evaluating the 

associations of rumination time, activity, reticulorumen temperature, lying behavior, and milk yield of cows with subclinical and clinical ketosis, 

hypocalcemia, and mastitis, and clinical metritis.1 - 12 

Variable Subclinical 

ketosis6 

Clinical 

ketosis7 

Hypocalcemi

a8 

Clinical 

metritis9 

No disease10 

n cows diagnosed, cow days 208 33 176 30      - 

Mean ± SD d diagnosed, DIM 7.09 ± 4.07 6.52 ± 3.72 6.8 ± 3.68 5.96 ± 3.33 - 

Mean ± SD rumination time, h/d1 5.49 ± 1.93 6.47 ± 2.04 5.20 ± 1.77 315 ± 133.15 6.08 ± 1.90 

Mean ± SD neck activity, activity 

units/d2 

205.68 ± 

80.43 

281.85 ± 

25.10 

273.52 ± 

64.73 

141.80 ± 0.00 254.90 ± 

69.59 

Mean ± SD reticulorumen temperature, 

°C3 

39.04 ± 1.16 39.32 ± 0.69 38.99 ± 0.59 39.36 ± 0.56 39.05 ± 1.26 

Mean ± SD lying time, h/d4 10.37 ± 3.43 9.49 ± 3.58 10.33 ± 3.94 11.41 ± 3.11 9.51 ± 3.13 

Mean ± SD standing time, h/d 13.25 ± 3.37 14.25 ± 3.42 13.01 ± 3.94 12.39 ± 3.11 13.83 ± 3.44 

Mean  ± SD number of steps, steps/d 716.12 ± 704.04 ± 895.49 ± 718.54 ± 901.53 ± 
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450.95 388.14 529.27 548.74 607.70 

Mean ± SD motion index, units/d 3092.37 ± 

2049.37 

3819.44 ± 

4524.06 

3763.83 ± 

2064.78 

3196.83 ± 

2398.78 

3737.70 ± 

2563.80 

Mean ± SD milk yield, kg/d5 27.60 ± 8.20 31.63 ± 6.12 25.09 ± 8.67 25.45 ± 10.65 28.92 ± 7.39 

1HR Tags (SCR Engineers Ltd., Netanya, Israel) measured rumination time with a microphone and microprocessor. 

2HR Tags (SCR Engineers Ltd., Netanya, Israel) measured neck activity with a 3-axis accelerometer. 

3The DVM Systems, LLC (Boulder, CO) bolus system monitored reticulorumen temperature using a passive RFID transponder (Phase IV 

Engineering, Inc., Boulder, CO) equipped with a temperature sensor queried twice daily by a panel reader placed in parlor entrances. 

4IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured lying time, standing time, number of steps, and motion index with a 3-axis 

accelerometer. 

5The Milpro P4C (Milkline, Gariga di Podenzano, Italy) milking system provided milk weights per cow per milking, which were summed to 

obtain the daily milk weight. 

6Subclinical ketosis was defined as cows with BHBA ≥1.2 mmol/L, obtained on days 3, 7, and 14 post-partum. 
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7Clinical ketosis was defined as a cow with any or all of the following symptoms: decreased feed intake, reduced milk production, lethargy, an 

empty-appearing abdomen, dehydration, abnormal licking, chewing incessantly on inanimate objects, incoordination, gait abnormalities, 

aggression, and bellowing. 

8Subclinical hypocalcemia was defined as a serum Ca level < 8.55 ng/dL, obtained on days 3, 7, and 14 post-partum.  Clinical hypocalcemia 

represented a cow with mild excitement without recumbency, nervousness, anorexia, weakness, and rapid heart rate, a cow with sternal 

recumbency, depression, fine muscle tremors, rapid heart rate, cold ears, decreased gastrointestinal activity, and dilated pupils, or a cow with 

lateral recumbency progressing to loss of consciousness, severe bloat, profound gastrointestinal atony, rapid heart rate, and a pulse that was 

difficult to detect. 

9Clinical metritis was defined as a cow with non-clear and thick uterine fluid, examined through rectal palpation and discharge expulsion. 

10No disease represented a cow with no subclinical or clinical hypocalcemia, ketosis, or mastitis, or clinical metritis between 1 and 14 DIM. 

11The previous day’s data was used to account for the timing of data availability to producers.   

12Cow day data included in each disease status column were included only on the day(s) they were categorized in that disease status.  Cows 

could be included in multiple disease columns throughout their 14 d fresh period. 



Table 2.2. Odds ratios of cows having clinical metritis, clinical ketosis, subclinical 

ketosis, or hypocalcemia based on precision dairy monitoring technology variables for 

factors associated with the incidence of each disease compared to cows without the 

disease.1-9

Disease Variable Odds 

ratio 

95% Confidence 

interval 

P-value 

Clinical metritis1 IQLT, h/d 0.46 0.44 0.48 < 0.01 

Clinical ketosis2 IQSTEPS, 

steps/d 

0.50 0.50 0.50 0.09 

Subclinical ketosis3 THI 0.50 0.50 0.51 0.44 

IQMI 0.50 0.50 0.50 0.07 

IQSTEPS 0.50 0.50 0.50 0.35 

Hypocalcemia4 DVMRT 0.70 0.37 0.90 0.23 

IQLT 0.44 0.37 0.51 0.09 

HRRUM 0.64 0.52 0.75 0.03 

PG 0.74 0.19 0.97 0.41 

1Clinical metritis was defined as a cow with non-clear and thick uterine fluid, examined 

through rectal palpation and discharge expulsion
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2Clinical ketosis was defined as a cow with any or all of the following symptoms: 

decreased feed intake, reduced milk production, lethargy, an empty-appearing abdomen, 

dehydration, abnormal licking, chewing incessantly on inanimate objects, incoordination, 

gait abnormalities, aggression, and bellowing. 

3Subclinical ketosis was defined as cows with BHBA ≥1.2 mmol/L, obtained on days 3, 

7, and 14 post-partum. 

4Subclinical hypocalcemia was defined as a serum Ca level < 8.55 ng/dL, obtained on 

days 3, 7, and 14 post-partum.  Clinical hypocalcemia represented a cow with mild 

excitement without recumbency, nervousness, anorexia, weakness, and rapid heart rate, a 

cow with sternal recumbency, depression, fine muscle tremors, rapid heart rate, cold ears, 

decreased gastrointestinal activity, and dilated pupils, or a cow with lateral recumbency 

progressing to loss of consciousness, severe bloat, profound gastrointestinal atony, rapid 

heart rate, and a pulse that was difficult to detect. 

 5IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured lying time (IQLT), motion 

index (IQMI), and number of steps (IQSTEPS) with a 3-axis accelerometer.  

6The DVM Systems, LLC (Boulder, CO) bolus system monitored reticulorumen 

temperature using a passive RFID transponder (Phase IV Engineering, Inc., Boulder, CO) 

equipped with a temperature sensor queried by a panel reader placed in parlor entrances.   

7HR Tags (SCR Engineers Ltd., Netanya, Israel) measured rumination time with a 

microphone and microprocessor.  
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8Hourly temperature and relative humidity were obtained from Kentucky Climate Data, 

calculated through the University of Kentucky College of Agriculture via a Campbell 

Scientific Inc. (Logan, UT) 23× data logger, located 5.63 kilometers from the farm. 

9Parity group represented multiparous or primiparous cows. 
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Table 2.3. Sensitivity and specificity of rumination time, activity, reticulorumen 
temperature, lying time, and lying bouts on each disease using different alert thresholds 
for disease detection.1-4 

Type of subclinical 

mastitis 

Probability 

(alert threshold) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

Clinical ketosis 0.009866 57.23 84.85 57.46 

0.013163 61.28 81.82 61.45 

0.021594 85.96 30.30 85.50 

0.026482 97.37 6.06 96.55 

Subclinical ketosis 0.15682 98.14 5.77 93.56 

0.12586 85.75 37.02 83.34 

0.07178 58.89 88.94 60.38 

0.04685 55.30 90.87 57.07 

Hypocalcemia 0.82433 97.45 7.95 55.10 

0.49557 93.88 17.05 57.53 

0.33468 89.80 19.32 56.45 

0.18152 84.69 22.16 55.10 

Clinical metritis 0.01916 86.24 51.85 86.00 

0.01566 76.67 66.67 76.60 

0.01273 68.11 85.19 68.22 

0.01249 67.32 85.19 67.44 

1Clinical ketosis was defined as a cow with any or all of the following symptoms: 

decreased feed intake, reduced milk production, lethargy, an empty-appearing abdomen, 

dehydration, abnormal licking, chewing incessantly on inanimate objects, incoordination, 

gait abnormalities, aggression, and bellowing. 
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2Subclinical ketosis was defined as cows with BHBA ≥1.2 mmol/L, obtained on days 3, 

7, and 14 post-partum. 

3Subclinical hypocalcemia was defined as a serum Ca level < 8.55 ng/dL, obtained on 

days 3, 7, and 14 post-partum.  Clinical hypocalcemia represented a cow with mild 

excitement without recumbency, nervousness, anorexia, weakness, and rapid heart rate, a 

cow with sternal recumbency, depression, fine muscle tremors, rapid heart rate, cold ears, 

decreased gastrointestinal activity, and dilated pupils, or a cow with lateral recumbency 

progressing to loss of consciousness, severe bloat, profound gastrointestinal atony, rapid 

heart rate, and a pulse that was difficult to detect. 

4Clinical metritis was defined as a cow with non-clear and thick uterine fluid, examined 

through rectal palpation and discharge expulsion. 
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Figure 2.1. ROC curve for the final GENMOD model evaluating the effects of 

reticulorumen temperature, lying time, rumination time, and parity group in cows with 

hypocalcemia versus cows without hypocalcemia.1-4 

1The DVM Systems, LLC (Boulder, CO) bolus system monitored reticulorumen 

temperature using a passive RFID transponder (Phase IV Engineering, Inc., Boulder, CO) 

equipped with a temperature sensor queried by a panel reader placed in parlor entrances.   

2IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured lying time with a 3-axis 

accelerometer.   
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3HR Tags (SCR Engineers Ltd., Netanya, Israel) measured rumination time with a 

microphone and microprocessor.   

4Parity group represented multiparous or primiparous cows. 
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Figure 2.2. ROC curve for the final GENMOD model evaluating the effects of 

temperature humidity index, motion index, and number of steps in cows with subclinical 

ketosis versus cows without subclinical ketosis. 

1Hourly temperature and relative humidity were obtained from Kentucky Climate Data, 

calculated through the University of Kentucky College of Agriculture via a Campbell 

Scientific Inc. (Logan, UT) 23× data logger, located 5.63 kilometers from the farm. 

2IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured motion index and number 

of steps with a 3-axis accelerometer.   
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Figure 2.3. ROC curve for the final GENMOD model evaluating the effects of neck 
activity and number of steps in cows with clinical ketosis verus cows without clinical 
ketosis. 

1 HR Tags (SCR Engineers Ltd., Netanya, Israel) measured neck activity with a 3-axis 

accelerometer. 

2IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured number of steps with a 3-

axis accelerometer.   
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Figure 2.4. ROC curve for the final GENMOD model evaluating the effects of lying time 

in cows with clinical metritis versus cows without clinical metritis.1-2 

1IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured lying time with a 3-axis 

accelerometer.   

2Clinical metritis was defined as a cow with non-clear and thick uterine fluid, examined 

through rectal palpation and discharge expulsion. 
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Figure 2.5a. Three cows displaying different lying times around multiple diseases, or 

lack of, during the fresh period.1-6 

Figure 2.5b. Lying times of an example cow around multiple diseases during her fresh 

period.1-6
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Figure 2.5c. Lying times of an example cow around subclinical ketosis events, meaured 

with BHBA on days 3, 7, and 14 DIM.1-6 

Figure 2.5d. Lying times of an example cow without subclinical ketosis or 

hypocalcemia, or clinical ketosis, hypocalcemia, or metritis throughout her fresh period.1-

6
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1Figure 2a is the overlay of Figures 2b, c, and d to show the differences of each different 

disease pattern in the example cows.   

2IceQubes (IceRobotics Ltd., Edinburgh, Scotland) measured lying time with a 3-axis 

accelerometer.  Predicted lying times from the MIXED procedure of SAS are displayed. 

3Clinical ketosis (CKET) was defined as a cow with any or all of the following 

symptoms: decreased feed intake, reduced milk production, lethargy, an empty-appearing 

abdomen, dehydration, abnormal licking, chewing incessantly on inanimate objects, 

incoordination, gait abnormalities, aggression, and bellowing. 

4Subclinical ketosis (SKET) was defined as cows with BHBA ≥1.2 mmol/L, obtained on 

days 3, 7, and 14 post-partum. 

5Subclinical hypocalcemia (SHCA) was defined as a serum Ca level < 8.55 ng/dL, 

obtained on days 3, 7, and 14 post-partum.  Clinical hypocalcemia (CHCA) represented a 

cow with mild excitement without recumbency, nervousness, anorexia, weakness, and 

rapid heart rate, a cow with sternal recumbency, depression, fine muscle tremors, rapid 

heart rate, cold ears, decreased gastrointestinal activity, and dilated pupils, or a cow with 

lateral recumbency progressing to loss of consciousness, severe bloat, profound 

gastrointestinal atony, rapid heart rate, and a pulse that was difficult to detect. 

6Clinical metritis (CMET) was defined as a cow with non-clear and thick uterine fluid, 

examined through rectal palpation and discharge expulsion. 
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INTRODUCTION 

Mastitis is an inflammatory reaction of udder tissue, usually caused by a bacterial 

infection in the mammary gland (Harmon, 1994, Sordillo et al., 1997, Oliver and 

Murinda, 2012).  This disease alters udder secretory processes, lowers milk yield, and 

changes milk composition (Beck et al., 1992, Harmon, 1994).  Mastitis has a detrimental 

effect on epithelial tissues and may destroy some secretory cells (Harmon and Heald, 

1982, Beck et al., 1992).  Additionally, mastitis may compromise animal welfare because 

of the resulting discomfort and pain (Medrano-Galarza et al., 2012, Fitzpatrick et al., 

2013). 

Dairy industry personnel generally accept that economic losses resulting from 

mastitis are sizable (Beck et al., 1992, Hogeveen et al., 2011).  Dairy cattle economic 

efficiency is closely related to milk yield (Dohoo and Martin, 1984) and mastitis has a 

long lasting negative effect on milk yield (Rajala-Schultz et al., 1999a).  Even after an 

infection is cured, milk yield remains depressed (Bar et al., 2008) and cows may be 

unable to reach their pre-mastitis milk yield (Rajala-Schultz et al., 1999a).   

Subclinical mastitis constitutes an animal with an udder infection but no visible 

health changes.  Because it cannot be detected by the human eye, cytological, 

biochemical and bacteriological milk tests are the only way to detect it (Bramley et al., 

1996, Janzekovic et al., 2009).  Subclinical mastitis is the most prevalent form of mastitis 

most herds experience, but many producers are unaware of the consequences of this 

disease because there are no outward signs.  Subclinical mastitis causes the greatest 

overall loss to dairy producers because of decreased production as these cases may go 

undetected (Bramley et al., 1996). 
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Early intervention may set a cow up to produce more milk and remain healthier 

throughout her lactation (Aalseth, 2005). Proactive action may also decrease antibiotic 

use, which may decrease the chance of antibiotic residues in the bulk tank (Oliver and 

Murinda, 2012).  Automated dairy cattle behavioral, physiological, and production 

monitoring systems, or precision dairy monitoring technologies, may be useful for early 

mastitis detection.  Precision dairy monitoring technologies (PDMT) include sensors that 

monitor activity, body temperature, feeding behavior, location, lying behavior, milk 

parameters (yield, electrical conductivity, lactose, lactate dehydrogenase, blood, color, 

and SCC), and rumination time.  Each of these parameters has mastitis detection potential 

because mastitis can affect dairy cattle behavior and physiology. 

The primary objective of this study was to evaluate variation in neck and leg 

activity, feeding time, lying time, rumination time, reticulorumen temperature, and milk 

yield, lactose, protein, and fat percent around subclinical mastitis events.  The secondary 

objective was to evaluate the sensitivity, specificity, and accuracy of alerts created from 

activity, feeding time, lying time, rumination time, milk yield and components, and body 

temperature in detecting subclinical mastitis.   

MATERIALS AND METHODS 

This study was conducted at the University of Kentucky Coldstream Research 

farm from May 8, 2015 to September 11, 2015.  Every cow in the lactating herd remained 

on the study for its entirety or until they were dried off or left the herd.  General cow 

demographic information was obtained from PCDart (Dairy Records Management 

Systems, Raleigh, NC) records.   
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Lactating cows were housed in two freestall barns with one barn of 54 dual 

chamber waterbeds (Advanced Comfort technology, Inc., Reedsburg, WI) and the other 

equipped with 54 rubber-filled mattresses, all covered with sawdust.  Cow groups were 

balanced between barns by DIM and parity.  Cows had access to fresh water from 

automatic fill Rubbermaid 150 gallon tanks.  Cows had access to an exercise lot for about 

1 h/d at 1000, weather permitting.   

Cows had ad libitum access to water in each barn and shared a feedbunk between 

barns.  Lactating cows were fed the same ration consisting of corn silage, alfalfa hay, 

concentrate mix, whole cottonseed, and alfalfa silage at 0600 and 1330 daily.  Cows were 

milked 2X at 0430 and 1530.  The milking routine included forestripping, pre-dipping 

with 0.5% iodine, drying teats with individual cloth towels, unit attachment, automatic 

takeoff, and post-dipping with 1% iodine.  Cows received Tomorrow (Boehringer 

Ingelheim Vetmedica, Inc., St. Joseph, MO) and Orbeseal (Zoetis Services LLC,  

Florham Park, NJ) in each quarter 45 to 60 days before their next calving due date and 

were housed in a pasture with access to a bedded pack barn during the dry period.   

During analysis, cows were divided into two parity groups (PG), representing 

primiparous and multiparous cows.  The herd manager was notified of cows with clinical 

mastitis and they were treated according to farm protocol, but remained in the study 

regardless of their treatment regimen.  Data from cows with clinical mastitis were not 

included in the study the day of and 14 d after clinical detection to ensure no effects of 

clinical mastitis were still present.  A cow was considered to have clinical mastitis if she 

had a visually abnormal milk secretion (e.g. clots, flakes, or watery milk) from one or 

more quarters as detected by the milkers at each milking.  Milk clots were also detected 
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by examining the Ambic dairy cow mastitis detector (Coburn Company, Whitewater WI), 

connected to the milk hose, after each cow was milked.  Cows < 22 DIM were removed 

from this study because this period is complicated by many other diseases that may affect 

the parameters of interest in this study (fresh cow disease detection using the same 

PDMT on the same herd is explained in Tsai et al., 2016 unpublished).  Cows > 400 DIM 

were also removed because their behavior may not be representative of the rest of the 

herd.  Any time a cow was removed from the freestall barn for more than milking or 

pasture time (e.g. judging contest held at the farm or hoof trimming), data from that day 

was removed for that cow.  Data from cows were removed the day before, of, and after 

estrus, as detected by farm staff (estrus detection using similar PDMT is explained in 

Mayo (2015)). 

Precision Dairy Technologies 

A weather station (HOBO U23 Pro v2 External Temperature/Relative Humidity 

Data Logger - U23-002, Onset, Bourne, MA) was located inside each freestall barn that 

measured relative humidity and temperature every 15 minutes.  Temperature humidity 

index (THI) was computed using Eq. 3.1.  

THI = temperature (⁰F) - [0.55 – (0.55 × relative humidity/100)] × [temperature 

(⁰F) – 58.8] (NOAA, 1976) (Eq. 3.1).  

Each cow in the herd was equipped with the following PDMT: AfiAct Pedometer 

Plus (afimilk, Kibbutz Afikim, Israel), which measured number of steps (AFISTEP), 

lying time (AFILT) and rest bouts (AFILB); DVM Bolus (DVM Systems, LLC, 

Greeley, CO), which measured reticulorumen temperature (DVMRT); CowScout (Gea 

Farm Technologies GmbH, Bönen, Germany), which measured leg activity (GEAACT); 
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HR Tag (SCR Engineers Ltd, Netanya, Israel), which measured rumination time 

(HRRUM) and neck activity (HRACT); IceQube (IceRobotics Ltd, Edinburgh, 

Scotland), which measured lying time (IQLT), standing time (IQST), lying bouts 

(IQLB), bout duration (IQBD), and total motion (IQMOT); SmartBow (MKW 

electronics GmbH, Jutogasse, Austria), which measured lying time (SBLT), standing 

time (SBST), inactive time (SBINACT), rumination time (SBRUM), high activity 

(SBHACT), and no activity (SBNOACT); CowManager SensoOr (Agis Automatisering, 

Harmelen, Netherlands), which measured head activity (SENSACT), no activity 

(SENSNOACT), feeding time (SENSFT), rumination time (SENSRUM); Track a Cow 

(ENGS, Hampshire, UK), which measured time at the feedbunk (TACTFB), number of 

feed bunk visits (TACFV), lying time (TACLT), number of steps (TACSTEPS).   

Activity (AFISTEP, GEAACT, HRACT, SENSACT, SENSNOACT, 

IQMOT, SBINACT, SBHACT, SBNOTH) and lying (AFIRB, IQLT, IQST, IQLB, 

IQBD, TACLT, SBLT, SBST) parameters were measured using 3-axis accelerometers.  

Rumination time was measured using a 3-axis accelerometer (SENSRUM and SBRUM) 

or a microphone and microprocessor (HRRUM).  Feeding time was measured with a 3-

axis accelerometer (SENSFT) and TACTFB and TACFV were measured using a cable 

that monitored when cows arrived and left the feed bunk.  

All devices were assigned to cows and heifers at least 10 d before their predicted 

calving date.  Leg and ear devices were placed on the same leg for each technology for 

every cow (Track a Cow on the right front, Cow Scout on the left front, Pedometer Plus 

on the right rear, and IceQube on the left rear leg; Smartbow on the right ear and 

CowManager SensoOr on the left ear).  Ear tags were positioned using an ear tagger, 
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provided by each technology company to fit the respective device.  Precision dairy 

monitoring technologies were removed from cows if they started to irritate the cow’s skin 

or cause swelling and placed on the opposite leg if possible to prevent data loss.  Once 

the area healed, the PDMT was re-applied to the original position.  DVM boluses were 

inserted into the reticulorumen orally with a bolus gun.   

The parlor was equipped with AfiLab (afimilk, S.A.E. AFIKIM, Kibbutz Afikim, 

Israel), which measured milk yield (AFIYIELD), fat (AFIFAT), protein (AFIPROT), 

lactose (AFILACT), conductivity (AFICOND), and milking order (AFIORDER).  

Cows were sorted into their respective groups using AfiSort (Afimilk, Kibbutz Afikim, 

Israel) after each milking and were manually checked daily to ensure correct sorting.  

During this check, tags were accounted for to ensure no tags were lost in the lot or 

pasture and these tags were recovered and replaced when loss occurred.  All PDMT were 

monitored and replaced promptly when failure occurred, including dead batteries and 

broken tags.  All computer clocks were set to synchronize with NIST Internet Time 

Service (NIST, Gaithersburg, MD, USA) automatically, and time was manually verified 

on all computers on a weekly basis.   

Mastitis Sampling 

Twice weekly (Monday and Friday) at the morning milking, composite milk 

samples were obtained for each cow in the herd (36 sampling periods).  Composite milk 

samples were collected into clear, 90 mL polypropylene resin vials (Capitol Vial, Thermo 

Fisher Scientific, Hudson, NH).  Samples were evaluated for SCC immediately following 

milking with a SomaCount FC (Bentley Instruments, Inc., Chaska, MN) and any cow 

with a SCC > 200,000 cells/mL was classified as having subclinical mastitis.  Individual 
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quarter milk samples were obtained for bacteriological, milk leukocyte differential, and 

SCC evaluation from all four quarters of cows with subclinical mastitis at the afternoon 

milking on the same day.  Cows without subclinical mastitis were not sampled at the 

afternoon milking. 

For bacteriological culture, samples were obtained following the procedure 

described by Hogan et al. (1999).  After forestripping and pre-dipping, teat ends were 

cleaned with cotton balls soaked in 70% ethyl alcohol.  About 5 mL of milk from each 

quarter was stripped into an individual sterile polypropylene test tube (Falcon®, Corning 

Life Sciences, Corning, NY).  Samples were frozen immediately after milking and 

delivered to a University of Kentucky laboratory for bacteriological analysis each week.  

In the lab, individual quarter milk samples were thawed and 0.1 mL of each quarter 

sample were aseptically obtained from each tube and plated onto one half of a Difco™ 

(BD Diagnostic Systems, Detroit, MI) Columbia blood esculin agar plate with 5% calf’s 

blood, which was collected aseptically from calves at the University of Kentucky 

Coldstream Dairy.  Plates were incubated at 37°C and bacterial growth was observed 48 

h later.  Bacteria on the primary culture medium were identified tentatively according to 

colony morphology and hemolytic characteristics.  Contaminated and no growth plates 

were recorded and discarded.  Isolates considered causative mastitis agents were placed 

in brain-heart-infusion broth and incubated at 37°C for 24 h. Ten μL of each broth was 

then heat-fixed to a microscope slide and Gram stained.  Gram staining was conducted by 

drenching each slide in crystal violet for 1 min, Gram’s iodine for 1 min, alcohol for 30 s, 

and safranin for 30 s.  Between drenches, slides were rinsed and blotted with bibulous 

paper.  Slides were examined under a microscope and isolates identified as Gram-
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negative rods or streptococci were further evaluated by Vitek 2 Compact (bioMérieux, 

Durham, NC).  Isolates identified presumptively as staphylococci were subsequently 

tested for coagulase activity (positive or negative) by the tube coagulase test using 

BBL™ coagulase rabbit plasma with ethylenediaminetetraacetic acid (BD Diagnostic 

Systems, Detroit, MI).  Coagulase-positive staphylococci were considered 

Staphylococcus aureus.  Samples with negative coagulase-status were considered 

coagulase negative staphylococci.  Isolates identified as yeast or coryneforms were not 

confirmed beyond microscopic identification.   

After milk samples were plated for bacteriological analysis, the samples were 

used to evaluate lactate dehydrogenase (LDH) with UdderCheck (Portacheck, 

Moorestown, NJ).  An UdderCheck strip was dipped in each milk sample and results 

were recorded two minutes later by comparing the color of the test strip to the color chart 

on the vial. 

During sampling, an additional 4 mL of milk was obtained from each quarter for 

milk leukocyte differential evaluation directly after the bacteriological samples were 

obtained.  Samples were evaluated with the Q-Scout (Advanced Animal Diagnostics, 

Morrisville, NC) system directly after milking, according to manufacturer directions.  

Results of the milk leukocyte differential evaluation included total leukocyte, 

lymphocyte, macrophage, and neutrophil count. 

Ninety mL of milk from each quarter was collected in a non-sterile polypropylene 

flip-top vial (Capitol Vial, Thermo Fisher Scientific, Hudson, New Hampshire) for SCC 

evaluation directly after the milk leukocyte differential sample was obtained.  Samples 
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were preserved and refrigerated until individual quarter SCC was performed with a 

SomaCount FC (Bentley Instruments, Inc., Chaska, MN) within 2 d. 

Data Editing and Analysis 

Statistical analyses were conducted using SAS Version 9.3 (SAS Institute Inc., 

Cary, NC).  Milk yields < or > 4 standard deviations from the previous week’s average 

milk yield were removed, presumably caused by technology error.  To account for 

decreased reticulorumen temperature caused by water bouts, DVMRT were removed if < 

38.3ºC and if they were less than 4 standard deviations from the previous week’s average 

temperature.  Milk yield, IQLB, IQBD, IQST, IQMOT, IQLT, HRRUM, HRACT, 

SENNOACT, SENRUM, SENFT, SENACT, SENHACT, SBLT, SBST, SBINACT, 

SBHACT, SBNOTH, SBRUM, TACLT, TACTFB, and TACFV were each summed to 

create one value per variable per cow per day.  Temperature humidity index, AFILACT, 

AFIPROT, AFIFAT, AFICOND, AND AFIORDER, GEAACT, and DVMRT were 

averaged to create one value per variable per cow per day.  If any variable amounted to 0 

for the day, that variable was set as missing for that cow day.  Cow days were removed if 

< 90% of each day’s data was recorded, but if a cow had > 90% of each day’s data, that 

linear interpolation was used to include the missing 10% from that day.  In cases where 

less than 24 hours of data were available, the percentage lying for that time period was 

used to calculate the percentage lying within 24 hours.  The UNIVARIATE procedure 

was used on these variables and the 1st and 99th percentile of all variables were removed.   

Pathogen groups were created to account for a small frequency of several 

individual pathogens.  Pathogen groups included: Gram positive and Gram negative 

mixed cultures (NPMIX), Gram positive cultures (GPOS), and no growth or 
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contaminant cultures (NOGROW).  The NPMIX and GPOS groups were only required 

to have one quarter with a Gram negative pathogen or a Gram positive pathogen, 

respectively, and the other quarter(s) could have been no growths or contaminants.  All 

but one cow with a Gram negative pathogen isolated from at least one quarter also had a 

Gram positive pathogen isolated from at least one other quarter.  The cow with a Gram 

negative pathogen isolated from one quarter and the other three quarters determined to be 

no growths was removed from the study since she did not fit in any of the groupings and 

may have responded differently to this infection than did the cows with NPMIX culture 

results.  Cows with no subclinical mastitis (cows with < 200,000 SCC at the composite 

AM sampling) at the time of each sampling period were considered to be in the no 

subclinical mastitis group and were treated as the reference group for all analyses. 

The previous day’s data was used for each PDMT variable to account for the 

timing of data availability to producers (d -1).  Baseline data for each cow each day was 

created by calculating a 7d rolling mean from day -2 to day -8 before each subclinical 

mastitis event (baseline).  The percent change for each day was calculated using Eq. 3.2 

and that data was used in all models. 

Percent change = (d -1 – baseline) / baseline x 100 (Eq. 3.2).   

Three separate models were analyzed for each individual PDF technology 

variable: 1) NPMIX versus no subclinical mastitis; 2) GPOS versus no subclinical 

mastitis; 3) NOGROW versus no subclinical mastitis.  Models were analyzed with PROC 

GENMOD with binomial distributions with cow as repeated subject and subclinical 

mastitis status as the dependent variable (yes or no for each of the NPMIX, GPOS, or 

NOGROW subclinical mastitis models).  The single variable generalized linear models 
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were used to screen for variables to include in the three multi-variable models and non-

significant variables (P ≥ 0.10) were not accounted for in any further analysis.  Variables 

significant in each of these individual models were then included in multi-variable 

models for each of the three pathogen groups.  If redundant variables were significant in 

screening models, each variable was tested against subclinical mastitis status using the 

CORR procedure.  Only the variable with the greater Spearman correlation coefficient 

was included in the multi-variable model.  Redundant variables included activity 

(AFISTEP, GEAACT, HRACT, SENSACT, SENSNOACT, IQMOT, SBINACT, 

SBHACT, and SBNOTH), lying behavior (AFIRB, IQLT, IQST, IQLB, IQBD, TACLT, 

SBLT, and SBST), rumination time (SENSRUM, SBRUM, and HRRUM), and feeding 

behavior (SENSFT, TACTFB and TACFV) parameters.  Significance was set at P ≤ 0.05 

for the multi-variable models.   

The LOGISTIC procedure of SAS was used to calculate ROC curves and 

determine probabilities of disease for each cow each day using the all of the variables 

included in each of the three multi-variable models.  Probabilities that represented 80% 

sensitivity, 95% sensitivity, 80% specificity, and 95% specificity were then used to 

determine alert levels in GENMOD.  All four probabilities were used for each of the 

NPMIX, GRAMPOS, and NOGROW final multi-variable models in order to determine 

alerts at each probability.  If a probability in the dataset was greater than the probability 

associated with the respective sensitivity or specificity, an alert was created for that cow 

that day.  Alerts were then used alongside subclinical mastitis determined by SCC in 

order to calculate sensitivity and specificity at the desired probabilities and to include 

these points on the ROC curves.  
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Correctly identified events were considered true positives (TP), non-alerted 

events were false negatives (FN), non-alerted non-events were true negatives (TN), and 

alerted non-events were false positives (FP) (Firk et al., 2002).  Specificity is the 

probability that a negative sample is from a disease-negative cow.  Sensitivity is the 

probability that a positive alert is a true indicator of a disease (Hamann and Zecconi, 

1998, Sherlock et al., 2008, Hogeveen et al., 2010).  Because sensitivity and specificity 

are interdependent, thresholds should be set to optimize both (Hogeveen et al., 2010).  

Accuracy can account for the prevalence of a disease whereas sensitivity and specificity 

cannot.  Accuracy depends on how strongly and closely the measured parameters are 

associated with the event, how accurately the technology measures the parameters, and 

how well the manufacturer algorithm processes the data to create useful alerts (Dolecheck 

et al., 2015).  Sensitivity, specificity, and accuracy for each final multi-variable model 

were determined using Eq. 3.3, 3.4, and 3.5 (Sherlock et al., 2008, Hogeveen et al., 

2010). 

Specificity = TN / (TN + FP) x 100 (Eq. 3.3). 

Sensitivity = TP / (TP + FN) x 100 (Eq. 3.4). 

Accuracy = [(TP + TN) / (TP + TN + FP + FN) X 100] (Eq. 3.5).  

RESULTS AND DISCUSSION 

In total, 354 subclinical mastitis cases were detected using SCC.  Of the 

subclinical mastitis cases, 66, 148, and 140 cases were detected for NPMIX, GPOS, and 

NOGROW, respectively.  Cow days without subclinical mastitis totaled 3,553 over the 

course of the study.  Mean (± SD) DIM, milk yield, and parity for all cows over the study 
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period were 226.29 ± 142.29 days, 34.58 ± 9.97 kg/d, and 2.06 ± 1.15 lactations, 

respectively.  Mean (± SD) milk lactose, fat, protein, and conductivity were 4.69 ± 

0.26%, 3.40 ± 0.48%, 2.98 ± 0.24%, and 8.09 ± 0.85.  Mean (± SD) SCC, leukocyte 

count, and LDH levels in cows with subclinical mastitis caused by NPMIX, GPOS, and 

NOGROW pathogens are displayed in Table 3.1.  

Gram-negative pathogens release endotoxins, increasing the risk of death in cows 

with mastitis caused by this pathogen group (Hertl et al., 2011) and clinical mastitis 

caused by Gram negative pathogens is usually more severe than mastitis caused by Gram 

positive pathogens.  Isolation of environmental pathogens from milk cultures is difficult 

and diagnosis of mastitis caused by environmental pathogens is difficult because of the 

short duration (Smith et al., 1985).  Thus, some of the NOGROW may have been Gram 

negative pathogens and speculate that timing to detect these cases may have been too 

wide.  Because samples were only taken twice weekly, it is plausible that we missed the 

window of detection for Gram negative pathogens.  Unfortunately, studies evaluating 

behavioral, physiological, and production indicators around naturally-occurring mastitis 

studies are not available to attempt to alter the time windows post-hoc, which may have 

allowed for capture of the greatest variable changes. 

Mean percent change (± SD) from d -1 to baseline for each PDMT variable 

evaluated are displayed in Table 3.2.  The greatest percent change occurred for HRRUM 

(10.35%) for GRAMPOS.  The least amount of change occurred for AFIPROT for both 

NOGROW and no subclinical mastitis (0.01%). 

Multi-variable General Linear Models 
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 The variables included in each general linear multi-variable model are listed in 

Table 3.3 alongside the odds ratios for having NPMIX, GPOS, and NOGROW 

subclinical mastitis based on the PDMT variables included in each model.  The multi-

variable NPMIX model included 8 cases of subclinical mastitis and 560 days of no 

subclinical mastitis.  The multi-variable GRAMPOS model included 30 cases of 

subclinical mastitis and 769 days of no subclinical mastitis.  The multi-variable 

NOGROW model included 38 cases of subclinical mastitis and 1091 days of no 

subclinical mastitis.  Because each technology’s data was missing at different points as a 

result of human error, tag error, or data cleaning, the amount of data available in each 

model varied.  The only significant variable included in any of the models was AFILACT 

in the NPMIX model.  The odds of a cow with a one percent decrease in AFILACT from 

the previous week’s average having NPMIX subclinical mastitis was 58% greater than a 

cow without that decrease (P = 0.05).   

 The sensitivity, specificity, and accuracy of each model are displayed in Table 

3.4.  The best accuracy achieved in the NPMIX model was 98 %, obtained with 95% 

sensitivity and 5% specificity.  The best accuracy achieved in the GPOS model was 95%, 

obtained with 5% sensitivity and 95% specificity.  The best accuracy achieved in the 

NOGROW model was 84%, obtained with 8% sensitivity and 95% specificity. The 

sensitivities accompanying these accuracies were sufficient, but the specificities were 

low.  The desired level of sensitivity, specificity, and accuracy depend on the needs of 

each individual producer intending to use the data for subclinical mastitis detection.  For 

example, a producer may not want to decrease the chances of examining false positive 
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cows, in which case he or she could decide to lower the sensitivity threshold and increase 

the specificity.   

The area under the curve for each of the multi-variable models were as follows: 

0.42 for NPMIX (Figure 3.1), 0.37 for NOGROW (Figure 3.2), and 0.44 for GRAMPOS 

(Figure 3.3).  The best NOGROW accuracy was not much higher than chance (0.67 

versus 0.50), and thus this model was not ideal for detecting subclinical mastitis caused 

by pathogens that failed to grow on blood agar at the time they were sampled.  The best 

area under the curve evaluated in this study was still only 0.44, implying that the best 

possible combination of variables was likely not achieved in any of the models.  This 

may be a result of 1) the PDMTs used in this study were a few generations behind 

today’s version and improvements may have already been made; 2) the variables 

evaluated not being the best predictors of subclinical mastitis; 3) the PDMTs may have 

been unsuccessful at monitoring or detecting changes within the variables of interest; 4) 

the effects of subclinical mastitis were not consistent or strong enough for the PDMTs to 

work well on detecting the disease; 5) patterns and fluctuations in the data making it 

difficult to discern anything meaningful; or 6) the analysis not being the best fit for the 

data.   

Activity 

Activity was a significant predictor of GRAMPOS (GEAAACT; P < 0.01), 

NPMIX (SENNOACT; P < 0.01), and NOGROW (SENNOACT; P < 0.01) subclinical 

mastitis.  Activity was no longer significant when placed in the NPMIX, GPOS, and 

NOGROW multi-variable models (P = 0.27, P = 0.22, and P = 0.51, respectively).  In the 

multi-variable GRAMPOS model, GEAACT was the only variable to remain significant 
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(P < 0.01).  Activity has been monitored to predict lameness (Van Hertem et al., 2013) 

and estrus (Aungier et al., 2012, Kamphuis et al., 2012, Neves et al., 2012), but to the 

knowledge of the authors, has not previously been examined for subclinical mastitis 

detection.  While activity changes around the time of subclinical mastitis cases are not 

well understood, activity was clearly affected by subclinical mastitis with any of the 

causative pathogen groups studied in this paper.   

Feeding Time 

Feeding time (SENFT) was a significant predictor of NOGROW subclinical 

mastitis (P = 0.09), but was not significant in the multi-variable model (P = 0.29).  

Feeding time variables were not significant in the NPMIX and GPOS subclinical mastitis 

models and were excluded from those multi-variable models.  AlZahal et al. (2011) 

observed that cows challenged with clinical mastitis caused by Escherichia coli 

consumed 23% less feed than control cows.  Feeding time may differ from actual feed 

intake so the results of this study and that of AlZahal et al (2011) should be compared 

cautiously, but both variables are targeted at understanding feeding behavior.  In 

Schirmann et al. (2012), a negative relationship was observed between average daily 

rumination time and feeding time (r = −0.34, P = 0.03), but no relation between daily 

rumination time and dry matter intake (r = 0.11; P = 0.48) was detected. Additionally, 

challenge studies are likely to elicit a stronger response than a naturally-occurring case of 

subclinical mastitis.  Changes in feeding time may also be because of pain and not 

because of the actual disease, which may explain why cows with subclinical mastitis may 

not be as affected. 

Lying Time 
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Lying time (SBLT) was a significant predictor of GRAMPOS subclinical mastitis 

(P = 0.04), but was no longer significant in the multi-variable GRAMPOS model (P = 

0.71).  Lying time (TACLT) and TACLB were significant predictors of NPMIX 

subclinical mastitis (P = 0.06 and P < 0.01, respectively), but were no longer significant 

in the multi-variable NPMIX model (P = 0.71 and P = 0.90 for TACLT and TACLB, 

respectively).  All variables related to lying time, standing time, and number of bouts 

were not significant in the NOGROW subclinical mastitis model and were excluded from 

the multi-variable model. 

Lying down is a high-priority behavior in dairy cows (Munksgaard et al., 2005).  

Lying times in this study averaged 8.78, 9.26, 9.53, and 12.95 h/d from AFILT, TACLT, 

IQLT, and SBLT, respectively.  Smartbow lying time was determined from an ear tag, 

which may explain why the lying time was so much greater than the other lying times.  

However, none of the lying times obtained in this study represent the average lying times 

previously referenced between 10.5 and 11 h/d (Ito et al., 2009, Bewley et al., 2010).  

Cows in this study were housed in outdated freestall facilities and cow comfort was poor, 

which may have altered lying times. 

In an E. coli lipopolysaccharide challenge study, cows spent 1.2 h/d less total time 

lying down on the day of challenge compared with baseline lying time.  However, no 

differences were observed in the number of lying bouts or mean lying bout duration 

between baseline and the days post-challenge (Cyples et al., 2012).  Although lying time, 

standing time, or lying buts were not significant predictors of subclinical mastitis in any 

of the multi-variable models, lying time variables were significant in both the NPMIX 
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and GPOS models, signifying that it may be a valid predictor of some subclinical mastitis 

cases. 

Milking Order 

Milking order was a significant predictor of NOGROW subclinical mastitis (P = 

0.02), but not GPOS or NPMIX.  In the NOGROW multi-variable model, AFIORDER 

was no longer significant (P = 0.53) and therefore was not the best predictor in the model 

after taking other variables into account.  The authors hypothesized that cows may be 

slower to enter the milking parlor or may be less likely to show dominance in the herd 

when they are feeling ill.  Although the pain in animals with subclinical mastitis has not 

been heavily evaluated in the literature, less pain may be associated with subclinical 

mastitis than some other dairy cow diseases and thus the cows may not show deviations 

in herd hierarchy or milking motivation as a result of subclinical mastitis as they 

potentially could for severe clinical mastitis or other diseases that may be present on a 

more systemic level.  However, other variables likely also contribute to milking order, 

like herd hierarchy, entrance of new fresh cows, weather, and milker behavior when 

pushing cows into the parlor, making this variable difficult to completely account for. 

Milk Yield and Components 

Milk yield was not a significant predictor in any of the models evaluated.  This 

result was not surprising because milk yield decreases typically occur after detection of 

clinical mastitis and this drop persists for the rest of the lactation.  Finnish researchers 

observed that milk yield began to decline four weeks before clinical mastitis detection.  

Milk yield of cows with clinical mastitis dropped below that of the healthy cows in the 

first two weeks after diagnosis.  However, the yield decrease of the cows with clinical 
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mastitis was not significantly different from the healthy cows (Rajala-Schultz et al., 

1999b).    French researchers developed a mastitis simulation model using data from 

three herds and determined that overall losses amounted to 8% of total projected 

production.  The authors concluded that one-third of cows did not experience a 

significant milk yield decrease compared to control cows.  However, the other two-thirds 

of study cows experienced a 144 kg milk loss between the week of mastitis occurrence 

and the five weeks following or experienced a 911 kg milk loss extended throughout their 

lactation (Lescourret and Coulon, 1994).  Again, subclinical mastitis may create different 

reactions at different time windows related to milk yield. 

Milk components, including lactose, protein, and fat were seemingly important 

variables for detecting subclinical mastitis.  Lactose, AFIPROT, and AFICOND were 

significant predictors of GRAMPOS subclinical mastitis (P < 0.01, P = 0.03, and P = 

0.03, respectively).  However, AFIPROT and AFICOND were not significant in the 

GRAMPOS multi-variable model (P = 0.66 and P = 0.61, respectively).  Lactose and 

AFIFAT were significant predictors of NOGROW subclinical mastitis (P < 0.01 and P = 

0.07, respectively).  Fat percent was no longer significant in the multi-variable 

NOGROW model (P = 0.46), but AFILACT remained significant in the multi-variable 

model (P = 0.03).  Fat appears to increase during mastitis, but this change mostly occurs 

because the milk yield decrease is greater than the decrease in fat synthesis (Burriel, 

1997) and thus the result that either fat or protein were significant in any individual 

model is slightly surprising.  However, because this result does not imply causation, it is 

possible that cows with different fat and protein levels are more or less likely to have 

subclinical mastitis and not the other way around. 
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Lactose, AFIPROT, and AFICOND were significant predictors of NPMIX 

subclinical mastitis (P < 0.01, P = 0.07, and P = 0.02, respectively).  Lactose remained a 

significant predictor of NPMIX subclinical mastitis in the final multi-variable model (P < 

0.01).  Lactose concentration decreases with mastitis, mainly because of the reduced 

synthesis capacity of damaged tissue (Burriel, 1997).  In intramammary Strep. uberis and 

intravenous endotoxin-induced mastitis challenges, lactose significantly decreased for 3 

milkings (Shuster et al., 1991) and on day 3 (Kester et al., 2014) post-challenge compared 

to controls.  Although lactose concentration decreased with increasing mastitis severity, 

Berning and Shook (1992) explained that lactose was “not useful for mastitis detection”  

because it was least responsive to changes in bacterial status.  Additionally, a variable 

detecting a change after human detection has already occurred is not likely as useful as a 

detection tool before human detection occurs.  However, the results of this study imply 

that lactose may be a useful predictor of subclinical mastitis caused by NPMIX 

pathogens. 

Rumination Time 

Rumination time was a significant predictor of NPMIX (P = 0.06 for HRRUM) 

and NOGROW (P = 0.03 for SBRUM) subclinical mastitis.  In the multi-variable model 

for NPMIX and NOGROW, HRRUM and SBRUM were no longer significant (P = 0.82, 

and P = 0.08, respectively).   

Rumination time decreases with acute stress (Herskin et al., 2004) and disease 

(Welch, 1982, Hansen et al., 2003).  The results of the NOGROW model relate to 

previous studies that detected a change in rumination time around the time of clinical 

mastitis.  Decreased feed intake or increased feeding time may also negatively affect 
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rumination time (Schirmann et al., 2012).  Several researchers have conducted E. coli 

mastitis challenge studies that demonstrated a rumination time decrease post-challenge 

(Siivonen et al., 2011, Fogsgaard et al., 2012, Fitzpatrick et al., 2013).  In an E. coli 

challenge with 20 cows, rumination time decreased on the day of the challenge and 

gradually increased to pre-challenge levels during the following 2 d (Fogsgaard et al., 

2012).   

Reticulorumen Temperature 

Reticulorumen temperature was only a significant predictor of GPOS subclinical 

mastitis (P = 0.07).  However, in the multi-variable model, DVMRT was no longer a 

significant predictor of GPOS subclinical mastitis (P = 0.90).  Fever, or a body 

temperature over a predefined threshold, is an indicator of disease (Leon, 2002, Burfeind 

et al., 2010).  In an E. coli mastitis challenge, reticulorumen temperature peaked between 

40.5 and 41.0°C and remained above 40.0°C for 2 h post-challenge (AlZahal et al., 

2011).  Siivonen et al. (2011) also conducted a mastitis challenge study and discovered 

that rectal temperatures started to increase 4 to 6 h post-infusion and remained above 

39.2°C from 6 to 10 h post-infusion, returning to pre-challenge temperatures within 12 h 

post-infusion.  Nevertheless, to the author’s knowledge, this is the first evaluation of 

subclinical mastitis using temperature and the results of using DVMRT were sub-optimal.  

Subclinical mastitis likely manifests differently than clinical mastitis, particularly in a 

challenge study using E. coli which is known to affect the whole cow instead of just her 

mammary gland. 

Variation 
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Examples of the variation by sampling period and AfiLab variables (AFILACT, 

AFIPROT, AFIFAT, AFICOND) are displayed in Figure 3.4.  The cow in Figure 3.4a 

had one case of NOGROW subclinical mastitis early in the sampling period, but then did 

not register as subclinical mastitis case throughout the rest of the study period based on 

SCC testing.  The cow in Figure 3.4b was chronically affected by Staph. aureus, as 

evidenced by being detected with subclinical mastitis based on SCC testing 9 different 

times throughout the study, some of which overlapped but some of which did not.  The 

cows in Figure 3.4a and 3.4c still showed great variation in all of the variables shown on 

the graph, indicating that cow behavior is affected by many things and varies on a daily 

basis based on these factors, some of which are still not understood by researchers.  

These graphs depict the difficulty in detecting subclinical mastitis, particularly since great 

changes can be considered “normal” in a cow that does not have the disease.  Visually, 

one could not tell the difference between the graphs without knowing which cow was 

represented in each.   

CONCLUSIONS 

Some of the variables evaluated in this paper may be useful in detecting 

subclinical mastitis caused by both NPMIX, GPOS, and NOGROW.  The generalized 

linear models for NPMIX, GPOS, and NOGROW all included AFILACT, lying time 

from one or more of the technologies, and DIM.  Not surprisingly, multiple variables 

together were better able to detect subclinical mastitis compared to using one variable 

alone.  Unfortunately, none of the three models included variables from only one 

technology, which would have implied that a single technology was the best at detecting 

a particular type of subclinical mastitis.  Instead, variables from multiple technologies 
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together were the best at predicting subclinical mastitis.  Therefore, technology 

manufacturers should continue to seek ways to monitor multiple variables at once and to 

improve upon the variables they already monitor.  However, the best area under the curve 

evaluated in this study was still only 0.44, implying that the best possible combination of 

variables was not achieved.  Overall, using PDMT to predict subclinical mastitis is 

promising, but needs future work into evaluating the best variables and the best statistical 

methodology. 
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Table 3.1.  Mean (± SD) somatic cell count, leukocyte count, and lactate dehydrogenase levels in cows with subclinical mastitis caused 

by NPMIX, GPOS, and NOGROW pathogens.1, 2, 3, 4 

Variable Subclinical mastitis type 

NPMIX  GPOS NOGROW 

Composite SCC, 1000 cells/mL 1044.68 ±1176.23  

(n = 38) 

787.81 ±1108.75 

(n = 57) 

887.18 ±1217.83  

(n = 86) 

Individual quarter SCC, 1000 cells/mL 3820.61 ± 3934.41 

(n = 38) 

2907.20 ± 2900.88 

(n = 56) 

3938.95 ± 4752.92 

(n = 87) 

Neutrophil count, 1000 cells/mL 2134.64 ± 2183.56 

(n = 36) 

1382.41 ± 1511.56 

(n = 54) 

1405.45 ± 1261.39 

(n = 78) 

Lymphocyte count, 1000 cells/mL 631.67 ± 579.89 

(n = 36) 

440.06 ± 415.97 

(n = 54) 

473.40 ± 435.50 

(n = 78) 

Macrophage count, 1000 cells/mL 293.33 ± 259.03 

(n = 36) 

244.69 ± 284.78 

(n = 54) 

291.19 ± 269.14 

(n = 78) 

Total leukocyte count, 1000 cells/mL 3057.86 ± 2870.74 

(n = 36) 

2041.56 ± 2097.28 

(n = 54) 

2133.50 ± 1710.90 

(n = 78) 
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LDH, U/L 575 ± 263 

(n = 4) 

400 ± 216 

(n = 7) 

573 ± 297 

(n = 11) 

1Gram positive and Gram negative mixed cultures (NPMIX), Gram positive cultures (GPOS), and no growth or contaminant cultures 

(NOGROW).  The NPMIX and GPOS groups were only required to have one quarter with a Gram negative pathogen or a Gram positive 

pathogen, respectively, and the other quarter(s) could have been no growths or contaminants. 

2Lactate dehydrogenase (LDH) was determined with UdderCheck (Portacheck, Moorestown, NJ). 

3Neutrophil, lymphocyte, macrophage, and total leukocyte count was determined by Q-Scout (Advanced Animal Diagnostics, 

Morrisville, NC) system.  

4Milk samples were taken from individual quarters of each cow with subclinical mastitis (composite milk sample > 200,000 cells/mL) 

one milking after subclinical mastitis was detected and then averaged between quarters to have one value per cow per sample period.   
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Table 3.2. Mean ± SD percent change in behavioral, physiological, and production indicators monitored using precision dairy monitoring 

technologies the day before somatic cell count evaluation compared to a backward moving 5-d baseline for each cow.1,2,3 

Subclinical mastitis type 

Technology Variable GRAMPOS NPMIX NOGROW No subclinical mastitis 

Afi Milk yield, % change -0.97 ± 10.94 1.44 ± 9.75 -1.28 ± 9.46 -0.38 ± 7.72 

Milk lactose, % change -0.60 ± 4.43 -0.57 ± 1.96 -0.47 ± 3.18 0.07 ±1.87 

Milk protein, % change 0.72 ± 4.41 0.20 ± 2.98 -0.01 ± 3.01 0.01 ± 2.63 

Milk fat, % change -0.05 ± 5.61 -0.07 ± 6.92 1.05 ± 8.14 -0.04 ± 5.52 

Milking order, % change 1.21 ± 21.97 5.31 ± 22.75 4.00 ± 23.62 -0.22 ± 21.55 

Milk conductivity, % change 0.73 ± 4.92 1.22 ± 3.86 0.24 ± 3.73 -0.01 ± 3.34 

Steps, % change 0.45 ± 14.40 0.22 ± 18.18 0.30 ± 14.72 1.30 ± 13.60 

Lying time, % change -1.72 ± 16.32 1.43 ± 20.49 -1.56 ± 18.70 -0.84 ± 16.27 

n, cow days 114 52 116 2537 

IceQube Lying bouts, % change -3.39 ± 25.22 1.56 ± 19.02 -1.08 ± 22.82 0.03 ± 21.78 

Lying bout duration, % change -2.93 ± 16.48 2.04 ± 15.19 -0.08 ± 15.65 -1.13 ± 14.04 

Standing time, % change 2.19 ± 10.29 -1.20 ± 10.38 0.35 ± 9.31 0.84 ± 8.98 
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Lying time, % change -2.99 ± 16.47 2.02 ± 15.59 -0.37 ± 18.19 -1.14 ± 14.02 

Total motion, % change 3.81 ± 21.47 3.25 ± 18.54 -0.09 ± 15.63 2.23 ± 18.47 

n, cow days 132 61 126 2790 

GEA Activity, % change 6.99 ± 22.09 3.27 ± 16.92 -0.29 ± 15.95 1.64 ± 16.31 

n, cow days 137 63 134 3269 

DVM Reticulorumen temperature, % change 0.11 ± 0.38 0.02 ± 0.43 0.03 ± 0.50 0.03 ± 0.50 

n, cow days 95 40 90 1746 

SCR Rumination time, % change 10.35 ± 20.93 -4.05 ± 8.62 -2.68 ± 9.82 0.41 ± 12.31 

Activity, % change -5.21 ± 27.95 2.18 ± 11.27 -0.13 ± 11.57 -0.19 ± 12.31 

n, cow days 9 13 22 987 

Sensoor No activity, % change 0.03 ± 14.78 4.82 ± 15.91 3.20 ± 15.72 -0.84 ± 13.48 

Rumination time, % change -1.34 ± 9.73 -1.67 ± 8.82 -1.33 ± 10.51 0.25 ± 9.53 

Eating time, % change -0.56 ± 19.72 -1.54 ± 18.60 -2.69 ± 18.32 0.50 ± 16.50 

Activity, % change 6.82 ± 23.67 0.90 ± 21.97 2.15 ± 24.14 1.73 ± 20.79 

n, cow days 122 47 98 2313 

Smartbow Lying time, % change 1.74 ± 10.50 2.42 ± 10.23 2.04 ± 9.67 -0.16 ± 9.24 
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Standing time, % change 1.67 ± 9.87 -2.24 ± 10.69 -1.61 ± 10.08 0.10 ± 9.22 

Inactive time, % change -4.14 ± 18.55 4.74 ± 28.92 2.19 ± 21.17 -1.10 ± 19.35 

High active time, % change 7.59 ± 34.49 5.96 ± 46.07 1.43 ± 29.67 -2.49 ± 29.66 

Hours doing nothing, % change -1.11 ± 6.58 0.30 ± 6.78 1.38 ± 7.32 -0.58 ± 6.31 

Rumination time, % change 1.94 ± 10.24 -0.38 ± 10.24 -2.28 ± 11.91 0.98 ± 9.86 

n, cow days 122 47 98 2313 

Track-a-Cow Lying time, % change -1.13 ± 19.03 8.72 ± 21.26 1.43 ± 20.73 0.97 ± 22.62 

Feeding time, % change -6.83 ± 32.52 -5.95 ± 27.68 -9.14 ± 31.50 -2.08 ± 27.59 

Feeding visits, % change -0.05 ± 31.53 8.92 ± 29.86 -3.06 ± 30.73 -0.04 ± 26.17 

n, cow days 126 52 110 2507 



1Gram positive and Gram negative mixed cultures (NPMIX), Gram positive cultures 

(GPOS), and no growth or contaminant cultures (NOGROW).  The NPMIX and GPOS 

groups were only required to have one quarter with a Gram negative pathogen or a Gram 

positive pathogen, respectively, and the other quarter(s) could have been no growths or 

contaminants. 

2Each cow in the herd was equipped with the following PDMT: AfiAct Pedometer Plus 

(afimilk, Kibbutz Afikim, Israel), which measured number of steps (AFISTEP), lying 

time (AFILT) and rest bouts (AFILB); DVM Bolus (DVM Systems, LLC, Greeley, CO), 

which measured reticulorumen temperature (DVMRT); CowScout (Gea Farm 

Technologies GmbH, Bönen, Germany), which measured leg activity (GEAACT); HR 

Tag (SCR Engineers Ltd, Netanya, Israel), which measured rumination time (HRRUM) 

and neck activity (HRACT); IceQube (IceRobotics Ltd, Edinburgh, Scotland), which 

measured lying time (IQLT), standing time (IQST), lying bouts (IQLB), bout duration 

(IQBD), and total motion (IQMOT); SmartBow (MKW electronics GmbH, Jutogasse, 

Austria), which measured lying time (SBLT), standing time (SBST), inactive time 

(SBINACT), rumination time (SBRUM), high activity (SBHACT), and no activity 

(SBNOACT); CowManager SensoOr (Agis Automatisering, Harmelen, Netherlands), 

which measured head activity (SENSACT), no activity (SENSNOACT), feeding time 

(SENSFT), rumination time (SENSRUM); Track a Cow (ENGS, Hampshire, UK), which 

measured time at the feedbunk (TACTFB), number of feed bunk visits (TACFV), lying 

time (TACLT), number of steps (TACSTEPS).  The parlor was equipped with AfiLab 

(afimilk, S.A.E. AFIKIM, Kibbutz Afikim, Israel), which measured milk yield 
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(AFIYIELD), fat (AFIFAT), protein (AFIPROT), lactose (AFILACT), conductivity 

(AFICOND), and milking order (AFIORDER).   

3A 1 d daily lagged variable was created for each variable to account for the timing of 

data availability to producers.  Baseline data for each cow each day was created by 

calculating a 5d rolling mean from day -2 to day -6 before each subclinical mastitis event.  

The percent change was calculated by taking the difference between the daily lagged 

variable and the baseline data divided by the baseline data multiplied by 100.   
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Table 3.3. Odds ratios of cows having subclinical mastitis based on precision dairy 

monitoring technology variables for factors associated with the incidence of subclinical 

mastitis compared to cows without subclinical mastitis.1,2,3 

Subclinical 

mastitis 

type 

Variable Odds ratio 95% Confidence interval P-value 

NPMIX AFILACT, % 1.04 1.34 1.50 < 0.01 

GPOS GEAACT, % 1.03 1.38 1.49 < 0.01 

NOGROW AFILACT, % 1.02 1.32 1.41 < 0.01 

PG 0.03 

1Gram positive and Gram negative mixed cultures (NPMIX), Gram positive cultures 

(GPOS), and no growth or contaminant cultures (NOGROW).  The NPMIX and GPOS 

groups were only required to have one quarter with a Gram negative pathogen or a Gram 

positive pathogen, respectively, and the other quarter(s) could have been no growths or 

contaminants. 

2Each cow in the herd was equipped with the following PDMT: AfiAct Pedometer Plus 

(afimilk, Kibbutz Afikim, Israel), which measured number of steps (AFISTEP), lying 

time (AFILT) and rest bouts (AFILB); DVM Bolus (DVM Systems, LLC, Greeley, CO), 

which measured reticulorumen temperature (DVMRT); CowScout (Gea Farm 

Technologies GmbH, Bönen, Germany), which measured leg activity (GEAACT); HR 

Tag (SCR Engineers Ltd, Netanya, Israel), which measured rumination time (HRRUM) 

and neck activity (HRACT); IceQube (IceRobotics Ltd, Edinburgh, Scotland), which 
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measured lying time (IQLT), standing time (IQST), lying bouts (IQLB), bout duration 

(IQBD), and total motion (IQMOT); SmartBow (MKW electronics GmbH, Jutogasse, 

Austria), which measured lying time (SBLT), standing time (SBST), inactive time 

(SBINACT), rumination time (SBRUM), high activity (SBHACT), and no activity 

(SBNOACT); CowManager SensoOr (Agis Automatisering, Harmelen, Netherlands), 

which measured head activity (SENSACT), no activity (SENSNOACT), feeding time 

(SENSFT), rumination time (SENSRUM); Track a Cow (ENGS, Hampshire, UK), which 

measured time at the feedbunk (TACTFB), number of feed bunk visits (TACFV), lying 

time (TACLT), number of steps (TACSTEPS).  The parlor was equipped with AfiLab 

(afimilk, S.A.E. AFIKIM, Kibbutz Afikim, Israel), which measured milk yield 

(AFIYIELD), fat (AFIFAT), protein (AFIPROT), lactose (AFILACT), conductivity 

(AFICOND), and milking order (AFIORDER).   

3A 1 d daily lagged variable was created for each variable to account for the timing of 

data availability to producers.  Baseline data for each cow each day was created by 

calculating a 5d rolling mean from day -2 to day -6 before each subclinical mastitis event.  

The percent change was calculated by taking the difference between the daily lagged 

variable and the baseline data divided by the baseline data multiplied by 100.   
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Table 3.4. Sensitivity and specificity of rumination time, activity, reticulorumen 
temperature, lying time, and lying bouts on each disease using different alert thresholds 
for disease detection.1 

Type of subclinical 

mastitis 

Probability 

(alert threshold) 

Sensitivity (%) Specificity 

(%) 

Accuracy 

NPMIX 0.00998 95 5 98 

0.01014 80 25 87 

0.01048 5 95 89 

0.01031 31 80 89 

GRAMPOS 0.02703 95 5 60 

0.03037 80 25 64 

0.04588 5 95 95 

0.03687 30 80 82 

NOGROW 0.01433 95 13 52 

0.01527 80 40 56 

0.03215 8 95 84 

0.02877 30 80 68 

1Gram positive and Gram negative mixed cultures (NPMIX), Gram positive cultures 

(GPOS), and no growth or contaminant cultures (NOGROW).  The NPMIX and GPOS 

groups were only required to have one quarter with a Gram negative pathogen or a Gram 

positive pathogen, respectively, and the other quarter(s) could have been no growths or 

contaminants. 
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Figure 3.1. ROC curve for the final GENMOD model evaluating the effects of activity, 
DIM, lying time and number of bouts, rumination time, and milk lactose, protein, and 
conductivity percent in cows with subclinical mastitis caused by NPMIX Gram negative 
and Gram positive pathogens versus cows without subclinical mastitis.  
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Figure 3.2. ROC curve for the final GENMOD model evaluating the effects of activity, 

feedig time, rumination time, DIM, parity group, milking order, and milk lactose and fat 

percent in cows with subclinical mastitis with no growth cultured versus cows without 

subclinical mastitis. 

146 



Figure 3.3. ROC curve for the final GENMOD model evaluating the effects of activity, 
lying time, reticulorumen temperature, number of steps, DIM, and milk lactose, protein, 
and conductivity percent in cows with subclinical mastitis caused by Gram positive 
pathogens versus cows without subclinical mastitis. 
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Figure 3.4a. Example cow displaying AfiLab variable percent changes around the time 
of a NOGROW subclinical mastitis case.1,2,3 
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Figure 3.4b. Example cow displaying AfiLab variable percent changes around the time 

of nine GRAMPOS subclinical mastitis cases detected by SCC.1,2,3 
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Figure 3.4c. Example cow displaying AfiLab variable percent changes throughout the 

study period when no subclinical mastitis cases were detected by SCC.1,2,3 

1The red bar represents the sampling period(s) where subclinical mastitis caused by 

pathogens that did not grow on the culture media was detected by SCC testing. 

2Milk yield, lactose, fat, and protein collected from AfiLab (afimilk, Kibbutz Afikim, 

Israel).  

3A 1 d daily lagged variable was created for each variable to account for the timing of 

data availability to producers.  Baseline data for each cow each day was created by 

calculating a 5d rolling mean from day -2 to day -6 before each subclinical mastitis event.  

The percent change was calculated by taking the difference between the daily lagged 

variable and the baseline data divided by the baseline data multiplied by 100.   
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INTRODUCTION 

Mastitis is an inflammatory reaction of udder tissue, usually caused by a bacterial 

infection in the mammary gland (Harmon, 1994, Sordillo et al., 1997, Oliver and 

Murinda, 2012).  This disease alters udder secretory processes, lowers milk yield, and 

changes milk composition (Beck et al., 1992, Harmon, 1994).  Mastitis destroys some to 

all secretory cells and epithelial tissue (Harmon and Heald, 1982, Beck et al., 1992).  

Mastitis may also compromise animal well-being because of the resulting discomfort and 

pain (Medrano-Galarza et al., 2012, Fitzpatrick et al., 2013). 

Dairy industry personnel generally accept that economic losses resulting from 

mastitis are sizable (Beck et al., 1992, Hogeveen et al., 2011).  Dairy cattle economic 

efficiency is closely related to milk yield (Dohoo and Martin, 1984).  Mastitis has a long 

lasting negative effect on milk yield (Rajala-Schultz et al., 1999).  Even after an infection 

is cured, milk yield remains depressed (Bar et al., 2008) and cows may be unable to reach 

their pre-mastitis milk yield (Rajala-Schultz et al., 1999).   

Today’s non-automated clinical mastitis detection approach involves observing 

inflammation through visualization and palpation of the udder or presence of abnormal 

milk.  Producers can also monitor declines in milk yield because they can indicate a 

health problem (Lukas et al., 2009, Leslie and Petersson-Wolfe, 2012).  However, these 

changes are not immediate, making early intervention difficult.  This type of intervention 

may set a cow up to produce more milk and remain healthier throughout her lactation 

(Aalseth, 2005). Early diagnosis of clinical mastitis may reduce production losses, 

enhance recovery prospects (Milner et al., 1996), and improve animal welfare (AlZahal et 

al., 2009), making it very important to the dairy industry (Viguier et al., 2009).  Proactive 
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action may also decrease antibiotic use, which may decrease the chance of antibiotic 

residues in the bulk tank (Oliver and Murinda, 2012).   

Automated dairy cattle behavioral, physiological, and production monitoring 

systems, or precision dairy monitoring technologies (PDMT), may be useful for early 

mastitis detection.  Precision dairy monitoring technologies include sensors that monitor 

activity, body temperature, feeding time, location, milk parameters (yield, electrical 

conductivity, lactose, lactate dehydrogenase, blood, color, and SCC), and rumination 

time.  Each of these parameters has mastitis detection potential because mastitis can 

affect dairy cattle behavior and physiology. 

The primary objective of this study was to evaluate variation in neck and leg 

activity, feeding time, lying time, rumination time, reticulorumen temperature, and milk 

yield, conductivity, lactose, protein, and fat percent around clinical mastitis events.  The 

secondary objective was to evaluate the sensitivity, specificity, and accuracy of alerts 

created from neck and leg activity, feeding time, lying time, rumination time, 

reticulorumen temperature, and milk yield, conductivity, lactose, protein, and fat percent 

in detecting clinical mastitis.   

MATERIALS AND METHODS 

This study was conducted at the University of Kentucky Coldstream Research 

farm from September 9, 2014 to September 8, 2015.  Every cow in the lactating herd 

remained on the study for its entirety or until they left the herd.  General cow 

demographic information was obtained from PCDart (Dairy Records Management 

Systems, Raleigh, NC) records.  During analysis, cows were divided into two parity 

groups (PG), representing primiparous and multiparous cows.   
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Lactating cows were housed in two freestall barns with one barn of 54 dual 

chamber waterbeds (Advanced Comfort technology, Inc., Reedsburg, WI) and the other 

equipped with 54 rubber-filled mattresses, all covered with sawdust.  Cow groups were 

balanced between pens by DIM and parity.  Cows had ad-libitum access to fresh water 

from automatic fill Rubbermaid 150 gallon tanks.  Cows had access to an exercise lot for 

about 1 h/d at 1000, weather permitting.   

Lactating cows were fed the same ration consisting of corn silage, alfalfa hay, 

concentrate mix, whole cottonseed, and alfalfa silage at 0600 and 1330 daily.  Cows were 

milked 2X at 0430 and 1530.  The milking routine included forestripping, pre-dipping, 

drying teats with individual cloth towels, unit attachment, automatic takeoff, and post-

dipping with 1% iodine.  Pre-dip was 0.5% iodine except from February 21, 2015 to 

March 21, 2015 when Oxycide (GEA, Naperville, IL) was used for another research 

study. 

Cows < 21 DIM were removed from this study because this period is complicated 

by many other diseases that may affect the parameters of interest in this study (fresh cow 

disease detection using the same PDMT on the same herd is explained in Tsai et al., 2016 

unpublished).  Any time a cow was removed from the freestall barn for more than 

milking or pasture time (e.g. judging contest held at the farm or hoof trimming), data 

from that day was removed for that cow.  Data from cows were removed the day before, 

of, and after estrus, as detected by farm staff (estrus detection using similar PDMT is 

explained in Mayo (2015)).   

Precision Dairy Technologies 
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A weather station (HOBO U23 Pro v2 External Temperature/Relative Humidity 

Data Logger - U23-002, Onset, Bourne, MA) was located inside each freestall barn that 

measured relative humidity and temperature every 15 minutes.  Temperature humidity 

index (THI) was computed using Eq. 4.1.  

THI = temperature (⁰F) - [0.55 – (0.55 × relative humidity/100)] × [temperature 

(⁰F) – 58.8] (NOAA, 1976) (Eq. 4.1).  

Each cow in the herd was equipped with the following PDMT: AfiAct Pedometer 

Plus (afimilk, Kibbutz Afikim, Israel), which measured number of steps (AFISTEP), 

lying time (AFILT) and rest bouts (AFILB); DVM Bolus (DVM Systems, LLC, 

Greeley, CO), which measured reticulorumen temperature (DVMRT); CowScout (Gea 

Farm Technologies GmbH, Bönen, Germany), which measured leg activity (GEAACT); 

HR Tag (SCR Engineers Ltd, Netanya, Israel), which measured rumination time 

(HRRUM) and neck activity (HRACT); IceQube (IceRobotics Ltd, Edinburgh, 

Scotland), which measured lying time (IQLT), standing time (IQST), lying bouts 

(IQLB), bout duration (IQBD), and total motion (IQMOT); SmartBow (MKW 

electronics GmbH, Jutogasse, Austria), which measured cow location (SBLOC), lying 

time (SBLT), standing time (SBST), inactive time (SBINACT), rumination time 

(SBRUM), high activity (SBHACT), and hours doing nothing (SBNOTH); 

CowManager SensoOr (Agis Automatisering, Harmelen, Netherlands), which measured 

head activity (SENSACT), no activity (SENSNOACT), feeding time (SENSFT), 

rumination time (SENSRUM); Track a Cow (ENGS, Hampshire, UK), which measured 

time at the feedbunk (TACTFB), number of feed bunk visits (TACFV), lying time 

(TACLT), number of steps (TACSTEPS).   
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Activity (AFISTEP, GEAACT, HRACT, SENSACT, SENSNOACT,  

IQMOT, SBINACT, SBHACT, SBNOTH) and lying (AFIRB, IQLT, IQST, IQLB, 

IQBD, TACLT, SBLT, SBST) parameters were measured using 3-axis accelerometers.  

Rumination time was measured using a 3-axis accelerometer (SENSRUM and SBRUM) 

or a microphone and microprocessor (HRRUM).  Feeding time was measured with a 3-

axis accelerometer (SENSFT) or a cable that monitored when cows arrived and left the 

feed bunk (TACTFB and TACFV).   

All devices were assigned to cows and heifers at least 10 d before their predicted 

calving date.  Leg and ear devices were placed on the same leg for each technology for 

every cow (Track a Cow on the right front, Cow Scout on the left front, Pedometer Plus 

on the right rear, and IceQube on the left rear leg; Smartbow on the right and 

CowManager SensoOr on the left ear).  Ear tags were positioned using an ear tagger, 

provided by each technology company to fit the respective device.  Precision dairy 

monitoring technologies were removed from cows if they started to irritate the cow’s skin 

or cause swelling and placed on the opposite leg if possible to prevent data loss.  Once 

the area healed, the PDMT was re-applied to the original position.  DVM boluses were 

inserted into the reticulorumen orally with a bolus gun.   

The parlor was equipped with AfiLab (afimilk, S.A.E. AFIKIM, Kibbutz Afikim, 

Israel), which measured milk yield (AFIYIELD), fat (AFIFAT), protein (AFIPROT), 

lactose (AFILACT), conductivity (AFICOND), and milking order (AFIORDER).  

Cows were sorted into their respective pens using AfiSort (Afimilk, Kibbutz Afikim, 

Israel) after each milking and were manually checked daily to ensure correct sorting.  

During this check, tags were accounted for to ensure no tags were lost in the lot or 
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pasture and these tags were recovered and replaced when loss occurred.  All PDMT were 

monitored and replaced promptly when failure occurred, including dead batteries and 

broken tags.  Data that was not already missing from these time periods were deleted.  All 

computer clocks were set to synchronize with NIST Internet Time Service (NIST, 

Gaithersburg, MD, USA) automatically, and time was manually verified on all computers 

on a weekly basis.   

Mastitis Sampling 

Clinical mastitis (CM) was identified and recorded by the milkers at each milking 

using visual and tactile assessment of milk (flakes, clots, or serous milk) and the udder 

(red, hard, swollen) before unit attachment.  Milk clots were also detected by examining 

the Ambic dairy cow mastitis detector (Coburn Company, Whitewater WI), connected to 

the milk hose, after each cow was milked.   

Individual quarter milk samples were obtained for bacteriological, milk leukocyte 

differential, lactate dehydrogenase (LDH), and SCC evaluation from the affected 

quarter(s) at the first notice of clinical mastitis signs, before the milking unit was 

attached.  If clots were noticed after milking through the Ambic system, individual 

quarter milk samples were obtained at the following milking.  The herd manager was 

notified of cows with CM and they were treated as he deemed necessary.   

A new case of CM was defined as the first recorded case of CM for each quarter 

per cow per lactation or if the case was following > 14 days of normal milking from the 

quarter that was diagnosed as having CM (Schukken et al. 1990; Barkema et al. 1997; 

Hertl et al. 2010).  Cows were only sampled during periods of new CM cases and were 
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not re-sampled in the 14 d window.  Data from cows with CM removed from the study 

for 14 d after clinical detection to ensure no effects of CM were still present.   

For bacteriological culture, approximately 5 mL of milk was collected aseptically 

from the infected quarter(s) of a cow diagnosed with clinical mastitis.  Samples were 

obtained following the procedure described by Hogan et al. (1999).  After forestripping 

and pre-dipping, teat ends were cleaned with cotton balls soaked in 70% ethyl alcohol.  

About 5 mL of milk from each quarter was stripped into an individual sterile 

polypropylene test tube (Falcon®, Corning Life Sciences, Corning, NY).  Samples were 

frozen immediately after milking and delivered to a University of Kentucky laboratory 

for bacteriological analysis.  In the lab, individual quarter milk samples were thawed and 

0.1 mL of each quarter sample were aseptically obtained from each tube and plated onto 

one half of a Difco™ (BD Diagnostic Systems, Detroit, MI) Columbia blood esculin agar 

plate with 5% calf’s blood, which was collected aseptically from calves at the University 

of Kentucky Coldstream Dairy.  Duplicates of each individual quarter milk sample were 

plated to verify results.  Plates were incubated at 37°C and bacterial growth was observed 

48 h later.  Bacteria on the primary culture medium were identified tentatively according 

to colony morphology and hemolytic characteristics.  Isolates considered causative 

mastitis agents were placed in brain-heart-infusion broth and incubated at 37°C for 24 h. 

Ten μL of each broth was then heat-fixed to a microscope slide and Gram stained.  Gram 

staining was conducted by drenching each slide in crystal violet for 1 min, Gram’s iodine 

for 1 min, alcohol for 30 s, and safranin for 30 s.  Between drenches, slides were rinsed 

and blotted with bibulous paper.  Slides were examined under a microscope and isolates 

identified as Gram-negative rods and streptococci were further evaluated by Vitek 2 
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Compact (bioMérieux, Durham, NC).  Isolates identified presumptively as staphylococci 

were subsequently tested for coagulase activity (positive or negative) by the tube 

coagulase test using BBL™ coagulase rabbit plasma with ethylenediaminetetraacetic acid 

(BD Diagnostic Systems, Detroit, MI).  Coagulase-positive staphylococci were 

considered Staphylococcus aureus.  Samples with negative coagulase-status were 

considered coagulase negative staphylococci.  Isolates identified as yeast or coryneform 

were not confirmed beyond microscopic identification. 

Four mL of milk was obtained from each quarter for milk leukocyte differential 

evaluation directly after the bacteriological samples were obtained.  Samples were 

evaluated with the Q-Scout (Advanced Animal Diagnostics, Research Triangle Park, NC) 

system directly after milking, according to manufacturer directions.   

After milk samples were plated for bacteriological analysis, the samples were 

used to evaluate LDH with UdderCheck (Portacheck, Moorestown, NJ).  An UdderCheck 

strip was dipped in each milk sample and results were recorded two minutes later by 

comparing the color of the test strip to the color chart on the vial.  Lactate dehydrogenase 

levels were categorized by the manufacturer as follows: low was < 100 U/L, moderate 

represented 100 to 200 U/L, high represented 200 to 500 U/L, and very high represented 

> 500 U/L. 

Data Editing and Analysis 

Statistical analyses were conducted using SAS Version 9.3 (SAS Institute Inc., 

Cary, NC).  Milk yields < or > 4 standard deviations from the previous week’s average 

milk yield were removed, presumably caused by technology error.  To account for 

decreased reticulorumen temperature caused by water bouts, DVMRT were removed if < 
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38.3ºC and if they were less than 4 standard deviations from the previous week’s average 

temperature.  Milk yield, IQLB, IQBD, IQST, IQMOT, IQLT, HRRUM, HRACT, 

SENNOACT, SENRUM, SENFT, SENACT, SBLT, SBST, SBINACT, SBHACT, 

SBNOTH, SBRUM, TACLT, TACTFB, and TACFV were each summed to create one 

value per variable per cow per day.  Temperature humidity index, AFILACT, AFIPROT, 

AFIFAT, AFICOND, AND AFIORDER, GEAACT, and DVMRT were averaged to 

create one value per variable per cow per day.  Daily data equal to 0 or missing was 

deleted for variables within GEA, IceQube (except lying bouts), Smartbow, Track-a-

Cow, and CowManager SensOor.  Cow days were removed if < 90% of each day’s data 

was recorded, but if a cow had > 90% of each day’s data, that linear interpolation was 

used to include the missing 10% from that day.  In cases where less than 24 hours of data 

were available, the percentage lying for that time period was used to calculate the 

percentage lying within 24 hours.  The UNIVARIATE procedure was used on these 

variables and the 1st and 99th percentile of all variables were removed.  The previous 

day’s data for each PDMT variable was used in all models to account for the timing of 

data availability to producers, who do not receive alerts in real time.   

The results of this study were analyzed as a matched case control.  Each day a 

cow had CM, two cows without CM were chosen as matches.  Cows were matched based 

on date, PG, housing group, DIM, and milk yield.  In order to prevent confounding data 

with AFIMY, which was evaluated as a predictor of CM, the DHIA test day milk yield 

closest to the date of CM occurrence for each case was used for matching purposes. 

A separate model was analyzed for each individual PDMT variable using PROC 

GENMOD with binomial distributions with cow as repeated subject, CM status as the 
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dependent variable, and a strata statement to account for the matched cow groups.  The 

one-variable generalized linear models were used to screen for variables to include in a 

multivariable model and non-significant variables (P ≥ 0.10) were not accounted for in 

any further analysis.  Variables significant in the one-variable models were then included 

in the multivariable model and significance was set at P ≤ 0.05. 

RESULTS AND DISCUSSION 

Over the study period, 233 CM cases were visually detected.  Of these cases, 

31.37% were detected in the left front quarter, 29.41% were detected in the right front 

quarter, 26.80% were detected in the right rear quarter, and 12.42% were detected in the 

left rear quarter.  Most samples (60.78%) were contaminated, 23.53% were no growths, 

5.23% were caused by Staphylococcus aureus, 4.58% were caused by coagulase-negative 

staphylococci, 1.96% were caused by Escherichia coli, 2.62% were caused by yeast and 

Corynebacteria, and 1.31% were caused by Klebsiella spp.  Mean ± SD LDH was 3.89 ± 

2.57 U/L.  The mean ± SD behavioral, physiological, and production indicators 

monitored using precision dairy monitoring technologies on the day before clinical 

mastitis detection are displayed in Table 4.1.   

In the one-variable generalized linear models, AFIMY, AFIPROT, AFIFAT, 

AFICOND, and DVMRT were significant predictors of CM status (P = 0.03, P = 0.06, P 

= 0.01, P < 0.01, and P = 0.05, respectively).  When these variables were included in a 

multivariable generalized linear model, AFIFAT and AFICOND remained significant (P 

< 0.01; Table 4.2).  Reticulorumen temperature, AFIMY, AFIPROT were not significant 

in the multivariable model (P = 0.12, P = 0.20, P = 0.72, respectively).  Cows with a 1% 

decrease in AFIFAT were 0.23 more likely to experience CM.  Cows with a 1 mS/cm 
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greater AFICOND were 0.29 times more likely to experience CM.  Fat is generally 

understood to increase during mastitis, but this change mostly occurs because the milk 

yield decrease is greater than the decrease in fat synthesis (Burriel, 1997) and thus the 

result that either fat or protein were significant is slightly surprising.  However, because 

this result does not imply causation, it is possible that cows with different fat and protein 

levels are more or less likely to have CM and not the other way around. 

Sensitivity and specificity of AFIMY, AFIPROT, AFIFAT, AFICOND, and 

DVMRT on CM detection using different alert thresholds are displayed in Table 4.3.  The 

best accuracy obtained using the probability thresholds evaluated was 67.94%, which 

encompassed 99.13% sensitivity and 8.84% specificity.  Although the sensitivity is 

suitable, it only implies that 99 of 100 cows with changes in the variables were detected.  

In this scenario, only 8 of 100 cows with alerts actually had CM. 

The ROC curve for the multivariable GENMOD model evaluating the effects of 

AFIMY, AFIPROT, AFIFAT, AFICOND, and DVMRT in cows with CM versus cows 

without CM displayed in Figure 4.1.  The area under the curve for using these variables 

to detect CM was only 0.71, implying that this combination is not ideal and adding other 

variables may help increase the effectiveness of this model. 

Although challenge studies have produced significant responses in similar 

variables studied here, naturally occurring mastitis likely manifests differently than LPS-

induced mastitis.  In naturally occurring mastitis studies, different pathogens cause the 

infections and the exact timing of infection is unknown in naturally occurring mastitis 

studies, making them difficult to predict and detect.  To the author’s knowledge, this is 

the first evaluation of naturally-occurring CM using reticulorumen temperature.   
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CONCLUSIONS 

Some of the variables evaluated in this paper may be useful in detecting clinical 

mastitis.  Of the 5 variables significant in the one-variable models, 4 came from AfiLab 

(AFIMY, AFIFAT, AFIPROT, and AFICOND).  Reticulorumen temperature was the 

other significant variable included in the multivariable model.  Although DVMRT and 

milk temperature are not likely the same, this result may imply that milk temperature may 

be something to evaluate alongside the other Afi variables used in this study.  

Technology manufacturers should continue to seek ways to monitor multiple variables at 

once and to improve upon the variables they already monitor.  However, the area under 

the curve for the multivariable model evaluated in this study was only 0.71 and the best 

accuracy obtained was 67.94%, implying that the best possible combination of variables 

was not achieved to detect CM.  Overall, using PDMT to predict clinical mastitis is 

promising, but needs future work into evaluating the best variables and the best statistical 

methodology. 
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Table 4.1. Mean ± SD in behavioral, physiological, and production indicators monitored 

using precision dairy monitoring technologies on the day before clinical mastitis 

detection.1,2,3 

Technology Variable Clinical mastitis No clinical mastitis 

Afi Milk yield, kg/d 31.86 ± 10.77 34.51 ± 10.05 

Milk lactose, % 4.70 ± 0.26 4.72 ± 0.25 

Milk protein, % 3.10 ± 0.24 3.16 ± 0.21 

Milk fat, % 4.08 ± 0.77 3.87 ± 0.60 

Milking order, parlor entry 

number 

56.87 ± 20.96 53.93 ± 25.31 

Milk conductivity, mS/cm 7.80 ± 0.88 7.50 ± 0.65 

Steps/d 3428 ± 914.41 3433.19 ± 887.52 

Lying time, h/d 10.49 ± 2.63 9.96 ± 2.67 

n, cow days 125 213 

IceQube Lying bouts, bouts/d 18.31 ± 6.65 17.58 ± 7.09 

Lying bout duration, min/bout 12.11 ± 2.27 10.54 ± 2.41 

Standing time, h/d 13.46 ± 2.58 13.45 ± 2.43 

Lying time, h/d 12.05 ± 2.02 12.05 ± 2.02 

Total motion, motion units 4071.01 ± 1516.75 3935.45 ± 1508.41 

n (cow days) 145 262 

GEA Activity, activity units 1306.82 ± 436.84 1394.31 ± 430.59 

n, cow days 11 26 

DVM Reticulorumen temperature, °C 39.40 ± 0.92 39.23 ± 0.71 
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n, cow days 84 164 

SCR Rumination time, h/d 7.87 ± 1.40 7.73 ± 1.29 

Activity, activity units 386.79 ± 109.88 391.39 ± 108.78 

n, cow days 106 206 

Sensoor No activity, % 8.46 ± 2.78 481.05 ± 136.30 

Rumination time, h/d 9.49 ± 1.92 581.86 ± 112.29 

Eating time, h/d 3.68 ± 1.92 3.98 ± 1.62 

Activity, activity units 74.86 ± 27.32 71.60 ± 25.90 

n, cow days 65 109 

Smartbow Lying time, h/d 7.65 ± 5.62 6.87 ± 5.82 

Standing time, h/d 11.89 ± 2.27 11.95 ± 2.02 

Inactive time, h/d 5.85 ± 1.86 5.66 ± 1.90 

High active time, h/d 3.09 ± 1.90 3.51 ± 1.85 

Rumination time, h/d 8.85 ± 1.42 8.70 ± 1.34 

n, cow days 94 166 

Track-a-Cow Lying time, h/d 9.83 ± 4.13 9.52 ± 3.39 

Feeding time, h/d 2.98 ± 1.32 3.20 ± 1.19 

Feeding visits, h/d 7.58 ± 2.76 7.69 ± 2.62 

n, cow days 111 173 

1Each cow in the herd was equipped with the following: AfiAct Pedometer Plus (afimilk, 

Kibbutz Afikim, Israel), DVM Bolus (DVM Systems, LLC, Greeley, CO), CowScout 

(Gea Farm Technologies GmbH, Bönen, Germany), HR Tag (SCR Engineers Ltd, 
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Netanya, Israel), IceQube (IceRobotics Ltd, Edinburgh, Scotland), SmartBow (MKW 

electronics GmbH, Jutogasse, Austria), CowManager SensoOr (Agis Automatisering, 

Harmelen, Netherlands), and Track a Cow (ENGS, Hampshire, UK).   

2The previous day’s data was used for each variable to account for the timing of data 

availability to producers.   

3 Each cow in the herd was equipped with the following precision dairy monitoring 

technologies: AfiAct Pedometer Plus (afimilk, Kibbutz Afikim, Israel), which measured 

number of steps, lying time, and rest bouts; DVM Bolus (DVM Systems, LLC, Greeley, 

CO), which measured reticulorumen temperature; CowScout (Gea Farm Technologies 

GmbH, Bönen, Germany), which measured leg activity; HR Tag (SCR Engineers Ltd, 

Netanya, Israel), which measured rumination time  and neck activity; IceQube 

(IceRobotics Ltd, Edinburgh, Scotland), which measured lying time, standing time, lying 

bouts, bout duration, and total motion; SmartBow (MKW electronics GmbH, Jutogasse, 

Austria), which measured cow location, lying time, standing time, inactive time, 

rumination time, and high activity; CowManager SensoOr (Agis Automatisering, 

Harmelen, Netherlands), which measured head activity, no activity, high activity, feeding 

time, rumination time; Track a Cow (ENGS, Hampshire, UK), which measured time at 

the feedbunk, number of feed bunk visits, lying time, number of steps.   
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Table 4.2. Odds ratios of cows having clinical mastitis based on precision dairy 

monitoring technology variables for factors associated with the incidence of sclinical 

mastitis compared to cows without clinical mastitis.1,2,3 

Variable Odds ratio 95% Confidence interval P-value 

DVMTEMP 0.39 0.26 0.53 0.12 

AFIMY 0.50 0.49 0.50 0.20 

AFIPROT 0.58 0.20 0.88 0.72 

AFIFAT 0.23 0.13 0.37 < 0.01 

AFICOND 0.29 0.18 0.44 < 0.01 

1 The previous day’s data was used for each variable to account for the timing of data 

availability to producers.   

2The parlor was equipped with AfiLab (afimilk, S.A.E. AFIKIM, Kibbutz Afikim, Israel), 

which measured milk fat (AFIFAT), protein (AFIPROT), and conductivity (AFICOND). 

3Each cow was equipped with a DVM Bolus (DVM Systems, LLC, Greeley, CO), which 

measured reticulorumen temperature. 
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Table 4.3. Sensitivity and specificity of rumination time, activity, reticulorumen 

temperature, lying time, and lying bouts on clinical mastitis using different alert 

thresholds to detect clinical mastitis.1 

Probability (alert threshold) Sensitivity (%) Specificity (%) Accuracy 

0.60124 99.13 8.84 67.94 

0.38033 76.09 27.73 59.73 

0.23156 79.88 26.52 61.45 

0.16944 72.59 30.39 58.02 
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Figure 4.1.  ROC curve for the multivariable GENMOD model evaluating the effects of 

reticulorumen temperature, milk yield, milk protein percent, milk fat percent, and milk 

conductivity in cows with clinical mastitis versus cows without clinical mastitis. 
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