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ABSTRACT 

 

INVESTIGATING MECHANISMS DETERMINING CANCER CELL SENSITIVITY TO 

CARFILZOMIB AND NOVEL STRATEGIES TO OVERCOME RESISTANCE 

 

Proteasome inhibitors (PIs) are a class of FDA-approved anti-cancer agents which includes 

the first-generation PI bortezomib (BTZ) and second-generation carfilzomib (CFZ). Drug 

resistance is a major challenge in PI therapy with no solution currently available. While a 

few resistance mechanisms had been proposed for BTZ, little was known about CFZ 

resistance before the start of our studies. In this dissertation work, we investigated multiple 

mechanisms contributing to CFZ resistance—alterations in the drug transporter activity, 

metabolic stability, and proteasome activity profiles—and evaluated potential strategies to 

overcome CFZ resistance.  

 

We observed marked upregulation of the drug efflux transporter P-glycoprotein (P-gp) in 

our H23 (lung cancer) and DLD-1 (colorectal cancer) cell line models of acquired resistance. 

P-gp inhibition by verapamil effectively restored CFZ sensitivity in resistant cells, indicating 

that P-gp contributes to CFZ resistance in our model. We designed a small library of CFZ 

analogs lacking the pharmacophore and screened them for their abilities to reverse CFZ 

resistance. Our results showed that dipeptide CFZ analogs were the most effective in 

restoring CFZ sensitivity. This study was among the first to demonstrate the involvement of 

P-gp upregulation in CFZ resistance and the feasibility of using CFZ peptide analogs to 

reverse P-gp-mediated CFZ resistance. 

 

PI-resistant cancer cells often exhibit altered proteasome activity profiles compared to PI-

sensitive cells. To further explore how these changes to the proteasome may influence 

cellular response to PIs, we developed a pancreatic cancer cell line model of acquired CFZ 

resistance. CFZ-resistant BxPC3 cells displayed a marked increase in the caspase-like (C-L) 

activity of the proteasome compared to parental controls. When challenged with CFZ, we 

also found that C-L activity was preserved in resistant cells whereas all activities were 

inhibited in parental cells. Using both chemical and genetic knockdown approaches, we 

found that co-inhibition of the C-L activity can sensitize resistant cells to CFZ. Similar effects 



 

 

were also observed in CFZ-resistant RPMI-8226 multiple myeloma cells. These findings 

suggest that enhanced C-L activity may contribute to CFZ resistance and that combined 

inhibition of the C-L activity may serve as a potential strategy to restore CFZ sensitivity. 

 

Since CFZ contains a tetrapeptide backbone and a highly reactive epoxyketone 

pharmacophore, its rapid metabolic inactivation in vivo may be a potential explanation for 

its lack of anti-cancer activity in solid cancers. Thus, we hypothesized that improving the 

metabolic stability of CFZ and its access to cancer cells may enhance its anti-cancer efficacy. 

Using micelle particles composed of biodegradable block copolymers poly-(ethylene glycol) 

(PEG) and poly-(caprolactone) (PCL), we demonstrated as a proof-of-concept that 

extended-release nanoformulations improved the metabolic stability and cytotoxic activity 

of CFZ in solid cancer cell lines. These findings supported the potential utility of polymer 

micelle formulations in enhancing the delivery of CFZ and improving anti-cancer efficacy 

CFZ against solid cancers. 

 

Findings from this dissertation work enhance our understanding of factors contributing to 

CFZ resistance in cancer cells. Such information may be useful for the development of next-

generation proteasome inhibitors and new strategies to combat CFZ resistance in the clinic.  

 

KEYWORDS: Proteasome inhibitor, Carfilzomib, Resistance, Cancer 
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Chapter 1 RATIONALE FOR DISSERTATION WORK 

 

(Each chapter in this dissertation contains its own introduction section, thus this chapter is 

intended to provide a brief rationale and overview for the entire dissertation.) 

 

The ubiquitin-proteasome system (UPS) is a highly-regulated protein degradation system 

found in all eukaryotic life forms [1]. Its activity is crucial for maintaining protein 

homeostasis and regulating a myriad of cellular processes, including many of the ones 

involved in cancer pathogenesis [2]. Central to the UPS is the proteasome, a large 

multimeric protein complex consisting of regulatory particles and a 20S core which 

catalyzes the hydrolysis of substrate proteins in an ubiquitin-dependent manner [3]. Since 

its discovery over three decades ago, the proteasome has proven to be an important anti-

cancer drug target. Initial validation of the proteasome as an effective anti-cancer target 

came with the blockbuster success of bortezomib (BTZ, Velcade®), a first-in-class 

proteasome inhibitor (PI) drug that revolutionized the multiple myeloma (MM) treatment 

paradigm [4]. Despite the clinical success, limitations associated with BTZ therapy, such as 

debilitating neurotoxicity and drug resistance, indicated that there was much room left for 

improvement [5]. To address some of the drawbacks associated with BTZ therapy, a 

second-generation PI carfilzomib (CFZ, Kyprolis®) was developed with a unique 

epoxyketone pharmacophore that bound to the proteasome selectively and irreversibly [6]. 

Preclinical and clinical evaluations demonstrated that CFZ had improved anti-cancer 

activity and better toxicity profile compared to BTZ [7, 8]. Based on these promising 

findings, CFZ received FDA approval in 2012 for the treatment of relapsed and refractory 

MM [9].  

 

One of the major challenges to the continued clinical success of PI therapies is drug 

resistance [10]. Based on clinical assessments, both intrinsic and acquired resistance 

affected outcomes in the clinic: over 50% of MM patients receiving BTZ or CFZ as a single 

agent showed no disease improvement [11-14], and of the patients who initially responded, 

the majority eventually developed resistance [15]. Furthermore, cross-resistance to both 

BTZ and CFZ was also observed frequently in patients with relapsed and refractory MM and  
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effective treatment options were limited for patients who were resistant to both PI agents. 

In addition to resistance in hematological malignancies, patients with solid cancers also 

exhibited intrinsic resistance to BTZ and CFZ. This was in contrast to the compelling 

preclinical findings which demonstrated BTZ and CFZ having potent anti-cancer activities in 

models of solid cancer. The mechanisms responsible for this discrepancy between the 

preclinical and clinical findings were poorly understood, which limited further development 

of PIs as anti-cancer therapeutic for solid cancers [16, 17]. Thus, in order to enhance the 

anti-myeloma activities of BTZ and CFZ, as well as to expand their therapeutic potentials, it 

would be crucial to first gain an understanding of the mechanisms responsible for 

determining BTZ and CFZ resistance in cells. 

 

At the beginning of this dissertation work, little was known about how PI resistance 

developed in cells and what factors were involved in determining cellular sensitivity to 

proteasome inhibition. Since BTZ had been in clinical use for nearly a decade, a few 

proposed mechanisms of BTZ resistance were available based on cell line models of 

intrinsic and acquired resistance. In contrast, nothing was known about CFZ resistance as it 

was not yet in clinical use. As it became evident that CFZ possessed superior anti-cancer 

activity and safety profile to BTZ, we felt that it was pertinent to gain a better understanding 

of the molecular mechanisms involved in determining cellular response to CFZ in order to 

exploit its full therapeutic potential. Thus, we set out to investigate the mechanisms 

responsible for determining CFZ sensitivity using cell line models of resistance.  

 

This dissertation is consisted of three separate studies elucidating both proteasome-

dependent and proteasome-independent factors involved in determining CFZ sensitivity. 

The studies described in chapters 3-5 are presented as separate chapters with unique 

leading hypotheses and background information, methods, results, and discussion sections. 

Chapter 2 provides a brief overview of the UPS and the development of PIs in the clinic, 

followed by a summary of the current understanding of BTZ and CFZ resistance, including 

mechanisms that were reported during and after the completion of the studies in this 

dissertation work. Discussion of the important questions that remain to be addressed in the 

field of PI resistance can also be found in the summary sections of chapter 2. Overall 

conclusions and implications of the studies presented in this dissertation can be found in 
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the final chapter (chapter 6), which also discusses future directions of our investigations as 

well as outlook of the field as a whole. 

 

Each study presented in chapters 3-5 investigates a unique aspect of CFZ therapy and its 

potential contribution to CFZ resistance. Chapter 3 demonstrates upregulation of the efflux 

transporter P-glycoprotein (P-gp) as a major mechanism mediating acquired resistance to 

CFZ in DLD-1 colon and H23 lung cancer cells. In this study, we hypothesized that increased 

efflux transport of CFZ by P-gp conferred resistance to CFZ and that inhibition of P-gp 

activity could restore CFZ sensitivity in resistant cells. In support of our hypothesis, we 

found that overexpression of P-gp was associated with decreased CFZ sensitivity in colon 

and lung cancer cells and that inhibition of P-gp activity using small peptide analogs of CFZ 

reversed CFZ resistance. These findings were among the first to demonstrate a role for drug 

transporter activity in contributing to CFZ resistance.  

 

During our investigation of P-gp-mediated CFZ resistance in Chapter 4, we noted changes in 

the expression and CFZ inhibitory profiles of several of the proteasome catalytic subunits in 

CFZ-resistant cells compared to CFZ-sensitive cells. These observations indicated that other 

mechanisms of resistance were likely contributing to CFZ resistance in addition to P-gp 

upregulation. This led us to investigate the role of altered proteasome activities in 

determining CFZ sensitivity using a P-gp-independent resistance model. In chapter 4, we 

hypothesized alterations in the baseline activities and inhibition profiles of the proteasome 

catalytic subunits contributed to CFZ resistance in BxPC3 pancreatic cancer and RPMI-8226 

MM cells. We found that upregulated caspase-like (C-L) activity of the proteasome provided 

survival advantages in cells against CFZ-induced cytotoxicity, and that co-inhibition of C-L 

activity of the proteasome sensitized resistant cells to CFZ. Together, these findings support 

our hypothesis and indicate a previously unreported role for the C-L activity of the 

proteasome in determining cellular response to CFZ.  

 

In Chapter 5, we carried out a collaboration study that addresses the poor metabolic 

stability of CFZ and its potential contribution to intrinsic resistance in solid cancer. We 

hypothesized that polymer micelle formulations of CFZ could improve its metabolic stability, 

thereby enhancing its anti-cancer efficacy. Our findings demonstrated as a proof-of-concept  
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six slow-release polymer micelle formulations of CFZ which achieved increased metabolic 

stability and remained active in H460 lung and RPMI-8226 MM cells. These findings support 

the potential utility of nanoparticle-based formulations as an alternative delivery method 

for CFZ.  

 

In summary, the findings from this dissertation work contribute to our understanding of the 

factors involved in determining CFZ resistance, of which little was known at the beginning 

of our studies. Additionally, our work provides insight in the potential molecular targets 

and novel strategies that can be further developed to overcome resistance. 
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Chapter 2 INTRODUCTION 

 

This chapter provides an overview of the development and clinical contributions of BTZ and 

CFZ, as well as a comprehensive review of the major findings reported to date contributing 

to the current understanding of BTZ and CFZ resistance. Additionally, we highlight here 

some of the proposed strategies to overcome PI resistance and discuss future directions of 

PI resistance research. Since the studies described in this dissertation began prior to the 

FDA approval of the third-generation PI agent ixazomib (IXA), and no resistance 

mechanisms have been reported for IXA so far, we mainly focus on the clinical activities and 

drug resistance of BTZ and CFZ therapies in this chapter. However, the BTZ and CFZ 

resistance mechanisms discussed here may also be applicable in understanding the 

molecular factors involved in determining cellular response to other PIs such as IXA.  

 

2.1 The Ubiquitin-Proteasome System (UPS) 

First discovered over three decades ago, the proteasome was initially thought to be the 

“garbage disposal” of the cell, with little function other than ridding the cell of defective 

proteins [18]. Since then, a tremendous expansion in knowledge about the UPS has 

drastically changed our perception of this protease complex [19]. With the help of new 

molecular tools and biochemical methods, the elucidation of the UPS opened our eyes up to 

the complex and intricate nature by which proteins are degraded inside the cell [20]. Along 

with that, we have also come to understand the fundamental importance of protein 

homeostasis and timely protein destruction to the livelihood of cells. The discovery and 

elucidation of the UPS, for which Drs. Hershko, Ciechanover, and Rose received the 2004 

Nobel Prize in Chemistry [21], paved the way for the discoveries made in the following 

decades uncovering the regulation and function of biological processes such as apoptotic 

signaling, cell cycle progression, and the immune response. Moreover, their work 

contributed tremendously to our current understandings of diseases and ultimately led to 

the discovery of numerous life-saving therapeutics [22-24].  
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2.2.1 Controlled Protein Degradation  

The UPS is responsible for the degradation and processing of more than 80% of all proteins  

inside the cell [25]. Protein degradation by the UPS is mediated by the covalent conjugation 

of a chain of simple molecules made up of 76 amino acid residues called ubiquitin [26]. 

Target proteins are usually tagged by long chains of ubiquitin moieties, called 

polyubiquitination, which are recognized by the proteasome and initiates their degradation 

[27]. The process of substrate-tagging with polyubiquitin moieties is carried out in a step-

wise fashion by three classes of ubiquitin-interacting proteins. Ubiquitin ligase E1, also 

known as the ubiquitin activation enzyme, uses ATP hydrolysis to catalyze a thioester bond 

between itself and the C-terminal glycine residue of ubiquitin. Next, the ubiquitin molecule 

is transferred to the ubiquitin carrier protein E2 by a thioester bond transfer. Finally, the 

activated ubiquitin molecule is transferred to an E3 ubiquitin ligase protein, which both 

recognizes target proteins and conjugates ubiquitin molecules onto the substrates (Figure 

2.1A). The polyubiquitinated protein is then recognized by the proteasome and degraded 

into small peptides [28, 29].  

 

2.1.2 The Proteasome Complex 

The quaternary architecture of the proteasome core is highly conserved among prokaryotic 

and eukaryotic cells, indicating that its function is indispensable [30, 31]. The proteasome 

consists of a barrel-shaped 20S core particle capped by a 19S regulatory particle on one or 

both ends of the core [31, 32]. Together, the 20S core with 19S particles associated at both 

ends make up the 26S proteasome (Figure 2.1B). The 19S regulatory particle is composed of 

at least nineteen subunits, nine of the which make up the lid and the other nine make up the 

base [33]. Subunits of the lid are responsible for the removal of the polyubiquitin chain from 

substrate proteins in an ATP-independent manner, whereas subunits are ATPases that 

recognize, unfold, and translocate substrate proteins to the proteasome core [34-37]. The 

20S proteasome consists of four stacked heptameric rings: two outer -rings and two inner 

-rings. The -rings form a gate to the -rings, which ensures the sequestration of the 

catalytic subunits and prevents non-regulated degradation of cellular proteins [36]. Gate 

opening is regulated by the 19S regulatory particle, such that upon substrate binding, the 

19S base subunits interact with the -ring to trigger conformational changes in the -ring 

and activate gate-opening mechanisms [38]. Other gate-opening mechanisms also include  
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the docking of other proteasome regulators onto the interface between the 19S and the - 

ring. Following gate opening, the unfolded and deubiquitinated substrate protein can be 

translocated through the catalytically active -rings for proteolysis [39].  

 

The -rings each contain three catalytically active subunits, 1, 2, and 5, that carry out 

the proteolytic functions of the proteasome complex [3]. Each of these -subunits contains a 

catalytically active threonine residue at the N-terminus, making the proteasome a unique N-

terminal nucleophilic peptidase capable of both catalytic attack and autocatalysis [40, 41]. 

During biosynthesis, each catalytic subunit is initially made with propeptides that protect 

the N-terminal threonine residue from acetylation and prevent premature proteolysis [42]. 

Upon complete assembly of the proteasome core, the propeptides are removed via 

autocatalysis as a final step to expose the active threonine residues of 1, 2, and 5 [33, 

43]. The three catalytic -subunits have different substrate preferences and carry out 

distinct proteolytic activities inside the cell. The 1 subunit, encoded by the PSMB6 gene in 

humans, is referred to as having caspase-like (C-L) proteolytic activity due to its preference 

for peptide substrates containing acidic residues [44]. Conversely, the 2 subunit encoded 

by the PSMB7 gene prefers substrates containing basic residues, and is consequently 

dubbed as having trypsin-like (T-L) catalytic activity [45]. The 5 subunit, encoded by the 

PSMB5 gene, is equipped with chymotrypsin-like (CT-L) activity based on its preference for 

peptide cleavage at hydrophobic residues [46]. Together, these subunits cleave proteins 

into small peptides of unique and diverse sequences, which are especially important for 

antigen presentation and immune recognition [46]. In order to better understand the 

function of each catalytic subunit, chemical tools were developed to target each proteolytic 

activity which played an instrumental part in advancing our knowledge about proteasome 

biology and its role in disease pathogenesis [47].  
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Figure 2.1 Proteolysis by the ubiquitin-proteasome system 

(A) Ubiquitin is bound to an ubiquitin-activating enzyme E1, which transfers the ubiquitin 

molecule to a ubiquitin-conjugating enzyme E2. Finally, substrate protein is covalently 

attached to ubiquitin with the help of an ubiquitin ligase E3. (B) Structural representation of 

the 26S proteasome, consisted of a 20S catalytic core particle associated with two 19S 

regulatory particles. Substrate proteins are deubiquitinated by the lid subunits and 

unfolded and translocated into the 20S core by subunits of the base. Substrate proteins are 

degraded into small peptides by catalytically active -subunits and released out of the 

proteasome.
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2.1.3 Proteasome Subtypes 

Three subtypes of proteasomes with unique structural and functional differences have been 

identified. These homologous subtypes of the proteasome differ mainly in their 

incorporation of a distinct set of catalytically active -subunits in the proteasome core. As 

described above, the most common proteasome subtype containing 1, 2, and 5 is also 

known as the constitutive proteasome (CP), named for its ubiquitous expression in the 

cytoplasm and nucleus of all cell types [48]. CP activity is crucial in regulating a myriad of 

biological processes including cell proliferation, differentiation, and apoptosis. Its key roles 

in antigen presentation and immune function have also been well-described [49, 50].  

 

Another major subtype of the proteasome, discovered decades after CP, is the 

immunoproteasome (IP). This proteasome subtype differs from CP by harboring a distinct 

set of structurally homologous catalytic subunits, 1i, 2i, and 5i, in place of 1, 2, and 5 

[51, 52]. IP is named after its common expression in immune-derived tissues as well as the 

genes encoding 1i and 5i being in close proximity to the major histocompatibility 

complex II gene cluster [53]. Normally expressed abundantly in immune-derived tissues, IP 

expression is strongly induced during viral infection or other inflammatory responses by 

cytokines such as interferon- (IFN- and tumor necrosis factor- (TNF- [50, 54, 55] 

(Figure 2.2). The exact functions of IP in cells is currently not understood. The presence of 

IP was initially thought to contribute to a wider diversity of antigenic peptides during viral 

infection and inflammatory conditions. However, as our understandings of IP functions 

evolved, non-immune related functions have also been discovered [56]. Both proteasome 

subtypes have been implicated in disease development. Cancer pathogenesis is the most 

well-studied due to the active development of proteasome-targeting small molecule 

inhibitors as anti-cancer agents. Other important disease implications of CP and IP function 

include viral and bacterial infections, autoimmune diseases, and aging [57-60].  

 

A third proteasome subtype was found exclusively in the thymus and was thus named the 

thymoproteasome. This subtype is a derivative of the immunoproteasome and expresses a 

unique 5t catalytic subunit in place of 5i [61]. Similar to the immunoproteasome, the 

thymoproteasome contributes to mediating adaptive immune responses by introducing  
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distinct peptides to the antigen presentation repertoire. Its exact biological functions are 

not completely known; a number of recent studies have implicated thymoproteasome in 

cancer models [62]. However, as functions of the thymoproteasome and implications of the 

proteasome in non-cancer diseases are out of the scope of this dissertation, the remaining 

sections will only include the roles of CP and IP in cancer therapy and in PI resistance.  
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Figure 2.2 Catalytic subunit compositions of the constitutive proteasome and the 

immunoproteasome 

 

Left: The constitutive proteasome (CP) contains catalytic subunits 1, 2, and 5 (green 

circles), which are recognized as having caspase-like (C-L), trypsin-like (T-L), and 

chymotrypsin-like activities (CT-L), respectively. Center: Immunoproteasome expression is 

inducible by cytokine stimulation, such as that by IFN and TNF. Right: The 

immunoproteasome core particle differs from that of constitutive proteasome by the 

incorporation of homologous catalytic subunits 1i, 2i, and 5i (red circles) which possess 

slightly varied substrate specificities. 
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2.2 Bortezomib: First in Class 

2.2.1 Validation of the Proteasome as an Anti-Neoplastic Target 

As the role of the UPS became better elucidated throughout the 1990’s, it became evident 

that the proteolytic role of the proteasome was crucial in the pathogenesis of an array of 

diseases including inflammatory diseases and cancer. Development of inhibitors targeting 

the proteasome began immediately following the elucidation of the UPS and its involvement 

in intracellular protein degradation [47]. The currently existing PIs are divided into five 

major classes—peptide aldehydes, -lactones, vinyl sulfones, boronic acids, and 

epoxyketones—each distinguished by the unique warheads used by the PIs to attack the 

proteasome (Figure 2.3). Although the peptide aldehyde, -lactone, and vinyl sulfone classes 

of PIs were not developed further as therapeutic agents due to toxicities and off-target 

effects associated with their use pre-clinically [63], their uses as biological tools were key to 

tease out the functional roles of the proteasome in regulating cellular pathways and cancer 

pathogenesis [25]. Crucial findings from these earlier investigations that demonstrated the 

potential of proteasome inhibition as an anti-cancer treatment included selective anti-

cancer activity toward transformed cells over normal cells [64], synergistic cytotoxicity 

when combined with other chemotherapeutic agents [65], and sensitization of drug-

resistant cancer cells [2].  

 

Lack of specificity was one of the major drawbacks that prevented the clinical development 

of early PIs [66]. PIs such as the peptide aldehyde, -lactone, and vinyl sulfone classes 

interacted with serine and cysteine proteases in addition to the proteasome [67]. 

Additionally, inhibition by these PIs could not distinguish between the different catalytic 

activities of the proteasome, which made it difficult to dissect their mechanisms of action 

inside the cells [57]. As an effort to improve the selectivity of the earlier PIs, derivatives of 

peptide boronic acids, which were known for their inhibitory activities toward serine 

proteases, were synthesized [68]. These derivatives were found to have up to 100-fold 

improved potency in proteasome inhibition and drastically enhanced selectivity toward the 

CT-L activity of the proteasome [68]. Thirteen of these peptide boronic acids were assessed 

in the National Cancer Institute (NCI) panel of 60 cancer cell lines for their anti-cancer 

activities. Among those tested, the dipeptide boron ester PS-341 demonstrated the most  
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potent proteasome inhibition and cell-killing efficacy [69]. Based on these findings, PS-341 

was further investigated as a potential anti-cancer therapeutic, and was later re-designated 

as bortezomib (BTZ).  
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Figure 2.3 Proteasome inhibitors as research tools and clinical agents. 

Examples of the five classes of proteasome inhibitors currently in development or clinical 

use. (A) Early proteasome inhibitors MG-132, ZLVS, and -lactone belong to the peptide 

aldehyde, vinyl sulfone, and -lactone classes of proteasome inhibitors, respectively. These 

agents were not pursued for clinical development but remain important tools for assessing 

proteasome biology (B) The boronic acid class includes two of the currently approved 

proteasome inhibitors bortezomib (Velcade®) and ixazomib (Ninlaro®). (C) The 

epoxyketone class includes the natural product epoxomicin and the second-generation 

proteasome inhibitor drug carfilzomib (Kyprolis®). 
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2.2.2 Preclinical Development 

BTZ is a slowly-reversible inhibitor that preferentially binds to the 5/5i proteasome 

subunits, and the 1i subunit to a lesser extent [57, 70]. Currently, the exact mechanisms 

through which BTZ induces cell death are not completely known. Early preclinical findings 

indicated that accumulation of the cell cycle inhibitor protein p21 and blockade of G1-S and 

G2-M cell cycle transitions contribute to BTZ-induced apoptosis [69]. Stabilization of the 

tumor suppressor protein p53, which is a known substrate of proteasome degradation, has 

also been shown to have a role in mediating BTZ-induced cell death in some cases [71, 72]. 

However, whether p53 function is required for BTZ-induced cell death is controversial, as 

other studies have also found that BTZ can activate apoptosis in cells regardless of p53 

status [69, 73]. Other mechanisms attributed to mediating BTZ-induced cell death also 

include inhibition of NFB transcription [74], activation of the unfolded protein response 

[75], and upregulation of pro-apoptotic proteins [76]. 

 

Proteasome inhibition by BTZ yielded nanomolar cell-killing potencies against 

hematological and solid cancer cell lines [69], including multiple myeloma [77], mantle cell 

lymphoma [73], non-small cell lung cancer [78], and colorectal cancer [79]. BTZ treatment 

also induced growth arrest and apoptosis in primary MM cells as well as RPMI-8226 MM 

cells with resistance to doxorubicin and melphalan [80-82]. Consistent with these in vitro 

findings, BTZ also demonstrated potent anti-cancer activity in vivo. Intravenous 

administration of 0.3 mg/kg or 1.0 mg/kg BTZ in mice bearing xenografts of human PC3 

prostate cancer cells resulted in dose-dependent reduction of tumor volumes and inhibition 

of proteasome activity in the tumor tissue [69]. Similar observations were also reported in 

mouse xenograft models of lung cancer [83], pancreatic cancer [84], and MM [85]. The 

comparable BTZ potencies observed among these models led researchers to believe that 

BTZ would be equally effective for treating both hematological and solid malignancies.  

 

Proteasome inhibition resulting from BTZ was detected in white blood cells of rats, as well 

as a number of peripheral tissues, including liver, kidney, prostate, adrenals, with limited 

penetration into the central nervous system [69, 86]. BTZ metabolism by human liver 

microsomes indicated that oxidative deboronation was mainly carried out by liver P450  
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enzymes including CYP3A4, CYP2C19, CYP1A2, CYP2D6, and CYP2C9 [87]. Initial  

assessment of toxicity in mice bearing prostate xenografts found no major adverse effects 

associated with either 0.3 mg/kg or 1.0 mg/kg of BTZ administration [69]. Additional 

preclinical evaluations in rodents also found BTZ treatment to be generally well-tolerated 

[88]. However, gastrointestinal side effects were reported as main toxicities associated with 

twice-weekly intravenous administration of BTZ in primates [88]. Studies in primates also 

established a dose of 0.8 mg/m2 as the maximum tolerated dose, which was taken into 

account for clinical assessments of BTZ [16]. Collectively, these findings demonstrated the 

potential of BTZ as an anti-cancer agent and provided the framework for its clinical 

development. 

 

2.2.3 Clinical Development & FDA Approval 

Phase I clinical studies of BTZ evaluated three dosing regimens of intravenous BTZ: once 

weekly for four weeks, twice weekly for two weeks, and twice weekly for four weeks. 

Maximum tolerated doses ranged from 1.04 mg/m2 for the most intensive schedule (twice 

weekly for four weeks) to 1.56 mg/m2 for the least intensive schedule (once weekly). BTZ 

treatment was well-tolerated by patients in general, with major toxicities reported 

including thrombocytopenia, fatigue, and peripheral neuropathy [16, 89]. Based on these 

findings, subsequent phase II clinical trials were designed to evaluate the safety and efficacy 

of BTZ in patients with relapsed and refractory MM [90, 91]. These clinical evaluations 

established a dosing schedule of intravenous 1.3 mg/m2 BTZ administered twice weekly 

and demonstrated overall response rates of 35% and 38% for single-agent BTZ in patients 

with relapsed and refractory MM [16, 89-92].  

 

In addition to single-agent evaluations, BTZ also demonstrated remarkable anti-myeloma 

activity when administered in combination with other agents including dexamethasone, 

thalidomide, and doxorubicin. Importantly, inclusion of BTZ in these combinational 

treatments significantly improved anti-myeloma efficacy in newly diagnosed and relapsed 

and refractory MM patients compared to treatments without BTZ [93-95] . Moreover, BTZ 

monotherapy also demonstrated significant activity in extending the response duration and 

overall survival of patients with mantle cell lymphoma [96]. Together, these findings led to 

the FDA approval of BTZ in 2003 for the treatment of relapsed and refractory multiple  
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myeloma [97]. Additional clinical evaluations following its initial approval prompted the 

expansion of its label to include previously untreated multiple myeloma and mantle cell 

lymphoma [98, 99].  

 

2.2.4 Limitations  

Despite the recent advances gained in anti-myeloma therapy with the introduction of BTZ, 

MM remains an incurable disease due to disease relapse and lack of efficacy in a subset of 

patients [100]. According to a study by Richardson et al., only 41% of previous untreated 

MM patients achieve partial response or better with single-agent BTZ treatment, indicating 

that intrinsic resistance to BTZ affects over half of BTZ-naïve patients [12]. In addition to 

intrinsic resistance, acquired resistance occurs inevitably in most patients, as the median 

duration of response in patients was found to be approximately 12 months [12, 14, 101, 

102]. Effective treatments for PI-resistant MM patients are currently limited, thus 

development of novel therapies to combat resistance are desperately needed. One of the 

major challenges to the development of therapies to overcome resistance is the poor 

understanding of the mechanisms underlying the development of BTZ resistance. Several 

mechanisms have been proposed over the last decade, some of which have been cross-

validated in multiple models of resistance. However, most of these findings were identified 

in cell line models and evidence supporting their clinical relevance is lacking in general. 

Investigations are ongoing to uncover novel mechanisms responsible for BTZ resistance as 

well as to examine the clinical importance of the currently known mechanisms. A summary 

of the major findings contributing to the current knowledge about BTZ resistance can be 

found in sections 2.6-2.8. 

 

In addition to drug resistance, another major drawback associated with BTZ therapy is the 

dose-limiting peripheral neuropathy, observed in up to 52% of MM patients receiving BTZ-

based therapy [5, 103]. This neurotoxic effect of BTZ is believed to be associated with off-

target interactions of the boronic acid pharmacophore with the serine protease HtrA2/Omi 

that is crucial for neuronal survival [104]. Since the severity of peripheral neuropathy in 

BTZ-receiving patients is directly correlated with BTZ dosage, the therapeutic window of 

BTZ is limited to a narrow range of 1.0mg/m2 to a maximum tolerated dose of 1.5mg/m2 

[89]. Additionally, the toxicities associated with BTZ treatment also limit its administration  
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to once every three days, making modifications to its dosing schedule difficult. In regards to  

this, a recent phase 3 clinical found that subcutaneous administration of BTZ achieved 

similar anti-myeloma efficacy compared to intravenous BTZ but was associated with lower 

incidents of peripheral neuropathy; grade 3 or higher peripheral neuropathy was detected 

in 57% of patients in the subcutaneous group compared to 70% in the intravenous group 

[105, 106]. Based on these findings, subcutaneous administration was recently included 

into the FDA prescribing information of bortezomib [107]. 

 

2.2.5 Summary  

Prior to the development of BTZ, there was skepticism regarding the feasibility of targeting 

the proteasome as a therapeutic option [108, 109]. It was assumed that shutting down the 

activity of a protein that is ubiquitously expressed throughout the body and is considered 

vital to cell survival would result in catastrophic outcomes [22]. As it turned out, this was 

not the case. The FDA approval of BTZ validated the proteasome as not only a feasible, but 

an extremely effective target for cancer pathogenesis. The introduction of this first-ever PI 

agent brought unprecedented therapeutic benefits in the outcomes of MM therapy, and 

paved the way for a whole new territory of therapeutic exploration within the UPS. The 

proteasome inhibitors were no longer viewed as mere tools for biological probing, and with 

BTZ came a newfound enthusiasm within the field to develop next-generation PI agents to 

improve upon the limitations of BTZ [110]. As a result, two more PI agents were added to 

the MM arsenal in the decade following BTZ’s approval and several more are currently 

undergoing clinical assessment [111].  

 

2.3 Carfilzomib: The Next Generation  

2.3.1 Overview 

The second-generation PI agent carfilzomib (CFZ, Kyprolis®) is currently approved for use 

as a monotherapy or in combination with immunomodulatory agents to treat patients with 

relapsed and refractory MM who have received one to three prior treatments [112]. Its fast-

track approval in 2012 was supported by the potent anti-cancer activity and favorable 

toxicity profile CFZ demonstrated in preclinical and clinical studies. Since its initial approval, 

which restricted its use as a third-line therapy, CFZ has gained additional FDA approvals to 

fully expand its label in 2016 to include first-line indications for the treatment  
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of relapsed and refractory MM [113, 114].  

 

These subsequent approvals came on the heels of recently published clinical findings 

supporting the use of CFZ as a superior alterative to BTZ both as a monotherapy and in 

combination with immunomodulatory agents. When compared head-to-head with the first 

generation PI, CFZ-based therapy achieved significantly higher progression-free survival 

and overall response in compared to BTZ-based therapy in relapsed MM patients [113, 115]. 

Importantly, CFZ therapy remained efficacious in a significant portion of BTZ-resistant MM 

patients, indicating that CFZ therapy can be used to overcome BTZ refractory disease [11]. 

For these reasons, CFZ has gained recent recognition as a superior potential alternative to 

BTZ in the MM standard of care [116]. Furthermore, the favorable efficacy and toxicity 

profiles of CFZ also makes it a more desirable candidate for other disease implications, 

including non-hematological malignancies and other inflammatory conditions [6, 117, 118]. 

Strategies to expand its clinical utility in these regards are currently under investigation. 

 

Despite having advantages over BTZ in efficacy and toxicity, CFZ therapy has its own set of 

limitations. Among these, drug resistance represents a major roadblock in the lasting 

clinical success of CFZ therapy. Similar to BTZ therapy, both intrinsic and acquired drug 

resistance also prevent CFZ from reaching its full therapeutic potential. Furthermore, much 

less is currently known about the mechanisms underlying CFZ resistance compared to BTZ 

resistance. Thus, it is critical to understand the factors involved in determining CFZ 

response, and how these mechanisms may differ from those dictating BTZ sensitivity. Such 

information will not only allow us to develop strategies to predict and improve CFZ 

response in the clinic, but will also be useful for the further development of CFZ as a 

treatment for other cancers and diseases. Additionally, insights gained in elucidating 

mechanisms involved in BTZ and CFZ resistance can provide important clues for the design 

and development of next-generation PIs. 

 

2.3.2 A Structurally Distinct Second-Generation PI 

CFZ differs from BTZ in its tetrapeptide backbone structure and distinct epoxyketone 

pharmacophore, which allows CFZ to bind to the proteasome in a highly selective and non- 
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reversible manner [119]. Specific inhibition of the proteasome active site is mediated 

through a unique interaction between the epoxyketone moiety and the N-terminal 

threonine active residue of the proteasome catalytic site. Through a two-step nucleophilic 

attack reaction, CFZ binds to the proteasome irreversibly through the covalent formation of 

a seven-membered ring adduct [119]. Given that this mechanism is only made possible by 

the participation of a protease with an N-terminal active threonine, the epoxyketone 

warhead is considered to be much more proteasome-selective than other PI 

pharmacophores.  

 

The structure and design of CFZ was derived from the natural product epoxomicin, which 

was isolated in the late 1990’s and found to have proteasome inhibition and anti-

inflammatory activities in cells [120, 121]. Although epoxomicin proved to be a useful tool 

in identifying the proteasome as its major target of inhibition, its low cell-killing potency 

and broad inhibition of proteasome catalytic activities prevented its further development as 

a therapeutic agent. Building upon the structure of epoxomicin, medicinal chemistry efforts 

produced several other epoxyketone-containing compounds in hopes of identifying a lead 

with high inhibitory potency and selectivity toward the proteasome [122]. Among these 

epoxomicin derivatives, the compound YU-101 demonstrated both higher proteasome 

selectivity and improved anti-tumor potency compared to both epoxomicin and BTZ [8]. 

Further modifications to the N-cap moiety of YU-101 resulted in improved solubility and 

yielded the compound PR-171, later re-designated as CFZ [8, 123]. 

 

2.3.3 Preclinical Development: Lessons Learned from BTZ 

CFZ mainly inhibits the CT-L (5/5i) activities of the proteasome, with better selectivity 

toward the 5 subunit and decreased interactions with the 1i subunit compared to BTZ [7, 

124]. The unique epoxyketone pharmacophore of CFZ also decreases its off-target 

interactions with other non-proteasomal proteases, an important improvement from BTZ 

[104]. CFZ successfully induced polyubiquitinated protein accumulation and cell cycle 

arrest with nanomolar potency in cancer cell line models of hematological and solid 

malignancies. Additionally, brief exposure of CFZ was found to be more cytotoxic than BTZ 

in MM cells, likely due to the irreversible binding of CFZ to the proteasome [6]. Cell death 

resulting from CFZ-mediated proteasome inhibition has been associated with activation of  
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the c-Jun N-terminal kinase, mitochondrial depolarization, and activation of both intrinsic 

and extrinsic apoptotic pathways [125]. In vivo evaluations of CFZ efficacy in mouse 

xenograft models further verified its potent anti-cancer activity [126]. Importantly, CFZ 

remained active in MM cell lines and tumor cells from BTZ-refractory patients and cells 

resistant to conventional chemotherapeutics, suggesting that the mechanisms of CFZ 

resistance may be unique from those of BTZ and conventional chemoresistance [125]. With 

these promising preclinical findings, clinical evaluations of CFZ quickly proceeded to 

determine its activity and safety in patients with both hematological and solid malignancies.  

 

2.3.4 FDA Approval & Clinical Success 

CFZ was initially evaluated in two Phase I clinical trials for activity and safety in patients 

with refractory hematological malignancies that were treated with at least two prior 

therapies. Results from these studies established a consecutive-day, twice weekly dosing 

schedule of CFZ at doses up to 27 mg/m2 administered by intravenous injection. CFZ was 

well-tolerated across different doses and an overall response of partial response or better 

was observed in 15 of 37 patients treated with CFZ in the two trials [127, 128]. These 

findings led to additional phase 2 clinical trials evaluating the activity of single-agent CFZ 

administered intravenously at 20 or 27 mg/m2 in patients with relapsed and refractory MM 

who have failed two prior therapies, including BTZ and one immunomodulatory agent (e.g. 

thalidomide and lenalidomide) [11, 13]. Overall response rates observed were 13% for 20 

mg/m2 CFZ and 24% for 27 mg/m2 CFZ, with an average duration of response of 7.4 months 

[11, 129]. Together, findings from these phase 2 studies provided the basis for the 

accelerated FDA approval of CFZ in 2012. This initial approval granted use of CFZ for the 

treatment of patients with relapsed and refractory MM who have failed at least two prior 

treatments including BTZ [130].  

 

The therapeutic benefits of CFZ-based anti-myeloma therapy were further highlighted in 

more recent findings from Phase 3 clinical trials. A head-to-head comparison of BTZ-

dexamethasone and CFZ-dexamethasone treatments in patients with relapsed and 

refractory MM showed that patients treated with CFZ-based therapy achieved a nearly two-

fold increase in progression-free survival compared to patients treated with BTZ-based 

therapy (18.7 vs 9.4 months) [113]. Furthermore, the addition of CFZ to the lenalidomide  
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and dexamethasone combination treatment, a previously designated standard regimen for 

relapsed and refractory MM, also yielded superior activity in comparison to lenalidomide 

and dexamethasone without CFZ, as well as combination with BTZ [131]. These findings 

further validated the therapeutic value of CFZ-based therapies and led to the recent 

expansion of CFZ indications to include new combination therapies with lenalidomide and 

dexamethasone as a second-line treatment for patients with relapsed and refractory MM 

[114].  

 

2.3.5 Advantages Over BTZ 

Findings from the Phase 3 clinical trials not only highlighted the importance of CFZ therapy 

in MM but also suggested CFZ as a superior alterative to BTZ. In addition to having superior 

efficacy, CFZ also exhibited a substantially more tolerable toxicity profile than BTZ. In 

particular, incidence of dose-limiting peripheral neuropathy was drastically reduced in CFZ-

treated patients compared to those who received BTZ. In an analysis of 136 patients with 

relapsed and refractory MM, peripheral neuropathy was reported in 15% of the patients 

receiving CFZ therapy, with only 2% of the patients reporting ≥ Grade 3 peripheral 

neuropathy [132]. In comparison, BTZ-induced peripheral neuropathy was reported with 

both higher frequency and increased severity; 35% of BTZ-treated MM patients reported 

peripheral neuropathy, with 13.4% of the patients exhibiting ≥ grade 3 symptoms [133]. 

The improved toxicity profile of CFZ has been attributed to its improved selectivity for the 

proteasome and decreased off-target interactions with the serine protease HtrA2/Omi 

[117].  

 

The increased tolerability of CFZ treatment has also made it possible to dose CFZ more 

frequently than BTZ, an important advantage that contributes to the improved anti-

myeloma efficacy of CFZ over BTZ. In human xenograft models of MM tumors, CFZ 

administered on a consecutive-day schedule for up to five days was well-tolerated [6]. 

Importantly, CFZ delivered on two consecutive days produced better anti-tumor activity 

compared to BTZ administered according its clinical dosing schedule of once weekly. When 

proteasome inhibition in the whole blood was assessed, CFZ treatment yielded more 

sustained proteasome inhibition compared to BTZ treatment. Proteasome activity recovery 

following CFZ treatment was also much slower compared to BTZ treatment, likely due to  
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the irreversible nature of CFZ inhibition [6]. Together, these preclinical findings indicated 

that CFZ may be administered with higher frequency to achieve higher maximal proteasome 

inhibition without contributing to toxicity.  

 

In line with preclinical findings, clinical assessments also found that twice weekly 

administration of CFZ was well-tolerated and more efficacious compared to once daily 

dosing [128].  Importantly, single-agent CFZ delivered on a consecutive two-day schedule 

was efficacious in BTZ-resistant MM patients and did not exacerbate pre-existing peripheral 

neuropathy symptoms [11].  As a result, CFZ was approved with a dosing regimen of 

20mg/m2 CFZ administered on days 1, 2, 8, 9, 15, 16, followed by a 12-day rest period for 

the first cycle, and 27mg/m2 CFZ for cycles 2 and beyond if tolerated [11, 13, 127]. Since 

then, further modifications to the CFZ dosing schedule have been evaluated in the clinic. 

Recently, administration of CFZ as a 30-minute infusion was incorporated into the dosing 

regimen of CFZ, which allows the dosing of up to 56 mg/m2 CFZ if tolerated [134]. These 

modification were based on clinical results which indicated that higher doses of CFZ 

administered as an infusion over 30 minutes could achieve better anti-myeloma activity and 

ameliorate side effects compared to the previously established 2-10 minute infusion 

method [129, 135]. Together, these findings highlight the advantages CFZ has over BTZ in 

better safety and more flexible dosing, which allows for modifications to achieve further 

improved therapeutic windows.  

 

2.3.6 Limitations  

Both acquired and intrinsic drug resistance are major challenges in CFZ therapy. Single-

agent CFZ elicited an overall response of 27% in BTZ-refractory MM patients, with a median 

duration of response around 7.8 months [11]. These findings indicated that while CFZ 

remained active in some BTZ-refractory patients, a significant portion of the patients were 

non-responsive to CFZ therapy and likely had de novo resistance to both CFZ and BTZ 

therapies. Additionally, disease progression following initial response to CFZ is a major 

threat to the livelihood of these patients. Currently, few effective therapeutic options are 

available for treating BTZ and/or CFZ resistant MM, and the development of novel 

strategies to prevent or circumvent CFZ resistance is limited by our lack of understanding 

regarding the mechanisms responsible for conferring resistance.  
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In addition to CFZ resistance observed in patients with hematological cancers, overall 

intrinsic resistance also presents major roadblocks for the expansion of CFZ’s therapeutic 

utility to treat other types of cancers [17]. Due to its potent anti-cancer activity and 

favorable toxicity profile, CFZ has been actively pursued as a potential treatment for other 

cancer types including non-hematological malignancies. However, clinical evaluations of 

CFZ in patients with advanced lung, ovarian, and renal cancers indicated limited efficacy 

despite CFZ having demonstrated excellent anti-cancer activity in preclinical models of solid 

cancer. Mechanisms contributing to this discrepancy between clinical and preclinical 

findings are currently under investigation.  

 

One of the proposed theories accounting for the lack of CFZ activity in solid cancers is its 

rapid systemic clearance [136, 137]. Clearance of CFZ is primarily mediated by extrahepatic 

metabolism, where epoxidase and peptidase activities inactivate CFZ by epoxide ring 

opening and degradation of the peptide backbone [136]. As a result, CFZ has a short half-life 

of 30 minutes to one hour [17, 138]. In patients with solid tumors, CFZ treatments resulted 

in little to no anti-tumor efficacy despite substantial proteasome inhibition observed in 

whole blood cells [17]. The lack of efficacy may be due in part to rapid metabolic 

inactivation of CFZ, which may hinder the ability of active CFZ to penetrate tumor tissue. To 

address the metabolic instability of CFZ in vivo, a number of recent studies, including one 

from our group (Chapter 5), investigated the potential of alternative delivery methods 

aimed to extend the half-life of active CFZ and thereby enhance CFZ efficacy. 

 

2.4 Ixazomib: First Oral Proteasome Inhibitor 

Ixazomib (IXA, Ninlaro®) is the first and only oral PI currently approved for the treatment of 

relapsed and refractory MM. Like BTZ, IXA is an N-capped dipeptidyl boronic acid that 

preferentially inhibits the 5 subunit of the proteasome reversibly [139]. The boronic acid 

moiety of IXA is citrate-protected and is readily hydrolyzed upon exposure to aqueous 

environments, providing it with the improved oral bioavailability compared to BTZ and CFZ 

[139]. In vitro, IXA treatment was found to effectively inhibit cell growth and induce cell 

death in MM cells. Its activity was also retained in MM cells resistant to BTZ and 

conventional chemotherapeutics [140]. In vivo findings demonstrated that IXA-induced  
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apoptosis was associated with polyubiquitin accumulation, induction of the UPR,  

accumulation of pro-apoptotic proteins such as p21, p53, and NOXA, and cleavage of 

caspases 3, 8, and 9 [140]. Consistent with in vitro findings, IXA produced potent anti-cancer 

activity and prolonged survival in mouse models of MM and lymphoma [140, 141]. 

Additionally, IXA demonstrated superior tumor penetration and anti-myeloma activity with 

improved toxicity compared to BTZ [139].  

 

Clinical trial findings indicated that addition of IXA to dexamethasone and lenalidomide 

combination therapy significantly prolonged progression-free survival of patients with 

relapsed and/or refractory without increasing toxicities [142]. IXA-treatment resulted in 

superior response rates in all clinical endpoints measured, with median progression-free 

survival prolonged by six months compared to placebo groups [143]. Despite sharing the 

same pharmacophore as BTZ, IXA treatment was associated with much improved toxicity 

profile. Most cases of peripheral neuropathy observed with IXA treatment were grade 1 or 2 

in severity, with grade 3 or 4 peripheral neuropathy observed in 2% of patients, compared 

to 13.4% observed in BTZ-treatment patients [144]. Based on these clinical observations, 

IXA received FDA approval in November of 2015 for use in combination with 

dexamethasone and lenalidomide in MM patients who have received at least one prior 

therapy [111].  

 

Since IXA was approved very recently, not much is known how its clinical activities compare 

to those of BTZ and CFZ treatments. For instance, no evidence is available yet to indicate 

how efficacious IXA is in newly-diagnosed MM patients. Furthermore, there is insufficient 

clinical data on how IXA performs in BTZ- and CFZ-resistant patients. Limited information is 

available on the likelihood of cross-resistance between IXA and BTZ and/or CFZ, and no 

mechanisms of IXA resistance have been reported. Additional clinical trials are currently 

under way to address these questions which are out of the scope of the current dissertation 

[111, 145]. The following chapters will discuss PI resistance with a focus on the current 

understanding of BTZ and CFZ resistance. However, resistance mechanisms reported in BTZ 

and CFZ models may also be informative about the factors involved in determining cellular 

sensitivity to other PIs such as IXA. 
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2.5 BTZ Resistance: Proteasome-Dependent Mechanisms  

2.5.1 Mutations in the PSMB5 Gene Encoding 5 

In an effort to identify the mechanisms responsible for the development of BTZ resistance, 

cell line models of acquired PI resistance are commonly used. These models are established 

by gradually adapting PI-sensitive cancer cells to increasing concentrations of BTZ and are 

thereafter maintained under selective pressure of BTZ. In such models, the most prevalently 

identified mechanism accredited to BTZ resistance is the acquisition of point mutations in 

the PSMB5 gene encoding the 5 catalytic subunit of the proteasome. Several PSMB5 

mutations have been reported based on cell line models of both hematological and non-

hematological cancers [146-149]. Of these, the most commonly observed mutation is a 

guanine to adenosine change at mRNA position 322 (G322A) of the PSMB5 gene, which 

corresponds to an alanine to threonine substitution at amino acid position 49 (Ala49Thr) in 

the final processed, mature form of the 5 protein [147].  

 

Initially identified in THP-1 human monocytic leukemia cells adapted to BTZ (THP-1/BTZ), 

the Ala49Thr PSMB5 mutant was demonstrated by Oerlemans et al. to confer BTZ resistance 

when introduced into BTZ-sensitive THP-1 cells. A subsequently study by Ri et al. 

demonstrated a similar link between BTZ resistance and the expression of mutant PSMB5 

by showing that transfection of the Ala49Thr PSMB5 mutant into BTZ-sensitive KMS-11 

cells prevented BTZ-induced polyubiquitin accumulation, G2/M arrest, and apoptotic 

signaling [148]. The Ala49Thr PSMB5 mutation was also identified in several cell line 

models of acquired BTZ resistance, including Jurkat lymphoblastic leukemia cells (JurkatB) 

[150], KMS-1/BTZ and OPM-2/BTZ MM cells [148], and H460/BTZ non-small cell lung 

cancer cells [149]. In addition to the Ala49Thr mutation, other mutations were also 

identified in cell line models of both intrinsic and acquired resistance; these include 

Ala49Val [146], Ala50Val [146], Met45Val [149, 151], Met45Ile [151], Cys52Phe [149], 

Cys63Phe [152], and Thr21Ala [151]. 

 

All of the reported PSMB5 mutations are located in the exon 2 region, which encodes for the 

highly conserved S1 binding pocket of 5 [153]. In silico analyses of BTZ bound to yeast 

proteasome revealed that Ala49 and Thr21 were highly conserved residues and were 

crucially involved in BTZ binding to 5. Other amino acid residues involved in BTZ binding  
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inside the S1 binding pocket of the 5 subunit included Ala50, Met45 and Cys52, all of which 

had been reported as PSMB5 mutations in association with BTZ resistance. Based on this, it 

was postulated that mutations in these residues may confer BTZ resistance by interfering 

with BTZ binding to 5, thereby decreasing the proteasome inhibitory and cytotoxic effects 

of BTZ in cells [151]. This theory was validated by a more recent study which examined the 

impact of each PSMB5 mutation on the proteasome inhibitory and cytotoxic effects of BTZ in 

yeast [154]. Crystallographic analysis of mutant yeast proteasomes revealed that mutations 

at the Ala49 position was the most disruptive for BTZ binding to the 5 active site. As well, 

yeast harboring Ala49 mutations were the most resistant to BTZ-induced proteasome 

inhibition and cell death. In comparison, the effects of Ala50 and Met45 mutations on BTZ 

binding and BTZ sensitivity were much less significant [154].  

 

Despite PMSB5 mutations being the most prevalently reported mechanisms of BTZ 

resistance in cell line models, none of the reported mutations have been identified in clinical 

samples to date. Sequencing of MM cells from patients with clinical BTZ resistance failed to 

identify any mutations in the proteasome catalytic subunits. This suggests that PSMB5 

mutations may not occur as frequently in BTZ-resistant patients as they do in cell line 

models of resistance, and that expression of proteasome mutations may be a cell line-

specific compensatory mechanism to proteasome inhibition [155-158]. Nonetheless, it is 

important to take such mutations into account for other cell line-based studies of PI activity.  

 

2.5.2 Upregulation of 5  

In addition to PSMB5 mutations, alterations in the expression of the PSMB5 gene and its 

encoded 5 protein are the next most frequently reported observation in cell line models of 

BTZ resistance [146, 147, 149-152, 159, 160]. PSMB5 upregulation and 5 overexpression 

was observed in cell line models of intrinsic and acquired BTZ resistance, including the 

JurkatB lymphocytic leukemia [150], RPMI-8226/BTZ MM [161], and HT-29 colorectal 

adenocarcinoma cell lines [147, 148, 150-152, 161-164]. Inhibition of 5 induction by 

siRNA-mediated PSMB5 knockdown was shown to restore bortezomib sensitivity in several 

resistant cell lines including the previously mentioned THP-1/BTZ cells [147]. As well, Yang 

et al. also found that inhibition of the PSMB5 repressor proteins G12/13 resulted in elevation  
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of 5 expression and sensitization of Huh7 lung cancer and MiaPaCa2 pancreatic cancer 

cells to BTZ [162]. These findings suggested a pertinent role for BTZ-induced 5 

upregulation in cell survival against BTZ-mediated proteasome inhibition. In line with this, 

de Wilt et al. and Ri et al. also found that 5 overexpression in BTZ-resistant cells was 

associated with markedly decreased accumulation of polyubiquitinated proteins when 

exposed to BTZ concentrations which strongly induced this response in BTZ-sensitive 

control cells [149]. Additionally, 5-overexpressing cells also exhibited lower levels of pro-

apoptotic proteins and caspase activation, effects which were rescued by treatment with 

higher BTZ concentrations [148, 149].  

 

Interestingly, in cell lines harboring PSMB5 mutations, PSMB5 upregulation did not 

necessarily correlate with increased protein expression of 5 [147, 151]. Oerlemans et al. 

reported a drastic 60-fold increase in 5 protein expression in BTZ-resistant THP-1 cells, 

but PSMB5 expression was found to be only marginally increased [147]. Similarly, Franke et 

al. described a concentration-dependent upregulation of the PSMB5 gene in two RPMI-

8226/BTZ cell lines with low and high BTZ resistance, but the corresponding 5 expression 

reflected neither the level mRNA induction nor the extent of BTZ resistance [151]. The 

authors of the studies pointed out that 5 expression may be regulated post-

transcriptionally. However, no further mechanistic explanations were provided regarding 

such discrepancies in the PSMB5 and 5 expression levels of BTZ-resistant cells. It is 

possible that cells harboring PSMB5 mutations may favor expression of the mutant 5 

protein over the wildtype as a survival mechanism. Further investigation would be 

necessary to determine whether regulation of the expression of mutant 5 expression 

differs from that of wildtype 5. Additionally, Orelemans et al. also noted that drastic 

upregulation of 5 in THP-1/BTZ cells did not yield similar increases in 5 activity levels 

[147]. However, since mutations in the PSMB5 gene has been shown to interfere with the 

binding of BTZ to the 5 active site, it is possible that the mutations may also affect the 

binding of the proteasome substrate in this case.  

 

The findings summarized here provide evidence for 5 upregulation as a potential 

compensatory mechanism to maintain proteasome activity in the presence of BTZ, and  
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thereby prevents apoptosis. While upregulation of 5 remains one of the most commonly 

observed PI-induced alterations in proteasome expression, it is unclear whether such 

alterations in the expression of PSMB5 and 5 are driving factors of BTZ resistance or part 

of a feedback response to prolonged proteasome inhibition. Further investigation of the 

functional impact of 5 upregulation in the context of BTZ resistance are necessary to tease 

out its role in determining BTZ sensitivity. Additionally, it is important to take note that 

BTZ-induced 5 upregulation may include mutant forms of 5. Since it is currently 

unknown whether PSMB5 mutations and 5 overexpression confer BTZ resistance 

independent of one another, further investigations addressing this question are warranted.  

 

2.5.3 Increased Expression and Activities of 1 and 2  

Upregulation of 1 and 2 have been reported in both hematological and solid cancer cell 

line models of acquired BTZ resistance, such as lung cancer (H460/BTZ and A549/BTZ), 

myeloid leukemia (HL-60a), monocytic leukemia (THP-1/BTZ), and MM (RPMI-8226/BTZ) 

cells [147-149, 151, 165]. Compared to 5, much less is known about the roles of 1 and 2 

in determining cellular response to BTZ. Previous findings suggested that activities of the 1 

and 2 subunits may be important contributors to cell viability and the overall cellular 

response to proteotoxic stress [166, 167]. For example, Chondrogiani et al. showed that 

WI38 fibroblast cells stably overexpressing 1 had better proliferating capabilities and 

augmented capacity to cope with oxidative stress compared to control cells [166]. 

Furthermore, Heinemeyer et al. demonstrated that knockdown of 5 in yeast cells was not 

sufficient to induce cell death, and that inhibition of either 1 or 2 in addition to 5 was 

required to commit cells to apoptosis [167]. These findings challenged the previous notion 

that 5 activity is the most important proteasome activity in mediating cell survival and 

suggested that activities of 1 and/or 2 may also play an important role in PI-mediated 

cytotoxicity. However, due to the lack of 1- and 2-selective substrates at the time, no 

further mechanistic studies were done to examine the direct relationships between the 

activities of the 1 and 2 subunits and cellular response to PIs. 

 

Consistent with earlier findings, a more recent study by Britton et al. demonstrated using 

subunit-selective proteasome inhibitors that inhibition of the 5 subunit alone was not  

 



30 

 

sufficient to achieve complete cell death, and that simultaneous inhibition of additional  

proteasome subunits was required to achieve maximal cytotoxicity [168]. The authors 

found that co-inhibition of the 1 subunit sensitized MM cells to the 5-targeting 

proteasome inhibitor NC-005, which suggested that co-targeting of 1 could enhance the 

activity of 5-targeting PIs such as BTZ [168]. A subsequent study published last year 

further explored the effect of co-targeting of 2 in the context of BTZ resistance and found 

that selective inhibition of 2 could restore BTZ sensitivity in resistant AMO-1a MM cells 

[169]. Together, these findings supported the upregulation of non-5 activities as a 

potential survival mechanism against BTZ-induced cytotoxicity and provided initial 

evidence for the potential of co-targeting non-5 subunits as a strategy to overcome 

resistance.  

 

2.5.4 Downregulation of IP Catalytic Subunits  

Downregulation of IP expression has been implicated in both intrinsic and acquired BTZ 

resistance models [149, 151, 169-171]. Low IP expression was found to be associated with 

intrinsic BTZ resistance in both hematological and non-hematological cancer cells [169, 170, 

172]. In particular, Busse et al. compared IP expression and BTZ sensitivity in 12 solid 

cancer and 12 hematological cancer cell lines and found that solid cancer cells across the 

board displayed lower levels of IP catalytic subunits and lower BTZ sensitivity compared to 

hematological cancer cells [170]. These findings indicated that inherent differences in IP 

expressions may contribute to the differential BTZ sensitivities among hematological and 

solid cancer cell lines. In addition to relative IP expression, the ratio of IP and CP levels was 

also shown to differ in cell lines with varying BTZ sensitivity. Kraus et al. found that 

concurrent IP upregulation and CP downregulation induced by IFN- treatment sensitized 

cells to BTZ [170].  

 

Consistent with findings from intrinsic resistance models, IP downregulation was also 

found to contribute to acquired BTZ resistance. Niewerth et al. reported downregulation of 

IP catalytic subunits along with upregulation of CP catalytic subunits in all three BTZ-

resistant MM and lymphoma cell lines (RPMI-8226/BTZ, THP-1/BTZ, and CEM/BTZ) 

compared to respective parental controls [171].  These changes in proteasome composition  
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were also accompanied by increased total proteasome content. This is consistent with 

findings in intrinsic resistance models and support the notion that overexpression of the 

proteasome as a whole, in addition to higher IP/CP ratios, may contribute to acquired BTZ 

resistance. IFN--induced IP upregulation rescued BTZ sensitivity in the resistant cells, 

evident by increased accumulation of polyubiquitinated proteins and PARP cleavage 

following BTZ exposure [171]. High CP and low IP expression patterns have also been 

associated with decreased BTZ sensitivity in the clinic [163, 172, 173] [174]. Lu et al. 

reported higher 5 expression levels in MM cells isolated from BTZ-refractory patients 

compared to cells from BTZ-sensitive patients [163]. Similarly, low expression of IP was 

associated with BTZ resistance in MM patients, whereas high IP/CP ratios were correlated 

with better BTZ response [172, 173].  

 

These findings suggested that cells inherently expressing high levels of IP and low levels of 

CP may be more susceptible to BTZ-induced cell death [170]. Upregulation of IP expression 

in response to long-term BTZ treatment may provide cells with survival advantages against 

proteasome inhibition. Conversely, low baseline expression of IP may also be a predictor for 

poor BTZ response and a contributing factor to intrinsic resistance to BTZ. 

 

2.5.5 Upregulation of Non-Catalytic Proteasome Subunits  

Upregulation in non-catalytic proteasome subunits have been observed in BTZ resistance 

cell line models in addition to alterations in the expression of catalytic subunits [149, 151, 

160]. The proteasome structural subunit 7 was found to be upregulated along with 5 

overexpression in RPMI-8226/BTZ, A549/BTZ, and H460/BTZ cells with acquired 

resistance [149, 151]. Similarly, BTZ-adapted Namawaad cells also displayed increased 

levels of the proteasome core subunits 3, 4, and 6 in concurrence with overexpression 

of all three constitutive -subunits (1, 2, 5) [160]. These findings suggest that 

upregulation of the constitutive proteasome complex as a whole may be an important 

compensatory mechanism for cells to overcome BTZ-induced insult. In line with this, Fuchs 

et al. found that BTZ-resistant cells harbored higher levels of the proteasome maturation 

protein (POMP), further indicating that de novo proteasome synthesis may be increased in 

cells as a protective response to BTZ treatment [160].  
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2.5.6 Increased Proteasome Transcription and Assembly 

Related to the overexpression of proteasome in BTZ-resistant cells is the reported 

upregulation of the transcription factor Nrf2 (Nuclear factor-erythroid 2-like 2) and the 

proteasome assembly chaperone protein POMP [175-177]. Li et al. reported enhanced 

levels of POMP in a panel of four MM cell lines with acquired BTZ resistance [175]. 

Expression of POMP was shown to be required for both conferring and maintaining BTZ 

resistance in OPM-2 and CAS-6/1 MM cells. Additionally, the transcription factor Nrf2, 

which binds to the promoter of POMP, was found to be upregulated in both BTZ-resistant 

cells and BTZ-naïve cells challenged with BTZ short-term. Overexpression of Nrf2 resulted 

in upregulation of POMP and increased CT-L proteasome activity, whereas inhibition of 

Nrf2 activity sensitized resistant cells to BTZ. These findings led the authors to conclude 

that POMP upregulation via increased Nrf2 transcriptional activity contributes to BTZ 

resistance in MM cells, and proposed that targeting Nrf2 function may restore BTZ 

sensitivity [175]. In support of this proposed theory, the same group later demonstrated 

that Nrf2 inhibitor ATRA (all-trans retinoic acid) could indeed sensitize primary myeloma 

tumor cells to BTZ [177]. Rushworth et al. also found an association with Nrf2 upregulation 

and BTZ resistance in AML217, AML306, and THP1 cells. In this case, the authors suggested 

that BTZ-induced Nrf2 upregulation protected cells from apoptosis by reducing reactive 

oxygen species levels [176]. Collectively, these findings indicate an important role for Nrf2 

in determining BTZ response in cells and support the targeting of Nrf2 as a potential 

strategy to enhance BTZ sensitivity.       

 

2.5.7 Summary and Implications 

Of the proteasome-dependent mechanisms of BTZ resistance reported so far, mutations in 

the PSMB5 gene and 5 overexpression are the most prevalently observed across cell line 

models. However, PSMB5 mutations have not been identified in the clinic so far, suggesting 

that resistance driven by the development of such mutations may be not have major impact 

beyond in vitro settings. On the other hand, alterations in proteasome expression and 

activities have been observed in BTZ-resistant patients. In particular, BTZ-induced 

overexpression of CP catalytic subunits present potential targets for therapeutic 

intervention. To this end, co-targeting of 1 or 2 has shown promising activity in 

enhancing the cytotoxic effects of BTZ and other 5-targeting agents. For instance, findings  
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by our group have demonstrated the potential of co-targeting 1 as a potential strategy to 

enhance BTZ activity in resistant cells (chapter 4 of this dissertation work). Such 

preliminary findings provide important insights into the potential utility of 1- and 2-

targeting PIs and justify the development of next-generation PIs with selectivity toward 

activities other than the CT-L activity. 

2.6 BTZ Resistance: The Unfolded Protein Response Pathway  

2.6.1 The UPR & PI-Induced Cytotoxicity 

Alterations in the unfolded protein response pathway (UPR) have been found to be 

especially impactful for BTZ response in MM and other hematological cancers. MM cells are 

characterized by massive antibody secretion and are equipped with an expansive and 

developed endoplasmic reticulum (ER) network [75]. Due to their high demands for protein 

secretion, MM cells are prone to ER stress caused by accumulation of misfolded and 

unfolded proteins, defective protein trafficking, and impairment in protein degradation. 

Thus, MM cells are exceptionally sensitive to the disruption of cellular processes involved in 

maintaining ER homeostasis [178].  

 

ER stress triggers the activation of a set of signaling pathways called the UPR, which 

attempts to resolve the stress by halting protein synthesis, inducing transcription of stress 

response proteins, and eliminating misfolded and damaged proteins from the ER [179, 180]. 

UPR activation is initially pro-survival, as immediate downstream signaling attempts to 

maintain protein homeostasis [181]. However, prolonged ER stress eventually results in 

UPR-triggered apoptosis, known as terminal UPR, via induction of the transcription factor 

CHOP [182]. Because pro-survival UPR signaling requires proteasome function to carry out 

downstream ER-associated degradation of misfolded proteins, it is now well-known that 

proteasome inhibition is a major trigger for terminal UPR [75].  

 

2.6.2 Xbp-1 Downregulation 

Since the UPR is a major mechanism through which BTZ induces cell death, it is 

unsurprising that one of the key transcription factors involved in mediating UPR signaling, 

the X-box binding protein 1 (Xbp1), was found to have an important role for determining 

BTZ sensitivity in several hematological cell lines and patient-derived tumors [183, 184].  
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Xbp1 function is particularly important for MM pathogenesis; activation of Xbp1 signaling is 

crucial for driving plasma cell differentiation and maintaining ER capacity to cope with 

cellular stress associated with high levels of immunoglobulin production [179]. Xbp1 

downregulation has been associated with BTZ resistance in MM and other cancer cells 

derived from B-cell malignancies. The proposed mechanism underlying Xbp1 

downregulation and BTZ resistance involves alterations to the B-cell differentiation 

program that drive cells toward a phenotype characterized by lower protein production and 

ER stress, making cells less sensitive to BTZ-induced proteotoxicity. Findings supporting 

this proposed mechanism are further discussed below.  

 

The role of Xbp1 in determining BTZ response was investigated by several groups in both 

MM cell lines and primary MM samples [183-185]. Ling et al. reported a strong inverse 

relationship between BTZ IC50 and total Xbp1 mRNA in a panel of MM cells lines. Low Xbp1 

expression was detected in conjunction with decreased expression of other UPR regulator 

proteins and low levels of immunoglobulin production in BTZ-adapted MM cells and MM 

tumors with clinical resistance [183]. Similarly, decreased ATF6 expression and ER volumes 

were also observed in BTZ-resistant MM cells and patient samples, and high Xbp1 

expression was correlated with better outcome in BTZ-treated MM patients. [184, 185]. In 

general, low Xbp1 expression has been associated with decreased BTZ sensitivity across the 

board. These findings suggest that MM cells with lower protein workload and UPR 

activation may have a survival advantage against BTZ-induced cytotoxicity. However, these 

studies did not offer any potential mechanisms through which Xbp1 downregulation may 

mediated BTZ resistance [184]. 

 

2.6.3 Xbp1 and Plasma Cell Differentiation  

Leung-Hagesteijn et al. further explored the role of Xbp1 expression and function in 

determining the BTZ response of MM cells [173]. In contrast to Ling et al., who concluded 

that decreased Xbp1 was a surrogate marker for BTZ resistance rather than a determining 

factor, Leung-Hagasteijn reported that loss of Xbp1 in fact did confer BTZ resistance in MM 

cell lines [173]. In addition, Leung-Hagasteijn et al. also identified two Xbp1 mutations in 

BTZ-resistant MM tumors, Xbp1-L167I and Xbp1s-P326R, which were found to prevent 

Xbp1 activation and affect Xbp1 tertiary structure [173, 186]. Constitutive expression of  
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these Xbp1 mutant transcripts were found to be functionally inhibiting and resistance-

conferring [173]. BTZ-refractory MM tumors harboring these Xbp-1 mutations also 

displayed downregulation of plasma cell maturation genes, along with lower Xbp1 

expression, lower UPR activation, decreased expression of plasma cell surface markers, and 

reduced immunoglobulin synthesis, which were indicative of a less differentiated B-cell 

phenotype [173].  

 

Based on these observations, Leung-Hagesteijn et al. postulated that MM cells undergoing 

maturation stages between activated B cells and pre-plasmablasts may be less sensitive to 

BTZ. This “sweet spot” in plasma cell differentiation was characterized by significantly 

reduced ER burden compared to fully differentiated plasma cells, which would make cells 

less sensitive to proteotoxic stress and more resistant to PI-induced cytotoxicity [173]. This 

theory was based on previous reports which indicated a crucial role for Xbp1 in governing 

crucial events in plasma cell differentiation such as immunoglobulin secretion and ER 

remodeling [187]. Additionally, this proposed mechanism by which Xbp1 downregulation 

de-regulates plasma cell differentiation confers resistance was supported by another study 

by Perez-Galan et al., which showed that promotion of B cell maturation toward the 

plasmablast differentiation stage could mediate BTZ resistance in mantle-cell lymphoma 

cells [164]. The authors of this study noted a decrease in Xbp-1 activation in cell lines with 

intrinsic BTZ resistance as well as those with acquired resistance, however the mutational 

status of Xbp-1 was not examined in this case [164].  

 

2.6.3 Summary & Implications 

The findings summarized here indicate a potential role for Xbp1-mediated reprogramming 

of B-cell differentiation in conferring BTZ resistance in B-cell malignancies [188]. 

Conclusions from these investigations also confirm the previously proposed notion that 

cells with higher proteasome workload in general are more sensitive to the cytotoxic effects 

of PIs [189-192]. Based on these findings, it may be advantageous to explore strategies that 

better target malignant B-cells expressing specific differentiation markers. Such strategies 

may be able to achieve better anti-cancer efficacy and potentially reduce toxicities 

associated with BTZ-induced apoptosis of non-malignant cells [193]. Previous findings have 

also suggested that BTZ-resistant cells with downregulated UPR function may be more  
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susceptible to cell death triggered by specific inhibition of the UPR pathway  [194]. Based 

on this, selective targeting of BTZ resistant cells exhibiting low UPR function with other 

UPR-targeting chemotherapeutics may be an effective strategy to circumvent resistance. 

Currently, it is unknown whether Xbp1-mediated resistance involves other UPR 

mechanisms outside of the B-cell differentiation program. For instance, increased protein 

workload and higher reliance on protein processing pathways have been proposed as a 

potential reason underlying the differential PI sensitivity of hematological and solid cancer 

cells to proteasome inhibition [195]. However, the mechanisms involved in mediating the 

differences in sensitivity have not been elucidated. In this regard, the role of the UPR in 

determining BTZ sensitivity in solid cancer cells may be worthwhile to investigate. 

2.7 BTZ Resistance: The Stress Response Pathway  

2.7.1 Heat Shock Proteins  

The heat shock response (HSR) pathway is another stress-response pathway triggered by 

ER stress such as that caused by proteasome inhibition. This pathway is highly conserved 

among eukaryotic cells and is an important part of cellular repair mechanisms against 

stress-induced damages [196]. HSR is triggered upon the detection of aggregated misfolded 

or unfolded proteins inside the cytosol [197], which induces the transcription of heat shock 

proteins such as Hsp70 and Hsp90 and other stress-related chaperone proteins including 

BiP/GRP78 [198, 199]. This process aims to re-establish protein homeostasis by preventing 

damaged proteins from aggregating and facilitating the unfolding and refolding of 

aggregated proteins and misfolded proteins [200]. These events serve as a coping 

mechanism for cells to tolerate the short-term proteotoxic stress caused by factors such as 

proteasome inhibition. A number of studies have suggested that cells may hijack this HSR-

mediated coping response to gain survival advantages against proteasome inhibition. 

Overall, increased expression of HSR-related proteins is recognized as a pro-survival 

mechanism and has been association with both intrinsic and acquired BTZ resistance [201].  

Additionally, interference of the HSR pathway has also demonstrated BTZ-sensitizing 

effects, suggesting that the HSR pathway may serve as a potential therapeutic target for BTZ 

resistance [201].  

 

Several members of the heat shock response pathway have been implicated in cell line 

models of BTZ resistance [202-205]. Gene expression profiling of diffuse large B-cell  
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lymphoma cells revealed higher expression levels of the chaperone proteins Hsp27, Hsp70, 

and Hsp90 in SUDHL-4 cells with intrinsic BTZ resistance compared to the BTZ-sensitive 

SUDHL-6 cells [202]. Increased Hsp27 expression was shown to be associated with BTZ 

resistance based on the opposing effects of Hsp27 overexpression and knockdown on 

cellular sensitivity to BTZ [203]. The exact role of Hsp27 in BTZ resistance remains 

unknown; it was speculated that interactions between Hsp27 and regulators of the 

apoptotic pathway may contribute to its protective role against PI cytotoxicity.  

 

Hsp70 expression was associated with BTZ resistance in lymphoma cells and co-treatment 

of a Hsp70 inhibitor was found to potentiate the BTZ activity in melanoma cells [202, 206]. 

In contrast, amplification of a negative regulator of Hsp70 was detected in BTZ-resistant 

lung cancer cells, which suggested that Hsp70 downregulation may be pro-survival against 

BTZ in this case [152]. These findings suggest that Hsp70 may have cell line-specific roles in 

determining BTZ sensitivity. However, since the authors did not further confirm a 

functional role of Hsp70 in conferring BTZ resistance, it is also possible that downregulation 

of Hsp70 may be an artifact of larger-scale chromosomal changes induced by long-term 

exposure to BTZ. More detailed assessments of the functional impact of Hsp70 regulation in 

the context of BTZ resistance would be necessary to confirm whether such alterations 

observed in Hsp70 expression have direct relevance in determining BTZ sensitivity in cells. 

 

2.7.2 BiP/GRP78 and the Hsp90 Chaperone Compelx 

Both the ER chaperone protein BiP/GRP78 and the molecular chaperone protein Hsp90 

have been reported to have cytoprotective and resistance-conferring roles in against BTZ-

induced cell death [207, 208]. High BiP/GRP78 expression was associated with poor BTZ 

response in mantle cell lymphoma and diffuse large B-cell lymphoma (DLBCL) patients [207, 

208] whereas BiP/GRP78 knockdown sensitized DLBCL cells to BTZ-induced cytotoxicity. 

BiP/GRP78 was also found to accumulate with the Hsp90 chaperone complex in BTZ-

resistant mantle cell lymphoma cells [207]. The interaction between BiP/GRP78 and Hsp90 

proved to be essential for BTZ resistance, as disrupting the formation of this interaction 

using an Hsp90 inhibitor resulted in inhibition of the UPR and sensitized cells to BTZ [207]. 

Based on these findings, the authors proposed that stabilization of BiP/GRP78 by Hsp90 

could mediate BTZ resistance by increasing pro-survival UPR activity and mitigating ER 

burden [207].  
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Inhibition of Hsp90 has shown promising BTZ-sensitizing activities both in vitro and 

clinically [207, 209-213]. The small molecule Hsp90 inhibitors IPI-504 and 17-AAG 

(Tanespimycin) were both demonstrated to effectively restore BTZ sensitivity in BTZ-

resistant mantle cell lymphoma and MM cells [207, 209]. Clinically, 17-AAG was also found 

to produce robust anti-myeloma activity when used in combination with BTZ in both 

pretreated and BTZ-refractory MM patients [210]. In addition to hematological cancers, 

other Hsp90 inhibitors have also demonstrated BTZ-potentiating effects in solid cancers 

including Ewing sarcoma and breast cancer [211-213]. Together, these findings provide 

evidence for the targeting of Hsp90 as a potentially effective strategy to improve BTZ 

efficacy and overcome BTZ resistance. 

 

2.7.3 Summary & Implications 

Findings from these studies indicate that components of the HSR pathway play important 

roles in mediating BTZ-induced cell death and serve as promising potential targets in BTZ-

resistant cancer cells. Overall, upregulation of the HSR proteins is associated with cancer 

cell survival against proteasome inhibition. This is expected as the HSR proteins play crucial 

roles in maintaining ER homeostasis and protecting the cells from proteotoxic stress. Due to 

the diverse client protein population regulated by the chaperone activities of the HSR, 

inhibition of HSR proteins may affect a wide variety of cellular processes including those 

involved in regulating growth, survival, and apoptosis. Currently, several small molecule 

inhibitors targeting HSR proteins are under clinical development as anti-cancer agents 

[213]. In this regard, co-inhibition of HSR components and the proteasome has shown 

promise as a combined treatment to enhance the anti-cancer activity of BTZ. Further 

validation of this strategy is underway and may provide important insights into potential 

strategies to improve PI efficacy in both hematological and solid malignancies [214]. 

Additionally, it would also be important to evaluate the role of the HSR in resistance of 

other PI agents and assess whether HSR inhibition may be utilized as a general strategy to 

enhance PI activity.  
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2.8 BTZ Resistance: The Apoptotic Signaling Pathway 

The Bcl-2 family is divided into three subfamilies and consists of both pro-apoptotic and 

anti-apoptotic regulator proteins. Pro-apoptotic regulators such as Bax and Bim activate 

apoptosis by inserting into the mitochondrial membrane upon detecting death signals and 

facilitating the release of pro-apoptotic protein cytochrome c from the mitochondria [215]. 

Conversely, anti-apoptotic regulators such as Bcl-2, Bcl-xL, and Mcl-1 prevent mitochondrial 

permeabilization by interacting with pro-apoptotic regulators through BH-domains [216]. 

Unlike the first two subfamilies of Bcl-2 family proteins, which contain multiple BH-

domains, the last subfamily consists of only BH3 domains and are thus named after this 

structural distinction. The BH3-only subfamily contains proteins such as Noxa, PUMA, and 

BIM, and act as sensors of cellular stresses and can facilitate apoptosis when activated [217]. 

Several studies have demonstrated the importance of Bcl-2 family members in mediating 

BTZ-induced cell death and resistance [164, 218-222]. Of the Bcl-2 family members 

implicated, the BH3-only protein Noxa plays a central role in conferring BTZ resistance 

through various interactions with both pro- and anti-apoptotic regulators [73, 76, 218, 223].  

 

2.8.1 Noxa 

Interactions between the BH3-only protein Noxa and the anti-apoptotic protein Mcl-1 have 

been shown to be crucial in mediating BTZ-induced apoptosis [73, 76, 223, 224]. In 

particular, induction of Noxa, but not of other BH3-only proteins, is prevalently observed in 

cell lines treated with BTZ and is considered an important regulator of BTZ-induced cell 

death [76]. Disruption of Noxa upregulation by genetic silencing was found to desensitize 

mantle cell lymphoma cells to BTZ, suggesting that Noxa expression is crucial for mediating 

BTZ-induced cytotoxicity [76]. In line with this, Gomez-Bougie et al. found that apoptosis in 

BTZ-treated MM cells was highly dependent on both Noxa-induction and Mcl-1 expression. 

Expression levels of Mcl-1 and Noxa were found to have counteracting effects of BTZ-

induced apoptosis: whereas downregulation of Mcl-1 sensitized MM cells to BTZ, Noxa 

knockdown rendered cells BTZ resistant. Noxa upregulation in BTZ-treated MM cells was 

also detected in conjunction with decreased complexation of Mcl-1 with the pro-apoptotic 

proteins Bak and Bim and increased mitochondrial permeabilization, suggesting that 

increased expression of Noxa had disruptive effects on the partnering of pro-apoptotic  

proteins with Mcl-1. Based on these observations, it was postulated that BTZ-induced cell  
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death in MM cells is mediated by an increase in interactions between Noxa and Mcl-1, which 

in turn displaces Mcl-1 binding to pro-apoptotic proteins and thus enhances apoptosis 

activation [223]. In support of this theory, other studies have also confirmed Noxa 

upregulation and Noxa-Mcl-1 interactions as key modulators of BTZ-induced apoptosis in 

cells [73, 76, 224].  

 

Since Noxa plays an indispensable role in BTZ-induced cell death, it is unsurprising that 

downregulation of Noxa has been proposed to be a potential mechanism of BTZ resistance. 

An early study by Rizzatti et al. showed that Noxa knockdown in mantle cell lymphoma cells 

significantly decreased cell death following BTZ treatment [76]. More recently, Leshchenko 

et al. suggested that epigenetic changes resulting in Noxa downregulation may play a role in 

conferring BTZ resistance in mantle cell lymphoma cells [222]. Demethylation of the Noxa 

promoter by the hypomethylating agent decitabine was associated with induction of Noxa, 

increase apoptosis, and sensitization to BTZ. Furthermore, combined treatment of 

decitabine and BTZ lead to synergistic anti-cancer activities in both BTZ-resistant cell lines 

and xenograft models. Together, these findings further demonstrated the importance of 

Noxa in determining BTZ sensitivity in mantle cell lymphoma cells. These findings justified 

the targeting of Noxa, either by chemical inhibition or through epigenetic priming (i.e. 

methylation inhibition), as a potentially effective strategy to enhance BTZ efficacy [222].  

 

2.8.2 Mcl-1 

Mcl-1 overexpression has also been found to contribute to BTZ resistance both in vitro and 

in the clinic [225-227]. BTZ-induced Mcl-1 upregulation was reported in both hematological 

and solid cancer cells and was viewed in general as cytoprotective against BTZ-induced 

cytotoxicity [73, 223, 225, 227, 228]. Increased expression of Mcl-1 was reported in MM and 

Jurkat lymphoma cells in association with BTZ resistance, with Mcl-1 upregulation in MM 

cells attributed to UPR activation and increased transcription of Mcl-1 [225, 227]. Similar 

association between high Mcl-1 expression and BTZ resistance was also observed under 

clinical settings. Wuilletme-Toumi et al. reported that patients who expressed high levels of 

Mcl-1 were associated with poor BTZ response and higher risk of disease relapse compared 

to patients with lower baseline Mcl-1 expression [226]. These results suggest that Mcl-1  

may be a useful predictive marker for clinical BTZ response. In line with these findings, Mcl- 
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1 inhibition has been proposed by several studies as a potentially effective strategy to  

combat Mcl-1-mediated BTZ resistance. Knockdown of Mcl-1 activity has been shown to 

sensitize cells to BTZ in MM, acute T-cell leukemia, and glioma cell line models [223, 227, 

228]. Additionally, targeting of the MEK1/2 pathway, which regulates interactions between 

Mcl-1 and pro-apoptotic proteins, has also been suggested to improve BTZ efficacy in 

resistant MM cells [229].  

 

2.8.3 Bcl-2 

Smith et al. recently suggested that binding of Bcl-2 to Noxa contributed to BTZ resistance 

in Jurkat lymphoid cells by blocking interactions between Noxa and other anti-apoptotic 

proteins, thereby preventing BT-induced apoptosis [218]. Bcl-2 and Noxa expression had 

opposing effects on BTZ sensitivity: whereas genetic silencing of Bcl-2 sensitized Jurkat cells 

to BTZ, Noxa knockdown rendered the cells BTZ resistant. Introduction of Bcl-2 in Jurkat 

cells was cytoprotective against BTZ, with the lymphoid-associated Bcl-2 mutant with the 

highest Noxa binding affinity achieving the most cytoprotective effects [218]. Although the 

study did not provide evidence for how BTZ resistance mediated by Bcl-2 may be connected 

to Mcl-1-based mechanisms, Smith et al. speculated that Bcl-2 may serve as a lower affinity, 

higher capacity neutralizer of Noxa that interferes with interactions between Noxa and Mcl-

1. Based on this, it is likely that upregulation of Bcl-2 protects cells from BTZ-induced cell 

death by antagonizing the pro-apoptotic functions of Noxa and Mcl-1, thereby conferring 

resistance. Additionally, Bcl-2 inhibition has demonstrated BTZ-sensitizing effects in mantle 

cell lymphoma, diffuse large B cell lymphoma, and melanoma cell lines [224, 230, 231]. As 

well, high Bcl-2 expression was also proposed as a contributing mechanism to intrinsic BTZ 

resistance in melanoma cells [231, 232].  

 

2.8.4 Summary 

These findings discussed here suggest that alterations in the expressions and interaction of 

Bcl-2 family proteins play an important role in determining BTZ sensitivity in cells. Both 

Mcl-1 and Bcl-2 upregulation were shown to be cytoprotective and resistance-conferring 

against BTZ-induced cytotoxicity. Interestingly, central to the proposed resistance-

conferring mechanisms of Mcl-1 and Bcl-2 was the sequestration of Noxa. Overall,  

decreased Noxa activity is associated with decreased apoptosis activation by BTZ and  
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desensitization of cells to BTZ. Inhibition of Noxa activity may be mediated through 

increased interactions with Mcl-1 or Bcl-2, as well as epigenetic downregulation of Noxa 

expression. Several BTZ-sensitizing strategies have been proposed based on the findings 

discussed here. Leshchenko et al. suggested epigenetic priming with the hypomethyating 

agent decitabine as a potential strategy to overcome BTZ resistance in mantle cell 

lymphoma cells [222]. In this regard, decitabine and its predecessor 5-azacytidine have 

demonstrated promising clinical activities against acute myeloid leukemia and 

myelodysplastic syndrome, respectively [233, 234]. However, despite such agents having 

promising anti-cancer activities alone, evidence supporting the combination use of 

decitabine and BTZ is generally lacking. Thus, additional assessments are needed to 

determine the efficacy and safety of hypomethylating agents in combination with BTZ in 

resistant patients. Additionally, the targeting of Bcl-2 and Mcl-1 have also been proposed as 

potential strategies to overcome BTZ resistance. Further validation of the BTZ-potentiating 

activities of such strategies are also warranted.  

 

2.9 Carfilzomib Resistance 

In comparison to BTZ resistance, much less is known about the mechanisms contributing to 

CFZ resistance, likely due to its shorter clinical experience. Of the mechanisms proposed to 

date, upregulation of the drug efflux transporter P-glycoprotein is the most commonly 

reported mechanism of acquired CFZ resistance, and was also demonstrated to mediate 

resistance to other epoxyketone-containing PIs but not to BTZ. Other proposed mechanisms 

of CFZ resistance include alterations in the autophagy-lysosome pathway and novel 

interactions between mutant p53 and Nrf2. These mechanisms are not as well-validated 

across studies as P-gp upregulation and their impact on BTZ sensitivity is unclear. The 

following sections summarize the current understanding of potential mechanisms driving 

CFZ resistance. 

 

2.9.1 P-glycoprotein Upregulation 

P-glycoprotein (P-gp) is a transmembrane protein that functions in an ATP-dependent 

manner to extrude a wide variety of xenobiotic substrates out of the cell [235]. Its activity  

has been attributed to cancer resistance to a broad spectrum of chemotherapeutics 

including doxorubicin, paclitaxel, and vincristine [236-238]. Initial clues of a role for P-gp in  
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mediating CFZ resistance came from an earlier study by Gutman et al., which reported P-gp 

overexpression in KMS-11 cells with acquired resistance to epoxomicin, an early-generation 

epoxyketone-based PI and the predecessor of CFZ [8, 239]. Resistant KMS-11 cells showed 

rapid upregulation of P-gp expression when challenged with epoxomicin, and P-gp 

inhibition rescued the apoptotic response of KMS-11R cells to epoxomicin [239]. These 

results indicated that upregulation of P-gp was the major mediator of resistance against 

epoxomicin-induced cell death. KMS-11/R cells did not exhibit any cross resistance to BTZ 

and P-gp inhibition had no significant impact on BTZ sensitivity in these cells. Based on 

these findings, it is likely that P-gp-mediated resistance is selective for epoxyketone-based 

PIs and does not have a major effect on BTZ sensitivity [239].  

 

Since CFZ shares a great deal of structural similarities to epoxomicin, it was speculated that 

CFZ activity may also be susceptible to P-gp-mediated resistance [239]. In line with this, CFZ 

cross-resistance was observed in doxorubicin-resistant RPMI-8226 MM cells [125, 240] and 

vinblastine-resistant CEM lymphoid cells [241], both of which harbored P-gp 

overexpression. P-gp inhibition rescued CFZ sensitivity in both cell lines, albeit to varying 

degrees, indicating that CFZ cross-resistance was mediated at least in part by P-gp function. 

Our study (chapter 3 in this dissertation work) confirmed P-gp as the major mediator of CFZ 

resistance in H23/CFZRR lung and DLD-1CFZRR colon adenocarcinoma cell line models 

[242]. We found that P-gp, but not other drug efflux transporters, was upregulated in 

H23/CFZRR and DLD-1CFZRR cells, and that P-gp inhibition markedly reversed CFZ 

resistance in both cell lines [242]. Consistent with our findings, Muz et al. also reported P-gp 

upregulation as a major contributor of CFZ resistance in MM cells [243]. In this case, 

activation of the hypoxia response pathway was found to be responsible for the induction of 

P-gp expression, and CFZ sensitivity could be restored by P-gp or HIF-1 inhibition (key 

regulator of the hypoxia response pathway) [243].  

 

P-gp-mediated resistance was also reported for several other PIs sharing structural 

similarities with CFZ and epoxomicin [241, 242]. Cross-resistance was found between CFZ 

and the 1/1i-selective inhibitor YU-101 and IP inhibitors ONX-0912 and ONX-0914 in CFZ- 

resistant lung and colon cancer cells overexpressing P-gp [241, 242]. As noted before, cross-

resistance to BTZ was found to be marginal in all cases. This selectivity of P-gp transport for  
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epoxyketone-based PIs provides an interesting distinction of P-gp-mediated resistance to 

different PIs and can potentially serve as an important predictor of how cells may respond 

to different classes of PI agents. Furthermore, as we gain a better understanding of the 

mechanisms responsible for PI resistance in the clinic, this information may be useful in 

predicting whether patients with resistance to certain classes of PI agents will remain 

responsive to others PI agents.  

 

Although the role of P-gp in CFZ resistance has been demonstrated in a number of cell line 

models [240-242, 244], clinical evidence of P-gp-mediated resistance has been scarce. Using 

gene expression analysis of tumor cells obtained from MM patients, Hawley et al. showed 

that upregulation of the P-gp-encoding ABCB1 gene was associated with poor disease 

prognosis [240]. More recently, Soriano et al. reported a nearly 4-fold increase in ABCB1 

expression in plasma cells isolated from a CFZ-refractory MM patient compared to cells 

isolated before disease progression [245]. This is the first and only evidence thus far 

demonstrating a potential role of P-gp upregulation in clinical CFZ resistance. Further 

validations with larger sample sizes are necessary to confirm whether this is a clinically 

important mechanism of CFZ resistance.  

 

2.9.2 Induction of Cytoprotective Autophagy 

The autophagy-lysosome pathway is a major protein degradation pathway responsible for 

the destruction and recycling of long-lived proteins, damaged organelles, and non-

functional proteins such as those produced during biosynthesis [246]. Autophagy is 

characterized by the capturing of substrates inside membrane vesicles called 

autophagosomes that fuse with lysosomes, where protein contents are digested [247]. This 

process normally occurs at low basal levels and is important for maintaining overall protein 

and energy homeostasis. Although autophagy was originally believed to be a parallel but 

distinct proteolytic pathway to the UPS, recent evidence suggests that cross-talk between 

the two pathways may occur, especially under stress-induced settings [248]. Of interest, 

autophagy has been shown to readily activate in cells exposed to PIs—a compensatory 

mechanism suggested to be cytoprotective of cells against proteotoxic stress resulted from  

inhibition [249, 250]. In line with this, autophagy inhibition has been shown to increase 

cellular sensitivity to BTZ in both BTZ-naïve and BTZ-adapted cells, further indicating the  
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importance of autophagy in determining PI sensitivity.  

 

A strong correlation between acquired CFZ resistance and upregulation of the pluripotency 

reprogramming factor Kruppel-like factor 4 (KLF4) was reported by Riz et al. in CFZ-

resistant MM cells (KMS-11/Cfz and KMS-34/Cfz) [251, 252]. Both resistant cell lines 

exhibited increased levels of KLF4 at the mRNA and protein levels, and its overexpression 

was associated with decreased CFZ sensitivity [252]. Both KMS-11/Cfz and KMS-45/Cfz 

cells displayed KFL-4 upregulation despite having different P-gp expression patterns, which 

suggested that KFL4 upregulation may mediate CFZ resistance regardless of P-gp 

upregulation. In conjunction with KFL4 upregulation, both resistant cell lines also exhibited 

increased levels of the autophagy-related gene sequestosome 1/p62 (SQSTM1/p62), a 

known transcriptional target of KFL4 and a crucial adaptor protein involved in shuttling 

polyubiquitinated proteins to the UPS and the autophagy-lysosome pathway. SQSTM1 

upregulation in the CFZ-resistant cells was associated with enhanced autophagic activity, 

characterized by increased stabilization of autophagosome structures and autophagic flux. 

Furthermore, disruption of the autophagy-lysosome pathway by chloroquine treatment 

sensitized both KM-11/Cfz and KMS-34/Cfz cells to CFZ. Based on these observations, it was 

postulated that SQSTM1-mediated induction of autophagy protected CFZ-resistant cells 

against CFZ-induced proteotoxicity by facilitating the elimination of aggregated proteins 

through the autophagy-lysosome pathway [252].  

 

Interestingly, KL4 upregulation in KMS-11/Cfz and KMS-34/Cfz cells was also associated 

with downregulation of genes involved in promoting B-cell differentiation. These findings 

echo the previously described BTZ resistance mechanisms involving alterations to the B-cell 

differentiation program. In this regard, mechanisms involving B-cell differentiation (i.e. 

Xbp-1 mutations) has not yet been validated in CFZ resistance models. Thus, further 

investigations are necessary to evaluate the implications of KFL4-mediated changes in B-

cell differentiation and its potential relationship to previously reported mechanisms of BTZ 

resistance mechanisms. Additionally, KLF4 upregulation was also observed by previous  

studies in cell lines treated with BTZ and epoxomicin [253], suggesting that induction of 

KLF4 may be a common cellular response to proteasome inhibition. Thus, it would be 

important to examine the impact of KLF4-mediated autophagy activation on the cellular 

sensitivity to other PI agents as well.  
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2.9.3 p53-Mediated Resistance  

The role of the tumor-suppressor protein p53 in PI-mediated cell death is currently not 

well-understood due to controversial findings regarding whether p53 is required for PI-

induced apoptosis. For instance, apoptosis activation following PI treatment was found to 

require p53 function in renal cancer and liver cancer cells [254, 255], whereas breast cancer 

and mantle cell lymphoma cells activated apoptosis regardless of p53 status [69, 73, 256]. 

Although the expression and mutational status of p53 have been implicated in resistance to 

various other classes of anti-cancer agents, its impact on PI sensitivity remains unclear. In 

regards to this, Ling et al. reported that expression of wildtype p53 and low levels of the 

anti-apoptotic protein survivin were associated with increased BTZ sensitivity in colorectal 

cancer cells, whereas expression of mutant or null p53 along with high levels of survivin 

were associated with decreased BTZ sensitivity [72]. However, no further mechanisms were 

described regarding how BTZ resistance was regulated by p53 and survivin expression. As 

well, no cross-validation of the role of p53 in mediating CFZ resistance has been reported. 

 

Walerych et al. found recently that the transcriptional activities of several gain-of-function 

p53 mutants were important contributors to CFZ resistance in triple-negative breast cancer 

and other types of solid cancer cells [257]. The study identified the proteasome machinery 

as a primary target of the mutant p53 transcriptional program, and demonstrated a strong 

correlation between high expression of proteasome genes in breast cancer patients 

expressing gain-of-function (GOF) p53 mutations and poor disease prognosis [257]. GOF 

p53 mutants were found to interact with the transcription factor Nrf2 to promote 

proteasome gene transcription in cancer cells, leading to increased proteasome activity and 

decreased sensitivity to CFZ.  Abolishment of the mutant p53-Nrf2 interaction in MDA-MB-

231 cells and mouse xenografts prevented CFZ-induced upregulation of proteasome genes 

and enhanced cell-killing compared to treatment of CFZ alone. Similar effects were  

observed in several other solid cancer cell lines expressing mutant p53, including hepatic, 

ovarian, pancreatic, and colonic cancer cells. Together, these findings revealed a novel 

mechanism of CFZ resistance involving the GOF p53 mutant and offered the potential 

utilization of APR-246, which inhibits mutant p53 activity by restoring the wildtype p53 

conformation, as a potential strategy to overcome CFZ resistance [257].  
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2.10 Cross-Resistance of CFZ and BTZ  

2.10.1 Proteasome-Dependent Mechanisms 

Several of the previously proposed mechanisms underlying BTZ resistance have also been 

found to contribute to CFZ resistance. Verbrugge et al. reported that THP1 myeloid 

leukemia cells with acquired resistance to BTZ were also resistant to CFZ and two other 

epoxyketone-based PIs, although the extent of resistance to the latter PIs were to much less 

compared to BTZ [241]. These findings were later confirmed by Huber et al., who 

constructed yeast model systems containing the previously reported PSMB5 mutations and 

examined their effects on the binding and inhibition of the proteasome by various PIs. Their 

findings revealed that PSMB5 mutations which interfered with BTZ binding to the 5 

subunit also decreased binding of epoxyketone PIs including CFZ. However, of the 

epoxyketone PIs examined, the binding and inhibitory ability of CFZ toward 5 was least 

affected, suggesting that PSMB5-mediated cross-resistance to CFZ may be less impactful 

compared to other PIs [154].  

 

Alterations of proteasome expression and activity levels have been shown to affect cellular 

sensitivity of PIs. Downregulation of IP expression has been reported to confer resistance to 

BTZ, CFZ, and the IP-selective inhibitor ONX-0914 in hematological cancer cell lines 

including MM, leukemia, and mantle cell lymphoma cells [171, 172, 174]. Induction of IP 

subunits by IFN- as well as downregulation of constitutive proteasome subunits have 

shown resistance-reversing effects [171, 258]. Interestingly, downregulation of the 19S 

proteasome regulatory subunit was also found to decrease cellular sensitivity to both BTZ 

and CFZ in MM cells [259]. While the exact mechanisms through which 19S downregulation 

mediates PI resistance remain to be elucidated, the authors of the study hypothesized that 

19S knockdown may result in the accumulation of certain cytoprotective proteins  

selectively. Among the proteins accumulated following 19S knockdown were key regulators 

of the autophagy and apoptotic pathways including SQSTM1/p62 and Mcl-1, which were 

also implicated in either BTZ or CFZ resistance studies previously [227, 252]. Accumulation  

of SQSTM1/p62 suggests that 19S downregulation may be an inducer of the autophagy-

lysosome pathway, whereas increased Mcl-1 levels may provide cells with anti-apoptotic 

advantages in general [259]. Consistent with previously reported findings, these 

observations further suggest that activation of cytoprotective autophagy is an important  
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contributor to PI resistance. 

 

Changes in the catalytic activities of the proteasome have also been shown to contribute to 

PI cross-resistance. A recent study by Kraus et al. found that upregulation of 2/2i 

expression and activities conferred resistance to both BTZ and CFZ in MM cells [169]. 

Consequently, co-inhibition of 2/2i in addition to BTZ/CFZ-mediated 5/5i inhibition 

resulted in synergistic killing of resistant MM cells. These findings suggested that resistant 

cells may become less reliant on the CT-L proteasome activities for survival compared to PI-

sensitive cells. In line with this, an earlier study demonstrated that inhibition of the CT-L 

proteasome subunits alone was insufficient in inducing apoptosis in MM cells, and that co-

inhibition of one of the other two catalytic activities (i.e. C-L or T-L) was required to achieve 

maximal cell-killing [168]. In this regard, our findings showed that upregulated of 1 

expression was associated with acquired CFZ resistance and cross-resistance to BTZ in 

BxPC3 pancreatic cancer cells (chapter 4 of this dissertation work). Co-inhibition of the C-L 

activity sensitized resistant BxPC3 cells to CFZ and BTZ to a lesser extent, which suggested 

that upregulation of the C-L activity of the proteasome may be a common mechanism 

mediating resistance to both CFZ and BTZ. Collectively, our findings and the findings of 

others provide evidence for upregulation of C-L and T-L proteasome activities as a 

cytoprotective mechanism to compensate for the cytotoxic effects of PIs targeting the CT-L 

catalytic activities. These findings also support the co-targeting of non-CT-L proteasome 

subunits as a potential strategy to achieve superior proteasome inhibition and to overcome 

resistance associated with CT-L-targeting PIs. 

 

 

2.10.2 UPR Activation and Alterations in Cellular Metabolism 

An alternative hypothesis to PI-resistance mediated by proteasome-dependent mechanisms 

(e.g. PSMB5 mutation and changes to the proteasome subunit expression and activities) is 

that low activation status of the UPR pathway, namely the IRE1/Xbp1 arm, may render cells  

less sensitive to proteasome inhibition by altering the stress response pathway and the  

differentiation program of plasma cells [173]. In support of this theory, low activation and 

mutations of the transcription factor Xbp1 were previously identified in BTZ-resistant 

hematological cell lines and correlated with poor clinical outcome [173]. More recently,  
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Soriano et al. confirmed the downregulation and mutation status of Xbp1 in both BTZ- and 

CFZ-resistant MM cells using proteomic analysis [245]. In addition, the authors also 

identified Nrf2 upregulation and increased protein chaperone capabilities (i.e. upregulation 

of HSP70, HSP90, and HSP105) as contributors to BTZ and CFZ resistance. These findings 

are complimentary to previously proposed resistance mechanisms involving upregulated 

proteasome transcription and enhanced ability to cope with proteotoxic stress in PI-

resistant cells [176, 204, 207]. Interestingly, proteomic analysis also revealed higher rates 

of oxidative metabolism in BTZ and CFZ resistant MM cells, along with overexpression of 

key enzymes responsible for the production of NADPH. Based on these observations, the 

authors proposed that enhanced glycolytic rates and increased production of reducing 

metabolites may confer resistance to BTZ and CFZ by mitigating the oxidative stress caused 

by proteasome inhibition [245].  
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2.11 Current Understanding & Questions Remaining 

Many mechanisms have been proposed for BTZ resistance over the last decade including 

contributions from both proteasome-dependent and proteasome-independent mechanisms.  

The most prevalently reported mechanisms for BTZ resistance were mutations in the 

PSMB5 gene and upregulation of CP catalytic subunits. Since no clinical evidence of BTZ 

resistance mediated by PSMB5 mutations have been found, this mechanism is now 

recognized as a potential artifact of the resistance selection process in vitro. In comparison, 

alterations in CP expression and function present more promising opportunities for 

therapeutic development to enhance BTZ efficacy and overcome resistance. Findings from 

the current dissertation (chapter 4) provide proof-of-concept evidence for the co-targeting 

of the C-L activity of the proteasome as a strategy to potentiate BTZ and CFZ activities in PI-

resistant cells. Similarly, combined inhibition of other non-CT-L activities of CP and IP have 

also demonstrated promising utility in the context of PI resistance. Further development of 

subunit-selective PIs, especially with better selectivity between CP and IP activities, will be 

important to better validate the targeting or co-targeting of non-CT-L activities as viable 

approaches to overcome PI resistance.  As well, the availability of next-generation PIs will 

also help advance our understanding of how alterations in proteasome expression and 

function may determine cellular sensitivity of PIs.  

 

BTZ resistance mediated by Xbp-1 inactivation has also been reported by a number of 

studies and is perhaps supported by the most clinically relevant evidence. However, since 

this mechanism was mainly described in the context of B-cell differentiation, it is likely only 

relevant to BTZ resistance in hematological cancers. It is possible that alterations in Xbp-1 

function may also affect other downstream pathways regulated by the UPR, thus it would be 

important to further examine whether Xbp-1 downregulation and/or inactivation may also 

have general cytoprotective effects independent of B-cell differentiation. Such information 

would be especially useful for understanding the factors involved in determining PI 

sensitivity in hematological vs solid malignancies. 

 

Fewer mechanisms have been proposed for CFZ resistance, many of which have not been 

well-validated except for P-gp upregulation. Acquired CFZ resistance mediated by increased  
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P-gp transport was shown by us and several others across hematological and non- 

hematological cell line models, but clinical evidence has been lacking until recently. The 

identification of ABCB1 upregulation in a CFZ-refractory MM patient helped further validate 

this mechanism as a potentially relevant one for clinical CFZ resistance. However, additional 

clinical evidence is still needed to confirm the prevalence and impact of P-gp upregulation 

in CFZ-treated patients. Further investigations are also necessary to determine whether a 

relationship exists between baseline P-gp expression in patients and their corresponding 

CFZ response in the clinic. Additionally, it is important to assess the impact of P-gp 

expression on the cross-resistance of CFZ and other chemotherapeutics that are known 

substrates of P-gp. For combination therapies; P-gp activity may also affect both the efficacy 

and toxicities of agents used in conjunction with CFZ.  

 

Despite the advances made in our knowledge about the mechanisms involved in PI 

resistance, much remains to be learned. A general limitation of the findings summarized in 

this chapter is that most of the studies were carried out using in vitro models, with few 

having been validated in clinically-relevant settings. Thus, future investigations in clinically-

relevant models are critical to determine whether these mechanisms play a significant role 

in PI resistance in patients and to identify resistance-combating treatment strategies based 

on such clinical findings. Additionally, many of the proposed mechanisms contributing to 

BTZ and CFZ resistance have been identified in models of hematological cancers, but not in 

solid cancer models. Strategies proposed based on these models therefore may not 

necessarily be relevant for PI resistance in solid cancer cells. In this regard, it is important 

to cross-validate the findings identified in hematological cancer cells using resistance 

models of solid cancer. By doing so, we may gain a better understanding of resistance 

mechanisms common to all cancer cells as opposed to mechanisms specific to certain 

cellular contexts. Gaining a better handle on how PI response is determined in solid cancer 

cells will not only be crucial for expanding the therapeutic utility of current PI agents, but 

will also provide useful insights in the design and development of next-generation PIs.  
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Chapter 3 DEVELOPMENT OF PEPTIDE-BASED REVERSING AGENTS FOR P-

GLYCOPROTEIN-MEDIATED RESISTANCE TO CARFILZOMIB 

 

The work in this chapter has been published in Molecular Pharmaceutics 2012 9(8):2197-

2205 [242]. Permission to publish in the current dissertation was obtained from Molecular 

Pharmaceutics. 

 

3.1 Introduction 

The proteasome is a multiprotease complex found in all eukaryotic cells and plays a key role 

in regulating ubiquitin-dependent turnover of numerous proteins, including those involved 

in cell cycle progression, apoptosis, survival and stress response [24, 260]. For this reason, 

many research efforts over the past decade have been dedicated to developing proteasome 

inhibitors as anticancer agents, resulting in the development of BTZ, a first-in-class 

proteasome inhibitor approved for the treatment of relapsed multiple myeloma and 

refractory mantle cell lymphoma. The successful development of BTZ is followed by a 

number of next-generation proteasome inhibitors currently in preclinical and clinical 

development [2, 261]. Among them, the tetrapeptide epoxyketone CFZ is the furthest in 

clinical development [262]. Compared to BTZ, CFZ is shown to be highly specific for the 

proteasome and minimally inhibits other cellular proteases. This specificity of CFZ has been 

attributed to its improved toxicity profiles over BTZ, a dipeptidyl boronate, which can 

inhibit non-proteasomal proteases, such as a serine protease HtrA2/Omi, and cause severe 

side effects such as peripheral neuropathy [68, 262, 263].  

 

Further supporting the promising potential of CFZ therapy, several investigations have now 

demonstrated that CFZ has excellent anti-cancer activity against hematopoietic 

malignancies and solid cancers preclinically [6, 262]. However, it is likely that resistance 

will eventually emerge and cancer cells will not retain long-term CFZ sensitivity. For 

epoxomicin (a prototypical peptidyl epoxyketone proteasome inhibitor isolated from an 

actinomycete strain), it has been shown that upregulation of P-glycoprotein (P-gp/MDR1) 

leads to cellular extrusion of epoxomicin and confers drug resistance [239]. For CFZ, an 
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early report described that human multiple myeloma cells resistant to doxorubicin are less 

sensitive to CFZ compared to their parental controls, suggesting that multidrug resistance  

(MDR)-related efflux pumps may be involved in the CFZ cross-resistance [241]. Recently, a 

more detailed investigation was carried out using multiple cell lines stably expressing 

various MDR-related transporters and the results indicated that only P-gp, but none of the 

other MDR-related transporters, has the ability to extrude CFZ and to confer resistance 

[241]. However, it remains to be determined whether P-gp upregulation serves as a major 

mechanism for CFZ resistance in cancer cells exposed to prolonged CFZ therapy. In case of 

BTZ, multiple resistance mechanisms have been reported; they include the amplification 

and/or mutation of target proteasomal subunits [147, 148, 150, 160], alterations in protein 

biosynthesis [165], or changes in ER stress response pathways [264]. An early clinical trial 

with CFZ reported that some patients who are refractory to BTZ remain responsive to CFZ 

therapy, suggesting that resistance mechanisms for CFZ may be unique from those 

determining BTZ resistance [262]. However, this has not been thoroughly examined. 

 

In our current study, we investigated molecular factors involved in CFZ resistance by 

establishing CFZ-resistant lung and colon adenocarcinomas cell lines. Our results indicate 

that P-gp-mediated efflux plays a major role in acquired resistance of H23 and DLD-1 cancer 

cells to CFZ. As a proof of concept, we then set out to develop agents that can restore the 

sensitivity of cells to CFZ. We found that peptide analogs as small as dipeptides derived 

from the peptide backbone of CFZ can effectively restore CFZ sensitivity in our cell line 

models. These results indicate that small and minimally toxic peptide analogs may be used 

to overcome the resistance of cancer cells to CFZ or other drugs that develop P-gp-mediated 

drug resistance.   
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3.2 Materials and Methods 

3.2.1 Cell lines and reagents  

Human cancer cell lines H23 (lung adenocarcinoma) and DLD-1 (colon adenocarcinoma) 

were obtained from American Type Culture Collection and maintained in the recommended 

culture media of RPMI-1640 supplemented with 10% fetal bovine serum (Clontech, 

Mountain View, CA)) at 5% CO2 and 37 °C. CFZ and YU-101 were synthesized and purified 

as reported previously [6, 122] and BTZ was obtained from ChemieTek Inc. (Indianapolis, 

IN). Di-, tri- and tetra-peptide analogs of CFZ were prepared following the standard peptide 

synthesis strategy.[265] Verapamil and paclitaxel were obtained from Sigma (St. Louis, MO). 

P-gp (F4) and BCRP antibodies were obtained from Sigma and GAPDH antibody was 

obtained from Cell Signaling (Danvers, MA). Vibrant multidrug resistance assay kit 

containing calcein-AM was obtained from Invitrogen (Carlsbad, CA).  

 

3.2.2 Establishment of CFZ-resistant cancer cell lines  

H23 and DLD-1 cells were maintained with stepwise-increasing concentrations of CFZ over 

a period of 6 months. Initial concentrations of CFZ were 10 and 15 nM for H23 and DLD-1 

cells and increased up to 500 and 1,000 nM over 6 months, respectively. The cells resistant 

to CFZ were termed H23/CFZR and DLD-1CFZR.  

 

3.2.3 Cell viability assay 

H23/CFZR, DLD-1CFZR and parental H23 and DLD-1 cells in logarithmic phase growth were 

seeded in 96-well plates at 5,000 - 20,000 cells/well in three or four replicates. After 24 

hours, cells were treated with CFZ, BTZ, YU-101 or paclitaxel at a series of concentrations 

for 72 h. Cell viability was measured using the CellTiter-Glo luminescent cell viability assay 

(Promega, Madison, WI). The IC50 values were calculated by fitting the observed data to 

sigmoidal dose-response curves with variable slopes using GraphPad Prism 5.0 (La Jolla, 

CA). 

 

3.2.4 Immunoblotting  

Whole cell lysates were prepared in a lysis buffer (17 mM Tris, 50 mM NaCl, 0.3% Triton X-

100, pH 8.0) containing protease inhibitors (Roche Applied Science, Indianapolis, IN). Cell  

 



55 

 

lysates containing equivalent amounts of total protein were resolved by SDS-PAGE and 

transferred to a PVDF membrane. After blocking with 5% skim milk, membranes were 

probed with primary antibodies followed by a horseradish peroxidase-conjugated 

secondary antibody. GAPDH was used as a gel loading control. Signals were visualized using 

enhanced chemiluminescence detection reagents.  

 

3.2.5 Quantitative RT-PCR  

Total RNAs (1 µg) from H23/CFZR, DLD-1CFZR and parental H23 and DLD-1 cells were 

converted to single-stranded cDNA using the iScript cDNA synthesis kit (Bio-Rad, Hercules, 

CA). For quantitative RT-PCR analyses of MDR1 and BCRP transcripts, the following primer 

sequences were used; for MDR1, sense 5´-GTCCCAGGAGCCCATCCT-3´ and antisense 5´-

CCCGGCTGTTGTCTCCAT-3´; for BCRP, sense 5´-TGGCTGTCATGGCTTCAGTA-3´ and 

antisense 5´-GCCACGTGATTCTTCCACAA-3´; for β–actin, sense 5´-

GCATCCTCACCCTGAAGTAC-3´ and antisense 5´-GATAGCACAGCCTGGATAGC-3´. 

Quantitative RT-PCR was performed in triplicate using iCycler with the iQ SYBR-green 

Supermix (Bio-Rad). The conditions for quantitative RT-PCR were as follows: annealing at 

65 °C with 40 cycles for MDR1 and β–actin; annealing at 55°C with 40 cycles for BCRP. The 

relative quantity of the transcripts were calculated by the formula 2-Ct, where Ct was 

determined by subtracting the average β–actin Ct value from the average target Ct value.  

 

3.2.6 Synthesis of peptide analogs structurally related to CFZ  

Tetra-peptides lacking an epoxyketone pharmacophore and its truncated peptides were 

synthesized by standard peptide coupling methods [265]. All intermediates and final 

products were validated by 1H NMR and mass spectrometry.  

 

3.2.7 Impact of peptide analogs on CFZ sensitivity in CFZ-resistant cells and their parental 

controls   

In order to examine the resistance reversing effects of peptide analogs, H23/CFZR or DLD-

1CFZR cells were treated with peptide analogs (25 M) in the absence and presence of CFZ 

(500 nM for H23/CFZR and 1000 nM for DLD-1CFZR). After 72 hours, cell viability was 

measured using the CellTiter-Glo luminescent cell viability assay and expressed as % 

viability relative to those treated with vehicle alone. With the selected peptide analogs  
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(compounds 8 to 10), we examined whether these truncated peptides can restore CFZ 

sensitivity of H23/CFZR or DLD-1CFZR cells in a concentration-dependent manner. 

Additional experiments were performed using compounds 8 to 10 to examine whether they 

can restore sensitivity to paclitaxel (2 M) in H23/CFZR or DLD-1CFZR cells and whether 

they have any potentiating impact on cell killing by CFZ (15 nM) in the parental H23 and 

DLD-1 cells.  

 

3.2.8 Comparison of peptide analogs for their inhibitory effects on the P-gp-dependent 

extrusion of calcein  

The P-gp-inhibitory activity of peptide analogs was assessed using Vybrant Multidrug 

Resistance Assay Kit (Invitrogen). Briefly, DLD-1CFZR and H23/CFZR cells were plated onto 

96-well plates (300,000 cells per well) in suspension. Cells were then pre-incubated with 

PBS, verapamil (25 M), or compounds 8 to 10 (25 M) for 15 min at 37 °C. Subsequently, 

calcein-AM was added to the cells at a final concentration of 0.25 M and the plates were 

incubated for 15 min at 37 °C. Cells were washed and cellular retention of calcein was 

assessed by measuring fluorescence (excitation 494 nm, emission 517 nm) using a 

fluorescence microplate reader (SpectraMax M5, Molecular Devices). Experiments were 

conducted in three replicates and the relative calcein retention was calculated by 

normalizing fluorescence signals from cells treated with compounds to those from cells 

treated with vehicle alone.  

 

3.2.9 Statistical analyses  

Results are expressed as means  S.D. The statistical significance of the differences between 

groups was determined using either Student’s t-test (with Bonferroni adjustment for 

multiple testing when appropriate) or one-way ANOVA (followed by the Newman-Keuls test 

or the Bonferonni test). All statistical analyses were carried out using GraphPad Prism 

(GraphPad Software). 
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3.3 Results 

3.3.1 Development of H23 and DLD-1 cell lines with acquired resistance to CFZ  

H23/CFZR and DLD-1CFZR cells were established by maintaining H23 and DLD-1 cells with 

increasing concentrations of CFZ for approximately 6 months. H23/CFZR and DLD-1CFZR 

cells were found to proliferate without any apparent cell death at CFZ concentrations of 500 

and 1,000 nM, respectively. We determined the extent of CFZ resistance by measuring the 

IC50 values of CFZ in the resistant cell lines and found that IC50 for H23/CFZR and DLD-

1/CFZR cells were markedly increased compared to their respective parental controls. CFZ 

IC50 was increased 74-fold for H23/CFZR cells compared to H23 parental cells (1,300 nM vs 

17.6 nM) and 88-fold for DLD-1/CFZR cells compared to DLD-1 parental cells (2,900 vs 32.9 

nM) (Figure 3.1 and Table 3.1).  

  

We also determined whether H23/CFZR and DLD-1CFZR cells are cross-resistant to the 

closely related epoxyketone-based inhibitor YU-101 (of note, CFZ is derived from YU-101, 

by adding the more water-soluble morpholino group at the N-terminus) [266]. Not 

surprisingly, H23/CFZR and DLD-1CFZR cells were found to be highly cross-resistant to YU-

101 (Figure 3.1 and Table 3.1). In contrast, H23/CFZR and DLD-1CFZR cells remained 

sensitive to BTZ; BTZ sensitivity in both CFZ-resistant cell lines differed only marginally 

compared to their respective controls. On the other hand, CFZ-resistant cells displayed a 

high degree of cross-resistance to paclitaxel, which is a well-known P-gp substrate (>200-

fold increase in the IC50 values compared to parental controls).  
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Table 3.1 Acquired PI resistance in H23 and DLD-1 cell lines 

 

Cell line  
IC50 (nM) 

CFZ YU-101 BTZ Paclitaxel 

H23 17.6 23.7 6.3 4.7 

H23/CFZRR 1300 > 1000  57.1 > 1000  

DLD-1 32.9 37.7 19.8 5.5 

DLD-1CFZRR 2900 > 1000  102 > 1000  

 

 

IC50 values for CFZ, YU-101, BTZ and paclitaxel in CFZ-resistant H23 and DLD-1 cells and 

their parental cell lines 
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Figure 3.1 Cytotoxic effects of CFZ, YU-101, BTZ and Paclitaxel in CFZ-resistant H23 and 

DLD-1 cells. 

 

H23/CFZR (A) and DLD-1CFZR (B) cells show approximately 100-fold increases in CFZ IC50 

compared to parental controls. CFZ-resistant cells show marked cross resistance to YU-101 

and Paclitaxel and slight cross-resistance to BTZ. Closed circles represent CFZ-resistant H23 

and DLD-1 cells, open circles indicate their respective parental controls. 
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3.3.2 Upregulation of P-glycoprotein as a major mechanism for acquired resistance to CFZ 

In order to verify whether decreased sensitivity of H23/CFZR and DLD-1CFZR to CFZ, YU-

101, and paclitaxel is mediated by P-gp upregulation, we first compared the expression of P-

gp and another multidrug resistance-related efflux protein BCRP (breast cancer resistance 

protein, ABCG2) in the CFZ-resistant and parental H23 and DLD-1 cells. Our immunoblotting 

and RT-PCR analyses indicated that P-gp, but not BCRP, was markedly upregulated at both 

the mRNA and the protein level in the H23/CFZR and DLD-1CFZR cells compared to 

respective controls (Figure 3.2A&B).  We further examined the functional role of P-gp 

upregulation in determining CFZ resistance by determining the effect of verapamil, a widely 

used P-gp inhibitor, on cell sensitivity to CFZ. Our results showed that verapamil nearly 

completely abolished CFZ resistance in both H23/CFZR and DLD-1CFZR cells (Figure 

3.2C&D), suggesting that P-gp is the major mediator of CFZ resistance in these cell line 

models.  
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Figure 3.2 P-gp upregulation is a major mechanism of resistance in H23 and DLD-1 cells 

adapted to CFZ.  

 

(A) Immunoblotting analyses showing a marked increase in of P-gp expression in 

H23/CFZR and DLD-1CFZR cells in comparison to their respective parental controls. (B) RT-

PCR analyses showing the upregulation of MDR1 mRNA in H23/CFZR and DLD-1CFZR cell 

lines in comparison to their respective parental controls. (C & D) Inhibition of P-gp using 

verapamil (40 M) restores sensitivity to CFZ in H23/CFZR and DLD-1CFZR cells. 
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3.3.3 Small peptide analogs as resistance-reversing agents  

Given that CFZ is a substrate of P-gp, we speculated that CFZ would be a good lead molecule 

for the development of P-gp inhibiting, resistance-reversing agents. As a first step, we 

synthesized a small library of peptide analogs based on the peptide backbone structure of 

CFZ. All of the synthesized peptide analogs had benzyl ester groups at the C-terminus 

instead of the epoxyketone pharmacophore (Figure 3.3A). None of these peptide analogs, 

when treated alone, influenced the cell viability of H23/CFZR and DLD-1CFZR (open bars in 

Figure 3.3B). However when co-treated with a non-lethal concentration of CFZ (500 and 

1,000 nM for H23/CFZR and DLD-1CFZR, respectively), peptide analogs were able to 

partially restore CFZ sensitivity (Figure 3.3B). In particular, compounds 3 and 4 had the 

most potent resistance-reversing effect.  

 

In order to improve their ability to reverse CFZ resistance, we next replaced the N-terminus 

morpholino group of these CFZ fragments with a pyridine group (compounds 5-7, Figure 

3.4A). The decision for a pyridine substitution was based on recent findings which showed 

that peptidyl epoxyketones containing heterocylic groups at the N-terminus favor 

interactions with P-gp [123]. Indeed, we found that compounds 5-7 with the N-terminal 

pyridine substitutions have increased abilities to restore CFZ sensitivity than the previous 

group of compounds containing N-terminal morpholino groups (Figure 3.4B). We also 

confirmed that treatment of CFZ analogs did not affect cell viability, which indicated that the 

CFZ-sensitizing effects observed are unlikely due to the inherent toxicities of compounds 5-

7 (open bars in Figure 3.4B).  

 

Next, we aimed to increase the metabolic stability of compounds 5-7 by replaced the 

esterase-vulnerable benzyl ester moiety at the C-terminus with an esterase-proof Weinreb 

amide. The resulting group of analogs were designated as compounds 8-10 (Figure 3.5A). 

We found that C-terminal Weinreb amide substitutions further improved the ability of the 

peptide analogs to reverse CFZ resistance (Figure 3.5B). We also confirmed again that 

compounds 8-10 did not have major toxic effects in cells when treated alone (open bars, 

Figure 3.5B). Additionally, we demonstrated that the resistance-reversing effects of 

compounds 8 to 10 are concentration-dependent in both DLD-1CFZR and H23/CFZR cells  
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(Figures 3.6A and 3.6B). Compounds 8-10 were also found to restore paclitaxel sensitivity  

in DLD-1CFZR and H23/CFZR cells (Figure 3.6C). 

 

To further verify whether the CFZ-sensitizing activity of these peptide analogs is related to 

their inhibitory effect on P-gp, we measured the impact of compounds 8-10 on the P-gp-

mediated cellular extrusion of calcein. Since P-gp was found to be markedly upregulated in 

DLD-1CFZR and H23/CFZR cells (Figure 3.2), we expected that calcein retention would be 

drastically decreased assuming P-gp function was also increased in the resistant cells. 

Indeed, we observed that pre-incubation of the P-gp inhibitor verapamil led to an 

approximately 610 – 750% increase in cellular retention of calcein in both CFZ resistant cell 

lines (Figure 3.6D). As a control, we also examined the effect of P-gp inhibition on calcein 

retention in the parental DLD-1 and H23 cells. Our results indicated that verapamil had 

little to no effect on cellular calcein retention in parental cells (13 and 9% increases in the 

parental DLD-1 and H23 cells, respectively), which indicated that parental cells had much 

lower P-gp activity compared to resistant cells. To confirm that CFZ analogs are also 

transported by P-gp, we found that pre-incubation of compounds 8-10 led to substantial 

increases in cellular retention of calcein in DLD-1CFZR and H23/CFZR cells (Figure 3.6D). 

Percent calcein retention for compounds 8-10 all showed p-values of less than 0.05 when 

compared to the vehicle control. However, when the Bonferroni-corrected p-value 

threshold was used to account for multiple testing, only compounds 8 and 10 were found to 

be statistically significant in both DLD-1CFZR and H23/CFZR cells. 
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Figure 3.3 Comparison of peptide analogs with differing lengths for their reversing effects 

on CFZ resistance.  

 

(A) Chemical structures of CFZ and structurally related peptide analogs, compounds 1 to 4. 

(B) Co-treatment of resistant cells with peptide analogs led to a partial reversal of CFZ 

resistance. H23/CFZR and DLD-1CFZR cells were treated with 25 M of compounds 1-4 in 

the presence or absence of CFZ for 72 hours.  Relative cell viability was measured using an 

ATP-based assay. *, p < 0.0001, compared to the groups treated with vehicle, CFZ, or peptide 

analogs alone. Statistical analysis determined by one-way ANOVA followed by Bonferroni 

post testing. 
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Figure 3.4 Resistance-reversing activities of CFZ analogs with pyridine substitution at the 

N-cap.  

 

(A) Chemical structures of di- and tri-peptide analogs, compounds 5-7. (B) Co-incubation of 

di- or tri-peptide analogs with N-terminal pyridine group substitutions (compounds 5-7) 

restored CFZ sensitivity to a greater extent compared to their counterparts with N-terminal 

morpholino groups. H23/CFZR and DLD-1CFZR cells were treated with 25 M of 

compounds 5 to 7 in the presence or absence of CFZ for 72 hours. Relative cell viability was 

measured using an ATP-based assay. *, p < 0.0001, compared to the groups treated with 

vehicle alone, CFZ or peptide analogs alone, by the one-way ANOVA, followed by Bonferroni 

post testing. 
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Figure 3.5 Resistance-reversing effects of peptide analogs with C-terminal Weinreb amide 

substitutions.  

 

(A) Chemical structures of di- and tri-peptide analogs, compounds 8 to 10. (B) Co-

incubation of di- or tri-peptide analogs with the Weinreb amide substitution (compounds 8-

10) restores CFZ sensitivity to a greater extent than their counterparts with the benzyl ester 

group. H23/CFZR and DLD-1CFZR cells were treated with 25 M of compounds 8-10 in the 

presence or absence of CFZ for 72 hours.  Relative cell viability was measured using an ATP-

based assay. *, p < 0.0001, compared to the groups treated with vehicle alone, CFZ or 

peptide analogs alone by the ANOVA, followed by Bonferroni post testing. 
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Figure 3.6 Peptide analogs 8-10 sensitize H23/CFZR and DLD-1/CFZR cells to CFZ and 

paclitaxel by inhibiting P-gp transport. 

 

(A&B) Compounds 8-10 restore cellular sensitivity to CFZ in concentration-dependent 

manners in DLD-1CFZR (A) and H23/CFZR cells (B). *, p < 0.001 compared to the groups 

treated with vehicle alone, CFZ alone or peptide analogs alone by the one-way ANOVA 

followed by Bonferroni post-testing. (C) Compounds 8-10 (12.5 µM) can also reverse cross-

resistance to paclitaxel (2 µM) in DLD-1CFZR and H23/CFZR cells. **, p<0.0001, compared 

to groups treated with vehicle alone, drug alone, or peptide analogs only by the one-way 

ANOVA followed by Bonferroni post testing. (D) Compounds 8-10 (25 M) lead to increased 

cellular retention of P-gp substrate calcein in DLD-1CFZR and H23/CFZR cells. *, p < 0.05 

compared to the group treated with vehicle alone by Student’s t-test; † p < 0.0125 

(Bonferroni-corrected p value threshold).  
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3.3.4 Impact of small peptide analogs on the CFZ sensitivity of parental cell lines  

In addition to reversing the acquired resistance to CFZ, the small peptide analogs of CFZ 

may also potentially impact the sensitivity of parental cells to CFZ by influencing the basal 

P-gp expression and activity. Indeed, our results indicated that compounds 8-10 can 

potentiate the sensitivity of the parental DLD-1 and H23 cells to CFZ, albeit to a much lesser 

extent compared to CFZ-resistant cells (Figures 3.7A and 3.7B). These potentiating effects of 

compounds 8-10 were more pronounced in DLD-1 cells than in H23 cells, which may be 

related to cell line-dependent differences in the basal expression and activity of P-gp. 

Interestingly, higher concentrations of compound 8 (12.5 μM and 25 μM) were found to be 

cytotoxic in H23 cells but not in DLD-1 cells (Figure 3.7B). Given that compound 8 did not 

impact the cell viability of H23/CFZR and DLD-1CFZR cells (Figures 3.6A & 3.6B), it is 

possible that toxicity associated with H23 parental cells may be cell line-dependent.   
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Figure 3.7 Peptide analogs 8-10 sensitize parental DLD-1 and H23 cells to CFZ.  

 

(A & B) Compounds 8 to 10 potentiate the effect of CFZ (15 nM) in the parental DLD-1 (A) 

and H23 (B) cells. *, p < 0.001 compared to the groups treated with vehicle alone, CFZ alone 

or peptide analogs alone by the one-way ANOVA followed by Bonferroni post testing. 



71 

 

 

 

 

 

Figure 3.8 Graphic summary of P-gp-mediated CFZ resistance and resistance-reversing 

effects of P-gp analogs.
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3.4 Discussion 

 

CFZ is an epoxyketone-based proteasome inhibitor and has shown promising preclinical 

and clinical activity in MM and other types of cancer [261]. Compared to BTZ, which has 

also been shown to interact with non-proteasomal proteases in cells, CFZ is highly specific 

towards the proteasome. In early clinical trials, CFZ has shown improved toxicity profiles 

and superior anticancer activity over BTZ, including BTZ-refractory patients [261, 262]. 

These findings are encouraging and suggest that CFZ may provide additional clinical 

benefits as an anti-cancer treatment, especially against BTZ resistance. However, as seen 

with many other chemotherapy agents, CFZ therapy is also likely to fall victim to drug 

resistance. Since little is known about the mechanisms involved in the development of CFZ 

resistance, we set out to identify such mechanisms and to explore a potential strategy to 

restore CFZ sensitivity. 

 

In the current study, we reported that P-gp upregulation and the resulting increased 

extrusion of CFZ mediate acquired resistance to CFZ in lung and colon adenocarcinoma cell 

line models. We also demonstrated that CFZ resistance can be reversed with co-treatment 

of small truncated peptides derived of CFZ (Figure 3.8). While several types of peptides, 

especially those containing hydrophobic side chains such as bulky aromatic and alkyl 

groups, have been reported to interact with P-gp [267-270], these compounds are typically 

much larger in size than the peptide analogs developed in our current study, and can 

therefore suffer solubility issues associated with having large hydrophobic moieties. Here, 

we report that molecules as small as dipeptide analogs can be used as resistance-reversing 

agents. The favorable properties of these dipeptide analogs include having relatively good 

water solubility and no major toxicity. While the truncated peptide analogs have shown 

their resistance-reversing activity in our in vitro models, a potential concern for their 

efficacy in vivo may be the high in vivo clearance typically associated with peptide fragments. 

In this regard, recent findings on the in vivo metabolism of CFZ suggest that our peptide 

analogs may have adequate in vivo stability [136]. Major metabolites of CFZ following 

intravenous administration of CFZ to rats were identified to be morpholino-

homophenylalanine-leucine (M15) and morpholino-homophenylalanine (M14), both of  
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which are dipeptide fragments formed by epoxyketone hydrolysis and peptidase cleavage of  

CFZ. Both metabolites showed longer terminal half-lives in the plasma compared to CFZ, 

with M14 and M15 making up 53% of total parental dose 24 hours post-administration 

[136]. Based these findings, it is possible that our peptide analogs, which share close 

structural similarities to M14 and M15, may also have similar metabolic stability in vivo.  

 

Currently, further optimization is ongoing in order to improve the efficacy and potency of 

the peptide analogs in reversing CFZ resistance. During the past decade, substantial 

advances have been made in our understanding of the structure of P-gp and its binding 

modes with substrates of extremely diverse structures [271, 272]. Along with that, there 

have been considerable efforts in the predicting and designing of P-gp substrates/inhibitors 

[273, 274]. Using a recently reported prediction method (a support vector machine method 

available from http://P-gp.althotas.com) [274], we tested whether our peptide analogs 

(compounds 1-10) are predicted to be P-gp substrates. The results confirmed that all ten 

analogs are potential P-gp substrates. However, given the possibility that the peptide 

analogs require micromolar concentrations to achieve resistance-reversing effects, it would 

be important to further optimize the analogs to improve their potency toward P-gp 

inhibition. Based on our experimental results, we believe that the N-terminal chemical 

structure of these analogs may be more important for determining P-gp interactions.  

 

Although our present study is mainly focused on cancer cell line models with acquired 

resistance to CFZ, our findings can also be applied to other cases of P-gp-mediated 

resistance. Interestingly, we also observed that the peptide analogs can, albeit to a much 

lesser extent, potentiate the effects of CFZ in the parental DLD-1 and H23 cells (Figure 3.7), 

suggesting that cell lines with inherently high levels of P-gp may be also respond to the P-gp 

inhibitory effects of the peptide analogs. Thus, this may be a useful strategy to explore for 

intrinsic CFZ resistance that may be mediated by high baseline expression of P-gp. 

Alternatively, the peptide substrates may also be useful for improving the oral 

bioavailability of proteasome inhibitors and other therapeutic agents that are susceptible to 

P-gp transport. In this regard, Zhou et al. recently reported the design and synthesis of a 

novel, orally bioavailable epoxyketone-based proteasome inhibitor by making chemical 

modifications to its side chain moieties in order to evade P-gp interactions [123]. The  

http://p-gp.althotas.com)/


74 

 

resulting compound, PR-047, has a much improved orally bioavailability profile 

(approximately 39% in rodents and dogs) compared to CFZ, likely due to reduced drug 

efflux by P-gp in the intestines CFZ [123].  

 

In line with the early clinical evidence showing that CFZ can overcome BTZ resistance in the 

clinic [261, 262], our results support that cellular resistance to CFZ and BTZ may occur via 

independent mechanisms. Compared to the drastic shift in CFZ sensitivity, BTZ cross-

resistance was only observed modest levels in DLD-1/CFZR and H23/CFZR (Figure 3.1). 

While we are not aware of any report directly examining BTZ as a potential P-gp substrate, 

there are several reports indicating BTZ as a poor P-gp substrate if at all. For example, 

whereas P-gp-expressing leukemic cells (CEM/VLB) were found to be markedly resistant to 

CFZ (114-fold increase in IC50) compared to control, BTZ IC50 only increased by 4.5-fold 

[241]. Furthermore, P-gp inhibition by the peptide inhibitor P121 drastically reversed CFZ 

resistance in the same cell lines, whereas the effect on BTZ sensitivity was marginal [241]. 

Similar evidence was also reported by several other groups [147, 149, 275]. Thus, it is 

unlikely that P-gp upregulation is a contributing mechanism to BTZ resistance.  

 

3.5 Conclusion 

We report that cancer cells can develop acquired resistance to CFZ by upregulating P-gp 

expression and activity and that peptide analogs of CFZ can be used to restore sensitivity. 

These findings provide a potential strategy to overcome CFZ resistance or enhance CFZ 

activity in cells. The peptide analogs described here may provide useful structural scaffolds 

for the design of novel MDR reversing agents. Furthermore, findings from this study provide 

important insight into the potential role of P-gp in determining CFZ sensitivity. Such 

information should be taken into account for the development of next-generation PI agents.
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Chapter 4 INHIBITION OF THE CASPASE-LIKE PROTEASOME ACTIVITY RESTORES 

SENSITIVITY IN CARFILZOMIB-RESISTANT CANCER CELL LINES 

 

4.1 Introduction 

The proteasome is the central player of the ubiquitin-proteasome system (UPS), a highly 

regulated protein degradation pathway that regulates a myriad of cellular processes, 

including those crucial to cancer pathogenesis [1, 276]. With the blockbuster success of the 

first-generation proteasome inhibitor (PI) agent BTZ (BTZ, Velcade®) [277] and its 

revolutionary impact on the multiple myeloma (MM) treatment paradigm [4], the 

proteasome was validated as a bona fide anti-cancer target. However, despite the clinical 

success of BTZ, limitations associated with its use such as neurotoxic effects and resistance 

hampered its clinical utility. To address some of these drawbacks, a second-generation PI 

agent, CFZ (CFZ, Kyprolis ®), was approved in 2012 and has since become indispensable in 

the MM armamentarium [9]. Unlike BTZ, a dipeptide boronic acid that binds to the 

proteasome reversibly [25], CFZ is a tetrapeptide epoxyketone which covalently binds to 

the catalytic threonine residues of proteasome β-subunits with improved selectivity [6]. 

Likely due to these differences, CFZ displays improved safety and efficacy profiles over BTZ 

in both BTZ-naïve and BTZ-refractory MM patients [113].  

 

As with most other chemotherapies, drug resistance is a critical challenge in CFZ therapy. 

Both de novo resistance in CFZ-naïve patients and acquired resistance in patients receiving 

prolonged CFZ therapy have been observed in the clinic [11, 15]. Furthermore, reasons 

underlying the lack of CFZ activity in patients with solid cancers remain elusive [126, 278]. 

In order to better address the question of why certain patients do not respond to CFZ 

therapy, it is crucial to understand the mechanisms involved in determining CFZ response. 

Several mechanisms of BTZ resistance have been proposed, including mutations in the 

target proteasome subunit β5 [146-148] as well as alterations to the ER stress-sensing [208] 

and the unfolded protein response pathways [173, 193]. However, it is unknown whether 

these resistance mechanisms would be applicable to CFZ. In cell line models of CFZ 

resistance, upregulation of the efflux transporter P-glycoprotein (P-gp) and changes in the 



76 

 

lyososomal-autophagy protein degradation pathway have been reported, but these have yet 

to be validated for their clinical relevance [240-242, 252]. Overall, much more remains to be  

 

investigated regarding factors determining clinical CFZ response.  

 

Two major types of proteasomes exist in mammalian cells: the constitutive proteasome (CP) 

and the immunoproteasome (IP). CP is normally expressed in all cell types and contains 

three catalytic subunits 1, 2, and 5, which display differential substrate preferences, 

often referred to as caspase-like (C-L), trypsin-like (T-L), and chymotrypsin-like (CT-L) 

activities, respectively [279]. IP is predominantly expressed in cells of hematopoietic origin 

and consists of a distinct set of three catalytic subunits 1i, 2i, and 5i in place of their 

constitutive counterparts. Both types of proteasomes have been reported to be upregulated 

in cancer cells, likely due to their rapid proliferation and high demand of proteasome 

activity [57, 280]. As well, alterations in proteasome catalytic activity profiles have been 

noted in cancer cells exposed to or adapted to PI [149, 170]. However, it is unclear whether 

these changes are part of a cellular response to proteasome inhibition or serve as driving 

factors of PI resistance.  

 

In the current study, we set out to investigate the mechanisms of CFZ resistance using two 

CFZ-adapted cancer cell lines, BxPC3 (human pancreatic cancer) and RPMI8266 (human 

MM). We observed that CFZ-resistant BxPC3 and RPMI-8226 cells displayed a substantial 

increase in the expression and activity of the 1/1i (C-L) catalytic subunits compared to 

parental controls. When CFZ-resistant BxPC3 cells were challenged with CFZ, we found that 

all proteasome activities were inhibited to near completion with the exception of the C-L 

activity. We utilized both chemical inhibition and genetic knockdown approaches to assess 

the effect of C-L proteasomal inhibition on CFZ sensitivity. Our results indicated that 

blockade of C-L proteasome activity potentiated the anti-cancer activity of CFZ in both 

BxPC3/CFZR and RPMI-8226/CFZR cells. Taken together, our findings are the first to 

demonstrate a potential role for the proteasomal C-L activity in acquired CFZ resistance and 

the selective C-L activity inhibition as an effective strategy to enhance CFZ efficacy and 

restore CFZ sensitivity. Such information may be important for the development of next-

generation PIs as well as potential strategies to overcome CFZ resistance in the clinic.  
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4.2 Materials and Methods 

4.2.1 Cell Lines and Reagents 

Human cancer cell lines BxPC3 (pancreas adenocarcinoma) and RPMI-8226 (B-lymphocyte) 

were obtained from American Type Culture Collection (ATCC) and grown under 

recommended culture conditions at 37°C and 5% CO2. BxPC3 cells were maintained in 

RPMI-1640 media supplemented with 10% fetal bovine serum (Clontech, Mountain View, 

CA) and RPMI-8226 cells were maintained in RPMI-1640 media supplemented with 15% 

fetal bovine serum, respectively. CFZ and BTZ were purchased from LC Laboratories 

(Woburn, MA). Human recombinant IFN- was obtained from eBioscience (San Diego, CA). 

Chemical probes targeting 1/1i proteasome subunits Ac-PAL-ek (PAL) and YU102, and 

fluorogenic proteasome substrates Ac-PAL-AMC, Ac-ANW-AMC, Ac-nLP-nLD-AMC, Ac-WLA-

AMC were synthesized in-house following standard peptide synthesis schemes. Ac-RLR-

AMC was purchased from Bostom Biochem, Inc. (Cambridge, MA). Human recombinant IFN-

was obtained from eBioscience (San Diego, CA). Antibodies targeting specific catalytic 

subunits were purchased as following: 1 from Thermo Fisher Scientific (Waltham, MA); 

1i and 5 from Santa Cruz Biotechnology (Dallas, TX); 2 from Enzo Life Sciences 

(Farmingdale, NY); 5i from Abcam (Cambridge, UK). -actin antibody was obtained from 

Cell Signaling (Danvers, MA). Cell Titer-Glo and Cell Titer Aqueous One reagents were 

purchased from Promega (Madison, WI). ON-TARGETplus SMARTpool PSMB6 and scramble 

siRNA were obtained from Darmacon (Lafayette, CO). Lipofectamine 2000 transfection 

reagent was purchased from Invitrogen (Carlsbad, CA). 

 

4.2.2 Cell Viability Assay 

CFZ-resistant sublines (BxPC3/CFZR and RPMI-8226/CFZR) and their parental controls 

(BxPC3/P and RPMI-8226/P) were seeded into 96-well plates at a starting density of 

10,000 cells/well. Following overnight incubation, cells were exposed to serially diluted 

drug solutions. Cell viability was measured 72 h after drug treatment using either Cell 

TiterGlo or the Cell Titer Aqueous One cell viability assay reagents according to 

manufacturers’ protocols. Luminescence was measured using a Veritas Microplate 

Luminometer (Turner BioSystems, Sunnyvale, CA) and absorbance at 490 nm was 
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measured using a SpectraMax M5 microplate reader (Molecular Devices, Sunnyvale, CA). 

Results were analyzed using GraphPad Prism (La Jolla, CA).  

 

4.2.3 Immunoblotting 

Cell lysates were prepared using a previously reported proteasome extraction lysis buffer 

(50 mM Tris-HCl, pH7.5, 250 mM sucrose, 5 mM MgCl2, 2 mM ATP, 1 mM DTT, 0.5 mM EDTA, 

and 0.025% digitonin) [281]. Protein concentrations of lysates were determined using the 

Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA). Lysates containing 

equivalent amounts of total protein were resolved by SDS-PAGE and transferred to a PVDF 

membrane. Membranes were blocked using 5% milk or BSA according to manufacturers’ 

protocols. Targeted proteins were detected using respective primary antibodies and 

appropriate secondary antibodies conjugated with horseradish peroxidase. 

Immunoreactive signal was visualized using Pierce ECL western blotting substrate (Thermo 

Fisher Scientific, Waltham, MA).  

 

4.2.4 Proteasome Activity Assay 

Using subunit-selective fluorogenic peptide substrates, activities of individual proteasome 

catalytic subunits were measured by monitoring the rate of substrate hydrolysis indicated 

by increasing fluorescence intensity over time [281, 282]. Briefly, cell lysates were prepared 

in digitonin-based lysis buffer (DLB; 20 mM Tris/Cl, 0.5 mM EDTA, pH 8.0) adapted from 

the previously published proteasome lysis buffer [281]. Protein lysates (5 g of total 

protein/well) were added to 96-well microplates and enzymatic reactions were initiated 

with the addition of proteasome substrates, data recording immediately followed. 

Fluorescence signals were recorded over 60 minutes at one reading per one minute using a 

SpectraMax M5 microplate reader at excitation/emission wavelengths of 360/460 nm. 

Proteasome substrate concentrations used were as following: Ac-PAL-AMC (1i activity, 

100 M), Ac-ANW-AMC (5i, 100 M), Ac-RLR-AMC (2/2i, 20 M), Ac-nLPnLD-AMC (1, 

100 M), and Ac-WLA-AMC (5, 20 M). 

 

4.2.5 siRNA-Mediated PSMB6 Knockdown 

Cells were transfected with PSMB6-targeting siRNA or scrambled siRNA as control 

according to manufacturer instructions. Briefly, BxPC3/CFZR cells were plated at a starting  
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density of 1x106 cells in a Corning 60mm TC-treated culture dish (Corning, NY) and allowed 

to attach for 24 h. Cells were treated with 125 nmole of siRNA prepared with 

Lipofectamine2000 following the recommended transfection protocol. Fresh media was 

provided every 24 h and cells were subcultured to maintain growth to approximately 70% 

confluency. Samples were collected 48 h following transfection and lysed using DLB. 



80 

 

 

4.3 Results 

4.3.1 Establishment of BxPC3/CFZR Cell Line with Acquired CFZ Resistance  

BxPC3/CFZR cells were established by exposing BxPC3/P cells to increasing concentrations 

of CFZ. BxPC3 cells adapted to grow in the presence of 100 nM CFZ appeared to have growth 

rates and cell morphology similar to parental controls (BxPC3/P). BxPC3/CFZR cells 

displayed resistance to both CFZ and BTZ (Figure 4.1A & 4.1B), as indicated by an 

approximately 2.3-fold increase in CFZ IC50 and 4.6-fold increase in BTZ IC50 compared to 

BxPC3/P cells (Table 4.1). Previously reported mechanisms involving mutations in the β5-

encoding PSMB5 gene [147, 148] and upregulation in P-gp activity [241, 242] were ruled 

out as potential contributors to the PI resistance observed in the current BxPC3/CFZR 

model.  

 

4.3.2 BxPC3/CFZR Cells Exhibit Altered Proteasome Catalytic Subunit Expression and Activity  

We examined whether there were any differences in the proteasome activities between 

BxPC3/CFZR and BxPC3/P cells. We first compared the levels of baseline activities of 

individual proteasome subunits in BxPC3/CFZR cells to those of BxPC3/P cells. We 

measured the proteasome activities of these drug-withdrawn BxPC3/CFZR cells (grown 

without the drug for up to one week) and compared them to those of parental control cells. 

Substantial differences in the proteasome activity profile of BxPC3/CFZR cells were 

observed compared to BxPC3/P controls. Notably, β1 and β5 activities in BxPC3/CFZR cells 

were substantially enhanced compared to parental counterparts while the activities of β1i 

and β5i were markedly decreased (Figure 4.1C). On the other hand, the T-L activity 

attributed to β2 and β2i remained unchanged. It should be noted that the T-L activity 

measured here is indicative of the cumulative β2/β2i activity, as the currently available 

probe substrate cannot differentiate between the active sites of the β2 and β2i subunits 

[282, 283]. Next, we investigated whether alterations in proteasome activities were due to 

changes in catalytic subunit expression. Our immunoblotting data showed elevated β1 and 

β5 levels and decreased β1i and β5i levels in BxPC3/CFZR cells compared to parental cells 

(Figure 4.1D), consistent with changes observed in proteasome activities (Figure 4.1C). We 

observed a marked increase in β2 expression but were unable to detect β2i expression due 
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to the lack of commercially available β2i-specific antibodies. Given that the overall T-L 

activity (attributed to both β2/β2i subunits) was unchanged in BxPC3/CFZR cells, the  

expression and activity of β2i is likely downregulated.  
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Table 4.1 CFZ and BTZ sensitivities in BxPC3/P and BxPC3/CFZR cells 

 

Cell Line 

IC50 (nM) 

Carfilzomib  Bortezomib  

BxPC3/P 54.5 10.4 

BxPC3/CFZR 124 (2.3x) 48 (4.6x) 

 

 

Comparison of CFZ and BTZ sensitivities in BxPC3/CFZR cells relative to parental controls. 

IC50 values are summarized along with fold changes (numbers in parenthesis). 
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Figure 4.1 Proteasome activity and expression profiles in BxPC3/CFZR cells.  

 

BxPC3 human pancreatic cancer cells were grown in the presence of carfilzomib (CFZ) and 

the adapted subline BxPC3/CFZR are resistant to both CFZ and bortezomib (BTZ). Relative 

cell viability data of BxPC3/P (open circles) and BxPC3/CFZR cells (solid circles) in 

response to CFZ (A) and BTZ (B). Cell viability results were normalized to no treatment 

control and shown as mean ± SEM. (C) BxPC3/CFZR cells displayed increased β1 and β5 

activities and decreased β1i and β5i activities compared to BxPC3/P control. Proteasome 

activities were measured using subunit-selective fluorogenic substrates in cell lysates 

collected from resistant or parental cells maintained in the absence of CFZ for 1 week. 

Percent values are represented as mean ± SEM. (D) BxPC3/CFZR cells exhibited higher β1, 

β2, and β5 expression levels compared to BxPC3/P cells. BxPC3/CFZR lysates were 

collected from cells maintained in the absence of CFZ for 1 week. 
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4.3.3 Induction of IP Expression Sensitizes Cells to CFZ 

Based on the marked decreases in 1i and β5i levels of expressions and activities in 

BxPC3/CFZR cells, we wanted to examine whether the restoration of 1i and 5i levels in 

BxPC3/CFZR cells may affect CFZ sensitivity. We exposed BxPC3/CFZR cells to IFN- a 

known inducer of the IP catalytic subunits, and found an expected increase in 1i and 5i IP 

expression (Figure 4.2A), as well as in 5i activity (Figure 4.2B). Consistent with the 

previously reported effects of IFN-, we also detected a concurrent decrease in constitutive 

proteasome subunits compared to untreated cells (Figure 4.2A). Pretreatment with IFN- 

sensitized BxPC3/CFZR cells to both CFZ- and BTZ-induced cytotoxicity (Figure 4.2C). 

Similar sensitizing trends were also observed in BxPC3/P cells, however our results also 

showed that IFN- treatment alone had some inherent toxicity toward BxPC3/P cells 

(Figure 4.2D). Together, these findings suggest that proteasome composition of cells may be 

an important factor determining PI sensitivity in both parental and resistant cells. 

Additionally, our results suggest that high constitutive proteasome expression may be 

favorable for BxPC3 survival against CFZ- and BTZ-induced cytotoxicity, whereas high IP 

expression may be associated with increased PI sensitivity.  
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Figure 4.2 IFN--induced alterations in proteasome composition impact CFZ sensitivity. 

(A) Treatment with 150 U/ml IFN-γ induced expression of IP catalytic subunits and 

downregulated CP catalytic subunits in both BxPC3/P and BxPC3/CFZR cells. (B) 5i  

 



86 

 

activity increased approximately 6-fold upon IFN- treatment, whereas 5 activity was  

decreased by approximately 1.5-fold. (C) IFN- treatment sensitized BxPC3/CFZR cells to 

both CFZ and BTZ. (D) Pretreatment of IFN- sensitized BxPC3/P cells to CFZ and BTZ. IFN- 

treatment alone was also toxic to BxPC3/P cells. Data from 72h viability are normalized to 

no treatment control, percent values are shown as mean ± SEM.
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4.3.4 C-L Activity of the Proteasome is Conserved in BxPC3/CFZR Cells Treated with CFZ 

In addition to assessing the basal proteasome activity profiles of BxPC3/CFZR cells grown in 

the absence of CFZ, we also compared the proteasome inhibitory profiles of BxPC3/CFZR 

and parental cells in response to CFZ. BxPC3/P or BxPC3/CFZR cells grown in the absence 

of CFZ for one week were treated with 100 nM CFZ and individual proteasome activities 

were assessed 24 h following treatment. Since 100 nM CFZ does not significantly affect 

BxPC3/CFZR growth, we were also able to continue following the changes in proteasome 

activities at 48 and 72 h after CFZ treatment. All proteasome catalytic activities were 

substantially inhibited in BxPC3/P cells 24 h following CFZ treatment. Similarly, all 

proteasome activities were inhibited considerably, with the exception of β1 activity (Figure 

4.3). Remarkably, 1 activity in BxPC3/CFZR cells was both upregulated at the baseline 

level (163.9% of BxPC3/P) and preserved in the presence of CFZ (115% of BxPC3/P after 

24 h exposure to CFZ) (Table 4.2). We observed further upregulation in 1 activity at 72 h 

following CFZ treatment, as well as recuperation of β5 activity (Table 4.2). These 

observations prompted us to examine whether the preservation of β1 activity may be a 

contributing factor to BxPC3/CFZR cell survival against cytotoxic proteasome inhibition by 

CFZ. 
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Table 4.2 Comparison of proteasome inhibitory profiles following CFZ treatment in 

parental and CFZ-resistant BxPC3 cells 

 

Time following 

CFZ treatment  

% Proteasome Activity of BxPC3/P Baseline 

β1 β2/β2i β5 β1i β5i 

0 h 163.9 93.9 200.7 47.7 23.4 

24 h 115.0 54.6 41.7 24.0 13.4 

72 h 157.7 85.8 177.9 70.0 35.5 

 

Summary of the proteolytic activities of individual proteasome catalytic subunits in 

BxPC3/CFZR cells following 0, 24, and 72 h of CFZ treatment (100 nM). Percent proteasome 

activities are normalized to each respective BxPC3/P baseline activity in order to reflect 

both changes to the baseline activities and the activity inhibitory profiles of BxPC3/CFZR 

cells. Values are represented mean of three replicates.
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Figure 4.3 CFZ-mediated inhibition of proteasome catalytic activities in BxPC3/P vs 

BxPC3/CFZR cells.  

 

β1 activity is preserved in BxPC3/CFZR cells after exposure to 100 nM CFZ. BxPC3/P or 

BxPC3/CFZR cells cultured in the absence of CFZ for 1 week were treated with 100 nM CFZ. 

All proteasome activities were substantially inhibited in both BxPC3/P and BxPC3/CFZR 

cells in response to CFZ, with the exception of β1 activity in BxPC3/CFZR cells. Cell lysates 

were collected 0 or 24 h following CFZ treatment and proteasome activities were measured 

using subunit-selective fluorogenic proteasome substrates. Results are presented as rates of 

substrate hydrolysis indicating proteasome activity, values represented graphically as mean 

± SEM.  
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4.3.5 Chemical Inhibition of C-L Activity Sensitizes BxPC3/CFZR Cells to CFZ 

In order to investigate the effect of inhibiting the C-L activity of the proteasome on the CFZ 

sensitivity of BxPC3/CFZR cells, we used two proteasome inhibitors YU102 and Ac-PAL-ek 

(PAL) that target the β1/ β1i subunits responsible for the C-L activity (Figure 4.4) [266, 

284]. To first determine the potency and selectivity of YU102 and PAL in BxPC3/CFZR cells, 

we assessed the impact of YU102 and PAL treatment on the different catalytic activities of 

the proteasome. Treatment with either YU102 (3 μM) or PAL (500 nM) in BxPC3/CFZR cells 

lead to nearly complete blockade of the β1/ β1i activities without significantly affecting 

activities of the other catalytic subunits (Figure 4.4). At 10 μM, YU102 modestly inhibited 

β5/5i activities (Figure 4.4A), whereas PAL resulted in an enhancement of the β5 activity 

(Figure 4.4B).  

 

In subsequent experiments, we used YU102 and PAL at the β1/ β1i-selective concentrations 

determined above to further assess the effect of inhibiting the C-L activity on the CFZ 

sensitivity of BxPC3/CFZR cells. Treatment of 3 μM YU102 or 500 nM PAL did not have any 

cytotoxic effects in BxPC3/CFZR cells (Figure 4.4C, blank bars). This is consistent with 

previous reports suggesting that inhibition of C-L activity alone does not impact cell 

viability [168]. Conversely, co-treatment of BxPC3/CFZR cells with a non-toxic 

concentration of CFZ (50 nM) and YU102 or PAL resulted in enhanced cytotoxic effects 

(Figure 4.4C, filled bars) compared to either agent alone. Additionally, YU102 also 

sensitized BxPC3/CFZR cells to BTZ (Figure 4.4D), albeit to a lesser extent than effects 

observed with CFZ.  
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Figure 4.4 β1/β1i-selective proteasome inhibitors YU102 and Ac-PAL-ek sensitize 

BxPC3/CFZR cells to CFZ.  

 

Proteasome inhibitors YU102 (A) and PAL (B) inhibit β1 and β1i activities selectively. 

BxPC3/CFZR cells grown in the absence of CFZ for 1 week were treated with 3 μM YU102 or 

500 nM Ac-PAL-ek (PAL). Proteasome activities were measured 1 h following treatment 

with YU102 or PAL. Percent activities are normalized to DMSO control and shown as mean 

± SEM. (C) Co-treatment of BxPC3/CFZR cells cultured in the absence of CFZ for 1 week with 

a non-toxic concentration of CFZ (50 nM) and 3 μM YU102 resulted in enhanced cytotoxic  
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activity compared to either agent alone. Co-treatment with 500 nM PAL resulted in similar  

potentiating effects on CFZ activity albeit to a lesser extent compared to YU102. (D) Co-

treatment with YU102 (3 and 10 μM) had slight potentiating effects on BTZ activity in 

BxPC3/CFZR cells. Cell viability was measured at 72h following drug treatment, results are 

represented as percent viability normalized to DMSO control and shown as mean ± SEM. 
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4.3.6 PSMB6 Knockdown Potentiates CFZ Activity in BxPC3/CFZR Cells 

As a complimentary approach to the chemical inhibition strategy, we also utilized a genetic 

knockdown approach to further assess the role of the C-L activity of the proteasome in 

determining CFZ sensitivity. We transfected BxPC3/CFZR cells with siRNA targeting the 

PSMB6 gene (siPSMB6) encoding β1 and confirmed knockdown by analyzing β1 activity 48 

h following transfection. We observed complete inhibition of β1 activity in BxPC3/CFZR 

cells transfected with siPSMB6 indicating β1 knockdown (Figure 4.5). Additionally, we also 

observed decreases in activity levels of β5 and β1i (Figure 4.4=5A), likely due to the 

cooperative nature of proteasome assembly and feedback regulation of proteasome genes 

[285]. When challenged with 25 nM and 50 nM CFZ, BxPC3/CFZR cells transfected with 

siPSMB6 displayed increased sensitivity to CFZ-mediated cytotoxicity compared to 

BxPC3/CFZR cells transfected with scrambled control siRNA (Figure 4.5B). Similarly 

potentiating effects were also observed with BTZ and PSMB6 knockdown (Figure 4.5C). 

 



94 

 

 

 

 

    

 

Figure 4.5 PSMB6 knockdown sensitizes BxPC3/CFZR cells to CFZ and BTZ.  

 

(A) Transfection of BxPC3/CFZR cells with PSMB6-targeting siRNA (siPSMB6) markedly 

decreased β1, β1i, and β5 proteasome activities in BxPC3/CFZR cells. Proteasome activities 

were measured by selective fluorogenic substrates, results are represented as percent  
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activity of mock controls and shown as mean ± SEM. (B) siPSMB6 transfection potentiated  

CFZ cytotoxicity in BxPC3/CFZR cells. siPSMB6 was transfected at 125nmole for 48h 

followed by 25 nM CFZ treatment. (C) siPSMB6 transfection potentiated BTZ cytotoxicity 

dose-dependently in BxPC3/CFZR cells. Percent viabilities are normalized to mock control 

and represented as mean ± SEM. 
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4.3.7 YU102 Sensitizes RPMI-8226/CFZR Cells to CFZ 

In order to examine the relevance of our findings in another model, we established a subline 

of RPMI-8226 MM cells with acquired resistance to CFZ (RPMI-8226/CFZR). RPMI-

8226/CFZR cells were adapted to a final concentration of 30 nM CFZ and exhibited an 

approximately 36-fold increase in CFZ IC50 value compared to RPMI-8226/P cells (Figure 

4.6A, IC50 values of 269.8 nM vs. 7.4 nM). We did not detect any mutations in the β5-

encoding gene, thus ruling out its potential contribution to CFZ resistance in RPMI-

8226/CFZR cells. We found that P-gp activity had a contributing role to the CFZ resistance 

in RPMI-8226/CFZR cells. However, P-gp inhibition by Reversin 121 (P121) [241] only 

partially restored CFZ sensitivity (Figure 4.6B), suggesting that other mechanisms may also 

contribute to CFZ resistance in RPMI-8226/CFZR cells. To further explore additional 

resistance mechanisms, we took a similar approach as described earlier and compared the 

proteasome activity profile of RPMI-8226/CFZR cells grown in the absence of CFZ for one 

week to that of RPMI-8226/P cells. We found that RPMI-8226/CFZR cells displayed 

increased levels of β1, β1i, and β2/2i activities (Figure 4.6B, filled bars) and decreased 

levels of β5 and β5i activities (Figure 4.6B, blank bars) compared to RPMI-8226/P controls. 

We then assessed the effect of β1/1i inhibition on CFZ sensitivity in RPMI-8266/CFZR cells 

using the YU102. Consistent with results in BxPC3/CFZR cells, we found that co-treatment 

of 3 μM YU102 with 100 nM CFZ (no cytotoxicity alone) led to enhanced cell-killing effects 

in RPMI-8226/CFZR cells (Figure 4.5C).  
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Figure 4.6 Inhibition of C-L proteasome activity sensitizes CFZ-adapted RPMI-8226 

multiple myeloma cells to CFZ.  

 

(A) RPMI-8226/CFZR cells display an approximately 36-fold increase in CFZ IC50 compared 

to RPMI-8226/P cells. (B) P-gp inhibition by small peptide inhibitor P121 partially restores 

CFZ sensitivity in BxPC3/CFZR cells. (C) RPMI-8226/CFR cells exhibited increased β1, β1i, 

and β2/2i baseline activities compared to RPMI-8226/P cells. Activities were measured in 

cells grown in the absence of drug for 72h. Results are normalized to each respective 

activity of RPMI-8226/P cells and shown as percent activity of parental baseline controls. 

(D) YU102 (3µM or 10µM) potentiated CFZ cytotoxicity dose-dependently in RPMI-

8226/CFZR cells. Cell viability was measured 72h following treatment. Results are shown as 

% cell viability of DMSO control, represented as mean ± SEM. 
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4.4 Discussion 

Drug resistance is a major factor limiting the utility of CFZ in hematological and non-

hematological cancers. In order to harness the full therapeutic potential of CFZ, it is 

essential to enhance our understanding of the mechanisms underlying CFZ resistance. Here, 

we report a previously unexplored role for the C-L activity of the proteasome in conferring 

CFZ resistance to cancer cells. In the current study, we observed that CFZ-resistant BxPC3 

and RPMI-8226 cells displayed elevated β1 expression and activity, and that 1 activity 

remained largely uninhibited when challenged by CFZ. We interrogated the role of the C-L 

proteasome activity in determining PI resistance by using chemical inhibition and genetic 

knockdown approaches and found that inhibition of the C-L proteasome activity sensitized 

resistant cells to CFZ. These findings suggest an important role for the C-L activity of the 

proteasome in cell survival against CFZ-mediated cytotoxicity. The findings reported here 

provide a rationale for the development of PIs targeting the C-L activity as a potential 

strategy to improve CFZ efficacy and overcome resistance. Future investigations using in 

vivo and patient-derived models are warranted to determine the clinical utility of targeting 

the C-L activity of the proteasome.  

 

The current strategy of targeting the C-L proteasome activity to enhance CFZ efficacy is 

supported by previous studies which suggested that the C-L activity of the proteasome plays 

a significant role in the survival of cancer cells against proteasome inhibition. For instance, 

PI-induced upregulation of 1 expression in cells was associated with tolerance to oxidative 

and proteotoxic stress, while genetic knockdown of 1 enhanced cellular sensitivity to the 

effects of proteasome inhibition [166, 167]. In general, alterations in the composition of 

proteasome catalytic subunits have been associated with cellular response to PI [165, 286]. 

However, the direct impact of such alterations in proteasome expression on the PI 

sensitivity of cells has not been addressed until recently. In this regard, a recent report 

demonstrated that selective inhibition of the T-L proteasome activity enhances the 

cytotoxic effects of BTZ and CFZ against resistant MM cells [169]. These findings were 

particularly interesting because they provide the first evidence linking PI sensitivity to a 

non-CT-L activity of the proteasome, as the CT-L activities have generally been recognized 

as the most important activity mediating the anti-cancer effects of PI drugs [287, 288]. 
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However, no investigations have been carried out to assess the relationship of C-L 

proteasome activity and PI resistance.   

 

In the current study, we explored how the C-L proteasome activity may contribute to PI 

resistance in cancer cells. Our findings point to the importance of proteasome activities 

beyond the CT-L activity in determining cancer sensitivity to PI therapy [169]. However, it 

should be noted that alterations in the proteasome expression and activity profiles in 

response to PI may vary in different models of PI resistance. Whereas Kraus et al. reported 

2/2i activity as an important contributor to PI resistance in U266 and MM1S MM models 

[169], our results suggest a predominant role for the 1/1i activities in conferring 

resistance in the BxPC3 and RPMI-8226 models. Currently it is not known how selective 

alterations in the C-L or T-L activities of proteasomes are achieved in response to PI 

treatment and further investigations are warranted to understand the regulatory 

mechanisms involved.  

 

To further interrogate the role of C-L activity in CFZ resistance, we used a chemical 

inhibition approach. YU102 and PAL were initially developed as inhibitors selectively 

targeting the 1/1i subunits of the proteasome, but also affected activities of the  5/5i 

subunits at high concentrations [57, 284]. This was not entirely surprising as previous 

studies have shown that proteasome inhibitors utilizing leucine moieties in their P1 

positions such as YU102 and PAL may also target  5/5i subunits at high concentrations 

[282, 283]. Similar to the chemical inhibition approach, genetically knocking down 

individual proteasome subunits also has limitations. The cooperative nature of the 

proteasome assembly process makes it difficult to assess the effect of knocking down an 

individual subunit without affecting the function of the proteasome as a whole. Additionally, 

genetically silencing specific proteasome subunits may also trigger a feedback regulatory 

mechanism of non-targeted proteasome subunits [289, 290]. Despite these experimental 

limitations, our results appear to consistently support the fact that inhibition of the the C-L 

activity of the proteasome can enhance the anti-cancer effects of BTZ or CFZ.  

 

In addition to the 1-mediated resistance described in the findings here, we also examined 

whether previously reported mechanisms of CFZ and BTZ resistance play a role here. We  
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assessed the status of 5 mutations in our CFZ-resistant cell lines by sequencing and found 

no mutations present, suggesting that 5 mutation is not relevant in the current CFZ 

resistance models. Additionally, we examined whether increased P-gp activity contributes 

to CFZ resistance in the cell line models here by examining the effect of P-gp inhibition on 

CFZ sensitivity. While we detected no effect in BxPC3/CFZR cells, we found that P-gp 

inhibition significantly sensitized RPMI-8226/CFZR cells to CFZ, indicating that P-gp activity 

is a determining factor to CFZ sensitivity in these cells. However, despite the role of P-gp, 

notable changes in proteasome composition and activities were observed nonetheless, 

suggesting multiple mechanisms of resistance at play. In line with this, our lab has 

previously observed alterations in CFZ binding and proteasome expression in other 

resistant cell lines despite P-gp overexpression, which further support that multiple 

resistance mechanisms may exist in a given cell line model, and that proteasome-dependent 

changes may not be mutually exclusive to proteasome-independent alterations in 

contribution to overall resistance. Consistent with this, results from the present study also 

showed that inhibition of 1/1i proteasome activities was efficacious in sensitizing both P-

gp mediated and non-P-gp-mediated resistant cells.  

 

Our results also showed that IFN--induced alterations to proteasome composition, 

specifically the upregulation of IP catalytic subunits and concurrent downregulation of 

constitutive catalytic subunits, sensitized both BxPC3/P and BxPC3/CFZR cells to CFZ and 

BTZ. These findings were complementary to our results two ways. First, the effects of IFN- 

treatment helped confirm the relevance of the changes in proteasome subunit expression 

detected in our resistant cell lines to their PI sensitivities. Second, the impacts observed on 

BTZ and CFZ sensitivities in IFN--treated cells further provided evidence for the 

importance of CP vs IP activities in in conferring resistance in BxPC3/CFZR cells. Since 

YU102 and PAL both cross-reacted with multiple CP and IP catalytic subunits, chemical 

inhibition in this case could not easily differentiate the contributions of 1 and 1i to CFZ 

resistance. In regards to this, the sensitizing effects of IFN- treatment in BxpC3/CFZR cells 

suggested that upregulation of 1 may be the more dominant resistance-conferring factor in 

this case. Overall, our findings are also in agreement with previously reported findings 

which suggested that IP downregulation was responsible for BTZ resistance observed in 

MM cell lines and patient samples [172]. Furthermore, others have also shown that  
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induction of IP expression in BTZ- and CFZ-resistant cells can restore PI sensitivity [171]. 

Taken together, our findings are in support of the notion that IP expression is correlated 

with PI sensitivity and suggest that baseline IP expression may be used as a predictor of PI 

response. 

 

The overall outcomes of both chemical and genetic knockdown approaches in the current 

study provide further basis for the combined inhibition of CT-L and C-L proteasome 

inhibition as a potential strategy to overcome PI resistance. These findings provide a 

rationale for the design and development of future proteasome inhibitors with more 

general inhibitory activities toward multiple catalytic sites of the proteasome which may 

yield superior anti-cancer efficacy compared to CT-L-selective compounds. Our results 

further support that overall cellular sensitivity to PI agents may be determined by the 

activities and possible interactions of multiple proteasome catalytic subunits. Thus, it may 

be necessary to more carefully evaluate how the modulation of multiple proteasome 

activities may improve the overall anti-cancer efficacy of PI therapy. Going forward, 

validating the effect of C-L inhibition in vivo and in clinically-relevant models are necessary 

to better understand the translatability and therapeutic potential of this approach. 

Optimization and further characterization of proteasomal-dependent alterations in patient-

derived CFZ-resistant cells will also be important to further demonstrate the prevalence 

and relevance of C-L activities in clinical CFZ resistance.  

 

4.5 Conclusion 

In summary, we report that the upregulation of the C-L activity of the proteasome may 

contribute to CFZ resistance, and that co-inhibition of the CT-L and C-L activities may 

overcome CFZ resistance in pancreatic cancer and MM cells. Findings presented here 

provide basis for the development of new PIs targeting the C-L activity as strategies to 

overcome CFZ resistance. Such investigations may be important in providing new 

therapeutic options for cancer patients with PI resistance. 
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Chapter 5 POLYMER MICELLE FORMULATIONS OF PROTEASOME INHBITOR 

CARFILZOMIB FOR IMPROVED METABOLIC STABILITY AND ANTI-CANCER EFFICACY 

IN HUMAN MULTIPLE MYELOMA AND LUNG CANCER CELL LINES 

 

The work in this chapter has been published in the Journal of Pharmacology and 

Experimental Therapeutics 2014 355(2): 168-73 [291]. Permission to publish in the current 

dissertation was obtained from Journal of Pharmacology and Experimental Therapeutics. 

 

5.1 Introduction 

The proteasome is a multimeric protease complex that is central to the highly-regulated 

ubiquitin-proteasome protein degradation system [292]. The proteasome plays a key role in 

regulating numerous signaling pathways involved in cell proliferation, cell cycle control, 

and apoptosis, which are often found to be dysregulated in malignant cells [2, 293]. During 

the past decade, proteasome inhibition has proven to be an effective anti-cancer strategy 

with the FDA approval and revolutionary success of the first-in-class proteasome inhibitor 

agent BTZ (Velcade®, BTZ) in the treatment of multiple myeloma [294]. However, BTZ 

therapy has several drawbacks including dose-limiting neurotoxicity that is likely due to off-

target interactions of its boronic acid pharmacophore [295, 296]. This issue was addressed 

with the approval of a second-generation proteasome inhibitor CFZ (Kyprolis®, CFZ). CFZ is 

a tetrapeptide equipped with a C-terminal epoxyketone warhead that irreversibly interacts 

with the active site of the proteasome in a more selective manner than BTZ [8]. CFZ has 

demonstrated efficacy in both BTZ-naïve and BTZ-resistant patients, and possesses a more 

favorable toxicity profile compared to BTZ [13, 14, 297]. With these improvements, CFZ 

along with lenalidomide and dexamethasone has been recently shown to provide 

unprecedented benefit in patients with multiple myeloma [131]. 

 

Due to its promising anti-cancer activities and favorable toxicity profile, CFZ has also been 

explored as a potential therapeutic for malignancies other than multiple myeloma. Results 

from several investigations indicated that CFZ has potent cell-killing activity toward various 

solid cancer cell lines [6, 298, 299]. Based on these promising preclinical findings, a Phase  
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I/II study was initiated to further assess the therapeutic potential of CFZ in patients with  

advanced solid cancers. Disappointingly, CFZ demonstrated little to no anti-tumor activity 

clinically [17]. Although the exact mechanisms underlying the discrepancies between the in 

vitro and clinical data are currently unknown, one potential explanation is the rapid 

metabolic degradation of CFZ in vivo [136]. CFZ degradation in humans is mainly due to 

peptide cleavage and epoxide ring opening, resulting in plasma half-life of less than 30 min 

[137]. We postulated that the fast metabolic inactivation of CFZ in the body might hinder 

the ability of the active drug to accumulate in solid cancer tissues, leading to insufficient 

target inhibition and poor clinical efficacy. Thus, increasing the metabolic stability of CFZ 

may serve as a strategy to improve its overall anti-cancer efficacy.  

 

Another major challenge in delivering CFZ in vivo is its poor water solubility. Currently, this 

problem is addressed by complexing a 60 mg dose of CFZ with 3,000 mg of sulfobutylether 

β-cyclodextrin (SBECD) (FDA prescribing information). SBECDs interact with hydrophobic 

portions of drugs to reduce their interactions with the environment, thus increasing their 

solubility [300]. SBECD was however shown to offer little protective effect against 

metabolic degradation of CFZ in vivo [137]. Thus, it would be useful to develop alternative 

CFZ formulations that can improve its metabolic stability in addition to solubility. Our 

current study explored the utility of polymer micelles in improving the metabolic stability 

of CFZ against enzyme-mediated degradation and delivering CFZ in a controlled manner. 

Polymer micelles are highly efficient in entrapping hydrophobic drug molecules inside the 

core and prevent the drugs from precipitating, binding to serum proteins, or being 

degraded by enzymes in the body [301]. Polymer micelles may also be effective in 

increasing accumulation of anticancer drugs in solid tumors by passing through the leaky 

blood vessels near tumors and sparing healthy organs with well-organized blood vessels 

[302]. Additionally, polymer micelles are readily modified chemically or with attachment of 

surface ligands to control drug release patterns as well as cell-targeted drug delivery, 

making them versatile vehicles for delivery [303]. Previous studies have shown that 

polymer micelles significantly reduced toxicity and improved anticancer activity of 

chemotherapeutics by achieving sustained drug release and increasing drug exposure to 

cancer cells [304, 305]. 
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In our current study, we prepared micelle particles composed of biodegradable block 

copolymers poly-(ethylene glycol) (PEG) and poly-(caprolactone) (PCL), both of which are 

generally recognized as safe by the FDA. PEG is a hydrophilic polymer that can improve the 

solubility as well as increase the circulation time of the particles inside the body [306]. PCL 

provides the hydrophobic platform with which CFZ molecules can readily interact, allowing 

for efficient drug encapsulation [307]. We prepared six PEG-PCL-based micelle formulations 

with varying molecular weights of the PEG-PCL block to increase drug loading and with 

calcium phosphate (CP) or deoxycholic acid (DCA) excipients introduced to stabilize the 

core of the polymer micelles. To simplify the polymer micelle formulation, we used PEG 

end-capped with a methoxy group in our study.  

 

Here, we report our results demonstrating the potential of polymer micelle formulations of 

CFZ in improving metabolic stability and thereby extending therapeutic applicability of CFZ. 

These results may serve as the foundation for further optimization of CFZ formulations and 

investigations of their potential benefits for the treatment of various types of cancers. 
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5.2 Materials and Methods 

5.2.1 Cell Lines and Reagents 

PEG N-hydroxysuccinimide ester was obtained from NanoCS (Boston, MA). Branched 

poly(ethylene imine) (25,000 molecular weight), palmitoyl chloride, HEPES buffer, dimethyl 

sulfoxide (DMSO), tetrahydrofuran (THF), diethyl ether, dimethyl formamide and ethanol 

were purchased from Sigma Aldrich (St. Louis, MO). PEG-PCL block copolymers with 

molecular weight 5,000-2,300 (PEG-PCL 5-2) or 5,000-5,500 (PEG-PCL 5-5) were purchased 

from Polymer Source (Montreal, CA). CFZ was purchased from LC laboratories (Woburn, 

MA). All other reagents used in the metabolism studies were purchased from Sigma-Aldrich 

(St. Louis, MO). Established human cancer cell lines derived from lung (H460) and B-

lymphocytes (RPMI-8226) were purchased from American Type Culture Collection (ATCC) 

and maintained according to ATCC recommended conditions. All other reagents were 

obtained from Fisher Scientific (Waltham, MA) unless mentioned otherwise.  

 

5.2.2 Preparation of CFZ-loaded polymer micelles  

We prepared a total of six CFZ-loaded polymer micelle formulations in this study as 

summarized in Table 1: CFZ-loaded micelles, prepared from PEG-PCL 5-2 or PEG-PCL 5-5, 

with CP, DCA, or no excipient. In a 50 mL round-bottom flask, 1 mL CFZ (1 mg/mL ethanol) 

and 100 μL PEG-PCL (100 mg/mL ethanol) stock solutions were mixed at 60°C in the 

presence of additives: 20 μL ethanol was added for excipient-free micelles, 20 μL Na2HPO4 

(10 mg/mL in water) for CP-containing micelles, and 20 μL DCA (10 mg/mL in ethanol) for 

DCA-containing micelles. Ethanol was evaporated under reduced pressure by using a 

rotatory evaporator to create a thin film at the bottom of each flask. The thin film was 

rehydrated with deionized water and gently mixed to allow PEG-PCL to self-assemble into 

polymer micelles entrapping CFZ. For CP-containing micelles, 20 μL CaCl2 (10 mg/mL water) 

was added in this step to prepare CP-containing micelles. The flask was subsequently 

sonicated for 5 min, and the solution was transferred to a conical tube and centrifuged to 

remove insoluble free drug, insoluble excipients, and other impurities. The supernatant 

containing CFZ-loaded micelles was collected and divided into tubes for freeze-drying. 

Freeze-dried micelles were weighed and stored at -20°C until use. The extent of drug  
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loading was determined by mass percent composition of CFZ in total CFZ-loaded  

micelles (w/w %). We quantified CFZ in micelles by high performance liquid 

chromatography (HPLC, Shimadzu LC20 system, Agilent XDB-C18 column equipped with a 

photo diode array detector (SPD-M20A using a mobile phase of H2O:CH3CN with 0.1% 

formic acid (45:55, v/v) at a flow rate of 1 mL/min, 40°C)). Encapsulation efficiency was 

defined as the percent of drug encapsulated to the drug added. Drug loading efficiency was 

defined as the weight percent of drug encapsulated to the weight of polymer added. 

According to the CFZ w/w %, we reconstituted freeze-dried micelles in water or buffer 

solutions and serial dilutions were made to prepare CFZ concentrations for experiments 

described below. 

 

5.2.3 In vitro metabolism of CFZ polymer micelles in mouse liver homogenates   

All animal studies were approved by the Institutional Animal Care and Use Committee at the 

University of Illinois at Chicago. Whole livers were harvested from five female C57BL/6J 

mice (8 weeks old, liver weight 1.203 g-1.431 g) and washed three times with ice-cold PBS 

(pH 7.4) in petri dishes. Livers were cut into small pieces and homogenized with a 15 mL 

glass dounce homogenizer (Kimble Glass) in a 1:5 volume of ice-cold PBS. Liver 

homogenates (200 mg/mL) were pre-incubated at 37°C for 1 min before the addition of free 

CFZ or micelle formulations of CFZ (final CFZ concentration of 1 μM). An aliquot of 40 µL of 

reaction mixture was taken at 0, 5, 10 and 20 min at 37°C and quenched with 120 µL cold 

acetonitrile containing phenytoin (0.5 µM, an internal standard) and kept on ice for 30 min, 

followed by centrifugation at 16,100g for 15 min at 4°C. The concentrations of CFZ in the 

supernatants were measured using an Agilent 1200 HPLC interfaced with Agilent 6410 

Triple Quadrupole tandem mass spectrometry (MS/MS) equipped with an electrospray ion 

source. Briefly, chromatographic separation was carried out with a Waters XTerra MS C18 

column (2.1×50 mm, 3.5 µm; Waters Corporation, Milford, MA). Mobile phase was delivered 

at 250 µL/min, and the gradient was initiated at 90% A-10% B [A, 0.1% (v/v) aqueous 

formic acid; B, acetonitrile]. The proportion of mobile phase B was increased to 90% over 1 

min, held constant for 2 min, and then restored to the initial composition. Following the 

injection of 10μL samples, CFZ and phenytoin were detected by MS/MS spectra obtained in 

the positive ion mode; CFZ by detecting the transitions 720.4 → 402.2 m/z and phenytoin 

by detecting the transitions 253.2 → 182.2 m/z.  All data were acquired employing Agilent  
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6410 Quantitative Analysis software.  

 

5.2.4 In vitro CFZ release profiles of polymer micelle formulations 

Each formulation was dissolved in phosphate-buffered saline (PBS) to an equivalent CFZ 

concentration of 100 µM. For each sample, 100 µL of polymer micelle formulation was 

added to five dialysis cups and dialyzed against 1 L of PBS at 37 °C. A sample of 35 µL of 

each formulation was removed from the dialysis cups at 0, 1, 3, 6, 24, 48 and 72 h. CFZ 

concentration was analyzed by HPLC equipped with a photo diode array detector described 

above. Percent changes in CFZ concentrations were obtained by normalization to the value 

obtained at 0 h for each formulation. Drug release profiles for each formulation were 

analyzed by assuming second-order release kinetics, and by calculating the area under the 

curve (AUC) values.   

 

5.2.5 Cell Viability Assay 

H460 and RPMI-8226 cells were seeded in 96-well plates at 5,000 and 10,000 cells per well, 

respectively. Following overnight incubation, cells were treated with free CFZ solution or 

one of the six CFZ micelle formulations at various concentrations for 72 h. Cell viability was 

measured using the CellTiter-Glo luminescent cell viability assay (Promega) following 

manufacturer’s protocol. Relative cell viability was obtained from arbitrary luminescence 

units by normalization to drug-naïve controls. Statistical analysis was carried out using 

GraphPad Prism (GraphPad Software). One-way ANOVA was used to compare multiple 

groups and p<0.05 was deemed to be statistically significant.
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5.3 Results 

5.3.1 Preparation of polymer micelle particles  

Our initial goal was to identify a polymer micelle formulation that will allow us to achieve 

improved metabolic stability of CFZ. We prepared six polymer micelle formulations of CFZ 

composed of PEG-PCL block copolymers with identical 5000 g/mole PEG portions and 

varying PCL portions to maximize drug loading (Table 5.1). Micelles containing short (2,300 

g/mole) or long (5,500 g/mole) PCL portions are designated as PEG-PCL 5-2.3 (PM1) and 

PEG-PCL5-5 (PM2), respectively. We also incorporated excipients calcium phosphate (CP) 

or deoxycholic acid (DCA) into PM1 or PM2 formulations, with the goal of improving overall 

stability of the micelle particles. Formulations with the added CP or DCA were found to have 

increased weights, consistent with successful incorporation of these excipients into the 

micelle particles. To ensure the final particles contained mainly fully incorporated particles, 

insoluble CP or DCA was removed by subsequent centrifugation of reconstituted micelle 

solution. The drug loading efficiencies of micelle particles with differing sizes of the PCL 

portions and different excipients varied in the following order: PM1-DCA > PM1 ≈ PM1-CP > 

PM2-CP > PM2-DCA > PM2 (Table 5.1).  

 

5.3.2 Polymer micelle formulations improve CFZ metabolic stability to varying extents in vitro 

The metabolic stability profiles of the six CFZ-containing micelle formulations were 

compared against free CFZ solution by measuring the rate of CFZ disappearance in the 

presence of mouse liver homogenates (Fig 5.1). Our results showed that free CFZ rapidly 

disappeared in the presence of mouse liver homogenates, with less than 10% of the active 

drug remaining in 10 min of incubation. In contrast, all six micelle formulations of CFZ had 

improved stability profiles, demonstrated by at least 50% of the active CFZ remaining after 

10 min of incubation (Fig 5.1). Among the six different micelle formulations, PM1-CP 

particles demonstrated the least protective effect against CFZ degradation in the presence 

of mouse liver homogenates. All other micelle formulations displayed similar protective 

effects against the metabolic degradation of CFZ. Similar results were also obtained using 

human liver microsomes. 
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Table 5.1 Description of the six polymer micelle formulations of CFZ and their respective 

drug loading and encapsulation efficiencies. 

 

Formulation Description 

Drug Loading 

Efficiency 

(%) 

Encapsulation 

Efficiency (%) 

PM1 PEG-PCL 5-2.3 kD 4.0 40.0 

PM1-CP PEG-PCL 5-2.3 kD, calcium phosphate 3.9 38.6 

PM1-DCA PEG-PCL 5-2.3 kD, deoxycholic acid 4.4 44.3 

PM2 PEG-PCL 5-5.5 kD 1.0 9.9 

PM2-CP PEG-PCL 5-5.5 kD, calcium phosphate 3.1 31.0 

PM2-DCA PEG-PCL 5-5.5 kD, deoxycholic acid 2.3 23.4 
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Figure 5.1 In vitro metabolic stability of polymeric micelle formulations containing CFZ in 

the presence of mouse liver homogenates.  

 

CFZ remaining was measured at 0, 5 (blank bars), 10 (striped bars), and 20 min (checkered 

bars) following incubation with liver homogenates. Percent CFZ remaining values were 

normalized to 0-min control, and results are represented as means  SEM. All nanoparticle 

groups differ from CFZ control determined by One-Way ANOVA analysis, with p<0.05.  
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5.3.3 Polymer micelle formulations exhibited varying rates of CFZ release over 72 hours 

Next, we characterized the CFZ release profiles of the micelle particles in vitro by measuring 

the rate of drug release from the particles over 72 h. All six formulations demonstrated 

rapid CFZ release in the first 20 h followed by a slower, sustained release for up to 72 h (Fig 

2). We fit the data to a two-phase decay model and obtained kinetic parameters for the fast- 

and slow-release phases (Table 5.2). The t1/2 values during the fast-release phase were 

similar among all six particles, averaging around 1 h. In comparison, the slow-phase release 

profiles differed substantially among the six formulations, with PM1, PM2-CP, and PM2-DCA 

being the slowest-releasing formulations (Table 5.2). We also analyzed CFZ release from the 

polymer micelles by comparing area under the curve (AUC) over 72 hours. AUC analysis is a 

model-independent analysis method that allows for direct comparison of release profiles. In 

the current study, the larger AUC values the formulations have, the more CFZ would remain 

with polymer micelles over time. Our AUC analysis results showed that PM1, PM1-DCA, and 

PM2-DCA had the highest AUC values, corresponding to slower drug release, whereas PM1-

CP, PM2 and PM2-CP had low AUC values, corresponding to faster drug release rates (Table 

5.2). 

 

5.3.4 Polymer micelle formulations display comparable or improved anti-cancer activities 

compared to free CFZ  

When tested using human lung cancer cell line H460, we found that four of the polymer 

micelle formulations had more potent cell-killing effects compared to free CFZ solution (Fig 

5.3A). To exclude the possibility that components of the micelle particles themselves 

contributed to the overall cytotoxicity, we also measured the cell-killing effects of empty 

micelle particles of both molecular weight compositions in H460 cells. Our results indicated 

that micelle particles without CFZ entrapment did not possess any cytotoxic effects (Fig 

5.4A: PM1 Empty, PM2 Empty). As another control, we also measured the effect of the 

physical mixture of empty particles and free CFZ on H460 cell viability. No statistically 

significant difference was observed between the viabilities of cells treated with the physical 

mixture of particles and CFZ compared to those treated with free CFZ alone (Fig 5.4A: PM1 

Empty + free CFZ, PM2 Empty + free CFZ). Similar results were obtained using a human 

multiple myeloma cell line, RPMI-8226 (Figs 5.3B & 5.4B). 
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Table 5.2 Kinetic parameters of in vitro CFZ release from six polymer micelle particles 

based on two-phase decay modeling and AUC analyses 

 

Formulation t1/2  fast (h) t1/2  slow (h) AUC (μmol/L*h) 

PM1 1.3 ± 0.7 36.0 ± 13.7 2372 

PM1-CP 0.8 ± 0.3 18.8 ± 5.1 1346 

PM1-DCA 1.0 ± 0.4 25.0 ± 12.5 2195 

PM2 0.7 ± 0.2 26.1 ± 8.0 1419 

PM2-CP 1.4 ± 0.4 36.4 ± 22.4 1160 

PM2-DCA 0.1 ± 0.1 39.2 ± 10.0 3229 

 

 



113 

 

 

 

 

Figure 5.2 In vitro drug release profiles of polymeric micelle formulations.  

 

CFZ release was measured over 72 h and represented as percent drug remaining of control. 

Results are represented as means  SEM and each data set is fitted to a two-phase decay 

model (dotted curve).  
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Figure 5.3 Cytotoxic activities of polymer micelles containing CFZ in H460 and RPMI-8226 

cells.  

 

Cytotoxic activities of polymer micelles containing CFZ in H460 (A) and select micelle 

formulations in RPMI-8226 (B) cell lines. Results are represented as percent cell viability of 

vehicle-only control. Micelle formulations containing CFZ were compared at 50 nM and 5 

nM of equivalent CFZ concentration in H460 and RPMI-8226 cells, respectively. Data is 

represented as means  SEM.  
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Figure 5.4 Cytotoxic effects of PM1 and PM2 empty particle controls and co-incubation of 

CFZ with empty particles tested in H460.  

 

Effects of empty polymer micelles on cell viability of H460 (A) and RPMI-8226 (B) cells. 

Results are represented as percent cell viability of vehicle-only control. Empty particle 

controls and co-incubation controls were compared at 50 nM equivalent CFZ concentration 

in both cell lines. Data is represented as means  SEM.  
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5.4 Discussion 

In the current study, we assessed the potential of polymer micelle formulations to improve 

metabolic stability and overall anti-cancer efficacy of the proteasome inhibitor CFZ. Our 

results demonstrated that CFZ-loaded PEG-PCL polymer micelles were more metabolically 

stable than free CFZ solution, supporting an extended circulation of the active drug in vivo. 

In addition, several of our micelle formulations of CFZ demonstrated potential to enhance 

anti-cancer activity compared to free CFZ solution. The current study is the first to report on 

the feasibility of polymer micelles in improving the delivery of proteasome inhibitor agents. 

Further investigations are warranted to examine the utility of these new formulations in 

improving the antitumor activity of CFZ in vivo for the treatment of solid cancers by 

examining metabolic stability, target modulation, and tumor accumulation in preclinical 

animal models. 

 

Several other studies have previously explored similar strategies of utilizing nanoparticle 

systems to deliver proteasome inhibitor agents. For example, Ashley et al demonstrated 

improved efficacy and reduced toxicity of VLA-4 targeted liposomal CFZ particles in 

multiple myeloma cell lines and xenograft models [308]. Similarly, Swami et al used a 

targeted liposomal approach to deliver BTZ to the bone microenvironment [309]. Although 

the latter study did not achieve direct enhancement in BTZ efficacy, their results supported 

the utility of nanoparticle systems by demonstrating successful delivery to the targeted 

bone tissues. Findings from both of these studies support the promising utility of 

nanoparticle-mediated delivery of proteasome inhibitors by demonstrating the potential 

therapeutic advantages over the currently existing system.  

 

Unlike the previous studies, which focused on PEGylated liposome delivery systems, we 

explored the capabilities of a much simpler micelle-based system to serve our goals. There 

are several advantages to micelle-based delivery over liposome-based platforms, including 

better efficiency in the loading, carrying, and releasing of hydrophobic drug molecules [302]. 

Furthermore, micelles have been shown to have better tumor infiltrating abilities, likely due 

to their smaller sizes compared to liposomes [310, 311]. However, as with any nanoparticle 

delivery systems, polymer micelles have drawbacks associated with their use in drug  
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delivery. One of the major concerns with utilizing micelle-based delivery systems is  

their lack of stability in vivo due to disintegration of the particles in the body. In this regard, 

previous studies have demonstrated that PEG-PCL-based polymer micelle particles carrying 

the anti-cancer agent paclitaxel exerted more potent anti-cancer activity in a mouse 

xenograft model than taxol alone [305]. These results suggest that PEG-PCL-based micelles 

are structurally stable enough in vivo to reach the tumor sites.  

 

We have made efforts to address concerns with micelle stability in our current study by 

including two PEG-PCL micelle particles with the added excipients CP and DCA. Our goals by 

incorporating such additives into our particles were to further stabilize micelle core 

structures and to control drug release. CP is a main biological component of bone and teeth, 

which has been investigated as a surface modification due to its biocompatibility and 

rigidity to improve the stability of the hydrophobic drug-loaded nanoparticle cores [312]. In 

solution, calcium ions and phosphate ions react to form solid calcium phosphate. Micelles or 

other nanoparticles can act as nucleation sites for this reaction, which results in the 

formation a mineralized surface on the nanoparticle core [313]. CP formed away from the 

micelle particles can be removed easily, due to the insolubility of CP. DCA is a sterol-based 

bile acid that acts as an endogenous emulsifying agent by forming micelles to aid in 

interactions with insoluble compounds inside the body. The addition of sterol compounds 

to micelles has been previously shown to improve micelle stability and in vivo delivery 

[314], as well as reduce drug release rates [315].  

 

As discussed previously, rapid CFZ metabolism in the body may lead to an insufficient 

accumulation of active drug in distal tumor sites. To better understand the relationship 

between the interactions of CFZ with the polymer micelle particles and the overall 

metabolic stability profile, we characterized the release of CFZ from each particle over time. 

Assuming drug release is dependent on the concentration of the drug inside the particles 

relative to its surroundings, measuring drug release can help us approximate the strengths 

of interactions between CFZ and the varying micelle core environments. All six of the 

polymer micelle formulations demonstrated sustained CFZ release over 72 hours in rapid- 

and slow-release phases. Differences in the rate of release were observed mainly in the 

slow-release phases, which likely derived from stronger and more specific interactions  
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between CFZ and the polymer micelle particles. Based on our results, both PM1 and PM2  

were able to release CFZ in a sustained manner, suggesting that the difference in PCL 

content may not be the dominant factor in controlling CFZ release. Furthermore, PM1-DCA 

and PM2-DCA appeared to release CFZ more slowly compared to polymer micelles that did 

not contain DCA, suggesting that interactions between DCA and CFZ may play a role in 

slowing CFZ release from micelle particles.   

 

Our findings indicated that both the release rate and the metabolic profile of CFZ may be 

important in determining the overall efficacy of CFZ, but not with a straightforward 

relationship between rate of CFZ release and metabolic degradation. We found that PM1-CP 

and PM2-CP, which released CFZ quickly, had the least anti-cancer activities compared to 

other formulations. On the other hand, PM1-DCA and PM2-DCA, which had slower CFZ 

release, achieved better anti-cancer activity. These observations suggest that the rate of 

drug release plays a role in determining the overall efficacy of the drug, and that micelle 

particles with slower CFZ release may be better in inducing cancer cell death. In addition to 

having the quickest release profile, PM1-CP also demonstrated least in vitro metabolic 

stability among the six formulations. This may be an effect of the fast release of CFZ or 

instability in the structure of the particles that resulted in the breakdown of CFZ and thus 

poor efficacy in cells. PM2 particles were most effective in inducing cell death among all 

formulations, despite also possessing a fast CFZ release profile similar to that of PM1-CP. 

Interestingly, PM2 particles had good metabolic stability despite having quick CFZ release 

rates, suggesting that metabolic stability may depend on factors other than the rate of drug 

release. This is also consistent with the fact that differences observed in CFZ release in our 

study did not necessarily correspond to those observed in metabolic stability profiles. To 

better understand the necessary balance between drug stability and release rate, further 

optimizations in particle design and more in-depth assessments of metabolic stability and 

drug release in vivo will be necessary. 

 

In our current study, we compared six polymer micelle formulations that displayed 

substantial protection of CFZ molecules from degradation in the presence of liver 

homogenates. The excipients CP or DCA added with an intent to stabilize the micelle core 

appeared to have an impact on drug release profiles. For example, PM1-DCA and PM2-DCA  
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appeared to release the drug more slowly than polymer micelles without DCA added (Fig 2  

and Table 2). It is plausible that additional favorable hydrophobic interactions between DCA 

and CFZ may slow down the drug release from polymer micelles. Interestingly, there was no 

apparent correlation between the extent of protective effects against metabolism and the 

rate of drug release in vitro. To better understand the relationship between drug-micelle 

interactions and metabolic stability, further investigations with a more extensive library of 

micelle structures may be necessary. 

 

5.5 Conclusion 

Here, we report that polymer micelle formulations of CFZ can improve the metabolic 

stability and achieve sustained release in vitro. Additionally, these formulations show 

comparable or enhanced anti-cancer activity in vitro as free CFZ solution against lung 

cancer and multiple myeloma cell lines. Findings from this study provide proof-of-concept 

support of the potential advantages of polymer micelle-mediated delivery over the 

currently existing formulation system for CFZ. Further investigations of polymer micelle-

mediated CFZ delivery in in vivo models are necessary to confirm such benefits and to 

provide further evidence towards potential clinical utility.  
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Chapter 6 SUMMARY AND FUTURE DIRECTIONS 

 

Drug resistance is a critical problem for nearly all chemotherapies, including PI-based 

therapies. Currently, there are no available strategies in the clinic to combat PI-resistance 

due to a lack of knowledge regarding how resistance develops and the factors involved in 

determining PI response. In order to address this problem, extensive effort has been put 

forth over the last decade toward improving our understanding of the mechanisms 

responsible for PI resistance. Of the approved PI agents, resistance to BTZ has been the 

most extensively studied. At the beginning of our studies in 2011, a few mechanisms had 

been proposed for BTZ resistance but none was known for CFZ resistance.  

 

Following the initial FDA approval of CFZ in 2012, additional clinical findings were reported 

indicating its superior efficacy and toxicity profiles, which quickly propelled further 

expansions to its clinical indications in MM therapy. As CFZ gained recognition for its potent 

anti-cancer activity and favorable toxicity profile, many researchers also explored its 

therapeutic utility in other cancer types. However, these efforts were met with further drug 

resistance challenges. Whereas hematological cancers, especially MM, are highly sensitive to 

proteasome inhibition, solid cancers were found to be intrinsically resistant. With the 

reasons underlying this difference in the PI sensitivities of hematological and non-

hematological malignancies largely unknown, advancements in developing novel PI-based 

therapies for solid cancer treatment were halted.  

 

With these challenges in mind, we decided to investigate the molecular factors involved in 

determining CFZ sensitivity using in vitro models. We utilized both hematological and non-

hematological cell lines in our studies in order to cross-validate the mechanisms in both 

contexts. Findings from this dissertation work address both proteasome-dependent and 

proteasome-independent mechanisms and propose three different strategies to circumvent 

CFZ resistance. Collectively, our findings support a multi-pronged model of CFZ resistance, 

where more than one dominating mechanism is likely involved in mediating CFZ resistance 

as well as cross resistance to BTZ. Further validation of our results will be necessary to 

determine whether these mechanisms are impactful in vivo and clinically.  
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Our study describing the role of P-gp in mediating acquired resistance to CFZ was one of the 

first reported suggesting P-gp-mediated drug efflux as a major contributor to determining 

CFZ response. Since then, several other studies have noted similar observations of P-gp 

upregulation in other CFZ-resistant cell lines as well as a CFZ-refractory patient. We are 

encouraged as P-gp continues to be validated in more clinically relevant settings. Going 

forward, comparative analyses of P-gp expression in the MM cells from a greater number of 

CFZ-sensitive and CFZ-resistant patients would be helpful to better determine the clinical 

importance of P-gp upregulation in CFZ response. Furthermore, since P-gp is a known 

contributor to cancer resistance of many other chemotherapeutics, it would also be 

important to examine whether P-gp-mediated cross-resistance occurs between PIs and 

other anti-cancer agents in the clinic. Additionally, our findings demonstrated that small 

dipeptide derivatives of CFZ can effectively restore CFZ sensitivity in resistant cells. 

However, in order to confirm that the resistance-reversing effects of the small peptide 

analogs are the effect of P-gp inhibition, additional experiments will be needed. For instance, 

assessing the effect of P-gp knockdown on cellular sensitivity to CFZ alone and in 

combination with the small peptide analogs can further address whether P-gp is the sole 

target of the small peptide analogs.  

 

Our current study also lacked evidence for the mode of inhibition through which CFZ and 

the small peptide analogs interact with P-gp. It would be important to include future 

experiments such as determining the enzyme kinetic parameters of CFZ transport by P-gp 

and other efflux transporters, as well as assessing how the small peptide analogs affect CFZ 

transport by P-gp. Such information may provide important insights into the design and 

further optimization of P-gp inhibitors with improved potency and specificity. Since the 

small peptide-based CFZ derivatives described here are much smaller in size than most 

other peptidomimetic P-gp inhibitors, it is possible that they may have more favorable 

toxicity profiles in vivo compared to bulkier peptides. As we only synthesized a small library 

of CFZ analogs in the proof-of-concept study described in this dissertation work, further 

optimizations will be necessary to improve their P-gp inhibitory potencies. As well, in vivo 

evaluations will be necessary to determine the specificity of P-gp inhibition and overall 

toxicity of these compounds.  
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During our investigations of P-gp-mediated CFZ resistance, it became evident that while P-

gp upregulation was the major mechanism mediating CFZ resistance in some cell lines, it 

was not the only mechanism. In order to investigate other mechanisms involved in 

conferring acquired CFZ resistance, we established another resistance model that was P-gp-

independent. The findings described in chapter 4 suggested a role for the C-L activity of the 

proteasome in the development of CFZ resistance, potentially by serving as a compensatory 

mechanism to inhibition of the CT-L activities. These observations are in agreement with 

previously reported roles of non-CT-L catalytic subunits in determining cellular sensitivity 

to oxidative stress and PI-induced cytotoxicity. Additionally, findings from this study 

support the development of subunit-selective proteasome inhibitors, in particular PIs 

targeting the C-L and T-L activities, as potential therapeutics to enhance BTZ and CFZ 

activities. Such inhibitors, especially C-L inhibitors, are desirable as inhibition of the C-L 

activity has been shown to have no cytotoxic effects on its own. Furthermore, our group and 

others have found that combined inhibition of the C-L and CT-L activities can achieve better 

anti-cancer efficacy. These findings provided the basis for additional studies investigating 

the therapeutic potentials of co-targeting the C-L activity. As well, development of PIs with 

improved selectivity for 1 or 1i may be useful to assess the role of each subunit in 

potentiating CFZ sensitivity and conferring resistance. 

 

An important limitation to the study described in chapter 4 is the lack of distinction 

between the roles of the 1 and 1i subunits in conferring CFZ resistance. This is mainly 

due to a current lack of PIs that can selectively inhibit the activities of 1 and 1i. Our 

findings here provided initial clues to a potential role the 1 and 1i subunits may play in 

determining PI sensitivity. In order to further elucidate the mechanisms through which 

alterations in the 1 and/or 1i activities determine PI resistance, the most crucial next step 

is the development of PIs with better 1/1i selectivity. In general, little is known about how 

the different activities of the proteasome impact cell survival and apoptosis, and whether 

the unique activity of each catalytic subunit may have different roles in regulating specific 

cellular processes. In this regard, it would also be interesting to determine the substrates 

and pathways affected by selective inhibition of the 1 and 1i activities compared to 

inhibition of the CT-L activities. Furthermore, it would be important to further validate 1 

upregulation as a resistance-conferring mechanism by determining whether transient or  
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stable overexpression of 1 may result in similar decreases in CFZ and BTZ sensitivities.  

 

Chapter 5 addressed the poor metabolic stability of CFZ and its potential contribution to the 

intrinsic CFZ resistance against solid cancer from a drug delivery perspective. Our findings 

demonstrated that polymer micelle formulations of CFZ could protect the metabolic 

degradation of CFZ and prolong CFZ release in vitro. When tested in cells, these alternative 

CFZ formulations achieved equivalent or improved cell-killing activities against both lung 

cancer and MM cells. This was a proof-of-concept study to examine whether alternative CFZ 

formulations could potentially improve CFZ activity. Moving forward, it would be important 

to further assess the abilities of these polymer micelle formulations to protect CFZ from 

metabolic degradation in vivo. One of the major concerns with using a micelle-based 

formulation is its stability in vivo. Thus, a more careful characterization of particle stability 

in vivo is necessary to reveal whether these particles can remain intact and delivery the 

drug to a peripheral tumor site. Since our hypothesis was based on the assumption that 

metabolic instability and insufficient access of active CFZ to the tumor site was a major 

reason for the lack of anti-cancer activity against solid tumors, it would be important to 

compare the anti-cancer effects of CFZ entrapped in polymer micelles in in vivo models of 

solid cancer. To better understand how polymer micelles may contribute to a difference in 

anti-cancer activity, it would be necessary to not only assess the effect on tumor growth, but 

also compare the differences in biodistribution and proteasome inhibition between polymer 

micelle and the current clinical formulations of CFZ.  

 

The studies described in this dissertation tackled the problem of CFZ resistance from three 

different perspectives of CFZ therapy. These findings contribute to our knowledge of CFZ 

resistance by providing initial evidence for novel mechanisms involved in determining CFZ 

sensitivity and novel strategies that can be utilized to combat resistance. 
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