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ABSTRACT OF DISSERTATION

A PHYSICS-BASED APPROACH TO MODELING WILDLAND FIRE SPREAD
THROUGH POROUS FUEL BEDS

Wildfires are becoming increasingly erratic nowadays at least in part because of cli-
mate change. CFD (computational fluid dynamics)-based models with the potential
of simulating extreme behaviors are gaining increasing attention as a means to pre-
dict such behavior in order to aid firefighting efforts. This dissertation describes a
wildfire model based on the current understanding of wildfire physics. The model
includes physics of turbulence, inhomogeneous porous fuel beds, heat release, igni-
tion, and firebrands. A discrete dynamical system for flow in porous media is derived
and incorporated into the subgrid-scale model for synthetic-velocity large-eddy simu-
lation (LES), and a general porosity-permeability model is derived and implemented
to investigate transport properties of flow through porous fuel beds. Note that these
two developed models can also be applied to other situations for flow through porous
media. Simulations of both grassland and forest fire spread are performed via an
implicit LES code parallelized with OpenMP; the parallel performance of the algo-
rithms are presented and discussed. The current model and numerical scheme produce
reasonably correct wildfire results compared with previous wildfire experiments and
simulations, but using coarser grids, and presenting complicated subgrid-scale behav-
iors. It is concluded that this physics-based wildfire model can be a good learning
tool to examine some of the more complex wildfire behaviors, and may be predictive
in the near future.
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Chapter 1: Introduction

Wildland fire is a general term describing any non-structure fire that occurs in a natu-

ral landscape such as a forest, grassland, or tundra which consumes natural fuels and

spreads based on environmental conditions (e.g., wind, topography). According to the

Fire Executive Council [1], wildland fires are categorized into two distinct types: (1)

wildfires; and (2) prescribed fires. Wildfires can be either unplanned ignitions, such as

fire caused by lightning, volcanoes, unauthorized and accidental human-caused fires

(e.g., arson or campfires), or escaped prescribed fires. A wildfire can also occur in

the wildland-urban interface (WUI) where structures and other human developments

intermingle with undeveloped wildland or vegetation fuels. On the other hand, pre-

scribed fires or controlled burns are, by definition, planned ignitions. A prescribed

burning is designed to allow a naturally occurring fire to play its role in the ecosys-

tem, such as to control insect pests, remove exotic species, and encourage the growth

of fire-dependent species.

Figure 1.1 shows a prescribed fire conducted north of Highway 11, Alberta, Canada,

in June 2009, courtesy of Cameron Strandberg. It was intended to bring about greater

diversity, prevent the spread of mountain pine beetles, and create a fire barrier for

any future wildfires. The massiveness and intensity of a typical forest fire are clearly

seen in this figure. The bright yellow cylindrical part within the fire plume in the

middle-right of the figure is possibly a fire whirl, which is typically about the same

height of the trees around it but can be much larger. Also, it is seen, from the trees

immersed in the intensively burning fires, that the tree leaves or needles are con-

sumed much faster than the tree trunks and branches. These phenomena can also be

observed in an uncontrollable wildfire.

Figure 1.2 shows a human-caused wildfire burning in the Sierra National Forest,
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Figure 1.1: A prescribed burn in Canada. Photograph by Cameron Strandberg,
distributed under a CC-BY 2.0 license.

U. S., in August 2014, photographed by Palley [2]. One can see that the large-scale

fire on the hills spreads from east to west with a shape of the fire plume largely

affected by wind and topography, and that the fire seemingly burns more intensely

and spreads faster when climbing up the hills due to the updraft buoyancy.

Figure 1.2: A wildfire burns in the Sierra National Forest in the U. S. [2]. Used with
permission.
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Non-prescribed wildfires also contribute to the balance of ecosystems, but essen-

tially all are suppressed for safety reasons in accord with the long-standing U. S. fire

policy [1]. Clearly, wildfires are two-edged swords that promote various vegetation

species and ecosystems, but also threaten human lives and property yearly around

the world, especially those in the WUI where more and more people now often choose

to live, according to Stein et al. [3]. For instance, Guha-Sapir et al. [4] provided the

statistics that in 2011, wildfires, along with flood and extreme temperatures, caused

over 55,800 deaths in Russia. Extreme fire behaviors such as fire whirls, as studied

by Emori and Saito [5] and others, pose a considerable safety hazard to firefighters

through increased fire intensity, spot fire frequency, and erratic spread rate. In 2013,

the Yarnell Hill fire in Arizona, U. S., killed 19 elite firefighters due to unpredicted

spread rate and direction. Statista [6] presents several severe fire events with a num-

ber of fatalities during the past hundred years, as shown in Table 1.1. These events

took place in different countries, in different months, and on various landscapes, but

they usually occur under rather dry and hot weather conditions in summer or fall.

Also, forest fires have higher possibility to be disastrous in most of the countries

except for Australia, where there are more dry grasslands.

Table 1.1: Historically significant wildland fires. Data extracted from Statista [6].

Date Fire Location
Number of
fatalities

Oct. 1918 forest fire United States 1000

Feb. 1983 scrub/grassland fire Australia 75

May 1987 forest fire China 191

Sept. 1997 forest fire Indonesia 240

Aug. 2007 forest fire Greece 65

Feb. 2009 bush/brush fire Australia 180

While these fires have not resulted in a large number of fatalities (but still a

significant number) compared with other catastrophic tragedies, the area of burned

land and economic impact have been significant. Figure 1.3 shows statistics for acres
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burned and suppression costs from 2011 to 2015. It is seen that both lightning and

human behaviors have caused at least 1 million acres burned every year. Lightning

occupies a relatively large portion of land burned since 2012 and had reached 8

million acres by the end of 2015, when the total acres burned are approximately 10

million—the highest in U. S. history. Correspondingly, firefighting costs have soared.

Figure 1.3: U. S. wildfire statistics. Data extracted from the website of the National
Interagency Fire Center.

As shown by the red line in Fig. 1.3, the federal firefighting costs (suppression only)

have reached more than $2 billion in 2015. In fact, as summarized by Stephens et

al. [7] and Topik [8], the total cost for fire suppression had already exceeded $2 billion

in 2012; federal appropriations for fire suppression and fire operations zoomed from

about $600 million in 1995 to nearly $3 billion in 2014; and it was said in 2015 that

the U. S. Forest Service would spend over 50% of its budget on fire management.

One reason for such increasingly intense, dangerous, and expensive fires in the U.

S. may be its century-long policy to put out all fires, according to Tullis [9]. In

particular, accumulation of dead wood and unburned “ladder fuels” resulting from
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fire extinguishment can turn lower-intensity ground fires into hotter canopy fires that

are more destructive [9]. Furthermore, Stephens [10] investigated the diverse forest

types and conditions in the U. S., and concluded that climate change could have

also contributed to increased wildfire area from 1940 to 2000. Wildfires of a size and

intensity that only a decade ago were rare are now almost an annual occurrence. In

coming decades, with climate warming, forests around the world will likely undergo

major landscape-scale vegetation changes, and a better fire policy is called for to

respond to such diversity [7].

The study of wildland fires covers a broad range of disciplines. As shown in Fig.

1.4, it is mainly divided into three categories: fire ecology, fire management, and fire

behavior. Fire ecology concentrates on the origin of a wildfire and its relationship

to the living and non-living environment that surrounds it. Ecologists or foresters

Figure 1.4: Overview of wildland fire studies

usually focus research on fire dependence and adaptation of plants and animals, fire

history, fire regimes, and fire effects on ecosystems. Fire management, as suggested

by the term, refers to developing tools and/or making policies to effectively and
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efficiently manage fires for the sake of society, economy, and ecosystems. Traditional

approaches to wildland fire studies are mostly developed in the area of fire ecology

and management, which put more emphasis on ecological responses to fire rather

than the physical processes of fire itself. Since the 1950s, literature regarding fire

behavior has been growing in journals of engineering, geophysics, meteorology, etc.

This relatively modern research is more technical in areas, such as combustion, fluid

mechanics, heat transfer, and thermodynamics. A comprehensive review as a bridge

between traditional and specialized studies was provided by Miyanishi [11].

There are three main techniques for the study of fire behavior: experimental,

theoretical/analytical and numerical. Both laboratory and field experiments on fire

spread have been performed in the past several decades. They provide physically re-

liable data for analysis and contribute to the theory of fire spread. For instance, field

experiments such as the International Crown Fire Modeling Experiment (ICFME),

as introduced by Stocks et al. [12], provide valuable data and insights into the char-

acteristics of crown fires and help to develop better forest fire modeling, such as

those investigated by Linn et al. [13]. Scale modeling also plays an important role in

designing experiments and theory development. However, it is always difficult and

expensive to conduct experimental research on fire spread at the mesoscale, which is

usually the size of a real forest fire. Numerical approaches, as adopted in the present

study, can be less costly and can model realistic large-scale fires. However, they are

heavily based on the (as yet, incomplete) knowledge of physics of fire and sometimes

can produce non-physical results. Theoretical approaches are more mathematical and

are closely related to both experimental and numerical results.

This dissertation mainly deals with fire behaviors in the fire spread problem.

Prediction is key to more effective control of fire spread and intensity. Without a

reliable wildfire spread predicting tool, it is difficult, on one hand, to propose safe fire-

fighting strategies, and on the other hand, for disaster planners and fire ecologists to
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decide which fire to let burn and which should be suppressed. Although many research

endeavors, e.g., experiments and modeling, have been devoted to wildfire behavior,

Finney et al. [14] [15] assert that the fundamental theory of wildfire spread is still

not established. Wildfire spread modeling is thus based on the current understanding

of physics. Typically, there are four types of fire spread classified according to the

portion of the forest in which it burns:

• Ground fires: burn organic matter in the soil beneath surface litter and are

sustained by glowing combustion.

• Surface fires: spread with a flaming front and burn fuels located at ground

level.

• Crown fires: burn through the top layer of foliage on a tree—the canopy or

crown. The most intense type of fire, and often the most difficult to contain.

• Spotting fires: spotting ignition by lofted firebrands, observed in many large-

scale fires.

Figure 1.5 is a sketch of a forest fire with nearly all of the types of spread described

above, except ground fires which are out of the scope of the current work. Factors

such as fuel, wind, terrain, and firebrands are depicted in the figure, and they have

largely affected the plume formation and fire spread. It is suggested that a modern

fire spread model should at least include all these physics. Current fire behavior

models used for operational predictions are semi-empirical, based on the well-known

formula developed by Rothermel [16]. They help the U. S. Forest Service and other

agencies predict the course of hundreds of fires each year. The relatively crude ex-

isting simulations have proved to be useful in certain, usually simpler, situations.

However, it is agreed that these models present limited predicting power when facing

blazes that seemingly act erratically under a warmer climate, such as the Esperanza
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Figure 1.5: Sketch of forest fire spread.

fire in 2006 (Coen and Riggan [17]), and the Yarnell Hill fire in 2013. Therefore, more

sophisticated models that can simulate the extreme behavior of fire across entire land-

scapes are on the horizon (Kintisch [18]). For example, the coupled weather/wildfire

model WRF-Fire used by Coen et al. [19], the large-eddy simulation (LES)-based

Wildland-Urban Fire Dynamics Simulator (WFDS) developed at the National Insti-

tute of Standards and Technology (NIST) by McGrattan et al. [20], and the RANS

(Reynolds-averaged Navier–Stokes)-based FIRETEC proposed by Linn et al. [21] have

been gaining increasing attention because of their ability to simulate more realistic

fire behaviors. It is noticed that almost all existing wildfire LES modeling employs

classical eddy-viscosity based subgrid-scale (SGS) models such as Smagorinsky or the

dynamic (Smagorinsky) model.

This dissertation research utilizes one of the structural models of multi-scale meth-

ods (Weinan and Engquist [22])—synthetic-velocity LES—which utilizes explicit spa-

tial filtering for dissipation (such as in implicit LES) and a chaotic map based model

for backscatter, and aims at capturing more details on subgrid-scales. Investigations

of forest fire modeling using this form of LES were initially attempted previously for

both two-dimensional by McDonough et al. [23] and three-dimensional simulations
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by McDonough and Yang [24]. However, neither of these explored details of porous

effects of fuel beds and realistic terrains; heat transfer and re-ignition by firebrands

were also not considered. These issues will be addressed in the present study. In

addition, the run time for many of the more complex models is still far too long to

provide any faster-than-real-time applications, even computed in parallel on today’s

largest supercomputers. However, it is postulated that their more physically-based

nature could make them better learning tools and allow them to be used to examine

some of the more complex wildfire behaviors, ultimately, being predictive in the near

future. Besides, not all field applications require faster-than-real-time output, e.g.,

planning, training, and risk assessment. This justifies the purpose of this dissertation

work. The rest of the dissertation is organized as follows. In Ch. 2, a detailed liter-

ature review of fire spread science and modeling is provided. In Ch. 3, the proposed

wildfire modeling approach is discussed. In Ch. 4, the algorithm and parallelization

of the solver are explained. In Ch. 5, a discrete dynamical system for turbulence mod-

eling is derived and analyzed. In Ch. 6, a theoretical permeability model—another

sub-model—is derived and discussed. In Ch. 7, computational results of wildfires are

given. Finally, summary and conclusion of the overall work is provided in Ch. 8.

Copyright c© Tingting Tang, 2017.
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Chapter 2: Review of Wildfire Spread Studies

As mentioned in Ch. 1, the prediction of fire spread is important for fire management

and developing efficient firefighting strategies. In this chapter, a fairly comprehen-

sive literature review is provided concerning two main research areas: 1) forest fire

physics and fire-related phenomena, and 2) fire spread models. Both of these lead

to improved understanding of wildfire science and development of rigorous physical

wildfire models, which will be predictive if delivering faster-than-real-time (FTRT)

simulations. Considering the large number of physical behaviors interacting with or

affecting wildfires, a complete review of all these physical interactions would be im-

possible and unnecessary; thus, only the most significant ones are presented here. In

Sec. 2.1, representative physical processes concerning fuels, ignition, heat transfer,

turbulence and fire whirls, which exist in all types of wildfires (except ground fires),

are reviewed. In Sec. 2.2, a discussion of the current existing wildfire modeling ap-

proaches is first provided, followed by overviews of RANS and LES modeling that

are employed in current CFD-based wildfire models. Summary and conclusions are

provided in Sec. 2.3.

2.1. Wildfire spread physics

The physical processes of fire spread were described as a series of piloted ignitions by

Fons [25] as early as the 1940s. Any sustained combustion requires that sufficient heat

should be liberated by the chemical reaction and then transferred to the unburned

fuel to cause subsequent ignition. Weber [26] described the physical processes which

are integral to fire spread in three steps:

(1) an ignition source causes release of reactive gases locally, and results in flames
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within and above the fuel bed;

(2) the heat produced is transferred, a part of which reaches unburnt fuel;

(3) the unburnt fuel absorbs energy and releases fresh reactive gases, and the sub-

sequent combustion corresponds to fire spread.

Hence, there are three main physical problems concerned with wildfire spread: fuel,

ignition, and heat transfer. None of these, however, is sufficiently understood in the

context of a forest fire. These three aspects are further explained in Sec. 2.1.1, Sec.

2.1.2, and Sec. 2.1.3, respectively. Moreover, interactions of wildfires with the atmo-

sphere (e.g., turbulent gusting wind, humidity) and topography also play important

roles in fire spread. Clark et al. [27] found that fire creates its own weather. This

also contributes to the discovery by Finney et al. [28] [14] and Adam [29] that forest

fires are inherently dynamic. Wildland fires, particularly when they interact with

the wind, exhibit time-dependent flame behaviors like flickering, pulsing, and vortex

shedding, but the sources and mechanisms of the dynamic nature are not clearly un-

derstood. Dynamic interaction between the flame, the fuel, and the flow field remains

one of the most challenging problems faced by combustion scientists. Thus, turbu-

lence and fire whirls, which are of significance in the process of ignition and heating

of unburned fuels, are discussed in Sec. 2.1.4.

2.1.1 Fuel

A fuel bed is a load of an extensive variety of combustible, organic wildland fuel, each

with its own composition and material properties, in a metastable (usually, the fuels

decompose very slowly) state [26]. For instance, in a temperate deciduous forest, tree

types include oak, beech, maple, elm, chestnut, hickory, basswood, linden, etc. While

in a temperate coniferous forest, mostly fir, pine, and spruce trees exist. Natural fuel

beds can also be homogeneous, such as drying grassland and forest litter. The Texas

Department of Agriculture [30] in its manual for prescribed burns, has provided a
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detailed description of wildland fuels. Fuel can be classified as live or dead and

divided into three broad groups as aerial, surface, or ground fuels. Aerial fuels are

materials located in the upper forest canopy including tree branches, crowns and

high brush. Surface fuels are all materials lying on or immediately above the ground

including needles or leaves, grass, small dead wood, low brush, and reproduction.

Ground fuels are all combustible materials lying beneath the surface including deep

duff, roots, rotten buried logs, and other woody fuels. While far from the only fuel

burning in wildland fires, most studies focus on wood as the fuel even while exploring

other aspects of fire behavior. Wood is comprised of lignin, cellulose, hemicellulose,

and extractives in varying amounts, depending on tree species [29]. Actually, all

fuels, living and dead, contain fiber that is known as cellulose. Fuels also contain

chemicals and minerals that can enhance or retard combustion. Chemical contents

include the presence of volatile substances such as oils, resins, wax, and pitch, which

can contribute to fast ignition, high fire intensities and rapid rates of fire spread.

These may also explain why some live fuels burn more strongly than dead fuels.

A more detailed study of individual fuel components can give us an indication

of potential fire behavior within a fuels complex. For a homogeneous fuel bed with

only one type of fuel, the principal characteristics of fuel components that affect fire

behaviors are [30] [26]:

• Fuel loadings: the oven dry weight of fuels in a given area; they are generally

separated by different sizes of live and dead fuel particles.

• Surface-area-to-volume ratio: the ratio of the surface area of a fuel to its

volume (SAV) using the same unit of measurement. The higher the ratio the

finer the fuel (e.g., grass); the lower the ratio the larger the fuel (e.g., logs).

• Compactness: the spacing between fuel particles; the closeness and physical

arrangement of fuel particles affect both ignition and combustion.
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• Fuel bed depth: average height of surface fuel that is contained in the com-

bustion zone of a spreading fire front.

• Moisture content: the amount of water in a fuel expressed as a percent of

the oven-dry weight of that fuel.

For non-homogeneous fuel beds, fuel characteristics of horizontal continuity and ver-

tical arrangement also need to be considered since they are especially important to

the spread of surface and crown fires.

Thermal characteristics of conductivity and heat capacity comprise the minimum

set of variables needed and are considered sufficient for heat transfer models for fuels.

If any chemical processes are to be modeled, kinetic data are required to determine at

least the heat of reaction, the reaction rate constant and the activation energy [26].

For mathematical models, inputs always include these fuel properties, and within

each fuel model these fuel bed inputs serve for a particular fire behavior or fire effects

model.

2.1.2 Ignition

According to Finney et al. [14], ignition criteria of wildland fuels are determined by

only the crudest approximations; and this limits development of a theoretical basis

for fire spread. Thus, the state of ignition, or sufficient condition for ignition, needs

to be defined. Vermesi et al. [31] summarized the four criteria that have been used

for piloted ignition: the critical energy, critical temperature, critical mass flux, and

time-energy squared—all of which are empirical but based on combustion theories

of different degrees of development. Among these, ignition temperature is the most

commonly used, as was reviewed by Babrauskas [32], where wood is mostly used to

study ignition. The live California chaparral leaves are also studied by Engstrom et

al. [33]. It was found that time to ignition was significantly influenced by shape effects,
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whereas ignition temperature, which was estimated to be 584 K (oak), was more

dependent on chemical composition. Although the ignition temperature assumption

is satisfactory in some situations, it is not consistent with the actual physical process

and thus not considered quite reliable for future fire spread modeling for several

reasons. First, ignition temperature is usually obtained from solid surfaces while

ignition actually occurs in the gas phase. Also, in most of the experiments, e.g.,

Kuznetsov and Filkov [34], different species are heated only by radiant energy, which

is not the case in a real forest fire. The most recent experiment done by Vermesi et

al. [31] uses transient irradiation, which is still not completely realistic. Finney et

al. [14] and Adam [29] suggested not using temperature as an indicator of ignition,

but rather visible flames. A better ignition model would be a coupling of solid and

gas phases. It was found recently that ignition depends on a critical rate of converting

solid mass to combustible gas similar to other substances, such as plastic, and that

ignition depends on both heat flux and wind flow. Lyon and Quintiere [35] provided

the critical mass flux and heat release rate for piloted ignitions as 1 g/m2s and 24

kW/m2, respectively, which are independent of the materials. Thus, an ignition

modeling that accounts for both temperature and heat flux should be considered.

Understanding ignition processes at the particle scale is important for developing

fire spread models [14]. The physical process of ignition is thoroughly discussed

by Torero [36], based on which, Finney et al. [14] described a physically consistent

process whereby ignition of fuel particles occurs after the solids are heated at a rate

high enough to produce a sufficient quantity of pyrolysis gases. These gases, when

mixed with air, can ignite and burn with a heat release rate greater than the heat

loss rate to the surroundings. As a material undergoes degradation prior to ignition

induced by an external source of heat, both solid and gas phases are involved [36].
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Solid phase. Under the action of the intense heat flux coming from the flaming

zone, decomposition of vegetation can be summarized using the three following steps

according to Morvan et al. [37], Torero [36] and Adam [29]:

• Drying: also expressed as evaporation of moisture or water. It is an endother-

mic phase change that can have a significant effect on the temperature distri-

bution in the solid. Phase changes are generally incorporated into the energy

equation as heat sinks where some rate function is created to describe the con-

version from one phase to another. It is evident that any predictive tool for

ignition should attempt to quantify the impact of phase change on ignition.

• Pyrolysis: thermal decomposition of materials in the absence of oxygen, or

when significantly less oxygen is present than is required for complete combus-

tion. Solid transforms into gas phase fuel and generally implies the breakdown

of the molecules into different, typically smaller, molecules. It tends to be an

endothermic process generally controlled by many chemical reactions (some-

times hundreds) which are a strong function of temperature. Most pyrolysis

reaction rates tend to be described by Arrhenius type functions of the tempera-

ture. The local and total mass production per unit area at the surface can thus

be obtained from this rate.

• Charring: results from pyrolysis of charring materials, in which case pyrolysis

leads to the production of gaseous fuel and a residual solid phase char. The

char is mainly a carbonaceous solid that could be further decomposed. The

secondary decomposition can be complete, leading to an inert ash or to a sec-

ondary char that can be further decomposed in one or multiple steps. It is

common to see large voids and cracks in the char region, and a permeability

model is needed to account for this.
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Gas phase. Once the pyrolysis gas is released, the emerging fuel will encounter

the ambient oxidizer and eventually produce a flammable mixture. The sequence of

events leads to the ignition of a gas phase flame. In auto-ignition there is no hot

spot that will serve as an initiation point for the reaction; thus, the mixture must

absorb enough energy to reach ignition. It is clear that auto-ignition is a complex

process that fully involves interactions of the solid and gas phases. The process of

auto-ignition is extremely difficult to describe in a quantitative manner, even under

simple experimental configurations [36]. A mechanism to simplify the process is to

include a pilot flame or a hot spot. Currently, all standard test methods that attempt

to describe the ignitability of solids use some form of a pilot [36]. In the gas phase,

the Semenov theory could be used for the critical temperature (ignition temperature).

2.1.3 Heat transfer

Heat transfer represents the movement of energy between media or within a medium

due to the presence of a temperature gradient. To understand the mechanisms gov-

erning wildland fire spread, a fundamental understanding of heat transfer processes is

required. For wildland fires, all three modes of heat transfer: conduction, convection,

and radiation contribute to the combustion process, but in different ways. Conduc-

tion usually exists in the condensed phase and controls the fuel pyrolysis process in

such a way that the interior of a heating or burning fuel particle acts as a heat sink

and pulls heat away from the surface thus reducing production of pyrolysates and the

potential for continued combustion [29]. However, conduction is generally assumed

to be negligible in the gas phase due to the lack of contact between most discrete

fuel particles. For spreading fires, radiation and convection play more critical roles

in the heating and burning of unburned fuels. Generally, radiation in wildland fire

scenarios describes the process by which the fuel receives energy that sustains the

pyrolysis reaction and the burning flame. Convection supplies the energy required to

16



bring the fuel ahead of the flame front to its ignition point and thus contributes new

fuel to the fire. However, radiation and convection are not always limited to those

exclusive roles.

In the past, most research assumed radiation was the controlling mechanism of

heat transfer in wildland fire spread. For example, Albini [38] [39] suggested that

intense radiation from the flame front contributed to fuel preheating and thus fire

spread, and it was assumed that radiation is the principal mechanism for fire spread

in the crown fire spread model of Butler et al. [40]. Others, however, have questioned

the sufficiency of radiation in heating fuels to ignition [14]. Baines [41] and Weber [26]

examined the previous research results and found that modeled radiation heat trans-

fer cannot reasonably represent fuel particle temperatures in advance of a flame zone.

Baines [41] found that a model that includes convective cooling can produce temper-

atures similar to measured fuel temperatures. Currently, the mechanisms responsible

for ignition, and thus fire spread, have not been explicitly determined at this scale.

Moreover, the balance between (and more importantly the interaction between) the

contributions of radiation and convection in wildland fires is still not well understood.

Furthermore, it was discovered that convection may play a dominant role in a

wildland fire spread. Finney et al. [42] drew this conclusion based on experiments

of fire spread through rods spun with excelsior. It was clearly seen that no py-

rolysates (smoke) occur before bathing the rods in flames, indicating the importance

of convection. Emori and Saito [43] extended the convective-driven and radiative-

driven heat transfer regimes to wildland fire scenarios. They examined fire spreading

through uniform fuel beds of different fuel arrangements on horizontal or upward

slopes. Convection-dominated fires and radiation-dominated fires abide by different

power law relationships between the fires’ mean flame length, and the rate of fire

spread. These power laws differentiated two regimes. Adam [29] continued this work,

further developing the equations describing convection driven spread and illustrating
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four steps towards ignition for this kind of spread: 1) flaming is near; 2) the fire

front is in close proximity and bathes the particle in flames infrequently—this means

that the particle temperature does not immediately and rapidly rise because the time

that elapses between the first and infrequent flame bathing events allows the particle

to cool; 3) when the fire is near, flames bathe the particle regularly, and the time

between these events is shorter and not sufficient to enable the particle to cool—as

a result, the particle temperature increases dramatically, and the fuel particle enters

a pyrolysis stage so that pyrolysates begin to accumulate surrounding the leeward

side of the tines (e.g., branches); 4) the particles’ pyrolysates ignite. In most cases,

ignition occurs when the pyrolysates reach a critical concentration and the fire bathes

the tine location in a flame. This lends credence to the idea that prior to ignition,

convective heat transfer, either from direct flame impingement or natural convec-

tive heating from buoyancy driven circulation, is significant and may play a more

substantial role in the spreading of wildland fires than previously believed.

2.1.4 Turbulence and fire whirls

As implied earlier at the beginning of Sec. 2.1, turbulent transport processes within

the fuel bed are significant, and including effects of turbulence on fire spread can

improve the accuracy of operational models. In their findings, Pagnini and Mas-

sidda [44] concluded that turbulence is of paramount importance in wildland fire

propagation since it randomly transports the hot air mass that can preheat and then

ignite the area ahead of the fire. According to Heilman and Bian [45], atmospheric

boundary layer (ABL) turbulence or wind gustiness can increase the erratic behavior

of fires. In addition, Clements et al. [46] found that wildland fires radically modify the

ABL by inducing strong fire-atmosphere interactions. The ABL is forced by both the

fire-atmosphere coupling and the fire-induced flow close to the fire front, and these

interactions lead to increased turbulence intensity. It was observed that measured

18



turbulence generated by fires was five times greater than turbulence in the ambient

environment [46]. However, spatial (horizontal and vertical) scales affected by turbu-

lence range from 1 to 103 meters, which makes modeling rather difficult. Turbulence,

in its own standing, remains difficult to be studied. The current understanding of

turbulence is briefly explained in the next paragraphs.

Turbulence, as well as the physics of all fluid flows (within the confines of the

continuum hypothesis), is universally believed to be embodied in the Navier–Stokes

(N.–S.) equation introduced by Navier and Stokes in the early to mid 19th century.

A simple form of the N.–S. equations for incompressible flow is presented as:

∇ ·U = 0 , (2.1a)

Ut +∇ ·U 2 = −∇p+ ν∆U , (2.1b)

where U = (U, V,W )T represents a velocity field dependent on three spatial coordi-

nates (x, y, z) and time t; p is the kinematic (divided by constant density) pressure,

and ν is the kinematic viscosity; ∇, ∆, and ∇· are, respectively, the gradient, Laplace

and divergence operators in the particular coordinate system being used. Equations.

(2.1) are nonlinear and difficult to solve. From the standpoint of dynamical systems,

Strodtbeck [47], in his dissertation, states that a turbulent flow is an evolution in

time of the N.–S. equations as a chaotic dynamical system, driven by the conserva-

tive, non-linear interactions of the entire spectrum, and controlled by the dissipative,

linear terms in the energy and momentum equations.

The notable difference between turbulence and other fluid flows is its wide range

of length and time scales, as seen in forest fires. Basically, there are four main

sets of scales associated with a turbulent flow: 1) large scale; 2) integral scale; 3)

Taylor microscale and 4) dissipation scale. A brief description of these length scales

is given here; fuller discussion including derivations can be found in standard works

on turbulence, such as Tennekes and Lumley [48].
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• Large scale L: based on the problem domain geometry.

• Integral scale l: is an O(1) fraction, often taken to be ∼ 0.2 of the large scale.

It is the largest length scale l associated with the coherent turbulent structure

and has maximum turbulence energy. The Reynolds number is Rel = Urmsl/ν,

with Urms as the square root of the turbulence kinetic energy.

• Taylor microscale λ: an intermediate scale, basically corresponding to rela-

tively high wavenumbers within Kolmogorov inertial subrange. Length scale is

estimated by

λ = lRe
−1/2
l . (2.2)

• Kolmogorov (dissipation) scale η: the smallest of turbulence scales. Length

scale is given by

η = lRe
−3/4
l . (2.3)

It is known that turbulence enhances dissipative properties of the flow, but since

turbulence is due to non-linear interactions, its mathematical characteristics are sub-

stantially different from true, linear dissipation. Numerical experiments of three-

dimensional spectrally truncated incompressible Euler turbulence by Bos and Bertoglio

[49] and the direct numerical simulation (DNS) results for incompressible turbulent

flows as early as those presented by Piomelli et al. [50], exhibit substantial inverse

transfer of energy from small to large scales, which is known as “backscatter.” They

showed that inviscid turbulence exhibits a transient inertial subrange with approxi-

mately k−5/3 scaling, thus confirming that the inertial subrange in turbulence is due

to the conservative non-linear terms and is largely independent of dissipation. It is

claimed that in the k−5/3 energy spectrum, the transfer of energy from low-k to high-k

wavenumbers is in balance with the backscatter [47].

Fire whirls are vertically oriented, intensely rotating columns of gas found in or

near fires. Dynamically they are closely related to other swirling atmospheric phe-
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nomena such as dust devils, water spouts, and tornadoes [5]. A fire whirl includes

those whirls caused by the buoyancy of a fire but with no inner core of flame. Fire

whirls range in size from less than 1 m in diameter and velocities less than 10 m/s up

to possibly 3 km in diameter and winds greater than 50 m/s, according to Goens [51].

In the wildland fire context, there are many possible sources of ambient vorticity that

could contribute to fire whirls. Morton [52] discussed that one important source may

be the shear layer that develops when ambient wind flows over the ground surface,

producing horizontally oriented vorticity. The primary vorticity-concentrating mech-

anism in fire whirls appears to be vortex stretching owing to vertically accelerating

flow in the whirl core, according to Snegirev et al. [53]. The vertical acceleration is

due to buoyant forces from hot gases in the core of the fire whirl. This acceleration

causes a reduction in the diameter of a horizontal area enclosed by a chain of fluid

particles (horizontal convergence), thereby increasing non-zero vorticity at any loca-

tion on the horizontal area, Jenkins et al. [54]. This is analogous to a reduction in

the moment of inertia of a rotating solid, causing increased rotation rate to conserve

angular momentum. For complicated phenomena such as fire whirls including, chem-

ical kinetics models other than dissipative ones are needed to capture the interactions

with other physics.

2.2. Wildfire spread modeling

A quite comprehensive review of wildfire spread models before 1990 was provided by

Weber [26], in which the models were described as physical (accounted for different

modes of heat transfer), empirical (made no differentiation between modes of heat

transfer) or statistical (involved no physics at all). Since 1990, the field of spatial data

analysis, such as geographic information systems and remote sensing, has developed

rapidly; therefore, the reviews after 1990 often included simulation models that made

use of this earlier technology. However, nomenclature of model classifications varies.
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Grishin [55] divided models into two classes, deterministic or stochastic-statistical.

Pastor et al. [56] proposed the descriptions theoretical, empirical and semi-empirical,

depending on whether the model was based on pure physics, or of a statistical nature,

or a combination of both. Also, in [56], models are categorized according to ground,

surface, crown and spotting fires; spotting fires are more comprehensively reviewed

by Koo et al. [57], and to be discussed in a subsequent chapter. Perry [58] and

Morvan et al. [59] discuss models according to physical, semi-physical/semi-empirical

or empirical classifications. The most recent comprehensive review is provided by

Sullivan [60] [61] [62], in which a series of models dating from 1990 to 2007 are

divided into three broad categories: physical and quasi-physical models; empirical

and quasi-empirical models; and simulation and mathematical analogue models.

It is seen that all modeling approaches range from purely physical (based on

fundamental understanding of the physics and chemistry involved in a wildland fire)

to purely empirical (based on a phenomenological description or statistical regression

of observed fire behavior), as is shown in the upper light-grey part of Fig. 2.1, using

nomenclature found in [60] [61]. Moreover, mathematical analogue models, simulation

Figure 2.1: Classification of current existing wildfire models.
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models, and CFD-based models also exist. The literature on wildfire modeling after

2007 and to the present is mostly an extensive study of previous existing models

with quite active developing research on these three aspects, as shown in the lower

deep-grey part in Fig. 2.1. These models are connected with each other in one way

or another to provide better wildfire modeling. For instance, all lower dimensional

(1D/2D) fire spread models can feed into simulation models. Also, CFD contributes to

both simulation models and complicated physical models in 3D due to the increasing

power of computation. CFD can inherently consider terrain geometry, heat transfer,

time varying fire strength, fire chemistry and variations in weather phenomena.

Apart from this, Mell et al. [63] provided a brief overview of physical models

and proposed a scheme in which models were defined by the component on which

the model was focused: fuel, atmosphere or fire. As seen in Fig. 2.2, five regions

are defined to categorize current models. Empirically-based models like FARSITE

Figure 2.2: Summary of current existing wildfire models according to relation with
fuel, atmosphere or fire [63]. Used with permission.

and BEHAVE lie in region V. These are not physics-based fire models and require

23



only inputs describing the vegetative fuel, terrain, and wind. Other regions that

reside within the triangle are quasi-physical or physical models. For approaches in

region I, the fire-atmosphere interaction is not modeled. Relevant flame properties,

such as temperature and flame geometry, and therefore the heat flux from the fire,

are fixed; and relevant models are mostly reviewed in [26]. Region II corresponds

to multiphase models computed by CFD methods. Region III represents what are

defined as simulation models in Fig. 2.1, which are based on weather research software

such as NCAR (National Center for Atmosphere Research) and BLUESKY by Clark

et al. [64] [65]. Region IV represents fully three-dimensional simulators such as WFDS

(Fire Dynamic Simulator) [20] and FIRETEC [21], which lies in the purely physical

mode or CFD turbulence models in Fig. 2.1. It is summarized that models from

region II to IV employ CFD methods.

In this section, an introduction to purely empirical, combined empirical and phys-

ical, and purely physical models is first presented in Sec. 2.2.1–2.2.4, respectively.

The nomenclature used is approximately that used by Sullivan [61] [60] and by Mell

et al. [63], since semi-empirical or semi-physical provides no indication as to which

half is empirical or physical. For intermediate models, quasi-empirical and quasi-

physical, or fuel-driven, models are discussed. For physical models, both multiphase

and fire-fuel-atmospheric models are analyzed In Sec. 2.2.5, simulation and mathe-

matical analogue models are briefly reviewed. Only typical models in each category

are introduced; a comprehensive review is provided by Sullivan [61] [60] [62]. Lastly,

since CFD models are used widely in physical models such as RANS-based FIRETEC,

RNG k−ε or LES-based WFDS, and LES-based WRF-Fire, the basics of turbulence

modeling employing RANS methods and LES is discussed in Sec. 2.2.6 and Sec. 2.2.7,

respectively.
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2.2.1 Empirical modeling

Empirical modeling is basically derived from statistical correlations of a given ex-

perimental dataset without any inclusion of physical mechanism that drives the fire

process. Usually, it is an algebraic law defining the rate of fire spread. For example,

the mathematical relationship for the simplest McArthur meter, the Mark 3 grassland

fire danger meter derived by Nobel et al. [66] is:

Ffdi = 2 exp
(
− 23.6 + 5.01 ln Cdc + 0.0281 Ta − 0.226 H1/2

r + 0.663 U
1/2
10

)
, (2.4a)

Vfsr = 0.13 Ffdi , (2.4b)

where, Cdc is degree of curing, Ta = air temperature, Hr = relative humidity, U10 =

wind velocity at 10m height, Vfsr is fire spread rate, and Ffdi is fire danger index.

These empirical equations are used to test simulation software for wildland fire under

simple test conditions. This meter has been replaced by the Mark 5 version which

has more complicated formulas but with the same statistical nature.

The McArthur fire-danger meters for grasslands and forests are widely used in

Australia for fire danger forecasting, as described by McArthur [67] and Nobel et

al. [66]. The use of McArthur meter has been successful in conditions similar to those

under which they were calibrated. It performs very well in predicting similar fires

to the test fires. For fires different from the test conditions or more complicated fire

behaviors, it is less successful and must be used cautiously. Later models developed

by Cheney et al. [68] such as the CSIRO Grass, were based on data from experimental

fires but required a number of logical assumptions to predict fire spread beyond the

range of the data.

2.2.2 Quasi-empirical modeling

These models (often called semi-empirical models) are based on energy conservation

but they usually do not distinguish between the different modes of heat transfer
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(conductive, convective, radiative). One of the famous models is the Rothermel fire

spread rate formula [16], which was developed from a theoretical base supplied by

Williams [69] and Frandsen [70] who applied the conservation of energy principle to

a unit volume of fuel ahead of an advancing fire in a homogeneous porous fuel bed.

The generic form is given by

Vfsr =
Ip(1 + φw + φs)

ρbεhQig

. (2.5)

In Eq. (2.5), Ip is net propagating flux transported across the surface of fire inception;

it is determined empirically as a function of the reaction intensity IR as

Ip = IR(192 + 7.894rsv)
−1 exp

[(
0.792 + 3.760r0.5

sv

)(
βfs + 0.1

)]
,

where rsv = surface area to volume ratio (cm−1) and βfs = ratio of fuel bed density

to solid fuel density. The reaction intensity IR is related to the fuel mass loss rate per

unit area in the fire front and to heat content of the fuel. The ovendry bulk density ρb

represents the amount of fuel per unit volume of the fuel bed raised to ignition ahead

of the advancing fire, and εh is the effective heating number calculated from SAV

(surface to volume ratio). The heat of pre-ignition Qig is the heat required to bring

a unit weight of fuel to ignition and is calculated empirically based on fuel particle

moisture content. Lastly, φw and φs are wind and slope correction factors that are

determined experimentally.

Although it is empirical in nature, the Rothermel model is derived from experi-

ments conducted with a wide range of fuel parameters and external conditions and

has succeeded when applied to many different fuels under diverse meteorological con-

ditions. Also, based on these formulas, well-known software like BehavePlus by An-

drews [71] and FARSITE by Finney [72] have been developed as tactical operational

fire predicting tools. These packages run faster than real time on personal computers,

and can predict simple forest fire spread reasonably well; however, it is difficult to
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predict complicated phenomena such as fire whirls and turbulence from these models

partly because they are only 2D.

2.2.3 Quasi-physical modeling

These are different from quasi-empirical models in that they account for all forms

of heat transfer. Physical modeling is focused on heat transfer within the fuel. For

example, consider the equation:

ρcs
∂T

∂t
= Ddif

∂2T

∂2x
+ Aradf(x,Rf (t))− rsvhconvT . (2.6)

The left-hand side (LHS) represents the rate of the rise in temperature per unit volume

of fuel ahead of the fire front, with ρ the density of the fuel and cs the heat capacity

of the fuel. On the right-hand side (RHS), from left to right are the diffusion term,

the radiation term, and the convection term. This is a one-dimensional equation with

two independent variables, x and t. The function T (x, t) represents the temperature

of the fuel and Rf (t) is the position of the fire front. In Weber [26], the problem of

fire spread is interpreted as wave propagation, and Eq. (2.6) is solved analytically

using the method of variation of parameters. The representative models are those of

Albini [38], Butler et al. [40] and Balbi et al. [73] etc.

Fuel-driven models in Mell et al. [63] are categorized within these quasi-physical

models. Many physics models only account for radiative heating as the driving physics

[38]. The basis of most of these models is that steady flame spread rate is determined

by how long it takes solid fuel ahead of the flame to reach an ignition temperature at

an idealized two-dimensional ignition interface. Such models are useful for exploring

relative contributions of the different modes of heat transfer, and they can achieve

FTRT predictions [73]—but only for conditions appropriate for steady flame spread

where net wind speed and direction, fuel properties, terrain, etc., are all constant.

The combustion process is usually assumed to be known. It contains no chemistry

and relies on the transfer of a prescribed heat release (viz., flame geometry and
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temperature are generally assumed) [63] [60], Sullivan et al. [74]. Relevant flame

properties, such as the temperature and flame geometry, and therefore the heat flux

from the fire, are fixed. Fire-atmosphere interaction is not modeled.

2.2.4 Detailed physical and multiphase modeling

These models attempt to solve (in some approximation) the equations governing

fluid dynamics, combustion, and heat transfer. The inclusion of chemical kinetics

of combustion into the physics models by Grishin [75] was a major advance at that

time according to Weber [26], but the model was only one-dimensional. For massive

fires, Williams [76] provided a set of differential equations for conservation of mass,

momentum, energy and chemical species concentration. Although processes such

as heat conduction and finite-rate chemical kinetics occur in condensed phases in

large fires, the processes occurring in the gas phase are of paramount importance,

and therefore gas dynamics is the most relevant. The corresponding dimensional

differential conservation equations are as follows:

ρt +∇ · (ρU) = 0 , (2.7a)

ρ(Ut +U · ∇U) = −∇p+ ρg +∇ · τ , (2.7b)

ρ
D

Dt

(
h+

U 2

2

)
= pt −∇ · q +∇ · (U · τ ) +U · g +

N∑
i=1

YiVi · g , (2.7c)

D(ρYi)

Dt

= wi −∇ · (ρYiVi) , i = 1, · · · , N (2.7d)

where U = (U, V,W )T is velocity vector; ρ is fluid (gas mixture) density; h is enthalpy

per unit mass for the gas mixture; Yi is mass fraction of chemical species i in the gas;

Vi is diffusion velocity of species i; wi is mass rate of production of species i by

chemical reactions; D/Dt is the substantial derivative. The stress tensor τ and heat

transfer qT are expressed as

τ = µ(∇U + (∇U)T − 2

3
(∇ ·U)δi,j) + τT , (2.8a)
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q = λ∇T + ρ

N∑
i=1

hiYiVi + qT + qR , (2.8b)

where τT and qT are due to turbulent effects; qR is due to radiation, which is cal-

culated using a transport equation. It is almost impossible to solve such partial

differential equations (PDEs) without employing approximations.

Scaling laws have contributed to an improved understanding of physics of wildland

fire. Williams [76] identified twenty-nine dimensionless groups required to simulate

large fires based on normalization of the governing equations. A subset of seven

was designated as critical for even partial simulation: (1) buoyancy, (2) convection

(Reynolds number), (3) two radiation groups, (4) gas-phase heat release, (5) fuel

gasification energy, and (6) fuel burning rate group. According to experiments [28],

buoyancy is very important in modeling forest fire behavior. Quintierre [77] provided

a variety of examples of how scaling laws had been used to model various aspects of

fires including simple fire plumes, burning (pyrolysis) rate and flame spread. Scaling

laws of crib and pool fires, and fire whirls were investigated by Emori and Saito [43],

and Soma and Saito [78] in the past decade via the rules of modeling provided by

Spalding [79]. Recent research gave a scaling law between Froude number Fr and

Strouhal number St to account for the dynamic flame behavior [29].

Among the wide variety of physical models reviewed by Sullivan [60], only IUSTI

(Larini et al. [80], Porterie et al. [81]), FIRESTAR (Morvan and Dupuy [82]), FIRETEC

and WFDS are discussed here, as listed in Table 2.1. This is justified by the fact that

these have been applied to large-scale landscape-type domains; moreover, they remain

the main models to which relatively active research is still devoted.

FIRESTAR and IUSTI, both of which commenced as 2-D formulations at the

laboratory scale, have progressed (or are progressing) to full 3-D versions and larger

computational domains. They solve the full multiphase problem (both solid and gas),

but they are far from FTRT deliveries and are constrained to small computational

domains. IUSTI is based on macroscopic conservation equations obtained from local

29



Table 2.1: Fire models. Information extracted from [60].

Model
Discretization

method
Dimensions

Minimum
resolution
(δx, δt)

Turbulence
model

IUSTI Non-uniform FV 2 0.3, 0.025 RNG k−ε
FIRESTAR FV 2(3) 0.025, 1 RNG k−ε
FIRETEC FE 3 2, 0.002 RANS

WFDS FV 3 1.5, – LES

instantaneous forms using an averaging method. The latest work on wildfires using

this model is by Porterie et al. [81] in 2007. IUSTI also provided the framework for

the development of a related model, FIRESTAR, in an attempt to simplify IUSTI, ac-

cording to Morvan and Dupuy [82]. FIRESTAR remains a 2-D model but is presently

being converted to a 3-D form (Meradji et al. [83]).

In FIRESTAR, moisture evaporation and pyrolysis are modeled with simplified

temperature-dependent mass loss rates [82]. Arrhenius kinetics are used for char

oxidation. Gas-phase combustion kinetics are assumed to be infinitely fast relative

to the mixing of reactants, and the eddy dissipation model is used to determine

gas-phase reaction rates. Morvan et al. [84] use FIRESTAR to provide the basis

for the formulation of a complete model for flame propagation through forest fuels.

It particularly describes how the usual equations of continuum mechanics can be

transformed into equations well-suited to a multiphase medium.

FIRETEC and WFDS are relatively unique in that they were originally formulated

for full 3-D simulation of fire spread at the landscape scale. Compared to the mul-

tiphase model, which more directly solves the governing equations on more highly

resolved two-dimensional computational grids, physical models like FIRETEC rely

more on heuristic, physically motivated assumptions, such as a prescribed sub-grid

probability distribution of the temperature in a grid cell and a rule for partitioning

the energy release rate into the gas and solid phases. Many of these assumptions are

driven by the limitations on spatial resolution in FIRETEC. FIRETEC provides a
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set of differential equations which composes a thorough RANS model, but it is very

expensive (in terms of execution time) and thus far from FTRT simulations.

Although LES has been widely used in meteorology and canopy flows, e.g., Pat-

ton [85] and Duman et al. [86], its applications in simulating forest fires are quite

recent endeavors. One of the most well-known LES-based models is the WFDS de-

veloped at NIST. WFDS solves conservation equations based on a low-Mach number

approximation and uses eddy-viscosity (e.g., Smagorinsky [87]) models, including wall

functions, for turbulence modeling; combustion and chemical reactions are calculated

from lumped-species approximations. The model can only simulate small fires with

the run time much longer than the real time. Both WFDS and FIRETEC models

have been assessed to some extent for grassfire and crown fire predictions (see, e.g.,

Mell et al. [88], Hoffman et al. [89]); in particular, 86% of the spread rate values

estimated from both models fell within the 95% prediction interval of the empirical

data, but the available empirical data is quite scarce [89].

2.2.5 Simulation and mathematical analogue modeling

Simulation models are those that implement a fire behavior model (often of low spatial

dimensionality) in a landscape spread application and thus address a different set of

computation-related problems. WRF-Fire is one example (Clark et al. [65], Clark et

al. [64], Coen et al. [19]). It mainly adds a fire model to the original weather research

and forecasting model, which often employs LES methods. Input from the fire model

is heat flux density computed from fuel fraction and ignition time using a proposed

level-set function. The level-set function is based on the spread rate calculation from

the Rothermel semi-empirical model, and thus the ignitions are defined through the

fire spread rate formula. Several cases have yielded quite reasonable results with this

software; see Coen [90], Coen and Riggan [17]. A randomized level-set method is also

proposed by Pagnini and Massidda [44].
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Mathematically analogous models are those that utilize a mathematical precept,

rather than a physical one, for modeling the spread of wildland fire. Mathematically

analogue models do not consider physics, but use mathematical equations to model

fire spread lines. One such model is based on cellular automata (CA), see Achtemeier

[91]. CA is a formal mathematical idealization of physical systems in which space

and time are discretized and physical quantities take on a finite set of values. What

has changed significantly with regard to CA modeling is the access to more detailed

geographic data and, correspondingly, the level of complexity that can be undertaken

computationally. This area is very closely related to the simulation models in that

the key methods can be found in both approaches, such as CA for fire propagation.

The mathematically-aid models might be FTRT, but they are not based on physics

and thus have limitations.

2.2.6 RANS modeling—overview

Statistical descriptions of turbulence are natural for the analysis of experimental data,

as it is relatively simple to compute statistics for large data sets. RANS modeling is

based on the Reynolds decomposition

U(x, t) = U(x) + U ′(x, t) , (2.9)

where U(x, t) is one component of the velocity vector and is well defined in a domain

Ω ∈ Rd, d = 1, 2, 3, for t ∈ [0, tf ]; U
′(x, t) is termed the “fluctuating part” that often

needs to be modeled, and U(x) is the time-averaged velocity given by

U(x) ≡ lim
T→∞

1

T

∫ T

0

U(x, t)dt . (2.10)

The velocity U(x, t) can be expressed as the Fourier series

U(x, t) =
∞∑
k

ak(t)ϕk(x) . (2.11)
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Substituting Eq. (2.11) into Eq. (2.10) yields

U(x) = lim
T→∞

1

T

∫ T

0

∞∑
k

ak(t)ϕk(x)dt =
∞∑
k

akϕk(x) , (2.12)

which leads to

U ′(x, t) =
∞∑
k

(ak(t)− ak)ϕk(x) , (2.13)

from Eq. (2.12) and Eq. (2.9). It is seen from Eq. (2.13) that U ′(x, t) contains all

other (temporal) modes of the Fourier representation except the zeroth mode, and

contains all spatial wavenumbers. This implies that U ′(x, t) is difficult to model

since it represents essentially the entire solution. A RANS model must capture the

effects of fluctuations on every scale from the integral scale down to the dissipation

scale (see Sec. 2.1.4).

As discussed previously, RANS modeling attempts to predict only time-averaged

flow quantities. This is achieved by solving the RANS equations and does not require

resolution of different scales of turbulent flow structures. The conventional RANS

equation for incompressible flow is obtained by substituting Eq. (2.9) into the original

N.–S. equation, Eq. (2.1), and applying the averaging properties of U = U and

U ′ = 0; this gives

∇ ·U = 0 , (2.14a)

U t +∇ ·U 2
= −∇p+ ν∆U −∇ ·U ′2 . (2.14b)

Since a time-averaged, static analysis could not accurately predict ignition or fire

spread, in essentially all modern practical formulations of the RANS equations, the

time-derivative term U t is included, despite the fact that U = U(x) is independent of

time. Probably the most commonly-used justification for retaining the time-derivative

operator in the RANS equations comes from arguments associated with multiple

time scales. The ergodic hypothesis implies “time averaging is equal to ensemble

averaging.” There are several precise statements of this, and the reader is referred to

Frisch [92] for more details.
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The Reynolds stress tensor (RST), U ′2, needs modeling. Thus, there is no instan-

taneous interaction between the fluctuating flow field and chemical kinetics. So it is

clear that no useful details of a chemically reacting turbulent flow can be obtained

from a RANS calculation unless the overall physics is such as to remain very close

to the mean values of all variables at all times, which is rare in reaction chemistry.

Even in this case an extreme amount of difficult modeling is necessary.

In order to model U ′2, the Boussinesq hypothesis is often used as a means to

relate turbulent shear stress to the mean flow strain rate. Note that this is different

from the Boussinesq approximation associated with buoyancy mentioned earlier. The

RST is proportional to the deviatoric stress tensor, leading to the relation:

−U ′V ′ = νT

(
∂U

∂y
+
∂V

∂x

)
, (2.15)

where νT is the eddy viscosity. Note that eddy viscosity is actually a tensor, making

it rather difficult to estimate. To simplify this, Prandtl drew on the kinetic theory of

gases, which had recently been applied with much success to molecular viscosity. By

substituting turbulent eddies for gas molecules and a mixing length for the mean free

path, a scalar eddy viscosity is proposed. An immediate weakness apparent in this

approach is that, unlike molecules and mean free paths, neither eddies nor mixing

lengths are well-defined in a turbulent flow. Wilcox [93] provides a fairly detailed

discussion of the Boussinesq hypothesis, emphasizing its shortcomings, in order to

justify consideration of more sophisticated approximations to the Reynolds stress

tensor.

Other more complex RANS modeling includes the k−ε and k−ω models, which

perform quite well in today’s commercial software. Various extensions of these models

exist such as the renormalizing group (RNG) k−ε by Yahot and Orszag [94], and the

adaptive control k−ω method by Li et al. [95]. The k−ε model includes transport

equations for both turbulent kinetic energy k (1/2(U ′2 + V ′2 + W ′2) (different from

wavenumber though the same symbol is used) and dissipation rate ε. Several closure
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parameters are needed to complete all such models. A set of the simplest equations

is

kt +U · ∇k = P − ε+∇ · [(ν + νT/σk)∇k] , (2.16a)

εt +U · ∇ε = Cε1
ε

k
P − Cε2

ε2

k
+∇ · [(ν + νT/σε)∇ε] . (2.16b)

They are solved together with Eq. (2.14). In Eq. (2.16), P is production and is related

to RST and strain rate. The constants Cε1, Cε2, σk, σε, Cv are given “standard”

values (see, e.g., [93]). For RNG k−ε these constants are derived explicitly in the

RNG procedure. The RNG approach, which is a mathematical technique that can be

used to derive a turbulence model similar to the k−ε, results in a modified form of

the ε equation which attempts to account for the different scales of motion through

changes to the production term.

2.2.7 Large-eddy simulation—overview

LES was first proposed by Smagorinsky [87] in 1963 and Deardorff [96] in 1970.

Unlike the Reynolds decomposition where temporal averaging is employed, the LES

decomposition, as introduced by Deardorff [96], is constructed by applying a local

spatial filter to all appropriate variables, and is written as

U(x, t) = Ũ(x, t) + U∗(x, t) , (2.17)

where U(x, t) ∈ L2(Ω) × C1(0, tf ); U
∗(x, t) is called the small-scale or subgrid-scale

or unresolved part; Ũ is the large-scale or resolved-scale part of the solution expressed

as

Ũ(x, t) =

∫
Ωi

G(x|ξ)U(ξ, t)dξ . (2.18)

In Eq. (2.18), G(x|ξ) represents a filter kernel that is often taken to be a Gaussian.

The filter width is chosen to be a few multiples of h in length, with h being the

discrete step size of the numerical approximation; Ωi is a subdomain of the solution

domain Ω such that the volume of Ωi is approximately h3.
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By using the Fourier representation, the LES decomposition can also be inter-

preted as the Hilbert space decomposition

U(x, t) =
kc∑
|k|>0

ak(t)ϕk(x) +
∞∑

|k|=kc+1

ak(t)ϕk(x) . (2.19)

In Eq. (2.19), kc is the cutoff wavenumber induced by discretization of the governing

equations. This clearly demonstrates that only high-wavenumber parts of the solution

need to be modeled, rather than the whole spectrum, as in a RANS form. LES

requires modeling of part of the inertial subrange and into the beginning of the

dissipation scales. The amount of required modeling is set by the amount of resolution

that can be afforded. The arithmetic for LES is often less than O(Re2) (which can

be derived from Eq. (2.2)), provided the SGS model evaluation is independent of

Re, which is usually the case. On one hand, it is more efficient than DNS (direct

numerical simulation), which directly calculates deep into the Kolmogorov scale that

is usually on the order of one millimeter in fire scenarios and requires arithmetic of

O(Re3) (which can be derived from Eq. (2.3)). On the other hand, it is more accurate

than RANS methods, which were developed as a time-averaged approximation and

essentially models everything and may lose significant features of turbulence.

Substitution of Eq. (2.17) into the N.–S. equation and applying the properties of˜̃
U 6= Ũ and Ũ∗ 6= 0 leads to the classical and well-known LES form

∇ · Ũ = 0 (2.20a)

Ũt +∇ · (ŨŨ) = −∇p̃+ ν∆Ũ −∇ · τSGS , (2.20b)

with

τSGS = ŨU − ŨŨ = Li,j + Ci,j +Ri,j ,

Li,j ≡ ˜̃
UiŨj − ŨiŨj, Ci,j ≡ ˜̃

UiU∗j +
˜̃
UjU∗i , Ri,j ≡ Ũ∗i U

∗
j .

Li,j, Ci,j, Ri,j are Leonard, cross and Reynolds stress, respectively. In particular,

neither Li,j or Ci,j are Galilean invariant, but their sum is; hence, the complete SGS
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stress is Galilean invariant. Usually, models of τSGS have, from the beginning, been

constructed such that τSGS → 0 as h → 0 (or kc → ∞). Thus, it is clear that

Eq. (2.20) converges to the N.–S. equations in this limit for such models, and as

mentioned previously, LES→ DNS. It is worth noting that presence of the term τSGS

is analogous to the artificial dissipation schemes widely employed for shock capturing

in compressible flow simulations.

Subgrid-scale stress τSGS generally needs to be modeled. The traditional models

fall into three general categories: eddy-viscosity models, similarity models, and so-

called mixed models, as summarized by Domaradzki and Saiki [97]. Eddy-viscosity

models use a generic form based on the Boussinesq hypothesis, as extensively applied

in RANS models, and are written as

τSGS = −2νSGSS̃ , (2.21)

where S̃ is the usual large-scale strain-rate tensor; τSGS is the subgrid-scale stress ten-

sor; and νSGS is the eddy viscosity. Among the eddy-viscosity models, the Smagorin-

sky model [87] is the oldest and most universally used one, in which the eddy viscosity

is usually constructed from the filter width, “Smagorinsky” constant and S̃, analo-

gous to the mixing length formulation of RANS methods. The Smagorinsky model

and its various forms perform well for flow far from solid boundaries, and could prop-

erly account for global subgrid-scale dissipation, which results in good predictions of

important turbulent quantities such as mean velocities and root-mean-square (rms)

velocity fluctuations. However, it has the issue that dissipation can only be used

to model energy transfer strictly from large scales to small scales; hence, the phe-

nomenon of “backscatter” (see Sec. 2.1.4) is not captured. The more recent models

such as the dynamical model by Basu and Porte-Agel [98], is derived from the Ger-

mano identity (Germano [99]), and can model backscatter. However, its creation of

negative viscosities results in a mathematically ill-posed problem, and it is allowing

aliasing to supply the backscatter—negative eddy viscosities actually amplify alias-
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ing. It is remarked that the eddy-viscosity models, as used in WFDS (e.g., Thurston

et al. [100]) and other commercial software are most widely used.

Similarity models deal with backscatter in a natural way (see, e.g., Bardina et

al. [101], Liu et al. [102]). These models assume that the unknown subgrid-scale

stress tensor can be approximated by a stress tensor calculated from the resolved

field by employing an additional filtering, with the filter width equal to or larger

than the one used to obtain the originally resolved field. However, there appears a

mismatch in the characteristic length scales for the modeled and the exact SGS fields.

Also, the model of Bardina et al. [101] significantly under-predicts net SGS dissipation

and, consequently, it cannot be used to reliably predict mean and rms quantities in

actual large-eddy simulations. Mixed models (e.g., Piomelli et al. [103]) attempt to

combine eddy viscosity and similarity expressions. The good dissipative features of

eddy viscosity models and the good predictive capabilities of similarity models for

correlations are thought to be complementary. However, because the results do not

dramatically improve, and the dependence of the models on a filter introduces an

additional complication, mixed models have found only limited acceptance.

Beyond the “classical” approaches mentioned above, many different approaches

have been attempted. Fureby and Grinstein [104] proposed an approach termed “im-

plicit” LES (ILES). It simply solves the governing equation with numerical methods

that are strongly dissipative and thus replaces physical dissipation (and SGS dissi-

pation) with numerical dissipation. Usually, the computational grid together with

the low pass characteristics of the discrete differencing operators act as a filter. Stolz

and Adams [105] used an alternative approach to large-eddy simulation based on ap-

proximate deconvolution, where the non-filtered field is approximated by truncated

series expansion of the inverse filter operator. Deconvolution is similar to the scale-

similarity method, but is more stable. The advanced ILES method which combines

scale similarity (the behavior at the lowest wavenumbers of the unresolved part is
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“similar” to that of the highest wavenumbers of the resolved scale) and deconvolu-

tion was also attempted.

Another set of approaches attempts to directly estimate the subgrid-scale vari-

ables, as reviewed in detail by Sagaut [106], and Domaradzki and Adams [107]. These

include the linear-eddy models (LEMs) and one-dimensional turbulence (ODT) mod-

els by Kerstein [108], Echekki et al. [109]. Kerstein’s linear eddy model (LEM) is a

synthetic-velocity model that has been extensively developed. LEM simulates SGS

fluctuations by combining a one-dimensional heat equation with a stochastic mixing

process; thus both dissipation and non-linear interactions are modeled. These models

use dissipation primarily to achieve numerical stability; also, they use some kind of

model to directly simulate SGS fluctuations. The “estimation” models due to Do-

maradzki and Saiki [97], and the chaotic map models of McDonough et al. [110] and

Hylin [111] are of this type and have achieved quite good results.

It is noted that only eddy-viscosity based classical LES models have been im-

plemented in the current LES form of forest fire modeling; it is intriguing to apply

these modern methods for forest fire modeling considering their many advantages in

modeling the interaction of turbulence with other physics such as combustion. Also,

concerning the computational cost and calculation efficiency, multi-scale methods like

synthetic-velocity LES are favored. These methods first remove aliasing using explicit

filters, and then model the backscatter through variables directly. A synthetic-velocity

model is implemented for the present study and will be discussed in Ch. 3.

2.3. Summary and conclusions

This chapter reviews an abundance of literature on both physics and models associ-

ated with wildfire spread, both of which are not yet fully understood. In the physics

section (Sec. 2.1), fuel, ignition, and heat transfer are first introduced since they

are internally connected within a fire spread. Turbulence and fire whirls are then
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discussed to account for the significant effect of turbulence on erratic fire behavior

occurring in recent wildfires. In the modeling section (Sec. 2.2), classifications of

wildfire models that have been presented in recent reviews are discussed first, fol-

lowed by a series of topics on specific details of each class of model with a focus on

the equation(s) used. One can observe the increasing complexity of equations used

(Eq. (2.4)–Eq. (2.7)) from purely empirical to purely physical models. Turbulence ap-

proaches of RANS methods and LES are reviewed at the end of the modeling section

in an overview fashion. In the LES part, traditional LES methods are first presented,

in which filtering the governing equations and reliance on “eddy-viscosity” subgrid-

scale (SGS) models are fundamental. Implicit LES (ILES), which relies on built-in

numerical dissipation to achieve stability, and structural models, which attempt to

reconstruct estimates of SGS quantities in order to return information to the large

scale, are also introduced.

From the standpoint of operational tools, the less costly models such as empirical

(or semi-empirical) models and mathematical analogues have more advantages since

they are able to achieve FTRT speed and produce reasonable results. The physics-

based models are devoted to capturing more erratic behaviors of larger fires. Although

these models are considered slow at the present time, they are quite promising in

the future since they are based on the current understanding of physics, and are

continually taking advantage of increasing computational power. Therefore, physics-

based CFD models with decent parallelizing features deserve many future studies.

Application of turbulence models such as RANS and LES to wildfire spread modeling

should draw more attention since they are considered to be pivotally important for

modeling extreme fire behaviors that occur frequently in the present era and will

likely occur in the future.

Copyright c© Tingting Tang, 2017.
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Chapter 3: The Wildfire Spread Model

It is almost impossible to include all intricate details of a forest, such as the presence

of various plant species along with their complicated combustion chemistry, in any

wildfire spread models with fast execution. However, there are several aspects that

should be considered in order for a physical model to be potentially predictive. First

is the effect of fuel beds on air/combustion gas flow behavior, since the dynamics of

fire growth is strongly influenced by the kinematics of flow through porous vegetation,

according to Meroney [112]. A fuel bed can be regarded as a porous medium with

high porosity in order to account for decreased flow speed and more complicated flow

behavior, as was done for forests in Garzon et al. [113] and by Séro-Guillaume and

Margerit [114], but a general permeability model is preferred. Second is turbulent

gusting wind, which largely contributes to the formation of extreme fire behaviors such

as fire whirls. In the interest of modeling, the interaction of subgrid-scale phenomena

with the turbulent buoyant thermal plume created by the fires should be captured.

Third, heat release rates resulting from combustion need to be estimated reasonably

according to fuel properties, porosity, etc. Fourth, ignition is significantly important

for studying fire spread, but its physical mechanism is not fully understood [14]. It is

expected that moisture content and humidity will have non-negligible effects on the

onset of ignition. Fifth is the phenomenon of fire spotting. The multiple ignitions

beyond the zone of the main fire caused by firebrands are threats to any firefighting

force. Fire spotting is highly dependent on firebrand trajectory, heat transfer and

physical properties (size, shape, number) of firebrands.

Current work employs a forest fire model similar to the one proposed in [24], but

its submodels incorporate more physical and rigorous characteristics. At present,

all five aspects discussed above have been explained in detail and implemented in
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simulations. The rest of this chapter describes models employed for each of these in

this study and is organized as follows. In Sec. 3.1, governing equations employed in

this study are first introduced, and the underlying assumptions are briefly discussed.

Then, detailed descriptions of submodels associated with turbulence, porosity, heat

release rate, ignition and firebrands are presented, respectively, from Sec. 3.2 to Sec.

3.6. Finally, summary and conclusions for this chapter are provided in Sec. 3.7.

3.1. Governing equations and model features

In the current work, the generalized N.–S. equation with Darcy and Forchheimer

terms is employed with regards to flow through porous fuel beds because it is widely

used and found in the literature for modeling flow in porous media, e.g., Nithiarasu

[115], Nield [116], Nield and Bejan [117]. Also, only gas phase equations are utilized

here, similar to the formulas (Eqs. (2.7)) provided by Williams [76]. These equations

are further simplified by the Boussinesq approximation, and the effects of chemical

reactions are incorporated into the source term in the energy equation. Therefore,

the governing equations expressing conservation of mass and balance of momentum

and energy are

∇ · u = 0 , (3.1a)

ρ

φ

(
∂u

∂t
+

1

φ
u · ∇u

)
= −1

φ
∇(pfφ) + µe∆u+ (ρ− ρref )g −D , (3.1b)

(ρcp)f

(
∂T

∂t
+

1

φ
u · ∇T

)
= kf∆T + q

′′′

f . (3.1c)

It is assumed that appropriate boundary and initial conditions are provided so as to

constitute a well-posed problem on some domain Ω ⊆ R3 with (x, t) ∈ Ω × (t0, tf ].

The continuity equation shown in Eq. (3.1a) is identical in form to the one for clear

fluid flow (Eq. (2.1a)), except that the velocity vector u = (u, v, w)T here represents

superficial (seepage) velocity that can be related to the intrinsic (or pore) velocity
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U = (U, V,W )T through the Dupuit–Forchheimer relationship

u = φ U .

The porosity φ is a measure of the void spaces in a porous medium, with values in

[0, 1].

In the momentum equation (Eq. (3.1b)), ρ and pf are fluid density and pressure,

respectively. The Brinkman [118] term µe∆u on the RHS mainly accounts for viscous

effects from the wall [117]. The effective viscosity µe, which is largely dependent on the

geometry of a porous medium, is introduced in place of the viscosity of the fluid. For

an isotropic porous medium, µe/µ = 1/φHtor is obtained from a detailed averaging

process and measurement by Bear and Bachmat [119], where Htor is the tortuosity of

the medium. For a simple situation where the tortuosity is assumed to be one, the

effective viscosity is thus approximated as µ/φ. Moreover, based on the Boussinesq

approximation (Spiegel and Veronis [120], Gray and Giorgini [121]), the buoyancy

force term on the RHS can be expressed in terms of temperature differences as

(ρ− ρref )g = gβeρ(T0 − T ) ,

where ρref is a reference density; βe represents thermal expansion coefficient and T0 is

a reference temperature. The conversion of the density differential to the temperature

differential is affected by using the isobaric approximation, ρ− ρref/ρ ≈ (T0 − T )/T ,

which is not restricted to small temperature or density differences, as illustrated by

Law [122]. The drag D due to porous media is expressed as

D =
µ

K
u+ cFK

− 1
2ρ|u|u . (3.2)

due to porous media. The Darcy term −µu/K models the retardation effect of a

porous medium in low-speed flows, as suggested by Darcy’s law [123], which in its

original form is expressed as ∂p/∂x = −µu/K in 1D. In the above expression, µ

is the dynamic viscosity of the fluid, and K is the permeability, which is usually
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obtained from an empirical equation. A theoretical permeability model that can,

in principle, apply to general situations, has also been developed recently by Tang

and McDonough [124]. Typically, the Darcy equation holds when the pore Reynolds

number (Rep) is small. As Rep increases (no need to be turbulent), however, the

linearity of Darcy’s law breaks down; hence, the quadratic drag as the Forchheimer

term cFK
−1/2ρ|u|u is added, according to Joseph et al. [125]. Here, |u| represents the

velocity magnitude, and cF is a friction factor commonly known as the Ergun [126]

coefficient.

In the thermal energy equation, Eq. (3.1c), the subscript f represents fluid phase;

T is temperature, and cp is specific heat at constant pressure. If mass transfer must

be considered, thermal conductivity kf can be replaced by mass diffusivity. In the

case of isotropic media, it is a scalar; for an anisotropic medium, kf will be a second-

rank tensor. The heat source term q
′′′

represents heat generation or heat release

rate (HRR) from combustion and radiation heat transfer. The estimation of HRR

will be presented in detail in Sec. 3.4. Radiation can be calculated based on the

Stefan–Boltzmann law or simply approximated as one-third of the heat source [35].

As discussed in Sec. 2.1.3, radiation is not considered to be as significant as is con-

vection in massive fire spread; thus a relatively crude model is assumed to suffice for

the radiative effects in the overall wildfire model. This also avoids the considerable

arithmetic required for solving the radiation transport equation, as is done in FDS,

which is a tradeoff for the time of simulation.

Finally, it is recognized that Eqs. (3.1) are controversial in some respects. For

example, some argue that the advective inertial term in the momentum equation

should be omitted since inertial effects are already included in the quadratic drag

term; however, considering that the advective inertial term is related to the modeling

of turbulence, it should remain [116]. Also, Hooman et al. [127], based on a series of

scale analyses, argue that the viscous dissipation terms coming from the drag force
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terms should not be neglected in the energy equation. Nevertheless, these terms are

neglected in Eq. (3.1c) since incompressible flow with low velocities is dealt with

here. In addition, Eqs. (3.1) can also be deduced from the rigorously derived VAT

(volume averaging theory) equations, according to Whitaker [128] and Sbutega [129].

The VAT method takes advantage of length scale disparities to describe pore scale

and representative elementary volume scale effects. Variables are decomposed into

averaged and fluctuation parts to account for the two scales. The derivation proce-

dure resembles RANS (Reynolds-averaged N.–S.) treatments in turbulence modeling,

but it uses different assumptions. This results in an equation with fluctuation and

integral terms that need closures. Although it is possible to model flow in porous

media without employing permeability based on the VAT method (Travkin and Cat-

ton [130]), the accuracy of the model is strongly dependent on the closure length

scale of a drag coefficient, which has a direct correlation with the commonly used

permeability tensor. Also, note that the theoretical techniques employed here for

calculating permeability could possibly be applied to close the VAT method.

3.2. Synthetic-velocity large-eddy simulation

Synthetic-velocity LES can be regarded as a heterogeneous multi-scale method [22]—a

general methodology for the efficient numerical computation of problems with multi-

scales and multiphysics on multigrids (Weinan and Engquist [131]). Different forms of

synthetic-velocity LES were introduced in Ch. 2, Sec. 2.2.7. Among these forms, the

chaotic-map SGS model, first proposed by McDonough et al. [110], and later studied

by Hylin and McDonough [132], is employed in the present study. This SGS model is

different from any eddy-viscosity based methods where the Boussinesq hypothesis is

being used, and it is anticipated to work well, especially when interacting with other

physics. Moreover, it requires minimal arithmetic since only algebraic equations are

used. The chaotic-map SGS model was also applied to turbulence-chemical kinetics
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interactions by McDonough [133], to a swirling buoyant plume by McDonough and

Yang [134], and to a combustion process by Zeng [135]. Such methods differ from

traditional LES in three main aspects (see McDonough [136]): 1) solutions are fil-

tered rather than the equations of motion; 2) SGS physical variables are modeled;

3) subgrid-scale results are directly added to those from the resolved scales based on

the LES decomposition written as

q(x, t) = q̃(x, t) + q∗(x, t) , (3.3)

where q̃ represents filtered variables and q∗ the high-wavenumber parts. There are

numerous advantages arising from such an approach, and each of the three aspects

will be discussed in the subsequent sections.

3.2.1 Explicit filtering

The process of explicit filtering (filtering solutions) allows modeling physical vari-

ables directly, rather than having to model SGS stresses (statistics) that are often

related to filtering equations (or implicit filtering). Since implicit filtering is not suf-

ficient to remove all aliasing effects due to under-resolution, the artificial dissipation

(typically provided by highly-dissipative, eddy-viscosity based turbulence models) is

always needed to damp the spurious oscillations associated with aliasing. On the

other hand, explicit filtering can remove unnecessary high-wavenumber content to

stabilize solution of the N.–S. equations without using SGS stress models. Further-

more, in generalized coordinates, filtering equations is formally difficult because of

commutation errors arising from commuting differentiation and the filtering operator

when it is applied to the differential equations [137]; however, generalized coordinates

have no effect on filtering solutions. Filtering solutions, however, can give rise to ad-

ditional errors, especially in the context of generalized coordinates, and the errors

must be controlled. Filtering solutions also suggests a direct numerical application of

mollification, as done theoretically in modern analytical partial differential equation
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(PDE) theory. Mollification is convolution of the PDE solution with a C∞ function

to smooth a not very regular solution to a point permitting classical analysis. Mollifi-

cation is applied to solutions in conjunction with the solution operator. The mollified

variables are constructed as [136]

uε(x, t) =

∫ ε

−ε
u(ξ, t)δε(x− ξ)dξ , (3.4)

where δε is a normalized C∞ function with compact support in [−ε, ε], and is given

by

δε = Cεe
−1/(ε2−x2) ,

with Cε being a normalization constant. Equation (3.4) corresponds to a filter with

kernel δε; it is similar, but not identical, to the Gaussian filter that is widely used

in LES of turbulence. Based on this, the numerical mollification process that can

be composed with discrete solution operators is constructed to provide additional

dissipation needed to damp aliasing effects.

One such filter is that of Shuman [138] filter, originally given only in 1D, but

which can be extended to 3D as

ǔi,j,k =
ui−1,j,k + ui,j−1,k + ui,j,k−1 + βfui,j,k + ui+1,j,k + ui,j+1,k + ui,j,k+1

6 + βf
, (3.5)

with βf the filter parameter. This shows that Shuman filter is a weighted average

of the nearest-neighbor solution values. It is clear that as βf → ∞, ǔi,j,k = ui,j,k,

indicating no filtering is being done. Expanding, ui−1,j,k, ui,j−1,k, · · · , etc., in Taylor

series, and substituting them into Eq. (3.5) yields

ǔi,j,k = ui,j,k +
h2

6 + βf
(uxx + uyy + uzz)|i,j,k +O(h4) . (3.6)

This shows that the dominant truncation error is diffusive, and the actual amount of

added diffusion is controllable through the filter parameter and the grid spacing h;

the O(h4) term is anti-diffusive, leading to some cancellation of the effects of second

order.
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In addition, the wavenumber response shows that for small values of βf , the

high-wavenumber content of the Fourier representation is almost completely removed;

however, it should not be too small since it would also remove some useful high-

wavenumber information. As βf increases, less of the original Fourier coefficients

are removed by the filter. If the filter parameter is infinitely large, it does not filter

any high-wavenumber parts. Moreover, as noted above, the error caused by filtering

can also be controlled with the parameter βf , and it has been found that this is

adequate to guarantee the robust behavior of this treatment of aliasing. Therefore,

an appropriate value of this parameter that could remove the correct amount of

aliasing, as well as stabilize the algorithm, should be used, and currently, it must

be found from numerical experiments. Another filter that is available in the current

solver is the Padé filter introduced by Liu et al. [139]. The optimized high accuracy

and maximum resolution (HAMR) scheme as an asymptotically stable Padé filter

featuring low dispersion is discussed and used in [139].

Specifically, two explicit filtering processes are required in the current solution

procedure for turbulent flows. The first one is a low-pass filter applied to the solution

before projecting the velocity field to a divergence-free subspace, in order to treat the

cell-Re problem and remove aliasing as discussed above. The second is to high-pass

filter the large-scale solution, for the purpose of approximating SGS variables based on

what is termed “scale similarity” [140] (an assumption that the behavior at the lowest

wavenumber part of the unresolved part is similar to that of the highest wavenumbers

of the resolved scale). It is natural to consider that the cut-off wavenumber for the

second filter should be smaller than the corresponding wavenumber for the first filter.

Both Shuman and Padé filters can be used in the two filtering processes. For the case

of Shuman filter, the filter parameter βf for the second filtering should be smaller than

that of the first filtering, and both filter parameter values need to be found through

trial and error. Padé filters have been used for both low-pass and a high-pass filtering
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for compressible turbulent flow, with different sets of filter coefficients, as done by

Strodtbeck [47], and for incompressible turbulent flows, as done by Liu [141]. In the

present study, only Shuman filters are employed.

3.2.2 Small-scale calculations

As stated previously, the small-scale variables are calculated directly, permitting mod-

eling interactions of flow physics with other phenomena on sub-grid scales. It is es-

sentially impossible to obtain these interactions when employing techniques based on

statistical correlations as in typical LES and RANS methods. Although direct mod-

eling of SGS physical variables is considered very difficult to implement, it should

improve accuracy, and be computationally efficient—if good models are constructed.

In the present study, the construction modified by McDonough [142] from the original

form in [110] is utilized. The small-scale flow variable q∗i (see Eq. (3.3) ) is expressed

as

q∗i = AiMi , i = 1, · · · , Nv , (3.7)

where Nv is the total number of small-scale dependent variables; Ai is the amplitude

of the ith variable. The chaotic map Mi can exhibit bifurcations leading to a strange

attractor, thus producing small-scale turbulent temporal fluctuations; it is scaled

to be in the range of [−1, 1]. After obtaining q∗i at all resolved scale grid points,

this portion of the solution vector should also be projected onto a divergence-free

subspace—as is the case for velocity components computed from essentially any form

of Eqs. (2.1) or Eqs. (3.1) on any scale. The projection procedure is the same as used

on the large scale, as will be discussed in detail in the next chapter. Calculations of

amplitude factor and the fluctuation are presented in the following subsections.

Amplitude factor. Amplitude factor is computed, for each ith dependent variable

on each grid point, based on the generalized Kolmogorov power laws, as described
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by McDonough and Holloway [143]. Firstly, the formula for the amplitude factor,

related to energy Ei(ki), can be expressed as

Ai =

[
kT +N∑
k=kT

Ei(ki)

]1/2

by using information from the high-wavenumber part of the large-scale variables and

structure functions. Here, E(k) = Cs〈ε〉βsk−(βs+1). The coefficient Cs and exponent

βs are calculated from a least-squares minimization of the difference between the

structure functions. Statistical averages are needed to calculate the structure function

of energy. Specifically, the second-order structure functions are expressed as

S2(q∗∗i , r) ' 〈(q∗∗i (x+ r)− q∗∗i (x))2〉, i = 1, · · · , Nv,

where q∗∗i is high-pass filtered dependent variable computed as q̃i− ˜̃qi. The average 〈·〉

is taken over all discrete points of the large-scale finite-difference grid at a distance r

from the current point xi,j,k in a 3-D cube containing 27 grid points with xi,j,k at the

center; thus there are only four possible values of r.

Wavenumber kT is calculated from the Taylor microscale length in each resolved-

scale grid cell as

kT =

[
3∑
i=1

(
1

λi

)2
]1/2

, with λi '
[
ν〈u∗∗i 〉
〈ε〉

]1/2

.

Here, u∗∗ is the high-pass filtered ith velocity component, and ε = 2ν||S∗∗||2 with ν

being the viscosity and ||S∗∗|| being the magnitude of the high-pass filtered velocity

strain rate. N is prescribed, usually as 10. As seen, the calculation of amplitude

factor requires considerable formulas and arithmetic. A possible alternative would be

the use of only amplitudes of high-pass filtered variables since these already represent

the largest energy contribution of the small-scale part.

Temporal fluctuations. The temporally fluctuating part of small-scale velocity

can be modeled using a discrete dynamical system (DDS). The DDS employed here
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is called the “poor man’s Navier–Stokes (PMNS) equation”, and was originally de-

scribed as a simple quadratic map, x(n+1) = 1 − 2x(n), by Frisch [92]. The analysis

was based on comparing terms of a rearrangement of the map with those of the

Navier–Stokes (N.–S.) equations, which indicated a direct connection of such logistic

maps with N.–S. turbulence. McDonough and Huang [144] then derived the PMNS

equations through a Galerkin procedure and obtained the following 2-D system of

coupled logistic maps,

a(n+1) = β1a
(n)(1− a(n))− γ1a

(n)b(n) , (3.8a)

b(n+1) = β2b
(n)(1− b(n))− γ2a

(n)b(n) . (3.8b)

It has been found that this discrete map may produce essentially any temporal be-

havior observed either experimentally or computationally in incompressible N.–S.

flows, as the bifurcation parameters β s and γ s in Eqs. (3.8) are varied. Bible and

McDonough [145] investigated the effects of changing initial conditions on the sys-

tem basins of attraction and observed fractal basins associated with “strange at-

tractors.” A discussion regarding the connection of such DDSs with the physics of

turbulence is presented by McDonough et al. [146], along with results from anisotropic

cases. Polly [147], Polly and McDonough [148] extended the system to 3-D, with a

more complicated structure and more bifurcation parameters, and discovered that

the system behavior is at least slightly different from that of the 2-D system. It has

been shown by McDonough [149] that the 3-D system can lead to scaling for the

turbulence kinetic energy spectrum in accord with Kolmogorov’s K41 theory (see,

e.g., [92]). Moreover, the compressible 3-D poor man’s Navier–Stokes equations have

been studied by Strodtbeck et al. [150], who show that a full range of dynamical

behavior associated with physical turbulence from low subsonic to fully supersonic

Mach numbers is exhibited. Strodtbeck [47] also provides derivation of, and results

for, a “synthetic-velocity” model based on the compressible PMNS equations. Specific

details of PMNS equations in porous media will be discussed in Ch. 5.
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After obtaining the PMNS equations for different flow situations, the set of equa-

tions (e.g., Eqs. (3.8)) is iterated a number of times during each resolved-scale time

step. This number is set by using a small-scale time scale calculated as τ = 1/||S∗∗||.

The results of integrating this DDS across the large-scale time step are associated

with the Mis in Eq. (3.7) as (take 2-D PMNS Eqs. (3.8), as an example)

M1 = a, M2 = b ,

and these components require rescalings, since the restriction of |Mi| ≤ 1 is required

to make the use of amplitude factors Ais reasonable.

3.2.3 The complete solution

Since a poor model (and/or its incorrect implementation) could lead to inaccurate re-

sults (and/or destabilization of numerical methods employed), rigorous mathematical

analyses are important. Therefore, a multi-scale mathematical formalism is required

to produce the complete solution [131]. From the preceding treatment, both q̃(x, t)

and q∗(x, t), separately, have been constructed to be consistent with the correspond-

ing Hilbert subspace quantities. Recall from the LES decomposition in Eq. (3.3),

that the large-scale variable is obtained from solving the unfiltered N.–S. equation on

a relatively coarse grid as

(ũ+ u∗)t + (ũ+ u∗) · ∇(ũ+ u∗) = ∇(p̃+ p∗) + ν(ũ+ u∗) , (3.9a)

∇ · (ũ+ u∗) = 0 , (3.9b)

similar to the ILES method or under-resolved DNS; but q∗(x, t)—here identified with

u∗ is computed separately, as given in the preceding analyses. The same treatment is

also applied to any additional physical quantities, e.g., temperature. It is seen that if a

consistent discretization (time and space) is applied to Eqs. (3.9), then u∗, p∗ → 0 as

dt, h→ 0, which implies that the synthetic-velocity approach satisfies the numerical-

analytical consistency. Nevertheless, consistency does not imply stability, and it is
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often observed that small-scale perturbations arising in multi-scale algorithms lead

to destabilization of the underlying numerical method.

In the current solver, the q s are required to satisfy the same discrete equations

as do the q̃ s. However, the q∗ s are produced with a completely separate algorithm

from that of the q̃ s, leading to the conclusion that the time-derivative information is

needed for the q∗ s. Specifically, the numerical scheme for the large-scale part of the

solution is expressed as

q̃ n+1 = q̃ n + ∆t F̃ (q̃ n) , (3.10)

where F̃ represents the discrete solution operator for the large-scale solution. For the

complete solution operator, synthetic-velocity LES, or other similar heterogeneous

multiscale methods (HMM), takes the form

qn+1 = qn + ∆t F ε(qn) , (3.11)

where F ε is the discrete solution operator for the complete solution. Subtracting Eq.

(3.10) from Eq. (3.11) yields

qn+1 − q̃ n+1 = qn − q̃ n + ∆t
[
F̃ (q n)− F̃ (q̃ n)

]
+ ∆t

[
F ε(qn)− F̃ (q n)

]
. (3.12)

It is suggested [131] that F̃ should be chosen so that it is stable and the difference

F ε − F̃ should be minimized. Recalling Eq. (3.3), the following temporal difference

must hold:

qn+1 − qn = q̃ n+1 − q̃ n + dq∗ (3.13)

in order to obtain consistency for the complete solution operator. Namely, during the

actual numerical procedure, the large-scale part of the solution at the new time step

is calculated as (using trapezoidal integration for Eqs. (3.9))

q̃ n+1 = qn + ∆t F̃ (qn)− dq∗ , (3.14)

where dq∗ is time integration of small-scale parts. Here, F ε is taken to be the

same as the one for the large-scale part F̃ , as was done in [137]. Thus, the last
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term in Eq. (3.12) is zero, and by comparing Eq. (3.12) and Eq. (3.13), dq∗ =

∆t
[
F̃ (q n)− F̃ (q̃ n)

]
is obtained. Moreover, the term ∆t F ε(qn) in Eq. (3.11) equals

∆t F̃ (qn) in Eq. (3.14), and by substituting the RHS of Eq. (3.11) into Eq. (3.14),

the following form is acquired,

qn+1 = q̃ n+1 + dq∗ . (3.15)

Therefore, a consistent time evolution is obtained by employing Eq. (3.15), and the

stability problem that otherwise would occur is remedied.

3.3. Porosity of fuel beds

A forest is often represented as a porous medium with three levels of inhomogeneity in

the vertical direction to account for undergrowth (shrubs, grasses, etc.), tree trunks,

and crown canopies, respectively, as shown in Fig. 3.1. Each of these regions has very

high, but different, porosity. Garzon et al. [113] postulated that the porosity is quite

Figure 3.1: Description of a typical forest model.

high near the ground, but generally less so than in the intermediate heights where

there are mainly only tree trunks. The porosity at the upper leafy crown level can be
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expected to be the lowest of the three regions, but still high. Since porosity for trees

is very complex to deal with, it is assumed to be similar to the porosity of fur (on

mammals) [113], which ranges from 0.95 to 0.99 (see Table 1.1, Bejan [151]). These

values are much larger than the areal porosities (of shelterbelts or forests), which are

defined as the area of void per hectare at a given height in a two-dimensional context,

rather than volume. Usually, they are estimated by pixels via remote sensing (Perkin

and Macfarlane [152] and Dubrasich et al. [153], etc.). As computer power increases,

more sophisticated porous medium models with different porosities, both horizontally

and vertically, should be considered with proper permeability to account for more

physics of flow in forests. In the present study the porosity of each part, which is

defined as the ratio of pore space to the total space occupied by tree components,

is estimated using typical forest and botanical data available in the literature. The

calculated values are expected to be within a reasonable range considering variations

of tree types, leaf area index (LAI), canopy height, etc.

Two representative forests are analyzed: the temperate coniferous forest and the

temperate deciduous forest. Only simple stands with one dominant species are con-

sidered here. The complex stands, e.g., stand A in Table 1 of [153] with a mixing of

deciduous and coniferous trees, will be studied in the future. Stand descriptions of

both coniferous (Douglas-fir) and deciduous (ash) forests used in the present study

are displayed in Table 3.1, as given by Eriksson et al. [154] and by Dubrasich et

al. [153]. In Table 3.1, dbh denotes diameter measured at breast height; basal area is

the total cross-sectional area of trees at breast height. The stand densities (for both

forests) used here are much larger than those from the original source [154] [153],

but still reasonable, in order to simulate forests with higher possibilities of wildfire

occurrences. LAI is defined as one-sided green leaf area per unit ground surface area.

For ash tree forests, 3.6 is a reasonable value of the canopy LAI [154]; for Douglas-fir

dominated coniferous forests, Thomas and Winner [155] estimated that LAI is 6 for
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the tree crowns, and 1.2 contributed from the undergrowth part.

Table 3.1: Stand descriptions of typical forests.

Stand description Symbol Deciduous Coniferous

Tree species — Ash Douglas-fir

Tree height (m) H 15 38

dbh (cm) db 20 23

Stand density (trees/haa) ρstd 2400 2400

Basal area (m2/ha) Ab 75.36 99.66

Crown diameter (m) dc 4.3 3.15b

Crown depth (m) Hc 5.2 20c

Crown LAI ac 3.6 6

a1 ha = 10000 m2

bCorresponding crown area is 8000 m2/ha (see Fig. 1(f) of [153]).
cHeight for ≤ 90% mean areal porosity (see Fig. 3(f) of [153] ).

Trunk. Porosity of the intermediate level—trunks—is firstly estimated because of

its relative simplicity in shape and composition compared with the crown and un-

dergrowth. Assuming tree trunks to be cylinders, the volume of each trunk can be

calculated by multiplying trunk height times cross-sectional area. Thus, the porosity

is obtained as

φt =
AHT − AbHT

AHT

= 1− Ab
A

,

where Ab is basal area, which can be calculated from dbh as Ab = (db/2)2πN ; A is

the total area of one hectare; HT = H −Hc is trunk height. Observe that HT can be

canceled out in this formulation and φt is only dependent on the basal area.

Canopy. Both leaf (or needles for coniferous trees) and branch volume are con-

sidered for estimating porosity in the crown canopy. Usually, only the inter- or

between-crown porosity is obtained by assuming crowns to be solid [153]. Here, the

total voids in both the inter- and within- crowns are considered. The total volume of

leaves Vcl is represented as

Vcl = acAclδtρstd .

56



The crown area Acl is the area beneath the crown of a tree, and can be expressed

as Acl = (average maximum crown spread)2 ×CF × π/4, with CF being the “crown

form” calculated from the crown shape ratio. Here, CF is taken as 0.480 for Douglas-

fir trees that are in “columnar” form, and as 0.549 for ash trees that have shapes

from “elongate spade” to “rounded and oval”, according to Frank [156]. The average

maximum crown spread is taken to be the crown diameter dc. The leaf thickness δt

for both ash and Douglas-fir trees are estimated to be similar to those of peppermint

willow (Agonis flexuosa), which are around 700 µm (see Table 4 of Witkowski and

Lamont [157]); ρstd is stand density, as shown in Table 3.1.

Next, volume of branches is calculated using the general information of branch

order, length, and number. The bifurcation ratio of tree branches is found to be

analogous to that of river branches, as studied by Leopold [158]; both deciduous

(ash) and coniferous (fir) trees were investigated. In Table 3.2, branch orders from

one to five denote different generations of tree branches. For instance, branch of

order five (i = 5) is actually the trunk with number nb5 of 1 and diameter db1 of

dbh. The number of branches nbi at each order can be obtained using the bifurcation

ratio br. The branch length lbi at each order is calculated from the length ratio

lr. For deciduous trees, br = 6.5, and lr = 3.4; for coniferous trees, br = 4.8, and

lr = 2.7 [158]. The branch diameter dbi in each order is calculated through the log

ratio relation provided by Niklas [159] using the formula:

log10

(
l

L

)
∼ cblog10

(
d

D

)
,

where cb is a geometry-related coefficient usually taken to be 1 or 3/2, according

to [159]. Table 3.2 shows the diameter values calculated from both cb = 1 (dbi) and

cb = 3/2 (dbi*).

Assume branches are cylindrical with cross-sectional diameter dbi; the branches
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volume in one hectare is calculated as

Vcb =
5∑
i=1

(dbi/2)2π lbi nbi ρstd ,

with i representing order one to five. Recall that at the canopy height Hc, the porosity

is given as

φc =
AHc − Vcl − Vcb

AHc

.

Table 3.2: Branch information for deciduous and coniferous trees.

Forests Order nbi lbi(m) dbi(cm) dbi*(cm)

Deciduous

5 1 15 20 20
4 6.5 4.4 5.86 8.83
3 42 1.3 1.73 3.92
2 274 0.38 0.5 1.73
1 1785 0.11 0.147 0.75

Coniferous

5 1 38 23 23
4 4.8 14 8.48 11.82
3 23 5.2 3.15 6.11
2 110 1.93 1.15 3.15
1 531 0.715 0.43 1.63

Undergrowth. The porosity of undergrowth is determined by calculating volumes

of leaves and grass stems. The volume of woody species (dbh < 5 cm) may be

neglected since its density (trees/ha) is not as large. The total leaf volume is

Vgl = aglAglδt ,

where agl is LAI for the grassland with a typical value of 1.2; Agl is the area of the

grassland. It is found that the LAI of undergrowth depends on that of the canopy, and

the total leaf area in forest ecosystems with deciduous trees is approximately constant

(see Satoo and Madgwick [160]). For the sake of simplicity, only one dominant type of

grass is considered here for both deciduous and coniferous woodlands, in spite of the
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fact that a diversity of species exist in the undergrowth, and that their developments

are dependent on the canopy growths. Biomass properties of other fuel types can also

be input into the current solver. Assume “rough horsetail” (Equisetum hyemale) is

the dominant grass; it is 0.3 cm in diameter, and 55 cm in height, as measured by

Niklas [161]. The grass stem density ρgrs is estimated to be 2000 stems/m2, which

is within the values of around 1380–2680 stems/m2 for different soil types and grass

species, as provided by Dokken and Hulbert [162]. The stem volume is calculated as

Vgs = (dgs/2)2πHgρgrs .

The average height of undergrowth Hg is the same as the “rough horsetail” grass, so

the porosity is expressed as

φg =
AHg − Vgl − Vgs

AHg

.

A summary of properties and porosities used for computation to be presented here

is shown in Table 3.3. It is seen that these values are very high and are approximately

the ones used by Garzon et al. [113]. Porosity of coniferous forests has slightly smaller

values than that of deciduous forests, but this is not a unique case. Also, the leaf

volume of coniferous trees is smaller than that of the deciduous trees, even though

their LAI is larger, because the crown diameter for Douglas-fir trees is smaller. Once

porosities are obtained, permeabilities are obtained automatically through a general

relationship with porosities, as proposed by Tang and McDonough [124] (which will

be presented in Ch. 6), rather than employing “guessed” constant values or empirical

equations as is often tried [113].

3.4. Heat release rate

One of the techniques to estimate heat release rate (HRR) per unit volume (Sc), as

suggested by Biteau et al. [163], is to use the expression

Sc = ∆Hc ṁ , (3.16)
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Table 3.3: Summary of estimates.

Stand description Symbol Deciduous Coniferous

Undergrowth (m) — 0∼0.3 0∼0.3

Trunk (m) — 0.3∼9.8 0.3∼18

Canopy (m) — 9.8∼15 18∼38

Canopy height (m) Hc 5.2 20

Canopy leave volume (m3/ha) Vcl 48.2 37.69

Canopy branch volume (m3/ha) Vcb 1049 5190

Grass height (m) Hg 0.55 0.55

Grass leave volume (m3/ha) Vgl 8.4 8.4

Grass stem volume (m3/ha) Vgs 77.7 77.7

Porosity undergrowth φg 98.43% 98.43%

Porosity trunk φt 99.25% 99.00%

Porosity canopy φc 97.89% 97.39%

where ∆Hc (kJ/kg) is the heat of combustion of the material, and ṁ (g/s) represents

the burning rate. However, neither the biomaterial nor the burning rate is fully

understood in the context of wildfire spread although numerous studies have been

conducted on burning rates of wood cribs and match sticks, e.g., McAllister and

Finney [164]. Since burning rates are found to be affected by multiple factors such

as porosity, heat flux, and wind speed, a completely accurate estimation is almost

impossible. One of the proposed equations to estimate burning rates of porous wood

cribs is

ṁ

Asb−0.5
s

= f(φ∗) , (3.17)

with As being the exposed surface area of the sticks, and bs as the stick thickness. The

RHS f denotes a function of “porosity” φ∗ (not dimensionless) defined by Heskestad

[165] as

φ∗ =

(
Av
As

)
s1/2b1/2 , (3.18)

where s is the spacing between sticks, and Av represents the vent or open area of the

crib shafts.
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For a loosely-packed porous medium, f(φ∗) is approximated by unity; thus the

burning rate per unit surface area ṁ
′′

is estimated as

ṁ
′′ ∼ b−n , (3.19)

where n is an empirical exponent with values 0.5 or 0.6 [165]. For under-ventilated

cases, the following equation [164] [165]

103ṁ

Asb−0.5
= 1− exp[−50φ∗] (3.20)

is employed. Note that both well-ventilated and under-ventilated cases exist in

forested regions. In what follows, properties of the burning rate per unit area, mass

loss rate, heat release rate, and burning time for each level (trunk, canopy, and under-

growth) are calculated using Eqs. (3.16), (3.18)–(3.20). Here only oven-dry materials

are considered; the treatment of moisture will be discussed in Sec. 3.5 for ignition

modeling.

Trunk. In Table 3.4, the density and low heating value (LHV) of the wood for

both deciduous/hardwood (black ash tree) and coniferous/softwood trees (Douglas-

fir) are given, according to the documented values provided by Phyllis2 [166]. Using

Douglas-fir as an example, the trunk diameter is 23 cm, as shown in Table 3.1. Since

the spacing between trunks is relatively large compared to their diameter, Eq. (3.19)

is used, resulting in burning rate per unit surface area given as ṁ
′′

= 0.23−0.5 = 2.085

g/s·m2. This value is of the same order of magnitude as those given by Tran and

White [167], where ṁ
′′
s are somewhat larger owing to smaller thicknesses of the

materials considered.

The following calculation is based on one typical fuel in a grid cell in the trunk

region. The volume is dxdydz = 4× 1× 4 = 16 m3 with dx, dy, dz representing the

grid spacing in each direction (see Cartesian coordinates of Fig. 3.1). According to

the stand density (trees/ha) given in Table 3.1, there are 3.84 trees in one grid cell.
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The surface area of trunks (in one grid cell) is calculated as 0.23π dy × 3.84 = 2.77

m2, resulting in a mass loss rate of 2.77× 2.085 = 5.78 g/s. Also, by multiplying the

volume by the density, the total mass is calculated as (0.23/2)2 π dy × 3.84 × 530 =

84.5 kg, and the burn time is 84.5/5.78 ≈ 4.06 h. Substituting the heat of combustion

and burning rate into Eq. (3.16), the heat release rate per unit volume is estimated to

be 19 × 5.78/16 = 6.9 kW/m3. This value is rather small compared with the value

of 1200 kW/m3 estimated from scaling analyses of pool fires [168], and is used in the

FDS [20]. Nevertheless, it appears to be reasonable considering the sizes of trunks

and the stand’s porosity. Also, crown and surface fires play more important roles

in wildfire spread since they burn more rapidly. Properties for deciduous forests are

also obtained through the same calculation procedure, and the results are provided

in Table 3.4.

Table 3.4: Properties of a typical trunk fuel grid cell.

Stand description Deciduous Coniferous

Density (kg/m3) 540 530

Low heating value (MJ/kg) 17.82 19

Surface area (m2) 2.4 2.77

Mass (kg) 65 84.5

Burning rate (g/s·m2) 2.24 2.085

Mass loss rate (g/s) 5.38 5.78

Heat release rate (kW/m3) 6 6.9

Burning time (h) 3.6 4.06

Canopy. For the sake of simplicity, the same density and heat of combustion are

used for branches and leaves as that of the trunk wood, since all of these are mainly

composed of cellulose, lignin, and hemicellulose [157]. Similar to the previous treat-

ment for trunks, Douglas fir and a canopy grid cell (with the same size of the trunk

cell) are used as examples for the calculation. First, its surface area of leaves (two-

sided) is calculated from the LAI and the crown area as 6×Acrown×2×3.84×dy/Hc =
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8.6 m2; the mass of leaves is 8.6/2 × 0.0007 × 530 =1.6 kg. Although LAI of conif-

erous woods is larger than that of deciduous forests, its surface area of leaves in one

grid cell is much smaller, as shown in Table 3.5. The reason is that the canopy height

of deciduous trees is much smaller, indicating more leaves appear in one layer (or one

grid cell) with fixed LAI. Leaves are assumed to have the same ṁ
′′

as branches for

simplicity since they are both biomaterials in the canopy.

Next, burning rate of branches is calculated. Take the branch number as 110

(for example see Table 3.2); the spacing between branches is between 4/(110×3.84)

= 0.947 cm and 4/
√

110× 3.84 = 19.46 cm. The ratio Av/As is assumed to be

0.01, which is within the range of [0.004, 0.06] obtained from similar stick spacings

in [164]. For s = 0.947 cm, the branches are considered as under-ventilated, and the

Heskestad porosity φ∗ is calculated as 3.150.5×0.950.5×0.01 = 0.0173 cm. Therefore,

the corresponding burning rate is {1− exp[−50× 0.0173]}× 0.0315−0.5 = 3.26 g/s·m2

by employing Eqs. (3.18) (3.20). For s = 19.46 cm, f(φ∗) is 0.98, indicating that the

branches are well-ventilated, and the burning rate is 5.52 g/s·m2 using Eq. (3.20);

Eq. (3.19) can also be used in this case. Then, the average value of (3.26 + 5.63)/2

= 4.4 g/s·m2 is adopted as the burning rate for nb2 = 110 (Table 3.2). Similarly,

for the branch number 531, an average burning rate of 4.3 g/s·m2 is obtained. The

overall burning rate for the branches is obtained from averaging over burning rates

of all branch orders using their surface area as weighting factors. By employing the

same calculation procedure as that for the trunks, the mass loss rate, burn time, and

heat release rate of the canopy are obtained and provided in Table 3.5. It is seen

that for coniferous forests, the heat release rate decreases from 903.7 to 860.8 kW/m3

after 44.3 sec. For deciduous woods, the heat release rate decreases from 1356.6 to

1160 kW/m3 after 44.8 sec. These values are close to the value used by Himoto and

Tanaka [169], and in [168], [20], as discussed previously.
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Table 3.5: Properties of a typical canopy fuel grid cell.

Stand description Deciduous Coniferous

Leaves/needles surface area (m2) 42 8.6

Leaves/needles mass (kg) 7.9 1.6

Leaves/needles burning rate (g/s·m2) 4.2 4.2

Leaves/needles mass loss rate (g/s) 176.4 36.1

Leaves/needles heat release rate (kW/m3) 196.5 42.9

Leaves/needles burning time (s) 44.8 44.3

Branch surface area (m2) 248 172.6

Branch mass (kg) 550 728

Branch burning rate (g/s·m2) 4.2 4.2

Branch mass loss rate (g/s) 1041.6 724.9

Branch heat release rate (kW/m3) 1160.1 860.8

Branch burning time (min) 8.8 16.7

Undergrowth. The heat of combustion for grasses is estimated to be 16.9–17.3

MJ/kg, and the density of general grass leaves is around 427–628 kg/m3, according

to Phyllis2 [166]; here values of 17 MJ/kg and 500 kg/m3 are used, as presented

in Table 3.6. Leaves and stems are assumed to have the same biomass properties

because of their similar composition. The following calculation is based on a typical

grass grid cell with a volume of 4× 4× 0.55 = 8.8 m3. Since LAI is 1.2 (see Sec. 3.3),

the surface area of grass leaves (two-sided) is calculated as 1.2 × 2 × 4 × 4 = 38.4

m2; the surface area of stems is estimated to be 0.003 π × 0.55 ρgrs × 16 = 165.8

m2. Burning rate per unit area is estimated from Eqs. (3.18)–(3.20); here Av/As

is assumed to be 0.01. Considering ρgrs = 2000 stems/m2, the stem spacing (cm)

is within values of [0.05, 2.2]. Also, given that the stem thickness is 0.3 cm, the

Heskestad porosity (cm) is within values of [0.00122, 0.008], and the burning rate is

in the range [1.08, 6.09] (g/s·m2). The overall burning rate is 3.6 g/s·m2 using the

average value. Other properties are calculated in the same way as for the canopy and

trunk, and the values are shown in Table 3.6. It is seen that the heat release rates

per unit volume in the grassland are close to the values of the canopy level of a forest.
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Also, grass leaves burn as fast as those of the forest crown, while branches burn much

more slowly.

Table 3.6: Properties of a typical grass fuel grid cell.

Properties Grass

Density (kg/m3) 500

Low heating value (MJ/kg) 17

Grass leaves surface area (m2) 38.4

Grass leaves mass (kg) 6.7

Grass leaves burning rate (g/s·m2) 3.6

Grass leaves mass loss rate (g/s) 138.2

Grass leaves heat release rate (kW/m3) 267

Grass leaves burning time (s) 48.5

Grass stem surface area (m2) 165.8

Grass stem mass (kg) 62.2

Grass stem burning rate (g/s·m2) 3.6

Grass stem mass loss rate (g/s) 596.9

Grass stem heat release rate (kW/m3) 1153

Grass stem burning time (s) 104.2

3.5. Ignition modeling

For all types of combustion, fuel ignition requires the fuel temperature to reach some

minimum level by the application of heat. In addition, the heat must also be applied

long enough to raise the temperature of a deeper fuel layer sufficiently to permit

pyrolysis to become self-sustaining; simply put, some quantity of heat is required for

ignition, according to Countryman [170]. More specifically, if the heat flux is equal to

or greater than the activation energy of the fuel particle, then the chemical reaction

starts. Pyrolysis gas is emitted from the fuel and combined with oxygen in the air to

react and release heat. A portion of the heat is lost to the surroundings, which are at

ambient temperature, by convection and radiation, and a portion of it accumulates in

the reaction volume that raises the temperature of the fuel–air mixture, and in turn
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increases the pyrolysis rate. Once the pyrolysis rate or mass loss rate reaches a critical

value, the fuel is assumed to be ignited. This ignition criterion is physics-based, as

discussed in Ch. 2, Sec. 2.1.2; however, it is difficult to implement in the current

model since only gas phase equations are solved. Considering that both temperature

and heat flux should be included in the threshold of ignition, the following three steps

are employed in the present study for the determination of ignition:

(1) moisture or water is evaporated in the fuel;

(2) temperature is greater than the ignition temperature;

(3) heat flux is applied long enough to reach the critical energy density.

First, moisture (water) in the fuel material should be evaporated before the onset

of flaming ignition. The initial mass of water m0 can be calculated from the fuel

loading and the moisture content (see its definition in Sec. 2.1.1). The evaporation

process is expressed as

dmH2O

dt
= −ẇvap , (3.21)

with conditions of m(t0) = m0 and m(tf ) = 0 with t0 and tf , respectively, denoting

the initial and final time of the evaporation; ẇvap is the evaporation rate (kg/s)

calculated as

ẇvap =
q
′′

hH2O

, (3.22)

where q
′′

is the heat provided from radiation and convection; hH2O is the heat of

evaporation for water with the value 2257 kJ/kg. The differential equation can be

solved using a simple forward-Euler method. Integrating Eq. (3.21) and substituting

Eq. (3.22) into Eq. (3.21) leads to∫ tf

t0

dmH2O

dt
dt = −m0 = −

∫ tf

t0

q
′′

hH2O

dt = − 1

hH2O

∫ tf

t0

q
′′
dt .

Therefore, the total amount of heat required to dry the fuel materials is∫ tf

t0

q
′′
dt = m0hH2O .
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In addition, humidity in the atmosphere can change the moisture content of the

fuel (and evaporation rates), and thus affect the wildfire occurrence and spread rate.

For instance, high relative humidity slows the drying process of the fuel and thus

postpones ignition and subsequent combustion. Furthermore, if the moisture is com-

bustible fluid other than water discussed above, flaming would depend on both fuel

pyrolysis and mixture fraction of evaporated moisture; the evaporation heat depends

on the detailed chemical composition of the moisture and the heat flux.

Second, ignition temperature is employed since it is the simplest and the most

commonly-used criterion for numerical modeling of ignition. There exists an abundant

resource of its values; for example, Engstrom et al. [33] estimated from a series of

experiments that the ignition temperature of oak ranges from 436 K to 732 K with an

average value of 584 K. For combustible moisture, the ignition temperature is reduced

to the gaseous ignition temperature. It is noted that such a simple model is sufficient

to qualitatively capture large-scale wildfire behavior, especially when prediction time

is an important factor. However, in order to incorporate more physics into the model,

other factors, in addition to ignition temperature, should be considered for the reasons

stated in Ch. 2, Sec. 2.1.2. Once the ignition temperature is reached, the outer surface

of the fuel particle is assumed to produce pyrolysis gas and to react with the oxygen

in the air, but in order to sustain this process, sufficient heat must be provided.

Third, a critical energy power density of gas phase combustion may be used in

addition to ignition temperature. It is well established that the lower flammability

limit in air (LFL), for hydrocarbons, corresponds to a constant combustion energy

density of 2050 ± 150 kJ/m3. This critical value has been related to a critical flame

temperature at ignition on a condensed-phase fuel. Lyon and Quintiere [35] propose

using 1.9 MJ/m3, which describes the LFL of fuel vapor-air mixture to predict the

onset of piloted ignition of combustible polymers. Therefore,∫ ti

tf

q
′′
dt ≥ 1900 kJ/m3
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is used, with q
′′

being the heat flux provided by convection, radiation, and the heat

release from the chemical reaction of the initial pyrolysis gas and the oxygen. The

heat release rate is thoroughly discussed in Sec. 3.4. Here tf denotes the time when

the surface temperature has reached the critical ignition temperature, and ti is the

time at which ignition occurs.

In addition, Fig. 3.2 shows a sketch of grid cells used in wildfire simulations. The

large-scale or atmospheric grid has a grid spacing (m) (in horizontal x and in transver-

sal z direction) of approximately O(10) or O(102), and it is resolved by the LES flow

solver. The sub-grid or fuel grid cells, with a grid spacing of O(1) m, are utilized

Figure 3.2: Description of cells in one large-scale grid cell.

for better modeling of ignition. Three main states exist for typical cells containing

fuel during the calculation: unburned, burning, and completely combusted; they are

colored in gray, orange, and deep charcoal, respectively, as illustrated in Fig. 3.2. Un-

burned fuel grid cells are loaded with fuels, calculated from porosity, as described in

Sec. 3.3. Burning cells represent fuels that are ignited, but not yet completely burned;

their fuel loading decreases according to the burning rate estimated in Sec. 3.4, and

thus the porosity increases. Completely combusted cells have neither any combustible

biomass nor heat release; the porosity is assumed to be one. Once the unburned fuel

68



is ignited, it becomes part of the heat source until it is extinguished, due either to

the consumption of the fuel mass or to other factors such as precipitation. Therefore,

the source term in Eq. (3.1c) is time dependent.

A description of the solver module of ignition is provided in Figure 3.3. The

calculated large-scale variables are input into the module for determination of igni-

tion. Ignitions occurring both at the large cell interface and within the large cell

Figure 3.3: Flow chart of the ignition module.

(e.g., landing firebrands) can trigger calculations in subgrid cells. First, positions of
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grid cells with ignited fuel are located using a different index notation from that of

the large-scale grid cell. Also, the temperature of the ignited cell is updated due to

heat release (Sec. 3.4); at the same time, the burn time is recorded until it reaches

the maximum value (see Table 3.4–3.6). Second, velocity in cells containing fuel and

temperature, are obtained by interpolation from large-scale values. These interpo-

lated values are used to determine whether adjacent cells are ignited, based on the

same ignition criteria as those for the large-scale cells. Third, the total heat release

is calculated by adding the heat release from all ignited fuel cells; also, the overall

porosity of the corresponding large-scale grid is recalculated. Lastly, the total heat

release and the updated porosity are input into the calculation of the large-scale grids

and affect the overall behavior of fire spread.

3.6. Firebrands

Firebrands are flaming or glowing pieces of fuel, such as cones, leaves, twigs, or bark,

that are transported ahead of a fire by fluid motion, fire plumes or fire whirls. The

spotting phenomenon has been studied since the 1960s, and a thorough review of

research until 2007 was provided by Koo et al. [57]. In massive forest fires, the spot

fires caused by firebrands occur frequently and affect fire spread significantly. The de-

termination of a firebrand trajectory is, however, highly probabilistic and not readily

amenable to a purely deterministic description. Different shapes of firebrands such

as spheres, disks, and cylinders, have been studied in detail. Ellis [171] studied aero-

dynamics and combustion characteristics of eucalypt bark. Himoto and Tanaka [169]

investigated the transport of disk-shaped firebrands in a turbulent boundary layer,

but the numerical experiments were conducted on a small computational domain,

viz., 2.48 m × 1 m × 1 m. Sardoy et al. [172] investigated firebrands from burning

trees using a physics-based wildfire model. A detailed statistical characterization of

the size and shape of firebrands was presented by Tohidi et al. [173]; firebrand gen-
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eration from burning vegetation was studied by Manzello et al. [174,175] focusing on

firebrand sizes and mass using different types and heights of trees.

Firebrand models are roughly divided into two categories: 1) decoupling of lofting

and propagation phases, or use of simple combinations of fire plumes and ambient

winds; 2) modeling firebrand behaviors in coupled wildfire-atmosphere wind fields.

In the first category, the fires are often idealized as being stationary, and the plume

is described as a steady vertical velocity field. Such models have been used by fire

behavior analysts in the U. S. to predict so-called “worst–case” scenarios; however,

none of these models consider the interaction between the fire and the atmosphere,

especially with some rendition of turbulence [176]. In the latter category, Garzon

et al. [113], and McDonough et al. [23] calculated the complex velocity fields of

wildland fires. Garzon et al. [113] focused on a physical, but limited, forest fire model

using a RANS-based method. McDonough et al. [23] modeled turbulence through

an additive turbulent decomposition (ATD)/chaotic–map procedure (as discussed

previously). The parallel efficiency of the numerical methods used in solving the

corresponding equations was also investigated. In their studies, firebrands do not

change in size, shape, or mass during lofting and transport; the two-dimensional

results were exploratory and not subjected to direct testing. The studies of Koo et

al. [177] and Bhutia et al. [176] are examples of extending the numerical solutions of

firebrand simulations—in more realistic velocity fields—to 3-D, which led to a more

accurate rendition of fire/atmosphere turbulence.

The behavior of firebrands can be considered as a series of three stages: (1) gen-

eration or release; (2) lofting and transport; (3) deposition and subsequent ignition

(or not) of unburned fuels. The current study mainly focuses on the latter two, even

though the proposed forest fire model can potentially deal with all three stages. First,

randomly generated firebrands from both canopies and undergrowth are utilized. A

more physical method is to evaluate the weight of the firebrands and the lifting by
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the flow field: when the lift is equal to or greater than the weight, the firebrand

is assumed to be released from the original tree structure. The second stage em-

ploys the equations of motion and firebrand combustion provided by Stephen and

Fernandez-Pello [178], and Bhutia et al. [176]. Third, the temperature and the state

of combustion of the firebrands are evaluated at their landing, and subsequent ignition

is determined using the ignition criterion specified in Sec. 3.5.

3.6.1 Firebrand trajectories

In the current work, firebrand particles are assumed to be spherical in shape, albeit

they are most likely cylindrical. Since a sphere is symmetrical, the net force on it

tends to produce drag in the direction of the free stream velocity, hence there is no

lift per se. In order to compute firebrand trajectories, one-way coupling is assumed;

or in other words, the firebrands have no effect on the ambient fluid flow during their

flight since they are too small to produce a non-trivial effect. However, the fluid flow

has a significant effect on the firebrands. A firebrand receives the prevailing effect of

the buoyant plume near the heat source that elevates and transports it downwind.

The firebrand trajectories are computed based on Newton’s second law of motion

and the fact that the firebrands are acted upon by the surrounding fluid (drag) and

gravity. Velocity and position for each firebrand are calculated using the following

initial value problem:

mfb
dUfb

dt
= FD + Fg , (3.23)

dXfb

dt
= Ufb , (3.24)

with appropriate initial conditions. In the above mfb, Ufb, Xfb represent firebrand

mass, velocity, and position, respectively; Fg is the gravitational force expressed as

Fg = mfbge3 , (3.25)
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with g being gravitational acceleration, and e3 being a unit vector in the (local)

“vertical” direction. The drag force FD is expressed as

FD =
1

2
CDρairAfb|uf −Ufb|(uf −Ufb) , (3.26)

In Eq. (3.26), uf − Ufb is the relative velocity between the particle and the

air; uf represents the wind that interacts with wildfires and can be obtained from

interpolation of u being calculated using Eq. (3.1b); |·| denotes the velocity difference

magnitude; Afb is the projected cross-sectional area of the particle; ρair is density of

the ambient air. The drag coefficient CD is a function of the Reynolds number

expressed as Re = |uf −Ufb| · dfb/νair, where dfb is the diameter of the particle, and

νair is the kinematic viscosity of the air surrounding the particle. Due to combustion,

the mass mfb and diameter dfb of the particles are expected to decrease with time (to

be discussed below). Properties of νair and ρair are evaluated at average conditions

of ambient pressure and the arithmetic mean of the particle temperature and the

ambient temperature [178]. A good approximation of CD is 0.45 for 5 × 104 <

Re < 2.6 × 105, as suggested in [176] [178], and by Haider and Levenspiel [179] and

Kundu [180]. The initial value problem shown in Eqs. (3.23) (3.24) can thus be solved

numerically using simple backward or forward Euler method. It should be noted that

the accuracy of given data does not support using any higher-order accuracy for

numerical simulations.

3.6.2 Firebrand heat transfer and combustion

Firebrand particles cool by convection and radiation as they are carried away by the

wind. Assuming lumped capacitance for a particle, its temperature Tfb is given by

the solution of the transient energy equation [178] [176]:

(ρV c)fb
DTfb
Dt

= −Sfb(q
′′

conv + q
′′

rad) + Q̇
′′′
. (3.27)
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Here, ρfb, Vfb, and cfb are, respectively, density, volume, and specific heat capacity of

the particle; Sfb is the surface area of the particle; q
′′
conv and q

′′

rad are, respectively, the

convective and radiative heat fluxes lost by the firebrand particle to the surroundings;

Q̇
′′′

is heat release rate from combustion if a flaming firebrand is considered.

The convective heat flux q
′′
conv can be represented by Newton’s law of cooling as

q
′′

conv = h(Tfb − T∞) , (3.28)

where Tfb and T∞ are the temperatures of the firebrand particle and the ambient air,

respectively. The average convection heat transfer coefficient h is calculated using

the Nusselt number expressed as Nu = h dfb/kair, with dfb being the diameter of

firebrand particle, and kair being the thermal conductivity of the air. An approxi-

mated value of 2.6× 10−2Wm−1K−1 measured at a temperature of 300 K is used for

kair (Montgomery [181]). For convective heat transfer relating to a solid sphere, the

average Nusselt number is

Nu = 2 + 0.6Re1/2Pr1/3 ,

where Pr is the Prandtl number approximated with a typical value of 0.70 for burning

wood in air [181].

The net radiative heat flux q
′′

rad lost by a hot particle to its surroundings is given

by the Stefan–Boltzmann law

q
′′

rad = σεe(T
4
fb − T 4

∞) , (3.29)

where σ is the Stefan–Boltzmann constant (5.67× 10−8 kg s−3 K−4), and εe is emis-

sivity of the firebrand particle. Substitution of Eqs. (3.28) and (3.29) into Eq. (3.27)

leads to the time rate of change of temperature for a spherical firebrand particle as

dTfb
dt

= − 6

(ρc)fbdfb

[
h(Tfb − T∞) + σε(T 4

fb − T 4
∞)
]

+
Q̇

′′′

(ρV c)fb
.

The effect of combustion is represented by changes in the mass and diameter of the

spherical firebrand, and it is calculated in a transient flow field. The particle surface
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chemical reactions, as did in other particle (not just firebrands) trajectory studies

(Davuluri et al. [182]), are not considered at present. Here, Tse and Fernandez-Pello’s

[178] simple combustion model is adopted for the burning of spherical wood firebrands.

The pyrolysis front of a firebrand is simulated by an effective mass diameter deff. The

Frössling [183] relation is used, where deff regresses in a d square-law fashion as

d(d2
eff)

dt
= −βc ,

with βc being a modified burning constant for a firebrand particle burning in forced

convection, expressed as

βc = β0(1 + 0.276Re1/2S1/3
c ) ,

where β0 is an average burning rate constant estimated to be 4.8×10−7m2s−1 [183]; Sc

is the Schmidt number defined as the ratio of the kinematic to molecular diffusivities,

and Sc is 0.7 for air (at ambient temperature). The mass of the particle mfb is then

approximated by

mfb =
ρp,0πd

3
eff

6
.

Using the above, and the heat of combustion for a given biomaterial, heat release rate

Q̇
′′′

during the flight of a flaming firebrand can also be calculated; it is zero if the

firebrand is extinguished. In this study, it is assumed that the density of firebrands

is constant throughout the flight.

The actual diameter dfb of the particle is obtained by matching results of the

Tarifa et al. [184] size regression data and using the same burning rate constant β0

for the mass burning rate (Stephen and Fernandez-Pello [178]). The regressing of

actual diameter dfb in differential form is expressed as

d(d4
fb)

dt
= −2

√
3β2

c t

for the best data fit. Moreover, it is assumed that heterogeneous combustion extinc-

tion occurs when mfb/mp,0 = 0.24 [178] [176]. Upon extinction, the firebrand cools
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from an initial temperature of ∼ 993 K since the burning firebrand temperature of

993 K is used for smoldering wood in forced air flow [176].

3.7. Summary and conclusions

In this chapter, the employed wildfire model is described in detail. A typical forest

fire problem with a wind speed of approximately tens of meters per second (even for

fire whirls, Mach numbers < 0.3) can always be viewed as an incompressible flow

problem even though the air is compressible. Therefore, the governing equations

(including porous medium models) are the generalized Navier–Stokes equation of in-

compressible flow, based on the Boussinesq approximation for buoyant convection,

plus a thermal energy equation. Effects of combustion are incorporated in the source

term of the thermal energy equation, rather than being computed from transport

equations for different (essentially unknown) chemical species. The latter is quite ex-

pensive with respect to computational resources and slows the solution process. Most

models accounting for the chemistry of forest fires are still formulated in 2D, which

is inappropriate for turbulence simulation. Simulators, such as WFDS, use lumped

species; but they still cannot achieve real-time solutions [20]. Eventually, details

of chemistry and combustion on both large and small scales should be considered.

The current code in use is structured to permit inclusion of any of these additional

transport equations.

Several submodels with novel features are embedded in order to develop a physics-

based wildland fire model that is potentially predictive and eventually operational.

These submodels are developed separately for research purposes. First, the synthetic-

velocity LES with the derived DDS is employed, which is able to capture the inter-

action between turbulence and other physical phenomena such as the fire. Second,

porosity in each part of the forest is estimated through available botanical data, and

the results are within a reasonable range of values. The porosity of grasslands can
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also be calculated in the same way as employed for forests. A general permeability

model is also used. Third, heat release rate is calculated via fuel burning rate (which

depends on porosity), surface area, and heat of combustion. The estimated values are

also within the range of documented values. Fourth, both heat flux and temperature

are considered for the onset of ignition; sub-grid cells are used to predict ignition.

Finally, firebrand equations are discussed in relation to both heat transfer and com-

bustion, rather than only trajectories. It is postulated that such an approach with

physics-based sub-models has the potential to simulate complicated forest fires more

accurately. Note, finally, that currently few, if any, existing wildfire models include

all of these physical aspects.

Copyright c© Tingting Tang, 2017.
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Chapter 4: The Solver

The CFD research code adopted here was originally developed by McDonough et al.

[185] with Fortran 77/90, and has become more developed over the years, presenting

its credibility and potential in simulating more complicated forest fire problems. It

solves the incompressible Navier–Stokes equation via a projection method for both

laminar and turbulent flows in generalized coordinates on structured, staggered grids.

Plot3D format is used for both grid and solution files. Furthermore, this solver was

originally designed to be parallelized. Parallelization of the code with MPI (Message

Passing Interface) was attempted with early versions on shared hardware where each

processor contained only a single core. Parallelization with any MPI message-passing

model tends to result in very complex algorithms and require tight optimization of

communication exchanges, according to Bessonov et al. [186]. Modern shared-memory

and distributed-shared-memory platforms have promoted the use of another parallel

programming paradigm—OpenMP [187]. The current work aims to parallelize the

overall code using OpenMP on distributed-memory systems only, and a hybrid of

MPI and OpenMP will be studied in the future.

Section 4.1 presents the analytical form and solution procedure of the projec-

tion method employed here. Section 4.2 provides a discussion of grid generation in

the context of generalized coordinates. In Sec. 4.3, the procedure of obtaining the

auxiliary solution by solving the Burger’s equation (momentum equation without

pressure-gradient term) is discussed in detail. In Sec. 4.4, parallelization of the pres-

sure Poisson equation (PPE), which consumes a large portion of the total arithmetic

for large problems, is investigated. The performance of parallelizing the overall code,

including the PPE and the momentum equation, is presented in Sec. 4.5. Finally,

Sec. 4.6 provides summary and conclusions associated with this portion of the study.
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4.1. Projection methods

Projection methods are mainly used to treat pressure-velocity coupling in the momen-

tum equation. They can be regarded as a class of Navier–Stokes equation solution

procedures originally in the work of Leray [188]. The numerical implementation of

projection methods was first introduced by Chorin [189]. There have been numer-

ous versions of projection methods after Chorin’s work, but here this section mainly

presents a fairly detailed description of a modern approach in a form somewhat sim-

ilar to the one used by Kim and Moin [190]. In particular, Gresho projection-1

method [191], which was first proposed by Fortin et al. [192], is employed in the

current solver. A second-order method was also published by Bell et al. [193].

Recall Eqs. (3.1a) (3.1b). First, as in most basic (low-order) projection methods,

one solves the momentum equations without pressure gradient terms. Then one solves

a simple equation associated with pressure. These can be expressed as

∂û

∂t
+

1

φ
∇ · (û2) = ν∆û+

φ

ρ
(B̂ − D̂) , (4.1a)

ut = −∇Φ . (4.1b)

Formally, this is a fractional-step procedure, as studied extensively by Yanenko [194].

Equation (4.1a) is in the form of a vector system of Burgers equations, and û de-

notes an “auxiliary velocity,” which is not divergence free. The auxiliary velocity

is relatively easy to obtain by solving Eq. (4.1a), assuming that such difficulties as

the cell-Re problem and aliasing can be handled (as discussed in Sec. 3.2.1 in the

previous chapter). Here, B̂ and D̂ are forcing terms denoting body and drag forces,

respectively. The second equation is converted to a pressure Poisson equation, whose

solution leads to the construction of the Leray projector needed to obtain the required

divergence-free solution. Note that this is not the true pressure obtained from the

original N.–S. equation; thus, the notation Φ is introduced as the “pseudo pressure”

in place of the physical pressure p.
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First, taking the divergence for both sides in Eq. (4.1b) leads to

(∇ · u)t = −∆Φ ,

and the LHS is approximated as

(∇ · u)t '
(∇ · u)n+1 − (∇ · û)

dt
,

where dt is the same time-step size used to numerically solve Eq. (4.1a). Next,

(∇ · u)n+1 is taken to be zero in order to enforce the divergence-free condition at

the advanced time level, as was probably first done in the marker-and-cell (MAC)

method of Harlow and Welch [195]. This leads to

∆Φ =
∇ · û
dt

, (4.2)

which implies that if Φ satisfies Eq. (4.2) for any û, then un+1 can be constructed as

un+1 = û− dt∇Φ , (4.3)

so that (∇ · u)n+1 = 0 is satisfied, as required. Equation (4.3) is the Leray projector

with the factor dt. For the Gresho projection-1 method [191], the approximation of

pn+1 = Φ

is set. Observe that the error in using Φ in place of physical pressure corresponds to

p = Φ +O(dt/Re) , (4.4)

as given by Kim and Moin [190].

After the Leray projection, the true pressure Poisson equation (PPE) for phys-

ical pressure could be calculated using the usual numerical approximations, since

the velocity field is now divergence-free. For both pseudo and true PPE problems,

Neumann conditions are always imposed on solid boundaries; however, in order to

increase the convergence rate for the linear solver, a scheme is used in the current
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study to transform Neumann conditions to Dirichlet conditions by assigning pressure

values of the previous time step to the current time step. This method would cause

a first-order error for time-dependent problems, but the overall projection method is

still first-order accurate in any case (to be discussed). Note that solving the true or

additional PPE can be quite computationally expensive. However, this step is not

required for problems that do not need a high-order accuracy of pressure. Namely,

Eq. (4.4) shows that if Re is large, and/or the time step dt is small, which is the

case for the wildfire simulations performed in the present study, then the difference

between physical and pseudo pressure is small. The basic steps for computation are

outlined as (see McDonough [196]):

1. solve the “Burgers’ equation” form of the momentum equations;

2. filter solution û obtained from Burgers’ equation;

3. perform Leray projection to obtain divergence-free advanced time level solution;

4. prepare results for output to post-processing software such as FieldView, Tec-

plot, etc.

The order of accuracy of this projection method is approximately O(k), which

is independent of the time integration/evolution procedure due to its fractional-step

construction. Take the explicit forward Euler time integration method as an example.

The semi-discrete form of Eq. (4.1a) is expressed as

û = un + dt

[
ν∆un − 1

φ
∇ · (un)2

]
. (4.5)

Then the substitution of û = un+1 + dt∇Φ (obtained from Eq. (4.3)) into Eq. (4.5)

yields

un+1 = un + dt

[
ν∆un − 1

φ
∇ · (un)2 −∇Φ

]
. (4.6)

Since Φ and p differ by O(dt), substitution of Eq. (4.4) results in a local O(dt2)

leading error, which corresponds to a global error of O(dt). This error comes from
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the fractional-steps operator splitting, so it cannot be removed by simply increasing

the order of accuracy of the integration scheme. The overall projection scheme con-

structed in this way, however, is first order in time; but it is typically found to be

an acceptable practical approach. Compared with other predictor-corrector methods,

this modern projection method needs less computation and is able to achieve the same

order of accuracy. A second- (or higher-) order (in time) projection method has also

been attempted in numerous studies, such as those of Gresho [191], and Shen [197],

which is to be implemented in the current solver in the future.

4.2. Grid generation

The non-uniform gridding due to arbitrary terrain and the forest area requires more

treatment (refinement) via grid generation, especially in the context of the structured-

grid approach being used here. It requires generalized-coordinate transformation of

the PDEs and boundary conditions, resulting in a generally more complicated math-

ematical structure of the discretized equations. Nevertheless, it is extremely conve-

nient to perform all computations with standard numerical models in the transformed

space, where the grid mesh is uniform and Cartesian. Information regarding the orig-

inal physical grids is usually obtained from either external coding or grid generation

software, e.g., Pointwise [198]. However, the transformation relations between gen-

eralized/curvilinear and orthogonal coordinate systems are not trivial, and will be

presented below, based on the book of Thompson et al. [199].

First, for mapping the physical domain to the computational domain, the trans-

formation T and the Jacobian matrix of the transformation J(T ) are, respectively,

T :


x

y

z

 −→

ξ(x, y, z)

η(x, y, z)

ζ(x, y, z)

 , J(T ) =


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 .
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As seen from above, the individual terms of J(T ) utilize the physical coordinates as

independent variables; this is contrary to our intention to perform all computations

in the transformed coordinate system where the independent variables are (ξ, η, ζ).

Consequently, it is more natural to work with the inverse transform and corresponding

Jacobian matrix, written as

T−1 :


ξ

η

ζ

 −→

x(ξ, η, ζ)

y(ξ, η, ζ)

z(ξ, η, ζ)

 , J(T−1) =


xξ xη xζ

yξ yη yζ

zξ zη zζ

 .

For this to be of use, relationships between elements of J(T ) and those of its in-

verse need to be found. For the generalized or curvilinear coordinates, the covariant

basis vectors are tangent to the curvilinear coordinates, while the contravariant ba-

sis vectors are orthogonal. Associated with the covariant basis vectors are covariant

components of the metric tensor, which are used to represent differential increments

of arc length, surface area, and volume. The components of the 3 × 3 symmetric

metric tensor

g =


g11 g12 g13

g21 g22 g23

g31 g32 g33


are given by

g11 = x2
ξ + y2

ξ + z2
ξ , g13 = g31 = xξxζ + yξyζ + zξzζ , (4.7a)

g22 = x2
η + y2

η + z2
η , g23 = g32 = xηxζ + yηyζ + zηzζ , (4.7b)

g33 = x2
ζ + y2

ζ + z2
ζ , g12 = g21 = xξxη + yξyη + zξzη . (4.7c)

It is evident that the Jacobian matrix of the transformation is related to the deter-

minant of the inverse Jacobian matrix as

√
g =

√
det|g| = det[J(T−1)] . (4.8)
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Furthermore, by using the relations between contravariant and covariant basis

vectors, the elements of the Jacobian matrix (in which x, y, and z are independent

variables) can be related to those of its inverse as

ξx =
yηzζ − yζzη√

g
, ξy = −xηzζ − zηxζ√

g
, ξz =

xηyζ − yηxζ√
g

, (4.9a)

ηx = −yξzζ − yζzξ√
g

, ηy =
xξzζ − zξxζ√

g
, ηz = −xξyζ − yξxζ√

g
, (4.9b)

ζx =
yξzη − zξyη√

g
, ζy = −xξzη − xηzξ√

g
, ζz =

xξyη − xηyξ√
g

. (4.9c)

In the physical domain, the first derivative operator in one direction can be expressed

(via the chain rule) as

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ
.

Since finite-difference discretization of these geometrical differentials are trivial in the

uniform grid-spacing computational domain (ξ, η, ζ), elements of J−1 for these coef-

ficients can be easily and accurately constructed using second-order centered differ-

encing. Second derivatives are treated in the same way, except that more coefficients

occur; they result in the more complicated form, e.g.,

∂2

∂x2
=

(
ξx
∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ

)(
ξx
∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ

)
.

Note that these coefficients (ξx, ηx, etc., computed from physical grid-point loca-

tions via Eqs. (4.9a)) need be calculated only once during problem setup, and then

stored, unless the physical grid is time dependent. They will not be recalculated dur-

ing construction of partial derivatives, thus saving arithmetic operations. Different

transformation coefficients must be implemented for each of u, v, w, and center cells

since staggered grids (to be discussed) are used.

4.3. Solution and parallelization of the momentum equations

Staggered-grid formulations require the use of four separate, but overlapping, control

volumes in 3D, as colored in blue, red, green, and black in Fig. 4.1. Since the one-
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half indexing is very inconvenient for coding and implementation, “cell” notation and

storage are employed in the current solver [200]. Figure 4.1 also shows the notation

of grid indexing and the staggered dependent variables associated with the grid cells

(i, j, k). This cell index corresponds to that of the natural finite-difference grid point

in the upper right-hand corner of the cell, as denoted by a yellow star.

Figure 4.1: Sketch of 3-D staggered gridding.

The staggered-grid finite-volume momentum equations are thus derived from con-

trol volumes in correspondence to the dependent variables and are presented (in 2D)

as

ut + (ū2)x + (ũv̄)y = ν∆u , (4.10a)

vt + (ũv̄)x + (ṽ2)y = ν∆v , (4.10b)

where “˜” and “¯” represent vertical and horizontal averages, respectively, which are

given by

ūi,j =
1

2
(ui,j + ui−1,j) , v̄i,j =

1

2
(vi,j + vi+1,j) , (4.11a)

ũi,j =
1

2
(ui,j + ui,j+1) , ṽi,j =

1

2
(vi,j + vi,j−1) . (4.11b)
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Equations (4.10) are also called the Burger’s equations since the pressure term is not

included due to the use of the projection method, as discussed above. Thus, u, v in

Equations (4.10) are actually auxiliary velocity components, but to simplify notation,

“ˆ”, as used in Eqs. (4.1), is suppressed. Also, the source terms implemented as

forcing terms (at cell centers) are not presented, for simplicity.

Time integration of Eq. (4.10) is performed with the “generalized” trapezoidal

method; for the x-momentum equation, it is written as

un+1 = un + θdt
[
ν∆u− (ū2)x − (ũv̄)y

]n+1
+ (1− θ)dt

[
ν∆u− (ū2)x − (ũv̄)y

]n
,

(4.12)

where θ is a weighting factor of the integration scheme and is provided by the user.

For θ = 0, the explicit forward-Euler method occurs; for θ = 0.5, trapezoidal integra-

tion is recovered; and for θ = 1, the backward-Euler integration scheme is produced.

With regard to time accuracy, forward and backward-Euler methods are first-order

accurate, while trapezoidal integration is second-order accurate. The backward-Euler

scheme is usually somewhat more stable for non-linear problems than is the trape-

zoidal method; thus larger step sizes dt may be employed.

4.3.1 δ-form quasilinearization

Nonlinearities in the N.–S. equation are handled with the δ-form Newton–Kantorovich

(quasi-linearization) approach—see, e.g., Ames [201], Kantorovich and Akilov [202].

First, define

δu = u− u(m) , (4.13)

where the superscript (m) denotes an iteration counter, as in ordinary Newton iter-

ation procedures. Since a staggered grid is being used, the velocity field needs to be

averaged to construct the control-volume implementation of this method; the result-

ing forms for the non-linear terms (in the x-momentum equation) are, respectively,
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(ū(m)2)x|i =
1

h

(
ū

(m)2
i+1 − ū

(m)2
i

)
+

1

h

(
ū

(m)
i+1δui − ū

(m)
i δui−1

)
+

1

h

(
ū

(m)
i+1δui+1 − ū(m)

i δui
)
,

(4.14)

(ũv̄)y|j =
1

h

(
ũj v̄j − ũj−1v̄j−1

)(m)
+

1

2h

(
v̄

(m)
j δuj − v̄(m)

j−1δuj−1

)
+

1

2h

(
v̄

(m)
j δuj+1 − v̄(m)

j−1δuj
)
,

(4.15)

with “˜” and “¯” quantities defined in Eqs. (4.11). The remaining linear diffusive

term is treated by simply substituting the definition of δu into the term as

∆u = ∆(u(m) + δu) , (4.16)

and no averages are required in this case, which is much easier to handle.

By substituting Eqs. (4.13)–(4.16) into Eq. (4.12), the complete δ form of the

momentum equation is written as{
I − θdt

[
ν∆(·)− (ū(m)·)x − (v̄(m)·)y

]}
δu = un − u(m)

+ θdt
[
ν(∆u(m) − (ū(m)2)x − (ũ(m)v̄(m))y

]
+ (1− θ)dt

[
ν∆un − (ūn 2)x − (ũnv̄n)y

]
.

(4.17)

Expressions such as (ū(m)·)x in the above equation denote an appropriately averaged

value of δu that is to be inserted into the slot indicated by the “ · ”. These expressions

are discretized by a chosen method consistent with the procedure resulting in Eq.

(4.14) and (4.19). As seen in Eq. (4.17), when m → ∞, implying u(n+1) = u(m) and

δu = 0, the RHS becomes the complete original equation (Eq. (4.12)). Also, the RHS

can be evaluated at any iteration m. The LHS is equivalent to the Jacobian matrix

of a typical Newton’s method. Analogous equations hold for δv and δw for solving

the y- and z-momentum equations.
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4.3.2 Spatial discretization

Further discretization of Eq. (4.17) is straightforward but not trivial. For concise

notation, Eq. (4.17) is written in the form

J(Fx)δu = −Fx , (4.18)

where −Fx is the RHS part that includes both n and n + 1 time step information;

J(Fx) is the Jacobian matrix required for implementing a Newton iteration procedure.

The former should be discretized to gain as much accuracy as possible, and the latter

should be approximated so as to obtain maximum numerical stability. First, spatial

derivatives in the RHS terms are approximated using a 2nd-order, centered finite-

volume discretization with staggered indexing, so that the discretized form of F (n+1)
x

is given as

Fn+1
x =− u(m)

i,j + θdt
{
ν
[ 1

h2
x

(ui−1,j − 2ui,j + ui+1,j)
(m) +

1

h2
y

(ui,j−1

− 2ui,j + ui,j+1)
]
− 1

4hx

[
u2
i+1,j + 2(ui+1,j − ui−1,j)ui,j − u2

i−1,j

](m)

− 1

2hy

[
(ui,j + ui,j+1)v̄i,j − (ui,j−1 + ui,j)v̄i,j−1

](m)}
.

(4.19)

Also, Fnx has completely analogous terms as in Eq. (4.19). At each time step, iteration

is required until Fx = Fnx + Fn+1
x = 0, to within a specified tolerance.

Usually, J(Fx) is obtained by differentiating the RHSs of Eq. (4.19)—the n+1

time level of Fx—with respect to each of the five entries of u and v (or seven entries

in 3-D cases) for every grid point. Two-dimensional cases with five-band discrete

matrices are analyzed here, because first, the 3-D solver is extended from a 2-D

code; second, the Douglas–Gunn time splitting method is used (to be discussed) and

its form is essentially independent of spatial dimension. Therefore, the elements of
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Jacobian matrix (for the x-momentum equation) are precisely

∂Fn+1
x

∂ui−1,j

= −θdtν
h2
x

− 1

2hx
(ui,j + ui−1,j) , (4.20a)

∂Fn+1
x

∂ui,j−1

= −θdtν
h2
y

, (4.20b)

∂Fn+1
x

∂ui,j
= 1− 2θdtν(

1

h2
x

+
1

h2
x

) +
1

2hx
(ui+1,j − ui−1,j) +

1

2hy
(v̄i,j − v̄i,j−1) , (4.20c)

∂Fn+1
x

∂ui,j+1

= −θdtν
h2
y

, (4.20d)

∂Fn+1
x

∂ui+1,j

= −θdtν
h2
x

− 1

2hx
(ui+1,j + ui,j) . (4.20e)

In order to improve stability of the overall algorithm, as well as to satisfy the discrete

maximum principle for equations of δu and δv, the first-order upwinding scheme is

employed here. Also, the use of upwinding for the LHS advective terms is quite

common practice. For porous media flow, the Darcy term is also included in the LHS

Jacobian matrix to enhance implicitness of the numerical scheme since cases with

very small permeabilities can result in computational instabilities. Other momentum

source terms are treated as forcing functions. The basic form of the first-order upwind-

difference formula is given by

(
ū

(m)
i,j ·
)
x
' D∓

(
ū

(m)
i,j ·
)
≡

{
D−

(
ū

(m)
i,j ·
)

, ū
(m)
i,j > 0 ,

D+

(
ū

(m)
i,j ·
)

, ū
(m)
i,j < 0 ,

(4.21)

with D−, D+, representing backward and forward finite differencing, respectively.

Furthermore, the use of upwinding preserves tridiagonality of system matrices, which

will be particularly important for implementation of efficient time-splitting solution

procedures (herein, D–G). Also, the Jacobian matrix elements, which are produced

from first-order upwinding, are somewhat simpler than those given in Eqs. (4.20).

Although the approximate Jacobian matrix is used, it produces no serious side ef-

fects other than slightly slowed convergence of quasilinear iterations [196]. With D0

denoting the centered finite difference, the complete discretized Burger’s equation in,
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e.g., the x direction, can be expressed as{
I − θdt

[
ν(D2

0,x +D2
0,y)(·)−D∓,x(ū(m)·)−D∓,y(v̄(m)·)

]}
δu = un − u(m)

+ θdt
[
ν(D2

0,x +D2
0,y)u

(m) −D+,x(ū
(m)2)−D−,y(ũ(m)v̄(m))

]
+ (1− θ)dt

[
ν(D2

0,x +D2
0,y)u

n −D+,x(ū
n 2)−D−,y(ũnv̄n)

]
.

(4.22)

Here, a simplified form of upwind differencing is used for LHS; the usual centered

approximations are employed in the RHS. Note that D−, D+, used on RHS are ac-

tually centered since they represent differences taken across grid cells. However, these

notations on the LHS are not centered, because the dependent-variable increments

δu appear at the staggered-grid points, rather than in the cell center.

4.3.3 Douglas and Gunn time-splitting

In the present study, Douglas and Gunn time-splitting [203] is applied to efficiently

solve large matrix systems arising from discretization of the N.–S. and thermal en-

ergy equations, e.g., Eq. (4.22), provided that the system matrix corresponding to

the complete multi-dimensional system is sparse and banded with very regular band

structure. For notational simplicity, Eq. (4.22) is written as

(I +An+1)δu = sn , (4.23)

where the superscripts n and n + 1 denote time levels. Both sn and An+1 contain

iteration m information. Here, δu is the difference of dependent variables between

successive quasi-linearization iterations; namely, it is updated to δu(m+1) such that

u(m+1) − u(m) = δu(m+1). Next, the matrix A can be written as a sum of matrices,

A =
3∑
i=1

Ai = Ax +Ay +Az .

Each Ai is a matrix associated with discretization in a specific spatial direction, thus

implying parallelization possibilities, at least in principle. Application of the D–G
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procedure to Eq. (4.23) yields

(I +Ax)δu(1) = sn , (4.24a)

(I +Ay)δu(2) = δu(1) , (4.24b)

(I +Az)δu(3) = δu(2) . (4.24c)

Thus,

δu(m+1) = δu(3) .

Observe that since matrices Ax, Ay, and Az are tridiagonal, each of the (1-D) Eqs.

(4.24) can be easily solved by the direct LU decomposition method. Since multi-

dimensional problems are decomposed into sequences of 1-D problems via this ap-

proach, only O(N) (N = Nx×Ny×Nz) arithmetic operations are performed per time

step, and this cannot be easily achieved with any common iterative method. Explicit

methods may be as efficient as time splitting, but for multi-dimensional problems

they require (usually) unacceptably small time steps to maintain stability.

The numerical properties of consistency, accuracy, and stability of this split scheme

are discussed in detail in [136]. First, the fact that the RHS of Eq. (4.24a) is the

complete original unsplit equation implies that each split step is consistent with the

unsplit difference equation. Second, spatial and temporal accuracy of the split scheme

is formally of the same order as that of the unsplit scheme. Third, stability of the

split scheme is at least as robust as that of the unsplit scheme. Furthermore, D–G

makes it easier to extend a 2-D CFD code to a 3-D one, as was done by McDonough

and Dong [204]. Considering this configuration, the parallelization is implemented in

such a way that planar 2-D equations are solved at the same time.

Finally, it is remarked that although only momentum equations are discussed

here, the energy equation is solved in a similar way. In this solver, the thermal

energy equation is coupled with the momentum equation by the Boussinesq buoyancy

term; namely, it is in the outer “do loop” of the “do loop” of quasi-linearization of
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the momentum equation. Once the advanced-time velocity is obtained from the

momentum equation, it is substituted into the energy equation, which therefore will

not have non-linear advection terms. The energy equation is also solved by the D–G

time splitting method, and thus can be parallelized in the same way.

4.4. Solution and parallelization of the pressure Poisson equation

As is well known, it is of great importance to efficiently solve the pressure Poisson

equation (PPE) of incompressible CFD when using essentially any primitive-variable

formulation. Since arithmetic required for this task is sometimes as much as 80%

of the total arithmetic for a CFD problem, PPE solvers should be parallelized in

order to improve the speed of a complete CFD code. Jacobi iteration and successive

overrelaxation (SOR) methods (which include Gauss–Seidel) are common algorithms

used in solving elliptic equations (see, e.g., Young [205]), albeit there has been con-

siderable emphasis on Krylov subspace methods in recent years (Axelsson [206] or

Saad [207])—for example, GMRES and BiCG-Stab. However, the latter methods

are relatively complex and require significantly more storage than Jacobi or SOR

approaches. Hence, they are less well suited for use in modern computer architec-

tures which employ many cores with limited RAM per core. Moreover, their required

arithmetic per iteration greatly exceeds that of Jacobi and SOR algorithms. Our

purpose in the current study is to parallelize Jacobi and SOR codes and explore their

speedups, efficiencies, etc., within the framework of common higher-level program-

ming languages.

In particular, both serial and parallel performance of the three widely-used pro-

gramming languages Fortran (McCracken [208]), C, and C++ (Stroustrup [209]), are

considered. Fortran is typically used for numerical calculations associated with sci-

The material contained in this section (Sec. 4.4) has been published as [Proce-
dia Engineering, 61, 2013, 136-143] [10.1016/j.proeng.2013.07.106] c© [copyright Elsevier]
[https://www.journals.elsevier.com/procedia-engineering]
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entific programming, but the latter two are becoming more and more widely used

and are involved in GPU calculations. GPUs might be the future for powerful par-

allelization; therefore, knowing the fastest language with an interface to GPUs and

parallelization is important for future scientific calculations. Hence, it is intriguing

to compare details of the speed differences between the three languages and investi-

gate their performance in both serial and parallel computations. The analysis sec-

tion opens with a well-posed mathematical problem corresponding to the PPE of

incompressible CFD along with its discretization. It also includes the descriptions of

computing tools and parallel strategies. Details of timers and compilers employed for

the three programming languages are then given. In the results section, the paral-

lelization results from Jacobi, point-SOR and red-black ordered SOR iterations, are

presented; an overall rating of these methods is summarized in the conclusion section.

4.4.1 Analysis

The problem. The PPE problem studied here takes the form

∆p = f(x, y, z) , (x, y, z) ∈ Ω ⊂ R3 , (4.25)

with Dirichlet boundary conditions u(x, y, z) = const. on all boundaries (∂Ω). Here,

p is the pressure and f a forcing function; ∆ is the usual Laplace operator. The

problem is simplified in the following respects: set the forcing function to zero; use

unity Dirichlet boundary conditions on all of ∂Ω, and let solution domain Ω be the

unit cube. Hence, the exact solution is u ≡ 1 everywhere permitting easy detection

of rounding and iteration errors since there is no truncation error for any consistent

discretization.

Equation (4.25) is discretized by second-order centered differencing resulting in a

linear system of equations to be solved using Jacobi and SOR iteration. The uniform

grid spacings (e.g., hx = 1/(Nx − 1)) are canceled from the difference equation, due

93



to the homogeneity of Eq. (4.25), resulting in

u
(n+1)
i,j,k = ax

(
u

(n)
i−1,j,k + u

(n)
i+1,j,k

)
+ ay

(
u

(n)
i,j−1,k + u

(n)
i,j+1,k

)
+ az

(
u

(n)
i,j,k−1 + u

(n)
i,j,k+1

)
,

(4.26)

with i, j, k = 1, 2, . . . Nx, Ny, Nz; ax, ay and az are coefficients resulting from the

discretization, and (n) is the iteration counter. Nx, Ny etc., are the numbers of grid

points in each spatial direction.

Parallelization. The parallelization strategy used here for all three iterative meth-

ods consists of parallelizing only the outer loop of the three nested loops of a 3-D

problem. This defines planes via the two inner indices and sends different planes to

different cores—a very simple form of domain decomposition [136]. Note that each

plane is currently treated serially within each core. Furthermore, since there are only

16 cores per node, cores must be used repeatedly in processing x-y planes of the 3-D

problem. This parallelization mechanism has undergone only initial investigation,

but current results show reasonable speedups. As a point of interest, it has also been

demonstrated that parallelizing the inner loop is even much slower than the serial

case, a not entirely unexpected result. A similar strategy is to send each plane to

different nodes, and parallelize the plane in each node. This should be faster, but

needs more cores and MPI to cross the nodes. Future work within the framework of

a complete large-eddy simulation code may include this approach.

The hardware. All codes were run on the high-performance computer, DLX, a

Dell, Inc., cluster, at the University of Kentucky, consisting of 256 basic compute

nodes, each of which has 64GB RAM of 1600 MHz and dual 2.6 GHz Intel E5-2670

processors with 8 cores (Sandy Bridge) in each processor. Thus, there are 16 cores

available without accessing other nodes. However, the RAM per core is only 4 GB,

which implies that numerical algorithms should be relatively simple in order to avoid

requiring excessive storage. In light of this, Jacobi iteration seems to be a reasonable
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choice of solution method (despite its deficiencies) because it can be easily parallelized

on the DLX using OpenMP, Dagum and Menon [187]. This will be done in the present

study for both Jacobi and SOR methods since OpenMP is believed to be better for

parallelizing across cores, and it is much simpler than MPI. MPI could be used across

nodes—and across processors—very well, but it is more difficult to implement.

Programming languages. Codes to solve this linear system of equations using

Jacobi, point SOR and red-black ordered SOR iterative methods are written in three

different programming languages: Fortran, C, and C++, as noted earlier. To permit

valid comparisons of these languages, factors such as parallelization strategy, algo-

rithm, and code structure are made the same across the languages for each iterative

method. One can refer to Appendices A and B for specific code examples of point

SOR in Fortran and C; codings for other algorithms are similar, and the C++ pro-

grams are very much like those in C. It should be noted that some intrinsic parts

embedded in each language, e.g., ways of extending stack size for large problems, are

written in different ways; also for codes written in C and C++, do-loops are used

to set the initial conditions of pressure rather than employing vector code assign-

ments that are used in Fortran; the manner in which results are written to files is

also not perfectly identical across the three languages. However, this will not affect

recorded timing results because wall-clock timings begin with the lines of code that

immediately follow initializations and end before writing results to files.

Timing and compilation. A very important factor that can potentially affect run-

time results of any numerical experiment is the timer. In the context of parallelization,

the elapsed time, or wall-clock time, is commonly used rather than the total CPU time

accumulated by all processors (or cores). The directive omp get wtime in OpenMP is

employed to monitor run time. This is the same for all three languages in the parallel

computing environment; the same timer can also be used for serial cases when the
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number of threads is set to one. The timers specific to C/C++ and Fortran in the

serial case outside the parallel computing environment are also tested. The run times

showed little difference between using them and the common timer, so all reported

results were obtained using the OpenMP directive. It should be noted that measured

results often varied somewhat on a run-to-run basis; as much as 10% run-to-run

differences were observed. This is mainly due to the state of the computer (including

a number of other users) at the time a job begins execution. Thus, averaging timing

data over several runs might be reasonable, but instead the direct data of a single

execution by running jobs for all three languages simultaneously is used. Clearly, this

sacrifices absolute run times, but for purposes of comparisons across programming

languages this is adequate for mitigating the “initial machine state” problem.

In addition, compilation can also be a reason for run-time differences. gfortran

is employed to compile Fortran; g++ and gcc compilers were used for C++ and

C, respectively. The Intel compiler, ifort, was also used for some cases of Fortran

code, and it could sometimes provide up to 20% faster execution speed than gfortran.

However, it did not seem to perform stably if more than three cores were employed—

it even produced different numbers of iterations for unknown reasons. Hence, mostly

gfortran is used as Fortran compilations. Moreover, the codes were all compiled at

the -O3 optimization level. It is found that executables produced with -O1 were

slower than those obtained with -O2, -O3 and -O4 in both serial and parallel cases.

The latter three optimization levels showed very little difference in calculation speeds.

The performance of -O2 was slightly faster than that of the other two in serial cases,

and -O3 was slightly faster in parallel cases. Here, the -O3 optimization is used to

perform all reported numerical experiments.
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4.4.2 Jacobi iteration method

In this section, the main results from parallelization of different linear iterative meth-

ods using three programming languages are presented and discussed in detail. Several

cases of Eq. (4.26) have been run for Jacobi, point SOR and red-black ordered SOR

methods (using an iteration convergence tolerance εt = 10−10 applied to the max-

norm of the iteration error). For each of the three languages, grid-point problems

of 513, 1013, 1513 and 2013 are solved, and each was run using core number ranging

from one to sixteen, the maximum number of cores in one node. Since problem size

of millions of grid points is often employed in many industrial problems, and much

of the data yield similar information, the cases of 1013 grid-point problem are mainly

considered using both Jacobi and SOR methods for observable comparisons. The

2013 grid-point problem is also discussed for both point and red-black ordered SOR

methods in the interest of showing more information about their performance for

even larger problems.

In Jacobi iteration, calculation of each grid-point value is independent since it

is calculated from its neighborhood points of the preceding iteration as indicated

in Eq. (4.26), which implies that all points within the 3-D nested do-loop could be

parallelized. However, as indicated earlier, only x-y planes are calculated in parallel to

speed up the overall calculation by parallelizing the outer loop and to guarantee that

compute times exceed those for communication. Each plane is assigned to different

cores at the same time, but the values within each plane are still calculated serially by

the chosen core (thread). Different parallelization methods have also been attempted

to allow all points, rather than just some points, to be parallelized in the context of

Jacobi iteration, but did not improve performance over that of the plane-wise strategy.

This is likely due to a large amount of information required to be exchanged between

different cores and consequent increased communication, leading to increases in run

time.
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Figure 4.2 shows the relationship between number of cores used and the corre-

sponding speedups for each language solving the 1013 grid-point problem via Jacobi

iteration. It is clearly seen that there is a near-linear relationship (with slope some-

what less than one) between speedups and the number of cores used for all three

languages when less than eight cores are assigned, and there is little difference in

speedups amongst the three languages. However, the speedup increases much more
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Figure 4.2: Jacobi iteration for 1013 grid-point problem: number of cores vs. (a)
speedup; (b) elapsed time.

slowly when more than eight cores are used, and there is even a decrease in speedups

for cores between eight and twelve. Also, the difference in speedups of the three

languages becomes somewhat more evident; C has an at most 10% higher speedup

over Fortran, and Fortran exhibits at most a 5% higher speedup over C++. The dis-

crepancy from eight cores to twelve may be explained by remembering that the DLX

nodes contain two processors, and each has eight cores. In addition, OpenMP works

best across cores rather than between processors; hence, the observations for greater

than eight cores are not completely unexpected—except for the noticeable decrease

in speed at eleven cores for all programming languages. This possibly represents a

communication problem, but exact details will require further investigation.
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It is emphasized that speeding up the PPE code is our primary objective; hence

elapsed time provides the most direct information in this regard, and this is shown

in Figure 4.2(b). As is true for Fig. 4.2(a), these results correspond to the 1013 grid-

point problem. Clearly, the parallelized code has greatly decreased the calculation

time compared with the serial case. As the number of cores increases, elapsed time

decreases accordingly. Moreover, the figure shows that Fortran is slightly faster than

the other two languages. It does not differ much from C but is approximately 10%

faster than C++ in a parallel environment. Furthermore, Fig. 4.2(b) shows that for

C and Fortran, run times decrease from approximately 150 sec. to about 15 sec. in

going from a single core to sixteen.

Figure 4.3 displays the relationship between the problem size and parallel effi-

ciency, given as

efficiency =
SP
P
. (4.27)

Only Fortran results are shown, but similar results are found for C and C++. Here,

SP is speedup with P cores. From this figure, it is clear that OpenMP parallel
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Figure 4.3: Jacobi iteration in Fortran: problem size vs. efficiency with different
number of cores.

performance of Jacobi iteration is best for the 1013 grid-point problem. For the 513

grid-point problem however, the highest speedup achieved for sixteen cores is just
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around six, while for both 1513 and 2013 grid-point problems, the speedups for sixteen

cores are only about three, which are even worse. Hence, problem size is also a factor

that influences parallel performance; and it is generally expected that efficiency should

increase as problem size increases since this typically implies improved balancing of

computation and communication times. This agrees with results shown in the figure

for problems with up to 1013 grid points, but efficiency generally decreases as problem

size increases beyond this. This may be due to the increased time needed to read from

RAM on a different core if RAM for each core is not quite sufficient for the problem.

Also, it is easily seen that for a particular grid-point problem, as the number of cores

increases, efficiency decreases—consistent with Fig. 4.2(a).

4.4.3 Point SOR and red-black SOR iteration methods

In this subsection, results from both point and red-black ordered SOR methods are

provided and discussed. It is shown that although SOR would seem to be more

difficult to parallelize, its performance is not degraded when simple OpenMP par-

allelization, completely analogous to that used for Jacobi iteration, is employed. In

particular, theoretical optimal convergence rates are still observed.

Unlike Jacobi iteration, point SOR iteration seems difficult to parallelize since

calculation of values at the new iteration needs information from the same iteration

level. Indeed, the dependence on evolved values makes it un-parallelizable for all

points in the 3-D nested loop. However, this problem is avoided by ignoring the fact

that calculation of any particular grid-function value depends on other values at the

same iteration which in parallel computation may, or may not, have been updated.

This approach performs quite well through using OpenMP in the same way as done

for Jacobi iteration. This is not hard to explain by observing that only x-y planes are

calculated in parallel, so the SOR iteration method is still effective within each plane,

where values in x and y directions of the new iteration level are always available.
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For values in z-direction, information from the preceding iteration is still used to

guarantee parallelization, and this partially parallelized point SOR proves to work

decently.

Comparatively, red-black ordered SOR [205] seems to be much easier to parallelize

because the black-point values from a previous iteration are the only information

needed to calculate red points in the current new iteration level, and vice versa.

Hence, parallelization can be performed within each set of the red and black points.

The two 3-D nested do-loops are both parallelized by implementing OpenMP on the

outer loops, a very straightforward parallelization. These loops are similar to the

Jacobi iteration do-loop since every point can ideally be calculated in parallel, but

the best performance is achieved by parallelizing the outer loops since this leads to

less information exchange and thus shorter run time.

For optimal SOR, the total arithmetic scales as O (N1.333...), where N is the total

number of grid points in a 3-D discrete approximation, rather than O (N2) required

by Jacobi iterations. The optimal iteration parameters for both point and red-black

ordered SOR are given by (see, e.g., [205])

ωb =
2

1 +
√

1− cos πh
(4.28)

for uniform grid spacing h in all directions and Dirichlet boundary conditions on all

of ∂Ω.

The 1013 grid-point problem. Figure 4.4 displays speedups of point SOR (part

(a)) and red-black ordered SOR (part (b)) analogous to results given in Fig. 4.2(a)

for Jacobi iteration. It is apparent that nearly linear speedup (with slope slightly

less than unity) is observed in Fig. 4.4(a) through, roughly, six to eight cores for all

three programming languages; performance degrades somewhat thereafter, and the

difference between different languages becomes larger, with Fortran staying closest to

ideal speedup (except for 16 cores). However, a comparison of Fig. 4.4(a) with Fig.
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Figure 4.4: Number of cores vs. speedup for 1013 grid-point problem: (a) point SOR;
(b) red-black ordered SOR.

4.2(a) shows that point SOR parallel performance is noticeably better than that of

Jacobi iterations, especially for more than eight cores, this is not the case with red-

black ordered SOR shown in Fig. 4.4(b) though. Sub-linear speedups are observed

after only four cores. The highest speedup achieved for this method is only eight for

sixteen cores. The performance of C++ and Fortran is similar, while C is noticeably

better despite inferior to the point SOR case. It seems that this method cannot go

any farther for more than eight cores, which is even worse than Jacobi iteration in

Fig. 4.2(a). This indicates that parallelizing the outer loop might not be a promising

strategy for red-black ordering for large number of cores. A possible explanation is

that if more cores are assigned, more threads are working at the same time with

different efficiencies and speeds; but the black points can only be calculated if all the

red points are finished, and vice versa, which implies that there is a wait time for the

slower threads to finish the previous task.

Although the red-black ordered SOR method does not perform as well as point

SOR and Jacobi iteration with respect to parallelization, it does exhibit reduced

time of calculation. Run times for both SOR methods are presented in Fig. 4.5.
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The first thing observed is that run times for both methods are far less than for

Jacobi iteration—by more than an order of magnitude (ranging from slightly over

4 sec. to less than 0.4 sec. )—because the numbers of iterations are far fewer for

both methods and parallelization was more effective (only for point SOR). Also, it

is clearly seen that red-black ordered SOR has as much as 60% reduced time in the

serial case compared with point SOR because of even fewer required iterations, and

it can achieve the same computation time as point SOR using less than eight cores,

which is relatively fast and actually resource saving.
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Figure 4.5: Number of cores vs. elapsed time for 1013 grid-point problem: (a) point
SOR; (b) red-black ordered SOR.

It is then reasonable to ask whether SOR is performing as theoretically predicted

(see [205]) despite not always having available the most recent iterates. Namely, Figs.

4.4 and 4.5 correspond to only a single (rather moderate) problem size, so one must

question whether this performance will persist for both larger and smaller problems.

It is easily shown, as noted earlier, that total arithmetic scales as O (N1.333...), and

this implies that required number of iterations at a fixed convergence tolerance must

be proportional to N0.333.... Figure 4.6 shows that this is precisely true for the par-

allelized algorithm of point SOR; red-black ordered SOR should have similar results.
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In particular, the required number of iterations grows rather slowly for optimal SOR

permitting solution of quite large problems when only moderate parallelization is

employed (eight cores for results in Fig. 4.6).
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Figure 4.6: Required iterations vs. problem size for optimal SOR.

The 2013 grid-point problem. It is also interesting to consider performance of

SOR iterations for a 2013 grid-point problem since this magnitude of problem is closer

to current practical applications, and the performance of Jacobi iteration paralleliza-

tion, as stated earlier, simply cannot satisfy the current needs. As seen in Fig. 4.7(a),

point SOR in Fortran provides almost linear speedup with number of cores ranging

from one to sixteen; it has nearly ideal linear speedups for less than eight cores, which

is the best result at present. C and C++ also perform quite well for less than eight

cores; however, beyond eight cores their speedup deteriorates, even decreasing slightly

with 12 or more cores. It is roughly concluded that C and C++ do not parallelize

as effectively as Fortran for larger problems, but run time (ranging from about 5 sec.

to 70 sec. for corresponding cores) for the three languages is almost the same and far

less (two to three order of magnitudes) than what Jacobi iteration needs, as observed

from part (b) of Fig. 4.7. C and C++ seem to require somewhat less run time than

Fortran in serial computing, but Fortran provides better OpenMP parallelization.
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Figure 4.7: Point-SOR for 2013 grid-point problem: number of cores vs. (a) speedup;
(b) elapsed time.

Red-black ordered SOR for larger problems, however, is somewhat similar to the

performance of Jacobi iteration with respect to parallelization, as shown in Fig. 4.8(a).

Increase of speedup almost stops beginning from four cores for C and C++ and from

six cores for Fortran. The method simply does not parallelize with OpenMP after
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Figure 4.8: Red-black ordering SOR for 2013 grid-point problem: number of cores vs.
(a) speedup; (b) elapsed time.

that point. However, the elapsed time figure in part (b) shows that red-black ordered

SOR used in Fortran can actually achieve 5 sec. run times using only eight cores,
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which is already the least time that point SOR could achieve for maximum cores in

one node; C and C++ could only achieve run times around 14 sec. at best. Thus, no

matter whether point SOR or red-black ordering are used for parallelization, Fortran

seems to be a better choice of programming language for large problems.

Lastly, the efficiencies of the two SOR methods are presented in Fig. 4.9 anal-

ogous to Jacobi iteration. Part (a) shows that parallelization efficiency continues

to increase as the problem size increases (except for a slight, unexplained, decrease

in efficiency for the case with 16 cores) even when over 1503 grid points are used,

which is generally expected. However, red-black ordered SOR in Fig. 4.9(b) shows

decreasing efficiency after problem size exceeds 1513 grid-points for all cases, similar

to Jacobi iteration, and which again reflects only fair performance in parallelization

with OpenMP. Also, for a set grid size, as the number of cores increases, efficiency

decreases, which corresponds to previous results. It is found that point SOR is best

for parallelization within the current OpenMP strategy compared with the other two

methods shown in Figs. 4.3 and 4.9(b).
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Some concluding remarks. In this section results for parallelized Jacobi and

SOR iterations applied to solving a simplified PPE, in order to decrease total run-

time expenditure, are presented. Codes written in Fortran, C, and C++ were run

for both serial and parallel cases employing OpenMP with up to, and including,

16 cores. Care was exercised to guarantee these comparisons are valid in terms of

algorithm/code structure, optimization levels and timers, across the three languages.

In this OpenMP structure, it is concluded that parallelization of Jacobi iteration

has greatly decreased the time for calculation, but that it is still not competitive with

optimal point SOR in either parallel performance or reduced run time. Indeed, for

the baseline 1013 grid-point problem, the run time for parallelized Jacobi iterations

employing 16 cores was nearly four times longer than that for SOR run on a single

core—and SOR shows better parallel efficiency than does Jacobi iteration; for the 2013

grid-point problem, Jacobi iteration performs even worse and could hardly achieve the

results from point SOR in Fortran. In addition, for Jacobi iterations, it is found that

the speedup somewhat anomalously decreases as the number of cores used increases

in a certain range of number of cores; this was not observed for either of the SOR

methods. On the other hand, red-black ordered SOR is not as effective as point

SOR in parallelization but could achieve the same run time with fewer cores; also

both SOR methods show that Fortran produces noticeably better results than C and

C++, while the difference is not very obvious in Jacobi iteration.

Furthermore, some unsatisfactory results reveal limitations of OpenMP—again,

mainly for Jacobi iterations—although it is simpler to implement. The structure of

the DLX, and typical machines like it, may be more suitable for MPI (or combinations

of MPI and OpenMP). Moreover, it is also found that Fortran is approximately 10%

faster than C, and C is approximately 10% faster than C++ for serial cases in Jacobi

iteration and red-black ordered SOR, although this is not the case for point SOR; for

parallel cases, Fortran is slightly faster than C, and still approximately 10% faster
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than C++ in Jacobi iteration; in red-black ordered SOR, Fortran is 10% faster than

C, and C is approximately 10% faster than C++ for the baseline 1013 grid-point

problem, but for larger problems, Fortran is as much as 50% faster than C; for point

SOR, Fortran is faster than C and C++ for larger numbers of cores. It is remarked

that for large problems in which Fortran can execute up to 50% faster than C, this

can be the difference between “overnight turnaround,” or not; and this can be crucial

in industrial scenarios. In addition, it should be noted that using optimal iteration

parameter in SOR is of crucial importance. Without these, SOR performance would

be only marginally better than that of Jacobi iterations, and this highlights the need

to seek optimal parameters in the context of more general (than Dirichlet) boundary

conditions, or to find an efficient, invertible mapping of general boundary conditions

to Dirichlet conditions.

4.5. Parallel performance of the solver with OpenMP

The code being used is well structured for parallelization. There are at least three

levels at which this can be done [185]. The most obvious one is due to the reinter-

pretation of Douglas & Gunn time splitting to permit 2-D planar solves within a 3-D

domain, allowing planes to be solved in parallel. Second, further parallelization is

possible within each planar solve. Third, the “enhanced” ILES is implemented in

such a way that the large and small scales of the solution can be computed simulta-

neously during each time step, thus allowing further parallelization. In addition, the

PPE solvers can be parallelized [210], as described in the previous section.

First, as shown in the LHS of Fig. 4.10, parallelization of the PPE solver for

generalized coordinates presents results almost as good as those obtained for a simple

SOR code [210]. Speedup of 11 could be achieved for 14 cores with an almost linear

speedup for up to more than 8 cores. The results come from an 81×101×81 gridding

of the cubical LDC problem.
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Figure 4.10: Parallel Performance of (a) PPE solver and (b)momentum equation

Second, parallel performance of the momentum equation solved with Douglas–

Gunn time splitting is shown in the RHS of Fig. 4.10. As is seen, speedup of a

maximum of 4.85 is obtained for 16 cores; linear speedup is lost after only two cores,

and the speed increases very slowly after that. This is due to the fact that time

and memory are required for each thread to copy all the 2-D variables for each

independent calculation. These once-shared 2-D variables are made thread-private

through OpenMP to allow each 2-D planar solve be sent to each core. As the number

of cores increases, more copies of variables are made by threads, and more run time

is needed. If this does not offset decreased time by parallelizing each planar solve,

speed is lowered. Also, it is seen that the speed does not increase at all after eight

cores. Since one socket has only eight cores, this may be due to what is called non-

uniform memory access (NuMA), which indicates that remote accesses become much

slower than local ones for every processor [211]. Another way to treat the momentum

equation is to parallelize each line solve within each 2-D planar solve, the results of

which are not as good as the present treatment of the momentum equation, although

some speedup of around four for 16 cores could be achieved. It is also intriguing

to consider using both MPI and OpenMP, since 2-D planar solves could be sent

to different nodes by MPI, and they could be parallelized within each node using
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OpenMP. This, however, still needs much investigation, as it is found that hybrid

methods are even slower than pure MPI methods in some situations.

Parallel performance of the overall code is also tested. For laminar flow LDC

problems using a large number of grid points, factors of approximately six in speedup

could be achieved for 16 cores. For turbulent flow computed with the enhanced

ILES method, the tested speedup is around 4.5. This speedup could also be roughly

estimated by using the percentage of the arithmetic operations for solving the PPE

and momentum equations, as well as the speedups shown in Fig. 4.10. For 16 cores,

only 1/10 of the serial run time is needed for PPE, and 1/4.85 for the momentum

equation.

For the momentum equation solves, the present ILES code has a total arithmetic

operation of approximately 800 (not separately counting adds and multiplies) for

each grid point, with another 72 operations per grid point for the (algebraic) solution

process for each iteration. Thus, there are roughly 900 arithmetic operations per grid

point, with the (reasonable) assumption of four (4) quasilinear iterations per time

step. Note that this operation count may seem extremely large, but it arises from

the fact that this is a generalized-coordinate code.

The same operation counting procedure shows that set-up requires approximately

70 arithmetic operations per grid point for the PPE, and this is done only once

per time step. For SOR, in 3-D, if N is the total number of grid points, the required

number of iterations needed to significantly reduce iteration error is CpN
0.333..., where

Cp is an O(1) constant depending only on the convergence tolerance. There are

around 30 arithmetic operations per iteration for each grid point. As a result, PPE

solves are rather less important for generalized-coordinate codes than for Cartesian

coordinates with respect to parallelization, especially with a smaller number of grid

points. For instance, if a 513 grid-point problem is considered, the total arithmetic

count per grid per time step for PPE is around 3000 (Cp is assume to be one), even
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less than the number (3600) for momentum equations. The arithmetic of PPE can,

however, overrun that of the momentum equation very easily if a somewhat larger Cp

and a larger grid size problem are considered.

For a typical CFD grid size of N = 513, it is estimated that the PPE solver takes

around 50% of the total arithmetic, and the momentum equation takes another 50%;

thus the speedup is estimated to be approximately

1

(50%× 0.1 + 50%× 0.21)
≈ 6.45 ,

for the overall code. Note that the speedup would change accordingly if the number of

SOR iterations decreases and the number of quasi-linearization iterations increases.

For turbulent flow computations, since the PPE must be solved twice in the context

of synthetic-velocity LES, it takes as much as 70% of the overall computation; and the

momentum equations take around 20%, with 10% of other parts. Thus, the speedup

is estimated to be

1

(80%× 0.1 + 20%× 0.21 + 10%)
≈ 4.5 ,

which is not far from the tested speedup of 4.7. Further parallelization could be

attempted within the small do-loops in the small-scale part. The large scale and

small scale are also expected to be calculated in parallel using MPI. However, the

tradeoff still needs to be considered since much time is needed for millions of words

of data to transport to another node for each time step.

4.6. Summary and conclusions

In this chapter, a detailed presentation of numerical implementation and paralleliza-

tion is provided for the basic flow solver. First, the Gresho [191] projection method is

employed in the current CFD research code. This is quite different from the widely-

used commercial CFD codes, such as Fluent or STAR-CD, which are based on dif-

ferent forms of the SIMPLE algorithm (see Patankar [200]). The projection methods
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are theoretically more efficient for time-dependent simulations, which are becom-

ing more widely performed. Although the incompressible flow assumption is used,

transferring to any of the non-Boussinesq methods (e.g., the low-Mach-number ap-

proximation [20]) in the context of this projection code should also be relatively easy.

Second, generalized coordinates are implemented in the code for computing problems

with irregular geometry (such as terrain) on uniform grids. Third, solution proce-

dures of the momentum equation and the PPE are presented in detail. The 2nd-order

centered differencing discretizations in space and 2nd-order discretizations in time are

employed. Nonlinearities are handled with the δ-form Newton–Kantorovich (quasi-

linearization) procedure, which is implemented in a “block-Jacobi” diagonal fashion.

Douglas & Gunn [203] time splitting is used for the momentum and energy equations,

and optimal point SOR is used for the (pseudo) pressure Poisson equation (PPE).

Explicit solution filtering is performed with a modified 3-D Shuman filter [138].

OpenMP parallelization of the ILES code mainly focuses on two parts: the mo-

mentum equations, and the PPE. The momentum equations are parallelized based on

the D–G time splitting methods employed in independent directions. The Jacobi and

successive overrelaxation (SOR) iterations (both point SOR and red-black ordered

SOR) are used to solve a simple problem that mimics the 3-D PPE, utilizing Fortran,

C, and C++. It is found that point SOR programmed in Fortran performs best in

parallelization with regard to nearly-perfect linear speedups with increasing number

of cores, especially for a large problem size. Comparisons are made in the context

of having the same algorithm, code structure, and optimization level in compilation.

The overall performance is tested by employing the canonical lid-driven cavity (LDC)

problem. Since OpenMP does not require explicit information exchanges within the

shared-memory architecture, it is found to be simpler and more efficient than MPI

across cores. Only 16 cores (maximum cores in current available processors) are be-

ing used here; thus, scalability of the model needs to be improved for implementation
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using hundreds, or thousands, of cores. Hybrid OpenMP and MPI could be a solu-

tion to further increase the speed, but OpenMP needs an extra operation to work on

distributed memory systems, as illustrated by Basumallik et al. [212].

Copyright c© Tingting Tang, 2017.
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Chapter 5: The Poor Man’s Navier–Stokes

Equations in Porous Media

In recent years, numerous studies have been conducted to numerically simulate tur-

bulent flow through porous media. Hutter et al. [214] used dynamic large-eddy sim-

ulation (LES) to explore flow in materials with low porosity and have obtained quite

good comparisons with experimental results. Kazerooni and Hannani [215] proposed

using the v2f model, which is similar to large-eddy simulation and exhibits superior

accuracy with respect to the conventional k−ε two-equation Reynolds averaged N.–S.

(RANS) model. Kuwahara et al. [216] employed renormalization group to derive a

subgrid-scale (SGS) model and have shown that the Forchheimer-extended Darcy’s

law holds for turbulent flow in porous media. However, most of this work has been

done using LES with different forms of eddy viscosity based SGS models, the lim-

itations of which have been discussed in Ch. 2, Sec. 2.2.7. This suggests modeling

the SGS velocity of turbulent flow through porous media directly, using a synthetic

velocity—no eddy-viscosity approach. The synthetic-velocity form of LES, which,

instead of modeling sub-grid stresses, models SGS velocities, which may, or may not,

be used to directly calculate the stresses. As discussed in Ch. 3, Sec. 3.2, the form of

Eq. (3.7) is employed with the amplitude factor being calculated from the high-pass

filtered velocity. The temporal fluctuations, however, should be obtained from the

generalized Navier–Stokes equation with an addition of forcing terms accounting for

linear and non-linear drag forces of the medium—Darcy and Forchheimer terms.

The generalized Navier–Stokes equation for incompressible flow in porous media,

The material contained in this chapter has been published [213] as [International Journal of
Bifurcation and Chaos, 26, 05, 2016, 1650086] [10.1142/S0218127416500863] c© [copyright World
Scientific Publishing Company] [http://www.worldscientific.com/worldscinet/ijbc]
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as used by Nithiarasu et al. [115], takes a form similar to that of the original N.–S.

equations. It can be viewed as a non-linear dynamical system exhibiting “strange

attractors,” which indicates temporally chaotic behavior associated with physical

turbulence. Thus, the current work aims to develop a DDS from this equation and

investigate bifurcation behaviors of this system. Generally, such chaotic maps are

expected to be infused into a self-contained model of subgrid-scale velocity fluctua-

tions in the context of a synthetic-velocity form of large-eddy simulation (LES), as

mentioned above. In Sec. 5.1, analysis of the problem is provided. In Sec. 5.2 and

5.3, the characteristic behaviors of the system are explored in terms of regime maps,

power spectra, time series and phase portraits. Finally, summary and conclusions are

provided in Sec. 5.4.

5.1. Analysis

In this section, the governing equations employed in this study are first introduced.

Then a detailed derivation of the poor man’s Navier–Stokes equation with Darcy and

Forchheimer terms is presented; the assumptions embedded therein are also briefly

discussed.

5.1.1 Flow regime analysis

The generalized model for 3-D incompressible flow through porous media is described

in detail in Ch. 3. The Darcy and Forchheimer terms appearing in Eq. (3.1b) are

also proposed by Ward [217] and Ahmed and Sunada [218], assuming that the linear

coefficient −µ/K depends on fluid properties only, and the non-linear coefficient

cFK
−1/2ρ depends on geometric properties of the media only. In the Forchheimer

term, cF is known as the Ergun coefficient; based on experiments [126], it is related
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to the geometry of a porous medium and can be expressed as

cF =
1.75√
150φ3

. (5.1)

Venkataraman [219] developed curves relating the friction factor and Reynolds

number theoretically and demonstrated regimes ranging from Darcian, to transitional,

to turbulent flow, as is shown in Fig. 5.1. The friction factor fk, Reynolds number
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Figure 5.1: Relationship between friction factor and Reynolds number [219].

Rk, and the parameter d are respectively expressed as [217]

fk =
1

Rk

+
d√
kp

, Rk =
u
√
kp

ν
, d = cF

√
kp . (5.2)

The intrinsic permeability kp in Eqs. (5.2) equals the permeability K since only one-

phase fluid is considered. Figure 5.1 shows only the theoretical curves for reference

in later discussion, below; verification of these with available experimental data was

also provided (see Fig. 3 in [219]). As is seen, different flow regimes depend on any

two of the three parameters fk, Rk, and d/
√
K, with d/

√
K related to cF according

to its expression in Eqs. (5.2). Thus, turbulent flow may exist in porous media even

at small Rk if fk or cF is large enough; also Darcian or transitional flow may occur

at large Rk if fk or cF is sufficiently small.
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5.1.2 Derivation

Mathematical analysis of Eqs. (3.1) often begins with a Leray projection to a divergence-

free subspace of the Sobolev space of solutions, thus eliminating the pressure gradient

from Eq. (3.1b). Also, the effective velocity in the momentum equation is replaced

with the actual velocity since the actual (pore) velocity contains more local informa-

tion than the macroscopic effective velocity, and the PMNS equations mainly account

for behaviors on sub-grid scales that are local in space and time. This results in x-

momentum and thermal energy equations expressed as

Ut + UUx + V Uy +WUz =
µe
ρ
φ∆U − µφ

Kρ
U

−cFK−
1
2φ2U

√
U2 + V 2 +W 2 − gxβeρ(T − T0) ,

(5.3)

Tt + UTx + V Ty +WTz =
kf

(ρc)f
∆T +

q
′′′

f

(ρc)f
. (5.4)

The y-momentum and z-momentum equations are obtained in an analogous way; gy

is the gravity acceleration; gx and gz are zero. Typical scalings are applied to the

dependent and independent variables in Eq. (5.3) and (5.4) using velocity scale U∗,

length scale L∗, time scale L∗/U∗, and temperature scale (T1−T0) = δT , for instance,

U∗∗ =
U

U∗
, x∗∗ =

x

L∗
, t∗∗ =

t

L∗/U∗
, T∗∗ =

T − T0

T1 − T0

=
T − T0

δT
,

where T1 and T0 are reference temperatures (often corresponding to boundary tem-

peratures). Therefore, the dimensionless form of Eq. (5.3) and (5.4) can be written

as

Ut + UUx + V Uy +WUz =
1

Re
∆U − µφL∗

KρU∗
U

−cFK−
1
2φ2L∗U

√
U2 + V 2 +W 2 − Gr

Re2
T ,

(5.5)

Tt + UTx + V Ty +WTz =
1

Pe
∆T + S , (5.6)

where the non-dimensional numbers are

Re =
ρU∗L∗
φµe

, P e =
U∗L∗(ρc)f

kf
, Gr =

gβeδTL
3
∗

ν2
,
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and the source term becomes

S =
q
′′′

f L∗

(ρc)fU∗δT
.

For simplicity, the same notations for variables are used. Coordinate subscripts in-

dicate partial differentiation. The form of nonlinearity in Eq. (5.5) is somewhat dif-

ferent from that of the usual N.–S. equations; hence, a somewhat more complicated

bifurcation behavior should be anticipated.

The following derivation procedure is in a manner similar to that provided in

[144]. A Galerkin procedure is employed with velocity and temperature components

expressed in Fourier representations as

U(x, t) =
∞∑

k=−∞

ak(t)ϕk(x) , V (x, t) =
∞∑

k=−∞

bk(t)ϕk(x) , (5.7a)

W (x, t) =
∞∑

k=−∞

ck(t)ϕk(x) , T (x, t) =
∞∑

k=−∞

dk(t)ϕk(x) . (5.7b)

Here, k ≡ (k1, k2, k3)T is a 3-D wavevector, x = (x, y, z)T , and {ϕk} is an unspecified,

countable, orthonormal set of basis functions, which is assumed to be complete in L2

and possess differentiation properties analogous to complex exponentials. It is realized

that constructing such a basis set for computational purposes could be difficult, but

this is not necessary for the present analysis. The elements of {ϕk} have the following

wave-like properties:

∂iϕk = kiϕ̃k , ∂i∂jϕk = −kikjϕk , Ckϕ̃k ∈ {ϕk(x)} , (5.8)

where Ck is a normalization constant.

Details for the x-momentum equation are given; treatment of momentum equa-

tions in other directions is identical. First, substituting Eqs. (5.7) into Eq. (5.5) and

(5.6), and applying the wave-like property of the basis functions shown in Eqs. (5.8)
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to first and second-order spatial derivatives in the equations leads to∑
l

ȧlϕl +
∑
l,m

m1alamϕlϕ̃m +
∑
l,m

m2blamϕlϕ̃m +
∑
l,m

m3clamϕlϕ̃m

=− C|k|2

Re

∑
l

alϕl −
µφL

KρU

∑
l

alϕl −
Gr

Re2

∑
l

dlϕl

−
∑
l

cFK− 1
2φ2L

√√√√(∑
m

amϕm

)2

+

(∑
m

bmϕm

)2

+

(∑
m

cmϕm

)2
 alϕl .

(5.9)

Similarly, the energy equation becomes∑
l

ḋlϕl +
∑
l,m

m1aldmϕlϕ̃m +
∑
l,m

m2bldmϕlϕ̃m +
∑
l,m

m3cldmϕlϕ̃m

= −C|k|
2

Pe

∑
l

dlϕl + S .

(5.10)

In Eq. (5.9) (5.10), “ ·” indicates differentiation with respect to time. The appearance

of the normalization constant C in the dissipation term is due to the assumption that

the derivatives are also orthogonal, but with possibly different normalizations. Next,

construct the inner product of each term in Eq. (5.9) and (5.10) with orthonormal

ϕk for each k; this leads to

ȧk +
∑
l,m

m1alam

∫
Ω

ϕkϕlϕ̃m +
∑
l,m

m2blam

∫
Ω

ϕkϕlϕ̃m

+
∑
l,m

m3clam

∫
Ω

ϕkϕlϕ̃m = −C|k|
2

Re
ak −

µφL

KρU
ak −

Gr

Re2
dk

− cFK−
1
2φ2L

∑
l

al

∫
Ω

ϕkϕl

√√√√(∑
m

amϕm

)2

+

(∑
m

bmϕm

)2

+

(∑
m

cmϕm

)2

,

(5.11)

and

ḋk +
∑
l,m

m1aldm

∫
Ω

ϕkϕlϕ̃m +
∑
l,m

m2bldm

∫
Ω

ϕkϕlϕ̃m

+
∑
l,m

m3cldm

∫
Ω

ϕkϕlϕ̃m = −C|k|
2

Pe
dk + Sk ,

(5.12)

for all k. As seen, the last (Forchheimer) term in Eq. (5.11) contains more complicated

nonlinearities requiring careful treatment. In Eq. (5.12), Sk = 〈S, ϕk〉. However,
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after truncating the infinite system of ordinary differential equations (ODEs) to a

single arbitrary wavenumber k, the resulting form is largely simplified as follows

ȧk + A(1)akak + A(2)bkak + A(3)ckak

=

(
−C|k|

2

Re
− µφL

KρU
− cFK−

1
2φ2LN

√
(ak)2+(bk)2+(ck)2

)
ak −

Gr

Re2
dk ,

(5.13)

and

ḋk +D(1)akdk +D(2)bkdk +D(3)ckdk = −C|k|
2

Pe
dk + Sk , (5.14)

with A(i) = ki
∫

Ω
ϕ2
kϕ̃k and N =

∫
Ω
ϕ2
k|ϕk|, i = 1, 2, 3. In order to obtain a discrete

equation, a simple forward-Euler explicit time-integration procedure is employed to

obtain

a(n+1) = a(n) − τ
(
A(1)

(
a(n)
)2

+ A(2)a(n)b(n) + A(3)a(n)c(n) +
C|k|2

Re
a(n)

+
µφL

KρU
a(n) + cFK

− 1
2φ2LNa(n)

√
(a(n))

2
+(b(n))

2
+(c(n))

2
+
Gr

Re2
d(n)

)
.

(5.15)

Note that wavenumber notation is suppressed for simplicity; (n) represents time steps.

The energy equation is integrated using backward Euler for the diffusion term because

if |k| > Pe, the differential equation will be stiff, thus

d(n+1) = d(n)−τ
(
D(1)d(n)a(n)+D(2)d(n)b(n)+D(3)d(n)c(n)+

C|k|2

Pe
d(n+1)−Sk

)
. (5.16)

The arbitrary discrete time step parameter τ can be calculated from physics when

constructing a model but will be included in bifurcation parameter definitions in the

present study. Rearranging terms yields

a(n+1) = τA(1)a(n)

(
1− Cτ |k|2/Re

τA(1)
− a(n)

)
− τA(2)a(n)b(n) − τA(3)a(n)c(n)

− τ µφL
KρU

a(n) − τcFK−
1
2φ2LNa(n)

√
(a(n))

2
+(b(n))

2
+(c(n))

2 − τ Gr
Re2

d(n) .

(5.17)

and

d(n+1) = (1− τD(1)a(n) − τD(2)b(n) − τD(3)c(n))d(n)/(1 + βT ) + τS/(1 + βT ) . (5.18)
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Assuming 1 − Cτ |k|2/Re = τA(1), as was done in [144], the core expression of the

logistic map is recovered. This is viewed as a quadratic map transformation; it was not

employed in [150], but similar equations resulted. Through further rearrangements

and analogous derivations in other directions, the 3-D poor man’s Navier–Stokes

equations with Darcy and Forchheimer terms and a thermal energy equation are

obtained as

a(n+1) = β1a
(n)(1− a(n))− γ12a

(n)b(n) − γ13a
(n)c(n) − λ1a

(n)

− µ1a
(n)

√
(a(n))

2
+ (b(n))

2
+ (c(n))

2
,

(5.19a)

b(n+1) = β2b
(n)(1− b(n))− γ21a

(n)b(n) − γ23b
(n)c(n) − λ2b

(n)

− µ2b
(n)

√
(a(n))

2
+ (b(n))

2
+ (c(n))

2
+ αTd

(n),

(5.19b)

c(n+1) = β3c
(n)(1− c(n))− γ31a

(n)c(n) − γ32b
(n)c(n) − λ3c

(n)

− µ3c
(n)

√
(a(n))

2
+ (b(n))

2
+ (c(n))

2
,

(5.19c)

dn+1 = (1− γuTa(n) − γvT b(n) − γwT c(n))d(n)/(1 + βT ) + d0 . (5.19d)

In these equations, βi s, γi,j s, λi s and µi s, i, j = 1, 2, 3, i 6= j, are bifurcation

parameters. Evaluation of such a large number (15) of parameters seems difficult,

but they are all directly related to physical variables and can be calculated from the

high-pass filtered large-scale solutions in the context of LES subgrid-scale turbulence

modeling. Hence, this does not pose a turbulence “closure” problem.

First, βi s are calculated from

βi = D∗(1− C

Rei
τ |k|2) , Rei ≡

h2|∂u∗∗i /∂xi|
νeφ

, (5.20)

where the Rei are small-scale component (cell) Reynolds numbers for each velocity

component; h is the discretization step size for the large-scale numerical approxi-

mation; u∗∗ is the high-pass filtered ith velocity component, and νe is the effective
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kinematic viscosity. Although Re here, and Rk in Eq. (5.2), use different character-

istic lengths, they represent the same flow behaviors and can be used for qualitative

analysis, as is done in following sections. The coefficient D∗ is usually taken to be

four as analyzed in [144] following the scaling originally used by May [220] for the

logistic map which appears as the first term in each of Eqs. (5.19) except Eq. (5.19d).

The single retained wavevector k can be calculated from the reciprocal of Taylor

micro-scale length in LES SGS constructions. The γi,j s in the x-momentum equation

are expressed as

γ12 = τA(2) = τ
∂u

∂y
, γ13 = τA(3) = τ

∂u

∂z
, (5.21)

with similar descriptions in other directions. These consist of the small-scale time

step size and the Galerkin triple products corresponding to the selected wavevec-

tor. The latter of these carries information associated with the velocity gradients or

strain rates, and they can be evaluated with high-pass filtered resolved-scale data on

the computational grid of LES. Use of Eqs. (5.21) precludes use of Galerkin triple

products.

From the form of Eq. (5.19d), coefficient of βT and αT can be expressed as

βT =
C

Pe
τ |k|2 , αT = −τ Gr

Re2
. (5.22)

It is seen that as Pe→ 0, βT →∞. In Eq. (5.6), it is also clear that as Pe increases,

the effects of diffusion become small, and vis versa for the advection and source term

S. This is consistent with what is shown in Eq. (5.19d), where d0 = τS/(1+βT ), and

is set by the high-pass filtered temperature so that the SGS behavior fluctuates about

it. Also, if βT →∞, dn+1 → 0, indicating no turbulent behavior for the temperature.

Bifurcation parameters associated with Darcy and Forchheimer terms are ex-

pressed as

λi = τ
µφL

KρU
∼ φ

K
, µi = τcFK

− 1
2φ2LN ∼ φ2

√
K

, i = 1, 2, 3 . (5.23)
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It is clearly seen that these parameters are related to porosity and permeability in

each direction, and thus are positive values. For isotropic porous media, they are

the same in all directions, in contrast to the anisotropic case. Also, porosity and

permeability have the constraints that as φ → 0, K → 0, and as φ → 1, K → ∞.

Here, φ,K 6= 0 must hold because fluid is not a solid phase. Note that φ = 1

corresponds to clear fluid flow, indicating values of both λ and µ are zero; this is

consistent with the derived DDS. On the other hand, bifurcation parameter values

(λ and µ) reflect values of porosity and permeability. For instance, smaller values

indicate relatively high-porosity media flow (large permeability), and vice versa.

If values of permeability and porosity are known, these parameters can be evalu-

ated for constructing a model. Usually, porosity can be estimated through measure-

ment, and permeability can be calculated in terms of porosity from an appropriate

empirical equation. A recently derived general permeability model calculated from

porosity, strain rate and effective viscosity (which are related to specific details of the

geometry like tortuosity, etc.), Tang and McDonough [124], can also be used. Since

the dynamic viscosity of air is µ ∼ 10−5Kg/m s, the time step size is usually taken

to be τ ∼ 10−3 s, and L, U , ρ0 are order of magnitude one; λ can be estimated as

10−8 × φ/K, and µ is approximately 10−4 × φ2/
√
K, according to Eq. (5.23).

Consider a porous medium with porosity of 0.1. Its permeability can be estimated

to be around 10−6 through the empirical Carman–Kozeny [221] [222] equation, which

leads to values of λ and µ approximately 0.001. These parameter values can be initial

estimates for the current study of the DDS in the absence of large-scale LES results.

By determining valid ranges for the parameters of additional terms, as will be done

in the present study, the first step is to construct a mapping of flow physics in porous

media turbulence in 3D as was done in [144] for simple incompressible flows—but

only in 2D.
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5.1.3 Bifurcation analysis

For the sake of simplicity, here, the incompressible flow N.–S. equation without buoy-

ancy and energy equation is investigated. Thus the bifurcation parameters associ-

ated with energy and buoyancy are zero in the following calculations and discussions.

Among the 15 bifurcation parameters in the DDS of Eq. (5.19), six are from the

porous terms. Many numerical investigations have been conducted previously asso-

ciated with the β and γ parameters [144–147, 150]. Here, the behaviors resulting

from the additional parameters λ and µ, and in a rather small subspace of the com-

plete space of possible parameter values, are mainly considered. Both isotropic and

anisotropic porous media are considered. Bifurcation behavior of the DDS is dis-

cussed in terms of power spectral density (PSD), time series, phase portraits and

the so-called “regime maps” (bifurcation diagrams exhibiting a broad view of PSD

behaviors for different combinations of parameters).

Calculations of regime maps and basins of attractions reported for this study

were performed on the 256-basic-node Dell high-performance computing cluster at

the University of Kentucky Computing Center, each basic node of which has two 2.6

GHz Intel E5-2670 eight-core processors and 64 GB of RAM. The initial conditions

are a(0) = 0.3, b(0) = 0.95, c(0) = 0.2 for all cases except those investigating sensitiv-

ity to initial conditions (SIC). These initial conditions were chosen after numerical

experimentation showed that the resulting flow is in the stable regime of the DDS.

Individual cases were computed using a desktop computer with a 2.4 GHz Intel Core

2. All results were obtained using double precision (64-bit) Fortran. A typical run

consisted of 104 iterations of Eqs. (5.19) with the last 5× 103 subjected to the indi-

cated statistical analysis. In the case of power spectra, a standard radix-2 fast-Fourier

transform (FFT) was used, and this was applied to the final 212 (or 4096) points of

the time series for {a(n)}, {b(n)}, {c(n)}, which are sufficient to produce stationary

results needed to identify the basic solution regimes.
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5.2. Bifurcation results for variation of β

As shown previously (Eq. (5.20)), β is determined by Re and chosen wavevector; λ

and µ are calculated from porosity and permeability. It is intriguing to see how the

DDS behaves for flow through media with different porosities as Re increases. Thus,

regime maps for varying β and λ with fixed γ, and varying β and γ with fixed λ (and

µ) are presented in this section. Regime maps for µ and β present similar information

as those for λ and β, since λ and µ are related, as seen in Eqs. (5.23).

In Fig. 5.2, part (a) is the color table associated with different power spectral

density (PSD) behaviors, as employed in [144]. Part (b) shows the regime map of

β = β1 = β2 = β3 and λ1 with relatively small λ2 (large porosity in the y-direction)

and large λ3 (small porosity in the z-direction), indicating anisotropic porous media.

The chosen value of γ = γ1 = γ2 = γ3 = −0.03 is somewhat arbitrary, but based
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Figure 5.2: Regime map of β vs. λ1 . (a) color table, (b) γ = −0.03, λ1 = µ1, λ2 =
0.02, µ2 = 0.01, λ3 = 1.2, µ3 = 1.

on the conditions that it produces stable results and that it corresponds to various

non-trivial (except divergent and steady) behaviors seen in the regime map for clear

fluid flow. As is seen, most non-trivial behaviors occur in the region for β > 2.7 with
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λ1 < 1.4 or λ1 > 2.25. In the region with relatively small λ1, as Re increases, the

Feigenbaum [223] bifurcation sequence is observed:

steady −→ periodic −→ subharmonic −→ chaotic,

corresponding to the observed regimes (see Fig. 5.1) as

Darcian −→ nonlinear transitional −→ wholly turbulent.

In the “chaotic” region, both non-noisy and noisy behaviors are intertwined with each

other. There is even a slice of periodicity with different fundamental in the the region

of quasiperiodic w/o fundamental, as seen in the map of γ vs. β of [144].

For relatively large λ1, as is shown in the zoom in of Fig. 5.3(a), mostly periodic

and subharmonic behaviors are present in the central region, surrounded by some

chaotic-like behavior, which does not appear in the lower region for β ∈ [3, 3.6]. Since
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Figure 5.3: Regime map zoom-ins of Figure 5.2(b). (a) (β, λ1) ∈ [3, 4]× [2.5, 3.5], (b)
(β, λ1) ∈ [3.16, 3.56]× [2.7, 2.95].

porosity in this region is relatively small, which results in larger values of d/
√
K from

Eq. (5.1), the flow transitions to turbulence at smaller Re based on Fig. 5.1. There

is an arc-shaped region at the top of this figure due to the “invading” divergent

solutions, some of which also protrude far into the non-divergent area in the middle

of the arc region, within which Arnol’d “tongues” are imbedded. Part (b) shows an
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even smaller region where there is quasiperiodic behavior, within the periodic region,

corresponding to a somewhat modified Ruelle and Takens [224] bifurcation sequence

similar to that observed by Gollub and Benson [225] in Rayleigh–Bénard convective

experiments (in the absence of a porous medium).

Figure 5.4 shows power spectra from a point within each of the regions of Fig.

5.2(b) to demonstrate how each solution behaves. There are 12 types of non-trivial
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Figure 5.4: Example power spectrum of the 12 non-trivial types of behavior: (a)
periodic; (b) periodic w/ different fundamental; (c) subharmonic; (d) phase lock; (e)
quasiperiodic; (f) noisy subharmonic; (g) noisy phase lock; (h) noisy quasiperiodic
w/ fundamental; (i) noisy quasiperiodic w/o fundamental; (j) broadband w/ funda-
mental; (k) broadband w/ different fundamental; (l) broadband w/o fundamental.

behavior observed associated with this DDS: (a) periodic, (β, λ1) = (3.2, 0.5); (b)

periodic with different fundamental, (β, λ1) = (3.8373, 1.0678); (c) subharmonic,

(β, λ1) = (3.5, 0.5); (d) phase lock, (β, λ1) = (3.18898, 2.89167); (e) quasiperiodic,
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(β, λ1) = (3.4395, 2.8576); (f) noisy subharmonic, (β, λ1) = (3.6696, 0.1216); (g)

noisy phase lock, (β, λ1) = (3.6033, 0.1558); (h) noisy quasiperiodic w/ fundamental,

(β, λ1) = (3.65, 0.5); (i) noisy quasiperiodic w/o fundamental, (β, λ1) = (3.85, 0.5);

(j) broadband with fundamental, (β, λ1) = (3.68, 0.5); (k) broadband with differ-

ent fundamental, (β, λ1) = (3.8958, 0.0532); (l) broadband without fundamental,

(β, λ1) = (3.9, 0.5). These PSDs are distinguished by noisy or non-noisy behavior

and the position and appearance of the fundamental frequency. The criteria to dis-

tinguish phase locked and subharmonic behaviors is also discussed in detail in [144].

It seems that they are quite similar, and phase-locked points are usually embedded

in the quasiperiodic regions, as is shown in Fig. 5.3(b), often (but not always) as

Arnol’d tongues. The frequencies have been normalized because the time increments

corresponding to map iterations are arbitrary (which would not be the case for a LES

problem).

Figure 5.5 shows the time series corresponding to the power spectra in Fig. 5.4.

The time scale used is arbitrary, but the same scale is used in all time series pre-

sented herein. It is obviously seen that the velocities have quite different values in

[−1, 1] with peak-to-peak amplitude also differing considerably. Parts (d) and (e)

have negative values of velocity (and amplitudes are not particularly small). It is of

interest to note that negative values of velocity generally lead to divergent behav-

ior in the absence of the additional porosity terms. Since the corresponding points

are obtained from the upper region of the regime map, they represent flow through

media of quite small porosity. Thus, small velocities are anticipated. As is known,

the PMNS equation is employed to construct SGS models, which will be added to

the resolved large scale, implying that negative values will make large-scale velocities

smaller, thus corresponding to low-porosity flows. The time series of part (k) has

relatively large amplitude following from the fact that the value of λ at this point of

the regime map is much smaller than for the other cases displayed and thus repre-
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Figure 5.5: Example time series of the 12 non-trivial types of behavior: (a) pe-
riodic; (b) periodic w/ different fundamental; (c) subharmonic; (d) phase lock; (e)
quasiperiodic; (f) noisy subharmonic; (g) noisy phase lock; (h) noisy quasiperiodic
w/ fundamental; (i) noisy quasiperiodic w/o fundamental; (j) broadband w/ funda-
mental; (k) broadband w/ different fundamental; (l) broadband w/o fundamental.

sents a large-porosity flow. Apart from this, these time series show very interesting

distinguishable behaviors. First, (a) and (k) are similar; this is due to the appear-

ance of the fundamentals at the end and in the middle respectively of the frequency

domain. However, as the time series is considered over larger ranges of time, it can

be clearly seen that the amplitudes of peaks in (k) are not exactly the same, due to

the broadband effects, while in (a) they are. In parts (c) and (d), the time series are

clearly distinguishable although the corresponding PSDs are similar,. Both (i) and

(l) show some intermittency; they correspond to noisy quasiperiodic and broadband
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without fundamental, respectively. The fact that their corresponding power spectra

do not contain a fundamental is expected to produce this behavior. Part (i) shows

type II intermittency [226], which contains aspects of both types I and III intermit-

tencies. Parts (c), (e), (f), (g), (h) and (j) are similar but not exactly the same; they

have different amplitudes and numbers of sub-amplitudes. Especially part (j) seems

to show type II intermittency.

Another anisotropic possibility is displayed in Fig. 5.6, which shows a regime map

of β and λ1 with larger porosity (small λ or µ) in both y- and z-directions. It is
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Figure 5.6: Regime map of β vs. λ1. (a) γ = −0.03, λ1 = µ1, λ2 = 0.02, µ2 =
0.002, λ3 = 0.2, µ3 = 0.02, (b) zoom in for (β, λ1) ∈ [2.4, 3.7]× [2.2, 3.0] .
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seen in part (a) that the range of β increases, and more non-trivial behavior appears

outside of the steady behavior, especially the additional part for β < 0. It is remarked

that, rather generally, β < 0 leads to divergence of the DDS for non-porous PMNS

equations (but see Bible [227] for some counter examples). Bifurcation sequences

similar to those shown in Fig. 5.2(b) are observed in all non-trivial solution regions.

In the region (β, λ1) ∈ [3, 4] × [0, 1.5], a more clearly-defined sequence following

the subharmonic solutions is shown: noisy subharmonic is followed by quasiperiodic

w/ fundamental, broadband with fundamental, quasiperiodic w/o fundamental and

broadband w/o fundamental. The low-porosity (large λ1) regions (β, λ1) ∈ [2.4, 3.7]×

[2.2, 3.0] present more noisy behaviors than in the previous case (Fig. 5.2(b)) even

for a smaller Re number, due to larger porosity in other directions. Also, as noted

previously, this indicates that turbulence in porous media may be related to smaller

Re since d/
√
K is large in this low-porosity region, consistent with the physics implied

by Fig. 5.1, A zoom-in plot of this region is shown in part (b) of Fig. 5.6. For

particular values of β, as λ1 increases, the same bifurcation sequence is seen (periodic

→ subharmonic → chaotic). There also appears a small area of quasiperiodicity at

the right-most of the periodic region, as shown in the previous case (Fig. 5.2(b)).

Lastly, effects of forcing (porous) terms on the overall behavior of the original

PMNS equations are investigated by comparing regime maps of β and γ with different

fixed values of λ and µ, as is shown in Fig. 5.7. By setting both λ and µ to zero, part

(a) shows regime map for clear fluid flow, similar to that presented in Plate 1 of [144]

for 2-D flow and in Fig. 3.3 of [147] for 3-D flow computed with slightly different

initial conditions. Note that behaviors for β less than one are mostly steady and thus

are not presented. Parts (b) and (c) show results for non-zero porous terms, with

part (c) computed from larger value of µ. It is seen that stable ranges of γ decrease,

in comparison with part (a), and their values are less than zero, which is expected

from the formula of the DDS because of drag terms. Further observation reveals that
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Figure 5.7: Regime map of β vs. γ: (a) λ = µ = 0, with (∆β, ∆λ1) =
(0.0015, 0.00154); (b) λ = 0.2, µ = 0.02, with (∆β, ∆λ1) = (0.00148, 0.00133);
(c) λ = µ = 0.2, with (∆β, ∆λ1) = (0.00095, 0.00078).

the shape and distribution of PSD behaviors in regime map of part (b) is similar to

the lower part of the map in part (a), and part (c) is similar to the even lower part

of part (a), but values of corresponding γ and β are not the same. As Re increases,

the Feigenbaum sequence is observed in parts (a) and (b), while in part (c), Ruelle

and Takens bifurcation sequence appears:

steady −→ periodic −→ quasiperiodicity −→ chaotic.
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In part (c), flow becomes totally (for all γ values) unsteady at around β = 2.13, and

chaotic at about β = 2.75; both values are smaller than those of part (b). This is

because part (c) represents lower porosity flow (larger µ), resulting in larger d/
√
K

than that of part (b); and thus transition to nonlinear, wholly turbulent, flow occurs

at lower Re as seen in Fig. 5.1.

5.3. Bifurcation results for variation of λ and µ

In this section, different sets of the original nine fluid dynamic bifurcation param-

eters (β and γ) are fixed using both isotropic and anisotropic values, also in such

a way that the corresponding clear fluid flow presents PSD behaviors corresponding

to points in Fig. 5.7(a) at quite different places—usually at the interface of differ-

ent noisy behaviors—to produce more non-trivial solutions than those lying in the

non-turbulent region when varying other parameters. Therefore, characteristics of

the DDS exhibited by varying only the bifurcation parameters resulting from the

Darcy (λ) and Forchheimer (µ) terms are mainly investigated. Computations were

performed with (λ, µ)-resolution using 1001 × 1001 points in the regime map, cor-

responding to more than 106 cases. Each case was run with 104 map iterations of

Eqs. (5.19). Both isotropic and anisotropic porous media cases have been studied,

followed with investigations of the characteristic of sensitivity to initial conditions.

5.3.1 Isotropic porous media

Figure 5.8 shows λ vs. µ for ideal isotropic porous media (porosity parameters the

same in all directions). Part (a) is the same color table given in Fig. 5.2(a), but re-

peated here for ease of reference. In part (b), bifurcation parameters are set as β1 =

3.9 , β2 = 3.87 , β3 = 3.1 , γ12 = γ13 = γ21 = γ23 = 0.3 , γ31 = −0.5 , γ32 = −0.02,

indicating an anisotropic turbulent flow without porous media. First, it is observed

that stable (non-divergent) ranges of both λ and µ are approximately [0, 0.045], con-
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sistent with the value estimated previously based on their analytical forms. Second,

(a)

0.000 0.015 0.030 0.045

λ1 =λ2 =λ3  

0.000

0.015

0.030

0.045

µ
1
=
µ
2
=
µ
3

(b)

0.0 0.1 0.2 0.3 0.4

λ1 =λ2 =λ3  

0.0

0.1

0.2

0.3

0.4

µ
1
=
µ
2
=
µ
3

(d)

0.00 0.05 0.10 0.15 0.20

λ1 =λ2 =λ3  

0.00

0.05

0.10

0.15

0.20

µ
1
=
µ
2
=
µ
3

(c)

Figure 5.8: Regime maps of λ vs. µ. (a) color table, (b) β1 = 3.9, β2 = 3.87, β3 =
3.1, γ12 = γ13 = γ21 = γ23 = 0.3, γ31 = −0.5, γ32 = −0.02, (c) β = 3.8, γ = −0.01,
(d) β = 2.5, γ = −0.48.

the interface between divergent and non-divergent regions is clear cut, which implies

a linear relationship between λ and µ when setting the limiters for calculation of

subgrid-scale turbulence, in which case, ranges of values of λ would decrease as µ

increases, and vice versa. Third, noisy behaviors from quasiperiodic w/ fundamental

to broadband w/o fundamental are shown in the non-divergent region, with different

colors intertwined with each other. As values of both parameters approach zero, more

134



broadband behaviors occur; since the effects from porous terms are very small, the

original values of β and γ lead to a more turbulent-like behavior in a clear fluid. As

both values get larger, noisy quasiperiodic behaviors become more prevalent. This

implies that for certain situations, as effects from the drag terms increase, the flow is

less likely to transition to turbulence, in accord with the fact that the velocity, and

thus the Re number, would decrease in a porous medium.

In addition, β and γ are made isotropic with different values in parts (c) and (d)

for further investigation. In part (c), βi = 3.8, γi,j = −0.01, for all i, j = 1, 2, 3,

which is within the chaotic region for the PMNS equation without porous terms (see

Fig. 5.7(a)). It is seen that the range of values of λ and µ is much larger than shown

in (b) due to the isotropy of β and γ. Since if Re for clear fluid flow is the same

in each direction (parts(c) and (d)), larger values of permeability may be permitted

consistent with flow in isotropic porous media, resulting in wider ranges of porous

media flow and thus parameter values. Also, a relatively large region of broadband

behavior with fundamental is shown in part (c). In part (d), β = 2.5 and γ = −0.48,

which is in a chaotic region that is close to periodic solutions of the regime map for

the 3-D case of clear fluid flow. This less chaotic case can result from flow in media

of lower porosity (smaller permeabilities); thus the range of parameter values is twice

that of part (c). Also, as µ or λ decreases (or the porosity increases), the observed

bifurcation sequence is periodic −→ quasiperiodic −→ phase lock −→ chaotic. Note

that the small area of divergence shown in the lower-left corner of part (d) (λ and µ

→ 0) is due to the different initial conditions of c(0) = 0.2 used in the present case,

compared with the case used previously [147].

In all, β and γ have a large influence on the behavior of the DDS for porous

terms, since for different Re, flow behaviors would be different even within the same

porous medium (see Fig. 5.1). Increasing values of porous terms makes the flow

velocity smaller and thus lead to less-turbulent-like behavior. Moreover, in these
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cases, the coefficient d/
√
K increases as bifurcation parameter values increase, and

this increases the chance of flow transition to more chaotic behavior, which seems to

contradict what has been observed in Sec. 5.2; however, as noted previously, the Re for

flow through porous media actually also decreases considering that the characteristic

length
√
K decreases. The observed behavior is mainly due to the effect of decreasing

Re outweighing that of increasing the Ergun coefficient or the friction factor.

5.3.2 Anisotropic porous media

More general cases for flow in anisotropic porous media are also considered. Figure

5.9 shows a regime map for varying λ and µ in one direction (x-direction) while

fixing different values of these parameters in other directions; β and γ are set as in

part (b) of Fig. 5.8. The choice of these parameter values is rather arbitrary, but it

prevents uniformly divergent behavior. Part (a) is for a mildly anisotropic case where
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Figure 5.9: Regime maps of λ1 vs. µ1. (a) λ2 = 0.01, µ2 = 0.01 , λ3 = 0.2, µ3 = 0.3 ,
(b) λ2 = 0.02, µ2 = 0.02, λ3 = 1.2, µ3 = 1.2 .

the difference in parameter values in y and z directions is not very large; part (b)

corresponds to larger differences.
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First, both (a) and (b) show the ranges of λ1 and µ1 nearly covering the interval

[0, 2.5], which is almost two orders of magnitude greater than the previous isotropic

case (Fig. 5.8(b)). Second, the shape of their cutoffs (lines between divergent and non-

divergent areas) is similar to that shown in Fig. 5.8, which provides some information

about setting limiters of a SGS model. Note that in part (b) the non-divergent

region is not exactly triangular when 0 < λ1 < 0.4 and 0.5 < µ1 < 2, and it shows

considerable divergence but with some small “islands” of non-divergence. Third, parts

(a) and (b) present notable differences in the behaviors shown in the non-divergent

region. In (a), for 0 < λ1 < 1.2 and 1 < µ1 < 1.5, mostly noisy quasiperiodicity w/

fundamental occurs; subharmonic and noisy-subharmonic behavior also appears at

even lower parameter values. As λ1 and µ1 become larger, indicating a porous medium

with smaller porosities in the x direction, mostly quasiperiodic w/o fundamental

behavior occurs. Part (b) presents mostly broadband without fundamental behavior

except for regions of phase lock embedded within the noisy behavior; it also shows

some interspersed regions of broadband with different fundamental behavior in the

lower and slightly left area; periodic and subharmonic behaviors are observed in the

lower-left corner, for large porosities in x direction. Both parts (a) and (b) have shown

quite opposite tendencies from those of the previous isotropic cases. It is indicated

that if the porosity is small in only one direction, the system behavior is less likely to

be chaotic; if porosities in two directions are small, noisy behaviors occur, as seen in

parts (a) and (b); if porosities in all three directions are small (as seen in Fig. 5.8(b)),

ranges of values remain small, and quite chaotic behaviors occur even though they

are not as chaotic as the case when porosities in all three directions are large.

Figure 5.10 displays regime maps of λ1 vs. λ3 to account for various combinations

of different porosities in two directions with fixed porosity in the third direction. In

part (b) of Fig. 5.8, β and γ are set corresponding to anisotropic turbulence in the

absence of a porous medium; λ and µ can be made equal as noted previously. In
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Figure 5.10: Regime maps of λ1 vs. λ3. (a) λ2 = µ2 = 0.02, µ1 = λ1, µ3 = λ3 ,
(b)λ2 = 0.02, µ2 = 0.01, µ1 = 0.1, µ3 = λ3.

Fig. 5.10(a), λ and µ are equal in each direction with a small parameter value in

the y-direction; part (b) is similar to part (a) except that the x-direction µ value

is fixed and there is a slight difference between λ and µ in the y-direction. In this

way, parameters are controlled in two directions and can provide more information

than does the previous anisotropic case. It is observed that the shape of the non-

divergent region in both parts (a) and (b) are essentially rectangular and are different

from those of previous regime maps. Thus, it is easier to set the limiters for SGS

models since the cutoffs are nearly constant parameters. Also, the range of values

of λ1 in (b) is almost twice that of (a) since it is already fixed by µ1, as mentioned

above; nevertheless, the general nature and extent of non-trivial behaviors are similar

in both plots (a) and (b). For fixed values of λ1 in the middle of the domain, as λ3

increases, the same bifurcation sequence occurs: periodic −→ subharmonic −→ quasi-

periodic w/ fundamental −→ quasi-periodic w/o fundamental −→ broadband w/o

fundamental. Also, as shown in previous maps, slices of phase lock are embedded in

the noisy behavior regions. Finally, as noted above, it is clearly seen in both plots that

as λ3 or λ1 decrease (porosity gets larger in one direction), less chaotic behavior such

as periodic and subharmonic occurs. These anisotropic cases demonstrate another
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possibility mentioned at the end of Sec. 5.3.1; that is, the effect from increasing

friction factor outweighs that of decreasing Re, which gives rise to more chaotic flow

as bifurcation parameter values increase.

5.3.3 Sensitivity to initial conditions

The property of sensitivity to initial conditions (SIC) is the hallmark of the strange

attractor description of turbulence first put forward by Ruelle and Takens [224].

Investigation of SIC for this DDS is provided in this section. Figures 5.11 and 5.12

present PSD behaviors of noisy quasiperiodic w/o fundamental and broadband w/o

fundamental, respectively, in terms of time series and phase portraits. They are

Figure 5.11: Behavior of quasiperiodic w/o fundamental for slightly perturbed initial
conditions: (a)–(f) time series; (g) & (l) phase portraits.
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Figure 5.12: Behavior of broadband w/o fundamental for slightly perturbed initial
conditions: (a)–(f) time series; (g) & (l) phase portraits.

computed from individual cases in specific regions with indications of stable results.

Parts (a), (b), (c), (g), (h), (i) in both figures are computed from the original initial

conditions, and all other parts are computed from mildly perturbed conditions: a(0) =

0.3, b(0) = 0.95, c(0) = 0.20001. In Fig. 5.11, bifurcation parameters are obtained

from the regime map of Fig. 5.10 with (λ1, λ3) =(0.4, 0.6). As is seen, time series are

notably different in each direction for this anisotropic case, resulting in considerably

different phase portraits. Comparing parts (g), (h), (i) with (j), (k), (l) for the two

different initial conditions, phase portraits in each direction are almost the same,

while time series of parts (a), (b), (c) and the corresponding parts (d), (e), (f) are

different in detail, presenting SIC. The strong similarity of phase portraits implies
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that the original and perturbed cases are evidently on the same attractor.

In Fig. 5.12, bifurcation parameters are obtained from the regime map of Fig. 5.9

with (λ1, µ1) =(0.4, 0.5), which is a very stable area for this type of behavior. At

the same time, it is clear from the very strong similarity of phase portrait topology

for different initial conditions that the solutions lie on the same attractor, as in the

previous case. Note the inner plots in parts (h), (i), (k), (l) are zoom-ins of their

corresponding phase portraits, with different axis scales, and it is shown that phase

portraits in each direction are also significantly different from each other. Also, it

is relatively easy to detect both SIC and intermittency from the time series. The

notable difference in time series for two initial conditions is that the position of

the longest interval of intermittency in each direction moves towards the left, while

nearly retaining its original shape. Also, intermittency in the time series has a longer

interval of less chaotic behavior than that of the case of noisy quasiperiodicity w/o

fundamental (Fig. 5.4(i)). Phase portraits are different from ones in the previous

case, and in both cases they are not symmetric, in contrast to what is shown in [144],

where the 2-D PMNS equation with only isotropic β and γ was investigated.

Figure 5.13 shows basins of attraction (sets of initial values that asymptote to the

same attractor) for the two cases discussed above. The plots use the same procedure

(PSD identification of solution type) and color map as in previous regime maps. The

initial conditions for u, v, w velocity components are expressed as a(0), b(0), c(0), re-

spectively. In Fig. 5.13 (a), intertwined behaviors of noisy quasiperiodic both w/ and

w/o fundamental occur; in Fig. 5.13 (b), only broadband w/o fundamental behavior

is shown in the non-divergent region. Note that the trivial steady solution is actually

obtained at zero initial data for both cases, which is too small to present in current

plots. These two cases are from a quite stable region of the bifurcation parameter

domain, and thus fractal boundaries between behavior types are not expected.

Moreover, only time series for u-component velocity are shown in Fig. 5.14 since
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Figure 5.13: Basins of attraction for bifurcation parameters in (a) Figure 5.11, (b)
Figure 5.12.

phase portraits do not show much difference for different initial conditions. In Fig.

5.14, the initial conditions (a(0), b(0) = c(0)) are set as (a) (0.4, 0.1), (b) (0.6, 0.2),

(c) (0.4, 0.3), (d) (0.6, 0.45). These are relatively large differences between (a) and

(b), and between (c) and (d). Nevertheless, (a) and (b) have similar overall structure

with type II intermittencies, suggesting a single, very stable attractor. This also holds

for the comparison between parts (c) and (d). This indicates that the PMNS equa-

tion of the current study can provide chaotic, but deterministic and stable temporal

fluctuations in SGS models for synthetic-velocity forms of LES.
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Figure 5.14: Time series for large perturbation of initial conditions. Bifurcation
parameter values corresponding to (a) & (b) Figure 5.11, (c)&(d) Figure 5.12.
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5.4. Summary and conclusions

In this chapter a 3-D PMNS DDS with Darcy and Forchheimer terms is derived

from the generalized Navier–Stokes equations for incompressible flow in porous media

through a Galerkin procedure. The current DDS contains six additional bifurcation

parameters, beyond those of the original 3-D PMNS, due to the linear and non-linear

drag forces and are expected to exhibit somewhat more complicated bifurcation be-

havior. Unlike usual closure problems of turbulence modeling, these additional pa-

rameters are directly related to physical variables and can be calculated from porosity

and permeability.

Numerical investigations in terms of regime maps, power spectra, time series,

phase portraits and basins of attraction have been carried out to study characteristic

behaviors of this system. Results with variation of β produced regime maps consider-

ably different than those associated with free fluid flow. Both Feigenbaum and Ruelle

and Takens bifurcation sequences are observed as β increases. It was also shown that

chaotic behavior could occur at low Re for large values of friction factor, consistent

with the physics shown in [219]. Results with variation of λ and µ are provided for

flow in both isotropic and anisotropic porous media. The isotropic cases show that

low-porosity flow leads to less chaotic behavior since flow velocity decreases. However,

the anisotropic cases show quite the opposite tendency, which arises from combined

effects of the decreasing Re and increasing friction factor. Also, the ranges of sta-

ble parameter values for anisotropic cases are much larger compared with those of

isotropic cases. Lastly, the property of SIC is investigated for two single cases of flow

in anisotropic porous media using both mild and relatively large perturbations. The

time series show notable qualitative differences for different initial conditions, while

similarity of phase portrait topology implies that solutions lie on the same attractor

even for large perturbation of initial conditions.

Finally, it is admitted that the DDS with a co-dimension of 15 is so compli-
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cated that a thorough investigation of all combinations of parameter values is nearly

impossible—and maybe of little value. Also, some behaviors such as dispersion of dif-

ferent noisy regimes in Fig. 5.3 (a) and basin of attraction regime maps (Fig. 5.13(a))

may also be due to the numerical limits set in the selection algorithm rather than

entirely due to fundamental mathematical properties of the DDS. Other than this,

the observable differences in these system behaviors, including power spectra, time

series and phase portraits, are in agreement with experimentally verified physics of

fluid flow through porous media (see Fig. 5.1). It is concluded that this DDS has the

potential to provide temporal fluctuations of SGS models for synthetic-velocity LES

of turbulence through porous media, and its performance along with the large-scale

part will be studied in future work. Extension of this DDS to convective buoyant

flows will also be considered.

Copyright c© Tingting Tang, 2017.
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Chapter 6: A Theoretical Model for the

Porosity-Permeability Relationship

Phenomena of fluid flow through porous media are widely seen in nature, such as

air flow in forest canopies, groundwater in aquifers and oil in reservoir rocks, in

engineering, such as pin fin heat sinks for electronic devices and lotus-type porous

metals for compact heat transfer applications, and in biology, such as blood flow in

choriocapillaris of the human eye and cerebrospinal fluid flow in brain tissue. They

have been studied both experimentally and theoretically in the past several decades

(e.g., [228] [129] [229]). Several models have been introduced to mathematically

describe fluid flows in porous media such as the Darcy, the Brinkman-extended Darcy,

the Forchheimer-extended Darcy [117], and the so-called generalized models [115] as

presented in Ch. 3. In all of these models, parameters of porosity and permeability

are used and are very important in determining flow characteristics. Porosity is

often estimated via direct measurements. Common porous materials have porosities

ranging from 0.02 ∼ 0.99 (see Table 1.1 of [117]). Permeability is typically determined

in the laboratory by application of Darcy’s law under steady-state conditions, with

values in [0, ∞). It is visualized as an operator that converts hydraulic gradients

to velocity (along the x, y, z directions), as discussed by Liakopoulos [230], and is

therefore a tensor with an array of nine coefficients written in a form as

K =


Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 .
The material contained in this chapter has been published as [International Journal of Heat

and Mass Transfer, 103, 2016, 984-996] [10.1016/j.ijheatmasstransfer.2016.07.095] c© [copyright
Elsevier] [https://www.journals.elsevier.com/international-journal-of-heat-and-mass-transfer]
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For the sake of simplicity, in the present study the relation between velocity and

hydraulic gradient is only referred to the principle axes; thus all coefficients of the

tensor reduce to zero except the diagonal ones. Also, the diagonal values are assumed

to be the same under isotropic conditions, indicating a scalar permeability as

K = Kxx = Kyy = Kzz .

Since permeability is often difficult to estimate, various permeability models are

available and have proven to work well for specific kinds of problems. For instance, the

classical and well-known semi-empirical Kozeny–Carman (K–C) equation [222] [221]

for flow in packed beds of solids is

K =
φsD

2
pφ

3

C0(1− φ)2
, (6.1)

with φs, φ, Dp being sphericity of the particles, porosity, and particle diameter,

respectively. The empirical coefficient C0 is usually taken to be a constant (∼180)

and can be adjusted for different solid constituent geometries. Its various forms

include the one obtained after applying the Archie relationship [231], the modified

K–C equation based on fractal geometry [232], and one based on experiments with

glass and natural fiberous mats [233]. These models all have similar forms with

different exponents of porosity in the numerator. Note that permeability calculated

from these models is a constant, which only applies to porous media with exactly the

same micro-scale structure (e.g., pore fabric, pore throat) everywhere. Otherwise,

at least a spatially dependent permeability is expected for a porous medium, even

with constant porosity. Although performance of such correlations is satisfactory

for certain problems, it is difficult to apply them over broader ranges of situations

without changing the empirical information, which has attendant need for potentially

costly laboratory experiments. This motivates attempting to find a general formula

for the relationship between porosity and permeability to provide convenience for

better macroscopic simulation of fluid flow through porous media.
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The rest of this chapter is organized as follows. In the analysis section, the

generalized model is first introduced. Then a detailed derivation of the functional

dependence of permeability in terms of various physical parameters associated with

porous media flows is explained. In the third section, numerical results for both

lid-driven cavity and convection problems in a cube are presented and discussed.

Summary and conclusions are provided in a final section.

6.1. Analysis

As seen in the governing equation provided in Ch. 3, the energy equation applies only

to the fluid phase. The more rigorous form combining thermal properties of both the

solid matrix and the fluid phase is expressed as (see, e.g., Bejan [151])

(ρc)m
∂T

∂t
+ (ρcp)fu · ∇T = km∆T + q

′′′

m , (6.2)

with

(ρc)m = (1− φ)(ρc)s + φ(ρcp)f , (6.3a)

km = (1− φ)ks + φkf , (6.3b)

q
′′′

m = (1− φ)q
′′′

s + φq
′′′

f , (6.3c)

where the subscript s corresponds to solid, and the subscript m denotes effective

properties incorporating effects of both solid and fluid phases, for instance, km is

effective thermal conductivity of the porous medium.

According to the stability theory proposed by Prigogine and Glansdorf [234] [235]

for general non-equilibrium thermodynamic cases, local thermodynamic equilibrium

is still satisfied and has the same form of formulas (e.g., equation(s) of state) as would

pertain globally. Thus, the following classical conditions follow:

(δS)eq = 0 , (equilibrium) (6.4a)
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(δ2S)eq < 0 , (stability) (6.4b)

where δS and δ2S are first- and second-order deviations of entropy from equilibrium.

Subscript eq denotes evaluation at the equilibrium state. For equilibrium thermo-

dynamics, theory states that stability depends only on the sign of the curvature

(δ2S)eq. Also, the quantity δ2S plays an essential role in the overall theory. For

non-equilibrium thermodynamics, the following conditions need to be satisfied at all

spatial locations and time t inside the system:

δ2S < 0 , (6.5a)

∂tδ
2S > 0 . (6.5b)

The second condition, Eq. (6.5b), is mainly due to Lyapunov theory [236], required

for Eq. (6.5a) to be valid for all time t.

From this, it is concluded that entropy (equilibrium) or entropy production rate

(non-equilibrium) should be maximized to achieve a physically stable state. Thus,

the underlying approach used here is to take the first derivative of entropy production

rate with respect to permeability (assuming that porosity is an invertible function of

permeability) and force it to be zero. Then solve the resulting differential equation

for porosity in terms of permeability. Also, the second and higher derivatives should

be checked to be certain that they are less than zero, thus implying maximization.

6.1.1 Derivation of permeability formula

For fluid flow through porous media in general cases, the volumetric entropy genera-

tion (production) rate is given, for example in [237], as

Ṡgen =
µ

KT
φ2U 2 +

cFρ√
KT

φ3|U |U 2 +
Ψ

T
+
km(∇T )2

T 2
. (6.6)

The “dot” used above is notation for D/Dt, the substantial derivative. Assuming that

convective effects can be neglected, this simplifies to the local time derivative operator
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∂/∂t in the following analysis since convective terms are conservative within the N.–

S. context. The first and second terms on the RHS are fluid friction irreversibility

from Darcy and Forchheimer drag forces, respectively. The third term is entropy

production from viscous dissipation Ψ, which is expressed as 2µĒ2 with Ē being the

strain rate tensor Euclidean norm. Viscous dissipation is obtained by subtracting the

mechanical energy equation from the total energy equation for fluid flow in porous

media. Thus it is expressed in terms of superficial velocity, as is also true in the

expressions of drag dissipation. Through the Dupuit–Forchheimer relationship, these

terms can all be expressed using pore velocity, as is shown in Eq. (6.6), and the

viscous dissipation in 3-D is

Ψ = 2µeφ
2

[(
∂U

∂x

)2

+

(
∂V

∂y

)2

+

(
∂W

∂z

)2
]

+µeφ
2

[(∂V
∂x

+
∂U

∂y

)2
+

(
∂V

∂z
+
∂W

∂y

)2

+

(
∂U

∂z
+
∂W

∂x

)2
]
,

with (U, V,W )T being the pore velocity components of U .

The last term in Eq. (6.6) is heat transfer irreversibility due to heat diffusion in the

energy equation [180] [127]. In the present study, for simplicity, the thermal properties

of the solid matrix and the fluid have been taken to be identical (ks = kf = km), as

was done in [115], despite obvious shortcomings. A more reasonable expression for km

with respect to porosity will be considered in derivations of subsequent studies. Thus

porosity does not appear. Also, this term is not included in the entropy production

rate in the following derivation. This is reasonable since porous terms associated with

velocity only appear in the momentum equation.

For simplicity, the entropy production rate is expressed as:

Ṡgen = bK−1φ2 + cK−1/2φ3 + aφ2 , (6.7)

with

a =
Ψ

φ2T
, b =

µ

T
U 2 , c =

cFρ

T
|U |U 2 . (6.8)
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The velocity, strain rates, etc., have been lumped into coefficients a, b, c which are

considered to be constant in Eq. (6.7) since only local variables are considered. To

begin, the first-order differential of entropy should be zero, as δS = 0, due to the

local thermodynamic equilibrium assumption. Although the entropy production rate

(time derivative of entropy) is used in Eq. (6.7), it is trivial to obtain δṠ = 0 since K

is independent of the local time. Take the first derivative of the entropy production

rate with respect to permeability as follows:

∂Ṡgen
∂K

= 2aφ
dφ

dK
+ 2bK−1φ

dφ

dK
− bφ2K−2 + 3cK−1/2φ2 dφ

dK
− 1

2
cφ3K−3/2 = 0 . (6.9)

After simple manipulation, Eq. (6.9) leads to the following analytically solvable ordi-

nary differential equation (ODE),

dφ

dK
=

bφ2K−2 + 1/2cφ3K−3/2

2aφ+ 2bK−1φ+ 3cK−1/2φ2
. (6.10)

Set φ ≡ y and K−1/2 ≡ x to express Eq. (6.10) as

dy

dx
=

−2by2x− cy3

2ay + 2bx2y + 3cxy2
, (6.11)

and write this as

(2bxy2 + cy3)dx+ (2ay + 2bx2y + 3cxy2)dy = 0 . (6.12)

Let P = 2bxy2 + cy3 and Q = 2ay + 2bx2y + 3cxy2. Since ∂P/∂y = ∂Q/∂x =

2bxy+ 2cy2, Eq. (6.11) is an exact differential equation, which has a general solution

u(x, y) = Ca with Ca an arbitrary constant. Also, du = P (x, y)dx+Q(x, y)dy. This

leads to

u(x, y) =

∫ x

x0

(2bxy2 + cy3)dx+

∫ y

y0

(2ay + 2bx2
0y + 3cx0y

2)dy , (6.13)

where (x0, y0) is one specific point in the solution domain. Let (x0, y0) = (0, 0) be

“initial data”, so

by2x2 + cy3x+ ay2 = Ca , (6.14)
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with Ca being the integration constant. Solving the quadratic equation for the unique

potentially positive solution yields

x =
−cy3 +

√
c2y6 − 4by2(ay2 − Ca)

2by2
. (6.15)

Substituting this back into the definition of φ and K leads to

K−1/2 =
−cφ3 +

√
c2φ6 − 4bφ2(aφ2 − Ca)

2bφ2
. (6.16)

The integration constant Ca is found to be Ca = a from the condition that as φ

goes to unity, K goes to ∞. Further manipulation leads to the final expression for

permeability in terms of porosity

K =
4b2φ2

(
√
c2φ4 + 4ab(1− φ2)− cφ2)2

. (6.17)

The argument of the square root is guaranteed to be non-negative since φ is always

less than or equal to unity, and all coefficients are non-negative.

The remaining question is whether the maximum of entropy production rate is

actually obtained. In that case, the second derivative should be less than zero at

the critical point (where the first derivative is zero). By simple hand calculation, the

second derivative is greater than zero, which seems contradictory to what is required.

However, it is the entropy production rate being used here, rather than the entropy.

In order to view this in an intuitive way, Fig. 6.1 presents entropy production rate

versus permeability.

It is observed that there exists a minimum point for

∂

∂K

(
∂S

∂t

)
= 0 ,

∂2

∂K2

(
∂S

∂t

)
> 0 , (6.18)

with K and t being independent variables, as implied previously. The coefficients

a, b, c, fixed at physically reasonable values, are calculated from the permeability

model for an arbitrary position and time, and are quite representative. Different val-

ues of these coefficients have also been used to calculate the entropy production rate.
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Figure 6.1: Relationship between entropy production rate and permeability.

Their resulting plots show similar tendencies, with minimum points corresponding to

different permeability values. According to the Clairaut exchange theorem [238], Eq.

(6.18) can be rewritten as

∂

∂t

(
∂S

∂K

)
= 0 ,

∂

∂t

(
∂2S

∂K2

)
> 0 . (6.19)

It is seen that the second condition in Eq. (6.19) is identical to Eq. (6.5b) from the non-

equilibrium thermodynamic stability theory. Also, Fig. 6.1 shows that as K → ∞,

all derivatives of entropy production rate → 0, including the second condition in Eq.

(6.18). Thus the second condition in Eq. (6.19), ∂t(∂
2S) → 0, implies asymptotic

stability. In this case, since time is always increasing, ∂2S must be less than zero

to satisfy the condition. Hence, both conditions for non-equilibrium stability stated

in [234] are locally satisfied for all values of space and time in the system of concern.

6.1.2 Further discussion

In all, formula (6.1) is expected to be applicable in a wide range of cases since it is

derived from a general theory. It is in a form similar to previous empirical equations
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in that porosity appears in the numerator (but with a different exponent), and the

factor (1 − φ) occurs in the denominator. It is analogous to Eq. (6.1), but in a

more complicated way. For flow with low pore velocity, the value of coefficient c is

much smaller than that of a (strain rate); therefore, terms with coefficient c in the

denominator can be neglected, and Eq. (6.17) is simplified to

K =
b φ2

a(1− φ2)
. (6.20)

Substituting a and b (as shown in Eqs. (6.8)) into Eq. (6.20), and using µe = µ/φ for

Ψ leads to

K =
D2
yφ

3

1− φ2
. (6.21)

The coefficient D2
y is some length scale related to the strain rate as

D2
y =

U 2[(
∂U
∂x

)2
+
(
∂V
∂y

)2
+
(
∂W
∂z

)2]
+

[(
∂V
∂x

+ ∂U
∂y

)2
+
(
∂V
∂z

+ ∂W
∂y

)2
+
(
∂U
∂z

+ ∂W
∂x

)2] ,
which is similar to the square of particle size used in Eq. (6.1). For flow with large

pore velocity, the coefficient c is large. If the calculated values of a and b are not

sufficiently large, then the denominator of Eq. (6.17) would be close to zero, resulting

in unreasonable high permeability. In this case, the flow has high probability to be

turbulent with much larger viscous dissipation, and finer computational grids, and

or turbulence modeling, are therefore needed. Moreover, one of the notable differ-

ences from previous empirical or semi-empirical equations is the absence of empirical

parameters in the formula. One may say that cF and µe in the permeability model

are also empirical parameters, but they are parameters which already existed in the

governing equations. A similar procedure such as that used to treat permeability here

may be applicable for cF and µe, but this is beyond the scope of the current work.

Furthermore, Eq. (6.17) has the potential for applicability to problems with in-

homogeneous or non-isotropic porous media where variable permeability values are

expected. The simplest case is a uniformly-structured (internal) porous medium with
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boundaries or interfaces being solid, non-porous, walls. Solid walls can be considered

as having zero permeability, and allowing no fluid to pass through. Thus, the perme-

ability is not constant up to, and including, the boundaries. In a more general porous

medium with space-dependent micro-structures, permeability would not be the same

even if the local porosity (in the representative elementary volume scale [129]) is the

same everywhere. In Eq. (6.17), permeability is related to effective viscosity, which

is found to be different for different geometries (channel fluid, bluff body, etc. [239]).

Lastly, it is remarked that from the standpoint of computational fluid dynamics

(CFD), this model is easily discretized and implemented. Permeability is calculated

at the center of each grid cell with centered differencing used to discretize velocity

gradients required by the permeability model.

6.2. Lid-driven cavity problem

Lid-driven cavity flow without porous media has been widely used as a benchmark

problem for many numerical methods and incompressible codes due to the simple

geometry, yet complicated flow behaviors, especially in 3D. Lid-driven cavity flow with

porous media has also been studied in recent years. Usually, constant permeabilities

in the whole cavity have been used to examine different flow behaviors [240]. However,

as was noted previously, fluid flow through porous media with boundaries will result in

a different permeability distribution, which is expected to be seen using the current

model. The porous medium in the cavity is assumed to be uniformly-structured

with tortuosity being unity, and thus the effective viscosity used is µ/φ. Effects from

inhomogeneity inside the porous medium will be considered in subsequent studies. All

computations are performed in parallel mode (using 16 cores) on the high-performance

computing cluster as the at the University of Kentucky Computing Center, each basic

node of which has two 2.6 GHz Intel E5-2670 eight-core processors and 64 GB of RAM.

The geometrical configuration and boundary conditions are sketched in Fig. 6.2.
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No-slip boundary conditions are imposed on all faces of the cube. The lid velocity is

U , and the length of each side of the cube is L. The center plane at which much of

the data discussed below are obtained is indicated by dashed lines.

Figure 6.2: Sketch of the 3-D lid-driven cavity problem.

6.2.1 Verification

Verification of the code implemented with the permeability model is first done by

setting porosity to unity, since the generalized N.–S. equation reduces to the standard

N.–S. equation as φ→ 1, which has abundant benchmark data for LDC flow. In these

calculations, L is 0.01m and U is 0.1m/s. The chosen length scales are somewhat

arbitrary but are expected to result in faster convergence to steady state. Grid

function convergence tests were performed for Reynolds number, Re, of both 100 and

400 using 413, 813 and 1613 grid points. Table 6.1 presents L2 norm errors (indicated

as ‖ · ‖2) calculated from the differences of two successive grid functions (fhi , f
h/2
i

and f
h/2
i , f

h/4
i with superscript denoting grid spacing). The ratios indicate at least

first-order accuracy, which is consistent with the fact that solutions are nonclassical

due to singularities in the upper right-hand corner of the cavity. Figure 6.3 shows u-
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Table 6.1: Grid function convergence test

‖fhi − f
h/2
i ‖2 ‖fh/2i − fh/4i ‖2 Ratio

Re = 100 9.06× 10−4 3.16× 10−4 2.87

Re = 400 5.0× 10−3 1.87× 10−3 2.67

component velocity profiles computed on three different grids; the highlighted square

parts are zoomed in for a clearer view of grid convergence. It is clear from these zoom-

ins that convergence is essentially second-order away from cavity corners. Moreover,

it is seen that 413 and 813 grids are sufficient to produce reasonably accurate results

for this initial investigation, especially for cases with smaller Re numbers. Figure
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Figure 6.3: Velocity profiles computed with three different grids: (a) Re = 100; (b)
Re = 400.

6.4 shows that solutions computed on the 813 grid compare well with the 3-D results

from [241]. It is interesting to note that although the flow is steady for both values

of Re, there is a significant change in shape of the velocity profiles already when

Re = 400.

Next, 2-D results from Guo [240] are verified by using constant permeabilities for

Re = 10 with φ = 0.1 on the same length and velocity scales as adopted previously.

In the present study, calculations are performed on a 413 uniform grid, and “2-D”
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Figure 6.4: Velocity profiles through the cavity center, solid lines are calculated
solutions and symbols are benchmark solutions [241]: (a) u component along the
vertical center line; (b) v component along the horizontal center line.

solutions are obtained by setting boundary conditions at fore and aft walls to be

stress-free. These are not exactly 2-D considering influences from the interfaces of

no-slip and stress-free boundaries (corners) on the overall results, but solutions in the

center plane may not be affected since it is far away from corners, and results agree

quite well with the published solutions (see e.g., Fig. 6.7 in [240]), as demonstrated in

solid lines in Fig. 6.5. It should be noted that the Darcy numbers, Da (K/L2), and

the viscosity ratio J (µe/µ) used in [240] are not exactly the same as employed here,

where Da is lower and J is higher. The agreement of solutions indicates a trade-off

between Da and J ; also, higher J means larger viscous dissipation resulting in larger

drag forces and smaller permeability (Da). Moreover, the 3-D results (denoted by

dashed lines) calculated from the same conditions show some mild deviations from

2-D results for larger Darcy numbers because of the aft and fore wall effects on

the advective behavior of the flow; for smaller Da with less advection, this effect is

negligible, resulting in 2-D and 3-D solutions being almost indistinguishable. Lastly, it

should be clear from analyses of the preceding section that variable permeability may

produce quite different results, even when porosity is constant. It is thus important
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Figure 6.5: Velocity profiles for different constant permeabilities, solid lines are
calculated solutions, and symbols are solutions from [240]: (a) u component along
the vertical center line; (b) v component along the horizontal center line.

to obtain a permeability distribution to produce physically correct results.

6.2.2 General model results

The current model produces permeability automatically. Computations have been

performed with φ = 0.1, 0.5, 0.9 for Re = 10. The coefficient cF in Eq. (3.1b) is

calculated using Eq. (5.1) based on experimental investigations of Ergun [126]. It

is equal to the value d/
√
K given in [219], since d = βkν/αk, with the non-linear

coefficient βk = cFρ/
√
K, and the linear coefficient αk = µ/K (αk and βk correspond

to a and b, respectively, in the original paper of [219]). In Table 6.2, Rk(1) and Rk(2)

are critical values for flow transition to non-linear and turbulent regimes, respectively,

and are calculated as [219]

Rk(1) =
0.17

c1.1
F

, Rk(2) =
10

cF
; (6.22)

corresponding critical permeability values K(1) and K(2) are calculated via

Rk(1) =
φU
√
K(1)

ν
, Rk(2) =

φU
√
K(2)

ν
.
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If permeability is less than K(1), Darcy flow usually occurs; if K(1) < K < K(2),

flow begins to transition to non-linear behavior as K approaches K(2); if K > K(2),

flow becomes unsteady and wholly turbulent. For instance, all three permeability

values used for φ = 0.1 in the computations shown in Fig. 6.5 are smaller than K(2),

indicating steady flows; also, two permeability values are even smaller than K(1),

suggesting that the flow is in the Darcy regime.

Table 6.2: Estimation of flow regimes [219]

Porosity cF (d/
√
K) Rk(1) Rk(2) K(1) K(2)

0.1 4.52 0.0323 2.21 1.05× 10−7 4.90× 10−4

0.2 1.60 0.102 2.21 2.58× 10−7 9.80× 10−4

0.3 0.870 0.198 2.21 4.37× 10−7 1.47× 10−3

0.4 0.565 0.319 2.21 6.35× 10−7 1.96× 10−3

0.5 0.404 0.461 24 8.48× 10−7 2.45× 10−3

0.6 0.307 0.622 24 1.08× 10−6 2.94× 10−3

0.7 0.244 0.802 24 1.31× 10−6 3.43× 10−3

0.8 0.200 1.00 24 1.56× 10−6 3.92× 10−3

0.9 0.167 1.21 59 1.82× 10−6 4.41× 10−3

Figure 6.6 presents velocity profiles computed from the derived permeability model

for LDC flow (Eq. (6.17) with Eqs. (6.8)). As seen, profiles are similar in shape to

those shown in Fig. 6.5 although different porosities are used here. For low-porosity

flow, the u velocity gradient near the moving wall (lid) is quite steep, as shown in

part (a). Also, it is seen in part (b) that vertical velocity magnitude decreases as

porosity decreases, as expected. For larger porosity cases, profiles are similar to those

for the clear fluid case, but with smaller velocity values and more symmetric velocity

distributions since less fluid flow is driven by the moving lid for a cavity with porous

media.

Figure 6.7 shows contour plots of u-component velocity in the mid-plane of the

3-D cavity with color bars denoting the range of values for different porous-media

flows. Streamlines are shown with white lines. As porosity decreases, it is easily seen
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Figure 6.6: Velocity profiles through the cavity center for LDC flow in different
porosity media: (a) u component along the vertical line; (b) v component along the
horizontal line.

that the overall velocity decreases, especially in the area adjacent to the top lid; also,

the vortex core, demonstrated by the streamlines, moves towards the upper center

since there is more kinetic energy dissipation lost to the porous medium structure

(friction) and thus decreasing of advection effects. In particular, the typical lower

corner vortices of higher-Re LDC flow are not present in the porous-media cases.

φ=0.9 φ=0.5 φ=0.1

Figure 6.7: Velocity streamlines in the middle x-y plane.

Figure 6.8 shows both permeability and strain rate profiles on the cavity mid plane.

It can be estimated from part (a) that the calculated average permeabilities are of

order of magnitude 10−6, 10−4, 10−2 for porosities of 0.1, 0.5, 0.9, respectively, which
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are smaller than the critical values for Darcy flow shown in Table 6.2. Permeabilities
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Figure 6.8: Permeability (log-scale) and strain rate through the cavity center com-
puted with permeability model and successively increasing porosity: (a) permeability;
(b) strain rate.

in some regions may indicate non-linear flows, but still are far from the turbulent

regime. It is seen that permeability increases as porosity increases, and its value

near the cavity center is essentially constant for this particular problem. It should

be noted that permeability at the impermeable wall boundaries is assigned to be

close to zero (10−20), rather than identically zero, to prevent floating-point arithmetic

overflows. It is noted that because of Dirichlet boundary conditions are applied to the

momentum equations, they are not evaluated on solid boundaries where permeability

is zero. Nevertheless, very small values lead to overflows at grid points adjacent

to boundaries. Part (b) of Fig. 6.8 shows one component of the off-diagonal strain

rate tensor, uy + vx, since for the LDC problem this component carries the most

information. It is seen (by comparing parts (a) and (b) of this figure) for each case

that as strain rate increases, permeability decreases, and vice versa, as expected

from the permeability model (recall Eqs. (6.8) and (6.17)), which indicates an inverse

correlation between strain rate and permeability. Large-porosity flows have larger
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absolute strain rates since they exhibit larger velocity.

Figure 6.9 presents contour plots of permeability (logK) distribution in the center

plane for three porosity cases. Streamlines are also shown. The range of color scale

decreases as porosity decreases to provide more information. Although different color

scales are being used, it can still be seen that the overall permeability becomes lower as

porosity decreases since the same color represents lower permeability for low porosity

cases. In each plot, contours of relatively higher permeability values form a “band”

structure in the upper area of the plane, and the “band” moves towards upper lid

as porosity decreases. This is consistent with the streamlines as permeability is

calculated from the flow field (recall dependence on strain rate).

φ=0.9 φ=0.5 φ=0.1

Figure 6.9: Permeability distributions (log-scale) of lid driven cavity flows through
different porous media in the middle x-y plane.

Figure 6.10 shows contour plots of strain rate (same component as used in Fig.

6.8(b)) distribution with streamlines also indicated. The same color scales are used

for all porosity cases to allow direct comparison. As porosity decreases, the overall

value of strain rate decreases because of decreasing velocity. Also, a clear inverse

correlation with permeability (Fig. 6.9) is shown. For instance, the area near the top

lid has relatively lower permeability for higher strain rates.
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φ=0.9 φ=0.5 φ=0.1

Figure 6.10: Strain rates of lid driven cavity flows through different porous media in
the middle x-y plane.

6.3. The natural convection problem

Natural convective flow with the geometrical configuration shown in Fig. 6.11 has long

been used for the study of natural convective heat transfer, both without and with

porous media in the cavity. No-slip boundary conditions are imposed on all faces of

Figure 6.11: Sketch of the cubicle natural convection problem.

the cube, with zero velocities; temperatures are assigned at both the LHS hot wall and
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the RHS cold wall; other walls are adiabatic (no heat flux). Usually, only numerical

benchmark solutions for flow without porous media are available in literature since

it is somewhat more difficult to perfectly satisfy the adiabatic boundary conditions

experimentally. For cavity flow through porous media, different constant permeabil-

ities are often used for an investigation of flow field responses. In the present study,

variable permeability is automatically computed from the model derived in Sec. 6.1

for different porosities. The length scale of the cube L is 0.01m on each side, to be

consistent with the size of the cube in the LDC problem discussed previously.

6.3.1 Verification

Initial validation is performed for the case of constant, unit porosity as in the LDC

problem. Since benchmark solutions for flow without porous media exist in the lit-

erature and are computed from dimensionless equations [242] [243], scalings of the

dimensional variable solutions produced here are required for direct comparison. For

the current study, velocity solutions are scaled by κ/L with κ being the thermal

diffusivity. Table 6.3 shows computed maximum velocity values (after scaling) for

Rayleigh number, Ra, ranging from 103 to 106 employing 813 uniformly spaced grid

points. Physical parameters used are as follows: ν = 10−5 m2/s, βe = 3.43×10−3/◦C,

g = 9.8 m/s2, Pr = 0.71, L = 0.01 m. Different wall temperatures are then assigned

according to Ra. For instance, if Tc = −2.095 ◦C, Th = 2.095 ◦C,

Ra =
gβe(Th − Tc)L3

νκ
= 999.9 ' 1000 ,

for an approximation of Ra = 103; obviously, a ten times larger temperature difference

will result in an increase of Ra of the same magnitude, etc. Define the relative error

eR as |vb − vp|/vb, where vb represents benchmark solutions, and the vp are present

results. For lower Ra such as 103 and 104, the relative error is within 1%, which is

satisfactory. For larger Ra, the error increases—as summarized in Table 6.3—since a

larger number of grid points would be needed to achieve full resolution of the thermal
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boundary layers; but errors are still tolerable for initial qualitative studies focusing

on permeability effects.

Table 6.3: Comparison of present results with benchmark data from [243]

Present study Ref [243] eR Present study Ref [243] eR

Ra ≈ 103 Ra = 103 Ra ≈ 104 Ra = 104

umax 3.53 3.54 0.28% 16.789 16.719 0.42%

vmax 3.52 3.54 0.56% 19.161 18.983 0.94%

wmax 0.17 0.17 0 2.17 2.156 0.65%

Ra ≈ 105 Ra = 105 Ra ≈ 106 Ra = 106

umax 44.996 43.90 2.5% 127 126.97 0.02%

vmax 69.63 71.06 2.0% 223.042 236.72 5.8%

wmax 9.37 9.69 3.3% 25.06 25.56 1.9%

Figure 6.12 displays patterns of streamlines, velocity components and tempera-

ture, for comparison with the patterns shown in 2-D calculations in [244] (see Fig.

6.5 of that reference). It is seen that the flow field changes gradually as Ra increases;

in particular, convection effects become more dominant. Also, it is observed that the

mid-plane 3-D results shown do not differ noticeably from the 2-D results of [244].

Furthermore, at the highest value of Ra, although the flow and temperature fields

are beginning to be more complicated, they are still far from being turbulent, as in-

dicated in [243]. This is in sharp contrast with Rayleigh-Bénard convection between

flat plates and arises because of flow confinement in the cavity.

In Fig. 6.13, flow patterns for natural convection with constant permeability are

shown, as is done in [115] for 2-D cases, where the effective viscosity is also calculated

from µ/φ. Part (a) uses the same Da and Ra as in Fig. 6.8(b) of [115]. The values in

parentheses represent corresponding non-dimensional values after scaling for ease of

comparison with [115]. The flow patterns and the value of vmax agree well although

here 3-D cases are calculated. In this case with relatively large permeability, the

no-slip condition is apparent in the vector plot (see velocity vectors near corners)
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Ra = 103

Ra = 104

Ra = 105

Ra = 106

Figure 6.12: Flow patterns for convective flow compared with cite, from left to right:
velocity streamlines, u component velocity, v component velocity, temperature.

because of the Brinkman and non-Darcy terms, indicating the greater contribution

of inertial effects; the streamline and isotherm patterns are also similar to that of the

pure fluid case, with a gradual variation of velocity and temperature.

Part (b) is calculated with low permeability, and it is seen in the vector plot

that velocity near the walls is large, showing the tendency to seemingly violate the

no-slip condition and implying that boundary layers are becoming extremely thin;

they are not resolved on the grid being used. Also, similar to what is shown in Fig.

6.8(a) of [115] (not exactly the same condition but with a low Darcy number), the

streamlines presented here intensify near the hot and cold walls, also indicating thin
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boundary layers near the wall. The isotherms are also similar to those of [115], and,

in particular, converge at the bottom corner of the hot wall and the top corner of

the cold wall. Moreover, it is important to note that, as summarized in [115], for low

Darcy–Rayleigh numbers (Ra∗ = RaDa), it is the regime of Darcy flow [115]; also,

the Darcy flow regime is applicable up to a fairly high Ra for Da less than 10−4.

(a) Ra = 104, K = 10−6(Da = 10−2), φ = 0.6, umax = 0.011m/s(7.8),vmax = 0.013m/s(9.23),
wmax = 0.00105m/s(0.75).

(b) Ra = 106, K = 10−8(Da = 10−4), φ = 0.8, umax = 0.042m/s(30), vmax = 0.076m/s(54),
wmax = 0.002m/s(1.42).

Figure 6.13: Streamline, u-component velocity, v-component velocity, isothermal pat-
terns for different Darcy and Rayleigh numbers.
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6.3.2 General model results

Next, results computed using the derived permeability model (see Eq. (6.17)) are

presented for flow through three different porous media (φ = 0.1, 0.5, 0.9), with

fixed Ra = 104 obtained by setting temperatures on cold and hot walls, respectively,

as Tc = −20.95 ◦C and Th = 20.95 ◦C. For Ra as low as 104 in the current case, Ra∗ is

considered to be low and these cases are expected to be non-turbulent if Da is lower

than around 10−1. All computations are performed on 413 grids.

It is seen in Fig. 6.14(a) that the vertical velocity magnitude decreases noticeably

as porosity decreases; for φ = 0.1, the profile is also shown in the zoom-in plot since

the magnitude (10−5) is so small that very little variation can be seen through the

cavity; for φ = 0.5, 0.9, there is a positive peak near the hot wall and a negative peak

near the cold wall as expected. In the central portion of the cavity, the magnitude
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Figure 6.14: (a) Velocity and (b) temperature profiles through the cavity center for
convective flow through different porosity media.

gradually changes, rather than being small, as shown in Fig. 6.7(a) of [115], where a

higher Ra and constant Da are used. Also, higher velocity gradients are obtained for

the larger porosity case. The temperature profiles shown in part (b) are also different

from those of [115] (see Fig. 6.7(b)). There are no obvious small values in the central
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region of the cavity for the case of φ = 0.5 since smaller permeability values are

produced from the model; also, larger temperature gradients occur for larger porosity

cases.

Qualitative depiction of flow patterns and temperature profiles are provided in Fig.

6.15 (compare with Fig. 6.12). For low porosity (such as 0.1), velocity is so small that

convective flow is insignificant, and heat conduction is dominant; velocities are anti-

symmetric. For φ = 0.5, temperature gradients begin to change, showing stronger

convective effects. Streamlines for φ = 0.9 begin to be similar to the clear fluid case

shown in Fig. 6.12 for Ra = 104.

φ=0.1

φ=0.5

φ=0.9

Figure 6.15: Flow patterns for convective flow through different porous media, from
left to right: velocity streamline, u-component velocity, v-component velocity, tem-
perature.

In Fig. 6.16 results from automatically calculated variable permeabilities are pre-

sented; these vary only with space since steady flow is considered for the present
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study. Note that permeability also varies with time if non-steady flow is considered,

which is much more complicated. Part (a) shows permeability profiles through the

cavity center for different values of porosity. It is shown that as porosity decreases, the

averaged value of permeability decreases, as expected. All profile shapes are similar

in that they have two peak values with a valley value between them. The peak values

move towards the center as porosity decreases. Details of profile shape for different

porosity are not exactly the same; but at the same x location, usually permeability

increases as porosity becomes larger. This is in correspondence with the strain rate

shown in part (b), where permeability is calculated from Eq. (6.17). The zoom in plot

is provided for φ = 0.1 after rescaling of y-coordinates since it is nearly a straight line

in the original scale. Observe that all strain rate profiles have the opposite tendency

as permeability, indicating the inverse relationship emphasized earlier.
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Figure 6.16: (a) Permeability and (b) strain rate through the cavity center for con-
vective flow through different porosity media.

Figure 6.17 provides a more detailed view of the permeability distribution in the

center plane of the cavity. Different ranges of color scales have been used for the

three cases in order to demonstrate a clearer distribution in each plot at the expense

of better quantitative comparisons. First, observe that, as the porosity decreases,
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the overall permeability becomes smaller since the range of permeability values, as

seen from the color bar, decreases. Second, relatively high permeability values occur

away from the walls for all cases, but the shapes of distributions are significantly

different for different porosities. In the case of φ = 0.9, four notable contour regions

with higher permeability values occur and are connected to each other; for φ =

0.5, two diagonal “bands” appear; and for φ = 0.1, four small round areas occur

somewhat symmetrically about the cavity center. Lastly, the notable regions with

small permeabilities in the center of these plots appear as “cores” with shapes similar

to the cores of the main vortical flow field corresponding to the streamlines. These

features correlate, qualitatively, with strain rate shown in the next figure.

φ=0.9 φ=0.5 φ=0.1

Figure 6.17: Permeability of cubicle convective flow through different porosity media
in the middle x-y plane, Ra = 104.

The strain rate distributions are shown in Fig. 6.18. Since the range of values for

the case φ = 0.1 is not close to the same magnitude as in the other cases, a different

scale of [−0.04, 0.04] is employed, as shown in the color bar, in order to present more

notable information. First, it is seen that the overall absolute strain rate decreases as

porosity becomes lower, due to low velocities in lower porosity cases. Second, observe

that for φ = 0.9, the magnitude of strain rate is high near the wall, while for φ =

0.5, 0.1, strain rate near the wall is lower than the adjacent area and in this adjacent

area decreases gradually into the center. Third, the inverse correlation between Figure
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6.17 and 6.18 for each case is also seen, but it is clear that this is significantly more

complicated than a simple reciprocal is would be expected by examining Eq. (6.17).

For instance, in the case of φ = 0.9, lower values of permeability occur in the center

core and the surrounding places near the wall, where absolute values of strain rate

are higher. Also, contours shown in Fig. 6.18 tend to be increasingly symmetric as

φ becomes small, as also shown in the permeability distribution plots. The center

area formed by larger strain rate values near the wall decreases as porosity decreases,

corresponding to the shrinking permeability “cores” (Fig. 6.17) formed by larger

permeability values.

φ=0.9 φ=0.5 φ=0.1

Figure 6.18: Strain rate of cubicle convective flow through different porosity media
in the middle x-y plane, Ra = 104.

6.4. Summary and conclusions

In this chapter a general relationship between porosity and permeability has been

derived from maximization of entropy production rate of fluid flow in porous media in

order to stabilize the non-equilibrium thermodynamic system. An explicit expression

for permeability in terms of porosity is obtained analytically through solving an ODE

resulting from taking the first derivative of entropy production rate with respect to

permeability. It is observed that stability is asymptotic as K → ∞. The resulting

formula automatically satisfies the constraints relating porosity and permeability (as
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φ → 0, K → 0, and as φ → 1, K → ∞). Potentially it can be used in general

situations (no additional empirical parameters as appear in various correlations) for

flow in both homogeneous and inhomogeneous porous media.

Numerical simulations of cubicle lid-driven cavity and natural convective flows

have been carried out for both cold and hot fluid cases, respectively, to provide an ini-

tial investigation of performance of this model. It is observed that the present model

can produce different permeabilities in the solution domain accounting for influences

from solid walls. Computational results for velocity and temperature distributions

are noticeably different from those calculated with constant, fixed permeabilities. Re-

sults computed with the derived model show consistency with expected flow physics

for various porosities.

The results of this study are quite explorative and need to be verified by future

experiments, since there are no benchmark experimental results yet for porous media

problems with the same configurations employed in this study (technical difficulties

in experimental apparatus). The model is applied only to incompressible flows in

the present study. The same derivation procedure can be performed to obtain a

relationship that is applicable to compressible flows as well. The effects of solid

wall boundaries on permeability distribution in a homogeneous porous medium are

mainly investigated. Inhomogeneity inside a porous medium will be considered in

future studies with an emphasis on the geometry-related effective viscosity. Also

effects of different thermal transport properties of liquid and solid materials will be

explored.

Copyright c© Tingting Tang, 2017.
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Chapter 7: Computations of Wildfire Spread

In order to demonstrate the importance and operational potential of the modeling

approach thoroughly discussed from Ch. 3 to Ch. 6, four wildfire simulations were

performed considering different fuel types (grass and forest), terrain types (flat and

mountain), and the influence of firebrands. All computations are performed in paral-

lel mode on the high-performance computing cluster referred to in Ch. 6, Sec. 6.2. In

Sec. 7.1, numerical data associated with canopy drag effects, physical domain, grid

information, and boundary conditions of all simulations are presented. In Sec. 7.2,

computational results of grassland fires on flat (open) terrain are presented and dis-

cussed first since grassfires are relatively simple among wildfires and have been studied

both experimentally and numerically in a fair amount of literature (e.g. [37] [63] [83]).

In Sec. 7.3, simulation results of forest fire spread involving both surface and canopy

fires are provided. Also, preliminary results of crown fire spread on meso-scale realis-

tic terrain are given. In Sec. 7.4, firebrand calculations are carried out in the context

of both fixed and time-dependent flow field of a forest fire. Lastly, Sec. 7.5 provides

summary and conclusions from the computational results.

7.1. Numerical details

Since the estimated porosities (see Sec. 3.3) of a typical three-level (undergrowth,

trunk, canopy) forest model are very high (close to unity), they have no significant

effects on the inertial term, and possibly the Darcy term (if the porosity-dependent

permeability is fairly large) in the governing equation (Eq. (3.1b)). Therefore, the

non-linear Forchheimer term is dominant, and is usually the only drag force term

in the momentum equation for canopy flows in many studies (see, e.g., Shaw and
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Schumann [245], Yamada [246], Aumond et al. [247] and Mueller et al. [228]). The

Forchheimer term can be expressed in a way more familiar to the atmospheric mod-

eling community as

fd = cdafρ|u|u , (7.1)

where cd represents a drag coefficient and is regarded as equivalent to the Ergun co-

efficient cF in Eq. (3.2); af represents leaf area density defined as the one-sided leaf

area per unit volume, and is usually a function of height [245]. Drag coefficients in

canopies often range between 0.15 and 0.37 on the basis of an analysis of microm-

eteorological data from a deciduous forest by Shaw et al. [245] [248]. Here, a drag

coefficient of cF = 0.15 is used. Inhomogeneity of the porous fuel bed is demonstrated

by the distribution of leaf area density. If it is assumed that the projected frontal

area of a fuel particle is half of the total surface area, as with flat leaves, then the

leaf area density is expressed as af = σsβp/2 [228]. Here, βp is the solid volume

fraction of vegetation, or simply put, the porosity; σs is the surface to volume ratio

of a fuel particle. Comparing Eq. (7.1) with the Forchheimer term in Eq. (3.2) shows

that K−1/2 = af . This provides a good approximation of permeability values used in

canopy flows. Also, the theoretical permeability model described in Ch. 6 is depen-

dent on porosity and geometry-related parameters, similar to the expression for af

stated above.

Figure 7.1 (a) shows a leaf area density distribution estimated from observations

in experimental sites (Dupont et al. [249]); part (b) shows the corresponding perme-

ability values within the canopy. For both plots, non-dimensional heights y/h are

denoted in the y-axes with h being the tree height. The part of the tree with approx-

imately zero leaf area density is considered as the trunk; the region higher than the

tree with approximately zero af is regarded as the atmospheric air. As seen in part

(b), permeability values range from O(100) to O(105), which are much larger than the

values used for the numerical problem treated in Ch. 6. Note that the undergrowth
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part is not presented here in both plots, but it is assumed that it has leaf area density

and permeability values similar to that of the canopy level in computations.

trunk
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air air
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trunk
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Figure 7.1: Profiles of (a) leaf area density af ; (b) corresponding permeability values.

In this study, permeability in a forest is calculated from Eq. (6.17)—the theoretical

model described in Ch. 6. The Darcy term is retained in case large flow velocity and

small computed permeabilities occur. Porosities estimated in Sec. 3.3 and other

geometry-dependent parameters such as tortuosity Htor are utilized. It should be

noted that the definition of tortuosity (see Ch. 3) used here is provided by Bear and

Bachmat (see Sec. 2.3.6 of [119]). In their study, a value of ∼ 1/3 is estimated for the

tortuosity of a very simple configuration; viz., the void space in a cubical box is made

up of straight tubes (parallel to the axes of the box) with a constant cross-section.

For cases with any tortuous tubes (tube-length larger than cube-length), Htor < 1/3.

Since the paths of void spaces in the canopy or undergrowth can be quite tortuous, and

much longer than the straight paths parallel to the axis of the canopy or undergrowth,

the tortuosity in the canopy and undergrowth is assumed to be much smaller than
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1/3. Recall that µe/µ = 1/(φHtor); thus, with very small Htor, the effective viscosity

µe will be large, resulting in large values of the coefficient a appearing in Eq. (6.17)

and small permeability values. Therefore, in real computations, the coefficient a is

amplified in an empirical way. It is assumed that the ratio of the total horizontal

length (of ∼ O(102) leaves) to their thickness might be a good approximation of the

amplification factor according to the definition of tortuosity in [119]. In this initial

investigation, amplification factors of 500, 10, and 1000 are used for undergrowth,

trunk, and canopy, respectively, according to the complexity of biomass in each level.

In addition, since the resolution used for wildfire simulations is not (or cannot be)

sufficiently large for using the general model, especially for turbulent porous flows,

as discussed previously (Sec. 6.1.2), it is possible to get undesired infinitely large

permeability values from the general model. Consequently, limits of permeabilities

are used with reasonable values provided in Figure 7.1 (b).

For each simulation, the terrain is positioned at the bottom of the three-dimensional

computational domain. An example of the computational domain and grids used in

this study is shown in Fig. 7.2, where x, y, z represents streamwise, vertical, and span-

wise direction, respectively. The length in x, y, z directions is, respectively, denoted

by Lx + Lxe, Ly, and Lx. Note that the computational domain is somewhat larger

than the physical domain since an extended computational domain (in streamwise

direction with a length of Lxe) is required to satisfy the outlet boundary condition

for fully-developed flow. In x and z directions, uniform grids are used in the physical

domain, while stretching grids in x direction are used with filtering in the extended

domain. In the y direction, non-uniform grids are stretched from the first grid with

the smallest grid spacing (usually the height of grass). Thus, relatively refined grids

are used in the lower atmospheric region, as seen in the zoom-in plot in Fig. 7.2.

Table 7.1 shows details of the four simulations being performed. As seen, different

physical domains are used for each case in order to investigate the effects of terrain.
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Figure 7.2: Sketch of the computational domain used in this study.

The domain size for simulation 1 is typical for grassland fires. Both horizontal and

vertical lengths are increased in simulation 2 for forest fires. A meso-scale terrain is

used for simulation 3 for a typical devastating forest fire; the “∼” is used since Ly

is not uniform within the domain. Simulation 4 employed an extended length in x

direction on the basis of simulation 1, for the sake of firebrand studies. In x and z

directions, grid spacing is 5 m for simulation 1, 2, 4, and ∼ 50 m for simulation 3. In

the y direction, grid spacing ranges between 0.5–16 m for simulation 1, 0.5–28 m for

simulation 2, 1.5–167 m for simulation 3, and 0.5–22 m for simulation 4. It is seen

Table 7.1: Summary of the different numerical conditions used for each simulation
(Sim.) conducted in this study.

Sim.
no.

Fuel
type

Physical domain:
Lx(Lxe)× Ly × Lz

Physical grids:
Nx(Nxe)×Ny ×Nz

1 Grass 200(200)× 200× 200 m3 41(40)× 41× 41

2 Forest 350(50)× 300× 200 m3 71(10)× 51× 41

3 Forest 2.95(1.8)× ∼ 2× 2.29 km3 60(35)× 61× 57

4 Forest 500(400)× 200× 200 m3 101(40)× 41× 41
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that rather coarse grids (especially for simulation 3) are used in these simulations,

but rather coarse atmospheric resolution (grid spacing 100–500 m) is found to be

capable of qualitatively capturing fire growth and behavior such as surface and crown

fire spread [90]. Grid spacings used for simulation 1, 2, 4 are also expected to capture

some coherent structure of turbulence using synthetic-velocity LES. Because the size

of such structures in the upper canopy of such flows has been found to be on the

order of hc (the canopy height) in the horizontal direction and hc/3 in the vertical

direction by Finnigan [250].

The same boundary conditions are utilized for all simulations. The ABL (atmo-

spheric boundary layer) velocity (U component) profile expressed as [251]

U(y)

Uτ
=

1

κ
ln

(
y

y0

)
(7.2)

is prescribed as the upwind streamwise boundary conditions (V and W component

velocities are zero). A maximum free-stream wind velocity of 10 m/s is employed. In

Eq. (7.2), Uτ is the friction velocity defined as
√
τw/ρ with τw being the wall shear

stress; y0 is the roughness height of terrain; κ is the von Karman constant (∼ 0.4).

The roughness and estimated ABL depth are, respectively, ∼ 0.5 m and 510 m for

a typical forest, and are, respectively, ∼ 0.05 m and 400 m for bushes or grass (see

Figure 1.3 and Table 1.1 of [251]). As mentioned previously, a fully-developed flow is

prescribed for the downwind streamwise boundary condition. The no-slip condition

with zero velocity is used for the bottom boundary (terrain). Stress-free conditions

(velocity normal to the surface and shear stress are zero) are enforced on top, fore

and aft (spanwise) boundaries.

Boundary conditions for solving the PPE were discussed in Ch. 4, Sec. 4.1. Neu-

mann conditions of ∂Φ/∂n = 0 (Φ is pseudo pressure, ∂/∂n is normal derivative) are

prescribed on all boundaries except for the outlet (open), where a Dirichlet condition

of Φ = 0 is employed. For temperature, an atmospheric temperature of 20 ◦C is

assigned for the upwind (inlet) boundary; adiabatic conditions are employed on all
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other boundaries. For combustion effects, heat release rate described in Sec. 3.4 is

used. The temperature in wildfire simulations can reach as high as 800 ◦C–1200 ◦C.

The ignition modeling described in Sec. 3.5 is employed. Ignition temperatures of

230 ◦C, 330 ◦C, and 330 ◦C are used for grass, canopy, and trunk, respectively. The

moisture content of the fuel is assumed to be zero for simplicity. Before the onset of

ignition, velocity and pressure in the domain are initialized by calculating the cold

flow field with a Re number of 105. Also, wildfire spread results will be presented

only in the physical domain (i.e., not including the extended region) in the following

sections.

7.2. Grassland fire (simulation 1)

Figure 7.3 shows grassfire spread of simulation 1 at four different times: 5 s, 40 s, 60

s, and 130 s after initiation. The grass is assumed to be 0.5 m high and has the same

properties as undergrowth discussed in Ch. 3, Sec. 3.3. The initial ignition region lies

in the center of the up-wind streamwise boundary of a homogeneous fuel bed, as can

be seen in part (a) of Fig. 7.3 since the fire has not yet spread far from the initial

line. The region occupies 5 m, 0.5 m, and 50 m in x, y, z directions, respectively.

For each plot, six iso-surfaces of temperature are used, viz., 63 ◦C, 100 ◦C, 160 ◦C,

230 ◦C, 500 ◦C, 600 ◦C, with the same legend denoting the color gradient. The

interaction between the grassfire and air flow is clearly seen from part (b) to (d).

The ABL flow pattern is changed due to the hot buoyancy induced by the fire—

leading to formation of fire plumes; at the same time, the fire shape is also noticeably

changed by the strong wind blowing from the upstream. As time evolves, more fuel

is burning; and these interactions become more intense, resulting in more turbulent

behavior. Also, it is seen that relatively lower temperature (less than the ignition

temperature of 230 ◦C) exists in fire plumes, and higher temperature is shown within

the burning region, as expected. The iso-surface of ignition temperature displays the
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Figure 7.3: Iso-surfaces of temperature (transparency): 63 ◦C (87.5%), 100 ◦C (75%),
160 ◦C (75%), 230 ◦C (62.5%), 500 ◦C (0%), 600 ◦C (0%) for fire burn at (a) 5 seconds;
(b) 40 seconds; (c) 60 seconds; (d) 130 seconds.

automatically formed (via the simulation) oval shape of a typical grassfire front line

(see the photo of experimental fire F19 in [63]). Since the total burn time of grass

is set to be 150 s in this simulation, decreased temperature with depletion of fuels is

not present in Fig. 7.3, where the largest burn time is 130 s. It is noted that finer

grids of 161× 81× 81 points have also been used for the same grassfire problem for

the study of grid independence, and the results (not shown here) show similar fire

behavior.

Figure 7.4 (a) shows velocity vectors and temperature contours in the middle x-y

plane (z = 100 m) in the lower portion of Fig. 7.3 (d). Same legend (color gradient) is
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used for both vectors and contours. As is seen, only the region adjacent to the bottom
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Figure 7.4: Flow field in the x-y plane at t = 130 seconds and z = 100 m in
correspondence of part (d) of Fig. 7.3: (a) Temperature contours and velocity vectors;
(b) subgrid-scale streamlines.

is red, since red represents temperature greater than the ignition temperature and

mostly burning fuels satisfy this condition. Thus, it is observed that the fire has
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spread to ∼150 m at this time (130 s). Also, the contours show that several puffs are

pinched or beginning to pinch off from the main smokey region. The vectors show

that the wind field is significantly altered by the buoyant plume. Part (b) shows

streamlines of subgrid-scale velocity integrated from the same plane as part (a), but

with a smaller overall region. Streamlines are colored with vorticity magnitude as

shown in the legend. It is seen that high values exist mainly in the region close

to the grass since velocity gradient is relatively large in this area, and vorticity is

the anti-symmetric part of the velocity gradient. Apart from this, relatively higher

magnitudes also exist for x ∈ [120, 130]; this region contains a small-scale updraft

and vortices form beside it. The corresponding region in part (a) also shows that

temperature is higher within several small puffs. The temperature in part (a) is

obviously affected by the SGS velocities. However, small-scale velocity behavior is

not demonstrated in the large scale vectors in part (a) since the grid spacing is too

coarse to provide sufficient resolution of small-scale fire behaviors. The streamlines

shown in part (b) still resembles the overall shape of the corresponding fire plume

in part (a), but it also shows a very irregular flow field with vortices and swirls of

various sizes, including some that are smaller than the grid scale. This is possible

only with synthetic-velocity SGS models.

Moreover, the effect of different ignition lines on grassfire spread rate are investi-

gated by running two additional simulations similar to simulation 1. Figure 7.5 shows

velocity vectors one grid cell above the ground (black) and scalar iso-surface of igni-

tion temperature (yellow) of three simulations at 60 s (left) and 120 s (right), viewed

from above. Ignition lines of 25 m, 50 m, and 100 m are employed, as denoted in

red. Observe from the vectors that the flow direction is somewhat altered by the fire.

The fire-front line and shape are indicated by the iso-surface and are automatically

computed (as observed previously). Note that similar fire fronts can be visualized

using depletion degree of burning fuels (calculated from burn time). The shape of
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Figure 7.5: Top view of grassfire burn with ignitions lines of (a)(b) 25 m; (c)(d) 50
m; (e)(f) 100 m at 60 seconds (left) and 120 seconds (right).
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such fire fronts at different times are similar to those at corresponding times calcu-

lated from WFDS (see Fig. 9(b) of [63]) with the same physical domain and ignition

configuration (position, depth, length, and size). The spread rate estimated from Fig.

7.5 is as follows: (a) ∼ 1.3 m/s; (b) ∼ 1.0 m/s; (c) ∼1.67 m/s; (d) ∼ 1.25 m/s; (e) ∼

2.0 m/s; (f) ∼ 1.5 m/s. Fire with a longer ignition line spreads faster since more fuel

is ignited by the initial line and heat transfer from radiation is larger in the horizontal

direction. Also, it is seen that for all cases, fire spreads faster during the first 60 s,

and slows down in the next 60 s. The reason for this is that the fire-induced vertical

updraft carries heat away from the fire and draws cooler air across the perimeter of

the burning region, especially in the middle z region with the fastest spread speed,

which slows the spread. The spread rates estimated are slightly slower than those of

WFDS, especially at t = 120 s; this is because U2 (ambient wind speed at 2 m above

ground) here is 4.03 m/s, which is smaller than 5 m/s used in [63].

7.3. Forest fire

Compared with grassland fire cases, simulations of forest fires are more complicated

since more complex fuel materials are involved such as bushes, tree trunks, and

canopies (see Fig. 3.1), the drag effects of which are considered non-negligible. In

this section, forest fires on both flat and realistic terrains are investigated.

7.3.1 Flat terrain (simulation 2)

Figure 7.6 shows forest fire spread of simulation 2 at four different times: 10 s, 60 s,

120 s, 180 s. The forest is assumed to be ∼ 13 m high, and has similar properties

to coniferous forests discussed in Ch. 3, Sec. 3.3–3.4. Specifically, in the y direction,

the first grid cell represents the undergrowth part (0–0.5 m); the second to the 12th

represent the trunk (0.5–6.54 m); the 12th to 18th (6.54–12.66 m) represent the canopy

part. The initial ignition region is the same as that of simulation 1 with an ignition
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Figure 7.6: Iso-surfaces of temperature (transparency): 63 ◦C (87.5%), 100 ◦C (75%),
160 ◦C (75%), 230 ◦C (62.5%), 500 ◦C (0%), 600 ◦C (0%) for fire burn at (a) 10 seconds;
(b) 60 seconds; (c) 120 seconds; (d)–(f) 180 seconds; (e) canopy at y = 6.54 m; (f)
canopy at y = 12.66 m.
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line of 50 m. This fire (which is initiated from the undergrowth level) can be regarded

as a surface fire and is quite practical since most human-caused fires (e.g., campfires)

are surface fires, which may transition to large crown fires through ladder fuels. Part

(a) shows the surface fire (crown fire has not yet started) 10 s after fire initiation,

with a small puff beginning to form, similar to grassland fire shown previously (Fig.

7.3). For each plot, six iso-surfaces (as denoted in the caption of Fig. 7.6) with the

same temperature, transparency, and legend as those of grassland fires are used. Part

(b) (60 s) shows two distinct fire plumes (see the black line with lower temperature

iso-surface) on top of the surface fire, indicating the beginning of the transition from

surface to crown fire. Although the canopy fire is at an early stage, the plume is

already much higher than that of the grassland fire. Tree crowns are heated and

ignited by the hot buoyant plume from the surface fire. Note that ladder fuels are

not provided for this transition. The reason might be that the trunk level is not very

high and fire plumes still remain at high temperature as they reach the canopy. Parts

(c) and (d) show that more fuels in the canopy are ignited and burning, and that

canopy fires are becoming more turbulent with much higher temperature in the higher

fire plumes. At 180 s, the plume has reached 300 m height into the atmosphere, and

the temperature in a large part of the plume is greater than 230 ◦C. It is also seen

that the canopy fire burns much more intensely with turbulent capricious behaviors

and much higher buoyant plumes than in the grassfires shown in Fig. 7.3.

Moreover, observe that the canopy fire in the middle region (z direction) does not

burn as intensely as those in the two sides, which is different from the grassfire where

fire plumes are much more evenly distributed. This may be because a much larger

volume of cold air is drawn in by the buoyant plumes from canopy fires compared

with surface fires, which prevents the fire from burning in the middle region. The

spread rate of surface fire in Fig. 7.6 is similar to the grassfire. The spread rate

of canopy fires is much faster than that of grassfires, which is around 2.5 m/s since
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more fuels are contained in the canopy. Parts (e) and (f) show the same fire spread as

part (d), but with different planes at the bottom. The bottom and top planes of the

canopy are used, respectively, for (e) and (f) in order to observe the shape of canopy

fires within the canopy. It is seen that the ignited or burning fuels are decreasing as

they are positioned higher in the canopy. The fire at the top of the canopy shows

many “holes”, indicating that many fuels are not burned, which is different from the

surface fire. From computations, it is also found that surface and crown fires tend to

coexist. If only a crown fire exists, the cold air from below and the fire front would

suppress its spreading in the absence of firebrands.

Figure 7.7 (a) shows velocity vectors of fluid flow through a forest (roughly in the

middle region in x direction) before an initiation of fire (h represents tree height). It

is clearly seen that the flow field in the forest is affected by its drag force. The overall

velocity is small in the forest compared with open flows, which is different from flow

through grass. Within the forest, the velocity in the canopy is slightly smaller than

the largest velocity in the trunk space. Note that for flow near the forest edge, the

velocity in the trunk space is noticeably larger than that in the canopy, and decreases

gradually until the flow reaches further into the forest, as observed in [228]. This

may also contribute to a faster speed of canopy fire and the formation of several fire

plumes observed in Fig. 7.6. Since the cold air is drawn (inverse flow direction) with

lower velocity, the burning fire experiences less cooling. Figure 7.7 (b) to (e) show

velocity vectors and temperature contours at z = 100 m (top), z = 50 m (bottom),

and t = 120 s (left), t = 180 s (right) in correspondence with Fig. 7.6 (c) (d). Velocity

vectors are somewhat altered by the fire. Also, more puffs of various sizes are formed

compared with grassland fires, indicating more turbulent flow behaviors.

It is clearly seen that the canopy fire development in the central region (z=100 m)

and that at the two sides are quite different. Part (b) shows canopy ignited at around

x = 100 m, and the corresponding surface fire spreads this far. However, in part (d),
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Figure 7.7: (a) Velocity vectors in forest for cold flow. Temperature contours and
velocity vectors in the x-y planes of (a)(b) z = 100 m (top), (c)(d) z = 50 m (bottom)
at (a)(c) 120 seconds (left) and (b)(d) 180 seconds (right).
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the canopy was ignited at x=50 m and has spread to approximately x=150 m by this

time; the corresponding surface fire is at only x =75 m. Fires in (d) are more intense

than in (b) as they have been initiated earlier, and have had more time to develop.

Also, more consecutive puffs are pinched off from the main fire. The reason might be

that, in the middle region, the surface fire spreads faster with a formation of large

plumes, causes inverse cold flow, and cools off the burning fuels, which affects the

crown fire since it is heated to some extent by the surface fire to ignite. However,

along the two sides, not as much buoyancy occurs initially; thus, the fire is cooled

somewhat less and can ignite unburned canopy fuels faster. Also, the trunk space,

which is not shown in Fig. 7.6, is shown here. Since heat release rate from the trunk

is not large (see Table 3.4), its temperature is not as high as the undergrowth and

canopy. Third, as hot plumes from surface fire continue to heat the upper crown,

more tree crowns are ignited and more intense turbulent behavior occurs, as shown

in parts (c) and (e) of the figure. The trunk also has a temperature over 230 ◦C in

(c). Part (e) shows even more turbulent fire behavior since more fuels are burning for

the reason stated above. The canopy fire reaches the maximum distance of around

x = 260m while the surface fire is at ∼ 170 m; but the burning fuels are not simply

connected with numerous “holes” present.

Figure 7.8 shows small-scale (SGS) behaviors of the lower part of Fig. 7.7 (b)

and a zoom-in plot in part (b) of Fig. 7.8. It is seen that the small scale streamlines

resemble the large-scale velocity vectors shown in Fig. 7.7 (b), but with more sub-grid

scale details. The streamlines are more complicated than those of the grassfire with

various sizes of vortices and different vortex structures attached with the main higher

updraft or plume. The relatively large magnitude of vorticity appears in the middle

of the plume (x = 220 m), in correspondence with the detachment of a large puff

presented in Fig. 7.7 (b), possibly implying existence of fire whirls. Generally, large

vorticity magnitude concentrates in regions in or near the forest and fire plumes. It
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Figure 7.8: (a) Subgrid-scale streamlines at time 180 seconds and z = 100 m; (b)
zoom-in of (a).
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is seen that grid cells in higher regions of the atmosphere (y = 150 m) are fairly

large, but small-scale behaviors can also be captured via the synthetic-velocity SGS.

In addition, the amplitude of small-scale velocity is around O(100), which is even able

to lift small firebrands, and it will be intriguing to consider this in subsequent studies.

The amplitude of small-scale temperature is around O(10−1)–O(100), depending on

positions in the flow field. It is seen that synthetic-velocity LES has the potential

for combining resolved-scale and modeled results in a way that does not formally

demand scale separation and, in general, provides direct interaction between large-

and small-scale physics. It is noted that such details of different vortex structure of

enhanced resolution below the large grid scale, which is not provided by most of the

eddy-viscosity models or implicit LES (ILES), are available using synthetic-velocity

LES.

7.3.2 Realistic terrain (simulation 3)

Figure 7.9 shows the terrain used for simulation 3. This terrain represents a small

part of the Buckhorn mountain in Arizona. The elevation data is extracted from the

WebGIS (Geographic Information Systems) with a resolution of ∼ 30 m. The height

of the terrain in the vertical direction is denoted by a color gradient in the legend.

This height is transformed from the sea level elevation to the relative height from a

chosen original point, for the sake of simplicity for computation. As seen from Fig.

7.9 (a) and (b), the terrain is raised from the lowest region in the corner formed by

x− and z+, to the highest region in the corner formed by x+ and z−. A fairly steep

slope appears near the x+ and z− corner and forms a mountain in a triangle shape

with ∼ 600 m above the original point. The slope or incline is relatively gentle at the

bottom and at the top of the small mountain. For real computation, the elevation file

(.dem) is first transformed into Plot3D format (.xyz), and then read into Pointwise

(grid generation software [198]) to generate the grids used in simulation 3, with a

192



2 km

2.29 km

2.95 km

1.8 km
（extended）

x

y

z

(c)

x

y

z

y

zx

(a)

(b)

Figure 7.9: (a) Terrain viewed from z+; (b) terrain viewed from x+; (c) computa-
tional domain and grids
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grid spacing of ∼ 50 m, which is larger than the available resolution. Part (c) of Fig.

7.9 shows the computational domain and grids, as previously mentioned in Table 7.1.

Undergrowth, tree trunks, and canopy are represented by the first grid cell (∼ 1.5

m), second to eighth grids cells (∼ 11 m), and eighth to fourteenth grid cells (∼ 13

m), in y direction, respectively.

Figure 7.10 shows canopy fire spread at four different times: 6 s, 80 s, 160 s, 220

s. The iso-surfaces are indicated in the caption of Fig. 7.10. The fire is initiated

in the canopy (8–14 grid cells) with a perpendicularly projected ignition line of 250

m in the z direction and 50 m in the x direction positioned in the downhill region

of the terrain, as can be seen in part (a). The forest-green bottom represents a x-z

plane within the canopy at j = 12 (12th grid cell in y direction), which still resembles

the shape of the terrain. It is seen that fire spreads very rapidly in this case; the

overall spread rate based on the fuels covered is estimated to be ∼ 6 m/s, which is

much greater than the cases of grassfire simulation 1 and a forest fire on flat terrain

in simulation 2. However, it is considered qualitatively reasonable due to the fairly

large inlet velocity (10 m/s for free stream), the large initial ignition region, and the

uphill terrain—all leading to an intensely burning canopy.

Part (b) of Fig. 7.10 shows fire spread in the downhill region that is relatively

flat. A fire plume is formed at this time (80 s). Six iso-surfaces of temperature are

also seen, with lower temperatures (≤ 230 ◦C) appearing in the plume and higher

temperatures (500 ◦C and 800 ◦C) shown in the burning crowns. Part (c) shows fire

spread in the direction towards the nearest mountain area. As fire ascends the hill, it

spreads even faster due to buoyancy effects. The puffs formed in the downhill region

have pinched off from the smoky region and the large fire plume appears in the new

fire front on the edge of the mountain. Part (d) shows that the fire has “climbed up”

the mountain and further spreads on the top region. The spread rate on top of the

mountain is expected to be similar to that in the downhill region since the top is also
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Figure 7.10: Iso-surfaces of temperature (transparency): 63 ◦C (87.5%), 100 ◦C (75%),
160 ◦C (75%), 230 ◦C (62.5%), 500 ◦C (50%), 800 ◦C (0%) for canopy fire burn at times:
(a) 6 seconds; (b) 80 seconds; (c) 160 seconds; (d) 220 seconds.
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relatively flat. As time evolves, fire plumes are further deformed with greater height

and higher temperature. In general, fire plumes in Fig. 7.10 are much higher (∼

1500 m) than plumes shown in previous simulations considering the same lowest iso-

surface temperature, indicating a more intensely burning fire on a meso-scale terrain.

In addition, an increasing area of yellow-green is also seen (maybe not quite obvious)

in the downhill region as time evolves, especially in part (d). This indicates that non-

consecutive crown fuels are ignited, similar to the “holes” observed in Fig. 7.6. Since

these regions mainly exist in concave areas, fire spreads much slower due to buoyancy.

On the other hand, it is seen that the high temperature 800 ◦C mainly exists in areas

with bulges, also because of buoyancy. The irregular shape of “holes” and the 800 ◦C

temperature iso-surface also indicate some intricate turbulent behaviors within the

canopy.

Figure 7.11 shows small-scale behaviors of the mountain fire in correspondence

to part (d) of Fig. 7.10, but with a much smaller region on top of the mountain.

Note that small-scale temperature values range between O(100)–O(101) ◦C although

a rather small range of values is used in the legend in Fig. 7.11 (a) in order to

demonstrate more noticeable details. This magnitude of temperature fluctuations is

expected to influence the large-scale temperature to some extent, but maybe mod-

erately, compared with the forest fire temperature (O(102)–O(103) ◦C). It is seen in

part (a) that temperature fluctuations are quite intense up to y = 654 m into the

atmosphere, and several stable puffs are present up to a higher region. Part (b) shows

streamlines corresponding to part (a). Vortices with various sizes and structures are

present with larger vorticity magnitude appearing in the region below y = 654 m,

which is about the same region in part (a) with intense and chaotic fluctuations. The

non-flickering plumes shown in the higher region of Fig. 7.11 (a) is also reflected in

the large-scale behavior in Fig. 7.10 (d), but with more irregular details, as seen in

Fig. 7.11 (b). Large-scale turbulent behaviors are not demonstrated in fire plumes in
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Figure 7.11: Small-scale behaviors at z=145 m: (a) Small-scale temperature contours;
(b) Small-scale streamlines.
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this meso-scale case (Fig. 7.10), implying that grid spacings of 50 m in x, z directions

or/and 1.5–167 m in y direction may be too large to capture the small-scale behaviors.

Note that grid spacings of 20 m in x and z directions, 1.5–40 m in y direction have

also been attempted for a forest fire spread on a 2 km × 2 km × 2 km flat terrain (not

shown here), but large-scale turbulence is still not present, even with different scal-

ings of small-scale variables for synthetic-velocity LES. Since the small-scale part of

the synthetic-velocity is dependent on the high-pass filtered velocity calculated from

the large-scale grids, adjusting the scalings may not be sufficient. Figure 7.11 may

suggest that grid spacings in y direction need to be further refined at the expense of

more computation time.

7.4. Forest fire with firebrands (simulation 4)

As discussed in Ch. 3, Sec. 3.6, firebrands have large effects on wildfire spread. In

particular, they play an important role in the transition from canopy fire to surface

fire through the “landing” phase, and/or surface fire to canopy fire through the “loft-

ing and transport” phase. In the current work, several numerical experiments are

conducted to observe the influence of the fire-induced circulations and eddies in the

LES on the trajectories of combusting spherical firebrand particles. The ignition re-

gion of simulation 4 is the same as that of simulation 2. Both one-way coupling (fixed

flow field) and two-way coupling (time-dependent flow field) cases are investigated.

In all experiments, firebrands are released randomly from burning fuels in the

canopy. Specifically, a certain number of random and non-repetitive grid points are

chosen from grid cells in the canopy that are identified as “burning.” The coordinates

of these chosen grids are used as initial positions for the firebrands. The burn time

of such fuels required for launching firebrands can also be specified in the code.

Firebrand sizes collected from real wildfires or observed from experiments (see [57]

and [184]) are ∼ 5–50 mm in diameter (for cylinder), or in thickness (for shingle).

198



Spherical particles of diameter dfb=50 mm were used here. Since firebrands are

often of in irregular shape with embers from leaves, twigs, or branches, the spherical

firebrand particles are assumed to be porous, with a porosity of approximately 0.96.

The projected cross-sectional area of the particle Afb is calculated to be 0.002 m2

divided by the porosity. Assume the density of the particle is 400 kg/m3 (Table 7.2),

the initial mass is calculated as ∼ 0.00105 kg, which is similar to values used in [184]

in milligrams units, and in [57]. Air density of 1.086 kg/m3 at a temperature of 40

◦C is used to calculate the drag coefficient. The mass loss rate, diameter regression

rate of a combusting particle, convective and radiative heat transfer, and other air

properties are as described in Sec. 3.6. Other firebrand properties are provided in

Table 7.2.

Table 7.2: Firebrand properties.

Property Value

Density, Sycamore 400 kg/m3

Specific heat, wood 1.466 kJ/kg/K

Emissivity, wood 0.95

Burning rate constant 4.8 ×10−7 m2/s

Figure 7.12 shows firebrand trajectories within a fixed flow field at 100 s of sim-

ulation 4. At this time, many fuel particles in the canopy are burning, as seen from

the high temperature (orange) in the upper part in Fig. 7.12 (a). A number of 200

firebrands were released randomly from the canopy at one time (100 s) in order to

mimic a real intense wildfire. The number of firebrand generation is not thoroughly

studied yet, but a range of 2–584 brands is obtained from an example of firebrand

collection results in house-burning tests [57], and a number of 45 firebrands were

used in [176] for numerical computations. Part (a) also shows that firebrands are

lifted through the fire plume. Plumes at the two sides (z direction) lift firebrands

much higher with parabolic-like trajectories, while plumes in the middle region lift

firebrands only to lower altitudes with trajectories exhibiting more curvature. Most
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Figure 7.12: Firebrand trajectories (200) at 100 sec. of simulation 4: (a) 3-D depic-
tion of firebrands with coloring in travel time (second); iso-surfaces of temperature
(transparency): 100 ◦C (75%), 160 ◦C (75%), 230 ◦C (62.5%), 500 ◦C (0%), 600 ◦C
(0%) (b) side view of the trajectories with coloring in temperature; (c) top view of
the trajectories with coloring in mass.
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firebrands fly towards the downwind boundary of the domain with a travel time of

over 40 s, except for those which fell to the ground in the middle of the domain (x

direction) with a lifetime of ∼ 20 s.

Part (b) of Figure 7.12 shows a sideview of part (a). It is seen that firebrands are

launched from different heights in the canopy. Firebrands lifted higher travel further.

The travel distance in the x direction ranges from ∼ 20 m to over 440 m, which is

mainly dependent on the releasing position (with different flow velocity) since the

initial mass of the firebrands is the same. The initial temperature of these firebrands

ranges from 230 ◦C to 800 ◦C according to releasing position. It is assumed that a

temperature of roughly 440 ◦C is sufficient to ignite unburned fuel once the firebrand

lands since the average value of 440 ◦C and 20 ◦C is the ignition temperature of grass.

Thus, Fig. 7.12 (b) shows that only a small number of firebrands are able to ignite

unburned fuels. Part (c) of Fig. 7.12 is a top-view of these firebrands. The randomly

chosen points are obvious when seen from above. More points are chosen from the

two sides since fire burns more intense in these regions. It is seen that trajectories of

firebrands are largely altered by the turbulent flow field, especially in the z direction,

implying that a three-dimensional firebrand study, as performed here, is necessary.

Also, since the mass of a firebrand decreases as it travels downwind due to combustion,

firebrands traveling longer distances are lighter in weight, as expected. However, the

lowest mass is still 68% ( ≥ 24% as discussed in Sec. 3.5) of the original mass, so

extinction because of this does not usually occur.

Figure 7.13 displays trajectories of 200 randomly initiated firebrands in a different

fixed flow field (150 s of simulation 4). It is seen in part (a) that fire at this time

becomes more turbulent and more fuels in the canopy are burning. The fire plume is

quite different from that shown in Fig. 7.12 (a). Accordingly, firebrand trajectories

are different. Firebrands are not lifted as high as those in Fig. 7.12 because the

plumes are more inclined in this case, and trajectories follow the shape of the plume.
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Figure 7.13: Firebrand trajectories (200) at 150 s of simulation 4: (a) 3-D depic-
tion of firebrands with coloring in travel time (second); iso-surfaces of temperature
(transparency): 100 ◦C (75%), 160 ◦C (75%), 230 ◦C (62.5%), 500 ◦C (0%), 600 ◦C
(0%) (b) side view of the trajectories with coloring in temperature; (c) top view of
the trajectories with coloring in mass.
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Therefore, more firebrands will land on the ground with an airborne lifetime of only

slightly over 40 s. Several firebrands also travel toward the downwind boundary for

over 40 s. The sideview is shown in part (b). The travel distance in the x direction is

more uniformly distributed than seen in Fig. 7.12 (b), with more irregular trajectories.

Also, more firebrands have a temperature greater than 440 ◦C when they land, since

they have a higher initial temperature from the initial launching position. Part (c)

shows a top-view of these firebrands analogous to part (c) of Fig. 7.12. Since more fuel

particles in the canopy are available to release firebrands, the randomly chosen points

are more evenly distributed and produce various trajectories, unlike in the previous

case where firebrands are concentrated in areas with heavily burning crowns. Also,

it is observed that firebrands released from the middle portion of the plume travel

much shorter distances, and that all trajectories are altered by the fire-induced flow

in the z direction.

Lastly, Fig. 7.14 presents a comparison of firebrands calculated in fixed (a) and

time-dependent flow fields (b) (c). In both cases, only 20 firebrands are launched from

the canopy for the sake of simplicity and clarity. The flow field shown in part (a) is

at 100 s of simulation 4 (as in Fig. 7.12 (a)), but for only 20 trajectories calculated

in this fixed flow field with an integration time of over 40 s. It is seen that only two

firebrands fell to the ground, while all others exceeded either spanwise or horizontal

boundaries.

Part (b) of Fig. 7.14 shows the temperature field at 120 s of simulation 4; but

firebrands have been released at 100 s (as in Fig. 7.14 (a)), and trajectories are

calculated along with the flow and temperature fields for 20 s. Note that the time

shown in the legend also includes the cold flow calculation time before the initiation

of a wildfire, as stated in Sec. 7.1. Trajectories in part (b) are different from those

in part (a) for the first 20 s, not only because of effects from the evolving flow

field, but also because of the difference in release points chosen in these two separate
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Figure 7.14: 3-D depiction of 20 firebrand trajectories with iso-surfaces of tempera-
ture (transparency): 100 ◦C (75%), 160 ◦C (75%), 230 ◦C (62.5%), 500 ◦C (0%), 600 ◦C
(0%): (a) in fixed flow field at 100 s with coloring in travel time; (b) in flow field at 20
s with coloring in temperature; (c) in flow field at 40 s with coloring in temperature.
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calculations. In part (b), there are at least two firebrands that have landed although

most have not. As is seen, one of the two firebrands has initiated a new fire since

it has a temperature greater than 440 ◦C, while the other does not. Part (c) shows

temperature field at 140 s, and firebrand trajectories 40 s after launch. The flow and

temperature fields have become much different by this time, but firebrand trajectories

expected to be changed by the moving fluid flow is not noticeably seen. The trajectory

is somewhat similar to part (a), but since firebrand launch points are different, the

comparison is not rigorous. In addition, the fire ignited by the firebrand has spread a

significant distance of ∼ 100 m by this time, and the spread rate is much larger than

that of the main fire. This is possibly because the fire plume has changed the whole

computational flow field at this later time, and velocity at the undergrowth level is

much larger—resulting in larger convective heat transfer and subsequent ignition and

spread.

7.5. Summary and conclusions

In this chapter, four simulations are performed to provide an initial implementation

of the forest fire modeling approach proposed in this study. First, grassland fire

simulations are carried out by using three different ignition lines. These show good

agreement with results with previous experiments and simulations, accounting for

fire line shape and spread rates. Second, surface fire is ignited in a forest region.

The transition from surface to canopy fire is presented. Canopy fire is also compared

with grassfire. Third, the forest fire in a meso-scale domain is simulated. Large fire

plumes due to buoyancy are predicted along with reasonable fire spread rates. Fourth,

firebrands in a forest fire are investigated. Both fixed and time-dependent flow fields

are used to calculate trajectories. Re-ignition due to firebrands is also studied.

It is concluded that the modeling approach is able to produce qualitatively (some

quantitatively) correct fire spread results. Rather complicated vortices can be cap-
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tured even on a rather course grids. The effect of canopy drag terms is also considered.

The model incorporates physics that is important in real fire predictions. Simulation

results are compared, in a qualitative way, to similar wildfire spread simulations or

experiments, but not to actual forest fires, due to lack of “benchmark” results (which

are difficult to obtain because of the complexity of wildfires.) It will be intriguing to

further investigate details of several aspects of the model. Fire spread under different

inlet flow velocities and heat sources (size, shape, number, positions) are to be inves-

tigated. Also, atmospheric boundary-layer velocity profiles with chaotic oscillations

should be used for the inlet boundary conditions.

Copyright c© Tingting Tang, 2017.
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Chapter 8: Final Summary, Conclusions and

Future Work

8.1. Summary

This dissertation will be summarized in the sequence of chapters it contains. After

introducing wildland fires and the scope of current work in Ch. 1, a literature review

of wildfire science and modeling is given in Ch. 2 in order to provide a context for the

development and investigation of the wildfire model of this work. Several physical

processes are introduced, e.g., ignition, heat transfer, and turbulence. In particular,

it is learned that convective heat transfer may be dominant in wildfires. Wildfire

models ranging from purely empirical to purely physical are discussed, with special

attention given to turbulence modeling using RANS and LES.

A proposed wildfire spread model with several physics-based sub-models is dis-

cussed in detail in Ch. 3. The governing equation is the incompressible N.–S. equation

in porous media with the Boussinesq approximation for buoyancy. Synthetic-velocity

LES is employed for modeling turbulence. Porosities and heat release rates are esti-

mated from extant botanical literature data. A rather comprehensive physical ignition

modeling being used is introduced. Firebrand equations are also presented.

The flow-field solver is introduced in Ch. 3. The projection method is employed

to maintain the divergence free constraint and generalized coordinates are used. In

particular, solution and parallelization of both momentum equation and the pressure

Poisson equation (PPE) are presented in detail. Douglas & Gunn [203] time splitting

is used for the momentum and energy equations. Optimal point SOR is used for the

(pseudo) PPE.
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In Ch. 5, the poor man’s N.–S. (PMNS) equation in porous media is derived via

a Galerkin procedure. A detailed numerical investigation focusing on the bifurcation

parameters due to these additional terms is provided in the form of regime maps, time

series, power spectra, phase portraits and basins of attraction, which indicate system

behaviors in agreement with expected physical fluid flow through porous media.

Chapter 6 discusses a general porosity-permeability model. The model is derived

based on a general non-equilibrium thermodynamic stability theory. The resulting

formula is in a form similar to previous empirical equations, but with calculable

coefficients. Both three-dimensional cubicle lid-driven cavity and natural convection

problems have been computed for numerical investigations of its performance.

Computational results of wildfires are presented in Ch. 7. Both simple grassland

fire and rather complex forest fires are simulated. Results of computed spread rates

and fire front line are compared with available resources (experimental or numeri-

cal) with similar problem configurations, and results are found to be in reasonable

agreement. Firebrand trajectories and ignition of spot fires for both fixed and time-

dependent flow fields are calculated.

8.2. Conclusions

There are four main original contributions in this work, and conclusions are drawn

from each of them. First, the current model produces reasonably accurate results

with regards to wildfire line shape and spread rate, which agree well with previous

experiments and simulations, but using coarser grids than utilized previously which

still presenting complicated subgrid-scale behaviors. The proposed wildfire model

and numerical scheme are capable of exhibiting important wildfire physics such as

large buoyant plumes, fire whirls, and firebrand transport, incorporating effects of

meteorology and topography. In particular, the difference between grassland and

forest fires, the transition from surface to crown fires, and the effects of firebrands in
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an evolving fluid flow field are presented. Also, the code is able to simulate meso-

scale forest fires in a qualitative correct way. In addition, the synthetic-velocity LES

incorporating the PMNS equations in porous media is able to produce complicated

small-scale behaviors of wildfire to enhance resolution below the large-grid scale, and

to capture the complex interaction of vegetation and atmosphere within and above

porous media fuel beds. The general permeability model is also applied to the flow

through forests producing damped velocities. Also, parallel performance of the ILES

code for a typical fire spread problem implies a promising future of the current model

for faster-than-real-time simulation without losing important physics. It is concluded

that such a model has the potential to be a predicting tool for forest fire spread

since it is based on the current understanding of physics and is implemented via

parallelization.

Second, the PMNS equations in porous media derived from the generalized N.–S.

equation is demonstrated to exhibit more complicated bifurcation behaviors, since

it contains six additional bifurcation parameters beyond those of the original 3-D

PMNS. These additional parameters can be calculated from porosity and permeability

and are related to physical variables directly, which are different from closures required

in usual turbulence modeling (e.g., RANS and typical LES). It is concluded that the

PMNS equations for porous media have the potential to provide temporal fluctuations

in SGS models for synthetic-velocity LES of turbulence through porous media; and

this is demonstrated in the wildfire modeling results.

Third, the general permeability model calculates variable permeability through

porosity, velocity strain rates, and effective viscosity. It can be simplified to the

same form as the well-known K–C equation for laminar flows, but now with calcula-

ble coefficients. Also, it automatically satisfies the constraints relating porosity and

permeability. It can potentially be used in general situations for flow in both homo-

geneous and inhomogeneous porous media since no additional empirical parameters
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appear. Furthermore, variable permeabilities are obtained to account for influences

from solid walls in the LDC problem. In the natural convection problem, noticeably

different results are shown for velocity and temperature from those calculated with

constant, fixed permeabilities, and these results are consistent with expected flow

physics for situations with different porosities.

Fourth, it is found that point SOR with optimal parameter performs very well

for parallelization of the PPE using OpenMP with regard to nearly-perfect linear

speedups with increasing number of cores. The momentum and energy equations are

parallelized with OpenMP in the context of the D–G time splitting method. The over-

all performance of this parallelization scheme is tested by employing a canonical lid-

driven cavity (LDC) problem. It is found that OpenMP is quite efficient across cores

since it does not require explicit information exchanges within the shared-memory

architecture.

8.3. Future work

The wildfire modeling approach proposed in this work not only shows a promising

future, but also has a fairly rigorous theoretical and mathematical underpinning for

its sub-models. However, there is clearly much additional work to be done in order

to develop such models to the point of operational status in real fire predictions.

Therefore, an extensive study for each of the four aspects discussed in Sec. 8.2 is

proposed.

First, it is noted that this comprehensive wildfire model with several novel sub-

models is explorative and needs to be further tested. Field experiments with the

same configuration and/or the previously well-documented wildfires can be used for

more rigorous comparisons. The model should be tested under conditions such as

different inflow velocity, ignition shape, forest moisture content, and atmospheric hu-

midity. Also, planetary boundary layers with chaotic behavior (probably based on
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the PMNS equations) are to be considered to add more realistic ingredients. Variable

viscosity and thermal conductivity are also required to account for large tempera-

ture differences and non-unity tortuosities. More specific studies are proposed for

firebrands and fire whirls such as firebrands launched by small fire whirls, and the

intensity of fire whirls. In addition, in order to be operational, a forest fire model

should also be able to predict density and distribution of smoke and effects of fire

suppressants with faster-than-real-time simulations.

Second, the PMNS equation in porous media has been thoroughly discussed in

terms of bifurcation behaviors, but its application in simple geometrical models has

not been attempted. The application in wildfire scenarios shows qualitatively good re-

sults, but rigorous verification and evaluation of this model should also be conducted.

Especially, comparisons of such a model with RANS and eddy-viscosity based LES

methods are proposed. Furthermore, bifurcation behaviors of the PMNS equation

with buoyancy and the energy equation in porous media should also be analyzed,

as done in current work for cold flows. Qualitative or quantitative comparison for

PMNS with and without porous media in the application of forest fires.

Third, results from the general permeability model for different fluid flow problems

should be quantitatively verified by future experiments. The general model for calcu-

lating permeability of compressible flow should be obtained via the same derivation

procedure. Also, the geometry-related effective viscosity should be further studied

in the context of an inhomogeneous porous medium. Furthermore, this model has

been applied to the problems of blood flow in choriocapillaris of the human eye and

cerebrospinal fluid flow in brain tissue. The results are qualitatively correct, even

without using empirical parameters. The strain rate results for blood flow compare

quantitatively well with values obtained from experiments. Other applications, such

as gas seepage and underground water flow, will be studied in the future.

Fourth, since only 16 cores within one node are used in this study, the scalability
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of the parallelization model needs to be improved for implementation using many

more cores. One possible solution is using hybrid OpenMP and MPI, but OpenMP

needs an extra operation to work on distributed memory systems. Also, a comparison

of SOR and multigrid methods under such parallelization should be performed.

Copyright c© Tingting Tang, 2017.
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Appendix

Source code for PPE parallelization

0

subroutine sor(sortlrnc ,sorparm ,icrtsn ,maxitsor ,msor ,
1 nx ,ny ,nz,kregf ,krega ,ippe)
use three_d_data , only: mnx ,mny ,kstrt ,klnth ,nreg ,jbs ,

1 jts ,kfs ,kas ,nregbrd ,nmombdtp ,amatrx ,bmatrx ,p3d
5 implicit real*8 (a-h,o-z)

msor = 0
ccc evaluate right -hand side of ppe

call rhsppe(icrtsn ,kregf ,krega ,nx ,ny ,nz)
kreg = 1

10 jreg = 1
ireg = 1
il=nregbrd(ireg ,jreg ,kreg ,1)
ir=nregbrd(ireg ,jreg ,kreg ,2)
jb=nregbrd(ireg ,jreg ,kreg ,3)

15 jt=nregbrd(ireg ,jreg ,kreg ,4)
kf=nregbrd(ireg ,jreg ,kreg ,5)
ka=nregbrd(ireg ,jreg ,kreg ,6)
do m=1,maxitsor
dif = 0.d0

20 !$omp parallel private(i,j)
!$omp do

do j=jb+1, jt
do i=il+1,ir

p3d(i,j,kf) =pijkmsor(ireg ,jreg ,kreg ,kf ,
25 1 i,j,kf+1,nz,ippe)

p3d(i,j,ka+1)= pijkasor(ireg ,jreg ,kreg ,
1 ka ,i,j,ka,ippe)

end do
end do

30 !$omp end do
!$omp end parallel

!$omp parallel private(j,k)
!$omp do

35 do k=kf+1,ka
do j=jb+1, jt

p3d(il ,j,k) = pimjksor(ireg ,jreg ,kreg ,il ,il+1
1 ,j,k,nx ,ippe)

p3d(ir+1,j,k) = piajksor(ireg ,jreg ,kreg ,ir ,
40 1 i,j,k,ippe)

end do
end do

!$omp end do
!$omp end parallel

45

!$omp parallel private(i,k)
!$omp do

do k=kf+1,ka
do i=il+1,ir
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50 p3d(i,jb ,k) = pijmksor(ireg ,jreg ,kreg ,jb ,
1 i,jb+1,k,ny,ippe)

p3d(i,jt+1,k) =pijaksor(ireg ,jreg ,kreg ,
1 jt ,i,jt ,k,ippe)

end do
55 end do

!$omp end do
!$omp end parallel

!$omp parallel
60 !$omp do private (i,j,k,ndx ,dp3d ,p3d0)

do k=kf+1,ka
do j=jb+1,jt

do i=il+1,ir
ndx = (k -2)*(ny -1)*(nx -1) + (j -2)*(nx -1)+i-1

65 p3d0=p3d(i,j,k)
p3d(i,j,k) = (bmatrx(ndx) - amatrx(ndx ,1)*

1 p3d(i,j,k-1)-
amatrx(ndx ,7)* p3d(i,j,k+1)-

1 amatrx(ndx ,2)* p3d(i,j-1,k)-
70 1 amatrx(ndx ,6)* p3d(i,j+1,k)-

2 amatrx(ndx ,3)* p3d(i-1,j,k)-
1 amatrx(ndx ,5)* p3d(i+1,j,k))/ amatrx(ndx ,4)

p3d(i,j,k) = p3d0*(1- sorparm )+ sorparm*p3d(i,j,k)
dp3d=p3d(i,j,k)-p3d0

75 if(dabs(dp3d).gt.dif)dif = dabs(dp3d)
end do

end do
end do

!$omp end do
80 !$omp end parallel

ccc wtime = omp_get_wtime ( )-wtime
ccc write(*,*)’wall time is ’, wtime

if(m.gt.1. and.dif.lt.sortlrnc)then
msor = m

85 return
end if

end do !−−−> end sor iterations
msor = maxitsor
write (*,*)’sor iterations failed to converge after ’,

90 1 msor ,’iterations; maximum error is:’, dif
return
end
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