
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Chemistry Chemistry 

2017 

EXPLORING THE STRUCTURE AND PROPERTIES OF EXPLORING THE STRUCTURE AND PROPERTIES OF 

NANOMATERIALS USING ADVANCED ELECTRON MICROSCOPY NANOMATERIALS USING ADVANCED ELECTRON MICROSCOPY 

TECHNIQUES TECHNIQUES 

Yao-Jen Chang 
University of Kentucky, carito7891@gmail.com 
Author ORCID Identifier: 

http://orcid.org/0000-0002-5515-7254 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.016 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Chang, Yao-Jen, "EXPLORING THE STRUCTURE AND PROPERTIES OF NANOMATERIALS USING 
ADVANCED ELECTRON MICROSCOPY TECHNIQUES" (2017). Theses and Dissertations--Chemistry. 70. 
https://uknowledge.uky.edu/chemistry_etds/70 

This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/chemistry_etds
https://uknowledge.uky.edu/chemistry
http://orcid.org/0000-0002-5515-7254
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Yao-Jen Chang, Student 

Dr. Beth S. Guiton, Major Professor 

Dr. Mark Lovell, Director of Graduate Studies 



EXPLORING THE STRUCTURE AND PROPERTIES OF NANOMATERIALS 

USING ADVANCED ELECTRON MICROSCOPY TECHNIQUES 

 

 

By 

Yao-Jen Chang
Lexington, KY 

Director: Dr. Beth S. Guiton, Assistant Professor of Chemistry 

Lexington, KY 2017 

Copyright ©  Yao-Jen, Chang 2017 

DISSERTATION 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 
College of Arts and Sciences at the University of Kentucky 



ABSTRACT OF DISSERTATION 

EXPLORING THE STRUCTURE AND PROPERTIES OF NANOMATERIALS 

USING ADVANCED ELECTRON MICROSCOPY TECHNIQUES 

Nowadays people are relying on all kinds of electronic devices in their daily life. All 

these devices are getting smaller and lighter with longer battery life due to the 

improvement of nanotechnology and materials sciences. Electron microscopy (EM) plays 

a vital role in the evolution of materials characterization which shapes the technology in 

today’s life. In electron microscopy, electron beam is used as the illumination source 

instead of visible light used in traditional optical microscopy, the wavelength of an 

electron is about 105 times shorter than visible light. By taking this advantage, the 

resolving power and magnification are greatly improved which gives us the ability to 

understand the morphology and the structure of smaller materials. 

Besides high resolution and high magnifications, the electron-matter interactions in 

electron microscopy are also very interesting and provide useful information. Typically, 

there are three types of post electron-matter interaction electrons, and they are: secondary 

electrons, backscattered electrons and transmitted electrons. Different signals are carried 

out with these electron-matter interactions, the most common techniques including 

electron dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS) 

and selected area electron diffraction (SAED). In this dissertation, I will discuss how 

electron microscopy techniques approach complicated nanostructures, such as MnSb2Se4 

nanorods to reveal the composition, structure, surfactant controlled size, and relative 

magnetic properties. Other important features such as mapping localized surface plasmon 

resonance (LSPR) using EELS and newly developed liquid cell scanning mode 

transmission electron microscopy (STEM) in situ observation are also presented. 

KEYWORDS: transmission electron microscopy, electron dispersive spectroscopy, 

electron energy loss spectroscopy, selected area electron diffraction, localized surface 

plasmon resonance, in situ 
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Chapter 1: Introduction 

1.1 Motivation 

Nanostructured solid-state materials have been extensively studied in the past 30 

years due to their strong demands in various types of technology.1-6 It is extremely 

important to study the morphology, surface, structure, and the interesting 

physical/chemical properties before we can improve the synthesis, fabrication, and 

applications.7 The characteristics of materials in nano-scales can be very different from 

their bulk characteristics, even with the same chemical composition. In nanostructured 

materials, the phenomena of large surface-to-volume (S/V) ratio not only greatly 

increases the reactivity of the material, but also increases the surface energy enormously 

because a larger fraction of atoms are exposed to the environment.8 

In order to fully understand the properties of low dimensional nanostructured 

materials, it is necessary to carefully study the materials from many different levels. In 

the most fundamental level, the atomic structures are studied to predict the bonding, 

valence states, and magnetic properties. In the mid-levels, the crystal structure, inter-

molecular forces, and electronic structure are the most investigated areas. In the advanced 

levels, the kinetics, thermodynamics, optical properties, and many other important 

properties are studied because they directly related to their performance and 

applications.9-13 All these properties mentioned above are a multidisciplinary field which 

overlaps physical chemistry, crystallography, electrochemistry, solid-state physics, and 

various other emerging fields. A single instrument or method that cannot do all the 

analysis work and reveal all the information of a given nanostructured material. 

Traditional optical microscopy has limits since the probe size is limited within visible 
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light range, and the detection limit is not sufficient to investigate the materials in nano-

scales.14  

The use of electron microscopy (EM) becomes an essential tool for nanostructured 

materials characterization. Thanks to the wavelength of an electron is about 105 times 

shorter than visible light. Utilizing an electron beam as the probe, the resolving power 

and magnifications are greatly improved.15 The associated techniques in EM provides a 

wide range of information helping us to understand the morphology, topology, chemical 

composition, crystal structure, valence state and even plasmon behaviors of the materials.  

In this dissertation, the background of EM and its associated techniques will be 

broken down into different sections and will discussed in detail.  

1.2 Electron microscopy 

Electron microscopes were first invented in the 1930’s and have since become a 

standard characterization tool in modern science.16 All kinds of new technologies have 

been added to the electron microscope to introduce multi-functionality and improve the 

image quality. For the projects described in this paper we use both scanning electron 

microscopes (SEMs) and transmission electron microscopes (TEMs) available through 

the Electron Microscopy Facility at University of Kentucky, as well as scanning TEMs 

(STEMs), available to us at Oak Ridge National Laboratory. Both SEMs and TEMs are 

able to create high resolution images at high magnification, but utilize different electron 

beam-matter interactions. An SEM works by scanning a relatively low energy electron 

beam over the sample specimen in a raster scan pattern, whereas a TEM works by high 

energy electrons transmitting through the sample specimen. Secondary interactions of the 
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electrons with the sample enable compositional analysis techniques such as energy 

dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS), as 

well as imaging capabilities. 

1.2.1 Scanning electron microscopy 

SEM is a very powerful tool for elemental composition analysis and surface structure 

characterization. It is very convenient that there’s no further preparation needed for the 

sample, since a dry as-grown substrate can be inserted into the SEM right after the 

reaction is done so that the original morphology of the sample remains intact. When 

electrons hit the sample, interactions between electrons and the atoms of the sample will 

cause the electron beam to lose energy in several different ways, producing different 

signal types including back-scattered electrons (BSE), characteristic X-rays (for EDS), 

cathodoluminescence (CL), specimen current, transmitted electrons and secondary 

electrons (SE). The signals from the sample are shown in Figure 1.1. At the accelerating 

voltages used in an SEM most of the incident electrons are scattered as SEs. BSE and SE 

are used for sample imaging since BSEs demonstrate contrast in composition and SEs 

measure sample morphology. In order to collect as much information as possible, 

multiple detectors are needed and some of the signals can be collected simultaneously. 

The SEM data presented in this thesis were taken on a Hitachi S4300SE with a maximum 

of 25 nA current at 20 kV. Transmission electron microscopy will be discussed in a 

separate section. 
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Figure 1.1 Signals from the sample in an SEM. 

 

1.3 Transmission electron microscopy 

1.3.1 Introduction 

Transmission electron microscopy has been used as an essential multipurpose 

characterization technique for solid-state materials. Because there’s no other equipment 

in this field can provide the same diversity of information for nanomaterials 

characterization. Conventional TEMs can easily reach sub-nanometer resolution, whereas 

the aberration corrected TEM is capable of reaching atomic resolution. Other than regular 

bright-field morphology characterization, scanning mode TEM (STEM) is also a 

powerful characterization method. In this method, the electron beam is converged into a 

fine spot and scanned on solid-state materials and generate dark-field images which are 

known as Z-contrast images. Z-contrast images are generated based on atomic numbers 

of the elements presented in the materials. Other associated techniques such as (SAED), 
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EDS and EELS are also powerful for resolving crystal structure, chemical compositional 

analysis, and compositional/electronic states/plasmon behaviors analysis respectively. 

The principles of all the techniques mentioned above will be discussed in detail in later 

sections; and the applications in different projects will be presented in chapter 3 to 6.  

1.3.2 Principle of transmission electron microscopy 

Analogously to a conventional optical microscope, TEM uses high energy electrons 

in place of electromagnetic radiation, to pass through a very thin sample specimen; due to 

the electrons’ far shorter wavelength than visible light, high resolution imaging results. 

The quality of images can be improved by raising the accelerating voltage, since 

according to de Broglie wavelength relation energy and wavelength are inversely 

proportional, and also in recent years with the use of aberration-correction. The TEM can 

be broken down conceptually into three major parts: a. the illumination system, b. the 

objective lens/stage, and c. the imaging system. 

a. The illumination system can be further separated into two major parts: 1. the 

electron gun which is the electron source, and 2. the condenser lenses which are 

used to guide electrons from the source to the sample specimen and also to the 

focus electron beam to a desired diameter. The illumination system is operated in 

two modes: a parallel mode which is used for TEM imaging, and a convergent 

mode which is used for STEM. 

b. The objective lens and the specimen stage system is where all of the electron-

sample interactions occur. Images and diffraction patterns are created and 

magnified in this system and they are subsequently viewed and recorded. 
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c. The imaging system consists several lenses in order to magnify the signals or the 

diffraction patterns generated by the objective lens and then focus the signal 

which then captured by charge-coupled device (CCD) camera, a detector, or TV 

camera. Images are presented on a fluorescent screen or digitized by CCD or TV 

camera. 

Electrons are manipulated by magnetic field lenses to focus and guide them as they 

travel through the vacuum in the column of the microscope. The signals are generated in 

many forms when electrons travel through and interact with the sample. Unlike SEM, 

other than back scattered radiation and electrons, there is the direct beam (which passes 

through the sample specimen without interaction), elastically scattered electrons (which 

have no or negligible energy loss after interaction with sample) and inelastically scattered 

electrons (in which energy is transferred to the sample specimen to generated a few 

different forms of signals). The elastically scattered electrons are used in the TEM for 

imaging and electron diffraction methods. The signals generated by inelastically scattered 

electrons are mainly used in analytical electron microscopy methods. The TEM image 

contrast depends on the effect of Z (atomic) number of the material and the effect of 

electron density lying in the path of the electron beam. Combining these two effects 

produces so called mass-thickness contrast. The electrons are mostly scattered forward 

with smaller angles when interacting with low Z materials, and the electrons are partially 

back scattered and mostly scattered forward with higher angles causing beam broadening 

when interacting with high Z materials. More electrons are scattered in thicker samples 

than in thinner ones and result in darker regions. The bright field (BF) images are analog 

images of variations of electron density on the image plane of the objective lens 



7 
 

generated by the direct beam while the scattered electrons are blocked by the objective 

aperture. Spherical and chromatic aberrations limit the TEM resolution due to the 

intrinsic imperfection of the electron lens; when extra “lenses” are installed in order to 

improve these problems, the extra lens is called an aberration corrector. The TEM/STEM 

imaging in this paper was done using a JEOL 2010F (S)TEM with an acceleration 

voltage of 200 kV (UK), a Hitachi HF3300 operating at 100 and 300kV (ORNL), and a 

Nion UltraSTEM (ORNL) operating at 60 and 100kV. 

 

Figure 1.2 Electron-sample interactions in the TEM. 
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1.3.3 Scanning mode TEM  

Scanning Transmission Electron Microscopy (STEM) combines the principles of 

TEM and SEM. Unlike TEM, the specimen in STEM is illuminated with a convergent 

electron beam as shown in Figure 1.3 and scanned in a raster pattern to collect data in a 

serial acquisition mode. In order to do so, additional scanning coils, detectors and 

circuitry are necessary to install on a conventional TEM. The secondary or backscattered 

electrons can be used for imaging in both SEM and STEM, but higher signal levels and 

better spatial resolution are available by detecting transmitted electrons when using the 

higher accelerating voltages utilized by STEM. Many characterization techniques are 

available during scanning such as EDS, EELS, bright field imaging, and annular dark-

field (ADF) imaging,18 and these signals can be acquired simultaneously with multiple 

detectors to collect complementary data.  
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Figure 1.3 BF, ADF and HAADF detectors set up in STEM.30 (Figure adapted from Ref. 

30) 

 

1.3.4 Z-contrast imaging 

In STEM the transmitted electrons, depending on the scattering angle, can be 

collected by different detectors in different regions as shown in Figure 1.4. The ADF 

detector is placed to surround the transmitted beam (the bright field region) to collect 

scattered electrons. The inner angle of this detector can be increased to several times 

higher than its minimum angle to reach the maximum efficiency of collection of the 

scattered electrons. At sufficiently high angle this technique is called high angle ADF 

(HAADF) or Z-contrast imaging, due to the strong dependence of the intensity of signal 

on the HAADF detector on the atomic number (Z).19,20 
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Figure 1.4 (a) Schematic of STEM showing the formation of a Z-contrast image. (b) 

Schematic showing the effective propagation of the probes as viewed by the high angle 

detector.31 (Figure adapted from Ref. 31) 

 

1.3.5 Energy dispersive X-ray spectroscopy 

EDS is a very useful tool for elemental analysis in electron microscopy. Electrons are 

focused into a very fine beam to hit the sample and may kick off the inner shell electrons 

of an atom to form an electron hole which will be then filled up by higher energy 

electrons in an outer shell. The energy difference between the higher energy and lower 

energy shells may then be released in x-ray form. The x-ray will then be collected by the 

energy-dispersive spectrometer equipped on the SEM/TEM to generate spectra of 

intensity versus energy (in keV) which gives elemental composition information.21  
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Figure 1.5 Schematic of high energy electron beam interact with an atom and generate a 

characteristic X-ray radiation emission. 

 

1.3.6 Electron energy loss spectroscopy 

After the electron beam pass through sample specimen, the energy of electrons can be 

lost in several forms. The energies typically measured by EELS are due to core loss 

events similar to those detected by EDS, and are useful for elemental compositional 

analysis. At lower energies, however, one form of energy loss in which we are 

particularly interested is the excitation of plasmon modes; these can be observed by 

detecting emitted optical radiation or by measuring the energy loss of the electron. The 
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emitted optical radiation, known as cathodoluminescence (CL), has been used for 

resolving higher-order plasmons in small metallic nanostructures. However, CL is limited 

by the quality of electron beam and signal intensity and can only be used for resolving 

bright modes while the dark modes can be captured by EELS. It is possible to piece 

together the full spectrum of plasmonic behavior when both dark and bright modes are 

detected.22,23 Previously in our group we have shown STEM-EELS to be a very powerful 

technique for mapping the spatial distribution of surface plasmon modes of metallic 

nanoparticles by taking EELS and HAADF simultaneously with both high spatial and 

energy resolution.24,25   

An EEL spectrum is composed of three parts: 

1. By several orders of magnitude, the most intense peak in the spectrum is the zero-

loss peak at 0 eV from those electrons still possessing their original energy. The 

full width half maximum (FWHM) of this peak is typically taken as a measure of 

the energy resolution of the microscope. 

2. The low-loss region (<100 eV) where the most frequent inelastic interactions 

occur, including those which generate plasmons. The intensity of bulk plasmon is 

relatively high. 

The core-loss region (>100 eV) where the electrons have the most interactions with 

inner-shell electrons to provide useful information for elemental analysis. 

1.3.7 EELS mapping of plamons 

Our samples will be prepared for TEM/STEM characterization on both silicon nitride 

and carbon substrates by using drop-casting methods. A micro-Raman confocal 
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microscope equipped with an external spectrometer with a white light source will be used 

to perform resonant-Rayleigh scattering measurements in order to elucidate optically 

active (bright) localized surface plasmon resonance (LSPR) modes (as described in 

section 1.3). The x-y motorized stage on this microscope can be used for mapping the 

plasmonic structures with a roughly 500 nm spatial resolution. In order to be able to find 

the same target sample for STEM mapping, a low-resolution optical dark-field image will 

be taken to be used as a map for subsequent STEM-EELS analysis. After inserting the 

sample into the STEM, the target peapod nanowire or self-assembled chain will be 

located by the assistance of the dark field maps made previously. A STEM-EELS 

technique previously developed by us will be performed to identify the spatial 

distribution and discrete energies of all of the plasmon modes that appear in the target 

sample.17 Using the JEOL 2010F microscope at UK (theoretical spectral resolution of 0.8 

eV), it is anticipated that mapping modes of energy of about 1.5eV and greater will be 

possible, which are suitable for the known energies of Au LSPRs. In order to separate 

individual plasmonic resonance peaks from the background, Digital Micrograph software 

will be used to extract the zero loss peak. The Automated eXpert Spectral Image Analysis 

(AXSIA) program developed by Kotula et al. has been used to perform a matrix-rotated 

principal components analysis in recent literatures.26-28 In this thesis, we performed the 

similar analysis using Python with a script written by Dr. Gerd Duscher from University 

of Tennessee-Knoxville. 

Since both optical and electronic methods will be used to characterize the sample, a 

major advantage is that this will allow us to determine both bright and dark optical modes 

(dark modes are excited by electron beam in STEM). This is of interest for sub-
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diffraction limit wave-guiding without radiative loss. In the long term, correlated 

measurements such as these should allow for a direct link between synthetic conditions 

and plasmonic functionality to be established. An example of a previous work done by 

our group, STEM-EELS mapping of Ag nanorod, is presented in Figure 1.6. 

 
Figure 1.6 An example of EELS mapping of a single Ag nanorod. (a) ADF image of the 

Ag nanorod. (b) Multivariate statistical analysis (MVSA) score images. (c) Summed EEL 

spectrum.24 (Figure adapted from Ref. 24) 

 

1.3.8 Liquid cell in situ S/TEM 

For a long time, only solid phase samples could be inserted into a TEM. The 

Hummingbird liquid cell holder is a special TEM sample holder with a liquid cell design 

which makes it possible for solution phase samples can be inserted into the TEM for in 

situ imaging without breaking the vacuum system. The tip of the liquid cell holder is 

composed of two pieces of silicon microchip with a small etched viewing window within 

allowing the electron beam to pass through. The microchips are covered by thin silicon 

nitride membrane for sealing in the liquid solutions. Further details of this experimental 

set-up are given below in Chapter two. This experiment was performed on a Hitachi 3300 
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TEM with a maximum acceleration voltage of 300 kV at Oak Ridge National Lab 

(ORNL). 

1.4  Other characterization techniques used in this dissertation 

1.4.1 X-ray diffraction 

Powder XRD is used for fundamental crystal structure analysis which is based on 

observing the scattered angle and intensities of an incident x-ray beam. XRD is used to 

identify the phase purity and crystal structures of the as-grown materials from solid-state 

materials. XRD patterns are taken on a Bruker D8 Advanced diffractometer using Cu K2-

alpha radiation. Normal scans are taken from 10-80 degrees two theta. The XRD patterns 

were compared with standards from the database or indexed using simulations calculated 

with CrystalMaker software. The incident X-rays are scattered from atomic planes in 

crystals and produce peaks that helps us to identify crystal phases and crystal structures 

of the materials. The diffracted rays satisfy the Bragg’s law:29 

nλ = 2d sin θ 

Where λ is the wavelength of incident X-rays, d is the spacing between planes, and θ is 

the angle between atomic planes and scattered rays. 
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Figure 1.7 A schematic shows the incident rays, scattered rays and the angle between 

atomic planes and scatted rays. 
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Chapter 2: Experimental methods 

2.1 Sample Synthesis 

2.1.1 Gold nanorods synthesis 

Au nanorods were synthesized by the commonly used seed mediated method 

published by the Murphy group.32  

Figure 2.1 Step-by-step gold nanorods synthesis using seed mediated method. 

2.1.2 Pd decorated Cu2O cubes synthesis 

Parts of this section are taken from “Light-Activated Tandem Catalysis Driven by 

Multicomponent Nanomaterials” J. Am. Chem. Soc. 2014, 136, 32−35.33 
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Materials: 

3-chlorobiphenyl (PCB2), 3,3 ,́4,4 -́tetrachlorobiphenyl (PCB77), and 2,4,5,6-

tetrachloro-m-xylene (TCMX) were obtained from AccuStandard (New Haven, CT). 

Cu2SO4, sodium citrate, Na2CO3, glucose, and PVP were purchased from Sigma (St. 

Louis, MO), while Pd(O2CCH3)2 was obtained from Alfa Aeser (Ward Hill, MA). 

Finally, hexane and ethyl alcohol were purchased from EMD (Gibbstown, NJ). 18.2 MΩ 

cm deionized water (E-pure water purification system; ThermoScientific, Marietta, OH) 

was used for all experiments. 

Synthesis of Cu2O and Cu2O@Pd: 

Cu2O cubes were prepared using established techniques. Briefly, 2 g of PVP (MW 25 000 

g/mol) was added to 100 mL of a 0.035 M Cu2SO4 solution in a 500 mL round bottom 

flask.  The mixture was then vigorously stirred for 1 h. Subsequently, 50 mL of a 0.07 M 

sodium citrate and 0.12 M Na2CO3 solution was added drop wise, resulting in a dark blue 

color change.  Next, 50 mL of a 0.14 M d/l-glucose solution was slowly injected into the 

reaction solution. The flask was then immersed in a water bath at 80 ºC for 3 h to drive 

the reduction process. The as-synthesized burnt orange material was filtered through a 

200 nm track-etched polycarbonate membrane and dried at 60 °C overnight. Once the 

Cu2O cubes were prepared, Pd was deposited on the oxide surface via the galvanic 

exchange reaction.  This reaction was performed by adding 10 mg of Pd(O2CCH3)2 into a 

colloidal suspension of 100 mg of Cu2O in ethanol. The solution was stirred overnight, 

after which the Cu2O@Pd was filtered, washed, and dried at 60 °C. 
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Figure 2.2 Schematic for the fabrication of Pd decorated Cu2O nanocubes. (Figure 

adapted from Ref. 33) 

2.1.3 Synthesis of MnSb2Se4 nanorods35 

Materials:

Antimony(III) acetate [Sb(OOCCH3)3] (97%) (1-Hexadecyl) trimethylammonium 

bromide (CTAB, 98%) [C19H42BrN] were from Alfa Aesar, and Selenium (powder, 

99.999%) were purchased from Alfa Aesar. Manganese(II) acetate [Mn(OOCCH3)2] and 

Oleylamine (OLA) (70%) were obtained from Aldrich.  All chemical were used as 

purchased. 

Synthesis of MnSb2Se4 1g CTAB: 

0.81 mmol of Mn(OOCCH3)2, 1.62 mmol of Sb(OOCCH3)3 and 2.74 mmol of CTAB 

were dissolved in 20 ml of ethanol at room temperature under vigorous magnetic stirring 

for 10 minutes.  1.62 mmol of Selenium powder was added to the above solution and a 

black/silver precipitate appeared after 20 to 30 minutes.  The mixture was sealed in a 

Teflon-lined stainless steel autoclave (45 mL) and placed in a preheated oven at 200 oC 

under solvothermal processing for 12 h. The materials cooled naturally after removed to 
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room temperature. The resulting silver powder was collected by centrifugation and 

washed with ethanol and chloroform several times. The product was dried in the furnace 

under vacuum with 50 cc flowing argon at 200 oC for 8 h.   

Synthesis of MnSb2Se4 0.5 mL Oleylamine: 

A procedure similar to the one described above was employed, in this case without 

CTAB, and adding 5 mL of Oleylamine and 15mL of ethanol to the solution containing 

0.81 mmol of Mn(OOCCH3)2, 1.62 mmol of Sb(OOCCH3)3 and 1.62 mmol of Selenium 

powder when transferring the solution into the Teflon-Lined stainless steel autoclave. 

Synthesis of MnSb2Se4 1g CTAB/ 5 mL Oleylamine:  For this sample both CTAB and 

Oleylamine were used, added as described above. 

2.1.4 Synthesis of Au in Hexaniobate nano-peapod structures 

Synthesis of Potassium Hexaniobate: 

K4Nb6O17 was synthesized through a solid-state reaction using ground mixture of K2CO3 

and Nb2O5 (in the molar ratio of 1.0:1.4). The mixture was treated at high temperature as 

900 °C for 1h before continuing to heat at 1050 oC for another 24 h. In order to compensate 

the loss of volatile potassium oxide species, a slight excess of K2CO3 was added. The 

product obtained after the solid-state reaction was washed twice with water and acetone 

and finally dried t at 80 °C for 24h. 

Synthesis of HxK4-xNb6O17: 

In order to make HxK4-xNb6O17, of K4Nb6O17 powder (0.15 g) were mixed with 3 M HCl 

solution (15 mL) and stirred at 50 °C for 3 days. The obtained proton-exchange form of 
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hexaniobate was thoroughly washed using the mixture of ca. of milli-Q water and acetone 

and then dried at 80 °C for 24h. 

Solvothermal synthesis of intercalated multi-walled hexanioabte nanoscrolls: 

In a typical experiment, HxK4-xNb6O17 (0.05 g), TBAOH (0.15 g), oleylamine 5 mL), and 

of toluene (8 mL) were mixed in a 20mL vial and magnetically stirred for half an hour. 

Final mixture was transferred into a Teflon-lined stainless steel autoclave (Parr, model 

4749, 1800 psig, 23 mL) and solvothermally treated at 220 °C for 6 h. The obtained product 

was washed with ethanol and centrifuged for 5 minutes to remove extra agents. 

Figure 2.3 Schematic for the fabrication of metal in hexaniobate nanocomposites via a 

solvothermal method.34 (Figure adapted from Ref. 34) 

2.2 Sample preparation for transmission electron microscopy 

Most TEM samples are made by using the most common drop casting method. 

However, the procedures are slightly different in different projects. The detail TEM 

sample preparations are discussed in separation sections. 
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2.2.1 Liquid cell in situ observation preparation 

497µ𝐿 Au nanorod solution was mixed with 3µ𝐿 of cysteine solution in a vial. About 

0.3µ𝐿 of mixed solution was dropped onto a silicon microchips, and a second microchip 

was placed upside down on top of the first microchip to sandwich and seal the mixed 

solution. The Hummingbird liquid cell holder was then inserted into the Hitachi HF3300 

TEM. The maximum accelerating voltage was 300 kV and videos were taken in STEM 

mode. Figure 2.4 shows a schematic illustration of our in situ liquid STEM set-up which 

utilizes silicon microchips and Si3N4 membranes as a platform for sealing liquid solutions 

and imaging the dynamics of nanoparticle self-assembly in liquid environments. 

2.2.2 EM Characterization for Pd decorated Cu2O cubes 

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

were used to study the morphology of the Cu2O and Cu2O/Pd materials using a Philips 

XL30 field-emission environmental SEM equipped with an Oxford energy-dispersive X-

ray detector and a JEOL JEM-1400 TEM, respectively. SEM experiments were 

performed at 20 kV, while TEM experiments were conducted at 80 kV. Annular dark-

field Scanning TEM (ADF-STEM) experimentation was performed on a JEOL 2010F 

TEM/STEM at 200kV, equipped with Oxford EDS detector. Using this system, EDS 

mapping was performed and quantified employing Gatan Digital Micrograph software, 

which integrated the area of the Cu Kα peak and Pd Lα peak to form the compositional 

map. 

2.2.3 MnSb2Se4 nanorods characterizations 

All samples were characterized by powder X-ray diffraction collected on a Bruker D8 

Advanced diffractometer with CuKα radiation (λ = 1.54056 Å). The morphology of the 
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nanostructures was observed by scanning electron microscope (SEM, S-4800). The high-

resolution images, as well as the composition from the energy dispersive X-ray 

spectroscopy (EDS), were collected using a JOEL 2010F (200 kV) transmission electron 

microscope. 

2.2.4 TEM sample preparation for gold in Hexaniobate nano-peapod 

Preformed hexaniobate nanoscrolls (NScs) were used as a template for the in-situ 

growth of gold nanoparticle within the hollow space of hexaniobate NScs. First, 

Hexaniobate NScs (10mg) were mixed with HAuCl4 .3H2O (20 mg), toluene (3 mL), OAc 

(160 µL) and OAm (160 µL) and magnetically stirred. Then, the solution was heated to 60 

°C and held at this temperature for 2h. The resulting product was washed with toluene and 

separated via centrifugation. The obtained sample was redispersed in toluene and further 

centrifugation was applied to remove/reduce free Au NPs. Finally, the separated 

Au@hexaniobate NPPs were dispersed in toluene and drop-casted on a TEM grid for TEM 

analysis. 

2.3 Liquid cell in situ transmission electron microscopy 

With the recently developed in-situ liquid cell TEM/STEM technique, a small amount of 

solution is allowed to insert into the TEM without breaking/contaminating the vacuum 

system. Nanoscale images/video are generated simultaneously as the reaction goes on. In 

this project, we investigate the solution mixed by cysteine and Au nanorod solutions with 

various pH environment, using a Hummingbird liquid cell holder equipped with a Hitachi 

HF3300 high resolution STEM. The liquid cell consists two pieces of silicon microchips 

with Si3N4 membranes for sealing solution. Gold nanorods have been extensively studied 

because of its interesting plasmonic characteristics which leads to a wide range of 
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applications. The surface passivant plays an important role of both stabilizing the Au 

nanorods, and its exposure to solution. The optical properties can be directly controlled 

by changing the shape, size and aspect ratio of the Au nanorods. At pH=2, two videos 

successfully captured the assembly process in real time. Both rotational and translational 

movements leading to Au nanoparticle chains formation are observed. By using the liquid 

cell STEM to study the dynamics of Au nanorod chain assembly, we hope to elucidate 

the key factors of controlling desired shape Au nanoparticle chains and their plasmonic 

behaviors. The self-assembly process is quite interesting and many theories have been 

proposed since nobody has visualized what really happened in the solution in nanoscale. 

More details of this project will be presented in chapter 3. 
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Figure 2.4 Schematic for Liquid cell in situ experiment for gold nanorods self-assembly. 
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Chapter 3: In situ liquid cell observation of localized surface plasmon resonance 

assisted gold nanorods assembly 

3.1 Introduction 

Liquid cell in-situ TEM/STEM has been an emerging field in the past few years, and 

has been reported as a very powerful tool for real-time imaging on the nanometer length 

scale for solution phase reactions. With a liquid cell holder, a little amount of liquid is 

allowed to be securely sealed and inserted into the TEM without breaking the vacuum 

system. The development of liquid cell has been directly beneficial to many areas of 

nanoscience because of its ability to directly visualize the dynamics of nanocrystals in 

liquids. So far, liquid cell in-situ TEM/STEM has been used for observing 

lithiation/delithiation of electrode materials in liquid battery systems,36,37 in situ 

observation of fluid cells,38,39 and for in situ electrochemical measurements in liquid 

battery systems.40-43 The same techniques have also been widely used in visualizing 

nanostructure nucleation, growth and synthesis in order to elucidate the mechanisms of 

growth.44-51

Reports of in situ observation of nanostructure self-assembly are also rising 

rapidly.52,53 Alivisatos et al. used a homemade graphene-based liquid cell to observe 

nanocrystal growth directly,54 and to monitor structural changes and nanocrystal motion 

in 3-D.55,56 One interesting experiment also reported by Alivisatos et al. was to observe 

the self-assembly of gold nanorods with no post synthesis modification, in a liquid cell 

holder.57 The high ionic strength of solution and the anisotropic electrostatic repulsion 

were determined to be the driving forces for tip-to-tip alignment of the Au nanorod into 

chains. Following this report, Marquez et al. demonstrated that tip-to-tip assembly of 
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gold nanorods may be induced by exciting the localized surface plasmon resonance 

(LSPR) modes of the nanorods in polymer films.58 In this report, the authors used a laser 

to selectively activate the longitudinal LSPR mode of the Au nanorods which eventually 

led to tip-to-tip alignments, opening up a new route to control Au nanorods self-

assembly. Taken together these reports imply that the excitation of LSPR modes – a 

known driving force for self-assembly – may be mediated by high ionic strength in 

solution, and this is confirmed by Baral et al. who found that diluting an ionic solution 

attenuates the plasmon absorbance.59 In combination these reports suggest that the 

observation by Alivisatos et al. could in fact have been LSPR-induced self-assembly, in 

which the high ionic strength they used helped to mediate the electron-beam activation of 

the LSPR modes. 

In this thesis, we present results in support of this hypothesis, showing that Au 

nanorod self-assembly observed in situ within a liquid cell occurs via three stages: (i) a 

diffusive regime, in which nanorods initially diffuse to within each other’s vicinity, with 

smaller rods moving more quickly due to reduced viscous drag; (ii) an approach period in 

which activation of the LSPR modes leads to faster approach speeds for larger 

particles/clusters, and relative orientation rather than proximity of the rods dictates which 

rods form attachments; and (iii) an attachment period during which irreversible 

attachment occurs. In this work we use cysteine-functionalized Au nanorods for which 

cysteine has been reported in ex situ measurements to functionalize the tip of the 

nanorod, leading to tip-to-tip self-assembly. In our investigations the cysteine does not 

appear to be the driving force for the initial approach, although it could be mediating the 

strong resulting attachment. 
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3.2 Materials and methods 

Environmental fluid cell microscopy is a rapidly emerging field, very much in its 

infancy, due to the inherent, complex issues associated with containing and imaging 

through thin fluid layers within the high vacuum of a TEM column. This core challenge 

has recently been overcome through the sealing the fluid between two electron-

transparent viewing membranes to prevent evaporation of high vapor pressure liquids 

(and consequent contamination of the microscope column). Typically, this is 

accomplished through the use of silicon microchip devices containing a thin electron 

transparent silicon nitride (SiNx) viewing membrane. To image the dynamics of the 

nanoparticle self-assembly process in the current work, a thin layer of the liquid solution 

containing a mixture of CTAB capped Au nanorods with cysteine was placed between 

two 50 nm electron transparent SiNx membranes (Fig. 3.1). A liquid flow cell TEM 

holder was used to support the silicon microchip frames. Prior to loading the solution, the 

microchips were cleaned in an acetone then methanol rinse, followed by plasma cleaning, 

which rendered the surface of the SiNx membranes clean and ready for liquid sample 

loading. 

The in situ liquid STEM experiments were performed with a Hitachi HF3300 S/TEM 

instrument that is equipped with a cold-field emission gun that was operated in STEM 

mode at a 300kV accelerating voltage and 15nA probe current. A high angle annular dark 

field (HAADF) STEM detector was used to image the dynamics of nanorod assembly 

processes at high spatial resolution. 

Au nanorods were synthesized by the commonly used seed mediated method 

published by the Murphy group.62 
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The surface of Au NRs are covered by CTAB, a surfactant to stabilize the Au and 

maintain its nanorod shape. Due to the curvature of the nanorod tips, the CTAB 

molecules are more widely spaced and result in greater surface area to which cysteine 

may bind. The following pHs of the mixed solutions were investigated: 1.0, 1.25, 1.5, 

1.75 and 2.0, varying pH via the concentration of HCl in the synthesis solution. 

Figure 3.1 Schematic illustration of the in-situ liquid cell used for these experiments. 
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3.3 Results and discussions 

3.3.1 Ex situ results 

Figure 3.2 High resolution Z-contrast (a, c) and bright field (b, d) images of a single Au 

nanorod. Scale bar, left to right= 20, 20, 5, 5 nm. 

Figure 3.2 shows high-resolution Z-contrast and bright-field images, revealing the 

core-shell structure as Wright et al. reported,60 where the surface of Au nanorods are 

capped with a few atomic layers of Ag originating from the AgNO3 reactant. Ag caps the 

rod completely, with no preference for any particular region on the rod. 

Figure 3.3 Ex situ TEM images showing that the Au nanorods will self-assemble into 

nanoparticle chains over a period of ~60-90 mins at pH=2.0, without external stimulus. 

(Scale bar= 20nm) 

a b c d 
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Prior to running the in situ experiment, ex situ TEM (Fig. 3.3) was performed on 

samples allowed to assemble for increasing periods of time, for two purposes. First, to 

optimize the experimental conditions; and second, as a control to verify that nanoparticle 

chain assembly occurs without the presence of the electron beam. At the early stage (0.5 

hour) of mixing, Au nanorods were distributed with every orientation. One hour after 

mixing, some short nanoparticle chains were observed as Au nanorods started to line up 

tip-to-tip. One and a half hours after mixing, many longer Au nanoparticle chains were 

observed. For these ex situ measurements, the cysteine’s thiol, amine, and carboxyl 

groups provide the driving force for self-assembly. Once cysteine is added into the Au 

nanorod solution, the thiol groups selectively bind to the tip of the nanorods, since the 

density of the CTAB is lowest at this point of high curvature. The uncoordinated 

zwitterionic headgroups can electronically interact with other species in solution, and 

electrostatic interactions of the cationic amine and anionic carboxylate between multiple 

amino acids on the surfaces of adjacent Au nanoparticles can be used to attract the 

species closer together to begin the assembly process. Once particles are close enough for 

attachment, amine crosslinking occurs, where the amine on the head group binds to the 

surface of another particle to form an irreversible bond. In this scenario, the affinity of 

the amine group to the gold surface causes the amine to "snap" onto the other particle, 

once the electrostatics have drawn the particles close enough together for bonding to 

occur. The rate of this reaction may be mediated by the pH of the solution, which dictates 

the strength of the electrostatic interactions and can therefore be exploited to control the 

rate of assembly. 
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3.3.2  In situ results and discussions 

Figure 3.4 Frames from a movie collected during self-assembly of Au nanorods in a pH2 

solution, showing the diffusive, approach, and attachment stages. In (d), X= 105.10 nm 

and Y= 64.57 nm. Attachment completes by ~ 92 seconds. scale bar = 100 nm. 

The self-assembly process was investigated using an in situ liquid cell setup. It is 

immediately apparent that the rate of assembly is much greater in the in situ experiment 

with respect to the data collected ex situ, occurring on the seconds to minutes timescale, 

as oppose to hours outside of the TEM. This suggests that electron beam plays a major 

role in either the diffusion and/or the approach regimes of assembly. The early stage 

diffusive motion of the Au nanorods appears to be activated by electron beam irradiation, 

and differs from Brownian motion. One important observation regarding the approach 

regime is that the specific particles which approach and assemble are not always those 

which are closest to one another, suggesting that proximity alone cannot govern the 

approach period of assembly. This is illustrated in Fig. 3.4(d), when particle 4 chooses to 
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join the cluster of particles labeled 1/2/3, rather than the closer grouping of particles 

5/6/8. This suggests that neither electrostatic attraction nor hydrogen bonding is 

responsible for the approach of the nanorods in contrast to the ex situ case. 

In order to investigate these stages we calculated the speed of each rod or cluster of 

rods at two points during the assembly process: once at the beginning of the assembly 

process (over a time period of 0.16 s between the first two frames), and a second time 

immediately before the rod attached to a cluster (over a time period of 0.16 s between the 

penultimate and final frames before attachment). In order to correlate these speeds to the 

mass of the particles we approximated the rods to be cylindrical, measuring length and 

diameter of each rod from the images, and used the density of bulk gold to calculate 

mass. The distance traveled for each Au nanorod was measured by the MTrackJ plugin of 

ImageJ. For the diffusive regime, the speed of each rod showed a strong inverse linear 

dependence on its mass (Fig. 3.5(a)). This observation is consistent with a picture in 

which the rods move due to thermal energy, and larger rods have greater viscosity. 

Figure 3.5 (a) Speed vs mass for each Au nanorod or cluster of nanorods during first two 

recorded frames, and (b) two recorded frames immediately prior to attachment. Lines of 

best fit included to demonstrate linearity, with R2 values of (a) 0.9251, and (b) 0.9182.  
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For the approach stage (Fig. (3.5b)), this trend changes to a direct proportionality 

between the speed of approach, and the combined mass of the nanorod and the group to 

which it is attaching. In other words, the larger the combined mass of the nanorod chain 

and its attaching nanorod, the faster the approach speed between these two entities. The 

speed of each nanorod in Fig. 3.5b is measured within the 0.16 second time frame 

immediately preceding attachment to a chain. Particles 6 and 8, 2 and 3, and 7 and 9 

joined to create a two nanorod chain. Particles 1 and 5 joined the groups of (2+3) and 

(6+8) respectively, and finally particle 4 joined the group of (1+2+3) and has the greatest 

combined mass among all combined groups. Based on the mass and the speed of every 

Au nanorod, the kinetic energies were calculated, revealing an average kinetic energy 

prior to attachment that is about eight times greater than the kinetic energy measured 

during the early stage movements. This result implies two conclusions: (i) that a long 

range attraction exists to attract Au nanorods, and position them at the correct angle and 

alignment for tip-to-tip attachment, and (ii) this attractive force depends on mass 

(volume) rather than simply nanorod separation, since the heavier the combined mass or 

larger total volume, the faster the attaching speed. 

In order to further investigate the driving force leading to tip-to-tip alignments, and to 

reduce the complexity of the problem, we selected an area with just three nanorods and 

performed the same experiment. Frames from the resulting video are presented in Fig. 

3.6. To start, the Au nanorods are not oriented with respect to one another. After a series 

of rotational movements, at the 100 s mark (Fig. 3.6(e)) all of the nanorods suddenly and 

simultaneously align parallel. One explanation for this interesting behavior is that when 

the scanning electron probe approach one of the Au nanorods, the longitudinal LSPR 
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modes on this rod are excited which may cause the conduction electrons oscillate locally 

along longitudinal direction within a very short period of time. Within this short period of 

time, free electrons on nearby rods are induced by the activated LSPR and result in 

induced coupling which drives nearby Au nanorods to align parallel to one another, 

placing them in a tip-to-tip position. This can be understood since the electron beam 

would be expected to excite all possible LSPR modes, and that the collective excitement 

of LSPRs on closely spaced nanorods might lead to a coupling of these modes. 

Figure 3.6 Frames from a movie collected during self-assembly of Au nanorods in a pH2 

solution, showing the approach, and attachment regimes. Alignment occurs at 25 s, and 

attachment completes by ~ 152 seconds. scale bar = 100 nm. 

Taking our observations collectively, there are three different stages in the self-

assembly process. The first stage is a diffusive regime in which Au nanorods diffuse in 

the solution, without feeling the presence of one another by long range attractive forces. 

In the second stage, the electron beam activates the longitudinal LSPR modes, causing 

the nanorods to couple once they are within proximity of one another, with a coupling 
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strength that is dependent on the combined mass (volume) of the nanorods, via the 

Clausius-Mossotti relation: 

𝛼 = 3𝑉[
𝜀𝑟 − 1

𝜀𝑟 + 2
] 

Where εr is the relative permittivity of a material, V is the volume, and α is the 

polarizability.61 The LSPR activated by electron probe on one Au nanorod induces 

nearby free electrons to join the oscillation in the same direction which directly increase 

the polarizability. According to the equation, polarizability is directly proportional to the 

volume. The coupling resulting in tip-to-tip alignment of the rods in this second stage. In 

the final stage, the aligned rods attach, tip-to-tip, via a strong and irreversible interaction, 

presumably the same cysteine bonding observed in the ex situ measurements. Over time, 

the metal atoms at the tip of the rods are seen to migrate, resulting in an eventual fusion 

of the rods (Fig. 3.7). This phenomenon could be caused by electron beam irradiation. 

Figure 3.7 HRTEM of dried assembled sample, showing nanorod tips fused together. (a) 

and (c) bright-field images; (b) and (d) dark field images. Scale bars are (a, b) 20 nm and 

(c, d) 5 nm. 

3.4 Conclusions 

Au nanorod self-assembly was successfully observed in real-time, using a liquid cell 

holder in the STEM. Our results suggest that the assembly of nanorods as observed in situ 

in the electron microscope is likely driven by electron beam excitation of the LSPR 
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modes, and a coupling of these modes on adjacent nanorods. This is consistent with 

previous observations that assembly can be induced by laser excitation of the nanorods 

longitudinal LSPR, and that high ionic strength can mediate the excitation of LSPR 

modes in solution. The primary supporting evidence for our suggested three-stage model 

is that assembly occurs much more rapidly in the electron microscope than when 

performed externally to the microscope, and that assembly speed depends on combined 

mass (and correspondingly more intense plasmon resonance), rather than inter-rod 

separation. 
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Chapter 4: Pd decorated Cu2O nanocubes studied by electron microscopy 

Parts of this chapter are taken from “Light-Activated Tandem Catalysis Driven by 

Multicomponent Nanomaterials” J. Am. Chem. Soc. 2014, 136, 32−35. The aim of this 

work was to use electron microscopy techniques to (i) confirm the core-shell structure of 

the nanocubes; and (ii) perform EDS mapping technique for compositional analysis and 

map Pd and Cu spatially. Without such characterization, the morphology, size and 

structure of as-synthesized nanocubes cannot be studied. More importantly, the EDS map 

is the crucial evidence to show multicomponent nanostructures and explain their high 

catalytic reactivity. 

4.1 Introduction 

Catalytic technologies must be redesigned for optimal reactivity under sustainable 

conditions with minimal to no energy input. While organometallic-based systems are 

traditionally used,63,64 nanotechnology provides new avenues to achieve such sustainability 

goals without compromising on the reactivity.65,66 Furthermore, nanomaterial syntheses 

have recently matured to allow for the production of highly refined particles that control 

the size, shape, and morphology of the structure;67,68 however, the ability to design 

multicomponent nanosystems remains challenging. Such systems are likely to be highly 

important, especially for tandem catalytic reactions that require multiple catalysts 

interfaced into a single system. 

Nano- and micro-scale metal oxides have been the focus of research due to their photo-

induced electrical properties. This phenomenon can be exploited for important 

photocatalytic reactions that drive redox- based chemical processes,69,70 which arise from 
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the semiconductor band gap; upon irradiation of the material with photons of appropriate 

energy, electron excitation from the valence to conduction band occurs, where the holes 

remain in the valence band. These electrons and holes then travel to the oxide surface to 

drive reduction and oxidation reactions, respectively.71 Given suitable band positions, this 

process can split water into H2 and O2.
72,73 As such, photocatalytic H2 production is of 

enormous value given the potential to generate significant energy sources using available 

resources and sunlight. Moreover, this sustainably produced H2 could find other important 

uses in catalytic reactions such as hydrogenation and hydrodehalogenation, given the scale 

these reactions are performed. Decorating the metal oxide with noble metal nanocatalysts 

could result in a tandem catalytic system for reactions that are not traditionally driven by 

light. As such, this approach could transition unsustainable catalytic processes towards 

more sustainable, light-driven methods. 

Here we describe the production of multicomponent tandem nanocatalysts that exploit 

light for multistep reactivity. In this regard, Cu2O cubes are generated, where addition of 

Pd2+ salts results in oxide surface decoration with Pd0 nanoparticles via galvanic exchange. 

Once characterized, the materials were used for the hydrodehalogenation of 

polychlorinated biphenyls (PCBs), where quantitative reactivity to produce biphenyl was 

observed using just an aqueous solution and light. For this tandem catalytic system, the 

Cu2O participates in H2 production via photocatalysis that is subsequently activated on the 

Pd surface to drive hydrodehalogenation. These results are important for two key reasons. 

First, they demonstrate a simple and aqueous-based method for the production of 

multicomponent tandem catalysts. Such catalytic systems can require surface 

immobilization to generate the appropriate structures,74 thus increasing their synthetic 
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complexity. Second, the materials are reactive using light as an energy source for reactions 

typically driven by an external H2 source. As such, the adaptation of critically important 

sustainable approaches towards energy and/or material intensive processes is 

demonstrated. The Pd decorated Cu2O nano-cubes are carefully studied by SEM and TEM 

to study their morphology. Most importantly, Pd and Cu are mapped using EDS technique 

in the TEM. More details are presented in the next section. 

4.2 SEM and conventional TEM characterizations 

Further characterization of the Cu2O@Pd materials was conducted using both 

scanning and transmission electron microscopy (SEM and TEM, respectively). Figure 

4.1a presents the morphology of the Cu2O materials prior to Pd addition. From this, well-

defined cubic structures were generated with an edge length of 700 ± 120 nm. Note that a 

small fraction of the Cu2O structures were truncated cubes. SEM analysis of the materials 

after Pd deposition is presented in Figure 4.1b. For these structures, the incorporation of 

Pd nanoparticles did not significantly alter the size of the materials (690 ± 110 nm). As 

anticipated, the Pd nanoparticles on the faces of the oxide cubes could not be observed 

using SEM, likely due to their small size. Energy dispersive spectroscopy (EDS) analysis 

(Figure 4.2) confirmed the Pd content of 3.0 wt%, consistent with the synthetic 

conditions. Finally, TEM imaging of the Cu2O@Pd materials was also conducted in both 

dark and bright fields. Figure 4.1c presents the dark field TEM image, displaying 

showing the cubic morphology of the structures, while, while Figure 4.1d displays a 

higher resolution bright field image of the edge of the Cu2O cubes demonstrating Pd 

nanoparticle incorporation. Here, Pd nanoparticles are evident along the edge of the 

structure.  
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Figure 4.1 EM characterization: (a,b) SEM images and (c,d) TEM images of the Cu2O 

cubes before (a,c) after (b,d) Pd deposition. 
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Figure 4.2 EDS analysis of the Cu2O@Pd materials. 

 

4.3 EDS mapping on a single nanocube 

Due to the thickness of the Cu2O, complete TEM imaging of the composite structure was 

not possible, especially along the cube faces. To confirm the Cu2O@Pd morphology, EDS 

mapping of the materials was conducted using high-angle annular dark-field scanning TEM 

(HAADF-STEM) equipped with an EDS detector. Cu was detected at 2.84keV and Pd at 

8.04keV.  Figure 4.3 presents the elemental map and overlay for the composite structures. 

The images confirmed that the Pd component is deposited along the surface of the Cu2O 

cubes, forming the Cu2O@Pd core@shell structure. This design is likely to maximize the 



43 

catalytically reactive surface area due to the morphology at the interface between the two 

components. 

Figure 4.3 Compositional EDS mapping of the Cu2O@Pd structures using STEM. Part 

(a) presents the dark field image of the materials, while parts (b and c) show the Cu and 

Pd maps, respectively. Part (d) displays the composite overlay of the Pd and Cu maps, 

demonstrating the core@shell structure. 

4.4 Conclusions 

In summary, we have demonstrated the generation of a unique, multicomponent 

nanocatalyst based upon Cu2O@Pd core@shell materials. These structures were 

fabricated using a facile electroless method, where the Pd nanoparticles form a uniformly 
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distributed layer on the surface of the Cu2O cubes. This architecture provides advantages 

for light-activated tandem catalytic reactions that are dependent upon H2 as a reagent. 

The Cu2O@Pd materials demonstrated significant tandem catalytic functionality for the 

dechlorination of PCBs, which occurred via a reductive process, generating no toxic 

oxidation products. It is anticipated that this unique light-activated system could establish 

the foundation for the development of new class of materials for sustainable reactivity 

that is dependent upon the use of H2, including industrially important reactions such as 

olefin hydrogenation. 
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Chapter 5: Case study: Hydrothermal synthesis of MnSb2Se4: Effect of surfactant 

on magnetic properties 

5.1 Introduction 

In recent years there has been considerable interest in transition metal - heavy main 

group metal chalcogenides as a result of their unique chemical and physical properties.75-

78 These  properties include high energy efficiency conversion,79,80 spintronics,81-83 

thermoelectrics,77,83 solid state lighting and batteries,85,86 photovoltaics,79,87-89 optics, and 

optoelectronics.90,91 The chemistry and materials interest in the chalcogenides  is strongly 

tied to the need for low cost, high performance and environmentally friendly materials for 

energy, electronics, and to mimic biological system for medical applications.78,80,92  For 

example, ternary and binary chalcogenide such as CuInS2, CuInSe2, AgInS2 , CuFeS2 , 

FeSe2, CuZnSb2Se4, CuSe2 and CuInSe2  have been explored for new high-performance 

photovoltaic solar cell materials, thermoelectrics, and bioimaging probes.80,87,88,90,92-96 

The properties of the main group and transition metals are, however, sensitive to the 

specific synthetic method employed, and especially  when examining the characteristics 

of the nanophase, where properties are often strikingly different from their bulk 

counterparts.76,86-88,97 The exploration of nanostructured transition metal and heavy main 

group metal chalcogenides therefore presents a pathway to efficiently discover 

exceptional properties, with significant unrealized potential. The current library of 

nanophase chalcogenides continues to grow exponentially, with diverse morphologies 

such as nanowires, nanorods, nanospheres and nanosheets. The shape and size control of 

such materials has been significantly aided by the development of new colloidal synthesis 

methods. For example, nanocati and spherical particles of high Curie temperature Fe3-
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xCrxSe4 with giant coercivity has been reported recently via colloidal synthesis,98,99 and 

nanocrystals (NCs) of Cu2ZnSnS4, Cu2ZnSnSe4, and CuZnSnSxSe4-x, with the wurtzite-

type structure have been explored by the same methods and demonstrate exception 

photodetector properties.  

Within these transition metal-heavy main group metal chalcogenides, those with 

general formula MSb2Q4 (M = Mn, Fe; Q = S, Se) are of particular interest for their 

magnetic properties. 81-83,99-103 The MnSb2Se4 and MnSb2S4 for example, which 

crystallize in monoclinic crystal symmetry, have shown antiferromagnetic (AFM) 

ordering with Neel temperature TN ~ 21 K and 25 K. 101,103 Anisotropic multiferroic 

behavior with the ferroelectric polarization of ~ 14µC/m2 is predicted in MnSb2S4.
100 

More recently, Cu-doped MnSb2Se4 has been reported as very good thermoelectric 

material with a figure of merit ZT~0.64 in addition to the very low thermal conductivity 

that is remarkable in the Cu-free composition.104 Interesting magnetic properties have 

also been observed in a Sn-doped phase of MnSb2Se4 with a remarkable switching from 

dominant AFM interactions in the Sn-free sample, to ferromagnetic (FM) interactions 

with Tc ~ 56 K on the introduction of Sn.103 Nanostructures of MnSb2Se4 have not been 

reported, however, and warrant special attention given the rich field of properties 

observed in bulk MnSb2Se4. 
101,103,104 Here we report the colloidal synthesis of micron to 

nanophase MnSb2Se4 using different surfactants. We observe nanowire formation with 

diameters strongly influenced by the nature of the surfactant, with magnetic anomalies 

below 40K. Furthermore, a weak ferromagnetism is observed whenever (1-Hexadecyl) 

trimethylammonium bromide (CTAB) is used, despite the samples remaining phase pure 
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MnSb2Se4. This demonstrates the first report of FM within pure MnSb2Se4, using only 

morphology control (rather than doping) to determine the magnetic properties. 

5.2 Methods 

All samples were characterized by powder X-ray diffraction collected on a Bruker D8 

Advanced diffractometer with CuKα radiation (λ = 1.54056 Å). The morphology of the 

nanostructures was observed by scanning electron microscope (SEM, S-4800). The high-

resolution images, as well as the composition from the energy dispersive X-ray 

spectroscopy (EDS), were collected using a JOEL 2010F (200 kV) transmission electron 

microscope. The temperature- and field-dependent magnetization were performed using 

Superconductivity Quantum Interference Device (SQUID) MPMS. The samples were 

loaded into a gelatin capsule, which was sealed with a small strip of scotch tape and 

suspended inside a standard drinking straw.  The sample was then loaded into a Quantum 

Design Magnetic Measurement System (MPMS) for M(T) and M(H) scans.  M(T) scans 

were completed after zero field cooling the sample to the desired starting temperature of 

the scan and then applying a magnetic field.  Data was taken as the sample was warmed 

to 400 K under an applied field of 500 Oe and then cooled again to the starting 

temperature, allowing for any hysteresis in the M(T) scans to be detected.  M(H) scans 

were prepared in the same manner and data was taken as the field was swept to +/- 5T. 

5.3 Results and discussions 

All three preparations obtained under different surfactants and surfactant 

concentrations were metallic light gray with little reflective lustre.  The powder X-ray 
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diffraction (XRD) data of all of the polycrystalline as-prepared samples are presented in 

Figure 5.1. 

Figure 5.1 Powder X-ray diffraction of MnSb2Se4 prepared in 1g CTAB, 5mLOLA and 

mixture of 1g CTAB/5mL OLA. 

The diffraction patterns can be readily indexed to the monoclinic crystal structure of 

reported MnSb2Se4 (ICSD no. 421940) with lattice constant a = 13.076(3) Å , b = 

3.9651(8) Å , c = 15.236(3) Å  and β = 115.07o.  Indexed reflections (Fig. 5.1) (201), (20-

3), (40-2), (40-5) which seem to be absent from the experimental diffraction pattern or 

appear with weak intensity on the calculated pattern, all belong to [010] plane of the 

crystal. This may suggest that the MnSb2Se4 could have a preferential growth direction 

presumably along the b-axis The morphologies of the nanostructures of MnSb2Se4 

prepared under different conditions as described above are characterized by SEM as 

shown in Figure 5.2. 
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Figure 5.2 SEM images of MnSb2Se4 for different preparations with rods and filaments 

(A, C, and E) morphologies. The inset on B show hollow tube obtained with 1g CTAB. 

(B), (D) and (G) are high magnification images of the samples prepared in different 

conditions. (CTAB (A and B), OLA (C and D), CTAB/OLA (E and G))  

 

The low magnification and high magnification of as-grown particles are strikingly 

affected by the surfactant (Fig. 5.2A-2G). From lower magnification MnSb2Se4 prepared 

in CTAB and mixture of CTAB/OLA are all non-uniform (Fig. 5.2A and Fig. 5.2E) rods 
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compared to the filament morphology of the sample growth in OLA (Fig. 5.2C). The 

relative diameters of MnSb2Se4 synthesized in the 1.0 g of CTAB range from 0.8 µm to 5 

µm (Fig. 5.2B), and are relatively larger than particles from a mixture of 1.0 g CTAB/5 

ml OLA with a relative diameter between 150 nm to 1400 nm (Fig. 5.2G). The particles 

obtained from pure OLA have a diameter between 150nm to 800nm (Fig. 5.2D) with 

average particle diameter ~ 300nm – relatively smaller than the average particle diameter 

obtained with a mixture of CTAB and OLA (~400 nm). This suggests that the CTAB 

enhances the lateral growth of the particles. The CTAB is known to minimize the surface 

energy of certain crystals to induce anisotropic growth of the particles.97 Such 

preferential surface absorption could explain the difference observed in the particles 

synthesized. Additonally, the inset to Fig. 5.2B shows that some particles exhibit hollow 

structures when grown with CTAB. This might be anticipated from the 2D-type structure 

of MnSb2Se4.  
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Figure 5.3 The TEM images observed at higher magnification of nanarods (A), the EDX 

(B) showing all the elements expected on MnSb2Se4. The high resolution TEM (C) 

showing lattice planes consistent with the d-spacing of (003) equivalent the observed d-

spacing of MnSb2Se4 in monoclinic crystal symmetry. The fast fourrier transom of the 

HRTEM (D) is indexed. 

 

The crystal structure of MnSb2Se4 and its composition was further investigated using 

the transmission electron microscope to collect higher resolution images (Fig. 5.3). 

HRTEM of the sample grown with 1.0g CTAB (Fig. 5.3A) confirmed the rod-like 

structure of MnSb2Se4. From energy dispersive X-ray spectroscopy (EDX) spectra on 

several typical crystals (for example, Fig. 5.3B) only Mn, Sb and Se were detected. Close 

examination by HRTEM of selected rodlike crystals (shown on the inset to Fig. 5.3C) 

suggests that the nanoparticles are single-crystalline nanorods. HRTEM of selected rods 

(A) (B) 

(C) (D) 
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show lattice planes parallel to the long axis of the single crystal. The lattice planes are 

spaced at approximatively 4.507 Å , corresponding to (003) plane of monoclinic 

MnSb2Se4. The Fast Fourier Transform (FFT) (Fig. 5.3D) shows lattice planes projected 

along the (0-40) zone axis. All the lattice plane calculated from the image are consistents 

and equivalents to the monoclinic crystal structure symmetry of MnSb2Se4 projected on 

(0-40). 

Figure 5.4 Magnetic properties of MnSb2Se4 microstructures. (A-C) Temperature 

dependence field cooled(FC) and zero field-cooled (ZFC) magnetic susceptibility 

measured under 500 Oe. (A) show the inverse susceptibility versus temperature. (D) 

Magnetization as function of field at 5K and 30K. 
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Magnetic Properties  

Figure 5.4 shows the temperature and field dependence magnetization of the different 

nanostructures of MnSb2Se4 at different synthesis conditions. The temperature 

dependence was measured under applied field of 500 Oe in the temperature range from 2 

K to 300 K.  The zero field cooled (ZFC) and field cooled magnetization of MnSb2Se4 

nanostructures grown in 5 mL OAL  as well as for other wires grown from CTAB and 

1.0g CTAB/5 mL (OAL) were found to be strikingly different from magnetic behavior of 

the bulk phase,27  which is reported to be AFM with Neel temperature TN ~ 21 K.  The 

magnetization of the MnSb2Se4 under 5 mL OLA (Fig. 5.4A) increases with decreasing 

temperature with the ZFC and FC superimposing almost to each other. This means that 

magnetization of these wire is not field dependent. Such behavior is typical for 

paramagnetic materials, however the inverse magnetization could not be fitted to the 

Curie-Weiss law or Curie law, suggesting that the magnetic interaction may be 

dominated by another type of interaction than paramagnetism and is presumably a spin 

glass. The magnetization of MnSb2Se4 nanostructures obtained in CTAB (Fig. 5.4B) and 

the mixture of CTAB and OAL present a magnetic anomaly with ordering below 40 K.  

The magnetic susceptibility of both samples shows an increasing magnetization with 

decreasing temperature with strong field dependence of the magnetization. This may 

suggest the presence of FM ordering in this nanophase. The field dependence 

magnetization of wires grown in CTAB, however, suggests paramagnetism in this 

particular sample while a weak FM ordering with coercivity force of 2500 Oe is observed 

at 5K and 30k in the wire synthesized with a mixture of CTAB and OAL as surfactants. 

Yet, the hysteresis loop did not reach the magnetization at an applied field of 60 KOe, 
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suggesting that there is a high anisotropy field or disorder due to noncollinear spin in the 

nanostructure. It is also well known that MnSb2Se4, MnSb2S4 and FeSb2Se4 
8,9,27,29  are 

subject to spin canting at very low temperature in the bulk phase.  This may suggest that 

within the whole nanostructure, the coupling is due to canting AFM, with uncompensated 

magnetization at grain boundaries responsible for the weak ferromagnetism we observed 

in the sample prepared in CTAB. The hollow structure of the nanowires obtained 

whenever we used CTAB may also effect the magnetism in the nanophase, though the 

specific role that this morphology plays on magnetic ordering in MnSb2Se4 is still under 

investigation. It is important to note that only samples prepared under CTAB exhibited 

magnetic anomalies. 

5.4 Conclusions 

Nanostructures of MnSb2Se4 were readily obtained using low-temperature colloidal 

synthesis. Weak ferromagnetism can be obtained by adjusting the composition of the 

surfactant. The Curie Temperature Tc, ~ 40K with Coercivity force of 2500 Oe, was 

observed with a mixture 1.0g CTAB/ 5ml OAL. X-ray diffraction confirms the purity of 

the materials suggesting preferred orientation growth of the wires and rods along the b-

axis. 
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Chapter 6: Plasmon mapping of hetero-structured nanowires 

6.1 Introduction 

Plasmonic materials have generated great interest in recent years because of their 

outstanding optical properties and wide range of potential applications. A plasmonic 

material is characterized as one which displays a localized surface plasmon resonance 

(LSPR), which is a collective oscillation of the conduction electrons on the surface of a 

metallic nanoparticle.105 A LSPR mode is typically excited by an incident 

electromagnetic field, although fast moving electrons can also excite the LSPR. The 

LSPR is of particular interest because the discrete energies of different plasmon modes 

can be tuned by the size, shape and the surrounding environment of an individual 

nanostructure,106 and the resonance energy scale overlaps with that of visible light, which 

means LSPR modes of noble metal nanostructures have the potential to be used in 

applications such as wave-guiding,107 photonic circuits,108 and bio-sensing devices.109,110 

The plasmonic characteristics can further be manipulated when multiple similar 

nanoparticles are organized in an ordered array, such that coupling may occur, resulting 

in additional and tunable LSPR modes, and the ability to direct and even propagate 

electromagnetic radiation. These tunable characteristics have the potential for a wide 

range of energy and optical applications. Though noble metal particles arranged on a 

surface, with coupling propagated through a vacuum, have been widely investigated, less 

attention has been focused by the plasmonics community on metal particles embedded 

within a solid matrix; embedded particles have several potential advantages, however, 

such as the ability to develop spontaneously as part of the synthetic process, and the 
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versatility of a variety of dielectric environments which further act to protect the 

particles. 

In recent years, nano-rods, nano-belts, nano-dots and many other kinds of nano-

structures have drawn great attention because of their stunning optical and electric 

properties; their novel applications such as wave-guiding, bio-sensing and photo-

electronic devices greatly enriched the field of nanotechnology. Among these nano-

structures, nanowires seem to be the most functional with a wide range of applications. 

Specifically, hetero-nanostructures such as core–shell nanowires and nanopeapods have 

attracted great attention because of their unique optical and electrical properties. These 

heterostructured systems are of particular interest due to their potential for wave-guiding 

applications, and their excellent photoelectric response. Among these materials are 

systems as diverse as Au in Ga2O3 peapod nanowires,152 peapod-like Ni@mesoporous 

carbon core-shell nanowire,157 α-Si3N4/Si-SiOx core-shell/Au-SiOx peapod-like axial 

double heterostructures,134 Au embedded ITO nanowire,151,158 Pt@CoAl2O4 

nanopeapods,159 Fe3O4/SiO2/TiO2 peapod-like nanostructures,160 and InN/In3O4 peapod 

nanostructures.161 Among these, the Au embedded gallium oxide and the Au embedded 

ITO nanowires are of most interest to us, since they display the most well-defined 

metal/metal oxide interfaces.162 These two systems are surprisingly similar: they are 

made by the VLS growth mechanism, catalyzed with Au, show a remarkable 

photoelectric response, and both have corundum structures. The purpose of our research 

is to study the growth mechanism and plasmonic behavior of these systems, and use our 

findings to design new nanowire heterostructures in which we tailor the materials and 

properties. To do this we will first reproduce the two existing core-shell and peapod 
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nanowire systems, and then experiment with different metal catalysts, metal oxide 

encasings, and catalyst particle diameters. 

We are investigating several composite systems in which noble metal nanoparticles 

assemble as part of the synthesis process, including Au and Ag particles encased in 

hexaniobate scrolls, and Au particles embedded in metal oxide nanowires, in which 

spherical shape Au particles are reduced from Au3+ in solution and are encapsulated in 

Hexaniobate nanoscrolls and forced to form Au particle chain uniformly. 

In this project, we use scanning transmission electron microscopy-electron energy 

loss spectroscopy (STEM-EELS) to elucidate the relationship between the synthetic 

processes and the resulting plasmonic coupling. EELS maps are taken in selected areas 

where covers two or more Au particles with similar size and spacing in the peapod 

structure. The energy loss signal comes from the transmitted inelastic electrons that are 

collected and measured by the electron spectrometer which may be absorbed by the 

sample to excite certain LSPR modes. 

6.2 Solution phase synthesis and electron beam lithography 

Plasmonic materials have been synthesized and fabricated by a large number of 

varying techniques, most commonly the bottom up approach of synthesizing individual 

metal nanoparticles,111-114 and the top down technique of electron beam lithography.115-119 

Synthesizing individual particles in solution has the advantage of being able to build up 

complex nanostructure architectures from individual nano-scale components in order to 

improve and tune the desired properties of the used components through the fabrication 

process, whereas lithography enables short-wavelength light sources to pattern and build 
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nanostructures without the need for further assembly steps. Within the large body of 

literature detailing solution-based nanoparticle synthetic methods, the photo-mediated 

approach of the group of Chad Mirkin has drawn particular interest by the plasmonics 

community, due to their demonstrated systematic control of the shape of Ag 

nanoparticles, for example in the synthesis of Ag nanoprisms from spherical 

nanoparticles, and subsequent control of the optical properties.120   

Lithographic fabrication of arrays of metallic nanodots, for example by Maier et 

al,121-127 has also drawn intense interest, due to demonstrations of applications such as 

optical data storage and optical wave-guiding arising from the ability to control 

nanoparticle shape and size to produce the desired LSP modes.107,108,128,129  

Figure 6.1 Schematic showing (a) silver nanoprisms and their size distribution. (b, c) 

TEM images showing two types of silver nanoprism stacking. (d) Schematic showing 

light-induced fusion growth of silver nanoprisms.204 (Figure adapted from Ref. 204) 
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Figure 6.2 Schematic of (a) Electron lithography patterning metal nanostructures on a 

SiN membrane, (b) Dark-field image of an array of patterned nanostructures, (c,d) Bright 

field images of two disconnected triangles (c, left); two connected triangle (c, right), and 

(d) Three disconnected triangles (d, left); three connected triangles (d, right).205 (Figure 

adapted from Ref. 205) 

6.3 Chemical vapor deposition 

CVD is a well-known process to deposit high purity particles,155,156 in which a quartz 

tube acting as reaction chamber is heated up to a certain temperature for the starting 

materials to become vapor phase. The pressure inside the chamber is usually reduced in 

order to create a low contamination environment, and to encourage sublimation of solid 

state reactants. The vapor phase chemical will be carried by inert carrier gas to react or 
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decompose on a substrate contained downstream from the reactant, in a cooler part of the 

furnace. The CVD system can be divided into three major parts: (a) the reaction chamber, 

(b) the vacuum pump and (c) the flow system. A schematic diagram of CVD system is 

presented in Figure 6.3. 

a. The reaction chamber is made of a quartz tube with one-inch diameter which is

placed horizontally inside the furnace. The furnace is programmable to control

the reaction temperature, ramping rate and the reaction time.

b. The vacuum pump (combined with a valve which is used to control the

efficiency of the pump) controls the pressure inside the reaction chamber.

c. The flow system is equipped with a mass flow controller in order to control the

flow rate of carrier gas which is directly related to the concentration of starting

material in vapor phase.

Figure 6.3 A sketch of CVD furnace. 

In this thesis we will discuss three systems in which we attempt to assemble arrays of 

metallic nanoparticles using synthetic methods, and characterize the resulting plasmonic 

functionality with a variety of techniques – both established and under development. 

 First, we will discuss the use of chemistry to spontaneously assemble metallic 

particles within the casing of a single nanowire, in the form of a peapod nanowire 
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morphology. In recent years, core-shell and peapod metal oxide nanowires have drawn 

attention because of their excellent photoelectric responses. They are grown by a vapor 

phase synthesis which is different from more conventional solution growth or 

lithographic methods. 

A detailed understanding of the synthesis and the plasmonic behavior might be 

valuable not only to improve the system response but also to develop diverse 

optoelectronic devices. The systematic growth of one dimensional nanostructures such as 

the metal/metal oxide nanowire systems in which we are interested, have been reported 

by a number of groups,130-135 using a chemical vapor deposition method. These groups 

report that these nanowire heterostructures were synthesized by a vapor-liquid-solid 

(VLS) mechanism which uses a metal droplet as a soft template to limit nanowire lateral 

growth.136,137 However, metal droplets may end up with different morphologies 

depending on different experimental parameters. In this paper we experiment with 

different growth parameters, metal particles, and metal oxide encasing materials, to 

design and control the growth of these nanowire heterostructures. 

Secondly, we will discuss the assembly of arrays of nanorods in solution, using a bio-

molecule mediated approach, in which nanorod chains will be formed. A new 

characterization technique will be described in which a liquid cell TEM holder is utilized 

as a reaction chamber for solution phase chemical reactions, allowing in situ observation 

of nanoparticle chain assembly. By monitoring the assembly under a variety of 

experimental conditions, the importance of factors such as ligand structure, pH, and 

concentration on assembly rates may be determined. Biomolecule mediated plasmonic 

coupling will also be studied using both dark-field optical and electron microscopy 
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techniques. Understanding the plasmonic behaviors of nanoparticle chain assemblies 

should lead in the long term to the use of this method for the controlled organization of 

functional plasmonic materials. 

Figure 6.4 An illustration of bio-ligand mediated nanorod chain formation. 

Thirdly, our collaborators at University of New Orleans have successfully 

synthesized a metal in Hexaniobate nano-peapod nanowires systems using Solvothermal 

method, the details are discussed in section 2.1.4. 

Figure 6.5 An illustration of metal/metal oxides in hexaniobate nano-peapod formation. 

(Figure adapted from Ref. 206) 
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6.3.1 Vapor-liquid-solid (VLS) growth 

The VLS growth mechanism is a common formation mechanism for one dimensional 

nanostructures (nanowires) grown using a CVD furnace.137,156 This mechanism uses metal 

nanoparticle catalysts which are usually coated on the surface of the substrate either by 

electron beam evaporation or drop coating from solution. To form nanoparticle catalysts 

using the e-beam evaporation technique, a thin layer of metal is coated on the surface, 

and melts to form liquid droplets during the reaction process. Vapor phase reactants alloy 

with the catalyst, until the super-saturation point of the liquid metal is reached, at which 

point the precipitation of high purity nanowires starts to occur at the liquid/solid 

interface. The metal catalyst head is pushed out perpendicular to the substrate as 

nanowires with uniform diameter are grown. A schematic illustration of VLS growth is 

shown in Figure 6.6. 

Figure 6.6 An illustration of VLS growth.151-154 
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6.3.2  Preparation of SiO2 substrate 

Before depositing Au, the substrates are sonicated to clean the surface with three different 

solvents: acetone, isopropanol and DI water. The substrates are sonicated for three 

minutes with each solvent and dried under Argon gas to remove any residual water from 

the surface. 

6.3.3  Gold catalyst deposition 

We use two methods to deposit Au catalyst nanoparticles onto our growth substrates: 

1. 2 µL of commercially available Au nanoparticle solution (available in

diameters from 2 to 100nm) is applied to the substrate by micro-pipette and 

dried in an oven at 120oC for a few minutes. This method is quick and easy 

but produces low quality substrates, since the particles are not evenly 

dispersed, and are coated with an organic stabilization ligand from solution. 

Figure 6.7 shows two SEM images of Au nanoparticles on substrates prepared 

by this method. 

2. An electron beam evaporator is used to deposit a thin layer of Au onto the

substrates in a vacuum chamber. This method is more time consuming and 

complex, but produces high quality Au nanoparticles which are evenly 

dispersed and have low contamination. The thickness of the Au can be 

precisely monitored and controlled by Crystal Monitor. We use 4 nm of Au 

for the ITO project, and a 40 nm layer for the gallium oxide project. Thermal 

annealing of the substrate during the reaction causes a balling up of the Au 

film into small particles, which act as the catalysts for nanowire growth. 
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Figure 6.7 SEM images of Au nanoparticle catalysts on substrates. Image (a) shows Au 

nanoparticles are well dispersed on substrate. Image (b) provides a closer look at Au 

nanoparticles and their diameters are roughly 100 nm. 

6.3.4  Ga2O3 nanowire synthesis 

Gallium oxide usually exists in ambient condition in β-Ga2O3 which is known to be a 

wide band gap material (Eg≈4.3 eV).159 The conduction and blue luminescence properties 

have made it a well-discussed compound which is also a popular material for 

semiconductor fabrication.161 However, the material we have synthesized may actually be 

the hexagonal α-Ga2O3, which was reportedly observed under high pressure and in 

nanostructures.164 In α-Ga2O3, the Ga atoms occupy 2/3 of the octahedral sites and the 

oxygen atoms have a hexagonal close packed arrangement, which makes the α-Ga2O3 a 

corundum structure.165 The starting material for Ga2O3 project is a gallium metal pellet. 

Core-shell structures are made in the lower temperature range between 600 to 800oC.

The peapod structures are made at temperature higher than 800oC. The reaction

temperature is set to 800oC in Ga2O3 project with the ramping rate of 20oC/min. Argon

flow rate is 30 sccm and the pressure is around 0.7 torr. 
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Figure 6.8 Gallium oxide nanowires produced at reaction temperature of 680oC is shown

in (a). Image (b) shows nanowires grown under reaction temperature at 800oC.

Figure 6.9 VLS grown Gallium oxide nanowires at different stages in heterostructure 

growth. (a) A gold head is seen to extend into the body of the nanowire.  (b) The gold 

nanoparticle head extends further into the twin boundary region. (c) A gold core encased 

in a gallium oxide shell has grown with a well-defined metal/oxide interface. 

6.3.5  Indium Tin oxide nanowire synthesis 

Tin doped indium oxide is a known n-type semiconductor which combines both 

conducting and transparency properties with a wide band gap (Eg=3.5~4.3 eV).166 ITO 

has been used in a wide range of applications such as liquid crystal displays, solar cells, 

camera lens and etc. Moreover, the tin-doped indium oxide (III) has also been reported to 

be corundum structure under ambient conditions due to the reduction in effective cation 

radius effected by replacement of In3+ by the smaller Sn4+and the formation of cation 
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vacancies to charge compensate.167 The starting material for this project is a mixture of 

In2O3, SnO2 and graphite with 4:1:1 ratio. ITO project takes two annealing steps; the first 

stage for the ITO project is to make ITO nanowires while the second stage is to make 

core-shell, dot rod mixture and peapod structures depending on different annealing 

temperature. The first annealing stage in ITO project has the following set up: the 

ramping rate is also 20oC/min and the target temperature is 950oC for one hour. Two

temperature zones are required in this project, the temperature of starting material needs 

to be 100oC higher than the substrate. According to the temperature diagram provided in

the user manual of the furnace, the position of 850oC can be precisely determined. The

argon flow rate is 100 sccm and the pressure is around 1.7 torr. Three different 

temperatures have been used in the second stage annealing for ITO project which lead to 

three different structures. With temperatures of 550oC, 650oC and 750oC, core-shell, rod

dot mixture and peapod structure will be made respectively. 

Figure 6.10 ITO nanowires after the first growth stage. (a) High yield of ITO nanowires. 

(b) A single nanowire. (c) The same nanowire at higher magnification, showing no twin 

boundary formation and a distinct gold head as expected. Scale bars are 0.1 µm, 50 nm 

and 20 nm from left to right. 
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Figure 6.11 (a) A TEM image taken during the second stage annealing at 650oC using an 

in situ heating holder (images taken by Bethany Hudak). (b) Gold is observed to fill the 

empty core a few minutes after the heat was turned off. 
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6.4 Case study: Reverse VLS 

Parts of this section are taken from “Real-Time Observation of the Solid-Liquid-

Vapor Dissolution of Individual Tin(IV) Oxide Nanowires” ACS Nano, 2014, 8 (6), pp 

5441–5448. All of the nanowires used in this project were synthesized by myself. 

Introduction 

The vapor-liquid-solid (VLS) nanowire growth technique is the method of choice for 

the synthesis of a vast range of single-crystalline nanowires for equally numerous 

uses.168-170 VLS synthesis is well-known to be the most effective method of controlling 

nanowire diameter during nanowire growth, via the size of the metal catalyst particle,170 

and results in wires with easily controlled lengths and high crystallinity. SnO2 is an n-

type semiconductor with a wide band gap (3.6 eV at 300 K) and is easily grown in a 

nanowire morphology using the VLS synthesis. These semiconducting nanowires are 

building blocks for nanoscale electronics and optoelectronic devices with specific 

applications to gas sensors,171-173 dye sensitized solar cells,174-176 field-effect transistor 

devices,177,178 and Li-ion batteries.179,180 For use in these kinds of devices, nanowires need 

to be stable at high temperatures and when in contact with metals.181,182 In addition to 

pure SnO2, there is much interest in the Sn-rich end of the SnO2-In2O3 solid solution, for 

applications such as enhancing the selectivity of SnO2 gas sensors;182-184 the operating 

temperatures for both doped and pure SnO2 gas sensors can reach 200-500 oC. Though 

many gas sensing devices are built from thin films,163,182-184 replacing these with 1D 

nanostructures can increase their performance due to the increased surface area, aspect 

ratio, and crystallinity associated with 1D nanostructures.185,186 It is therefore imperative 
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to understand the behavior of both pure and doped-SnO2 nanowires at elevated 

temperatures, and in particular the way in which these nanowires interact with the gold 

and other metallic connecting materials. For these reasons, we have undertaken a series 

of in situ heating experiments in which we examine the interaction of SnO2 nanowires 

with the metal catalyst particle, which is residual at the tip of the wire after VLS 

synthesis. Our observations should be generalizable to other metal oxide nanowire 

materials and of relevance to all VLS-grown nanowire systems. 

VLS growth is the key mechanism of silicon nanowire growth, and as such has been 

studied extensively to elucidate the key mechanistic processes and kinetics. The growth 

process can be divided into three main steps:187,188 first, a silicon containing precursor is 

cracked at the surface of a liquid catalyst droplet, usually gold, and silicon is incorporated 

into the catalyst. In the second step, Si quickly diffuses through the droplet to (what will 

become) the solid-liquid interface, and the droplet supersaturates with Si. At sufficient 

supersaturation, Si crystallizes out in the third step of the mechanism to form a nanowire 

whose diameter depends on the initial droplet size. In the limiting case that only one of 

these steps is rate-determining, the growth velocity of the wire, dL/dt, may or may not 

depend on wire diameter. If crystallization is the only rate-determining step, the Gibbs-

Thomson effect dictates that dL/dt is inversely proportional to negative wire diameter, so 

that larger wires grow more quickly. This was the situation described by Givargizov.189 If 

incorporation is instead the rate-determining step, dL/dt is independent of nanowire 

diameter, but will depend on the partial pressure of the precursor vapor, as was observed 

by Kodambaka et al.190 It is possible, however, for the actual situation to lie between 

these two limits, with the rate of growth determined by the interplay between these 
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steps.187,188 Additionally, several reports in the theoretical literature191-193 predict that 

nanowire growth relies on a steady-state balancing of the nanowire crystallization, with 

melting or dissolution back into the catalyst, and that it is important to understand both 

processes, since they rely on different morphological features. 

Given the dependence of kinetics on the balancing of several steps, and that wire 

diameters can vary during growth, understanding the kinetics of growth has been greatly 

advanced by the real-time observation of nanowire growth in situ in the transmission 

electron microscope (TEM).169,190 Recent observations of both the growth of nanowires 

by the VLS mechanism and also their subsequent annealing have revealed some 

fascinating behavior of the metal droplet at the tip of the wire. Hannon et al. observed 

that the catalyst droplets actually change during growth, and that diffusion of Au down 

the sidewalls of the growing nanowires and across the substrate can result in Ostwald 

ripening of the droplets, and a resulting tapering of nanowire diameter.194 This is 

consistent with an observation by Sutter and Sutter that traces of Au remain on the 

sidewalls of Ge nanowires after VLS synthesis, and can be used to catalyze the 

encapsulation of the nanowire in a graphitic coating.195 Sutter and Sutter also observed 

the melting and recrystallization of alloy particles at the tips of germanium and GaAs 

nanowires to find a strong size dependence of the alloy composition, which allowed a 

tunable depression of the liquidus.196-198 Finally, metal droplets have also been reported to 

catalyze a reverse process of the VLS mechanism, dubbed solid-liquid-vapor (SLV), in 

which the droplet etches a cavity or tunnel in a soluble material to form negative 

nanowires or whiskers.199,200  
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Here, we use in situ heating in the TEM to observe the kinetics of gold-catalyzed 

dissolution of SnO2 nanowires with the rutile structure. Observing this process in situ 

provides physical insight into the mechanism, which suggests that both overcoming 

adhesion of the Au alloyed droplet to the substrate surface and evaporation at the liquid-

vapor interface are likely to be key rate-determining steps. 

Methods 

The nanowires were prepared using a VLS synthesis from the literature.202 Before 

starting the VLS synthesis, a silicon substrate was coated in a 20 nm layer of Au 

deposited by electron beam evaporation. Pure SnO2 nanowires were grown by mixing 

SnO (Alfa Aesar, purity, 99.996%) and graphite (Alfa Aesar, purity, 99.9995%) powders 

in a 1:1 molar ratio, and placing the mixture in a quartz tube about 5 in. upstream from a 

silicon substrate, all contained within a CVD furnace. The system was pumped to 1.7 

Torr under 100 sccm of flowing argon, heated to 950 oC at 20 oC/min, and held at that 

temperature for 30 min. In-doped SnO2 nanowires were prepared under the same reaction 

conditions using a 4:1:1 molar ratio of In2O3 (Alfa Aesar, purity, 99.99%)/SnO/graphite. 

Nanowires were characterized using XRD (Bruker D8 Advanced and Bruker D8 

Discover with Cu KR radiation), SEM (Hitachi S-4300), TEM (JEOL 2010F at 200 keV 

and Hitachi HF-3300 at 300 keV), and EDS (Oxford INCA detector). In situ heating was 

performed using a Protochips Aduro heating stage, and Camtasia screen recording 

software was used to record videos. TEM samples were prepared by sonication of the as-

grown substrates in methanol, followed by dropcasting onto the relevant commercial 

substrate-lacey carbon coated copper for TEM imaging, or a Protochips Aduro thermal 

“E-chip” for in situ TEM heating experiments. The Protochips E-chip comprises a 300 
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μm µm × 300 µm ceramic substrate which acts as both sample support and heater. As 

such, temperature changes are virtually instantaneous, resulting in isothermal conditions 

across the entire supported sample. 

Results and discussions 

We conducted in situ heating experiments in which we anneal SnO2 and In-doped 

SnO2 nanowires in the TEM, and observe etching of the nanowires by the Au catalyst 

droplet at their tips. This dissolution process is consistently reproducible under conditions 

of elevated temperature in the low pressure TEM environment, provided that the wire 

remains in contact with its gold catalyst head. It can be controlled, stopped, and started 

by altering the temperature, in many cases eventually leading to complete dissolution of 

the wire leaving nothing remaining but the original metal catalyst particle. The nanowires 

for this study were synthesized by a standard VLS growth method, to obtain single 

crystalline wires with a wide range of diameters from ∼20 to 300 nm and lengths varying 

from several hundreds of nanometers to tens of micrometers. A high resolution high 

angle annular dark field (HAADF) scanning TEM image of the Au/SnO2 interface from a 

typical nanowire is displayed in Figure 6.13 showing the [101] growth direction typical 

for these wires. X-ray diffraction (XRD) patterns from both pure and In doped SnO2 

wires are also shown in Figure 6.13, and in both cases can be indexed to the rutile phase 

of SnO2. 
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Figure 6.12 Representative frames from five movies of nanowire heating experiments. 

(a) A pure SnO2 nanowire is seen to dissolve into the gold catalyst particle at its head. 

Field of view is 1.13 μm. (b) A pure SnO2 nanowire dissolves into the gold catalyst while 

the diameter of the wire simultaneously decreases. Field of view is 870 nm, and then 

increases to 1.10 μm when the magnification decreases. (c) An In-doped SnO2 wire is 

seen to dissolve into the gold particle at its head. Field of view is 870 nm. (d) An In-

doped SnO2 nanowire is seen to dissolve simultaneously into gold particles at either end 

of the wire. Field of view is 730 nm. (e) An In-doped SnO2 nanowire dissolves into the 

gold catalyst, and starts to change direction part way. Field of view is 1.10 μm. 

To investigate the behavior of our wires at elevated temperature, we imaged 

individual VLS-grown wires deposited on a heating substrate (Protochips E-chip) and 

heated to temperatures in the in situ holder in the range of 400-800 oC, such that etching 

was observed. Shown in Figure 6.12 are representative frames from movies taken from 

five different wires within the SnO2-In2O3 solid solution. At temperatures greater than 

450 oC, the gold catalyst particle is seen to consume the entire length of these rutile-type 

nanowires, with what appears to be a reverse of the standard VLS mechanism. In every 

wire studied, dissolution of the wire is preceded by a loss of faceting in the gold catalyst 

head, indicating that melting of the tip is a necessary first step. This is especially apparent 
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in the first two panels of Figure 6.12b. The subsequent motion of the tip also suggests a 

fluid-like behavior. In Figure 6.12a, the gold catalyst particle migrates down the entire 

length of a pure-SnO2 nanowire, consuming the wire over the space of ∼54 min, until a 

stationary, isolated nanoparticle remains. In Figure 6.12b, the catalyst particle again 

consumes the entire length of a pure- SnO2 nanowire, accompanied in this case by a 

simultaneous reduction in wire diameter. Similar observations were recorded for In-

doped SnO2 nanowires, and are shown in Figure 6.12c-e, demonstrating that this 

phenomenon is generally applicable into the solid solution. Figure 6.12c shows an In-

doped SnO2 wire in which a mechanism similar to that of Figure 6.12a is observed; the 

nanoparticle migrates the length of the wire resulting in a stationary, isolated 

nanoparticle. Figure 6.12d shows the effect of putting a wire in contact with multiple gold 

particles; toward the end of the recording, a second catalyst particle appears in the bottom 

of the screen, and the two pieces of gold consume the wire simultaneously from opposite 

ends, finally agglomerating into a single stationary nanoparticle. In Figure 6.12e, the 

particle encounters a junction of crossed wires and has the option of continuing along the 

initial wire or switching to a different wire; after proceeding a short distance into the new 

wire it switches back to the initial path until reaching a final stop. The TEM heating 

substrates used (Protochips Aduro platform) are composed of a thick ceramic which acts 

as the heater, containing a regular array of 7-µm-diameter holes and a carbon support 

film overlay. Due to the thickness of the ceramic, high quality TEM images are attainable 

only on those areas of carbon overlaying a hole in the ceramic. For this reason, should the 

catalyst particle migrate over the edge of a hole onto the ceramic heater, the experiment 

was terminated, as occurs in Figure 6.12e last panel. 
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The rate of the reverse VLS mechanism was controlled by varying the temperature, 

using higher temperatures to increase the rate at which the catalyst particle migrates the 

length of the wire, and removing the heat to effectively and instantaneously prevent 

further motion of the particle. This ability to repeatedly quench and restart the wire 

dissolution process was utilized to collect compositional data at intervals during the 

experiment, by performing energy dispersive X-ray spectroscopy (EDS) on the gold 

catalyst particle. EDS spectra were collected intermittently by periodically quenching the 

system to room temperature to stop the motion of the nanoparticle and collect the 

spectrum, subsequently returning to the original experimental temperature once a 

spectrum had been collected. To compare multiple sets of data, we performed systematic 

EDS collection from pure SnO2 nanowires using a standard procedure, ramping the 

temperature at 2 oC/s from room temperature until 700 oC, holding the wire at 700 oC 

during dissolution, and quenching and taking spectra at intervals of 8.5 min. Figure 6.14 

shows EDS spectra acquired from two wires using this procedure. The Sn Lα and Lβ 

peaks at 3.4 and 3.6 keV and the Au Mα peak at 2.1 keV were fit to Voigt functions, and 

the area under the curve was found for each peak in each spectrum. Frames from the 

movies of the two wires taken between EDS collection times are shown in Figure 6.14a, 

b. Plotted in Figure 6.14c, d are the relative ratios of the integrated intensity of the Sn and

Au peaks at each time during the EDS data collection. 
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Figure 6.13 SnO2 nanowire characterization. (a) High resolution Z-contrast STEM image 

of the droplet-nanowire interface. Arrow indicates the [101] growth direction. (b) XRD 

patterns from as-grown samples of SnO2 (bottom) and In-doped SnO2 (top) nanowires, 

indexed to rutile. Al and Si peaks are present due to the stage and substrate. 
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Figure 6.14 In situ compositional analysis of two SnO2 nanowires. (a and b) Images 

extracted from movies of nanowire heating. Scale bars are 100 nm. (c and d) Relative 

EDS peak areas as a function of time taken from wires (a and b), respectively. Insets: 

Representative EDS spectra. Shaded regions indicate integrated area from Voigt fitting. 

Gold peak is shaded in red, Sn1 in green, and Sn2 in blue. The peak at 1.7 keV is Si from 

the substrate. Wires were heated to 700 oC and quenched in 8.5 min intervals to stop 

droplet movement and acquire EDS spectra. 

Initially, before heating, no Sn is detected in the catalyst particle at the wire head. 

After several minutes of nanoparticle migration, however, Sn Lα and Lβ peaks appear 

indicating the presence of Sn in the metal tip. After the initial spike in Sn concentration, 

the ratio of Sn/Au falls, and though fluctuating throughout the remainder of the 

experiment, it appears to reach a relatively steady state. Though qualitative in nature, 

these observations show that the steps of the VLS mechanism appear to be occurring in 

reverse. First, the Au droplet melts, at a temperature much closer to the Sn-Au liquidus 

temperature of 483 oC than that of bulk gold (1084 oC),201 implying an initial diffusion of 

Sn into the Au droplet to form an alloy. Next, the SnO2 dissolves in the droplet causing a 
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spike in the Sn/Au ratio in an incorporation step, which is the reverse of the initial 

crystallization. Finally, the Au-Sn alloy reaches a supersaturation and Sn is ejected from 

the droplet, presumably by evaporation, although some surface diffusion cannot be ruled 

out. One additional step in this SLV type process is that in order for the droplet to 

continue to incorporate Sn, so that the dissolution and evaporation steps may retain a 

steady state, it must overcome adhesion to the substrate surface so that it is mobile. These 

mechanistic steps are indicated schematically in Figure 6.15. 

Figure 6.15 Cartoon depicting the five processes taking place during SLV dissolution of 

the nanowire: (1) SnO2 dissolves into Au droplet at SL interface. (2) Sn is ejected at the 

LV interface. (3) Adhesion between droplet and substrate is overcome so that the 

dissolution and ejection steps can maintain a steady state. (4) SnO2 vaporization from 

nanowire sidewall (SV interface). (5) Possible evaporation of O at the SLV triple 

junction. 

Though EDS clearly shows that the Sn dissolves from the wire into the droplet and is 

ejected, it is not clear from EDS whether the oxygen content of the wire is lost entirely at 

the liquid-vapor interface, or if dissociative dissolution of SnO2 to SnO and O (as would 

be expected) occurs at the solid-liquid interface, allowing some oxygen to evaporate at 

the triple junction, since the spectrometer used for in situ EDS collection did not have 

sufficient resolution to resolve the oxygen peak. 
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To measure the pressure dependence of the SnO2 dissolution, we conducted a series 

of annealing experiments (Figure 6.16 table) in which we annealed as-grown scanning 

electron microscope (SEM) substrates in a CVD furnace, to control the atmosphere and 

pressure between 2 and 500 Torr, which is representative of the entire pressure range 

available to us with controlled atmosphere. Oxygen mole fraction was varied between 0 

and 1, with the remaining pressure exerted by Ar. For each annealing experiment, 100 

sccm of gas was used in total. On annealing with the minimum total pressure and 

minimum oxygen partial pressure (2 Torr and 0, respectively) at 700 oC, no change in the 

wire appearance was observable under SEM (Figure 6.16 a). Increasing the temperature 

to 900 oC also saw no change, but degradation to the wires was observed at 1000 oC, with 

noticeably fewer wires present, and those remaining having no observable catalyst tip 

(Figure 6.16b). Performing the same experiment but with greater mole fractions of 

oxygen also led to the same level of wire degradation, suggesting that total pressure, 

rather than oxygen partial pressure, is more dominant in the vaporization of SnO2. Two 

further experiments were conducted at atmospheric pressure, annealing a TEM 

Protochips substrate with SnO2 nanowires deposited upon it. In these experiments, 

annealing in atmospheric oxygen resulted in no observable change, but a slight 

degradation of the wires can be observed after annealing in an oxygen-free environment. 

In these experiments, the catalyst tip is still observable, but the wire morphology is no 

longer perfectly straight. While definitive conclusions would require us to be able to 

control the atmosphere while tuning the pressure between the 2 Torr available to us using 

the CVD furnace, and the 10-6 Torr of the TEM column, it is clear from these results that 

Au-catalyzed dissolution of the wires is highly dependent on pressure, requiring low 
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pressure for the reproducible dissolution of entire wires. We speculate that the slight 

dependence of wire degradation on oxygen partial pressure is indicative of a secondary, 

much slower, vaporization directly from the nanowire sidewalls. This conclusion is 

consistent with the findings of Klamchuen et al., who found that a dependence of SnO2 

nanowire growth on oxygen partial pressure was indicative of competing mechanisms at 

the SV and LV interfaces.202 

Figure 6.16 Pressure dependence of SnO2 nanowire dissolution. Table: parameters used 

for annealing experiments. (a) SnO2 as-grown nanowires imaged by SEM; (b) SnO2 

nanowires annealed at Ptotal = 2 Torr, Xoxygen = 1, T = 1000 oC. Gold droplets are no 

longer present and density of wires is reduced, indicating wire degradation. 
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Conclusions 

In conclusion, the combination of kinetic studies showing the correlation of Tmove with 

catalyst droplet area and dissolution rate with droplet volume, the observed lack of 

dependence of dissolution rate on wire diameter, and the low pressures necessary for 

observable wire dissolution allow us to consistently explain our observations in terms of 

SLV dissolution of our nanowires, dependent on two crucial steps: (1) the ability of the 

catalyst droplet to overcome adhesion to the substrate, such that a steady state may be 

reached between Sn incorporation and ejection, and (2) the evaporation of the wire from 

the LV interface. The method outlined herein should provide an experimental platform to 

explore several features relevant to the VLS growth mechanism, such as the saturation 

concentration of a reactant within a VLS catalyst droplet and the use of VLS catalyst 

metals for the controlled etching of semiconducting materials. 
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6.5 Characterization methods 

Current characterization methods utilized to investigate the plasmonic functionality of 

materials can be roughly grouped into two categories. The first category uses an 

electromagnetic probe to detect the optically active (bright) modes. The second category 

uses an electron probe to excite and detect all of the LSPR modes, including the so-called 

dark modes of plasmonic materials. 

UV/vis is an inexpensive and convenient technique that provides important LSPR 

information from an ensemble of plasmonic particles in solution, based on the particle 

size, dielectric medium and chemical surroundings. This spectroscopic technique 

monitors bulk solutions,138,139 in which the excitation of individual LSPRs leads to a 

small perturbation of the measured signal, resulting in to too low of a signal to noise ratio 

to detect individual nanoparticles. Instead, resonant Rayleigh scattering spectroscopy is 

the most straightforward technique to characterize the LSPR spectrum of individual 

noble-metal nanoparticles, providing a high signal to noise ratio, since this is a dark field 

technique in which only the scattered signal is detected in the presence of very low 

background.139 Improved spatial resolution was demonstrated by Klar et al., who utilized 

a tunable laser source equipped on a near-field scanning optical microscope (NSOM) to 

measure the scattering spectra of individual metallic nanoparticles.140 In this case the 

resolution is limited by the size of the detector rather than the wavelength of light,141,142 

although this experimental setup is prohibitively expensive for most routine 

characterization. 

There are two main ways in which an electron-beam may be used as a probe for 

plasmonic characterization: energy filtered transmission electron microscopy (EFTEM) 
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and electron energy loss spectroscopy (EELS); both techniques function under the same 

principles except that EFTEM is performed in a conventional TEM whereas EELS is 

performed in a STEM.143-147 In EFTEM, by applying a magnetic field to transmitted 

electrons, the flight path of electrons will be different depending on the kinetic energy of 

the electrons. An energy filter only allows a certain defined energy range of electrons to 

be collected to generate images from that desired energy range. In EELS a spectrum from 

the full energy range is collected from each pixel in a two-dimensional image. The end 

result from both techniques, therefore, is a “data cube” in which an intensity is recorded 

for each value of x, y and energy. An advantage of EELS is that an annular dark field 

(ADF), or “Z-contrast” image can be taken simultaneously while collecting the 

spectroscopic data.148,149 On the other hand, high spatial resolution is achieved by parallel 

measurement of all spatial channels in EFTEM, and the energy resolution can be 

improved to sub-eV range with a small energy-filtering slit width.149,150  

In this report we will describe the development of EELS mapping to spatially resolve 

the plasmon modes of our new plasmonic materials. 

6.6 STEM-EELS mapping 

6.6.1  Methods 

The experiments were performed with a Zeiss Libra 200 MC transmission electron 

microscope which is equipped with a Zeiss proprietary electron gun monochromator 

(MC) and Kohler illumination system. The monochromator enables the operator to 

reduce the energy resolution to less than 0.2 eV in EELS. The acceleration voltage is 

between 60-200 keV. The Au in hexaniobate (Au @ HNB) peapod nano-structures were 
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pre-made using Solvothermal method, the details are discussed in section 2.1.4. TEM 

samples were made using dropcasting method. Before samples insertion, the TEM 

samples were heated at 60 OC on a heat plate for 30 minutes to remove possible 

contaminates. After sample insertion, careful alignments are performed for best image 

quality (both in bright and dark field) and energy resolution. 

Figure 6.17 The zero loss peak (ZLP) in EELS. The full width at half maximum 

(FWHM) is measured to be 0.2 eV which is also known as the energy resolution. 
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Figure 6.18 TEM images in both (a) bright field and (b) dark field showing Au in 

Hexaniobte nano-peapod structures. 

In Figure 6.17, an EELS spectrum at lower energy range was taken, showing the zero loss 

peak (ZLP) with an energy resolution of 0.2 eV under optimal conditions. In Figure 6.18, 

both bright and dark field TEM images are presented, showing high quality Au in 

Hexaniobate nano-peapod structures. 

6.6.2  Plasmon mapping results for Au @ HNB nanowires 

Under STEM mode, certain region of interests (ROI) are assigned and EELS 

mappings are performed. As discussed in pervious sections, we are trying to map the 

localized surface plasmon resonance (LSPR) behaviors in this nano-peapod system, and 

we are expecting to see the coupling of LSPR between metal nanoparticles. The coupling 

LSPR normally results in different plasmon modes. As we use electron beam as a probe 

in EELS, all the LSPR modes are activated.  In this section, two selected sets of data are 

presented. 

b a 
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Figure 6.19 (a) Dark field image with a red box assigned as ROI. (b) Showing the ROI in 

pixels. Figure (c,d,e) are EELS maps showing energy center at 0.620, 0.840 and 1.165 eV 

respectively with an energy resolution of 0.265 eV. 

 

 

a 

b c d e 
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Figure 6.20 Peak deconvolution at the tail of ZLP. Peak 1, 2 and 3 correspond to EELS 

maps in Figure 6.19 (a, b and c). 

 

 

In this set of data, three Au nanoparticles chain with similar shape, size and spacing are 

assigned as ROI, and STEM-EELS plasmon mapping are performed. The results are 

presented in Figure 6.19 and 6.20. Figure 6.19 (a) is a dark field image shows the area 

where the EELS map was taken. The mapped area is shown in pixels is presented in 

Figure 6.19 (b). Three EELS maps are presented in Figure 6.19 (c, d and e) showing three 

different energy center at 0.620, 0.840 and 1.165 respectively. The maps show interesting 

results because all the plasmon behaviors seem to be focused on the second Au 

nanoparticle. Figure 6.20 is plotted after the deconvolution at the tail of ZLP, these three 

peaks exactly matched the energy range of Figure 6.19 (c, d and e). The X-axis represents 

the energy loss of the primary electron, as the energy may loss due to inelastic scattering 

when interacting with sample. The inelastic energy loss is exactly how much energy 

absorbed by the sample to activate different plasmon modes. 
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Figure 6.21 (a) Dark field image with a red box assigned as ROI. (b) Showing the ROI in 

pixels. Figure (c,d,e) are EELS maps showing energy center at 0.649, 0.943 and 1.474 eV 

respectively with an energy resolution of 0.324 eV. 

a 
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Figure 6.22 Peak deconvolution at the tail of ZLP. Peak 1, 2 and 3 correspond to EELS 

maps in Figure 6.21 (a, b and c). 

In the second set of data, a five-particle Au nanoparticle chain are assigned as ROI. The 

results are presented in Figure 6.21 and 6.22. Figure 6.21(a and b) are dark field image 

and ROI in pixels respectively. Figure 6.21(c, d and e) are EELS maps showing energy 

center at 0.649, 0.943 and 1.474 eV with an energy resolution of 0.324 eV. The 

deconvolution results at the tail of ZLP are shown in Figure 6.22. Peak 1, 2 and 3 

correspond to Figure 6.21 (c, d and e) respectively. In Figure 6.21 (c), most of the 

plasmon activity focused on the first and fifth particle. In Figure 6.21 (d and e), plasmon 

activities localized in the first, third and fifth particle. There’s no plasmon activity 

discovered in the second and forth particles in any energy range. 

6.7 Conclusions 

Based on the observation of the two sets of data presented in previous section, it is 

clearly suggesting that the LSPR on each Au particles are coupling and forming new 

plasmon modes. The LSPR activities would be observed on each Au nanoparticles if they 

are not coupled. The EELS maps show clear evidence that at certain energy ranges, 
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plasmon activities are localized on particular particles which differs from LSPR on 

individual particles. As the results confirmed, the STEM-EELS is a powerful technique 

on mapping plasmon behaviors. The results revealed not only the coupled plasmon 

modes but also the precise corresponding energies. More importantly, the standing wave 

characteristics of the surface plasmon have been discussed in the literature,207,208 and can 

be revealed in the EELS maps. 
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Chapter 7: Conclusions 

In summary, this dissertation provides an overview of electron microscopy, solid-

state nanomaterials synthesis, and plasmonic materials. The principle, background, and 

associated techniques of electron microscopy are discussed in details in early chapters. 

Different case studies in later chapters have demonstrated how powerful electron 

microscopy methods are to analyze the relationships between nanostructures and their 

advanced properties. Using vapor-liquid-solid synthesis methods in a chemical vapor 

deposition system to make different composition of metal oxide nanowires are also 

discussed, which includes a derived case study of reverse VLS. These case studies are 

great examples of using advanced electron microscopy techniques to approach 

nanomaterials and their characteristics. 

With the newly developed in situ liquid cell TEM holders, a small amount of liquid 

sample can be inserted into the TEM without damaging the vacuum system. The tip of 

the liquid cell holder was composed by two pieces of silicon microchips superimposed 

and the little space in between can be considered as a reaction chamber. The solution is 

sealed between silicon nitride membranes coated on the surface of the microchips; with 

the etching windows on the microchips the electron beam is able to pass through the 

reaction chamber and observe the ongoing reactions in the solution. In situ observations 

of the assembly processes have been recorded in real time videos and the results are 

consistent with the initial hypothesis of LSPR induced Au nanorods tip-to-tip self-

alignment. 

STEM-EELS technique is another advanced technique that has been fully discussed 

in this dissertation. By measuring the energy loss of inelastically scattered primary 
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electrons, we are able to map light elements dopant distributions, study the valence states 

of transition metals, and map LSPR activities in nano-peapod systems.   

Overall, this dissertation provides detail information of using advanced electron 

microscopy characterization techniques to study nanomaterials in order to improve 

synthesis methods, and furthermore, to control and design new nanostructures with the 

desired chemical and physical properties. 
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