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Structure analysis and ensemble refinement of the apo-structure of thymidine

diphosphate (TDP)-rhamnose 30-O-methyltransferase reveal a gate for substrate entry

and product release. TDP-rhamnose 30-O-methyltransferase (CalS11) catalyses a 30-
O-methylation of TDP-rhamnose, an intermediate in the biosynthesis of enediyne

antitumor antibiotic calicheamicin. CalS11 operates at the sugar nucleotide stage

prior to glycosylation step. Here, we present the crystal structure of the apo form of

CalS11 at 1.89 Å resolution. We propose that the L2 loop functions as a gate facilitat-

ing and/or providing specificity for substrate entry or promoting product release.

Ensemble refinement analysis slightly improves the crystallographic refinement sta-

tistics and furthermore provides a compelling way to visualize the dynamic model of

loop L2, supporting the understanding of its proposed role in catalysis. VC 2016
Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4941368]

I. INTRODUCTION

Natural products remain invaluable sources for drug leads and bioactive probes.1,2

Discovering new mechanisms for the biosynthesis of important natural products and exploiting

knowledge of natural product biosynthesis enzymes could help produce new diversified biosyn-

thetic or semisynthetic natural products for various purposes.3–6 As part of the NIH Protein

Structure Initiative, a high-throughput structural genomics approach has been employed to

clone, express, purify, and solve structures of novel enzymes for natural product biosynthe-

sis.7–18 One targeted pathway for this initiative has been that leading to the biosynthesis of cali-

cheamicin (CLM), a 10-membered enediyne antitumor antibiotic produced by Micromonospora
echinospora.19,20 Upon bioreduction, CLM undergoes a Bergman-type cyclization reaction, the

benzene diradical species of which lead to DNA backbone hydrogen abstraction and subsequent

irreparable oxidative DNA strand scission.21,22 CalS11, a protein encoded by the calicheamicin

biosynthetic gene locus,23,24 catalyzes a late-stage glycosyl tailoring event (thymidine diphos-

phate (TDP)-L-rhamnose 30-O-methylation) prior to glycosyltransferase (CalG1)-catalyzed

transfer to complete aryltetrasaccharide assembly (Figure 1).10,25 Like all prototypical class I

methyltransferases,26 CalS11 uses S-adenosylmethionine (AdoMet, SAM) as the methyl donor.

However, CalS11 is distinguished from other sugar O-methyltransferases by virtue of its activ-

ity at the sugar nucleotide prior to glycosyltransfer.10,27

Structural flexibility and dynamics are generally key for protein function.28 Functionally

important motions not only involve ordered secondary structures but more commonly involve

disordered loop structures. As shown by the study on CalS11 and many other proteins, such as

xylanase protein from Thermobacillus xylanilyticus,29 loop dynamics are important for substrate

a)Current address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
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binding and product release. Loop dynamics are also important for allosteric activation of

enzymes, such as kinases and tyrosine phosphatases.30 Loop dynamics are also widely found in

eukaryotic regulatory proteins involved in processes such as signal transduction and transcrip-

tion, allowing for an induced fit molecular recognition process.

However, prevailing static models are simply an average of an ensemble of states and cannot

adequately describe the dynamics of protein molecules. Ensemble refinements (ERs) have been

developed that use the X-ray diffraction data to generate an ensemble of models to represent a

non-Gaussian distribution of positions and imply the corresponding motions of the protein mole-

cules. This concept was first proposed two decades ago by Brunger and Kuriyan31 and was

extended and tested by several other groups of scientists.32,33 Burnley et al. developed an imple-

mentation (phenix.ensemble_refinement) as part of the Phenix software package33 which lowers

the barrier for others to use this approach. Starting from a well-refined single model, local molec-

ular vibrations and rotations are sampled by molecular dynamics (MD) simulation restrained with

terms incorporating the X-ray data, while global disorder is partitioned into an overall translation-

libration-screw (TLS) model.33 Large numbers of structures make up the ensemble, typically

thousands, but in the end, a small number of structures that reproduce the best Rfree within some

tolerance, typically 0.1%, are kept as the final representative set of structures defining the ensem-

ble. We have applied ER techniques to model both the structure and dynamics based on X-ray

diffraction data sets for both S-adenosylhomocysteine (SAH) bound and apo-structures. The anal-

ysis shows the L2 loop is indeed highly flexible in ways that are consistent with enzymatic turn-

over, whereas the highly conserved loops L1 and L3 have dramatically more stable structures.

We previously solved and reported two structures of the SAH bound form of CalS11 [Protein

Databank (PDB) entry 3TOS, 4GF5]10 and have now solved the corresponding apo structure of

CalS11 at 1.89 Å resolution (PDB entry 4PWR). Compared to its substrate bound structure,10

where loop L2 is closed over the SAH, the electron density for loop L2 in the apo-form is inad-

equate for establishing a static model, reflecting the dynamic, or at least disordered nature of sub-

structure L2. The observed structural difference in the states of CalS11 with and without SAH

bound prompted further evaluation of the structural dynamics of CalS11 in its catalytic function.

II. MATERIALS AND METHODS

A. Crystallization and data collection and refinement

Protein cloning, expression, and purification methods were performed as previously

described.10 Apo CalS11 crystals were grown with hanging drop vapor diffusion method by

FIG. 1. The biosynthetic pathway of TDP-methoxy-rhamnose in M. echinospora en route to calicheamicin !1
I production.
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mixing 1 ll of protein solution (16 mg/ml CalS11 in 25 mM tris, pH 8.0) and 1 ll reservoir

solution (25% polyethylene glycol 3350, 0.2 M Li2SO4, 0.1 M Bis-Tris pH 6.5). The crystal

was flash frozen in liquid nitrogen for data collection without additional cryoprotectants.

Diffraction data were collected at APS 21-ID-D beamline and were processed with XDS.34

The apo structure was solved by molecular replacement using phaser-MR from Phenix

suite35 with molecule A from CalS11 complex structure (PDB 4GF5) as the search model.

The model was improved by alternating cycles of manual model building using Coot36 and

refinement using Phenix. Visual analysis of the final difference maps and interpretation of

the structure was performed with a collaborative stereoscopic system based on a commodity

3D television.37 The final model was validated using MolProbity38 and deposited in the

Protein Data Bank with accession code 4PWR.

TABLE I. Statistics for data collection and refinement of the crystal structure of CalS11. Values in parenthesis are for the

highest resolution shell.

PDB ID 4PWR

Spacegroup C 1 2 1

Wavelength (Å) 0.9787

Unit cell parameters 148.26 125.14 107.15 90.00 125.12 90.00

Estimated standard deviation of cell parameters 0.14 0.09 0.07 0.00 0.03 0.00

Resolution range of data collection (Å) 47.85� 1.793 (1.857� 1.793)

No. of reflections (measured/unique) 1 098 192/147 725 (91 275/13 326)

Completeness % (Å)Multiplicity 99 (90)7.4 (6.8)

Mean I/sigma(I) 10.25(1.39)

Wilson B-factor 25.40

R-mergea 0.1316 (1.234)

R-measb 0.1415 (1.332)

CC1/2 0.997 (0.611)

CC* 0.999 (0.871)

R-crystc 0.146 (0.298)

R-freed 0.179 (0.317)

Number of non-hydrogen atoms 11 176

Macromolecules 9403

Ligands 25

Protein residues 1162

RMS(bonds) 0.01

RMS(angles) 1.0

Ramachandrane favored (%) 97.0

Ramachandran outliers (%) 0.09

Rotamer outliers (%) 0.69

Clashscore 3.15

Average B-factor 32.8

Macromolecules 30.7

Ligands 64.1

Solvent 43.24

aR-merge¼
P

hkl

P
jjIhkl,j�hIhklij/

P
hkl

P
j Ihkl,j, where hIhkli is the average of symmetry related observation of a unique

reflection.
bR-meas¼

P
hkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 1Þ

p P
jjIhkl,j�hIhklij/

P
hkl

P
j Ihkl,j, which is redundancy independent version of R-merge.

cR-cryst¼
P

hkl jjFobsj � jFcalcjj/
P

hkl jFobsj, where Fobs and Fcalc are the observed and calculated structure-factor

amplitudes.
dR-free was calculated as R-work using randomly selected 5% of the unique reflections that were omitted from the structure

refinement.
eRamachandran statistics indicate the percentage of residues in the most favored, additionally allowed, and outlier regions

of the Ramachandran diagram as defined by MOLPROBITY.

012004-3 Han et al. Struct. Dyn. 3, 012004 (2016)



B. Ensemble refinement of CalS11

We performed refinement using the scripts within Phenix.ensemble_refinement for both the

substrate bound (PDB 3TOS, 4GF5)10 and unbound structures of CalS11 (PDB 4PWR). For the

substrate bound structure, the downloaded PDB files were refined using TLS refinement before

being used as input file for ensemble refinement. For the apo CalS11 structure, after regular

phenix.refine step, the missing region of L2 was arbitrarily built in manually with correct

sequence and stereochemistry and was subsequently used as input for the ensemble refinement.

We limited the number of models to be used to prevent over fitting of the data.33 Harmonic

restraints were applied for all amino acids with visible electron density at a level of 1r in the

2mFo-Dfc electron density map using parameters weight¼ 0.0001 and slack¼ 1.0, as suggested

in the documentation.

III. RESULTS AND DISCUSSION

A. Overall structure of apo CalS11

The structure of the apo CalS11 crystal was determined at a nominal resolution of 1.89 Å.

This structure belongs to space group C2, different from previously reported space groups of

CalS11, P1. The final structure was refined to Rcryst and Rfree of 13.3% and 16.8% (PDB entry

4PWR) (Table I). Each CalS11 monomer folds in the same way as the substrate bound form

(Figure 2(b)), into a single globular domain comprising a Rossmann fold characteristic of all

SAM-dependent methyltransferases. Apo CalS11 also forms a decamer of five interconnected

dimers. Each asymmetric unit contains half of the functional decamer (Figure 2(a)). In the

search results for similar structures, NovP, the novobiocin L-noivose-40-O-methyltransferase is

the closest structure available. Different from CalS11’s decameric structure, NovP exists as

dimer in solution. The C-alpha coordinates root-mean-square-deviation (r.m.s.d.) of NovP

aligned with CalS11 is 3.2 Å for the bound structure and 1.9 Å for the apo structure. The

FIG. 2. (a) The apo form of CalS11 forms a decamer in solution. Each asymmetric unit contains half of a decamer (shown

with colors). (b) Apo CalS11 monomer with secondary structural element, L2, labelled. (c) The SAH/glutamate complex

CalS11 monomer structure (PDB 3TOS10). (d) The SAH complex NovP monomer structure (PDB 2WK139). (e)

Superimposition of apo (red) and complexed (blue) CalS11 structures. (f) Superimposition of NovP structure (green) and

CalS11 complexed structure (blue).
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sequence identity of NovP and CalS11 is 20%. The Rossmann fold part of the structures aligns

well, while the L2 regions of these two structures are fairly distinct.

Out of the 257 residues in the apo form of CalS11, 6 N-terminal residues and the residues 111–131

are missing in the electron density. It is unlikely that this stretch of protein chain has been cleaved, since

these residues are visible in the substrate-bound structures. Thus, the most likely possibility is that the

L2 region of CalS11, residues 111–131, undergoes large conformational changes when no substrate is

present. The L2 region is adjacent to the substrate-binding cavity. It is likely that the dynamics of L2

facilitates substrate entry and product release. Large conformational changes of L2 are accommodated

despite the decameric structure of the enzyme as this loop is on the surface of the decamer.

B. Active site of apo CalS11

The CalS11 substrate bound structure shows that the SAM/SAH binding site of CalS11 is located

in the C-terminal end of the cleft formed by the central b strands. Interactions between CalS11 and the

bound SAH as well as the substrate surrogate, glutamate, are mainly provided by residues in three

loops (L1, L2, L3), which are conserved in the methyltransferase family. The conformation of these

residues of L1 (between b1 and a4) and L3 (between b3 and helix a6) in the apo structure is mostly

the same as they are in the complex structure, including the putative CalS11 catalytic base Asp191

(Figure 3). Though many residues of L2 (between b2 and a5) are also conserved, residues 111–128

(or residues 111–132 in some chains) are not visible in the apo structure. In 2 copies out of 5 in asym-

metric unit of the apo structure, residues 127–133 of L2 are shifted away from the SAM/SAH site

compared to that in the complex structure (Figure 2(e)). In the other 3 copies in the ASU, only residues

132–133 are visible and they show same conformation as the complex structures do. This variability

amongst the members of the decamer further support the hypothesis that L2 is flexible and it can either

stay close to or move away from SAM/SAH site.

FIG. 3. (a) The residues involved in SAH and glutamate binding (substrates in yellow). The apo CalS11 structure is colored

red (PDB 4PWR), complex structure is colored blue (PDB 3TOS).
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In the CalS11 structurally related protein, NovP, the substructure corresponding to L2 is a

half helix-half loop structure. It is also proposed to be flexible, forming a lid over the

co-substrate SAM serving as a gate (Figures 2(c) and 2(d)).39 This suggests that L2 probably

serves a similar function in both NovP and CalS11. In the complex structure, L2 forms a hydro-

phobic lid near the ribose and adenine ring of SAH and stabilizes SAH by van der Waals forces

and sterically hinders the release of SAH. Thus, the dynamics of the loop as observed here may

promote SAH release to complete the catalytic cycle.

C. Ensemble refinements

The ensemble refinement as applied here was performed using an X-ray data-restrained time-

averaged molecular dynamics simulation to generate an ensemble of models to represent the special

distribution and implies motion within protein molecules. It is an excellent tool to study structural dy-

namics. Application of ensemble refinement method to all three CalS11 structures improves the agree-

ment between model and x-ray diffraction data, represented by decreases in Rfree compared to regular

refinement (Table II). Application of the ensemble refinement to apo CalS11 structure does reduce the

r.m.s.d. of the mFo-DFm difference map by 10%, although the ways the absolute scale is calculated

are slightly different in the two methods and may or may not account for this difference. Taken to-

gether, these results provide some evidence that the ensemble refinement improves model quality and

supports the idea that an ensemble of models somewhat better represents the structural dynamics of

CalS11 than a single static model. It certainly conveys a better visual description of the conforma-

tional variability than does simply removing parts of the model.

The ensemble refinement results for product bound structures are consistent with the stand-

ard structure determinations, with L2 staying in the closed state (Figures 4(b) and 4(c)).

However, in the ensemble refinement results for the apo structure, L2 is spatially distributed

TABLE II. Statistics of ensemble refinement.

PDB ID Resolution (Å) Number of models

phenix.refine ensemble.refinement (ER) ER—phenix.refine

Rcryst Rfree Rcryst Rfree DRcryst DRfree

4PWR 1.80 25 0.146 0.179 0.137 0.171 �0.009 �0.008

3TOS 1.55 20 0.166 0.195 0.138 0.172 �0.028 �0.023

4GF5 2.20 20 0.220 0.219 0.143 0.199 �0.077 �0.020

FIG. 4. Comparison of ensemble models of apo CalS11 (PDBID 4PWR) and tertiary complexes CalS11 (PDBID 3TOS and

PDBID 4GF5). Protein regions with stable conformations show small displacements in these ensemble models, while disor-

dered regions show large displacements. (a) The L2 region of apo CalS11 shows large displacements, while the most of the

structure shows small displacements. (b) and (c) Ensemble models of complexed CalS11 (PDBID 3TOS) and CalS11 (PDBID

4GF5) show small displacements, including the L2 region. These results show that the substrate binding site is more solvent ac-

cessible when no substrate is bound. All structures are shown in ribbon form, with substrates shown in lines using PYMOL.41
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between closed and open conformations (Figure 4(a)). The ensemble of L2 conformations did

not form a contact with neighboring unit cell. This indicates that the space displacement range

of L2 is not an artifact due to crystal packing. The active site is more exposed to solvent than

in the SAH bound structure as a result of L2 movement (Figure 5). Residues involving hydro-

phobic interactions with SAH (residues 111–113 and residues 128–133) show both main chain

and side chain conformation changes.

This mobility of L2 that we see in CalS11 appears to minimize the activation energy for

substrate binding, as the loop rearrangements open the conformation for substrate access. The

loops interactions with the substrate may also provide specificity for the substrate through

enthalpic interactions in intermediate states. If the energy landscape of a loop is very broad,

loop variability can also contribute an entropic component to the overall free energy of binding

that trades specificity or tightness of binding of products with conformational entropy. This

entropic component of the free energy is then recovered as the product leaves the active site.

IV. CONCLUSIONS

Dynamics of loops may confer advantages over highly fixed folded proteins in substrate

binding.40 The free energy flow can trade off attractive forces for the substrate bound form

with the entropy of a loop, allowing for specificity but retaining a reasonable equilibrium con-

stant for product release. The diffusive motions of a loop in thermal equilibrium with the envi-

ronment might also help “pull” off the substrate from its post-transition state like environment.

Many of these functionally important dynamics are retained in the crystalline forms of the pro-

tein as well. Their motions are just averaged by the nature of the analysis and are not well rep-

resented by a single model built based on standard practices. Compared to other methods of

characterizing the energy landscape of a large dynamic molecule, ensemble refinement is an

easier way of analyzing currently available structure data in protein databank and representing

protein dynamics in atomic detail with enhanced support from experimental data.

The general fold of CalS11 is stable in structures with or without SAH bound. Loop L2 of

CalS11 shows enhanced mobility in the absence of substrate. This mobility is visualized by en-

semble refinement, which generated an ensemble of models by a restrained molecular dynamics

simulation that includes the X-ray diffraction data. Ensemble refinement results of three struc-

tures showed that L2 conformations are distributed between closed and open states. Ensemble

refinements provide us with a better representation of the mobile part of a protein structure,

both statistically and visually. It helps us identify the spatial distribution of L2 for CalS11,

presents a sampling of the conformational landscape, and provides evidence of dynamics of L2

supporting its function in promoting substrate binding and product release.
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