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ABSTRACT OF DISSERTATION 

 
 
 
 
 

ELUCIDATING BINDING, FUSION AND ENTRY OF HUMAN METAPNEUMOVIRUS 
 

Human metapneumovirus (HMPV) is a respiratory pathogen in the Paramyxoviridae family that 
infects nearly 100% of the world population. This enveloped RNA virus causes severe viral 
respiratory disease in infants, the elderly, and immunocompromised patients worldwide. Despite 
its prevalence and importance to human health, no therapies are available against this pathogen. 
Entry of paramyxoviruses into host cells generally requires the coordinated activity of the 
attachment glycoprotein, G, which interacts with a cell receptor, and the fusion glycoprotein, F, 
which promotes subsequent fusion of viral and cellular membranes. However, HMPV F is the 
primary viral protein mediating both binding and fusion for HMPV. Previous work that showed 
HMPV F mediates attachment to heparan sulfate proteoglycans (HSPGs), and some HMPV F fusion 
activity can be promoted by acidic pH. The work presented here provides significant advances in 
our understanding of the fusion and binding events during HMPV infection. We demonstrated 
that low pH promotes fusion in HMPV F proteins from diverse clades, challenging previously 
reported requirements and identifying a critical residue that enhances low pH promoted fusion. 
These results support our hypothesis that electrostatic interactions play a key role in HMPV F 
triggering and further elucidate the complexity of viral fusion proteins. Additionally, we 
characterized the key features of the binding interaction between HMPV and HSPGs using 
heparan sulfate mimetics, identifying an important sulfate modification, and demonstrated that 
these interactions occur at the apical surface of polarized airways tissues. We identified 
differences in particle binding related to the presence or absence of the HMPV G and SH 
glycoproteins. Lastly, we characterized paramyxovirus infection in cystic fibrosis bronchial 
epithelial cells, identifying a potential specific susceptibility to HMPV infection in these 
individuals. The work presented here contributes to our understanding of HMPV infection, from 
mechanisms of early events of entry to clinical scenarios. 
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Chapter 1: Introduction 

Paramyxoviruses: an overview 

 Paramyxoviruses are a large family of viruses that cause infections which are a 

tremendous burden in human and animal worldwide. Paramyxoviruses are primarily spread by 

aerosols. This family includes a number of human pathogens with effective vaccines available, 

including the measles (MeV) and mumps (MuV) viruses. MeV was a leading cause of childhood 

death from infectious diseases, causing an estimated 7-8 million deaths per year, until the 

development of the measles vaccine in the 1960s. However, despite the initiative of the World 

Health Organization (WHO), approximately 114,900 people died from MeV infection in 2014 – 

mostly children under the age of 5 (reported by the WHO). MuV was also a common cause of viral 

infection during childhood, resulting in serious lifelong complications from initial infection, until 

the introduction of an effective vaccine in the 1960s. However, the spread of vaccination 

noncompliance in developed countries, such as the United States, has led to a re-emergence of 

these viruses in populations where they had been nearly eradicated (1). The paramyxovirus family 

also includes viruses that are leading causes of respiratory diseases in humans that currently do 

not have vaccines available. Respiratory syncytial virus (RSV) is the leading cause of respiratory 

infection in young children worldwide (2, 3). RSV infection is the second largest cause of mortality, 

after malaria, in infants and causes up to 200,000 deaths per year worldwide and is the leading 

cause of hospitalization in early childhood in developed nations (4, 5). Closely related to RSV, 

human metapneumovirus (HMPV), is also recognized as a common causes of viral infection, 

causing severe respiratory infections in susceptible individuals and is described in more detail in 

this chapter. Respiratory infections in humans are also caused by paramyxoviruses parainfluenza 

virus (PIV) types 1-3, which can cause significant disease in immunocompromised patients 

undergoing organ transplant (6, 7). PIV1 is associated with croup in children (8). Additionally, 

paramyxoviruses include several emerging zoonotic pathogens, Nipah (NiV) and Hendra (HeV) 

viruses, transmitted by fruit bats in the Pteropodidae family (9, 10). HeV was identified in 1994 as 

the causative agent of respiratory disease and febrile illness in horses and humans (11). Since its 

discovery there have been seven human infections of HeV, of which four were fatal (57%) (12). 

Furthermore, fatality in horses is nearly 70% from HeV infection (12). Outbreaks of NiV infection 

in humans from infected pigs have been identified in Malaysia, Singapore, Bangladesh and India 

since 1998, and have caused fatal encephalitis and mortality rates ranging from 43% to 100% (12-

15). In addition to infection in horses and pigs by the Henipaviruses, Hev and NiV, respectively, 
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paramyxoviruses also cause disease in other species. Parainfluenza virus 5 (PIV5), formerly called 

simian virus 5, can cause kennel cough in dogs and infect other animals (16-18). Sendai virus (SeV) 

is responsible for a highly transmissible respiratory tract infection in mice, hamsters, guinea pigs, 

rats, and occasionally pigs (19). Newcastle disease virus (NDV) (20) and avian metapneumovirus 

(AMPV) (21) cause respiratory disease in domestic fowl, and bovine RSV causes respiratory illness 

in cattle (22), and atlantic salmon paramyxovirus (ASP) in fish (23), leading to huge economic 

losses in poultry and livestock industries.  

All paramyxoviruses are enveloped, negative sense, single-stranded RNA viruses (24). 

Based on morphological characteristics, protein function, and sequence homology, this large 

family of approximately 36 species of diverse viruses is divided into 18 distinct genera, which are 

grouped into two subfamilies, paramyxoviridae and pneumovirinae (Fig. 1). The pneumovirinae 

subfamily consists of two genera, which include RSV and HMPV. The remaining genera are 

classified in the paramyxoviridae subfamily, and include the viruses: MeV, MuV, PIV, HeV, NiV, 

NDV, ASP, and reptilian viruses in the ferlaviruses genus (Fig. 1) (25-27). Several recently 

discovered paramyxoviruses such as J virus, Mossman virus, and Salem virus have not yet been 

classified within a subfamily (24). 

Human metapneumovirus discovery and clinical relevance 

HMPV is a ubiquitous pathogen that causes respiratory disease worldwide (28-30). HMPV 

was first identified in 2001 in the Netherlands from nasopharyngeal aspirates of sick children (31). 

Since its identification, HMPV is now known to be the cause of respiratory infections in humans 

since at least 1958 (31). HMPV strains have been phylogenetically classified into two genetic 

lineages (A and B) with distinct sublineages (A1, A2, B1, and B2) (32). While concurrent circulation 

of all four subtypes is common, a single, usually different, subtype usually predominates each year 

(33-36). 

Nearly every person is exposed to HMPV in the first decade of life; sero-conversion occurs 

on average by the age of five and nearly 100% of individuals test seropositive for antibody 

reactivity to HMPV antigens by age ten (7). HMPV is the second most common cause of lower 

respiratory infection in children, following the closely related respiratory syncytial virus (RSV) (37, 

38). Importantly, up to 70% of infants hospitalized for severe RSV bronchiolitis were also co-

infected with HMPV, suggesting HMPV co-infection leads to more severe disease during RSV 

infection (39-41). Prematurity is a risk factor for developing severe illness from HMPV later in 
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childhood, more so than for RSV illness (42). While infants are considered the most vulnerable 

population to developing illness from HMPV, adults can foster severe respiratory infection as well, 

especially elderly and immunocompromised patients (43-45). Even previously healthy adults can 

develop severe respiratory disease that requires hospitalization (46). Long-term care residents 

over the age of 65 are particularly at risk, as HMPV can cause illness in as many as 72% of patients 

during outbreaks (47-49). Individuals with congenital heart defects are also at high risk of 

developing severe disease (38, 50, 51). Furthermore, one study found the burden of 

hospitalization for HMPV associated respiratory disease was 5.4 fold greater in HIV-infected 

compared to HIV-uninfected children (52). Also HIV-infected children had greater bacterial 

coinfection and a higher mortality rate than did uninfected children due to HMPV respiratory 

infection (52). One study showed that children with cancer had a nearly 50% rate of 

hospitalization due to HMPV infection (53). Individuals with chronic respiratory diseases, such as 

chronic obstructive pulmonary disease and asthma, are also at risk for serious disease from HMPV 

infection (54, 55). HMPV infection is also thought to be a significant cause of exacerbations and 

pulmonary decline in individuals with cystic fibrosis (56-58). However it is not known how the 

pathophysiology that results in cystic fibrosis promotes HMPV infection. 

Most viral respiratory infections in healthy adults are contained in the upper respiratory 

tract, resulting in symptoms associated with the ears, nose, throat, and sinuses. These symptoms 

are often grouped together in association as the “common cold”, although there are numerous 

distinct viruses that can cause this, including HMPV. However, respiratory infection can spread to 

the lower respiratory tract, causing more severe disease. Complications of respiratory infection 

associated with HMPV include pneumonia, bronchiolitis, and febrile seizures (44, 59). Such 

complications can be life threatening in susceptible individuals. It has also been suggested that 

severe acute respiratory infection from HMPV may have lifelong consequences such as asthma 

and hyperresponsiveness of the airway (60, 61). While HMPV infection has been thought to be 

restricted to the respiratory epithelium and lungs, there have been several reports of fatal 

encephalitis with HMPV the only detected pathogen in both lung and brain tissue (62-64). There 

are several other paramyxoviruses that are known to cause neurological disease in humans, 

including measles (65, 66) and Nipah virus (14, 67, 68). Furthermore, HMPV infection has been 

associated with acute myocarditis, or swelling of the heart myocardium commonly caused by viral 

infection (69). Heart involvement has also been documented for mumps virus and human 

parainfluenza viruses 2 and 3 (70). It is not known what viral or host genetic factors contribute to 
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HMPV tropism outside of the respiratory tract. Even though primary infection occurs during 

childhood in the majority of cases, repeat infections are common throughout life, likely due to 

strain variations and incomplete immunity. Despite HMPV prevalence and clinical relevance, there 

are no specific antiviral treatments or vaccines available.  

 

Paramyxovirus structure and the functions of surface glycoproteins 

The genome of paramyxoviruses consists of six to ten genes and varies in size from 13 to 

19 kb (71). The viral envelope, derived from the plasma membrane of the host, surrounds the 

single-stranded RNA genome, contained within the nucleocapsid. The nucleocapsid is composed 

of the nucleocapsid protein (N), the phosphoprotein (P) and the large polymerase protein (L). Of 

the six to ten genes, only two or three of encoded proteins are expressed at the surface of the 

virus. The surface glycoproteins are available to interact with the target cell during entry and serve 

functions in attachment and membrane fusion to deliver the nucleocapsid to the cytoplasm. The 

matrix protein (M) functions in particle assembly and is thought to be closely associated with the 

viral membrane, surface glycoproteins, and nucleocapsid. The rest of the encoded proteins are 

primarily involved in viral genome transcription, replication, or assembly. Some reptilian viruses, 

including Fer-de-Lance virus, in the Ferlavirus genus have an additional gene encoding the 

unknown protein (U) of approximately 20 kDa that has no counterpart in other paramyxoviruses 

or any similarity to other reporter sequences (26, 27, 72). The order of genes in the genome of 

HMPV is as follows: HMPV (3’-N-P-M-F-M2-SH-G-L-5’) (31, 73, 74).  

The main viral glycoproteins at the surface of the paramyxoviruses are the attachment 

protein (H, HN, or G) and the fusion protein (F) (Fig. 2) (24). The nomenclature of the attachment 

proteins varies due to differences in receptor binding and neuraminidase activity. The attachment 

proteins of rubulaviruses, respiroviruses, and avulaviruses have both hemagglutinin, which binds 

sialic acid, and neuraminidase, sialic acid cleaving, functions and are called HN proteins. The 

attachment proteins of morbilliviruses lack neuraminidase activity but can bind sialic acid, and are 

called H. Pneumovirinae and Henipaviruses do not bind sialic acid, and their attachment proteins 

are referred to as G, for glycoprotein. Thus, the attachment of HMPV is referred to as G (Fig. 2). 

The attachment and fusion proteins mediate viral entry by coordinated activity in most 

paramyxoviruses and are discussed in more detail in subsequent sections (75). In addition to the 

fusion and attachment glycoproteins on the viral surface, three of the seven genera of 

paramyxoviruses, including members of rubulaviruses, pneumoviruses, and the unclassified J 
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virus, also express a third viral surface glycoprotein, the small hydrophobic protein (SH). Unlike 

the fusion and attachment proteins, the SH protein is much less conserved across the family. Some 

SH proteins are type I proteins, which contain a single transmembrane region (69), and some, like 

that of PIV5 and the pneumovirinae, are type II, with multiple transmembrane domains (76). The 

exact role of SH proteins in the paramyxovirus life cycle is not well understood, as most mutant 

viruses lacking of this protein replicate efficiently in vitro (76-79). However, the deletion of the SH 

proteins of RSV and avian metapneumovirus (AMPV) reduced replication and pathogenicity in 

animal models (80-82). Furthermore, recombinant HMPV lacking the SH gene was found to 

replicate in both hamster (76) and nonhuman primate models less efficiently in the lower 

respiratory tract than wild-type HMPV (83). These findings suggest SH may play a role in immune 

modulation in vivo, and indeed, studies with RSV (84), PIV5 (85, 86),and mumps (87) suggest that 

SH antagonizes the induction of apoptosis and, like HMPV (88), may also block the activity of NF-

κB (89). Furthermore, all HMPV isolates to date have the SH gene, indicating its presence is 

required for fitness (90).  Additionally, several functions of HMPV SH have been identified 

recently. Like the SH of RSV (91), the HMPV SH protein exhibits viroporin activity, serving as 

channel to allow small molecules to pass across the membrane (92). Furthermore, HMPV SH can 

regulate the cell-to-cell fusion activity of F (92). Additionally, HMPV SH, in addition to HMPV G, 

can inhibit macropinocytosis of HMPV in dendritic cells, further supporting that the SH protein 

contributes to immune evasion (93). 

 

Paramyxovirus attachment and receptor engagement 

All paramyxovirus attachment proteins characterized to date are homotetrameric type II 

integral membrane proteins (24). They are made up of a membrane-proximal stalk and a large c-

terminal globular head domain anchored by a single-pass N-terminal transmembrane domain 

(24). From the solved crystal structures of the globular head domains of several paramyxovirus 

attachment proteins, it has been shown the attachment protein globular head is composed of 

four six-blade β-propeller fold monomers arranged in a four-fold symmetry (94-100). The stalk 

domain of the paramyxovirus attachment protein is like a helical coiled-coil that generally 

interacts with the fusion protein (101-105). For most HN attachment proteins, the sialic acid 

binding site is located at the top of the globular head (96), although some HN proteins, NDV (106, 

107) and PIV3 (108-110), have a second binding site to sialic acid that is important for fusion 

promotion.  
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Most paramyxoviruses engage the cellular receptors for binding by the attachment 

protein. As previously described, rubulaviruses, respiroviruses, and avulaviruses have HN 

attachment proteins, and bind sialic acid with various degrees of affinity (111). The H proteins of 

morbilliviruses generally bind sialic acid, and use additional cellular proteins, such as nectin-4 

(112, 113) , CD46 (88), and CD150/SLAM (88) in the case of MeV, as receptors for attachment. 

The G proteins of HeV and NiV bind to cellular Ephrin B2/B3 (114-116), and the G proteins of 

pneumovirinae have been reported to bind heparan sulfate proteoglycans (HSPGs) (117, 118). 

However, it has been shown that the HMPV fusion protein is necessary and sufficient for binding 

to HSPGs (79), and that αVβ1 integrin plays an important role in promoting HMPV infection (79, 

119, 120). Additionally, it has been reported that the RSV fusion protein mediates attachment to 

the cell surface via nucleolin (121). Nevertheless, HMPV G can inhibit macropinocytosis of HMPV 

in dendritic cells and reduce activation of CD+ helper T cells, suggesting HMPV G can regulate 

particle uptake and contribute to immune evasion (93). RSV also produces a soluble form of the 

G protein that plays a role in immune modulation (122). These findings suggest that, unlike 

members of the paramyxoviridae subfamily, receptor binding activity for members of the 

pneumovirinae subfamily can occur through the F protein and receptor interactions with the G 

protein are not essential. 

In addition to mediating the initial attachment of the virus to a cell, the attachment 

proteins of most paramyxoviruses also have fusion promoting activity. Interaction of the 

attachment protein of most paramyxoviruses with its receptor results in triggering of the fusion 

protein to undergo a series of conformational changes that drives fusion of the viral envelope and 

a lipid membrane of the target cell. The co-expression of the homotypic attachment and fusion 

proteins is required for membrane fusion and viral spread to occur of most paramyxoviruses (101, 

123-131). However, studies have shown that both RSV and HMPV are infectious in the absence of 

the G protein (74, 76, 77, 132, 133). Furthermore, cell-to-cell fusion promoted by the F protein 

(Fig. 3) of HMPV CAN97-83 (A2) occurs without co-expression of HMPV G (133-136). These 

findings suggest HMPV G does not contribute to membrane fusion as in the trigger of the fusion 

protein that is typical of attachment proteins found in paramyxoviruses.  

 

Cellular factors required for HMPV binding 

Unlike most paramyxoviruses, the binding of HMPV to target cell is mediated by the fusion 

protein. Our group showed that HMPV requires the glycosaminoglycan heparan sulfate for 
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binding and infectivity, as cells deficient in heparan sulfate synthesis or treated with heparinases 

were not able to bind HMPV (79). Heparan sulfate is ubiquitously expressed on the cell surface 

and extracellular matrix of almost all cell types as heparan sulfate proteoglycans (HSPGs) (137, 

138). Proteoglycans belong to a large class of diverse surface glycoproteins that mediate 

numerous cell functions, including signaling, growth and adhesion (139-143). Heparan sulfate is 

one of four glycosaminoglycans found on the surface of mammalian proteins. The biosynthesis of 

glycosaminoglycans, their distinct structural feature, and different types of heparan sulfate 

proteoglycans are described in detail in other sections.  

Additionally, integrin αVβ1 has been identified as a binding factor and required for 

efficient infection Integrins are a large family of cell adhesion proteins that are expressed in all 

cell types and have critical roles in the regulation of cell-to-cell, cell-to-matrix adhesion (144), 

growth, differentiation, attachment, migration, thrombus formation, and apoptosis (reviewed in 

(145, 146)). Integrins are transmembrane heterodimers, composed of at least 18 different α and 

10 different β subunits. Integrins serve an important role by conveying signals from the outside 

to the inside of cells and vice versa, through interactions between the cytoplasmic domains of the 

α and β integrin subunits with a variety of intracellular proteins (147-149). Additionally, some 

integrins are known to be promiscuous and bind a variety of ligands (150), and other have specific 

domains for binding many different proteins, including HSPGs (151), and proteins expressing the 

amino acid sequence arginine-glycine-asparagine (RGD) (152, 153). It has reported that the HMPV 

fusion protein binds through an RGD motif (119, 120). Importantly, it has been shown that 

integrins such as α5β1, can play an important role in the regulation of cell signaling through 

receptor-mediated endocytosis and the recycling of many surface proteins (154). Integrins are 

receptors for some picornaviruses, papillomaviruses, adenoviruses, and hantaviruses (148, 155, 

156). Integrin αVβ1 has been identified as a binding factor and required for efficient infection of 

HMPV (79, 119, 120). 

 

Glycosaminoglycans biosynthesis and distinct structural features 

Cell surface proteoglycans consist of a diverse family of core proteins heavily modified by 

sugars called glycosaminoglycans (GAGs). GAGs are divided into four major forms based on the 

specific sugars that make up the repeating disaccharide units of the polysaccharide chains: 

heparan sulfate, chondroitin sulfate, dermatan sulfate and keratan sulfate (Fig. 4). The steps of 

biosynthesis are similar for the different forms of GAGs, although they are distinct from one 
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another by the specific sugar moieties found in the repeating disaccharide units. The GAG addition 

to transmembrane proteins occurs in the Golgi either by O-linked glycosylation at 

serine/threonine residues or N-linked glycosylation at asparagine residues. A three or four-sugar 

linkage, referred to as a oligosaccharide bridge, is created between the core protein and the 

terminal glycosaminoglycan, a linear polysaccharide consisting of repeating disaccharide units, an 

amine sugar and an uronic acid, with the exception of keratan. The amino sugars in the repeating 

disaccharide units include N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, and in the case of 

keratan, N-acetyl-D-lactosamine (Fig. 4). Typically only one type of amino sugar is found in a GAG 

polysaccharide chain, but several types of GAGs may modify a single proteoglycan. The hydroxyl 

groups of the amino sugars can further be modified by O-sulfation. Uronic acids are a form of 

oxidized sugars, where the terminal primary alcohol is enzymatically oxidized to a carboxylic acid; 

the two forms found in GAGs are glucuronic acid and iduronic acid. These epimers may both be 

found in a single GAG chain. 

To synthesize both the oligosaccharide bridge and GAG polysaccharide chain, specific 

glycosyltransferases found in the Golgi add respective uridine diphosphate (UDP) activated sugars 

initially to the protein core at one of the previously mentioned residues (Ser/Thr or Asn) and then 

subsequently to the growing polysaccharide chain. After the GAG backbone is formed, the chain 

can be modified by sulfation and/or epimerization of uronic acids, catalyzed by sulfotransferases 

and epimerases respectively. The sulfotransferases utilize 3’-phosphoadenosine-

5’phosphosulfate, an activated sulfate, for the addition of sulfate groups. Because of this 

modification, GAGs are often highly negatively charged.  

Heparan sulfate (HS) is ubiquitously expressed in most mammalian tissues. HS chains are 

linked to the core protein by a tetrasaccharide bridge via O-glycosylation of a serine residue. The 

first step involves the addition a xylose to the serine, followed by two galactose molecules, and 

glucuronic acid. The subsequent addition of N-acetylglucosamine commits this biosynthesis 

pathway to make HS; the alternative addition of N-acetylgalactosamine would result in 

chondroitin sulfate synthesis (Fig. 4).  Evidence has shown that the specific glucosyltransferase 

that adds N-acetylglucosamine in this fate-determining step recognizes acidic residues around the 

serine being modified. Interestingly, HS can be modified by sulfation like other GAGs, but HS is 

uniquely found to be sulfated in clusters, as opposed to uniformly throughout the chain like in CS 

and DS. Greater than 80% of HS glucosamine is N-sulfated, and even a greater percent is O-

sulfated (157). HS modification allows for diverse products, but analysis of HS types have found 
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the HS produced is more specific to cell type rather than core proteins; therefore, different 

proteoglycans produced by a single cell type express HS with a similar pattern of chain 

modification, potentially contributing to tissue tropism of the viruses that bind HS. Heparan 

sulfate has been identified as a binding factor for numerous viruses, including retroviruses, 

herpesviruses, filoviruses, paramyxoviruses, human papilloma virus, hepatitis C virus, Dengue 

virus, and baculoviruses (79, 117, 142, 158-177).  

Chondroitin sulfate (CS) is primarily expressed in the central nervous system (178-181). 

CS shares the first four steps of biosynthesis with HS; however, committed step to CS synthesis 

involves the addition of N-acetylgalactosamine instead of N-acetylglucosamine (Fig. 4). To date, 

CS has been implicated as a binding receptor for only two viruses, for porcine circovirus 2 (167) 

and herpes simplex virus (182), although it has reported antiviral activity against Japanese 

encephalitis (183) virus and Dengue virus (184) in vitro.  Dermatan sulfate (DS) is primarily 

expressed in skin tissue and is released into the extracellular matrix during wound repair (185, 

186). DS has been previously been characterized as a type of CS (sometimes referred to CS type 

II), although this organization has been recently questioned. Like CS, the amino sugar in the 

disaccharide repeat is also N-acetylgalactosamine. However, DS contains almost exclusively 

iduronic acid as the second sugar, whereas most CS contain primarily glucuronic acid (Fig. 4). 

Otherwise, the synthesis of DS is similar to that that of HS and CS. Unlike other GAGs, keratan 

sulfate (KS) consists of a sulfated poly-N-acetyllactosamine chain; instead of alternating amino 

sugar and uronic acid, the two repeating units are N-acetlyglucosamine and galactose (Fig. 4). KS 

modification on proteins is found in distinct tissues, including cartilage and the cornea of the eye 

(187). The residue of KS attachment also can vary. Type I KS is linked to the protein by N-

glycosylation at an asparagine residue through a three-sugar oligosaccharide bridge (Fig. 4); type 

II KS is linked to the protein by O-glycosylation at a serine or threonine residue directly through 

N-acetylgalactosamine (not shown). To date, neither DS nor KS have been associated with 

function as a viral receptor.  

 

Heparan sulfate proteoglycans (HSPGs) implicated in vial entry 

Heparan sulfate proteoglycans (HSPGs) encompass a diverse class of proteins defined by 

the substitution with HS polysaccharide chains. Because HS has been identified as the most 

common type of GAG associated with attachment function for viruses, HSPGs have been 

investigated in their role in attachment for numerous viruses. Indeed, the identification of HS as 
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a required binding factor for HMPV infection suggests HSPGs may serve as at attachment factor 

for infection. HSPGs are found both as secreted proteins in the extracellular matrix, as well as 

membrane associated proteins at the cell surface of all tissues. The membrane bound HSPGs, 

which could serve as a potential receptor, include two main families of cell surface proteins, 

syndecans and glypicans, as well other proteoglycans including neuropilin and betaglycan. 

Syndecans and glypicans regulate a wide spectrum of biological activities, including cell 

proliferation, morphogenesis, wound repair, and host defense by binding proteins in the 

extracellular environment as well as other plasma membrane proteins via heparan sulfate chains.  

The syndecans comprise a family of four distinct genes encoding integral membrane 

proteins (SDC 1-4) expressed in cell and tissue specific manner. Structurally, syndecans are similar 

in the organization of protein domains: the protein is anchored by a single transmembrane 

domain, with a large extracellular domain and shorter cytoplasmic tail, which consists of two 

conserved regions surrounding a variable domain (188). SDC-1 is the predominant HSPG in 

mammary epithelia and has been identified as an attachment factor for herpes simplex virus type 

1 (158, 164) and human papilloma virus (171, 175, 189). SDC-2 is primarily expressed on 

fibroblasts and cells of the vasculature (190-192). Dengue virus (168) and herpes simplex virus 

type I (158) have been shown to use SDC-2 for attachment. SDC-3 is primarily expressed in the 

nervous system, the adrenal gland, and the spleen (193). Finally, SDC-4 is expressed in focal 

adhesions of adherent cells. Both SDC-1 and SDC-4 have been identified as mediators of HCV 

attachment (165, 172). SDC-2 (194), SDC-3 (161), and SDC-4 (160) have been implicated in HIV-1 

entry (reviewed in (195)). Syndecans have been identified as receptors or coreceptors for several 

HS-binding viruses, possibly in part due to the fact that HS chains are attached to the ectodomains 

distal to the plasma membrane on syndecan proteins, making them available for interaction. 

Chondroitin sulfate chains are also found on SDC-1 and SDC-4, although closer to the plasma 

membrane on the ectodomain that the HS chains.  

The glypicans are a family of at least six proteins (GPC1-6) that are linked to the cell 

membrane via a glycosylphosphatidylinositol (GPI) anchor (196-199). The size of the core protein 

of glypicans is similar (60–70 kDa), with moderate homology among most glypicans (200). The 

position of 14 cysteine residues that form disulfide bonds in the folded protein is conserved, 

suggesting that the three-dimensional structure of glypicans is very similar (200). Heparan sulfate 

is the only GAG that has been found on glypicans, and heparan sulfate chain ttachment sites are 

restricted to the last 50 amino acids in the C-terminus, placing the chains close to the cell 
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membrane (200). Glypicans are involved in mediating signaling during development, 

morphogenesis, and growth. GPC3 is mutated in patients with an overgrowth syndrome, Simpson-

Golabi-Behmel syndrome (SGBS) (201). Glypican expression is also cell and tissue specific, and 

most glypicans are expressed predominantly in the central nervous system. However, GPC-1 is 

widely expressed in other tissues including the epidermis and hair follicles (202, 203). Because 

glypicans are attached to the outer membrane leaflet via a lipid anchor, they can be removed 

from the cell surface using a phospholipase, specifically phospholipase C. Unlike syndecans, 

glypicans have not been identified to function as receptors for viral entry until very recently. Using 

a targeted RNA interference entry screen, GPC-5 was identified as a common host cell entry factor 

for hepatitis B and delta viruses (204). Whether HMPV recognizes a specific HSPG for binding 

remains to be determined. 

 

Membrane fusion promoted by paramyxovirus fusion proteins  

The merger of two membranes is a thermodynamically favored process, but has a high 

kinetic barrier; thus, enveloped viruses utilize fusion proteins to mediate this process. All 

paramyxoviruses discovered to date express a homotrimeric type I fusion protein, which are also 

found in influenza, Ebola and HIV. Paramyxovirus F proteins have distinct domains that consist of 

a hydrophobic fusion peptide (FP), two heptad repeat regions (HRA and HRB), a single-pass 

transmembrane domain (TM), and a C-terminal cytoplasmic tail (Fig. 3A) (205). Paramyxovirus 

fusion proteins are synthesized as a biologically inactive F0 precursor form which must then be 

cleaved into the fusogenically active F1+F2 metastable prefusion form (Fig. 3A). Most 

paramyxovirus fusion proteins are cleaved by intracellular proteases, including furin (206-208) or 

cathepsin L (209-211), but for the HMPV fusion protein (F), this can be achieved by the addition 

of exogenous trypsin (134). During endogenous infection in vivo, it is thought that secreted host 

proteases cleave HMPV F. Upon triggering, the paramyxovirus fusion protein undergoes extensive 

and essentially irreversible conformational changes (Fig. 3B) that result in the repositioning of the 

heptad repeat regions to form a stable six-helix bundle (6-HB), with the released energy proposed 

to drive the fusion process (75, 212). Premature activation can result in inactivation of the 

attachment and fusion machinery, resulting in a defective particle no longer able to infect cells 

(213). Paramyxovirus fusion proteins can promote cell-to-cell fusion when expressed at the 

plasma membrane by transfection or infection, resulting in the formation of giant, multinucleated 

cells called syncytia (24, 214, 215). For HMPV, studies of mutant viruses and recombinant proteins 
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showed that the F protein is the major protective antigen (216-218), and the pneumovirinae 

fusion protein is a common target for vaccine and antiviral development (219).  

The paramyxovirus fusion proteins are minimally conserved at the amino acid level, 

however structural and biochemical analysis suggest a similar structure among paramyxovirus 

fusion proteins (Fig. 3B). Obtaining the prefusion conformation of the soluble globular head 

domain has been challenging as most paramyxovirus fusion proteins are not stable in this form 

without the transmembrane domain, thus different strategies, including the addition of a 

trimerization domain (220-222), have been employed. A crystal structure of the prefusion form 

of PIV5 F (222) and a partial structure of the prefusion form of HMPV F with a bound antibody 

(221) have been solved. In the metastable, prefusion conformation, PIV5 F consists of a large 

globular head domain and a three-helix, coiled-coil stalk domain composed of three HRB domains 

proximal to the membrane (222). The HRA domain is located at the top of the globular head, and 

the hydrophobic fusion peptide is buried between subunits of the trimer, leaving the cleavage site 

exposed (222). Additionally, the postfusion fusion protein structures of three paramyxoviruses, 

PIV3 F (223), NDV F (224), and RSV F (225), have been solved, and the formation of the 6-HB is 

conserved in the solved postfusion conformation structures. Thus, it is hypothesized that 

refolding of the fusion protein to form the 6-HB results in formation of the fusion pore to release 

the nucleocapsid into the cytoplasm. However, it is likely multiple fusion trimers are required to 

accomplish this, as cells expressing PIV5 HN and very low amounts of PIV5 F were unable to 

promote membrane fusion (226). 

The protein refolding that takes place to change from the prefusion to the postfusion 

conformation is essentially irreversible. Therefore, the paramyxovirus fusion protein needs to be 

triggered at the right time and place. For most paramyxoviruses, it is thought that interaction of 

the attachment protein with cell surface receptors, and with the fusion protein, is required for 

triggering (24, 227), and studies have shown that the attachment protein and the fusion protein 

interact for a number of paramyxoviruses and that these specific interactions are required for 

triggering (123-125, 127-129, 228-230). The interaction occurs between the globular head region 

of the fusion protein (126) and different domains of the attachment protein, including the 

globular head domain (229, 231, 232), the stalk domain (103-105, 130, 228, 233), and the TM 

domain (234, 235). It is hypothesized that the attachment protein undergoes a conformational 

change upon receptor binding, which results in the interaction with the fusion protein that 

triggers fusion (95, 99, 106, 228). The fusion proteins of PIV5  and Sendai virus can promote fusion 
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without the attachment protein, however the expression of the attachment protein dramatically 

enhances the fusion activity (226, 236). Furthermore, the fusion proteins of paramyxoviridae can 

be triggered by raising the temperature without the presence of the attachment protein (237, 

238). The fusion proteins of RSV and HMPV can promote cell-to-cell fusion without the 

attachment protein (134, 136, 239-242). HMPV F from CAN97-83 (A2) promotes fusion without 

the G protein, with brief exposure to low pH (134, 136, 243), and co-expression of HMPV G with 

this F protein does not enhance its fusion activity (134). Furthermore, recombinant RSV and HMPV 

without the attachment protein are still infectious in vitro and in vivo (76, 79, 93, 134, 240, 244). 

Thus, while most paramyxovirurses require the attachment protein to trigger the fusion protein, 

viruses in the pneumovirinae subfamily may utilize a different mechanism. 

 

HMPV Fusion protein 

HMPV F is a homotrimeric surface glycoprotein synthesized as a 539 residue precursor 

that undergoes proteolytic cleavage at the arginine at position 102 to the activated form, which 

is linked by a disulfide bridge (Fig. 3A) (245). The majority of paramyxovirus F proteins are cleaved 

by intracellular proteases prior to being packaged into newly formed virions (208, 210); however, 

HMPV requires exogenous trypsin to be grown efficiently in cell culture, suggesting HMPV F may 

be cleaved after viral budding in vivo by an extracellular protease such as TMPRSS2 (31, 246, 247). 

The F protein, in the activated, or cleaved, form sits in the viral membrane as a homotrimer in a 

metastable conformation until an environmental trigger causes a large conformational change in 

protein structure (Fig. 3B) (221). Similarly to other paramyxovirus fusion proteins, it is predicted 

that the globular head and stalk of the prefusion conformation of HMPV F refold to extend the 

hydrophobic fusion peptide into the target membrane in the intermediate form. In the final post-

fusion confirmation the protein folds back on itself resulting in the formation of a 6-HB, which 

promotes fusion between the two membranes (Fig. 3C) (205). The final protein conformation is 

the lowest energy state, making this process essentially irreversible. Therefore, the initial 

environmental trigger is a critical step that must be temporally and spatially coordinated for fusion 

to take place (248-250).  

 

The role of acidic pH in HMPV F triggering 

The requirement for acidic pH to trigger fusion protein activity has been well described 

for the fusion proteins of influenza and the rhabdovirus vesicular stomatitis virus (VSV) (251-254). 



14 

 

For fusion proteins that can be triggered to fuse by low pH, it is thought that electrostatic repulsive 

forces that arise between residues, often involving histidines that become protonated at low pH 

and nearby basic residues contribute to the destabilization of the prefusion conformation of the 

fusion protein, which then leads to refolding to the postfusion conformation (255-257). During 

entry, influenza A (258-260) and VSV (261-269) require acidification of the endosome to escape 

into the cytoplasm and establish infection.  

The majority of paramyxovirus fusion proteins promote cell-to-cell fusion when they are 

co-expressed with their respective attachment proteins, without exposure to acidic pH (24, 270-

272). However, HMPV F proteins can promote membrane fusion without G, and the F proteins 

from some strains of HMPV can be triggered to fuse by brief exposure to low pH (134, 136, 241-

243). In the HMPV F protein, a conserved histidine residue at position 435 is thought to serve as 

a pH sensor, and its protonation at pH values below the pKa (approximately 6.04) contribute to 

triggering F (136, 242, 243). H435 is in close proximity to 3 conserved basic residues, K295, R396, 

and K438, based on a homology model of the prefusion conformation, and is therefore proposed 

to lead to electrostatic repulsion that results in triggering of F and fusion (136, 243). An initial 

analysis of HMPV F proteins from a single prototype strain from each clade suggested low pH 

triggered fusion is rare among HMPV strains (241, 242). Specifically, glycine 294 was identified as 

a requirement for low pH triggered fusion, and this residue is not commonly found in HMPV F 

proteins and had not been previously identified in a Clade B HMPV (241). Furthermore, additional 

analysis identified residues at positions 296, 396, and 404 as the main determinants of fusion 

activity among HMPV F proteins (242). HMPV F proteins that were triggered to promote cell-to-

cell fusion at both pH 5 and pH 7, and thus characterized as pH independent, became low pH 

dependent for fusion after mutagenesis at these positions (242). These findings suggest acidic pH 

is not a general factor in HMPV F trigger, however few HMPV F proteins have been studied in each 

clade. Furthermore, it has only been shown that fusion activity of HMPV F is not enhanced by the 

co-expression of the attachment protein G for CAN97-83 (A2) F (134). Whether acidic pH has 

biological significance in the context of endocytic entry for all HMPV strains is not clear.  

 

Mechanisms of viral entry 

 The fusion proteins of most paramyxoviruses promote fusion at neutral pH, and this, in 

large part, has led to the hypothesis that membrane fusion occurs at the plasma membrane. Thus, 

it had generally been thought paramyxovirus entry occurs by direct viral envelope fusion to the 
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plasma membrane (75). However, several members of the paramyxovirus family have been 

shown to utilize complex entry pathways, including different types of endocytosis and 

macropinocytosis.  

Endocytosis is a process to internalize substances from the extracellular environment 

following activation of a surface protein, and is primarily classified as clathrin-dependent or 

caveolin-dependent. Clathrin-dependent endocytosis utilizes the proteins in the AP-2 complex 

and Eps15 to form a protein network around an area of the plasma membrane that invaginates 

to become a vesicle (273). The GTPase dynamin is required for the final formation of the clathrin-

coated vesicle (273). Many viruses, including Influenza (274-277), VSV (278), and Dengue virus 

(279, 280), can enter cells by clathrin-mediated endocytosis. Furthermore, the paramyxoviruses 

RSV (281) and HMPV (282) have also been shown to enter cells by this route. The second major 

endocytic route is caveolin-dependent endocytosis, whereby vesicles lined with the protein 

caveolin-1 form from small invaginations of the plasma membrane rich in cholesterol (283, 284) 

in a dynamin-dependent manner (283-285). BK virus, echovirus-1, and the paramyxovirus NDV 

(286, 287) have been shown to enter cells in a caveolin-dependent manner (288-290). Both 

clathrin-mediated and caveolin-mediated vesicles transport cargo into acidified endosomes (291), 

where cargo is sorted and delivered to the target compartments. Many viruses utilize the acidity 

of the endocytic pathway to their advantage to trigger their fusion proteins and deliver their 

genomic content to the cytoplasm of the cell (261, 292-294).  

Distinct from endocytic vesicle formation, macropinocytosis is a process of non-selective 

internalization of large quantities of solute and membrane that has been associated with viral 

entry (295, 296). Macropinocytosis involves actin-mediated membrane ruffling of the plasma 

membrane, with formation of lamellipodia that fold back to fuse with the membrane to form 

large, irregularly shaped vesicles called macropinosomes (reviewed in (297)). In most cell types, 

macropinocytosis is a signal-dependent process that normally occurs in response to growth factor 

stimulation (295), however, some specialized cell types, such as antigen-presenting cells, are 

capable of constitutive macropinocytosis (298, 299). After formation, macropinosomes undergo 

maturation that is associated with a reduction in surface area and acquisition of the marker of 

late endosomes, Rab 7, eventually fusing with lysosomes (300). Macropinocytosis has been 

implicated as the entry route for some viruses, including vaccinia virus (301), adenovirus type 3 

(302), filamentous influenza (303), RSV (304), and HMPV (93), often in a cell type-dependent 
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manner. Whether macropinocytosis is an entry route utilized by HMPV in non-antigen presenting 

cells remains to be determined. 

 

Evidence for HMPV endocytosis 

Although not all strains of HMPV are associated with low pH promoted fusion proteins, 

HMPV likely enters cells of the airway epithelium by clathrin-mediated endocytosis (282). A recent 

study has shown that HMPV viral envelope fusion occurs in endosomal compartments of human 

bronchial epithelial cells (282), and HMPV infection was inhibited by chlorpromazine treatment, 

an inhibitor of clathrin-mediated endocytosis (136). Additionally, HMPV entry requires the GTPase 

dynamin, as the inhibitor dynasore inhibited HMPV infection (136, 282). Furthermore, 

lysosomotropic agents that disrupt the acidification of endosomes, such as bafilomycin A, 

concanamycin A, inhibited HMPV infection to varying degrees (136, 242, 282). However, the 

extent of inhibition of HMPV infection by these agents was strain dependent, and may be 

associated with the requirement for acidic pH for fusion (136, 242, 282). Therefore, it likely that 

most, if not all, HMPV strains enter airway epithelium cells by clathrin-mediated endocytosis, and 

the fusion events may take place in various stages of endosomal maturation depending on acidic 

pH requirements of each strain. 

 

In vivo viral respiratory lung infection and challenges of in vitro modeling 

The human respiratory tract is a complex histological environment in the different 

anatomical regions through which air, and any potential viral pathogens, flow: from the nasal 

epithelium of the nose, to the pharynx, to the bronchi and lastly the terminal alveoli where gas 

exchange occurs. The respiratory epithelium is primarily lined with pseudostratified ciliated 

columnar epithelium with mucus-producing goblet cells on a lamina propria. The respiratory tract 

is involved in the critical function of gas exchanges, delivering oxygen to alveoli and removing 

carbon dioxide waste. Additionally, the respiratory epithelium serves an important immune 

function: beating cilia help to clear any potential pathogens trapped in mucus that has 

antimicrobial proteins. 

Because of this complexity, one of the biggest challenges of studying human respiratory 

viruses is the shortage of physiologically relevant models without the use of animals. Most in vitro 

studies investigating paramyxoviruses to date have been done in monolayer cell cultures derived 

from immortalized animal and human cell lines. However, technical advances in manipulating cells 
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to reverse cellular differentiation in order to derive tissue specific stem cells has led to the 

development of the airway epithelium three-dimensional cultures. Polarized epithelium with 

pseudostratified, mucociliary epithelium, as well as apical and basolateral surfaces, allow us to 

investigate directional responses to pathogen exposure in vitro. The airway tissue system 

represents a model of intact normal human airway epithelial cells, and has been promoted as a 

valid animal-alternative model to study respiratory pathogens and testing potential therapeutic 

agents (305). Human airway epithelium (HAE) has been utilized to study respiratory pathogens 

haemophilus influenza, streptococcus pneumonia, influenza virus A, and HRSV (306-308). HMPV 

infection at the apical surface of HAE tissues has been reported previously (El Najjar, submitted) 

although features of binding and entry have not be evaluated in this model. Heparan sulfate has 

been identified as a required cellular factor for HMPV binding; however, several reports have 

concluded that HSPGs are not localized on the ciliated apical side of fully differentiated bronchial 

epithelial cells cultured at the air-liquid interface or tracheal tissue sections (142, 309-311). HAE 

presents an opportunity to apply what has been learned about HMPV since its discovery in a 

physiologically relevant system. This culture system allows us to ask in vivo questions regarding 

cellular responses to viral infection and conveniently answer them utilizing an in vitro system. 

 

Dissertation Overview 

Human metapneumovirus (HMPV) is an enveloped RNA virus that causes severe 

respiratory disease in infants, the elderly, and immunocompromised patients worldwide. Despite 

its prevalence and importance to human health, no therapies are available against this pathogen. 

Key features of early events in HMPV infection have been identified. However, many important 

aspects of binding and fusion events remain unknown. This body of work characterized critical 

aspects HMPV F protein triggering by low pH, which has biological relevance for endocytic entry. 

It was previously demonstrated low pH can promote fusion activity of the F protein from some 

strains of HMPV, but analysis of a limited number of other strains suggested this is a rare 

characteristic and requires specific residues. Analysis of F proteins from phylogenetically diverse 

HMPV strains showed low pH triggered fusion, challenging previously thought requirements, and 

led to the identification of a critical residue that enhances low pH promoted fusion. These results 

support our hypothesis that electrostatic interactions play a key role in HMPV F triggering by low 

pH and further elucidate the complexity of viral fusion proteins. 
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Previous work showed HMPV F mediates attachment to HSPGs. We characterized the key 

features of the binding interaction between HMPV and HSPGs using heparan sulfate mimetics, 

identifying an important sulfate modification, and demonstrate that these interactions occur at 

the apical surface of polarize airways tissues. These results significantly advance our 

understanding of HMPV infection in the human airway and identify an antiviral strategy.  

Furthermore, in our analysis of HMPV F mediated binding to HSPGs, we identified regulatory roles 

of HMPV glycoproteins G and SH that affect binding mediated by F and a potential novel function 

for HMPV G in actin recruitment. These results contribute to our understanding of the HMPV G 

and SH, which often do not share the same functional roles of analogous proteins found in viruses 

of the same family. 

While a majority of the work presented here examined mechanisms of early events of 

entry, we also characterized HMPV infection in a clinical scenario using cystic fibrosis bronchial 

epithelial (CFBE) cells. Compared to paramyxoviruses RSV and PIV5, CFBE were specifically more 

permissive to HMPV infection, which correlates to the limited number of epidemiological studies 

of virus infection in cystic fibrosis patients. Our results identified a potential specific susceptibility 

to HMPV infection, which has not been previously reported. Therefore, the work presented here 

contributes to our understanding of HMPV infection over a broad breadth, from mechanisms of 

early events of entry to a clinical model of chronic respiratory disease. 

 

 

 

 

 



19 

 

 
 

Figure 1. Paramyxovirus family.  

Figure is adapted from (312).  
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Figure 2. HMPV particle structure. 

The three glycoproteins found on the surface of HMPV include the attachment protein (G), the 

homotrimeric fusion protein (F), and the small hydrophobic (SH) protein. The viral envelope (red) 

is derived from host cell plasma membrane in part due to the assembly of the matrix protein (blue 

ovals), which closely associated with the inner leaflet of the viral envelope. The nucleocapsid 

surrounds the negative sense, single stranded RNA genome and contributes to the replication 

machinery required during infection.  
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Figure 3. HMPV F protein: processing and predicted structures 

(A) The HMPV F protein includes: a hydrophobic fusion peptide (blue), heptad repeat A (HRA) 

(orange) and heptad repeat B (HRB)(green) domains, the transmembrane (TM) domain (red), and 

the cytoplasmic tail (brown). The inactive precursor F0 undergoes proteolytic cleavage, resulting 

in protein fragments F1 + F2 linked by a disulfide bridge. (B) Structures of the uncleaved form of 

PIV5 F in its prefusion conformation (222) and (C) the hPIV3 F in its postfusion conformation (223), 

adapted from (312). 

A 

B                                                       C 
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Figure 4. Glycosaminoglycans 

Representative structures of glycosaminoglycans (GAGs) heparan sulfate, chondroitin sulfate, 

dermatan sulfate, and keratin sulfate type I. All four types of GAGs can be further modified by N-

sulfation and O-sulfation.  
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Chapter 2: Materials and Methods 

 

Cells and tissues 

 Vero cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) 

supplemented with 10% fetal bovine serum (FBS). BSR cells (provided by Karl-Klaus Conzelmann, 

Max Pettenkofer Institut) were grown in DMEM supplemented with 10% fetal bovine serum and 

1% penicillin and streptomycin (P/S). The medium of the BSR cells was supplemented with 0.5 

mg/ml G-418 sulfate (Gibco Invitrogen, Carlsbad, CA) every third passage to select for T7 

polymerase-expressing cells. A549 cells were grown in Roswell Park Memorial Institute medium 

(RPMI; Lonza) supplemented with 10% FBS. BEAS-2B cells, a human bronchial epithelial cell line, 

obtained from ATCC, were maintained in BEGM medium containing all the recommended 

supplements (Lonza) in flasks coated with bovine collagen (Sigma), bovine fibronectin (VWR 

Scientific) and bovine serum albumin (EMD Millipore). Cystic fibrosis bronchial epithelial (CFBE) 

cells were kindly supplied by Carolyn Coyne from the University of Pittsburg. CFBE cells were 

grown in DMEM supplemented with 10% FBS, 1 mM of non-essential amino acids (Gibco), and 1 

mM of sodium pyruvate (Invitrogen).  All cells were grown at 37°C under 5% CO2. 

Well-differentiated (transepithelial resistance >1000 Ohm) primary normal bronchial 

human airway epithelial (HAE) tissue cultures were purchased from MatTek Corp. (Ashland, MA, 

USA). Cell culture inserts were placed atop two washers (MatTek) in 6-well plates with 5 mL AIR 

100 growth medium (MatTek) in contact with the basal surface and incubated at an air-liquid 

interface at 37°C and 5% CO2. Tissues were maintained for 5 -7 days for differentiation after arrival 

by washing the apical surface with 0.9% sodium chloride and changing the media every 48 hours 

prior to initiation of infection experiments. 

 

Plasmids 

HMPV virus strains were kindly provided by the designated sources: CAN97-83 (Ursula J. 

Buchholz, NIAID), TN83-1211 (BEI Resources), TN94-49 and TN96-12 (John Williams, U. of 

Pittsburg). RNA was isolated from viruses propagated in Vero cells as by phenol-chloroform 

extraction. Briefly, 100 µL of virus solution was resuspended in 800 µL Tripure and incubated at 

room temperature for 5 min. Next 200 µL chloroform was added and the sample was shaken 

vigorously for 15 sec and let stand for 15 min. The sample was centrifuged for 15 min at 12,000xg 

at 4°C. The top (colorless) layer containing the RNA was transferred to a new tube and 500 µL 
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isopropanol added. The RNA was allowed to precipitate for 10 min at room temperature and 

pelleted by centrifugation for 10 min at 12,000 x g, at 4°C. 1mL 75% ethanol was added to the 

pellet. After inverting to mix, the samples were centrifuged for 5 min at 7,500 x g at 4°C. The 

supernatant was discarded and the pellet air-dried overnight. The RNA was resuspended in 50µL 

DEPC treated water. 

The F genes were amplified from RNA using the following primers designed with EcoR1 

restriction sites upstream and downstream of the gene: forward primer 

5’AAAGAATTCGCTAGCAATCAAGAACGGGACAAATAAAAATGTCTTGGAAAGTGGTGATCATTTTTTCAT

TGC and reverse primer 5’AAAAAAGAATTCTTTAATTAACTAA-CTGTGTGGTATGAAGCC. Using the 

SuperscriptIII One Step RT-PCR system (Invitrogen) according to manufacturer’s protocol, the 

gene was amplified using the following thermocycler settings: 1 cycle at 55°C for 30 min, 1 cycle 

at 94°C for 2 min, 40 cycles of the following three steps: 94°C for 15 sec, 60°C for 2 min, 68°C for 

1 min, then 1 cycle at 68°C for 5 minutes. The amplified product was held at 15°C until it was 

confirmed by gel electrophoresis, and bands corresponding to F (1600bp) were excised and 

purified. The inserts were digested with EcoR1 and ligated into alkaline phosphatase-treated 

pCAGGs overnight at 16°C using T4 DNA Ligase (New England BioLabs). Competent E coli cells 

were transformed with ligation product and plated on plates with Ampicillin. After 12-18 hr of 

growth at 37°C, colonies were screened for an insert. Correct orientation of insert in pCAGGS was 

determined by digestion with Pac1 (restriction site in forward primer) and Xba1 (restriction site 

in pCAGGS) digestion, with proper orientation giving bands of sizes 1754 bp and 4651 bp. The 

CAN97-83 434H F mutant was created using the gene in pGEM-3Zf(+) using QuikChange site-

directed mutagenesis (Stratagene) and subcloned back into pCAGGS. All F expression plasmids 

were sequenced in their entirety and BioEdit was used for sequence analysis.  

 

Antibodies 

A rabbit polyclonal antibody against avian metapneumovirus (AMPV) C matrix (M) protein 

supplied by Dr. Sagar Goyal (University of Minnesota) with cross reactivity to HMPV M was used 

to detect HMPV M protein by Western blot (313). All other antibodies were purchased from the 

following companies: β-actin (Sigma), Peroxidase AffiniPure Goat Anti-Rabbit IgG and Peroxidase 

AffiniPure Goat Anti-Mouse IgG (Jackson Immuno Research). Antipeptide antibodies to HMPV F 

(Genemed Synthesis, San Francisco, CA) were generated using amino acids 524 to 538 of HMPV F 

(314). 
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Syncytium assay 

Subconfluent monolayers of Vero cells in 6-well plates were transiently transfected with 

a total of 2 μg of DNA consisting of pCAGGS-HMPV F derived from CAN97-83, CAN97-83 mutant 

434H, TN83-1211, TN49-49 or TN96-12, or the empty pCAGGS vector, using Lipofectamine Plus 

reagents (Invitrogen) according to the manufacturer's instructions. The next morning, confluent 

cell monolayers were washed with PBS (phosphate buffered saline; Invitrogen) and incubated at 

37°C in Opti-MEM (Gibco) with 0.3 μg/ml TPCK (l-1-tosylamide-2-phenylethyl chloromethyl 

ketone)-trypsin (Sigma) for 1 hr. Then the cells were rinsed once with PBS (pH 7.2) before PBS of 

the indicated pH, buffered with 10 mM HEPES and 5 mM MES (2-(N-morpholino)ethanesulfonic 

acid hemisodium salt), was added. Cells were incubated for 4 min at 37°C with PBS pH 5 or pH 7, 

and then the media was replaced again with Opti-MEM with 0.3 μg/ml TPCK-trypsin. The pH pulse 

was repeated three more times (2 hr apart) throughout the day. Vero cells were incubated 

overnight at 37°C to allow syncytia formation to take place. Digital photographs of syncytia were 

then taken with a Nikon Coolpix995 camera mounted on a Nikon TS100 inverted phase-contrast 

microscope using a 5X objective. Quantification of syncytia formation is reported as a fusion index, 

as previously reported (315). Briefly, the fusion index was calculated using the equation f = [ 1 – ( 

C / N ) ] where c is the number of cells in a field after fusion and n the number of nuclei. Six fields 

were scored per condition representative of 3 independent experiments.  

 

Reporter gene fusion assay 

Vero cells in 6-cm dishes were transfected using Lipofectamine Plus reagents (Invitrogen) 

with 1.5 μg pCAGGS-HMPV F derived from CAN97-83, TN83-1211, TN49-49 or TN96-12  or CAN97-

83 mutant 434H or empty pCAGGs control, and 1.5 μg T7 control plasmid (Promega) containing 

luciferase cDNA under the control of the T7 promoter. The following day Vero cells in one 6-cm 

dish were lifted with trypsin, a process which also efficiently cleaved the HMPV F protein. The 

cells were resuspended in DMEM plus 10% FBS and overlaid onto two 35-mm dishes of confluent 

BSR cells, which constitutively express the T7 polymerase. The combined cells were incubated at 

32°C for 2 hr. The cells were then rinsed once with PBS (pH 7.2) before adding pH 5 or 7 PBS 

buffered with 10 mM HEPES and 5 mM MES (morpholineethanesulfonic acid). The cells were 

incubated for 4 min at 37°C under the indicated pH conditions, and then Opti-MEM with 0.3 μg/ml 

TPCK-trypsin was added. The cells were again incubated at 32°C for 1 hr, and then the cells were 

treated with pH 5 or 7 PBS as before. DMEM with FBS was added after this treatment, and the 
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cells were incubated at 37°C for 4 hr. Finally, the cell lysates were analyzed for luciferase activity 

using a luciferase assay system (Promega) according to manufacturer's protocol. Light emission 

was measured using an Lmax luminometer (Molecular Devices, Sunnyvale, CA). 

 

Surface expression of proteins, metabolic labeling, and immunoprecipitation 

Vero cells were transiently transfected with 4μg pCAGGS expression vectors using 

Lipofectamine Plus reagent. At 18 to 24 hr posttransfection, the cells were starved in methionine- 

and cysteine-deficient DMEM for 30 min and then metabolically labeled with Tran35S-label (100 

μCi/ml; MP Biomedicals) for 3 hr with or without the presence of 0.3 μg/ml TPCK-trypsin. The cells 

were washed three times with cold pH 8 PBS and incubated with 1 mg/ml EZ-Link Sulfo-NHS-Biotin 

(Pierce, Rockford, Ill.) diluted in pH 8 PBS for 15 min of rocking at 4°C and then 30 min at room 

temperature. The cells were washed twice with PBS before being lysed with 

radioimmunoprecipitation assay buffer containing 100 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.1% 

sodium dodecyl sulfate (SDS), 1% Triton X-100, 1% deoxycholic acid, protease inhibitors (1 

KalliKrein inhibitory unit of aprotinin, [Calbiochem, San Diego, Calif.] and 1 mM 

phenylmethylsulfonyl fluoride [Sigma, St. Louis, Mo.]), and 25 mM iodoacetamide (Sigma). The 

lysates were centrifuged at 136,500 × g for 10 min at 4°C, and the supernatants were collected. 

Antipeptide sera and protein A-conjugated Sepharose beads (Amersham, Piscataway, N.J.) were 

used to immunoprecipitate the F proteins as previously described (316). The beads were boiled 

twice in 10% SDS for 10 min to release the proteins. Ten percent of the total protein was removed 

for analysis, and the remaining 85% was incubated with immobilized streptavidin (Pierce) for 1 hr 

at 4°C. Then biotin-labeled protein bound to streptavidin was pulled down and released by boiling 

with loading buffer. The immunoprecipitated F proteins were analyzed via SDS-15% 

polyacrylamide gel electrophoresis (SDS-PAGE) and visualized using the Typhoon imaging system. 

 

Homology modeling 

The DeepView/Swiss-PdbViewer v3.7 (www.expasy.org/spdbv/) was used to generate 

homology models of the HMPV F protein in prefusion and postfusion conformations as previously 

described (136, 243). The prefusion model of HMPV F was created by threading the amino acid 

sequence was threaded onto the crystal structure of PIV5 F in its metastable prefusion form (222). 

The postfusion homology model of HMPV F was created by threading the amino acid sequence of 

HMPV into the crystal structure of Newcastle Disease Virus F in its postfusion conformation (317). 

http://www.expasy.org/spdbv/
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Heparan sulfate mimicking and occluding compounds 

Iota-carrageenan was purchased from Sigma (Invitrogen). Peptide dendrimer SB105-A10 

([H-ASLRVRIKK]4 Lys2-Lys-β-Ala-OH) was synthesized by Lifetein with a purity of >95%. Escherichia 

coli K5 polysaccharides derivatives were provided by David Lembo and Glycores 2000 (318). 

 

Cell viability assay 

Approximately 10,000 BEAS-2B or A549 cells were grown in triplicate overnight in a 96 

well plate. BEAS-2B cells were either incubated with 2 µM SB105-A10 for 1 hr, 40 µg/mL iota-

carrageenan for 4 hr, or 10 µM of each of the K5 derivatives for 4 hr at 37°C. A549 cells were 

incubated with 2 µM SB105-A10 for 1 hr at 37°C. Control cells were incubated with OptiMEM, 

which was used to dilute all of the compounds. Then 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl-

2H-tetrazolium bromide (MTT; Fisher Scientific) (5 mg/mL) was added and incubated for 3 hr at 

37°C. The media was removed from the cells by tapping the plate and blotting excess liquid. Next, 

100 µL of stop solution (90% isopropyl alcohol, 10% DMSO) was added and the plate was 

incubated at room temperature for 20 minutes in the dark with rocking. Absorbance was read at 

590 nm using a plate reader. Absorbance of treated cells was normalized to the untreated control.  

 

Virus propagation and titers 

Recombinant, green fluorescent protein (GFP)-expressing HMPV (rgHMPV) strain CAN97-

83 (genotype group A2) and the mutant viruses HMPV ΔG and HMPV ΔG/ΔSH with a codon-

stabilized SH gene (319) were kindly provided by Peter L. Collins and Ursula J. Buchholz (NIAID, 

Bethesda, MD). The viruses were propagated in Vero cells (starting multiplicity of infection [MOI], 

0.01 to 0.03) and incubated at 37°C with Opti-MEM, 200 mM l-glutamine, and 0.3 μg/ml 

tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-trypsin (Sigma), replenished every day. On 

the fifth day, or when cytopathic effects were observed in at least 25% of the cells, cells and 

medium were collected and subjected to centrifugation at 2,500 × g for 10 min at 4°C in a Sorvall 

RT7 tabletop centrifuge. The supernatant was then stored in 1× sucrose phosphate glutamate 

(SPG) (218 mM sucrose, 0.0049 M l-glutamic acid, 0.0038 M KH2PO4, 0.0072 M K2HPO4), and 

aliquots were flash frozen in liquid nitrogen and thawed twice prior to storage at −80°C. To 

achieve more concentrated rgHMPV for HAE tissue experiments, supernatants of harvested cells 

and medium were subjected to centrifugation on a 20% sucrose cushion for 3 hr at 27,000 × g at 
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4°C using a SW28 swinging-bucket rotor on a Beckman Optima L90-K ultracentrifuge. Following 

centrifugation, the supernatant was removed, and the pellet was resuspended in 100 μl Opti-

MEM per T75 flask harvested, and left at 4°C overnight. Aliquots were stored at −80°C by flash 

freezing in liquid nitrogen.  

Recombinant GFP-expressing parainfluenza virus 5 (rgPIV5) was kindly provided by Robert 

Lamb (Howard Hughes Medical Institute, Northwestern University) (136). rgPIV5 was propagated 

in MDBK cells as described previously (316) and stored in 1× SPG. Aliquots were frozen in liquid 

nitrogen and thawed twice prior to storage at −80°C. Recombinant GFP-expressing respiratory 

syncytial virus (rgRSV) was provided by Mark Peeples (The Ohio State University). 

For GFP-expressing viruses (rgHMPV, rgPIV5, and rgRSV), viral titers were calculated by 

creating serial dilutions of the viral samples in Opti-MEM. Vero cells were seeded on a 96-well 

plate overnight and infected in serial dilution (10-1 to 10-12) with 50µL of virus solution in duplicate. 

The number of GFP-expressing cells was counted in wells demonstrating 25-100 GFP-positive cells 

the following day. Average titer was calculated based on the dilution of the virus solution in the 

wells counted.  

For non-GFP expressing viruses (HMPV ΔG and HMPV ΔG/ΔSH) viral particles were 

estimated using serial dilutions of viral samples assessed for M protein content using Western 

blot and compared to protein levels of an rgHMPV standard of known titer. Volumes of untitered 

virus and the rgHMPV standard of known titer (2, 4, and 8 µL in duplicate) were resolved on 15% 

SDS-PAGE, and the proteins were transferred to a PVDF membrane (Fisher) at 50 volts for 80 min. 

The membrane was blocked with Odyssey Blocking Buffer (Li-Cor) at 4°C overnight and incubated 

with anti-AMPV M antibody (1:500) in PCT (PBS; phosphate buffered saline (Invitrogen) with 

casein and 0.2% Tween-20) for 3 hr at room temperature. The membrane was washed with t-TBS 

(0.2% Tween-20 in 1X TBS (Tris buffered saline)) and incubated with Peroxidase AffiniPure Goat 

Anti-Rabbit secondary antibody (1:10,000) in PCT for 1 hr at room temperature. The membrane 

was washed with t-TBS and incubated with SuperSignal West Pico Chemiluminescent Substrate 

(Fisher) for 10 min in the dark prior to development by ECL. Densitometry was quantified using 

ImageQuantTL, and an average density units of M protein per µL of virus input was calculated for 

each sample. Titer was determined by comparing to the standard of known titer. 
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Cell infection assay 

BEAS-2B cells were grown to low confluency (approximately 50,000 cells per well; as 

recommended by ATCC) in a 24 well plate overnight. Iota-carrageenan solution was freshly 

prepared in PBS at 0.7 mg/mL by incubating at 55°C with brief vortexing. Virus was pretreated 

with iota-carrageenan or K5 polysaccharide derivatives diluted in OptiMEM for 30 min at 4°C with 

rocking. Cells were washed two times with PBS and 200µL of virus solution was added at MOI of 

1. For SB105-A10 experiments, BEAS-2B or A549 cells were washed 2 times with PBS, and 

incubated with 200µL of SB105-A10 diluted in Opti-MEM at variable concentrations at 37°C for 1 

hour. Cells were washed once with PBS and infected with 200 µL of virus solution in OptiMEM at 

an MOI of 1. For all treatments, cells were incubated with the infection media in duplicate for 2 

hours at 37°C with rocking every 30 min. After 2 hr, cells were washed twice with PBS, and 

infection media was replaced. For GFP expressing virus, following an overnight incubation, cells 

were resuspended, fixed in 2% formaldehyde diluted in PBS with 50 mM EDTA, and analyzed with 

a BD FACS Calibur flow cytometer, for which the GFP expression of at least 10,000 cells were 

determined. Data analysis was performed using FCS Express software, and data presented in 

graphs represent the percentage of GFP-expressing cells as a percentage of the untreated control 

as previously described (79).  

 

HAE infection assay 

HAE tissues were maintained according to the manufacturer’s recommendations for 5-7 

days after arrival. Tissues were transferred to a new 6-well plate with 1 ml of Hepes buffered 

saline (HBS; 150 mM NaCl, 20 mM HEPES pH 7.5, 1 mM MgCl2 and 1 mM CaCl2) and washed with 

400 µL of sterile 0.9% NaCl. The apical surface was washed 3 times with 75 µg/mL 

lysophosphatidyl choline (LPC; Sigma) in HBS for 10 min at room temperature (320). LPC was 

removed from the apical surface, and HBS from the basal surface of the tissues, and 1mL of AIR 

100 Growth Medium was added to the basal side. To measure the effects of heparan sulfate 

mimics, rgHMPV or rgPIV5 at MOI of 5 (calculation was based on 0.8x106 cells per tissue according 

to manufacturer) was pretreated either with 40 µg/mL iota-carrageenan, 10µM K5-N,OS (H) or 

10µM K5-OS(H) (untreated control received Opti-MEM) in a total volume of 100 µL. For SB105-

A10, the tissues were treated with 2 µM SB105-A10 in Opti-MEM for 1 hr at 37°C prior to infection 

(untreated control tissue was incubated with Opti-MEM). The infection solution (100 µL at MOI 

of 5) was added to the apical surface of the tissues drop-wise, and the tissues were incubated at 
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37°C for 2 hours with rocking every 30 min. After 2 hr, the infection media was aspirated, and the 

apical surface washed 1X with 200µL of HBS. Fresh AIR 100 Growth Medium with 0.3 μg/ml TPCK-

trypsin was added to each well and incubated at 37°C. After 48 hr, the apical surface of the tissues 

was imaged for GFP expression using an Axiovert-100 (3 fields per tissue) at 5X magnification. The 

number of infected cells was determined by counting GFP-expressing cells and averaged per 

tissue. The results are reported as a percent infection of the untreated control. 

 

Cell binding assay 

Approximately 250,000 BEAS-2B cells were cultured overnight in a 6-well plate. rgHMPV 

was pretreated with iota-carrageenan at 40 mg/mL or 1µM of the K5 polysaccharide derivatives 

diluted in Opti-MEM for 30 minutes at 4°C with rocking. For SB105-A10 treatment, cells were 

washed two times with PBS and incubated in a 200 µL solution of SB105-A10 diluted in Opti-MEM 

at 37°C for 1 hour. For all treatments, cells were washed twice with cold PBS and infected with 

500µL of virus solution at an MOI of 1 for 2 hr at 4°C with rocking to prevent internalization. Cells 

were washed with PBS 3 times, lysed using 45 μl of RIPA buffer with 0.15 M NaCl with a complete 

protease inhibitor cocktail tablet (Fisher), and frozen at -80°C. Cells were thawed and scraped on 

ice, and lysates were cleared by centrifugation for 10 min at 55,000 rpm at 4°C (Sorvall Discovery 

M120). Western blot analysis for M to quantify bound HMPV was carried out as described above. 

 

Statistical Analysis 

All data are presented as mean +/- standard deviation. A standard Student's t-test or one-

way ANOVA was performed when appropriate to analyze the differences between the individual 

experiments with statistical significance set as p≤0.05. Post-hoc Bonferroni’s multiple comparison 

test (GraphPad Prism) was used within one-way ANOVA to identify specific differences between 

groups. 
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Chapter 3: HMPV fusion protein triggering: Increasing complexities by analysis of new strains 

 

*This work was completed with the help of Andres Chang, who cloned the fusion proteins from 

HMPV CAN97-83, TN94-49 and TN96-12 and designed the primers for this construct. Andres 

Chang also created the homology model for the prefusion and postfusion structures of HMPV F 

and identified the exposed basic residues on the surface of HMPV F that may contribute to 

interaction with heparan sulfate. Viruses TN94-49 and TN96-12 were kindly provided by John 

Williams (University of Pittsburg). 

 

Introduction 

Human metapneumovirus (HMPV), an enveloped, negative-sense, single-stranded RNA 

virus in the Paramyxoviridae family, is a common cause of both upper and lower respiratory tract 

infections (30, 31, 321). First identified in 2001 in the Netherlands, HMPV is now known to be the 

cause of respiratory infections in humans since at least 1958 (31). HMPV strains have been 

phylogenetically classified into two genetic lineages (A and B) with distinct sublineages (A1, A2, 

B1, and B2) (32). Nearly all people are initially infected with HMPV in early childhood, and 

reinfection throughout life is common (7). Respiratory disease caused by HMPV can vary in 

severity, from mild cold-like symptoms to severe lower respiratory tract infection such as 

pneumonia and bronchiolitis (321, 322). Infants, immunocompromised and geriatric patients are 

most likely to foster severe infection (37, 38, 43-45). There is no vaccine or antiviral treatment 

against HMPV.  

To infect cells, enveloped viruses fuse the viral envelope with membranes of the target 

cell, a process mediated by one or more surface viral glycoproteins. For HMPV, this process can 

occur in endosomes (282) and is mediated by the fusion protein (F). HMPV F proteins, like all 

paramyxovirus F proteins, are trimeric type I fusion proteins. To become active, paramyxovirus F 

proteins undergo proteolytic cleavage of the precursor form of the protein (F0) into an active, 

disulfide-linked form (F1+F2) (75, 212). For HMPV F, this can be achieved by the addition of 

exogenous trypsin (134), although it is thought secreted host proteases cleave F during infection 

in vivo.  

The paramyxovirus F protein undergoes an essentially irreversible conformational change 

during the process of membrane fusion, with the released energy proposed to drive the fusion 

process. The triggering event that drives these conformational changes for the majority of 
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paramyxovirus F proteins is hypothesized to occur following attachment of the virus to its 

receptor, requiring the coordinated activity of an attachment protein and a fusion protein 

(reviewed in (212)). However, HMPV attachment and fusion is dependent on F alone (79, 134, 

136). Furthermore, HMPV F promotes cell-to-cell fusion without the putative attachment protein, 

G (134, 136, 241, 242). This suggests HMPV F is triggered to fuse by environmental and host 

factors in the right time and place. 

There is direct evidence HMPV can enter target cells by endocytosis in epithelial and 

endothelial cells. Antigen presenting cells of the immune system can take up HMPV by 

micropinocytosis (93). However, HMPV particles are internalized via clathrin-mediated 

endocytosis in human bronchial epithelial cells (282), which requires dynamin (136, 282). 

Furthermore, viral membrane fusion has been shown to take place in endosomes (282). Our group 

and others have shown HMPV infection for at least some strains can be inhibited by interfering 

with acidification of endosomes, suggesting low pH can contribute to HMPV infection (136, 242, 

282). Many paramyxovirus F proteins can promote fusion at neutral pH (75). However, low pH can 

trigger the fusion of activity of HMPV F from some strains, including HMPV strain CAN97-83 (clade 

A2) (134, 136). For fusion proteins that can be triggered to fuse by low pH, it is thought that 

electrostatic repulsive forces that arise between residues, often involving histidines that become 

protonated at low pH and neighboring basic residues contribute to the destabilization of the 

prefusion conformation of F, which then leads to refolding to the postfusion conformation (255-

257). In HMPV F, a conserved histidine residue (H435) in the heptad repeat B linker domain is 

thought to serve as a pH sensor and contribute to triggering F (136, 242). H435 is in close proximity 

to 3 conserved basic residues, K295, R396, and K438, based on a homology model of the prefusion 

conformation, and is therefore proposed to lead to electrostatic repulsion that results in 

triggering of F and fusion (136, 243). Studies with recombinant HMPV with mutations in this 

region confirmed its importance for virus infectivity (243). 

While the trigger of CAN97-83 (A2) F by acidic pH has biological significance in the context 

of endocytic entry, low pH is not required for fusion activity for F proteins for all strains of HMPV. 

An initial analysis of F proteins from a single prototype strain from each clade revealed low pH 

triggered fusion is rare among HMPV (241). Specifically, glycine 294 was identified as a 

requirement for low pH triggered fusion, and this residue is not commonly found in HMPV F 

proteins (241). Furthermore, additional analysis identified residues at positions 296, 396, and 404 

as the main determinants of fusion activity among hMPV F proteins (242). These findings suggest 
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acidic pH is not a general factor in HMPV F trigger, however few HMPV F proteins have been 

studied in each clade. 

In this study, we analyzed the different fusion activity of HMPV F proteins from three 

unique strains: TN83-1211 (Clade B2), TN94-49 (Clade A2), and TN96-1211 (Clade A1).  We 

identified an F protein from TN83-1211 (B2) that promotes greatly enhanced fusion after low pH 

pulses compared to CAN97-83 (A2) F, and determined the specific residue, H434, is a key 

contributor to this hyperfusogenic phenotype, supporting the hypothesis that electrostatic 

interactions in this region play a key role in HMPV F triggering. Furthermore, we characterized an 

F protein from strain TN94-49 (A2) that promotes cell-to-cell fusion after low pH pulses without 

residue G294, which has been previously thought to be required for low pH promoted fusion. 

Lastly, we identified an F protein from TN96-12 (A1) that failed to fuse in cell-to-cell fusion assays, 

suggesting additional host factors are required for triggering for this HMPV F. Taken together, 

these results further elucidate the complexity of HMPV F proteins and provide insights to how 

fusion is regulated in endosomal compartments to establish infection. 

 

Results 

Different fusion activity of HMPV F proteins 

We previously showed that the fusion protein (F) derived from HMPV strain CAN97-83 

(A2) could be triggered to promote membrane fusion by short exposure to low pH (134, 136). 

However, fusion by F proteins from other strains, specifically those in the B genetic lineage, were 

not low pH triggered in studies from other groups, suggesting low pH is not a requirement for 

fusion for F proteins of all strains of HMPV (241, 242). However, F proteins from only a small 

number of strains within each clade have been examined. We therefore characterized the fusion 

activity of F proteins from several additional strains and determine how these results fit with the 

current understanding of essential residues involved in low pH triggered HMPV F (136, 241, 242, 

314). The F genes were cloned from the following strains of HMPV, with the respective clades 

indicated in parentheses: TN83-1211 (B2), TN94-49 (A2), and TN96-1211(A1). Because the primer 

design also included short intergenic upstream and downstream of F, CAN97-83 (A2) F was also 

cloned using the same expression construct so that activities between the different F proteins 

could be directly compared. To determine if the F proteins could be triggered to promote 

membrane fusion by low pH exposure, Vero cells transiently expressing the different F constructs, 

or the control expression plasmid without F, were exposed to a serious of pulses of buffer at pH 
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5 or 7. The cells were visualized for cell-to-cell fusion, syncytium formation, the following day. In 

addition to imaging the cells, the fusion index was calculated for each strain (315). As previously 

reported, CAN97-83 (A2) F promoted cell-to-cell fusion after brief exposure to low pH pulses, as 

did TN94-49 (A2) to a same degree (Fig. 5A). Interestingly, TN96-12 (A1) F failed to fuse with low 

pH or neutral pH exposure, whereas TN83-1211 (B2) caused robust syncytia formation that was 

more extensive than that observed with CAN97-83 (A2) F at low pH (Fig. 5A and 5B). While the 

fusion index serves as a representative quantitation of syncytia formation, we used a luciferase 

reporter gene assay as quantitative measure of cell-to-cell fusion by the F proteins (134). Vero 

cells transfected with the F construct and a plasmid encoding the luciferase enzyme under a T7 

promoter were overlaid on BSR cells, which are stably transfected to express the T7 polymerase. 

Cells were treated with pH 5 or 7 buffer and cell lysates were analyzed for luciferase activity. As 

observed with the syncytia assay, TN94-49 (A2) F exhibited similar fusion activity as CAN97-83 

(A2) F under low pH conditions, and TN83-1211 (B2) F exhibited fusion activity nearly 500% of 

CAN97-83 (A2) F (Fig. 5C). Fusion activity of TN96-12 (A1) was not observed above background 

(Fig. 5C).  

 

HMPV F protein surface expression and proteolytic processing 

To verify that the varying fusion activity observed for F proteins from the different strains 

were not a results of changes in surface expression, we performed surface biotinylation. The 

antibody used to recognize F for immunoprecipitation is a polyclonal antibody generated using 

amino acids 524 to 538 of CAN97-82 (A2) F and all 4 of the F proteins in these studies are 

completely conserved in this region (Fig. 6). There was no significant difference in total (Fig. 7A) 

and surface expression (Fig. 7B) of F from the different strains (Fig. 7C).  

While HMPV F is synthesized as a single protein (F0), it must be cleaved into fragments F1 

and F2, which are linked by disulfide bonds, to be fusogenically active. In cell assays exogenous 

trypsin is added to cells to cleave F (34, 73, 90, 323). Although we found equivalent surface 

expression of the different F constructs, it was possible they are not recognized by trypsin to the 

same degree. To determine if the different F proteins were not being cleaved by trypsin with the 

same efficiency, we examined the ratio of surface expression of cleaved F (F1) compared to total 

F, cleaved (F1) and uncleaved F (F0). Incubation of the cells with trypsin during metabolic labeling 

revealed the four F constructs are processed to similar efficiency (Fig. 7D, which suggests 
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differences in trypsin cleavage at the plasma membrane do not account in the variable fusion 

activity. 

 

Sequence differences in HMPV F proteins and role of H434 

Because the surface expression and cleavage efficiency of the F proteins did not differ 

among the F proteins from different strains, we examined the nucleotide and amino acid 

sequences to identify potential residues that could explain the different fusion activities. HMPV F 

is highly conserved, thus sequence analysis revealed only a small number of differences at the 

amino acid level (Fig. 6). While there were 37 nucleotide differences between CAN97-83 (A2) and 

TN94-49 (A2), these only resulted in 6 amino acid differences. One key difference was noted at 

residue 294, as TN94-49 (A2) did not have a glycine but rather lysine at this position (Fig. 8A). 

Therefore, TN94-49 (A2) F does not require G294 for low pH triggering, in contrast to the previous 

suggestion that G294 is required for clade A F proteins for low pH triggering (241, 242). 

Comparison of CAN97-83 (A2) and TN96-12 (A1) revealed 86 nucleotide differences and 9 

differences at the amino acid level, though the role of each of these residues in fusion is still 

unclear. TN96-12 (A1) F lacks G294, previously hypothesized to be critical for low pH triggering, 

but this residue is also absent in TN94-49 (A2) F, which is low pH triggered. Despite a greater than 

400% increase in fusion activity promoted by low pH, TN83-1211 (B2) F differs from CAN97-83 by 

only 3 nucleotides, which result in differences at two amino acid positions, R175S and Q434H (Fig. 

8B). Histidine 434 specifically was noted because it is immediately adjacent to conserved histidine 

435, which is required for fusion activity of CAN97-83 (A2) F and is thought to play a critical role 

in electrostatic repulsion with neighboring cationic residues after protonation at low pH (134, 136, 

243).  

 

Fusion activity of CAN97-83 F Q434H mutant 

Based on these findings, we hypothesized the additional histidine in this region of F results 

in hyperfusogenic activity at low pH. To confirm that this residue is essential for the observed 

hyperfusogenic phenotype, a point mutation was introduced to CAN97-83 (A2) F at this position 

by site directed mutagenesis and verified by sequencing. To characterize the fusion activity of the 

CAN97-83 F 434H mutant, Vero cells were transfected with the expression plasmids and treated 

to pH pulses to promote fusion. Compared to the wild-type CAN97-83 (A2) F, the Q434H mutant 

F induced dramatic syncytia formation in cells treated with PBS at pH 5, similar to TN83-1211 (B2) 
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F (Fig. 9A and 9B). Quantification of fusion activity of the 434H mutant using a reporter gene assay 

showed the same fusion activity of the mutant compared to TN83-1211 (B2) F, which is 

significantly greater than that of wild-type CAN97-83 (A2) F at pH5 (Fig. 9C). Immunoprecipitation 

to determine overall protein expression (Fig. 10A) and specifically surface expression (Fig. 10B) of 

the proteins revealed similar expression levels (Fig. 10C). However, the cleavage efficiency of 

surface F by exogenous trypsin was increased in CAN97-83 Q434H, which may contribute to the 

hyperfusogenic phenotype (Fig. 10D). Further studies in surface expression and proteolytic 

processing are necessary to determine if these factors, in addition to H434, contribute to the 

fusion activity of this mutant. Altogether, these results show the introduction of an additional 

histidine in this region of F, adjacent to histidine 435, resulted in greater overall fusion activity as 

well as increased sensitivity to low pH to promote fusion.  

The results of this study reveal significant differences in the fusion activity of F proteins 

derived from diverse strains of HMPV that challenge the previous understanding the residues that 

are involved in low pH triggered fusion for HMPV F. We identified a B2 clade HMPV F protein that 

can be triggered to fuse by low pH, suggesting that this characteristic can be seen outside of clade 

A viruses. High fusion activity promoted by low pH of TN83-1211 F was attributed to H434, 

supporting that this region of F can contribute to the triggering of the conformational changes in 

F to drive membrane fusion. Furthermore, TN94-49 (A2) F with K294 was triggered to fuse by low 

pH, suggesting G294 is not an absolute requirement of clade A HMPV F for low pH-mediated 

fusion. These findings demonstrate the complexity of HMPV F activity and regulation. 

 

Discussion 

In this study we characterized the fusion activity of the F derived from 3 different strains 

of HMPV, TN94-49 (A2), TN96-12 (A1) and TN83-1211 (B2), compared to CAN97-83 (A2). 

Treatment with low pH promoted fusion in cells expressing F proteins from three of the four 

strains, with dramatic fusion observed by TN83-1211 (B2), whereas TN96-12 (A1) F failed to fuse 

under standard assay conditions. The hyperfusogenic activity of TN83-1211 (B2) F was recreated 

with the introduction of 434H in CAN97-83 (A2) F, supporting that this region of F plays a critical 

role in low pH-induced triggering of membrane fusion. 

We have previously reported low pH promoted membrane fusion by CAN97-83 (A2) F 

(134, 136). However, others have reported that low pH does not promote fusion for strains 

outside of the A clade (241, 242). Here we show low pH promoted fusion by an F protein from 
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another A2 HMPV, TN94-49, as well as an F protein from the B2 clade, TN83-1211, suggesting low 

pH promoted fusion activity is not exclusive to any phylogenetic group. The specific residue G294 

has been reported as a requirement for low pH promoted fusion by clade A F proteins  (241). 

However, TN94-49 (A2) F, which fuses under low pH conditions, does not have this residue but 

rather K294. Interestingly, genetic variability analysis of HMPV F revealed position 294 is one of 

two positively selected sites in the gene, with relaxed selective constraints for amino acids G, K, 

and E (324). This suggests the residue at this position, as long as it is G, K, or E, does not affect 

virus fitness. Furthermore, it was reported that no lineage B HMPV F sequences have G294, 

suggesting acidic pH is not a general trigger of HMPV F proteins for activity (241). In this study we 

found TN83-1211 (B2) F does have the residue G294, indicating it is not exclusive to clade A 

viruses. Additional residues at positions 296, 396, and 404 have also been shown to affect F 

sensitivity to low pH (242). However, these positions are completely conserved in the F proteins 

of the four strains analyzed here despite variable response to low pH (Fig. 6). Altogether, these 

results suggest fusion protein activity is highly complex, and identification of specific residues 

from prototype strains that are associated with low pH promoted fusion may be challenging. 

Sequence analysis revealed TN83-1211 (B2) F is nearly identical to CAN97-83 (A2) F in 

amino acid sequence, with a notable difference at position 434 in the hyperfusogenic protein. The 

H434 residue lies adjacent to a conserved histidine at position 435, which has been shown to 

participate in potential electrostatic interactions with surrounding positive residues K295, R396, 

and K438, that drive the conformational change during triggering of the protein (243). We 

generated a prefusion homology model for HMPV F (Fig. 11A) based on the solved crystal 

structure of prefusion parainfluenza virus 5 F (222). Although the partial structure of the prefusion 

form of HMPV F has been solved, it only includes residues to amino acid 430, and thus is lacking 

the key residues examined in this study (221). Based on this model, H434 and H435, exposed on 

the prefusion protein for solvent protonation, are surrounded by basic residues K295, R396, and 

K438 (Fig. 11B). We propose the addition of a second histidine that can become protonated in 

this critical region may contribute to lower prefusion stability due to charge-charge repulsion with 

these surrounding basic residues (Fig. 11B), which is supported by the distribution of these 

residues in the postfusion model (Fig. 11C). 

Interestingly, examination of over 120 known HMPV F amino acid sequences revealed no 

other HMPV F sequences with H434. This suggests a high level of fusion may not enhance fitness 

of HMPV during endogenous infection. It has been shown for the attachment and fusion 
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machinery of PIV3 that enhancement of receptor binding and fusion in monolayer cell culture is 

detrimental to growth and replication in HAE culture and in cotton rats (325). Thus, some viruses 

with high activity F are less competent to establish infection in an in vivo model. Alternatively, 

mutant RSV with F proteins of high fusion activity caused higher viral loads, severe lung 

histopathology, and weight loss in mice compared to controls (326). Therefore, the impact of 

fusion activity on viral fitness may depend on complex factors beyond the fusion protein alone. 

Because H434 is not found in any other known F from HMPV aside from TN83-1211 (B2), it is 

possible hyperfusogenic activity does not confer a fitness advantage in the population HMPV.  

Under standard syncytia and reporter gene assay conditions, TN96-12 (A1) F failed to fuse 

at low or neutral pH despite surface expression and processing equivalent to other variants 

analyzed. These results suggest that TN96-12 (A1) F requires additional cellular or viral factors to 

trigger fusion activity that are not present at the plasma membrane. It has recently been shown 

HMPV can fuse in endosomes, which may have host factors available to trigger F that are not 

present at the plasma membrane (282). While F protein activity independence from an 

attachment protein has been characterized for CAN97-83 (A2) F (134), it is possible TN96-12 (A2) 

F requires interaction with other viral proteins that are not present in these fusion assays. It has 

been shown HMPV G can affect particle entry in dendritic cells (93) and also the small hydrophobic 

protein can also modulate fusion activity (92). Lastly, existing methodologies to study HMPV F 

limit detection of specific prefusion and postfusion conformations. Therefore, TN96-12 (A1) F 

when solely expressed at the plasma membrane without other viral glycoproteins may be 

unstable in its prefusion form and prematurely trigger resulting in the absence of fusion activity. 

HMPV F fusion activity is a true balancing act between prefusion stability and triggering 

of F to fuse membranes and establish infection. Tipping too far in either direction appears to be 

a detriment to viral fitness. The results in this study highlight the diversity in HMPV F activity in 

response to low pH and the challenges of identifying specific residues that correlate with low pH 

promoted fusion. Further studies are necessary that take into account the complex regulatory 

interactions in the context of an intact infectious viral particle. 
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Figure 5. HMPV F proteins from different strains exhibit variable fusion activity promoted by 

low pH. 

 (A) Representative images of syncytium formation of cells expressing the HMPV F proteins after 

pulses at pH 5 or pH 7 (n = 3). (B) The fusion index was calculated using the equation f = [ 1 – ( C / 

N ) ] where c is the number of cells in a field after fusion and n the number of nuclei. Six fields 

were scored per condition representative of 3 independent experiments. * Indicates statistically 

significant compared to f for CAN97-83 (A2) F after pH 5 pulses, ** Indicates statistically significant 

compared to f for CAN97-83 (A2) F after pH 7 pulses (n=3) (C) Luciferase reporter gene assay of 

Vero cells transfected with HMPV F that were used to overlay BSR cells and subjected to two pH 

pulses. Data are presented as percentages of CAN97-83 (A2) F luminosity (fusion) at pH 5 (n = 3) 

+/- standard deviation. * Indicates statistically significant compared to f for CAN97-83 (A2) F after 

pH 5 pulses. 
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Figure 6.Amino acid sequence of F proteins of CAN97-83 (A2), TN94-49 (A2), TN96-12 (A1), and 

TN83-1211 (B2). 

Sequence alignment was generated using ClustalW. The asterisk “*” indicates identical residues, 

“:” indicates conserved substitutions and “.” semi-conserved substitutions. 
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Figure 7.HMPV F protein expression and cleavage by exogenous trypsin. 

Representative gel of (A) total and (B) surface protein expression in metabolically labeled Vero 

cells expressing CAN97-83 (A2) F, TN94-49 (A2) F, TN96-12 (A1) F, and TN83-1211 (B2) F. (C) 

Quantification of the total and surface expression of the F0 form in metabolically labeled Vero 

cells expressing CAN97-83 (A2) F, TN94-49 (A2) F, TN96-12 (A1) F, and TN83-1211 (B2) F. Data are 

presented as percentages of CAN97-83 (A2) F expression, which was set to 100% (n = 3). (D) 

Trypsin cleavage efficiency of surface expression of CAN97-83 (A2) F, TN94-49 (A2) F, TN96-12 

(A1) F, and TN83-1211 (B2) F in the presence or absence of 0.3 μg/ml of TPCK-trypsin was 

quantified by the following equation: percent cleavage = F1/(F1 + F0) (n= 3). Error bars show 

standard deviation. 
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Figure 8. Partial protein sequence analysis of F from 4 strains of HMPV surrounding key residues 

at positions (A) 294 and (B) 435. 

Sequence alignment was generated using ClustalW. The asterisk “*” indicates identical residues 

and “:” indicates conserved substitutions. 
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Figure 9. Q434H mutation results in hyperfusogenic activity in CAN97-83 F promoted by low pH. 

 (A) Representative images of syncytium formation of cells expressing the HMPV F proteins after 

pulses at pH 5 or pH 7 (n = 3) (B) The fusion index was calculated using the equation f = [ 1 – ( C / 

N ) ] where c is the number of cells in a field after fusion and n the number of nuclei. Six fields 

were scored per condition representative of 3 independent experiments. * Indicates statistically 

significant compared to f for CAN97-83 (A2) F after pH 5 pulses (n = 3) (C) Luciferase reporter gene 

assay of Vero cells transfected with HMPV F that were used to overlay BSR cells and subjected to 

two pH pulses. Data are presented as percentages of CAN97-83 (A2) F luminosity (fusion) at pH 5 

(n = 3) +/- standard deviation. * Indicates statistically significant compared to f for CAN97-83 (A2) 

F after pH 5 pulses, ** indicates statistically significant compared to f for CAN97-83 (A2) F after 

pH 7 pulses. 
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Figure 10. Mutant F protein expression and cleavage by exogenous trypsin. 

Representative gel of (A) total and (B) surface protein expression in metabolically labeled Vero 

cells expressing CAN97-83 (A2) F, TN83-1211 (B2) F and mutant CAN97-83 Q434H F. (C) 

Quantification of the total and surface expression of the F0 form in metabolically labeled Vero 

cells expressing CAN97-83 (A2) F, TN83-1211 (B2) F and mutant CAN97-83 Q434H F. C. Data are 

presented as percentages of CAN97-83 (A2) F expression, which was set to 100% (n = 3). (D) 

Trypsin cleavage efficiency of surface expression of CAN97-83 (A2) F, TN83-1211 (B2) F and 

mutant CAN97-83 Q434H F in the presence or absence of 0.3 μg/ml of TPCK-trypsin was calculated 

with the following equation: percent cleavage = F1/(F1 + F0) (n= 3). Error bars show standard 

deviation. 
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Figure 11. HMPV F structure homology models highlighting key residues surrounding H435. 

(A) The amino acid sequence of HMPV F was threaded onto the crystal structure of PIV5 F in its 

metastable prefusion form (222). In a model of the HMPV F prefusion conformation (B) residues 

H434 and H435 are exposed on the surface of the globular region of the protein and are 

surrounded by basic residues K295, R396, and K438 in close proximity. (C) The postfusion 

homology model of HMPV F was created by threading the amino acid sequence of HMPV into the 

crystal structure of Newcastle Disease Virus F in its postfusion conformation (317). In the 

postfusion homology model of HMVP F, the basic residues are no longer located as close proximity 

to H434 and H435.  
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Chapter 4: Inhibition of HMPV infection by blocking binding to heparan sulfate 

 

*E. coli K5 polysaccharide derivatives were supplied by David Lembo (Department of Clinical and 

Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043, Orbassano, Turin, Italy) 

and Pasqua Oreste (Glycores 2000 S.r.l. 20155 Milan, Italy). The human airway epithelium (HAE) 

tissue experiments using PIV5 and a single experiment using HMPV with iota-carrageenan 

treatment were completed by Stacy E. Smith. 

 

Introduction  

Acute viral respiratory tract infection is the most frequently observed illness in humans 

worldwide (327). Human metapneumovirus (HMPV), an enveloped, negative-sense, single-

stranded RNA virus in the Paramyxoviridae family, is a common cause of both upper and lower 

respiratory tract infections (30, 31, 321). First identified in 2001 in the Netherlands, HMPV is now 

known to be the cause of respiratory infections in humans since at least 1958 (31). Nearly every 

person is exposed to HMPV in the first decade of life; sero-conversion occurs on average by the 

age of five, and nearly 100% of individuals test seropositive for antibody reactivity to HMPV 

antigens by the age of ten (7). In children, HMPV infection is the second most common cause of 

hospitalization due to respiratory infection after the closely related respiratory syncytial virus 

(RSV) (37, 38). While infants are considered the most vulnerable population to illness from HMPV, 

adults can foster severe respiratory disease as well, especially the elderly, immunocompromised 

patients, and individuals with chronic underlying diseases (43-45). In addition to upper respiratory 

involvement with symptoms typically associated with the common cold, HMPV infection can 

result in serious lower respiratory syndromes such as pneumonia, bronchitis, and bronchiolitis 

(321, 322). Due to the recent ability to routinely detect this virus through the inclusion of HMPV 

in multiplex detection assays, HMPV has been associated with disease outside of the respiratory 

tract in some cases, including viral encephalopathy (62, 64, 328) and acute myocarditis (69), from 

initial respiratory involvement. Despite this tremendous clinical burden, there is no known vaccine 

to prevent HMPV infection, and treatment options are limited to administering ribavirin, which 

does not have established efficacy against HMPV infection (329).  

Key features of HMPV entry into target cells to establish infection have been 

characterized recently. HMPV utilizes heparan sulfate (HS) present on the cell surface to bind to 
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target cells (79), followed by clathrin-mediated endocytosis and membrane fusion in endosomes 

(282). HS is a negatively charged polysaccharide belonging to the family of glycosaminoglycans  

composed of repeating disaccharide units formed by glucosamine and glucuronic acid, which can 

undergo a series of modifications during the biosynthesis, leading to very heterogeneous chains. 

In HS the glucosamine can be N-acetylated, or N-sulfated and O-sulfated in various positions and 

to varying degrees. Glucuronic acid can also be modified by epimerization. Additionally, integrin 

αVβ1 has also been shown to play a role for efficient HMPV entry (79, 119) and has been proposed 

to be involved in attachment (120).  

HSPGs have been implicated in virus-cell interactions for other enveloped viruses, 

including RSV (163, 330, 331), human papilloma virus (HPV) (162), herpes simplex virus (HSV) (173, 

174, 177, 332), human immunodeficiency virus (HIV) (159, 161, 169), and others (reviewed in 

(333)). We have previously shown that nearly complete reduction in binding and infection results 

when HS is removed from the cell surface using heparinases, while cells that are able to synthesize 

only HS, and not any other GAGs, are fully able to bind HMPV (79). Unlike other paramyxoviruses 

that require two distinct viral glycoproteins to mediate attachment and binding, the fusion protein 

(F) of HMPV is sufficient for binding and infection (76, 77, 136). Recombinant HMPV that does not 

have the attachment protein (G) or small hydrophobic protein (SH) is able to bind cells at wild-

type levels via HS (79). Thus, the putative interaction between the HMPV F and HS provides an 

opportunity for antiviral development. 

In this study, we describe the potent anti-HMPV effects of the sulfated polysaccharide, 

iota-carrageenan, in models of respiratory epithelial cells and polarized airway tissues, indicating 

that the HS-F interaction is important in physiologically relevant models. To further characterize 

structural features of HS important for binding by HMPV F, we utilized a mini-library of variably 

sulfated derivatives of Escherichia coli K5 polysaccharide, which revealed that the critical common 

feature required for effective inhibition of binding and infection, is the O-sulfation. In addition, 

we showed that occluding heparan sulfate with peptide dendrimer SB105-A10 inhibits the binding 

interaction between HMPV F and target cells and airway tissues. These results provide critical 

support for a role for HS-HMPV F protein interactions in physiologically relevant models, and 

identify key features of the interaction between HMPV and HS that have implications for infection 

in vivo and may serve for antiviral development. 
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Results 

Iota-carrageenan inhibits HMPV infection in human respiratory cells 

We have previously shown that specific removal of cell surface HS (Fig. 12A) inhibits 

HMPV binding and infection in a number of cell types (79). In addition, CHO cell lines with altered 

GAG metabolism were used to further demonstrate that HMPV specifically requires HS for 

infectivity (79). To dissect how interaction with HS regulates HMPV infection in physiologically 

relevant models and to determine if blocking this interaction could be a potential antiviral 

approach, we utilized a sulfated polysaccharide, heparan sulfate mimetics and a compound that 

occludes HS in combination with infection studies in human bronchial epithelial cells (BEAS-2B) or 

human airway epithelial (HAE) models.  

Sulfated polysaccharides have been previously employed to target viral infection, 

including a number of studies with carrageenans, which are isolated from red seaweed (334). 

Carrageenans are composed of sulfated repeating galactose units (Fig. 12B). The three types of 

known carrageenans (iota, lambda, and kappa) differ in number and positions of sulfate groups 

(reviewed in (334)). Carrageenans have shown antiviral activity against a number of viral 

pathogens, including human papilloma virus (HPV) (335), HIV (336), dengue virus (337) and 

influenza A virus (338). Importantly, iota-carrageenan (Fig. 12B) has been used safely in human 

trials in the form of a nasal spray to reduce viral infection (339-341). 

To verify that sulfated polysaccharides would inhibit HMPV infection in a relevant cell 

culture model, we first determined the anti-HMPV activity of iota-carrageenan, a well 

characterized sulfated polysaccharide that has been shown to inhibit infection of other viruses 

that bind heparan sulfate. Infection of BEAS-2B cells was performed using a recombinant HMPV 

(strain CAN97-83, clade A2) that results in green fluorescent protein (GFP) expression upon viral 

infection, which was quantified by flow cytometry. Pretreatment of HMPV with iota-carrageenan 

resulted in inhibition of infection, with nearly a complete reduction in infection achieved with 10 

µg/mL of iota-carrageenan (Fig. 13A and 13C). To determine if iota-carrageenan had a nonspecific 

antiviral effect, the paramyxovirus parainfluenza virus 5 (PIV5), which does not utilize heparan 

sulfate for binding, was used. Incubating rgPIV5, a recombinant PIV5 virus that results in GFP 

expression, with iota-carrageenan prior to infection did not inhibit infection of BEAS-2B cells at 

any of the concentrations used compared to the untreated control (Fig. 13B and 13C). 

Furthermore, treatment of BEAS-2B cells with the highest concentration of iota-carrageenan 
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tested in the infection assays did not reduce cell viability, as measured by 3-(4, 5-Dimethylthiazol-

2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay (Fig. 14A). Similar effects of 

iota-carrageenan on rgHMPV and rgPIV5 infection were observed in Vero cells (data not shown). 

These results indicate that HS-HMPV interactions are critical in BEAS-2B cells, and that iota-

carrageenan has anti-HMPV activity, most likely attributed to its sulfated structure. 

Our previous studies suggested that HMPV binds to heparan sulfate via the F protein, and 

we hypothesized that iota-carrageenan is inhibiting HMPV infection by competing with HS binding 

sites located in HMPV F. To test this, HMPV was added to BEAS-2B cells at 4°C, allowing for binding 

to occur but not infection, and the amount of bound virus was quantified by detection of the 

HMPV matrix protein present in cell lysates with β-actin as a loading control, by Western blot. 

Pretreating HMPV at an MOI of 1 with 40 µg/mL carrageenan for 30 mintes at 4°C prior to addition 

to the cells resulted in about 85% inhibition of particle binding, compared to the untreated control 

(Fig. 13D and 13E), demonstrating  that iota-carrageenan competes with the binding of HMPV to 

HS. Of the three glycoproteins in the viral envelope of HMPV, the attachment protein G, small 

hydrophobic protein SH, and F, only F is required by HMPV to be infectious; recombinant HMPV 

without G or SH, HMPV ΔG and ΔGΔSH respectively, are able to bind cells at wild-type levels (79) 

and are replication competent in a nonhuman primate model of infection (77). To test whether 

iota-carrageenan inhibition of HMPV binding and infection is dependent exclusively on F, we 

pretreated the recombinant HMPV ΔG and ΔGΔSH with iota-carrageenan and determined the 

effects on overall infection and binding in BEAS-2B cells. Iota-carrageen inhibited HMPV ΔG and 

ΔGΔSH binding to a similar degree as wild-type HMPV (Fig. 13D and 13E), which supports the 

hypothesis that interaction between HMPV and heparan sulfate is mediated by F. Interestingly, 

ΔG and ΔGΔSH HMPV binding to BEAS-2B cells was more efficient than WT HMPV, as a greater 

fraction of input particles of ΔG and ΔGΔSH HMPV bound to BEAS-2B cells than WT HMPV.  The 

input for all three virus samples was determined for each experiment, and was not statistically 

different across all binding assays completed (data not shown). The potential role of G and SH in 

regulating HMPV binding is further addressed in Chapter 5. However, despite increased binding 

at baseline, iota-carrageenan did inhibit binding of ΔG and ΔGΔSH HMPV to the same degree as 

WT HMPV, leading to the conclusion that F mediates the interaction with HS (Fig. 13E). 

The results in a monolayer respiratory cell model support the hypothesis that HMPV F 

mediates a key binding interaction to heparan sulfate, and this event can be inhibited using the 

highly sulfated polysaccharide, iota-carrageenan. However, a monolayer cell culture model is 
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limited in the ability to recapitulate the complex features of the respiratory epithelium, which 

include moving cilia, mucus, distinct cell types with important physiological roles, and polarity 

maintained by tight junctions. Furthermore, immortalized cells highly express HSPGs in a pattern 

that may be different than complex organized tissues found in vivo, and immunohistochemistry 

studies have not detected significant amounts of HS on the apical surface of human airway, raising 

concerns that HS interactions may be less important in an airway model (143).  We therefore 

examined the effect of sulfated polysaccharides in a polarized human airway tissue model (HAE; 

MatTek) that more closely recapitulates the complexity of the human airway, which is the primary 

site of HMPV infection. HAE tissues have been previously used as models of respiratory virus 

infection, including human parainfluenza virus 3 (325), rhinovirus (342), human bocavirus 1 (343), 

and RSV (307).  

To test whether iota-carrageenan inhibits HMPV infection in the HAE model, iota-

carrageenan treated rgHMPV was used to inoculate the apical surface of the HAE tissues, and a 

significant reduction in infection of approximately 75% was observed (Fig. 13F and 13G). Unlike 

rgHMPV, treatment of rgPIV5 with iota-carrageenan had no effect on infection in the airway 

tissues (Fig. 13F and 13G). These findings indicate that HMPV interactions with heparan sulfate 

are also important in complex polarized airway tissues that histologically resemble the human 

respiratory tract, and support the hypothesis that HMPV requires heparan sulfate to establish 

infection at the apical surface of the respiratory epithelium. 

 

O-sulfated K5 polysaccharide derivatives inhibit HMPV infection 

While our preliminary results strongly support a key role for HS in HMPV infection, the 

specific features of HS required remain to be determined. A class of molecules mimicking HS and 

thus possible inhibitors of heparan sulfate-virus interactions is represented by the sulfated 

derivatives of the Escherichia coli capsular K5 polysaccharide (Fig. 12D). K5 polysaccharide 

derivatives are heparan-like molecules devoid of anticoagulant activity obtained by the sulfation 

of the E. coli capsular K5 polysaccharide that has the same structure of the biosynthetic precursor 

of HS, N-acetyl heparosan. A small library of derivatives with different degrees of sulfation has 

been synthesized using chemical and enzymatic modifications (318). Sulfated K5 derivatives have 

been shown to inhibit infection in other viruses in a specific manner , including HPV (335), RSV 

(344), Dengue (345), CMV (346), HSV-1 and HSV-2 (347), and HIV (348). Analysis of the anti-HMPV 

activity of these compounds can therefore be used to identify structural features that are 



52 

 

important for recognition by HMPV F and potentially help to identify a potent heparan sulfate 

mimic. 

Because heparan sulfate is negatively charged due to sulfate modifications on the 

disaccharide units, we hypothesized that charge-charge interactions are contributing to the 

binding between F and this polysaccharide. Therefore, we predicted that the most highly sulfated 

K5 derivatives, mainly K5-N,OS(H), and K5-OS(H), would have the greatest inhibitory effect on 

HMPV infection. To test this, rgHMPV at an MOI of 1 pretreated with the derivatives at 1μM was 

used to inoculate BEAS-2B cells. As predicted, the highly sulfated K5 derivatives, K5-N,OS(H), and 

K5-OS(H), dramatically inhibited infection (Fig. 15A). Among the lower sulfated derivatives, K5 and 

K5-NS did not have an observable effect on HMPV infection when examined by microscopy (Fig. 

15A), while K5-N,OS(L) and K5-OS(L), also inhibited HMPV infection dramatically (Fig. 15A). K5-NS, 

which has a single N-linked sulfate group in position 2 of glucosamine, had no effect on HMPV 

infection (Fig. 15A), indicating a key role of O-sulfate groups in the observed inhibition. When 

HMPV was treated with variable concentrations (10nm to 1μM) of the K5 derivatives and used to 

infect BEAS-2B cells, flow cytometry analysis of infected cells revealed a dose dependent 

inhibition of HMPV infection by all the O-sulfated K5 derivatives (Fig. 15B). K5-NS had no effect 

on HMPV infection, while some inhibition resulted from K5, although only at the highest 

concentration (Fig. 15B). The reduction of infection by the K5 polysaccharide was not expected, 

and the mechanism of this action remains unclear as it did not affect HMPV binding (Fig. 15D and 

15E). None of the K5 polysaccharide derivatives had an effect on PIV5 infection (Fig. 15C). 

Additionally, treatment of BEAS-2B cells with the 10 µM of K5 polysaccharide derivatives, the 

concentration used in HAE infection experiments and 10-fold higher than the highest 

concentration used in cell infection assays, did not reduce cell viability, as measured by MTT cell 

viability assay (Fig. 14A). To determine whether the K5 compounds inhibit HMPV infection by 

competition, the same binding assay as described in the carrageenan studies was used. rgHMPV 

was treated with 1 µM of each of the K5 polysaccharide derivatives prior to incubation with BEAS-

2B cells at 4°C at an MOI of 1 to allow for binding to take place. While unmodified K5 and K5-NS, 

which has a single N-linked sulfation modification, had no effect on viral binding, the higher 

sulfated compounds, K5-N,OS(L) and K5-OS(L), and the highly sulfated compounds K5-N,OS(H), 

and K5-OS(H), reduced HMPV binding to BEAS-2B cells significantly (Fig. 15D and 15E).  

To confirm these findings in a physiologically relevant tissue model, we determined the 

effect of K5-N,OS(H) and K5-OS(H), which had the greatest inhibition of HMPV infection in 
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monolayer cells, in polarized airway tissues. HAE tissues were infected at the apical surface with 

rgHMPV at an MOI of 5 pretreated with 10µM K5-N,OS(H) or K5-OS(H), or Opti-MEM. Forty-eight 

hours post-infection, we observed a dramatic reduction in infected cells at the apical surface (Fig. 

16A). Quantification of GFP-expressing cells revealed approximately a 70% reduction in HMPV 

infection compared to the control (Fig. 16B). Taken together, these data suggest that highly 

sulfated K5 derivatives effectively inhibit binding and infection of HMPV, and that O-sulfation is 

an important structural feature required for the interaction to occur, and strongly support the 

hypothesis that HMPV interaction with HS plays a significant role during apical infection. 

 

Heparan sulfate occlusion inhibits HMPV infection and binding  

We have shown that HMPV F mediates a binding interaction to HS that can be inhibited 

both in cell culture and tissue models using iota-carrageenan and a small library of K5 

polysaccharide derivatives. As an alternative mechanism to characterize the interaction between 

HMPV and HS, we examined the effect of blocking HS moieties on the target cell, thus making 

heparan sulfate unavailable for binding. There is two-fold logic to investigating the effect of a 

heparan sulfate-occluding compound on HMPV binding. Removal of HS caused a robust block in 

HMPV infection (79); however, HSPGs have critical constitutive and induced interactions with 

other cellular proteins (reviewed in (349)), and removing HS may interrupt these interactions, 

causing cellular changes. HS occluding compounds that prevent further ligand binding are less 

likely to disrupt preexisting HS interactions, and therefore, serve as an alternative approach to 

address the direct interaction of HMPV with HS. Furthermore, a compound that occludes HS and 

inhibits HMPV infection may serve as potential building block for antiviral development for HMPV 

and other viruses that are known to bind HS. 

To accomplish this, we utilized a previously characterized heparan sulfate occluding 

compound, peptide dendrimer SB105-A10 (139, 307, 350). Peptide dendrimers, branched 

synthetic molecules which consist of a peptidyl branching core and covalently attached surface 

peptide units, have a number of potential applications, especially in relation to the development 

of antiviral agents. The peptide dendrimer SB105-A10 (Fig. 12C), which has a branched peptide 

core with clusters of basic residues that bind to negatively charged sulfate and carboxyl groups, 

has been shown to specifically occlude ligand binding from HSPGs (139, 350). Furthermore, 

SB105-A10 has previously been reported to exhibit antiviral activity against RSV (307), CMV (350), 

HIV (139), HPV (351), HSV-1 and HSV-2 (352), as well as some filoviruses (170). 
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To determine if SB105-A10 reduces HMPV infection in human lung epithelial cells, BEAS-

2B cells were treated with SB105-A10 at 1µM prior to infection with rgHMPV at an MOI of 1 and 

cells were imaged 24 hours later for GFP expression; rgPIV5 was used in control studies to 

determine specificity. SB105-A10 treatment resulted in dramatic inhibition of HMPV infection, 

whereas PIV5 infection was not reduced (Fig. 17A). We performed quantification of the effects of 

SB105-A10 on rgHMPV or rgPIV5 infection by flow cytometry for GFP expression 24 hr post-

infection. In these experiments both BEAS-2B and A549 cells were used to determine if the effect 

of SB105-A10 is cell type-dependent, as this compound is mediating its effects by interacting with 

the target cell. In BEAS-2B cells, a dose-dependent inhibition of approximately 70% of rgHMPV 

infection resulted with SB105-A10 treatment, whereas rgPIV5 infection was not affected (Fig. 

17B). Similar results were seen in A549 cells (Fig. 17C). Additionally, treatment of BEAS-2B cells 

with the 2 µM of SB105-A10, the concentration used in HAE infection experiments and 2-fold 

higher than the highest concentration used in cell infection assays, did not reduce cell viability, as 

measured by MTT cell viability assay (Fig. 14B). Based on our hypothesis of HMPV attachment, we 

predicted that SB105-A10 inhibits infection by blocking particle binding, specifically by preventing 

the interaction between heparan sulfate and F. To address this, we utilized a binding assay with 

WT HMPV, ΔG HMPV, and ΔGΔSH HMPV to determine the effects of SB105-A10. BEAS-2B cells 

were treated with 1µM SB105-A10 or Opti-MEM prior to addition of HMPV at an MOI of 1. The 

cells were incubated at 4°C for 2 hr to allow for binding and then cell lysates were analyzed for M 

by Western blot to determine binding. A significant reduction of viral binding was observed in WT 

HMPV and the recombinant ΔG HMPV and ΔGΔSH HMPV with SB105-A10 treatment (Fig. 17D and 

17E). As was observed in binding assays with iota-carrageenan (Fig. 13D), greater baseline binding 

was observed for ΔG HMPV and ΔGΔSH HMPV compared to WT (Fig. 17D), although the same 

levels of reduction in binding were observed with SB105-A10 (Fig. 17E). To determine the effect 

of SB105-A10 in polarized tissues, the apical surface of HAE tissues was treated with SB105-A10 

at 2µM prior to infection with rgHMPV at an MOI of 5. Treatment with SB105-A10 resulted in a 

reduction of infected cells 48 hours post-infection (Fig. 18A). Quantification of infected cells 

revealed greater than 50% reduction in HMPV infection at the apical surface with SB105-A10 

treatment, compared to vehicle treated control tissues (Fig. 18B). Altogether, these results 

indicate that occlusion of HS moieties on target cells inhibits HMPV binding and infection 

mediated by HMPV F and further support that HS is available for viral binding at the apical surface 
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of the airway. Furthermore, based on our results, occlusion of HS could potentially be used as an 

antiviral strategy against HMPV. 

 

Discussion 

Heparan sulfate is a key attachment factor for HMPV binding to the cell surface. In this 

study we used compounds that modulate the attachment event to characterize the interaction 

between HMPV and HS. Our results support a model (Fig. 19) where HMPV F mediates a direct 

binding interaction to HS, which can be inhibited by sulfated polysaccharides, specifically sulfated 

in O-position (Fig. 15), and HS occluding compounds (Fig. 17). Our results further indicate that HS 

in the airway epithelium serves as a binding factor during infection at the apical surface, and 

suggest that HS modulating compounds may serve as a platform for potential HMPV antiviral 

development. 

Iota-carrageenan treatment of HMPV resulted in inhibition of attachment (Fig. 13D) and 

infection (Fig. 13A and 13C) in bronchial epithelial cells and polarized airway tissues (Fig. 13F). The 

anti-HMPV activity of a sulfated polysaccharide has been previously reported using native and 

depolymerized galactans isolated from the red seaweed Cryptonemia seminervis (353). While 

iota-carrageenan is a highly heterogeneous polysaccharide with regard to size, it is unclear if its 

molecular weight is important in the inhibition of the viral interaction with heparan sulfate. It has 

been shown that depolymerized galactans ranging in molecular weights from 52-64 kDa were able 

to inhibit HMPV infection as well as the intact polysaccharide, suggesting low molecular weight  

sulfated polysaccharides can have potent antiviral activity (353). The potent anti-HMPV effect of 

iota-carrageenan on HMPV infection in both cells and tissue models has potential as a respiratory 

therapy, especially as iota-carrageenan has been shown to be safe to use in humans (338, 341, 

354). Iota-carrageenan application in the form of a nasal spray in a randomized clinical trial 

showed reduction in viral titers and fewer days of symptomatic illness (341). Its efficacy to 

specifically reduce HMPV infection in humans remains to be determined. 

To better understand the structural features of heparan sulfate required for recognition 

by HMPV, we used a mini-library of variably sulfated heparan-like K5 polysaccharide derivatives. 

Interestingly, our results highlight that variations in the structure of the K5 derivatives, namely 

the position and degree of sulfation, can modulate the selectivity and potency of their activities 

against HMPV (Fig. 15B). The highly sulfated K5 polysaccharides exhibited the greatest inhibition 

of HMPV infection, suggesting negative charges play a role in interacting with F (Fig. 15B). The 
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highly sulfated K5-OS(H) and K5-N,OS(H) have been shown to inhibit Dengue virus attachment to 

microvascular endothelial cells by interacting with the viral envelope protein, as shown by surface 

plasmon resonance (SPR) analysis using the receptor-binding domain III of the E protein (345). 

Our results support the model that HMPV binding to HS mediated by F involves charge-charge 

interaction, possibly by a cluster of exposed positively charged residues on F. This is demonstrated 

by the very high inhibitory activity exerted by K5-OS (H) (Fig. 15B, 15D and 15E). This finding 

suggests the interaction between HMPV F and HS depends on a specific sulfation pattern, rather 

than overall negative charges alone. Since the N-sulfated K5 derivatives are less effective in 

inhibiting the binding of HMPV, we can conclude that O-sulfate groups are important for HMPV 

F-HS interactions. Interestingly, the most effective fractions of depolymerized galactans to inhibit 

HMPV infection have the sulfate modifications principally on C-2 and C-6 of the galactose sugars 

(353). These results further support the importance of O-sulfate groups inhibiting the HS 

interaction with HMPV F and also suggest that the sugar backbone of the polysaccharide is not 

the main determinant of the antiviral activity.  

Interestingly, binding experiments in this study demonstrated a greater affinity of ΔG and 

ΔGΔSH HMPV to bind BEAS-2B cells than WT HMPV (Fig. 13D and 17C), as the untreated control 

bands consistently showed higher levels of particle binding  for the recombinant viruses compared 

to the WT, despite equivalent number of particles added to the cells. We have previously reported 

that the ΔG and ΔGΔSH recombinant viruses bind and infect at WT levels in other cell types, 

suggesting that there may be cell-type specific differences in binding. Taken together, these 

results suggest that SH and G negatively modulate binding in BEAS-2B cells, and thus their absence 

results in more efficient particle binding. Both HMPV SH and G have been previously reported to 

modulate events in HMPV entry. Our group has shown SH can modulate fusion activity of F (92). 

Furthermore, HMPV G and SH have been previously shown to negatively modulate HMPV entry, 

as particle uptake by micropinocytosis in dendritic cells is enhanced for recombinant HMPV 

lacking G and SH (93). However, the mechanisms by which G and SH modulate these critical early 

steps remain to be elucidated. 

Treating the cells and tissues with SB105-A10, which specifically occludes any ligand 

binding to HSPGs, resulted in a significant inhibition of HMPV binding and infection. Our results 

further support the model that HMPV uses HS as an attachment factor due to a direct binding 

interaction with F. While adhered immortalized cells readily express accessible heparan sulfate, it 

is less clear where heparan sulfate localizes in the respiratory epithelium in vivo. Based on 
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detection by immunohistochemistry of human epithelial tissue, heparan sulfate has been 

previously hypothesized to localize exclusively to the basolateral epithelium (143), making it 

unclear how a respiratory virus would access heparan sulfate to infect apically. The results in this 

study demonstrate that HMPV can infect polarized airway tissues at the apical surface and that 

HS-occlusion inhibits this apical infection, suggesting HS is found at sufficient levels to promote 

attachment at the apical surface of the airway. HS occlusion with SB105-A10 has also been shown 

to inhibit RSV infection at the apical surface of HAE tissues (307). HS modification is found on a 

number of transmembrane proteins, and the two main protein families with HS are syndecans 

and glypicans. Syndecans have been shown to serve as receptors for other HS-binding viruses, 

including hepatitis C (172), dengue virus (168) and HIV (161). Anti-syndecan-1 antibodies have 

recently been shown to block RSV infection at the apical surface of human airway epithelium 

cultures (355). The role of a specific HSPG, such as one of the syndecan proteins, in HMPV 

infection remains to be determined, but our results strongly indicate that sufficient levels of HS 

on HSPGs are exposed at the apical surface of the airway epithelium for viral infection, including 

HMPV. 
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Figure 12. Representative structures of heparan sulfate and related compounds. 

(A) Heparan sulfate disaccharides modified by the following possible substitutions: Ac – acetyl, R= 

H or SO3-, R’ = H, Ac, or SO3-. Structures adapted from (349). (B) Iota-carrageenan adapted from 

(334) (C) SB105-A10 (D) K5 polysaccharide derivatives. 
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Figure 13. Iota-carrageenan inhibits HMPV infection in cells and tissues by blocking binding. 

(A) BEAS-2B cells infected with rgHMPV at an MOI of 1 was treated with variable concentrations 

of iota-carrageenan. Cells were imaged 24 HPI. (B) BEAS-2B cells were infected with rgPIV5 at an 

MOI of 1 treated with 40 µg/mL of iota-carrageenan or vehicle. Cells were imaged 24 hours post 

infection (HPI). (C) Quantification of rgHMPV and rgPIV5 infection in BEAS-2B cells using flow 

cytometry to detect GFP expressing cells 24 HPI. Data presented as a percent infection of the 

untreated control (0 µg/mL) for each virus. Data points are means (+/- SD) of duplicate 

measurements and are representative of a minimum of 3 independent experiments. * Indicates 
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statistical significance of P< 0.0001. (D) HMPV viruses (WT and recombinant mutants ΔG and 

ΔGΔSH) were treated with vehicle or 40 µg/mL of iota-carrageenan and added to BEAS-2B cells at 

an MOI of 1 at 4°C for particle binding. Lysates of washed cells were analyzed for HMPV binding 

by Western blot analysis for M. Input represents 5% of WT HMPV added to the cells for binding. 

No virus was added to mock infected cells. β-actin served as a loading control. (E) Band intensities 

of the matrix protein and β-actin were determined for untreated and treated (40 µg/mL iota-

carrageenan) samples. The data are reported as a ratio of M to β-actin normalized to the 

untreated control for each virus. Data points are means (+/- SD) of measurements representative 

of 7 independent experiments. * Indicates statistical significance of P< 0.0001. (F) HAE tissues 

were infected with rgHMPV or rgPIV5 at an MOI of 5 treated with 40 µg/mL of iota-carrageenan 

or vehicle and imaged 48 hours post-infection at 5X magnification. (G) Quantification of HAE tissue 

infection. Data points are means (+/- SD) of triplicate measurements and are representative of 

minimum 3 independent experiments of HMPV infection (rgPIV5 data representative of a single 

HAE experiment). * Indicates statistical significance of P< 0.0001 using Bonferroni’s Multiple 

Comparison Test (Prism). 
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Figure 14. Iota-carrageenan, SB105-A10 and K5 derivatives do not reduce cell viability. 

(A) BEAS-2B cells were treated with 40 µg/mL of iota-carrageenan, 10 µM of each of the K5 

polysaccharide derivatives, or vehicle (untreated) in triplicate and assayed for viability by MTT cell 

viability assay according to manufacturer’s protocol. (B) BEAS-2B and A549 cells were treated with 

2 µM of SB105-A10 or vehicle (untreated) and assayed for viability by MTT assay. Absorbance at 

590 nm is normalized to untreated control. Data points are means (+/- SD) of triplicate 

measurements and are representative of 3 independent experiments. 
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Figure 15. O-sulfated K5 polysaccharide derivatives inhibit HMPV infection in BEAS-2B cells by 

competing for binding. 

(A) BEAS-2B cells were infected with rgHMPV at an MOI of 1 treated with 1 µM of each K5 

polysaccharide derivative or vehicle. Cells were imaged 24 hours post-infection. BEAS-2B cells 

were infected with rgHMPV (B) or rgPIV5 (C) at an MOI of 1 treated with 10 nM, 100 nM, or 1 µM 

of each K5 polysaccharide derivative or vehicle. Infection was quantified by flow cytometry to 

detect GFP expressing cells 24 HPI. The data is presented as a percent infection of the untreated 

control. Data points are means (+/- SD) of duplicate measurements and are representative of a 

minimum of 3 independent experiments. Statistically, * and ** indicate significance of P< 0.01 

and P<0.0001, respectively. (D) WT HMPV was treated with vehicle (untreated) or a K5 
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polysaccharide derivative at 1 μM and added to BEAS-2B cells at an MOI of 1 at 4°C for particle 

binding. Lysates of washed cells were analyzed for HMPV binding by Western blot analysis for M. 

No virus was added to mock infected cells. β-actin served as a loading control. (E) Band intensities 

of the matrix protein and β-actin were determined for untreated and treated (1 μM) samples. The 

data are reported as a ratio of M to β-actin normalized to the untreated control for each virus. 

Data points are means (+/- SD) of measurements representative of 5 independent experiments. * 

Indicates statistical significance of P< 0.001, and ** indicates statistical significance of P< 0.0001 

using Bonferroni’s Multiple Comparison Test (Prism). 
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Figure 16. Highly sulfated K5 polysaccharide derivatives inhibit HMPV infection in HAE. 

(A) HAE tissues were infected with rgHMPV at an MOI of 5 treated with 10 µM K5-N,OS(H) or K5-

OS(H), or vehicle (untreated) and imaged 48 HPI at 5X magnification. (B) Quantification of HAE 

tissue infection. Data points are means (+/- SD) of triplicate measurements and are representative 

of a minimum of 3 independent experiments. * Indicates statistical significance of P< 0.0001 using 

Bonferroni’s Multiple Comparison Test (Prism). 
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Figure 17. Peptide dendrimer SB105-A10 inhibits HMPV infection in human lung cells by 

inhibiting binding. 

(A) BEAS-2B cells treated with 1 µM SB105-A10 or vehicle were infected with rgHMPV or rgPIV5 

at an MOI of 1. Cells were imaged at 24 hours post-infection. Percent infection of rgHMPV and 

rgPIV5 at an MOI of 1 treated with variable concentrations of SB105-A10 in BEAS-2B (B) and A549 

(C) cells was quantified using flow cytometry. The percent infection is reported normalized to the 

untreated control for each virus type. Data points are means (+/- SD) of duplicate measurements 

and are representative of a minimum of 3 independent experiments, * indicating statistical 

significance P<0.0001. (D) HMPV viruses (WT and recombinant mutants ΔG and ΔGΔSH) were 
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added to BEAS-2B cells treated with vehicle or with 1 µM SB105-A10 at an MOI of 1 at 4°C for 

particle binding. Lysates of washed cells were analyzed for HMPV binding by Western blot analysis 

for M. Input represents 5% of WT HMPV added to the cells for binding. No virus was added to 

mock infected cells. β-actin served as a loading control. (E) Band intensities of the matrix protein 

and β-actin were determined for untreated and treated (1 µM SB105-A10) samples. The data are 

reported as a ratio of M to β-actin normalized to the untreated control for each virus. Data points 

are means (+/- SD) of measurements representative of 5 independent experiments. * Indicates 

statistical significance of P< 0.0002 using Bonferroni’s Multiple Comparison Test (Prism). 
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Figure 18. Treatment of HAE tissues with SB105-A10 reduces HMPV infection. 

 (A) HAE tissues were treated with 2 µM SB105-A10 or vehicle (untreated) and infected with 

rgHMPV at an MOI of 5. Tissues were imaged 48 HPI at 5X magnification. (B) Quantification of HAE 

tissue infection. Data points are means (+/- SD) of triplicate measurements and are representative 

of a minimum of 3 independent experiments.* Indicates statistical significance of P< 0.0001 using 

Bonferroni’s Multiple Comparison Test (Prism). 
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Figure 19. Model for inhibition of HMPV infection by interference between F and heparan 

sulfate. 

HMPV utilizes F for initial attachment to heparan sulfate found on the surface of target cells, with 

potential involvement of an unidentified receptor necessary to complete entry. Sulfated 

polysaccharides, iota- carrageenan and the heparan sulfate-like K5 polysaccharide derivatives, 

inhibit this attachment step. Occluding heparan sulfate with SB105-A10 also blocks HMPV binding 

by occluding HS from interaction with HMPV F.  
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Chapter 5: Novel roles of HMPV G and SH during infection in bronchial epithelial cells 

 

*These results were obtained with the help of Nicolás Cifuentes, who obtained images of WT and 

recombinant HMPV particles using electron microscopy.  

 

Introduction 

 HMPV is a ubiquitous pathogen that causes respiratory disease worldwide (28-30). First 

identified in 2001 in the Netherlands, HMPV is now known to be the cause of respiratory 

infections in humans since at least 1958 (31). Nearly every person is exposed to HMPV in the first 

decade of life; sero-conversion occurs on average by the age of five and nearly 100% of individuals 

test seropositive for antibody reactivity to HMPV antigens by age ten (7). HMPV is the second 

most common cause of lower respiratory infection in children, following the closely related 

respiratory syncytial virus (RSV) (37, 38). Importantly, up to 70% of infants hospitalized for severe 

RSV bronchiolitis were also co-infected with HMPV, suggesting HMPV co-infection leads to more 

severe disease during RSV infection (39-41). While infants are considered the most vulnerable 

population to developing illness from HMPV, adults can foster severe respiratory infection as well, 

especially elderly and immunocompromised patients (43-45).  

Complications of respiratory infection associated with HMPV include pneumonia, 

bronchiolitis, and febrile seizures (44, 59). Such complications can be life threatening in these 

susceptible individuals. It has also been suggested that severe acute respiratory infection from 

HMPV may have lifelong consequences such as asthma and hyperresponsiveness of the airway 

(60, 61). While HMPV infection has been thought to be restricted to the respiratory epithelium 

and lungs, there have been several reports of fatal encephalitis with HMPV the only detected 

pathogen in both lung and brain tissue (62-64). Even though primary infection occurs during 

childhood in the majority of cases, repeat infections are common throughout life, likely due to 

strain variations and incomplete immunity. Despite HMPV prevalence and clinical relevance, there 

are no specific antiviral treatments or vaccines available.  

HMPV is an enveloped virus with a single-stranded, negative sense, non-segmented RNA 

genome. It is a member of the paramyxovirus family, which includes RSV, measles virus, mumps 

virus, and parainfluenza virus (PIV), in addition to the emerging zoonotic viruses of high mortality 

in humans, Hendra and Nipah (356). Phylogenetic amino acid sequence analysis of HMPV isolates 
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identified multiple strains and two major genetic lineages, A and B (30). In all isolates of HMPV to 

date, three glycoproteins are present in the viral envelope: the fusion protein (F), the putative 

attachment protein (G), and the small hydrophobic protein (SH) (90, 357). HMPV F mediates viral 

membrane fusion and also plays a critical role in binding and infectivity (76, 77, 79). The roles for 

HMPV G and SH are not as well understood, as they often differ in function from other viruses of 

the same family.  

In most paramyxoviruses the attachment protein typically interacts with a cell receptor 

upon binding and triggers the fusion protein, which promotes subsequent fusion of viral and 

cellular membranes. However, HMPV F is the primary factor for viral attachment in addition to its 

role in membrane fusion. Recombinant HMPV without G was replication competent in cell culture 

and in multiple animal models, although replication in the lower respiratory tract was modestly 

attenuated (76, 77). Furthermore, some HMPV F proteins can promote cell-to-cell fusion with 

acidic pH pulses, without co-expression of G (134, 136, 241-243). These findings suggest HMPV G 

does not mediate the binding interaction that is typical of attachment proteins found in 

paramyxoviruses.  

In addition to HMPV, SH proteins are found in several other paramyxoviruses, including 

members of rubulaviruses and pneumoviruses, and the unclassified J virus.  The SH protein of 

most paramyxoviruses is not required for viral replication in vitro (78, 358-360). The deletion of 

the SH proteins of RSV and avian metapneumovirus (AMPV) reduced replication and 

pathogenicity in animal models (80-82). However, recombinant HMPV lacking the SH gene was 

found to replicate in both hamster and nonhuman primate models only marginally less efficiently 

than wild-type (WT) HMPV (76, 83). While these findings suggest HMPV SH has a disposable role 

in infection, all HMPV isolates to date have the SH gene, indicating its presence is required for 

fitness (90).  Several functions of HMPV SH have been identified recently. Like the SH of RSV (91), 

the HMPV SH protein exhibits viroporin, or viral protein channel, activity (92). Furthermore, HMPV 

SH can regulate the cell-to-cell fusion activity of F (92). 

The roles of HMPV G and SH glycoproteins have been recently studied in more detail in 

the context of HMPV entry. There is direct evidence the HMPV G and SH regulate HMPV entry, 

which may contribute to immune system modulation of the host. Recent studies using 

recombinant HMPV lacking G and SH showed that G and SH glycoproteins inhibit 

macropinocytosis-mediated entry into human dendritic cells and reduce activation of CD4+ helper 

T cells (93). Furthermore, it has been shown that HMPV G, specifically through the cytoplasmic 
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tail domain, can disrupt mitochondrial signaling in airway epithelial cells that leads to an antiviral 

response (361). Altogether, there is evidence that HMPV G and SH can affect virus uptake, 

suggesting these glycoproteins affect F, which is the primary attachment for HMPV. However, the 

mechanisms of the regulatory effects of G and SH in entry remain to be explored. 

 In this study, we utilized a model of human bronchial epithelial cells to characterize key 

differences between WT HMPV and recombinant HMPV lacking G or both G and SH. The results 

showed G and SH inhibit particle binding to human bronchial epithelial cells, as recombinant 

HMPV ΔG and ΔGΔSH were able to bind more efficiently. However, heparan sulfate modulating 

compounds inhibited the binding of the recombinant and WT HMPV similarly, supporting that F 

mediates the critical interaction with heparan sulfate. Further analysis revealed increased binding 

of the recombinant viruses did not result from great F incorporation in particles, and electron 

microscopy did not reveal any significant differences in morphology between the recombinant 

and WT HMPV. Interestingly, HMPV lacking G did not incorporate cellular actin into particles, 

suggesting G may interact with the cell cytoskeleton during trafficking and assembly. These 

findings demonstrate a potential novel role for HMPV G and further elucidate the complex, 

regulatory interactions between viral proteins. 

 

Results 

Recombinant ΔG and ΔGΔSH HMPV bind BEAS-2B more efficiently than WT 

 We previously showed recombinant HMPV ΔG and ΔGΔSH purified by sucrose cushion 

binds and infects Vero and CHO cell lines at WT levels (79). This purification process concentrates 

viral participles of uniform density, which may exclude more variable forms of viruses that may 

be budding. To better understand what role HMPV glycoproteins G and SH may have in HMPV 

infection, we utilized human bronchial epithelial (BEAS-2B) cells infected by viruses purified using 

SPG as a stabilizing agent and for cryoprotection, that does not exclude any particles. To 

determine if G or SH affect particle binding, viruses purified by SPG were added to BEAS-2B cells 

at 4°C, allowing for binding to occur but not infection, and the amount of bound virus was 

quantified by analysis detection of the HMPV matrix protein present in cell lysates with β-actin as 

a loading control, by Western blot. Five percent of input virus for each virus was also loaded for 

comparison. Interestingly, HMPV ΔG and ΔGΔSH had greater binding to BEAS-2B cells than WT 

HMPV (Fig. 20A and 20B) despite adding the same amount of virus (Fig. 20C). Quantification of 

binding relative to input revealed enhanced binding of HMPV ΔGΔSH compared to WT HMPV, 
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although HMPV ΔG also had a trend for increased binding (Fig. 20D). These results suggest G and 

SH negatively regulate HMPV binding to BEAS-2B cells. To confirm that the enhanced binding 

activity of recombinant viruses was still dependent on the interaction between F and heparan 

sulfate, we utilized iota-carrageenan, a sulfated polysaccharide that has been shown to inhibit 

HMPV binding and infection (Fig. 13). Pretreatment of WT HMPV and recombinant HMPV ΔG and 

ΔGΔSH with 40 µg/mL of iota-carrageenan resulted in an inhibition of binding (Fig. 20A). 

Furthermore, occlusion of heparan sulfate with 1 µM of peptide dendrimer SB105-A10 also 

inhibited binding of WT HMPV and recombinant HMPV ΔG and ΔGΔSH (Fig. 20B). Taken together, 

these results indicate the loss of G and SH results in increased binding to human bronchial 

epithelial cells, and this binding is dependent on the interaction between F and heparan sulfate 

as seen in WT HMPV. 

 We hypothesized that recombinant HMPV ΔG and ΔGΔSH incorporate more F into 

particles due to the lack of one or both glycoproteins compared to WT HMPV. To test this, we 

analyzed the relative content in WT and recombinant HMPV viruses of F compared to M (Fig. 21A). 

Surprisingly, the recombinant HMPV ΔG or ΔGΔSH did not incorporate more F into the particles 

(Fig. 21B), suggesting more F available for binding is not the mechanism of enhanced binding to 

BEAS-2B cells.  

 The viruses used in these studies were purified using SPG, which does not select for 

particles of uniform density the way concentrating sucrose purification does. It is possible the 

recombinant HMPV lacking G or G and SH produces different shaped or sized particles than WT 

HMPV that affect binding.  To address this question, we performed electron microscopy on HMPV 

ΔG (Fig. 22B) and HMPV ΔGΔSH (Fig. 22C), and compared particle appearance and size to WT 

HMPV (Fig. 22A). Analysis of electron microscopy images did not reveal detectable differences in 

particle shape as the WT (Fig. 22A) and recombinant HMPV (Fig. 22B and 22C) produced both 

spherical and pleomorphic particles of variable size. Glycoprotein spikes were observed for WT 

and recombinant viruses also (Fig. 22). Therefore, we were not able to identify any differences in 

particle morphology to explain differences in binding, suggesting the glycoproteins G and SH may 

regulate binding mediated by HMPV F.  

 

Recombinant ΔG and ΔGΔSH HMPV do not incorporate cellular actin 

 In the binding assays using iota-carrageenan (Fig. 20A) and SB105-A10 (Fig. 20B), β-actin 

was used as a loading control for cell lysates to ensure the same amount of protein was loaded in 
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the untreated and untreated samples. Because the input virus samples were also analyzed within 

the same gel, the amount of β-actin in the virus samples was also detected. Mass spectrometry 

analysis of WT HMPV has shown cellular cytoskeletal proteins, such as β-actin, are found in 

purified virus particles, presumably due to incorporation during particle assembly and budding (El 

Najjar, et al., submitted).  Interestingly, we noted WT HMPV incorporated small amounts of β-

actin, but there was no β-actin detected in samples of HMPV ΔG or HMPV ΔGΔSH (Fig. 20A and 

20B). To confirm these observations, we analyzed the β-actin content of WT HMPV, recombinant 

HMPV that results in green fluorescent protein expression (GFP) (rgHMPV), HMPV ΔG, and HMPV 

ΔGΔSH by Western blot (Fig. 23A). M was also detected for comparison (Fig. 23A). While similar 

amounts of M were detected for rgHMPV and the recombinant viruses (Fig. 23B), β-actin 

incorporation in HMPV ΔG and HMPV ΔGΔSH was reduced compared to rgHMPV (Fig. 23C). These 

results suggest HMPV G contributes to β-actin association with HMPV and possible incorporation 

during assembly. However, what role, if any, recruitment of cellular actin into the viral particles 

has in assembly and spread is unclear.  

 

Discussion 

HMPV F is essential and sufficient for infectivity. Recombinant HMPV without 

glycoproteins G and SH is infectious in vitro and in vivo. However, all clinical isolates of HMPV 

isolated to date contain genomes with all three glycoproteins, indicating that these proteins play 

an essential role. The results presented here demonstrated HMPV G and SH can affect HMPV 

binding to human bronchial epithelial cells, as recombinant viruses HMPV ΔG and HMPV ΔGΔSH 

demonstrated enhanced binding compared to WT HMPV (Fig. 20). We concluded greater 

incorporation of F (Fig. 21) or differences in particle morphology (Fig. 22) did not explain the 

difference in particle binding.  

It is possible that HMPV G may regulate binding by direct interaction with F, which is the 

primary glycoprotein involved in attachment. While expression of HMPV F and M are sufficient 

for virus-like particle (VLP) formation that resembles HMPV (362), G interacts with F in VLPs when 

co-expressed with F and M (363). Furthermore, our group has shown SH can regulate cell-to-cell-

fusion activity of HMPV F expressed at the plasma membrane (92), further supporting a regulatory 

role. It has been shown HMPV G and SH inhibit uptake by macropinocytosis in dendritic cells (93). 

Therefore, HMPV G and SH may play a role in numerous aspects in F function: binding, fusion, and 

mediating entry.  
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While the results presented here demonstrated enhanced binding of HMPV ΔG and HMPV 

ΔGΔSH compared to WT HMPV, our group has previously reported that the recombinant viruses 

bind and infect Vero and CHO cell lines at WT levels (79). There are several possibilities to explain 

different findings presented here. First, the viruses used in this study were prepared using SPG, 

which serves as a stabilizing agent. This purification allowed for better preservation of the 

diversity of viral particles, in contrast to purification by sucrose cushion which utilizes a density 

barrier at high centrifugation speeds to concentrate particles of similar density and often results 

in particle breakage. Therefore it is possible this methodology recovered a population of HMPV 

ΔG and HMPV ΔGΔSH typically excluded by sucrose cushion purification, which allowed for the 

observation of enhanced binding. Secondly, we utilized a respiratory bronchial epithelial cell line 

to study the roles of G and SH in binding. BEAS-2B cells are non-cancerous, lung epithelial cells 

that serve as a physiologically relevant model for respiratory virus infection. It is possible the 

abundance of specific heparan sulfate proteoglycans (HSPGs) or integrin αVβ1, both of which 

contribute to HMPV entry, differ in the airway cells than other cell types. Therefore, regulatory 

effects of HMPV G and SH on F may become exposed when attachment factors are present in 

different quantities or ratios. Lastly, it is possible that particle stability is reduced in HMPV ΔG and 

HMPV ΔGΔSH, resulting in more defective particles that are unable to establish infection 

compared to WT HMPV, although no significant differences were observed by electron 

microscopy (Fig. 22). Such defective particles may still be able to bind to cells and be detected by 

Western blot. Preliminary experiments to determine differences in infectivity did not reveal 

enhanced infection in HMPV lacking G and/or SH compared to WT HMPV. However, further 

studies are required to confirm this.  

We showed HMPV lacking G, both HMPV ΔG and HMPV ΔGΔSH, was not associated with 

cellular actin at levels comparable to that observed with WT HMPV (Fig. 20 and 23). There is no 

current evidence of direct or indirect interaction of HMPV G with cellular actin. The actin 

cytoskeleton, which is a central node in cellular pathways, is frequently targeted by various 

pathogens to modulate cellular responses. The actin cytoskeleton has been shown to play a 

critical role in the formation of filaments and cellular extensions that serve as HMPV assembly 

sites and may contribute to cell-to-cell spread (El Najjar, et al., submitted).  However, results 

showed HMPV P induced the cytoskeletal changes, suggesting manipulation of the actin 

cytoskeleton for spread and actin incorporation into HMPV particles may be unique functions of 

distinct HMPV proteins.  Furthermore, concentrated F-actin localizes to sites of HMPV filament 
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budding in the plasma membrane and incorporates into filamentous particles (364). Incorporation 

of cellular actin into particles has been reported for many viruses, including HIV-1 (365) , rabies 

virus (366), and Newcastle Disease virus (367). For RSV, it is proposed that cellular actin is used as 

a scaffold to propel filamentous viral to bud and leads to incorporation of cellular actin in the 

particles (368).  However, it is thought cytoplasmic tail of the RSV fusion protein is required for 

the recruitment into filaments (369, 370). It is not known if the incorporation of cellular actin into 

viral particles is deliberate and contributes to pathogenicity, or is simply a nuance of assembly.  
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Figure 20. Recombinant HMPV ΔG and ΔGΔSH bind more efficiently to BEAS-2B cells than WT 

HMPV. 

(A) HMPV viruses (WT and recombinant mutants ΔG and ΔGΔSH) were treated with 40 µg/mL of 

iota-carrageenan and added to BEAS-2B cells at an MOI of 1 at 4°C for particle binding. (B) HMPV 

viruses (WT and recombinant mutants ΔG and ΔGΔSH) were added to BEAS-2B cells treated with 

vehicle or with 1 µM SB105-A10 at an MOI of 1 at 4°C for particle binding. Lysates of washed cells 

were analyzed for HMPV binding by Western blot analysis for M. Input represents 5% of WT HMPV 

added to the cells for binding. No virus was added to mock infected cells. β-actin served as a 

loading control. (C) Band intensities of the input M of WT and recombinant virus.  Data points are 

means (+/- SD) of measurements representative of 3 independent experiments. (D) Percent 

bound particles compared to input of WT and recombinant HMPV, determined by quantification 
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of M. Data points are means (+/- SD) of measurements representative of 5 independent 

experiments. * Indicates statistical significance of P< 0.05. 
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Figure 21. Recombinant HMPV ΔG and ΔGΔSH do not have greater F incorporation compared to 

WT HMPV. 

(A) Approximately 25,000 and 50,000 particles of WT HMPV, HMPV ΔG, and HMPV ΔGΔSH were 

lysed, and proteins were separated by SDS-PAGE followed by Western blot analysis for F1 and M. 

(B) Band intensities for F and M were quantified using ImageQuantTL, and the data are presented 

as a relative ratio of F to M. (n=2) 
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Figure 22. Electron microscopy imaging of viral particles. 

(A) WT HMPV, (B) HMPV ΔG, and (C) HMPV ΔGΔSH were propagated in Vero cells for 4-5 days at 

37°C and purified using SPG. 
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Figure 23. Recombinant HMPV ΔG and ΔGΔSH are not associated with β-actin. 

(A) Recombinant HMPV that results in GFP expression (rgHMPV), HMPV ΔG, HMPV ΔGΔSH, and 

WT HMPV aliquots were lysed, and proteins were separated by SDS-PAGE, which was followed by 

Western blot analysis for HMPV M and β-actin. (B) Band intensities for M and (C) β-actin were 

quantified using ImageQuantTL, and the data are presented normalized to protein content in 

rgHMPV. *Indicates statistically significant, P<0.05 (n=2). 
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Chapter 6: HMPV Infection in a Cystic Fibrosis Model 

 

Introduction 

Cystic fibrosis (CF) is an autosomal recessive inherited disorder that affects many organ 

systems of the body (371-373). Among Caucasians, it is the most common lethal genetic disease 

with approximately 1 in 2,500 children born with CF in the United States (374). Approximately 1 

in 25 Caucasians of European decent are carriers of the allele (375), likely due to heterozygous 

advantage for the survival of Vibrio cholera infection (376, 377). CF is diagnosed by a sweat test 

and genetic testing for known mutations commonly included in newborn screenings (378). The 

average life expectancy of individuals with CF has risen to nearly 40 years, compared to only 16 

years in the 1970s, due to do advances in treatments (379, 380). Cystic fibrosis is characterized by 

disease in numerous organ systems, including exocrine pancreatic insufficiency, liver and kidney 

dysfunction, malabsorption in the intestines, infertility in males, and chronic obstructive 

pulmonary disease. However, complications due to lung dysfunction are responsible for death in 

85% of people with CF (381, 382). 

The basic genetic defect that causes this disorder, discovered over 25 years ago, resides 

in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (373). The resulting gene 

product is a protein kinase A-activated chloride and bicarbonate selective ion channel involved in 

salt and water transport across apical membranes of epithelial cells. It is expressed in secretory 

and absorptive epithelial cells in the airway, pancreas, liver, intestine, sweat gland and the vas 

deferens. CFTR also affects sodium transport through regulation of sodium channels at the plasma 

membrane. Loss of CFTR function leads to defective anion secretion and sodium hyperabsoprion 

across airway surfaces and submucosal glands. In the lungs, the resulting altered balance of ion 

transport dehydrates the airway creating viscous mucus and impeding mucociliary clearance (379, 

380, 383-386).  

Many mutations in the CFTR gene have been identified that result in impaired CFTR 

function, and a deletion of the 508th amino acid phenylalanine (ΔF508) is the most common, 

accounting for about 70% of mutations that result in CF (383). CFTR ΔF508 in both copies of the 

gene results in nearly a total absence of the channel in the membrane, as the misfolded mutant 

protein fails to progress though the normal biosynthetic pathway from the endoplasmic reticulum 

to the plasma membrane (387, 388). Other less common mutations, of which over 1,950 have 

been identified, can result in lower expression CFTR or impaired CFTR function, often leading to 
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less severe clinical presentation (389). Therefore, CF is a heterogeneous disease that ranges in 

severity of organ dysfunction, although pulmonary dysfunction affects all individuals with this 

disease.  

The pathophysiology that results from CFTR dysfunction significantly impacts overall lung 

function and greatly predisposes CF patients to lower respiratory tract disease. Without a proper 

balance of ions at the apical surface of the airway epithelium, the airway surface liquid is depleted. 

Retention of airway secretions leads to the hallmarks of CF lung disease, including chronic 

bacterial airway infection, airway inflammation, and irreversible lung damage (384, 385, 390). The 

clinical course of this disease is described by chronic inflammation which is punctuated by periods 

of acute worsening of lung disease that increase with age and declining lung function, eventually 

leading to lung transplantation or death (57). The most devastating bacterial culprit in CF patients 

is Pseudomonas aeruginosa, as nearly 80% of CF patients are colonized during their lifetimes (391, 

392). Once colonized, infection with P. aeruginosa becomes a chronic source of inflammation in 

the lungs and is an indicator of poor prognosis (391, 392). It is thought that exacerbations in 

airway disease occur due to an imbalance between chronic bacterial infection and host immune 

response (393). Viral infection may be an important factor that triggers these events. Viral 

respiratory tract infections are associated with exacerbations in children with CF (394, 395). In a 

clinical study of viral infection in CF exacerbation, it was shown that virus infection was associated 

with an increase in P. aeruginosa load (396). 

Several viruses are well known to cause respiratory disease in CF patients, such as human 

rhinovirus (HRV) (56, 397-400), parainfluenza virus 3 (397), adenovirus (56), influenza A (56, 399) 

and respiratory syncytial virus (RSV) (398, 401). The impact of HMPV infection in CF patients has 

not been addressed in detail. Few studies have examined the incidence and severity of respiratory 

infection caused by HMPV in these patients. The limited studies that have assessed HMPV 

infection in CF patients concluded that its prevalence rivals that of RSV and that HMPV is an 

important clinical pathogen in this patient population (58, 402). In adults, one study found that 

HMPV was second in prevalence after HRV for viral infection that caused acute exacerbation 

(398). However, how HMPV infection may differ in the context of CFTR dysfunction compared to 

healthy lungs is unknown. 

Due to the limited knowledge regarding HMPV in the context of CF, we utilized a cystic 

fibrosis bronchial epithelial (CFBE) cell line derived from a patient with the CFTR homozygous 

ΔF508 mutation (403) as a model to study HMPV. Infection studies using HMPV and the related 
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paramyxoviruses RSV and parainfluenza virus 5 (PIV5) revealed CFBE cells were more permissive 

to specifically HMPV infection compared to other respiratory cell types, suggesting a unique host-

virus interaction. Furthermore, CFBE cells were entirely resistant to PIV5 infection. Heparan 

sulfate modulating compounds that block HMPV binding in respiratory cells inhibited HMPV 

infection in CFBE cells also, suggesting heparan sulfate serves as an attachment factor in these 

cells. However, the increased infection of HMPV in CFBE cells could not be attributed to an 

increase in overall virus binding. These findings suggest CFBE cells and possibly CF lungs are 

specifically vulnerable to HMPV infection. 

 

Results 

CFBE cells more permissive to HMPV but not RSV infection than other human lung cells 

Despite the prevalence of HMPV infection in the worldwide population, the impact of 

HMPV has not been well characterized in patients with CF. The few existing studies have 

suggested HMPV is a common cause of respiratory disease in these patients, detected at nearly 

the same incidence as RSV. To examine HMPV infection in the context of CFTR dysfunction, we 

utilized a cystic fibrosis bronchial epithelial (CFBE) cell line, which contains the most common 

mutation in the CFTR gene, ΔF508, which leads to nearly a total lack of expression of the protein 

product at the plasma membrane. To assess permissiveness of CFBE cells to HMPV infection, 

infection at a specific multiplicity of infection (MOI) was compared to that observed in other 

human lung cells, A549 and BEAS-2B, as well as Vero cells, which are monkey kidney epithelium 

cells that lack interferon mediated signaling and are highly permissive to viral infection. The 

experiments for each cell type were completed at equivalent passage numbers from thawing as 

prolonged passaging can alter cellular protein expression and affect permissiveness to viral 

infection. Vero, CFBE, A549 and BEAS-2B cells were cultured overnight, counted, and infected 

with rgHMPV at MOI 0.1 and 0.5 and the percent of cells with green fluorescent protein (GFP) 

expression was determined by flow cytometry 24 HPI. A similar efficiency of HMPV infection was 

observed in A549 and BEAS-2B cells for each MOI, respectively (Fig. 24). As previously observed, 

Vero cells demonstrated higher HMPV infection (Fig. 24). Interestingly, CFBE cells were similarly 

permissive to HMPV infection as the Vero cells, and thus showed significantly higher infection 

rates than both A549 and BEAS-2B cells (Fig. 24).  

To determine if CFBE cells are highly permissive to other related respiratory viruses, all 

four cell types were infected with rgRSV at MOI 0.1 and 0.5 and fluorescent cells were determined 
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by flow cytometry 48 hours post infection, which is when GFP expression is highest in infected 

cells. Unlike with HMPV infection, CFBE cells were the least permissive to RSV infection (Fig. 25). 

A549 and BEAS-2B cells had similar levels of infection and Vero cells were the most permissive to 

RSV infection (Fig. 25). These results suggest CFBE cells are selectively highly permissive to HMPV 

compared to the closely related Pneumoviridae subfamily member, RSV.  

 

CFBE cells are not permissive to PIV5 infection 

Initial studies with paramyxoviruses in the Pneumoviridae subfamily, HMPV and RSV, 

revealed CFBE cells were selectively permissive to HMPV infection compared to other human lung 

cells. To determine if these cells promote higher infection of other paramyxoviruses, we analyzed 

the efficiency of PIV5 infection in CFBE, A549, BEAS-2B, and Vero cells. All four cell types were 

cultured overnight and infected with rgPIV5 at MOI1 and MOI5, and the percent of infected cells 

was quantified by GFP expression using flow cytometry. Higher MOIs were used in these 

experiments because no PIV5 infection was observed in CFBE cells in preliminary experiments 

using MOI 0.1 and 0.5. Therefore, MOI was increased to determent if infection in these cells is 

simply inefficient or if they were not permissive. Vero, A549 and BEAS-2B cells had similar 

infection efficiency of PIV5 (Fig. 26). Surprisingly, CFBE cells were highly resistant to PIV5 (Fig. 26). 

These results indicated viral infection is not enhanced in CFBE cells by a non-specific mechanism. 

 

HMPV infection of CFBE cells inhibited by heparan sulfate modulation 

 HMPV has been shown to require to the proteoglycan heparan sulfate (HS) as a host 

attachment factor to bind and infect cells (79). We have previously shown that nearly complete 

reduction in binding and infection results when HS is removed from the cell surface using 

heparinases, while cells that are able to synthesize only HS, and not any other GAGs, are fully able 

to bind HMPV (79). Is it not known whether HS is required for HMPV binding in CFBE cells, or 

whether increases in infection relate to increased binding either via HS or another host factor. To 

test this, CFBE cells were treated with peptide dendrimer SB105-A10 (Fig. 12C), which specifically 

occludes ligand binding from heparan sulfate proteoglycans (139, 350), and has been shown to 

inhibit HMPV infection in non-CF human lung cells (Fig. 17). The resulting infection was quantified 

by counting GFP-expressing cells by flow cytometry. HMPV infection was inhibited by 

pretreatment of CFBE cells with SB105-A10 by nearly 75% (Fig. 27A), similar to inhibition observed 
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in A549 (Fig. 17C) and BEAS-2B cells (Fig. 17B). These results suggest HMPV interaction with HS is 

also required for infection in CFBE cells.  

HMPV binding to HS can be inhibited by compounds that mimic HS (Fig. 15). K5 

polysaccharide derivatives are heparan-like molecules devoid of anticoagulant activity obtained 

by the sulfation of the E. coli capsular K5 polysaccharide that has the same structure as the 

biosynthetic precursor of HS, N-acetyl heparosan. A small library of derivatives with different 

degrees of sulfation has been synthesized using chemical and enzymatic modifications (318). 

These HS modulating compounds inhibit HMPV infection in healthy bronchial epithelial cells (Fig. 

15) and tissues (Fig. 16). To determine if HMPV infection can be inhibited by O-sulfated K5 

derivatives in CFBE cells, CFBE cells were infected with HMPV pretreated with the K5 

polysaccharide derivatives, and infection was quantified by counting GFP-expressing cells by flow 

cytometry. As previously shown for BEAS-2B cells (Fig. 15B), the O-sulfated K5 derivatives 

inhibited HMPV infection CFBE cells (Fig. 27B). Taken together, these results suggest HMPV 

infection in CFBE cells did depend on interaction with HS as was observed for normal airway cells 

and HS modulation is a potential antiviral strategy to prevent HMPV infection in CF patients also.  

 

Enhanced HMPV infection is not a result of more particle binding 

 Greater HMPV infection was observed in CFBE cells compared to other cell types (Fig. 24). 

This may be a result of increased particle binding or other more complex factors that affect virus 

infection, such as transcription efficiency or protein trafficking during replication and assembly. 

HMPV is known to bind HS to infect non-CF cells (79) and our results suggest HS is also a required 

factor for HMPV infection in CFBE cells (Fig. 27). Increased sulfation and increased concentration 

of glycosaminoglycans, including HS, have been shown in bronchi-alveolar fluid from children with 

CF, compared to non-CF controls (404). Thus, it possible CFBE cells express more HS at the plasma 

membrane, leading to greater HMPV binding and infection.  To determine if CFBE cells bind HMPV 

more efficiently than normal bronchial epithelial cells, HMPV was added to BEAS-2B or CFBE cells 

at 4°C, allowing for binding to occur but not infection, and the amount of bound virus was 

quantified by detection of the HMPV matrix protein present in cell lysates and β-actin as a loading 

control, by Western blot. The detected bound protein was compared to the input. Surprisingly, 

HMPV binding was about 3-fold less efficient in CFBE cells compared BEAS-2B cells (Fig. 28). Thus, 

increased binding was not able to account for the greater infectivity observed in the CFBE cells.  
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Discussion 

A comparison of infection efficiency of HMPV, RSV, and PIV5 revealed selective increased 

permissiveness in CFBE cells to HMPV infection (Fig. 24) and complete resistance to PIV5 infection 

(Fig. 26). HMPV infection in CFBE cells did require HS (Fig. 27A) and was blocked by O-sulfated K5 

polysaccharide derivatives (Fig. 27B). These results suggest loss of CFTR in the plasma membrane 

results in a unique pathophysiology that primes CFBE cells to HMPV specifically. 

It is not clear why HMPV infection is enhanced in CFBE cells compared to normal human 

lung cells. It is possible that low pH contributes to HMPV infection in CBFE cells. The fusion protein 

of HMPV carries out an essential step in viral infection to bind and fuse the viral envelope with 

the target cells, and fusion proteins from many strains of HMPV can be triggered to fuse by low 

pH (134, 136)(Fig ). The rgHMPV virus used in these studies is derived from strain CAN97-83 (A2) 

and the F protein from this strain is triggered to fuse by low pH. It has been well documented that 

the apical surface of the airway in CF lungs is acidic (405-407).  CFTR itself functions as a chloride 

and biocarbonate exchanger, and without CFTR, there is a decrease in bicarbonate efflux, 

contributing to lower pH extracellularly. Furthermore, CFTR has a regulatory influence on the 

adjacent Na+/H+ exchanger, resulting in suppression of its activity, thus reducing proton efflux. In 

the absence of functional CFTR, as is the case in CF, proton efflux is not inhibited resulting in 

further extracellular acidification. Therefore, it is possible the CFBE cells have an acidic 

microenvironment that contributes to enhanced HMPV infection. Low pH does not trigger the 

fusion proteins of RSV or PIV5 (222, 408, 409), providing a potential explanation of the increased 

permissiveness to HMPV infection. 

 Calcium signaling can play a role in viral infection (410) and may also contribute to HMPV 

infection (411). Unlike the matrix (M) proteins of other viruses, HMPV M has two calcium binding 

sites (412), suggesting cellular calcium plays an important role in HMPV infection. CFBE cells have 

an increased calcium concentration in the endoplasmic reticulum due to increased SERCA 

(Sarcoplasmic/Reticulum Ca2+ ATPase) pump activity and decreased PMCA (Plasma Membrane 

Ca2+ ATPase) activity (50).  As a result, cytoplasmic calcium levels are lower in CFBE cells 

compared to rescued cells with normal CFTR expression. It remains to be shown if lower 

cytoplasmic calcium levels contribute to HMPV infection in CFBE cells. Furthermore, it is possible 

CFBE cells upregulate other calcium transport mechanisms to reach calcium homeostasis, and 

endocytosis is a means to increase calcium influx without PMCA activity, which is downregulated 

in CF (413). There is direct evidence HMPV enters cells by endocytosis (136, 282), and increased 
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endocytic uptake of calcium is a potential mechanism that allows for increased HMPV infection. 

RSV infects cells via micropinocytosis (304) and PIV5 is thought to fuse at the plasma membrane, 

both of which are entry mechanisms that would not be enhanced by endocytosis of calcium. 

The CFBE cells were not permissible to PIV5 infection (Fig. 26). PIV5 requires sialic acid for 

binding (414), and CFBE have been shown to have altered sialylation, which may contribute to the 

resistance to infection. Decreased sialylation has been shown in CFBE cells (415). Furthermore, 

sialic acid chains expressed on CFBE cells have significantly reduced terminal sialic acid in the 

alpha-2,6 configuration (416). Viral specificity to bind alpha-2,6 sialic acid is a major determinant 

of tropism (417-419). Clinically, viruses that utilize sialic acid for binding, such as Influenza A and 

parainfluenza virus 3, have relatively low incidence of infection in CF patients compared to others 

(56, 397-400). Therefore, the specific reduction in terminal sialic acid in the alpha-2,6 

configuration of CFBE cells may be a contributor to viral tropism and infection in CF patients.  

HMPV has only recently become recognized as a pathogen of clinical importance. While 

it was discovered 15 years ago, there is evidence that HMPV has been causing respiratory disease 

since at least 1948, though it was often clinically mistaken for RSV infection. Results presented 

here suggest CFTR dysfunction specifically primes cells for HMPV infection, which has implications 

for CF patients. While there is no vaccine or established effective treatment for HMPV infection, 

it is important for clinicians to recognize HMPV may be a particularly important pathogen in this 

patient group. 
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Figure 24. HMPV infection in Vero and human lung cells. 

Cells were infected with rgHMPV at MOI 0.1 or 0.5 in duplicate and the percent of infected cells 

were determined by flow cytometry.  Data points are means (+/- SD) of duplicate measurements, 

*** indicates statistically significant, P<0.001 (n=3) using Bonferroni’s Multiple Comparison Test 

(Prism).  
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Figure 25. RSV infection in Vero and human lung cells. 

Cells were infected with rgRSV at MOI 0.1 or 0.5 in duplicate and the percent of infected cells 

were determined by flow cytometry. Data points are means (+/- SD) of duplicate measurements, 

** and *** indicate statistically significant, P<0.01 and P<0.001, respectively (n=3), using 

Bonferroni’s Multiple Comparison Test (Prism). 
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Figure 26. PIV5 infection in Vero and human lung cells. 

Cells were infected with rgPIV5 at MOI 1 or 5 in duplicate and the percent of infected cells were 

determined by flow cytometry. Data points are means (+/- SD) of duplicate measurements (n=3). 
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Figure 27. HS modulation inhibits HMPV infection in CFBE cells. 

(A) CFBE cells were treated with SB105-A10 or vehicle for 1 hr at 37°C and infected with rgHMPV 

at MOI 1. Infection was countrified by flow cytometry. Percent infection is reported normalized 

to the untreated (0 nM). Data points are means (+/- SD) of duplicate measurements, * indicates 

statistically significant, P<0.05 (N=3). (B) CFBE cells were infected with rgHMPV that was 

pretreated with K5 polysaccharide derivatives (variable concentrations) or vehicle (untreated), 

and infection was quantified by flow cytometry. Percent infection is reported normalized to the 

untreated (0 nM). Data points are means (+/- SD) of duplicate measurements (n=2).  
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Figure 28. HMPV binding is not more efficient in CFBE cells. 

(A) HMPV was added to BEAS-2B and CFBE cells for 2 hr at 4°C at MOI 1 in triplicate. After 

incubation, the cells were washed and lysed. Cell lysates were analyzed for HMPV matrix (M) 

protein by Western blot and compared to input virus.  (B) Quantification of Western blot results, 

shown as percent bound M of input. * indicates statistically significant, P<0.05 (n=1). 
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Chapter 7: Discussion and Future Directions 

 

The body of work presented here contributes to our understanding of HMPV binding, 

fusion, and infection in humans. These results in this thesis provide new insight into some of the 

complexities of HMPV fusion protein function and characterized critical binding interactions. 

Finally, the work described has direct translational ramifications. Characterization of HMPV 

infection in cystic fibrosis revealed a potential vulnerability of this patient group to this pathogen. 

Taken together, these findings elucidate key features of the HMPV viral cycle, provide a 

foundation for antiviral development, and identify a vulnerable clinical population. 

 

Complexity of fusion protein regulation and implications of acidic pH promoted fusion 

Prior to the work in this thesis, a total of five HMPV F proteins had been analyzed for pH 

requirements to promote fusion (134, 136, 241, 242), and only CAN97-83 (A2) F has been 

characterized to be independent of its associated G protein (134), while the others were not 

evaluated for fusion activity in the presence of HMPV G. Cumulatively, low pH dependence, low 

pH independence, and failure to promote cell-to-cell fusion were all documented for different 

HMPV F proteins. Site directed mutagenesis at specific residues resulted in loss of fusion activity 

or changes from low pH dependence to independence, or vice versa. These results led to a 

hypothesis that low pH promoted fusion among HMPV F proteins is rare, unique to certain clade 

A, and requires the presence of specific residues, such as glycine 294 (241, 242). However, the 

results shown here demonstrate that HMPV F requirements for acidic pH are more complex 

(Chapter 3). We demonstrated cell-to-cell fusion promoted by TN83-1211 (B2) F and TN94-49 

(A2), which does not have a glycine at position 294, can be triggered by low pH. These results 

demonstrate the challenges of understanding what contributes to low pH triggered fusion and its 

significance among all HMPV strains.  Furthermore, two HMPV F proteins, from TN96-12 (A1) and 

NL/17/100 (A2) (241, 242), have been identified that fail to promote cell-to-cell fusion when 

expressed at the plasma membrane. However, both virus strains are capable of establishing 

productive infection (241, 242, 282), which suggests these F proteins require either additional 

viral factors, such as HMPV G or HMPV SH, or additional cellular factors, such as a specific receptor 

factor or unique lipid membrane composition available only in certain compartments (420), that 

are not present when the F proteins are expressed at the plasma membrane to promote fusion. 

These factors may regulate HMPV F activity through a number of potential mechanisms, and 
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acidic pH may still contribute to the triggering of these proteins, but is not sufficient when F is the 

only viral protein expressed at the plasma membrane. Because we are not able to determine if 

the HMPV F proteins that failed to promote cell-to-cell fusion were in the metastable prefusion 

conformation or the postfusion conformation, it is not clear if they require a stabilizing or 

triggering factor. The presence of an additional viral protein may contribute to either stabilizing 

the F protein to prevent premature triggering, or contribute to the triggering of the F protein. We 

plan to determine if HMPV G promotes cell-to-cell fusion of the HMPV F proteins analyzed in this 

thesis as a starting point to determine if G is required for other HMPV F.  

Until recently, there was a simple, binary understanding of viral fusion and entry that was 

linked by the pH of fusion protein triggering. It was thought viruses with fusion proteins that are 

triggered independent of pH, at neutral pH, bind cell surface receptors and fuse the viral 

membrane with the plasma membrane (421). Viruses belonging to the Retroviridae, 

Paramyxoviridae, Herpesviridae, and Coronaviridae families typically initiate fusion in a pH-

independent manner (215). On the other hand viruses with fusion proteins that can be triggered 

by exposure to acidic pH were thought to bind cell surface receptors and be taken up by 

endocytosis, where exposure to acidic pH in the maturing endosome would provide the necessary 

trigger to promote the fusion protein activity (421).  Viruses belonging to the Orthomyxoviridae, 

Togaviridae, Rhabdoviridae, Bunyaviridae, and Arenaviridae families typically require a low-pH-

mediated event for efficient fusion of viral and host cellular membranes (215). Because the fusion 

proteins of most paramyxoviruses to date can be triggered independently of pH, the entire 

Paramyxoviridae family of viruses was previously thought to fuse at the plasma membrane (421). 

However, this association has been challenged with our group’s identification for the role of low 

pH in HMPV fusion protein activity (134, 136) as well as recent reports of more complex routes of 

entry for several viruses in the family. RSV can enter cells by macropinocytosis (304) and evidence 

suggests that New Castle Disease virus is taken up by endocytosis (286, 287). Recent studies also 

indicate that HMPV fusion can take place in endosomal compartments (282) after complex entry 

mediated in a dynamin- and clathrin- dependent endocytosis (136, 282). These findings have 

provided a biological context for the acidic pH to trigger HMPV F. Cox et al. reported that 

prototype strains in each clade (A1, A2, B1, B2) utilize endocytosis, however infection of only some 

strains was modestly inhibited by chemical interference of endosomal acidification (282). 

Interestingly, some of the same strains were used in these entry studies that we used to 

characterize fusion protein activity in Chapter 3. Treatment of cells with ammonium chloride, a 
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weak base that blocks vacuolar acidification, resulted in as much as a 50% reduction in infection 

of the A2 virus, which is TN94-49. Our analysis of TN94-49 F revealed acidic pH can promote the 

fusion activity of this HMPV F. However, ammonium chloride treatment failed to inhibit infection 

of the A1 virus, TN96-12. Low pH is insufficient to trigger the fusion activity of TN96-12 F, 

suggesting other factors are required which have not yet been identified. (We do not have 

information regarding the fusion proteins of the B1 and B2 viruses used in the endocytosis 

studies.) Therefore, there may be a correlation between low pH trigger during endocytosis and 

low pH promoted fusion in cell based assays that isolate the fusion protein. However, more 

complex regulation may be at play in the case of HMPV, than some other low pH-triggered viruses, 

such as VSV and influenza A, which can be completely blocked by ammonium chloride treatment 

(282, 315, 422, 423). Of the strains that have been analyzed, all HMPV particles require 

endocytosis to infect bronchial epithelial cells (282), however not all of the F proteins require low 

pH for fusion and infection of only some strains is inhibited by blocking acidification. Taken 

together, this suggests HMPV particles may escape the maturing endosome into the cytosol at 

different times depending on the requirement for low pH. Following endocytosis and pinching off 

the membrane, the endosomes travel towards the nucleus while the pH begins to decrease (424). 

Depending on pH requirements of the fusion protein of that virus particle, it is possible fusion can 

occur anywhere from early endosomes to endosomes. However, there is an advantage to viral 

escape in late endosomes closer to the nucleus, as this delays the antiviral response of the cell 

and has been shown to promote viral infection for other viruses that utilize endocytosis for entry. 

Furthermore, preliminary imaging of HMPV replication bodies has shown perinuclear localization.  

Other HMPV glycoproteins, G and SH, may have more of a regulatory activity role in F 

activity than initially hypothesized from animal studies using recombinant HMPV lacking one or 

both of these proteins, as the strain employed in those studies utilized a low pH triggered F. Thus, 

the biological requirement for low pH in HMPV may vary depending on the interactions between 

the unique glycoproteins present in each strain of this virus. We hypothesize HMPV strains with F 

proteins that function independently from their complementary G may be more dependent on 

acidic pH to trigger fusion to escape the endosome, whereas those that require additional viral or 

cellular factors, such as TN96-12 (A2) F, not depend on acidic pH in the endosome to facilitate 

fusion. Whether this hypothesis holds true for HMPV entry remains to be determined. 
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Heparan sulfate proteoglycans as a potential receptor for HMPV 

 Heparan sulfate has been identified as a receptor for numerous viruses, whereas the 

other glycosaminoglycans are rarely implicated in virus-host interactions. HS is the most 

negatively charged due to the addition of sulfate groups, which has led to a hypothesis that 

nonspecific charge-charge interactions drive the attraction between diverse viral proteins and the 

sulfated polysaccharide on the surface of cells. However, our findings that O-sulfation is required 

to compete with HMVP binding to HS, suggest this is not entirely a simple charge interaction. 

Furthermore, it has been shown RSV has entirely different sulfation requirements for binding to 

HS, as N-sulfation is required while O-sulfation is dispensible (425). Thus, although a number of 

different viruses bind HS, likely due to prevalence of expression among mammalian tissues, they 

may not share the same mechanism mediating this interaction.  

 HS is found mainly on two families of cell surface proteins: syndecans and glypicans, and 

thus it is possible that a specific protein in one of these families may serve as a receptor for HMPV. 

Glypicans had not previously been identified as a receptor for a human virus until recently, when 

it was shown GPC-5 serves as a receptor for hepatitis B and hepatitis D viruses (204). Syndecans, 

on the other hand, have been identified to serve as an attachment factor for numerous viruses 

that bind HS. SDC-1 has been identified as an attachment factor for hepatitis C (172). SDC-2 and 

SDC-3 have been identified as receptors for Dengue virus (168) and HIV-1 (161), respectively. 

Because the different syndecan proteins are expressed in a cell-specific and tissue-specific 

manner, SDC-1 and SDC-4 are more likely to serve as an attachment factor for a respiratory virus 

due to their abundance in bronchial epithelial cells, among other tissues. On the other hand, SDC-

2 and SDC-3 are enriched in the thymus and neurological tissues. Due to its expression in the 

human airway, SDC-1 serves a potential receptor or coreceptor HMPV. Anti-SDC-1 antibodies have 

shown to reduce RSV infection at the apical surface of HAE tissues (355). This is an approach that 

could be used to determine if SDC-1 also is specific for HMPV binding. SDC-4 is also a potential 

receptor for HMPV, based on its tissue expression and roles in endocytosis and integrin recycling. 

Ligand binding to SDC-4 has been shown to orchestrate the activation of GTPases to initiate 

endocytosis in a dynamin-dependent manner and recycling of α5β1-integrin (426). SDC-4 has been 

associated with cell-extracellular matrix junctions, suggesting these HSPGs may not be readily 

available for interaction with a virus particle.  

In apical infection of HAE tissues, a critical step in the preparation of the tissues for 

infection was washes using lysophosphatidic choline (LPC). LPC is a complex, inverted cone-
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shaped lipid naturally found in plasma membranes and as a pulmonary surfactant in low 

quantities (427, 428). LPC washes prior to HAE infection have been used for a number of viruses, 

and were first used for HMPV by another group (320). Without LPC, HMPV infection is delayed 

and less efficient in tissues. In vivo, LPC enhanced infection of adenovirus was observed in mouse 

(429), rabbit (430) and baboon lungs (431), acting as an adjuvant to increase lentivirus gene 

expression (432, 433).  Treatment with LPC results in a decrease or loss of trans-epithelial 

resistance, potentially by disrupting cell-to-cell junctions (434). Taken together, this suggests LPC 

increases virus access to the airway cell surface receptors, which may only be available for binding 

at the apical surface at low levels prior to LPC treatment. Furthermore, transient disturbance of 

the epithelial barrier function may permit virus access to basolateral receptors or basal cells not 

normally exposed. For HMPV, apical infection of HAE tissues is enhanced by LPC, but apical 

infection can still occur without LPC washes of the apical surface. Even with LPC treatment, HMPV 

infection is primarily limited to the apical layer of HAE tissues. This suggests the required receptors 

are present at low numbers at the apical surface and disruption of the integrity of the epithelium 

with LPC increases their availability for binding, leading to greater efficiency of infection. 

 

Sulfated polysaccharides as an antiviral strategy 

Our results demonstrate the efficacy of sulfated polysaccharides to block binding and 

inhibit infection of HMPV. We propose such compounds may serve as a platform for antiviral 

development. Sulfated derivatives have been previously employed as an antiviral strategy in 

humans with limited success. Sulfated polysaccharides were first applied clinically to prevent 

infection of sexually transmitted viruses, such as HIV-1, HSV, and HPV. The phase III clinical trial 

for carrageenan-based Carraguard showed it did not reduce the risk of HIV infection (435, 436). 

However, Carraguard has been shown to protect women against high risk-HPV infection (437). 

Furthermore, carrageenan-based microbicides also appear to be promising to protect against 

HSV-2 infection (438). Therefore, carrageenan-based antivirals show great potential for clinical 

value. 

Iota-carrageenan has been safely delivered in humans as a nasal spray to reduce viral 

infection in several clinical trials (341). Although the results did not demonstrate a reduction in 

symptoms or duration of illness, the delivery was limited to nasal epithelium and subjects began 

using the carrageenan spray only after experiencing the onset of symptoms. Therefore, it is likely 

viral infection had already spread to the upper respiratory tract beyond the nasal respiratory 
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epithelium. However, reduction in viral titer was observed in the treatment group, suggesting 

iota-carrageenan was efficacious to reduce viral replication. We propose such an antiviral strategy 

would be most effective as prophylaxis, before the onset of respiratory symptoms. While this 

would not be a practical approach for most individuals, those at risk to severe illness from HMPV 

may benefit greatly. This includes patients in elderly care facilities, hospitals, as well as 

immunocompromised patients, such as bone marrow or organ transplant recipients. 

Furthermore, aerosolized delivery of a sulfated polysaccharide such as iota-carrageenan would 

increase delivery to the lower respiratory tract. Thus, treatment of at-risk patients experiencing 

symptoms of upper respiratory tract infect may prevent the spread of virus to the lower airway, 

which is the main contributor of morbidity and mortality due to respiratory infection. Treatment 

with sulfated polysaccharides could protect at risk patients not only from HMPV infection, but 

potentially other respiratory viruses that utilize heparan sulfate for binding, including RSV (163, 

176, 425), the leading cause of respiratory infection in children. Currently, there are no approved 

vaccines for either RSV or HMPV. Furthermore, high-risk premature infants receive monoclonal 

antibody therapy as prophylaxis for RSV infection, which is both costly and does not have 

established efficacy in clinical settings outside of controlled trials (439, 440), where the efficacy 

of palivizumab has been shown (441). Therefore, there are multiple patient groups that would 

benefit from a prophylactic therapy to reduce HMPV and RSV infection. Furthermore, iota-

carrageenan has shown efficacy to inhibit influenza A (338) and rhinovirus infection (354).  

Although our results suggest individuals with cystic fibrosis would benefit from HMPV 

prophylaxis, the consequences of sulfated polysaccharide delivery to upper or lower respiratory 

tract in these patients may propose unique risks. Sulfated polysaccharides contribute to chronic 

colonization and antibiotic resistance of Pseudomonas aeruginosa in cystic fibrosis patients. 

Heparan sulfate inhibits the killing of P. aeruginosa (442), possibly because heparan sulfate is 

incorporated in biofilms that protect the bacterial pathogen (384, 391, 394). However, other 

formulations may circumvent some of the unique challenges posed by introducing 

polysaccharides to cystic fibrosis lungs. Sulfated polysaccharides have been delivered in liposomes 

with efficacy to inhibit replication of some respiratory viruses (443). Thus, further studies are 

necessary, perhaps in the swine animal model of cystic fibrosis, to determine if sulfated 

polysaccharides would reduce viral infection or simply contribute to P. aeruginosa colonization. 
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The role of HMPV G in cellular actin recruitment 

 Cellular actin is often detected inside or associated with viral particles, suggesting it is 

packed during assembly. Incorporation of cellular actin into particles has been reported for many 

viruses, including HIV-1 (365) , rabies virus (366), and Newcastle Disease virus (367). For RSV, β-

actin and number of actin-related proteins have been found in the same sucrose gradient-purified 

fractions as RSV particles (444, 445), which has led to the hypothesis that cellular actin is used as 

a scaffold to propel filamentous viral to bud (368). However, RSV filament analysis for presence 

of actin associated proteins in the particles did not shown incorporation of the proteins examined, 

although they were not analyzed for β-actin content (370). Numerous proteins of the actin 

cytoskeleton were find by mass spectrometry analysis of ultra-purified WT HMPV particles (El 

Najjar, et al., submitted). There are sufficient levels of β-actin present that it be visualize be 

Western blot analysis of virus samples.  It was somewhat of an incidental finding when we 

observed no β-actin is present in samples of HMPV ΔG or HMPV ΔGΔSH. These findings are still 

preliminary and further analysis is required to determine if this has any significant in infection or 

viral fitness. Recent work by Farah El Najjar has highlighted the role of the actin cytoskeleton in 

formation of cellular filaments and extensions thought to function as a mechanism of cell-to-cell 

spread. Thus, HMPV G may play a role in driving or regulating some of these processes. Previous 

studies with the recombinant HMPV ΔG or HMPV ΔGΔSH in both in vivo and in vitro models have 

emphasized that they function similarly to WT HMPV, leading to questions about the roles of 

these additional proteins. The work presented here, both in regulation of binding and effects in 

actin incorporation, brings to attention some of the fine tuning these proteins may do during 

HMPV infection and essentially preserve their own necessity among HMPV viruses. Subtle effects 

on mediating binding, fusion, entry, particle assembly, and immune modulation under 

experimental conditions may translate to substantial advantages to maintain fitness in the 

population. 

 

HMPV infection in cystic fibrosis 

Our results showed a cystic fibrosis bronchial epithelial cell line had greater 

permissiveness to HMPV infection than RSV or PIV5. These findings suggest the loss of CFTR 

expression in the plasma membrane results in cellular changes that specifically enhance HMPV 

infection in vitro. To determine that it is the specific loss of CFTR expression that contributes to 

HMPV infectivity in this cell line, utilization of a cell line that has rescued CFTR should be explored. 
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We would expect to see a decrease in HMPV infection in these cells compared to the native CFBE 

cells. Furthermore, we can use silencing RNA approaches to known-down CFTR expression in 

healthy human bronchial epithelial cells to determine if HMPV infection is enhanced.  Several 

hypotheses are discussed in Chapter 6 for potential mechanisms of increased HMPV infection, 

including acidic microenvironments, calcium dysregulation and uptake, and increased expression 

of HSPGs. Additionally, there is evidence loss of CFTR leads to deregulation of the actin 

cytoskeleton (446). HMPV utilizes the actin cytoskeleton to promote egress and spread (El Najjar, 

submitted). It is possible that actin cytoskeleton deregulation in CFBE cells contributes to more 

efficient HMPV infection.  

While our results suggested increased binding was not the mechanism of increased 

infectivity in CFBE cells compared to normal bronchial epithelial cells, it is not clear what the 

mechanism of increased infectivity may be. We plan to examine replication of HMPV in CFBE cells 

using a novel technique developed by Nicolás Cifuentes to visualize replication bodies using 

fluorescent in situ hybridization (FISH) to detect viral genomes and messenger RNA transcripts. 

HMPV infection in BEAS-2B cells results in formation of perinuclear replication bodies where viral 

genomes are being replicated and transcribed (unpublished data). These replication bodies vary 

in size and number, from one to several per cell, and can travel between cells through intercellular 

extensions (unpublished data). It is possible HMPV genome transcription and replication is more 

efficient in CFBE cells, which may result in detection of replication bodies at earlier time points 

post-infection, more replication bodies per cell, or larger replication bodies. It also remains to be 

determined if HMPV may replicate to higher titers in CFBE cells.  

The studies in CFBE cells were done with a recombinant virus that results in GFP 

expression that is based on strain CAN97-83 (A2). It is not know at this time if CFBE permissiveness 

will be observed to other strains of HMPV. Furthermore, the fusion protein of CAN97-83 can be 

promoted to fuse by acidic pH. It is not known what role this may have in enhanced infection in 

CFBE cells, which have acidic pH at the plasma membrane. Additionally, one of the 

paramyxoviruses used in these studies, PIV5, does not cause not cause disease in humans, 

although most individuals have antibodies to this virus (18). However, it typically infects human 

cell lines efficiently, which contributed to the unexpected findings in CFBE cells. Thus, it would 

contribute to our understanding of viral infection in cystic fibrosis to additionally characterize 

other viruses commonly linked to cystic fibrosis exacerbation, including HRV, parainfluenza 

viruses 1 and 3, and influenza A. We hypothesize alteration in terminal sialic acid composition 
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results in resistance to PIV5 infection in CFBE cells, which could have implications for other sialic 

acid- binding viruses in endogenous infection in these patients.  

 

HMPV propagation in vitro and future analysis of clinical strains 

 RNA viruses rapidly adapt to the available host environment, often due to error prone 

polymerases that lack proof-reading mechanisms. As a result, in vitro propagation of RNA viruses 

originally isolated from ill patients may result in changes that promote efficient growth and 

replication in immortalized cells. We have identified critical virus-host interactions using primarily 

HMPV strain CAN97-83, one of the best characterized strains of HMPV. In order to broaden the 

understanding of HMPV life cycle and identify any strain-to-strain differences, we plan to 

incorporate not only additional strains, some of which have been already noted in this 

dissertation, but also new clinical isolates of HMPV from sick children at the University of Kentucky 

Children’s Hospital. To date, we have confirmed the presence of HMPV in 15 clinical isolates. 

Future studies with these novel strains include sequence analysis of genomes, characterization of 

dependency of HS for binding, and efficacy of apical infection in HAE tissues.  

 

Conclusion 

This body of work contributes to our understanding of the life cycle of HMPV. We 

characterized critical aspects HMPV F protein triggering by low pH, which has biological relevance 

for endocytic entry. Analysis of F proteins from phylogenetically diverse HMPV strains 

demonstrated low pH triggered fusion, challenging previously thought requirements, and led to 

the identification of a critical residue that enhances low pH promoted fusion. These results 

support our hypothesis that electrostatic interactions play a key role in HMPV F triggering by low 

pH and further elucidate the complexity of viral fusion proteins. We characterized the key features 

of the binding interaction between HMPV and HSPGs using heparan sulfate mimetics, identifying 

an important sulfate modification, and demonstrate that these interactions occur at the apical 

surface of polarize airways tissues. These results significantly advance our understanding of HMPV 

infection in the human airway and identify an antiviral strategy.  Furthermore, in our analysis of 

HMPV F mediated binding to HSPGs, we identified regulatory roles of HMPV glycoproteins G and 

SH that affect binding mediated by F and a potential novel function for HMPV G in actin 

recruitment. These results contribute to our understanding of the HMPV G and SH, which often 

do not share the same functional roles of analogous proteins found in viruses of the same family. 
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Furthermore, our results identified a potential specific susceptibility to HMPV infection in cystic 

fibrosis cells, which has not been previously reported. Therefore, the work presented here 

contributes to our understanding of HMPV infection over a broad breadth, from mechanisms of 

early events of entry to a clinical model of chronic respiratory disease. 
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Appendix I: Abbreviations Used in this Document 

6-HB Six-helix bundle 

AMPV Avian metapneumovirus 
ATCC American Type Culture Collection 

CF Cystic fibrosis 

CFBE Cystic fibrosis bronchial epithelium 
CFTR Cystic fibrosis conductance regulator 
ER Endoplasmic Reticulum 

F Fusion 

FBS Fetal Bovine Serum 

FP Fusion peptide 

GAG Glycosaminoglycan 

GFP Green fluorescent protein 

GPI Glycophosphatidylinositol 

HAE Human airway epithelium 
HeV Hendra virus 

HEV Hepatitis E virus 

HIV Human immunodeficiency virus 

HMPV Human metapneumovirus 

HN/G/H Paramyxovirus attachment protein 

HPI Hours post-infection 
HPIV1 Human parainfluenza virus 1 

HPV Human papilloma virus 
HRA Heptad repeat A 

HRB Heptad repeat B 

HRV Human rhinovirus 
HS Heparan sulfate 

HSPG Heparan sulfate proteoglycans 

HSV-1 Herpes simplex virus 1 

HTLV-1 Human T-cell leukemia virus 1 

M Matrix protein 
MeV Measles virus 

MOI Multiplicity of infection 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) 
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NiV Nipah virus 

P Phosphoprotein 
P/S Penicillin/Streptomycin 

PAGE Polyacrylamide gel electrophoresis 

PI3K Phosphoinositide 3 – kinase 

PIV3 Parainfluenza virus 3 

PIV5 Parainfluenza virus 5 

PKC Protein kinase C 

PMCA Plasma membrane calcium ATPase 
PVDF Polyvinylidene flouride 
RSV Respiratory Syncytial virus 

SDC Syndecan 

SERCA Sarco/endoplasmic reticulum calcium ATPase 
SeV Sendai virus 

SH Small hydrophobic protein 
SPG Sucrose phosphate glutamate 
TM Transmembrane domain 

VLP Virus-like particle 

VSV Vesicular stomatitis virus 

WT Wild type 
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