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ABSTRACT OF THESIS 
 

 

QUASI-MAGNETOSTATIC FIELD MODELING OF SHIPS 
IN THE PRESENCE OF DYNAMIC SEA WAVES 

 
 

Mechanical stresses placed on ferromagnetic materials while under the influence of 
a magnetic field are known to cause changes to the permanent magnetization of the 
material. Modeling this phenomenon is vital to the safety of ocean faring ships. In this 
thesis, a quasi-strip theory method of computing the nonlinear wave induced motion of a 
ship is developed, and the fluid pressure on the surface of the hull is used to determine the 
mechanical stresses. An existing magnetostatic volume integral equation code is used to 
evaluate the effects of the ship motion and hull stresses. The resulting changes in the 
magnetic field for various ship forms are presented to demonstrate the effects of given sea 
states. 
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1. INTRODUCTION 

 Most ships are made of ferromagnetic materials such as steel. When a 

ferromagnetic material is placed in a magnetic field, the material will cause a perturbation 

of the field around it. Knowledge of the perturbation of Earth’s magnetic field is of great 

importance to the safety of naval ships due to hazards such as underwater mines. By 

accurately modeling the ship’s magnetic field, techniques may then possibly be applied to 

decrease the field below the detection levels of these underwater threats [1]. There are four 

main sources of a ship’s magnetic field: the induced and permanent magnetization of the 

ship’s ferromagnetic steel, the induced eddy currents in the electrically conducting 

materials of the ship, electric currents in the hull due to electrochemical corrosion, and 

electric currents due to motors, generators, and other electrical equipment on board the ship 

[2]. 

 The application of stress to ferromagnetic materials has been shown to cause 

significant changes to the magnetic field and more specifically the permanent 

magnetization [3-5]. Due to the dynamic nature of ocean waves, the hull of a ship is 

constantly subjected to large stresses from fluid pressure while also under the influence of 

Earth’s magnetic field. While a ship is comprised of much more than just the outer hull, 

going forward this thesis will use the term hull to indicate all ferromagnetic material in the 

structure. The main stresses in the hull of a ship are induced by both hydrostatic and 

hydrodynamic pressure from the water thereby exciting nonlinear ship motion. In order to 

compute the actual stresses in the hull of a ship the nonlinear wave induced motion must 

be simulated. Computation of this wave induced motion can be performed in either the 

frequency domain or in the time domain. The advantage of frequency-domain 
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computations is that linear signal theory may be applied for irregular sea states so that the 

solutions of many different wave amplitudes and wave lengths may be superimposed [6], 

however this method fails to capture any nonlinear effects. Although time-domain methods 

include these nonlinear effects, it comes at the expense of much greater computational 

complexity. 

 In this thesis, a quasi-strip theory method is developed to solve for the nonlinear 

wave induced motion of a ship in the time domain. The wave induced pressure is used to 

compute the stresses in the hull with LS-DYNA [7], a commercial dynamic stress analysis 

code. Finally, these hull stresses will input to a quasi-magnetostatic volume integral 

equation code developed at the University of Kentucky, to calculate the magnetic field of 

a ship. A nonlinear transient solver is used to handle nonlinear hysteretic materials as well 

as a magnetostrictive materials. The main goal of this work is to expand the capabilities of 

quasi-magnetostatic field modeling to include the effects of wave induced dynamic stresses 

on the magnetic properties of ships. 

 This thesis is outlined as follows. Chapter 2 derives the six coupled equations of 

motion in the time domain along with a numerical solution method. Validation for each 

part of the code is given and the motion of two different ship forms are validated against 

other published results. Chapter 3 briefly discusses the magnetostatic volume integral 

equation and transient solver scheme. A description of LS-DYNA is also given. Results 

for the magnetostatic field of various ship models are shown for several ship headings and 

wave excitations. Finally chapter 4 discusses the accomplishments of this work and ideas 

for future development. 
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2. SHIP MOTION 

2.1 Theory 

The motion of a ship in dynamic sea waves can be determined from Newton’s 

second law 

 =M Fη  ,  (1) 

where F  is a vector of forces and moments acting on the ship, M  is the solid mass matrix, 

and η  is a vector of the acceleration of the ship in each degree of freedom. If the coordinate 

system origin is set to the ship’s center of gravity, the mass matrix simplifies to 

 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

xx

yy

zz

m
m

m
I

I
I

 
 
 
 

=  
 
 
 
  

M  , (2) 

where m  is the mass of the ship and xxI  , yyI  , and zzI  are the moments of inertia about the 

three principal axes. The moments of inertia may be expressed in terms of the radius of 

gyration about each axis as 

 

2

2

2

xx xx

yy yy

zz zz

I mk
I mk

I mk

=

=

=

 . (3) 

If the distribution of mass is unknown, the radii of gyration may be approximated as [8] 
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0.30 0.40
0.22 0.28
0.22 0.28

xx

yy

zz

k B to B
k L to L
k L to L

=
=

=

 , (4) 

where B  is the breadth and L  is the length of the ship.  

The forces on the right-hand side of (1) consist of both hydromechanical as well as 

viscous forces. Since the hydromechanical forces are typically orders of magnitude larger 

[6], viscous forces are typically neglected. To solve for the forces acting on the ship, a 

description of the fluid flow is required. For an ideal, incompressible, inviscid, and 

irrotational fluid, the pressure p on the hull of the ship may be found using Bernoulli’s 

equation 

 2

2
p gz

t
φ ρρ ρ φ∂

= − − − ∇
∂

 , (5) 

where ρ  is the water density, g  is the acceleration of gravity, z  is the vertical distance 

below the still water surface, and φ  is the velocity potential function which describes the 

fluid flow. An irrotational fluid implies 

 0∇× =V ,  (6) 

where φ= ∇V  is the velocity vector of any fluid particle. The total force acting at the 

center of gravity of the ship is determined by integration of the pressure over the hull 

 ˆ
S

p d= ∫∫F n s


 . (7) 

The velocity potential φ  in (5) satisfies all boundary conditions and Laplace’s equation 

 2 0φ∇ =  . (8) 
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 Establishing boundary conditions with a ship travelling in wind generated waves is 

a difficult problem due to their time varying nature. By assuming that the squared particle 

velocities in (5) are small compared to the other terms, the Bernoulli equation may be 

linearized as 

 p gz
t
φρ ρ ∂

= − −
∂

 . (9) 

Then, using the linear model, the solution for the forces acting on the ship are found by the 

superposition of several sub-problems. The velocity potential φ  is divided into a sum of 

three potential functions 

 Incident Radiation Diffractionφ φ φ φ= + +  , (10) 

where the incident potential Incidentφ  includes the hydrostatic restoring force and the Froude-

Krylov force, which arises due to the unsteady pressure field generated by the undisturbed 

waves. The interaction of the incident wave with the ship will cause some waves to be 

scattered in other directions which is described by Diffractionφ . Finally, the wave induced 

motion generates additional waves that propagate away from the ship and are described by 

Radiationφ . 

 In the frequency domain the equation of motion becomes 

 ( ) j te ω+ + + =A M B C F η η η  , (11) 

where A  is the hydrodynamic added mass matrix describing the added resistance in 

moving the volume of water surrounding the ship, and B  is the hydrodynamic damping 

due to the radiating waves. C  is the restoring matrix from the hydrostatic pressure, and F  
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is a vector of the excitation forces including the Froude-Krylov and diffraction forces. The 

response in irregular sea states can be easily computed in the frequency domain by solving 

(11) for multiple frequencies and/or wave heights and then superimposing the results. The 

disadvantage to this solution is that nonlinear effects are not captured in the frequency 

domain. This problem can be overcome by applying linear signal theory to compute the 

impulse response of the ship and then convert the frequency-domain solution to the time 

domain [9] such that the equation of motion becomes 

 
0

( ) ( ) ( ) ( ) ( ) ( )t t d t tτ τ τ
∞

+ + − + =∫M A K C X η η η   (12) 

where K  represents the impulse response or retardation functions and ( )tX  is the sum of 

the time dependent external forces applied to the ship. The coupled set of motion equations 

in (12) are often referred to as the Cummins equations [10, 11] due to the significant 

contribution [9] made to the study of ship motion. Although (12) has to be solved in the 

time domain, the benefit is that nonlinear effects are captured and the added mass and 

damping coefficients may be calculated using fairly straightforward frequency-domain 

methods. The program flow for computing the ship’s nonlinear motion is shown in Figure 

1 and the computation of each of the components in (12) will be explained in detail in 

section 2.5. 
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Figure 1. Ship motion program flow chart 
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2.2 Coordinate Systems 

To fully describe the ship motion in waves, three coordinate systems are used as 

shown in Figure 2. A detailed explanation of each is as follows: 

• OXYZ 

The Earth-fixed global coordinate system in which the wave is defined. The XY-

plane lies in the still water plane with the negative X-axis pointing in the direction 

of wave propagation. 

• oxyz 

The ship-fixed coordinate system with origin at the ship’s center of gravity. The x-

axis points in the ship’s forward direction and the y-axis towards port side. The z-

axis points upward and is always parallel to the global frame’s Z-axis. This 

coordinate system translates only with the steady forward speed of the ship and the 

only rotation allowed is about the z-axis, which is defined by the ship’s heading 

angle. The equations of motion are defined in this coordinate system. 

• o*x*y*z* 

The body-fixed coordinate system has its origin fixed at the center of gravity of the 

ship. This coordinate system differs from the ship-fixed system only by three 

rotations about the x, y, and z axes. The rotational difference between the ship and 

body coordinate systems is described by the three Tait-Bryan angles. 
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Figure 2. Illustration of the three coordinate systems used 
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2.3 Coordinate Transformations 

To simplify the transformation between coordinate systems an auxiliary vector s  

is defined as 

 

cos( )
sin( )

0
0

Ut
Ut
VCG T

µ
µ

µ

 
 
 
 −

= + 
 
 
 
 

s η  , (13) 

where η  is a 6x1 vector containing the instantaneous motions and rotations of the ship and 

U  is the ship’s constant forward speed. VCG  is the vertical center of gravity, the distance 

from CG  to the keel, T  is the ship draft, and µ  is the ship’s heading angle, the angle 

between the X-axis and x-axis as shown in Figure 2. The first three entries in s  describe 

the translation from the global coordinate system to the body-fixed frame. The last three 

entries contain the Tait-Bryan angles which describe the rotation between the ship-fixed 

and body-fixed coordinate systems. 

The transformation of a vector from one coordinate system to another can be 

described first by a translation and then a series of rotations about each coordinate axis. 

The rotation of a vector about a single axis by an angle θ  can be found by multiplying the 

vector by one of the three rotation matrices 
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1 0 0
( ) 0 cos( ) sin( )

0 sin( ) cos( )

cos( ) 0 sin( )
( ) 0 1 0

sin( ) 0 cos( )

cos( ) sin( ) 0
( ) sin( ) cos( ) 0

0 0 1

x

y

z

θ θ θ
θ θ

θ θ
θ

θ θ

θ θ
θ θ θ

 
 = − 
  
 
 =  
 − 

− 
 =  
  

R

R

R

 . (14) 

The rotation about multiple axes is given by the product of matrices in (14) such that any 

rotation can be described by 

 ( ) ( ) ( )z y xψ θ φ=T R R R   (15) 

where φ ,θ , andψ are the roll, pitch, and yaw angles, respectively. Multiplying a vector by 

the transformation matrix in (15) will rotate the vector by the three Tait-Bryan angles in 

the same coordinate system. If instead of rotating the vector, the reference frame is being 

rotated as is the case between the oxyz and o*x*y*z* frames, the vector should be 

multiplied by the transpose of the rotation matrix. For example, using (15) a vector V  in 

the global frame can be described in the body frame by 

 *= +V Tv t  , (16) 

where 

 
11

21

31

 
 =  
  

s
t s

s
  (17) 
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is the translation vector. Due to the special orthogonality of the rotation matrix, the vector 

can be transformed back by 

 * ( )= −Tv T V t  . (18) 

 

 
2.4 Hydrodynamic Coefficients 

The hydrodynamic potential coefficients are computed using a strip method. Local 

coefficients are calculated for each cross section and then the total hydrodynamic 

coefficients are found by integration along the length of the ship. To compute the local 

coefficients each section is first mapped to a more convenient circular cross section in the 

complex plane [8, 12]. The conformal mapping routine is detailed in Appendix B. Local 

hydrodynamic coefficients can now be computed for the circular cross sections based on 

the theory of Tasai [8, 13] resulting in the unknown coefficients in (19) and (20). A solution 

for these unknown coefficients is described in Appendix C. Once these local coefficients 

are computed for every cross section, the global coefficients may be calculated according 

to Appendix D. 

 

2
0 0 0 0 0

22 2 2
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0 0

2
0 0 0 0 0
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0 0
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0 0 0
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8
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R R
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P Q
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=

+

+
=

+

+
=

+

+
=

+

  (19) 
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2
0 0 0 0 0

22 2 2
0 0

3
0 0 0 0 0

24 2 2
0 0

2
0 0 0 0 0

33 2 2
0 0

4
0 0 0

44 2 2
0 0

2

8

2

8
R R

b M P N Qb
P Q

b M P N Qb
P Q

b M A N Bb
A B

b Y P X Qb
P Q

ρ ω

ρ ω

ρ ω

ρ ω

−
=

+

−
=

+

−
=

+

−
=

+

  (20) 

It should be noted that 24a  and 24b  are shown in [14] to have a negative sign, however 

according to [8] this is only correct in Tasai’s coordinate system with the positive z-axis 

pointing in the downward direction. In any of the ship motion coordinate systems with z-

axis pointing upwards both of these terms change sign. 

 

2.5 Forces 

2.5.1 Restoring and Froude-Krylov Forces 

The restoring and Froude-Krylov forces are determined by integrating the two 

pressures over the momentary wetted hull at each time step. The pressures are integrated 

along the contour of each strip and then along the length of the ship. The restoring force is 

due to the hydrostatic pressure given by  

 restp gZρ= −  , (21) 

where ρ  is the density of the water, g  is the acceleration due to gravity, and Z  is the 

depth below the still water surface. 
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The Froude-Krylov force is due to the pressure from the undisturbed wave potential acting 

on the hull. For a wave propagating in the negative X-direction, the wave potential is given 

by [6] 

 ( )cosh ( )
sin( )

cosh( )
k Z hga kX t

kh
φ ω

ω
+

= − +  , (22) 

where a  is the wave amplitude, 
2

k
g

ω
=  is the wave number for deep water, and h  is the 

sea depth. The Froude-Krylov force is then the integrated pressure from the undisturbed 

wave 

 ( , , , )FK X Y Z tp
t

φρ ∂
= −

∂
 . (23) 

Note that X , Y , and Z  are capitalized in (21), (22), and (23) as these equations are defined 

in the global coordinate system. 

Typically for strip theory programs, the integration of these pressures follows [6]. 

First define iv  and 1i+v  as vectors pointing to two subsequent points along a particular 

strip as shown in Figure 3. Let in  be the unit normal to the line segment formed by the two 

consecutive points iv  and 1i+v . By assuming the pressure varies linearly between these 

two points, the total force and moment produced on the segment due to the pressure are 

 

1

1

1 3
2

( ) 4 6
2

i i
j i i

i

i i
j i i i

i

p pf l j

p pf l j

+

+

+
= ≤ ≤

+
= × ≤ ≤

∑

∑

n

r n
 , (24) 

where il  is the length of the i-th segment given by 
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 1 2i i il += −v v  , (25) 

and ir  is a vector that points to the position on the segment where the total force is acting 

given by 

 

2 1
13 3

1 1
1

1
1

( ) if 0

if 0
2

i i
i i i i i i

i i

i i
i i i

p p p p
p p

p p

+
+ +

+

+
+

+
= + − + ≠

+
−

= + =

r v v v

v vr
 . (26) 

In the case of this work, a volume mesh rather than a strip mesh is used. Therefore the 

restoring and Froude-Krylov forces are computed by adaptively integrating the pressures 

over all wetted faces of the hull such that 

 ˆp d= ∫F n s  , (27) 

and the moment about the center of gravity is 

 ˆ( )p d= ×∫M r n s  , (28) 

where r  is a vector from CG  to the particular integration point. 
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Figure 3. Pressure integration scheme for a single strip 
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2.5.2 Radiation Forces 

Added mass and damping forces occur due to the induced oscillation of the ship. 

While the Froude-Krylov force is the primary excitation that causes the ship to accelerate, 

the damping forces control the resulting magnitude of the motion. These damping forces 

include both viscous and inviscid effects. As discussed in section 2.1, viscous effects are 

assumed to be negligible, which is a reasonable assumption for all degrees of freedom 

except roll [6]. No analytic solution has been found for calculating the damping forces in 

roll, however empirical models have been developed to estimate the damping coefficient. 

The implemented method to predict roll damping is discussed further in section 2.5.3. 

The inviscid damping coefficients ijB  are computed in the frequency domain and 

transformed to the time domain according to the Cummins equation [6, 9] such that  

 
6

1 0

( ) ( ) ( ) ( )
t

rad
i ij j ij j

j
F t A t K t dη τ η τ τ

=

 
= − − − 

 
∑ ∫    (29) 

where  

 ( )
0

2( ) ( ) ( ) cos( )ij ij ijK t B B t dω ω ω
π

∞

= − ∞∫  , (30) 

and 

 , , ,
0

1( ) ( )sin( )i j i j i jA A K dω τ ωτ τ
ω

∞

= + ∫  . (31) 

Since (31) must be valid for all frequencies, the added mass in the time domain is simply 

equal to the added mass in the frequency domain as the frequency approaches infinity. 

Since potential theory fails to calculate hydrodynamic coefficients accurately at high 
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frequencies, (31) may be used to compute the infinite frequency added mass as long as 

, ( )i jA ω  is known for just a single frequency. According to [10], the , ( )i jB ω  terms should 

be calculated with forward speed effects included whereas the , j ( )iA ω  terms should be 

calculated at zero speed. 

In order to compute (30) numerically, the upper limit of integration must be 

truncated to some finite frequency such that  

 ( )
0

2( ) ( ) ( ) cos( )ij ij ijK t B B t dω ω ω
π

Ω

= − ∞∫   (32) 

with a suitable value of 5 rad
sΩ =  for normal merchant ships [14]. Computation of the 

radiation force in (29) includes an integral over the entire past motion history which can be 

an expensive computation for long simulation times. This interval may be reduced such 

that  

 
2

1

6

1
( ) ( ) ( ) ( )

t
rad

i ij j ij j
j t

F t A t K t dη τ η τ τ
=

 
= − − − 

  
∑ ∫    (33) 

where the new integration interval must be a minimum of five times the encounter 

frequency [6] which is defined as [15] 

 cos( )e kUω ω µ= +  . (34) 

Care must also be taken to choose a small enough step size in frequency when computing 

the integral in (30) so as to avoid aliasing. This step size is dependent of the time interval 

2 1t t t= −  used to compute the radiation force. According to Nyquist’s Theorem this gives 

a minimum frequency step size of  
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2 1t t
πω∆ ≤
−

 . (35) 

 

2.5.3 Viscous Damping in Roll Motion 

The only degree of freedom where viscous effects are not negligible is in the roll 

motion. Although no analytic solution exists for computing the non-linear damping force, 

the use of empirical models are the industry standard to estimate the roll damping 

coefficient [16]. These models separate the roll damping into several components and 

ignore their interactions with each other. This gives the roll damping coefficient 

 44 F W E BK LB B B B B B= + + + +  , (36) 

where FB  is the frictional component, WB  is the wave component, EB  is the eddy 

component, BKB  is the bilge keel component, and LB  is the lift component due to forward 

speed. Detailed computation of each component is discussed in Appendix A. Once each 

component is computed the total viscous damping force in roll is expressed as  

 roll damp
F W E BK LF B B B B Bη η η η− = + + + +      (37) 

For this work, the bilge keel component was not implemented. 

 

2.5.4 Diffraction Forces 

The diffraction forces are due to the scattered waves produced by the interaction of 

the excitation wave with the ship’s hull. Along with the Froude-Krylov potential, the 

diffraction potential fulfills the boundary condition that no water penetrates the surface of 
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the ship’s hull [6]. Like the radiation forces, the diffraction forces are transformed from the 

frequency domain to the time domain, however the diffraction force is computed with the 

ship held fixed within the impinging waves [6, 15]. Whereas other forces are computed in 

based on the ship’s instantaneous time-dependent position in the global reference frame, 

the diffraction force is computed at each time step as if the ship is physically restrained to 

its equilibrium position. This implies that when transforming a point in the body-fixed 

coordinate system to the global system, the only translation is due to the draft, and the only 

rotation is due to the ship heading. According to [17] the diffraction force is given by  
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F a a t k t v d dx
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∫ ∫

∫ ∫

∫ ∫

∫ ∫

22
0

( ) ( )
t

yL
k t v d dxτ τ τ

 
− 

 
∫ ∫

 , (38) 

where ijk  are the sectional retardation functions computed by  

 
0

2( ) cos( )ij ijk t b t dω ω
π

∞

= ∫  , (39) 

ija∞  are the sectional added masses in the time domain, yv , zv , ya , and za  are the average 

particle velocities and accelerations in the y  and z  directions, respectively. 
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Cummins’s derivation conveniently gives that the added mass in the time domain 

is equal to frequency-domain added mass when the frequency approaches infinity. 

However, strip methods fail to accurately compute hydrodynamic coefficients at high 

frequencies. Using the added mass for any one known frequency, the time-domain added 

mass may be computed as [10] 

 
0

1( ) ( )sin( )
ij

ij ij ija a K dω τ ωτ τ
ω

Γ
∞ = + ∫  , (40) 

where ijΓ  is the maximum time for which the retardation function was computed. 

The particle velocities in the global coordinate system are the gradient of the potential 

function in (22) 

 

( )

( )

cosh ( )
cos( )

cosh( )
sinh ( )

sin( )
cosh( )

y

z

k Z hagkv kX t
kh

k Z hagkv kX t
kh

ω
ω

ω
ω

+
= +

+
= − +

 , (41) 

and the particle accelerations are the time derivative of the velocity functions 

 

( )

( )

cosh ( )
sin( )

cosh( )
sinh ( )

cos( )
cosh( )

y

z

k Z h
a agk kX t

kh
k Z h

a agk kX t
kh

ω

ω

+
= − +

+
= − +

 . (42) 

Since the particle velocity and acceleration varies with position in the cross section, the 

mean value for each cross section computed by  
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max max

min min

max max

min min

0

max min max min

0

max min max min

1 ( , , ) , ,
( )( )

1 ( , , ) , ,
( )( )

Y X

i i
T Y X

Y X

i i
T Y X

v v X Y Z dXdYdZ i x y z
T Y Y X X

a a X Y Z dXdYdZ i x y z
T Y Y X X

−

−

= =
− −

= =
− −

∫ ∫ ∫

∫ ∫ ∫
  (43) 

where T  is the draft of the cross section and minX , maxX , minY , and maxY  are the minimum 

and maximum coordinates of the cross section. 

 

2.6 Solving the Coupled Equations of Motion 

The equation of motion in six degrees of freedom can be expressed as the second-
order differential equation 

 ( ) ext+ + + =M A B C F η η η  . (44) 

Once all forces acting on the ship are determined, the motion equation can be rewritten as  

 ( ) rest FK rad diff roll damp−+ = + + + +M A F F F F Fη  . (45) 

In order to solve this second order differential equation, the six equations are written as the 

twelve first order equations:  
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 , (46) 

which all iy  are then solved for numerically using a 4th order Runge-Kutta method. 

 

2.7 Validation of the Motion Code 

 Hydrodynamic coefficients were computed for a rectangular section with breadth 

of 0.4 m and draft of 0.2 m. The coefficients are plotted in Figure 3 and compared to data 

published from [18]. The coefficients 22a  and 33b  computed for the midship section of the 

S-175 container ship [14, 19] are shown in Figure 6 alongside results published in [20]. 

Figure 7 shows the total added mass in sway and damping coefficient in heave for the S-

175 with a forward speed of 10 knots. These computed hydrodynamic coefficients show 

good agreement with the published results. Although the sectional coefficients in Figure 6 

match very well, there is a small amount of error shown in the 3D coefficients of Figure 7. 
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Integration along the length of the ship in [20] is performed using Simpson’s rule [8] while 

this work’s computed results use a midpoint rule which could explain the small difference.  

 The viscous damping computation was validated against Ikeda’s Fortran code [21] 

using the S-175, and the results are shown in Figure 8. The dimensions of the S-175 are 

shown in Table 2, and the strip mesh is shown in Figure 5. Excellent agreement with the 

reference results is exhibited. The full nonlinear motion code was validated first using a 

simple box shaped ship excited by a 0.1 m amplitude wave with varying frequencies. The 

dimensions of the box ship are shown in Table 1. Headings of 0 degrees, 45 degrees, and 

90 degrees were simulated for zero forward speed and the results are compared to data 

from [6] as shown in Figure 9-10. Due to the symmetry of the box, the results for headings 

of 135 degrees and 180 degrees are identical to those for headings of 45 degrees and 0 

degrees respectively. For each frequency, the simulation was run until the ship reached 

steady state and then the peak amplitude of each motion mode was used to create the 

response functions. The heave motion is normalized by the wave amplitude while the roll 

and pitch motions are normalized by the wave slope defined as  

 kaκ =  . (47) 

The frequency response agrees very well with the published results for heave and pitch 

motions and a slight amount of error is seen in roll. For the data produced by this work the 

frictional component of the roll damping coefficient was empirically scaled by a value of 

300 in order to more closely match the reference data. The difference in response is likely 

due to the reference data using a different model for the roll damping coefficient, and 

insufficient information was given to determine the values used. Next the frequency 

response functions were simulated for the box with forward speed of 10 knots as shown in 
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Figure 12-15. Again the results show good agreement and are well within the range of other 

reported results from [6]. 

 Finally, the S-175 container ship with 0 degree heading was simulated with 1 m 

amplitude wave with a period of 10.5 s. The motion as a function of time for heave is 

shown in Figure 17 and the pitch motion is shown in Figure 18 with comparisons to data 

from [14]. For both of these plots an initial condition was used that was determined from 

a previous simulation once the ship reached steady state. Excellent agreement is shown 

with the results from VERES, however it can be noticed that the computed motion is 

slightly asymmetrical in comparison. This may be due to the reference data being computed 

using the linear equations of motion [14] whereas the full nonlinear motion equations were 

solved  in this work. Lastly the pitch motion is seen to be 180° out of phase with the 

reference data which may be a result of the wave propagating in the opposite direction. 

Due to some inconsistencies in the signs of several wave potential terms in [14] it is 

uncertain in which direction the wave propagates. 
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 Table 1. Box ship dimensions and parameters 
Length 40 m 

Breadth 8 m 

Height 4 m 

Draft 2 m 

Mass 656,000 kg 

Longitudinal center of gravity (LCG) 0 m  

VCG 2 m 

xxk   3.2 m 

yyk   10 m 

zzk   10 m 

 

 

Table 2. S-175 ship dimensions and parameters 
Length 175 m 

Breadth 25.4 m 

Draft 9.5 m 

Mass 2.46×107 kg 

Longitudinal center of gravity (LCG) 2.34 m (aft midship) 

VCG 9.52 m 

xxk   10.16 m 

yyk   44.16 m 

zzk   44.16 m 
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Figure 4. Normalized frequency dependent hydrodynamic coefficients of a rectangular 
section with breadth of 0.4 m and draft of 0.2 m. 

 

 

Figure 5. S-175 strip mesh 
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(a)      (b) 

Figure 6. S-175 container ship midship sectional (a) added mass in sway (b) damping 
coefficient in heave. 

 
 
 
 

 
(a)      (b) 

Figure 7. S-175 container ship (a) added mass in sway (b) damping coefficient in heave. 
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Figure 8. Non-dimensional frequency dependent viscous damping coefficient for S-175 
container ship at a roll angle of 10 degrees. 
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Figure 9. Frequency response amplitude of the box ship with 0 degree heading at zero 

speed. 

 
Figure 10. Frequency response amplitude of the box ship with 45 degree heading at zero 

speed. 
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Figure 11. Frequency response amplitude of the box ship with 90 degree heading at zero 

speed. 

 
Figure 12. Frequency response amplitude of the box ship with 0 degree heading at 10 

knots. 
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Figure 13. Frequency response amplitude of the box ship with 45 degree heading at 10 

knots. 

 
Figure 14. Frequency response amplitude of the box ship with 90 degree heading at 10 

knots. 
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Figure 15. Frequency response amplitude of the box ship with 135 degree heading at 10 

knots. 

 
Figure 16. Frequency response amplitude of the box ship with 180 degree heading at 10 

knots. 



34 
 

 

Figure 17. Heave motion time history for the S-175 compared with results published in 
[14]. The ship has zero forward speed and is excited by a 1 m head on wave. 

 

Figure 18. Pitch motion time history for the S-175 compared with results published in 
[14]. The ship has zero forward speed and is excited by a 1 m head on wave. 
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3. MAGNETIC FIELD MODELING 

A discussion of the magnetic field modeling requires more precise notation. 

Therefore, this chapter will use an arrow above a variable to distinguish that it is a vector 

in 3
 , while a matrix or vector used in a linear algebra operation will remain in bold. 

3.1 The Magnetostatic Volume Integral Equation 

Consider a magnetic material placed in a magnetostatic field produced by an 

external source. The material has inhomogeneous permeability tensor ( )rµ  . The presence 

of the material will alter the magnetic field in which the resulting total magnetic field H


 

may be expressed as [22] 

 s pH H H= +
  

  (48) 

where sH


 is the source field and pH


 is the perturbation of the field due to the magnetic 

material. In the absence of free electric current, a magnetic scalar potential pφ  for the 

perturbed field may be defined and (48) may be rewritten as 

 s pH H φ= − ∇
 

 . (49) 

The magnetic flux density is 

 0 0 0 0( ) s pB H M H Mµ µ µ φ µ= + = − ∇ +
    

  (50) 

where 0µ  is the permeability of free space. The magnetization vector M


 is defined by  

 ( ) ( )mM r r Hχ= ⋅
 

    (51) 
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where (r) (r)m rχ µ= − I   is the magnetic susceptibility. Taking the divergence of (50) 

results in 

 0 ( ) 0B H Mµ∇ ⋅ = ∇ ⋅ + =
  

 , (52) 

thus  

 2 *
p Mφ ρ∇ = − = ∇ ⋅



  (53) 

where *ρ  is the magnetic charge density. Poisson’s equation in (53) has the known solution  

 * *1 1( ) ( ) ( )
4 4p s

V S

r r dv r ds
R R

φ ρ ρ
π π

′ ′ ′ ′= +∫∫∫ ∫∫
    , (54) 

where R r r′= −
   and the magnetic surface charge density  

 * ˆs S
n Mρ = ⋅


  (55) 

is due to the magnetization vector being discontinuous on the boundary S . Plugging (53) 

and (55) into (54) results in  

 ( ) ( )( )
4 4p

V S

M r M rr dv dv
R R

φ
π π

′ ′ ′∇ ⋅ ′ ′= − +∫∫∫ ∫∫
 

 





 . (56) 

Using a vector identity the first term in (56) can be rewritten as 

 ( ) ( ) ( )
4 4 4V S V

M r M r M rdv ds dv
R R Rπ π π

′ ′ ′ ′∇ ⋅ ′ ′ ′= ⋅ + ∇ ⋅∫∫∫ ∫∫ ∫∫∫
  



  (57) 

in which (56) now becomes 



37 
 

 1( ) ( )
4p

V

r M r dv
R

φ
π

′ ′= −∇ ⋅ ∫∫∫


   . (58) 

Finally, combining (49), (51), and (58) gives the magnetostatic volume integral equation  

 1( ) ( ) ( ) ( , ) ( )s m
V

H r r M r G r r M r dvχ − ′ ′ ′= ⋅ − ⋅∫∫∫
  

        (59) 

where G


 is the dyadic Green’s function which satisfies 

 ( )( , ) ( )
4

M rG r r M r
r rπ

 ′
′ ′⋅ = ∇∇ ⋅  ′− 





 

  

 

 . (60) 

The implemented magnetostatic volume integral equation uses a locally corrected Nyström 

method to numerically solve (59) [22]. 

 

3.2 Nonlinear Transient Solver 

Using the locally corrected Nyström discretization, the magnetostatic volume 

integral equation (59) may be expressed in matrix form as [23] 

 S χ= −H Y M YM  .  (61) 

A nonlinear transient solver based on the differential susceptibility is implemented in order 

to implicitly handle hysteretic materials. The differential susceptibility dχ  satisfies  

 ( ) ( )( )
( ) ( )

d M r M rr
H r H r

δχ
δ

∂
= ≈

∂

 

 



 

 

 , (62) 

where δ  represents an approximation to the differentials. By denoting the change in a 

quantity from step 1k −  to k  to be  
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 1k k kδ −= −P P P  , (63) 

then (61) can be written as  

 , ,ds k k k kχδ δ δ= −H Y M Y M  . (64) 

In order to use the given transient solver, a model for the differential susceptibility 

must be known beforehand, whether analytic or computed within the simulation. For each 

step k  the solution to (64) is obtained as follows: 

1. For the initial step 0k = , 1 0− =M , 1 0− =H . The differential susceptibility is 

determined from the model with the given initial condition on M  and H  such that 

,0 1 1( , )d dχ χ − −= M H . 

2. The system matrix Y  is computed for the linear problem. 

3. For 0,...,k n=   

i. The material term 
dχY  is filled using ( ) 1, ( )d k rχ

−
 . 

ii. The solution for 1kδ +M  with excitation , 1s kδ +H  is found using (64) which 

is then used to update 1k +M  and 1k +H . 

iii. Using the solution to the current iteration, the differential susceptibility is 

updated for the next iteration such that ( ), 1 1 1,d k d k kχ χ+ + += M H . 

A very convenient aspect of this solver is that the system matrix which is computed initially 

for the linear problem only needs to be filled once. At each step in the nonlinear solver the 

material term is re-computed, so only the block-diagonal of the system matrix changes. 
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3.2.1 Magnetostrictive Material Model 

 As previously mentioned the transient solver is formulated to handle nonlinear 

hysteretic materials, but a suitable material model must be implemented. Commonly used 

models include the Jiles-Atherton model [24, 25], the Preisach model [26], and the 

Cooperative model [27]. For the simulations performed in this work, a magnetostrictive 

hysteresis model based on the cooperative model is used. The model was formulated based 

on the physics observed from experimental results and assuming that the magnetization 

could be formulated in terms of the cooperation of multiple physical phenomenon. Reverse 

magnetostriction effects, or magnetization induced by an applied stress, are incorporated 

by a superposition of irreversible 90-degree Brown domain walls and Bozorth stress which 

can be expressed as [28] 
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where  

 90
90
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2 2 2
ff + = =

+
  (66) 

represents the irreversible Brown stress, and  
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eσ σ σ=
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describes the changes in the domain structure due to stress where rσ  is the residual stress. 

M


 is the local magnetization vector, M∆


 is the change in M


 since the last stress reversal,

iX  is the initial stress, cH  is the coercive field, sM  is the saturation magnetization, 

2

1rev
s

M
M

χ
 

= −  
 



 is the isotropic polycrystalline texture, and 2( )den revχ χ=  is the 

denucleation factor. In this work material constants for high tensile steel were used as 

follows: 68iX = , 100MParσ = , 720A/mcH = , and 61.66 10  A/msM = × . 

 If the simulation includes stress, an additional stress update routine is called at the 

beginning of step 3 of the transient solver outlined in section 3.2, before the material term 

of the system matrix is filled. The procedure is as follows: 

1. The change in magnetization 1/2 ( , , )k k k kδ σ δσ+M M  due to stress is computed using 

the material model, where σ  is the total stress. 

2. The induced magnetization is updated such that 1/2 1/2k k kδ+ += +M M M . 

3. The change in the magnetic field is computed as ( ) 11/2 , 1/2k d k kδ χ δ
−+ +=H M . 

4. The magnetic field is updated such that 1/2 1/2k k kδ+ += +H H H . 

Note that the stress updates occur at intermediate time steps which are denoted by the 

superscript 1/ 2k + . When the field is subsequently updated after the stress, values at this 

intermediate step are now used instead of the previous step k . 
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3.3 Dynamic Stress Analysis with LS-DYNA 

LS-DYNA is a multi-physics simulation software package which can compute the 

stresses in the ship’s hull due to the wave pressure. Initially developed for highly nonlinear, 

transient dynamic finite element analysis using explicit time integration [7], the software 

now contains an implicit time integration scheme which is used in this work. At each time 

step the nonlinear problem is solved using the implicit integration scheme which allows 

for a larger time step to be used in the simulation. This is important as the size of the time 

step used in LS-DYNA is set by the ship motion simulation time-step. For the size of the 

problems in this project, it was observed that the actual simulation time using the nonlinear 

solution was comparable to using the linear solution.  

 Initially in the ship motion code described in Chapter 2, the linear hexahedral mesh 

is written to an LS-DYNA input file. At each subsequent time step the pressure on the face 

of each element is written to that same file. This includes only the restoring and the Froude-

Krylov pressures as they are computed for each face on the hull’s exterior at every time 

step. The radiation and diffraction forces are currently not included in the dynamic stress 

analysis since they are computed as net forces and moments acting on the entire body rather 

than a pressure acting on the face of each finite element. Although this approach will not 

capture the total stresses in the hull, the restoring and Froude-Krylov pressures were seen 

to be the dominant forces, so the introduced error is not expected to be large.  

 An example illustration of the effective stresses in the hull of the S-175 computed 

with LS-DYNA is shown in Figure 19. The Von Mises effective stress is the equivalent 

uniaxial stress that would have the equivalent distortion energy as the actual applied 

stresses [29]. In the LS-DYNA simulation a boundary condition is placed on each of the 
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nodes along the top edge in order to prevent rigid body motion. This however will add 

some error to the predicted stress in the hull. As a result, some stress can be seen along the 

top edge of the ship which is not a direct result of the fluid pressure as this area is above 

the water level. 

 

 

 

 

 

Figure 19. Example of the effective stress in the hull of the S-175 computed with LS-
DYNA 
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3.4 Results 

 Motion of the box ship described in Table 1 was simulated for ship headings of 0, 

45, and 90 degrees using a 10 cm wave with period of 7.5 s and results are plotted in Figures 

20-21. The wave induced pressure was then used to compute the hull stresses using LS-

DYNA as described in section 3.3. Finally a magnetic field excitation was applied in the 

positive x-direction of the global frame which was linearly ramped from 0 A/m to 20 A/m 

over 5 seconds, and then held constant for the remainder of the simulation. The scattered 

field was computed at discrete points along a line 2 m below the bottom of the ship at y = 

0 in the body-fixed frame. This was performed first without including the motion and hull 

stresses to get reference values at each point, and then repeated to include the motion and 

stress. Using the computed reference data, the relative change in the field due to motion 

and stress at each point was computed as 

 
( )

,
,

2

, , ,
max

i i ref
i rc

B B
B i x y z

−
= =

B
  (68) 

where B  is the magnetic flux density vector at each point.  

 The relative change in the magnetic field computed according to (68) for the box 

ship with 0 degree heading is shown in Figure 23 where several instances in time 

throughout the third wave period once the ship motion has reached steady state are plotted. 

In this configuration, the ship should look like a magnetic dipole with the bow being 

positively charged and the stern being negatively charged. This explains the antisymmetric 

nature of zB  as well as xB  being fairly constant through the mid-section of the ship before 

quickly reversing sign at both ends. The results for the ship with 45 degree heading are 

shown in Figure 24 and the case of a 90 degree heading is shown in Figure 25. As the ship 
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heading angle is increased, the port side will become more negatively charged, while the 

starboard side becomes more positively charged. The response of yB  in Figure 24 shows 

that the scattered field beneath the ship is starting to be directed from the starboard to port 

side. At a heading of 90 degrees the magnitude of yB  is even larger while xB  and zB  are 

negligible as expected. It should be noted that while large relative changes in xB  and zB  

are seen in Figure 25, these components are actually three orders of magnitude smaller than 

yB . All three of these cases show that the wave induced motion of the ship is periodic with 

the wave which results in the relative changes in the magnetic field also being periodic. 

Since the magnetic field varies periodically with the same period as the wave, only results 

for one wave period are presented.  

The magnetic field as a function of time at the point (0,0,-4m) for a 0 degree heading 

and 10 cm wave amplitude is shown in Figure 26. Each of the three components of the field 

is normalized by the maximum of that particular component. With this ship orientation, 

and no motion or induced stress, it is expected to see the scattered field purely in the 

negative x direction at this particular probe point. Due to integration tolerances the y 

component is observed to have some non-zero value, although the field in this direction is 

three orders of magnitude smaller than the x component. The periodic nature of this 

component is likely a result of reverse magnetostriction due to the stresses in the hull which 

are periodic once the ship reaches steady state. A much larger change is seen in the z 

component which is caused by the induced pitching motion of the ship thus the excitation 

field direction is time varying. The results for a 45 degree heading are shown in Figure 27 

where a small increase in the x and y components are noticed as time progresses. Close 
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inspection of Figure 21 shows a small amount of yaw motion which explains these results. 

Whereas the rudder of a real ship provides a counteracting force to maintain a constant 

heading, the motion code does not implement a maneuvering model or rudder forces which 

may be the cause of the additional yaw motion. Figure 28 shows the normalized field versus 

time for a 90 degree ship heading. As expected for this orientation, the y component is 

dominant and is three orders of magnitude larger than both the x and z components. 

The same procedure was repeated for the box ship with a much larger wave 

amplitude of 50 cm and the induced motion is also shown in Figures 20-21. The larger 

wave results in very similar ship motion with the magnitude of the response being scaled. 

As expected, the same scaling effect observed in the motion is also seen in the relative 

change in the magnetic field for the 0 degree heading and the 90 degree heading shown in 

Figure 29 and Figure 31, respectively. However, the 45 degree heading shown in Figure 

21 is seen to have a noticeable amount of motion in yaw. Once again, adding rudder forces 

and a maneuvering model to the motion code could drastically improve these results. Due 

to the yaw motion not being periodic with the wave period in this case, the relative changes 

in the magnetic field in Figure 30 are not periodic as previously observed in the other cases. 

 Next, the motion of the S-175 was simulated for headings of 0, 45, 90, 135, and 

180 degrees with a 10.5 second period wave and two amplitudes: 1 meter and 2 meters. 

The results are plotted in Figures 32-35. The roll motion for the 45, 90, and 135 degree 

headings never reached a steady-state periodic response. This could be caused by several 

issues. First, due to the previously discussed lack of rudder forces, some yaw motion is 

observed. A larger contributor may be that the empirical model for viscous roll damping 

was implemented without the bilge-keel factor which should contribute significantly to 
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stabilizing the roll motion. Finally, the mesh for the S-175 only includes the hull 1.5 m 

above the still water line which may introduce additional error for the results of the 2 m 

wave. 

 The relative changes in the magnetic field at discrete points along a line 9.5 m below 

the bottom of the S-175 at y = 0 m were computed according to (68). These computed 

changes in the field are shown for several instances in time for the third wave period in 

Figures 37-40 for the 1 m amplitude wave and in Figures 42-45 for the 2 m wave. For the 

ship headings of 0 and 180 degrees, the changes in the field are periodic as previously 

observed since the ship motion is also periodic. Again, a larger wave height induces more 

stress in the hull as well as a larger motion response, thus the relative changes in the 

magnetic field are similar but with a larger scale. In comparison to the plots for the box 

ship, it is observed that the field is no longer symmetric about the center line. Not only is 

the S-175 asymmetric from bow to stern, the longitudinal center of gravity which is at zero 

on the x-axis of all figures is 2.34 m aft of mid ship. Looking at the changes in the field for 

the ship with 45 degree heading, some symmetry is observed in comparison to the 135 

degree heading for the 1 m wave amplitude, however this does not occur for a 2 m wave 

due to the large roll motion that is developed. The x components of the field are 180 degrees 

out of phase with each other since the incident field has a component in the positive x 

direction for the 45 degree heading but has a component in the negative x direction for 135 

degrees. The same effect is observed between the 0 degree and 180 degree headings. Again 

it should be noted that while a relative change in xB  and zB  are observed for the 90 degree 

heading, both of these components were three orders of magnitude smaller than yB  as 

expected. 
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 Finally the box ship was simulated with a forward speed of 10 knots, a heading of 

0 degrees, and a 50 cm wave with 7.5 s wave period. The motion history of the ship in this 

case is shown in Figure 47. According to (34), the encounter period is 5.21 s and it is 

observed that the ship’s motion oscillates at this encounter period rather than the wave 

period. The relative changes in the magnetic field are shown in Figure 48 for several times 

within the third wave period while Figure 49 shows the same data but at several times 

within a single encounter period. When the ship had zero speed, the field is seen to be 

periodic with the wave period, however, the effect of forward speed is that the field 

oscillates at the encounter period. 
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Figure 20. Comparison of the motion of the box ship with 0 degree heading for two 
different wave amplitudes each with the same 7.5 s period. 
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Figure 21. Comparison of the motion of the box ship with 45 degree heading for two 
different wave amplitudes each with the same 7.5 s period. 
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Figure 22. Comparison of the motion of the box ship with 90 degree heading for two 
different wave amplitudes each with the same 7.5 s period. 
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(a)       (b) 

 
(c)      (d) 

 
(e) 

Figure 23. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.8 s (c) 18.6 s (d) 20.6 s (e) 22.4 s. The ship has a heading of 0 

degrees and is excited by a 10 cm wave with 7.5 s period.  
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 24. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.8 s (c) 18.6 s (d) 20.6 s (e) 22.4 s. The ship has a heading of 45 

degrees and is excited by a 10 cm wave with 7.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 25. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.8 s (c) 18.6 s (d) 20.6 s (e) 22.4 s. The ship has a heading of 90 

degrees and is excited by a 10 cm wave with 7.5 s period. 
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Figure 26. Normalized B-field of the box ship at the point (0, 0, -4 m). The ship has a 
heading of 0 degrees and is excited by a 10 cm amplitude wave with 7.5 s period. The x 

component is three orders of magnitude larger than the y component. 
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Figure 27. Normalized B-field of the box ship at the point (0, 0, -4 m). The ship has a 
heading of 45 degrees and is excited by a 10 cm amplitude wave with 7.5 s period. The x 

and y components are three orders of magnitude larger than the z component. 
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Figure 28 Normalized B-field of the box ship at the point (0, 0, -4 m). The ship has a 
heading of 90 degrees and is excited by a 10 cm amplitude wave with 7.5 s period. The y 

component is three orders of magnitude larger than the x and z components. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 29. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.8 s (c) 18.6 s (d) 20.6 s (e) 22.4 s. The ship has a heading of 0 

degrees and is excited by a 50 cm wave with 7.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 30. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.8 s (c) 18.6 s (d) 20.6 s (e) 22.4 s. The ship has a heading of 45 

degrees and is excited by a 50 cm wave with 7.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 31. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.8 s (c) 18.6 s (d) 20.6 s (e) 22.4 s. The ship has a heading of 90 

degrees and is excited by a 50 cm wave with 7.5 s period. 
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Figure 32. Comparison of the motion of the S-175 with 0 degree heading for two 
different wave amplitudes each with the same 10.5 s period. 
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Figure 33. Comparison of the motion of the S-175 with 45 degree heading for two 
different wave amplitudes each with the same 10.5 s period. 
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Figure 34. Comparison of the motion of the S-175 with 90 degree heading for two 
different wave amplitudes each with the same 10.5 s period. 
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Figure 35. Comparison of the motion of the S-175 with 135 degree heading for two 
different wave amplitudes each with the same 10.5 s period. 
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Figure 36. Comparison of the motion of the S-175 with 180 degree heading for two 
different wave amplitudes each with the same 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 37. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 0 

degrees and is excited by a 1 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 38. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 45 

degrees and is excited by a 1 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 39. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 90 

degrees and is excited by a 1 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 40. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 135 

degrees and is excited by a 1 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 41. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 180 

degrees and is excited by a 1 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 42. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 0 

degrees and is excited by a 2 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 43. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 45 

degrees and is excited by a 2 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 44. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 90 

degrees and is excited by a 2 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 45. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 135 

degrees and is excited by a 2 m wave with 10.5 s period. 
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(a)       (b) 

  
(c)      (d) 

 
(e) 

Figure 46. Relative change in the magnetic field along a line 9.5 m below the S-175 at y 
= 0 at (a) 21 s (b) 23.6 s (c) 26.2 s (d) 28.8 s (e) 31.4 s. The ship has a heading of 180 

degrees and is excited by a 2 m wave with 10.5 s period. 
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Figure 47. Time history of the box ship motion with 0 degree heading and forward speed 
of 10 knots. The ship is excited by a 10 cm amplitude wave with 7.5 s period. 
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(a)       (b) 

   
(c)      (d) 

 

(e) 

Figure 48. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.8 s (c) 18.6 s (d) 20.6 s (e) 22.4 s. The ship has forward speed of 10 

knots, a heading of 0 degrees, and is excited by a 10 cm wave with 7.5 s period. 
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(a)       (b) 

   
(c)      (d) 

 

(e) 

Figure 49. Relative change in the magnetic field along a line 2 m below the box ship at y 
= 0 at (a) 15 s (b) 16.2 s (c) 17.6 s (d) 18.8 s (e) 20.2 s. The ship has forward speed of 10 

knots, a heading of 0 degrees, and is excited by a 10 cm wave with 7.5 s period. 

  



78 
 

4. CONCLUSIONS 

In this thesis a quasi-strip theory method for simulating the nonlinear wave induced 

motion of a ship was developed and implemented. The impulse response method which 

was used allowed for the hydrodynamic coefficients to be computed by straightforward 

frequency-domain methods while the nonlinear equations of motion were solved in the 

time domain. A box shaped ship and the S-175 container ship were used to validate the 

code with other published results. The wave induced pressure on the face of each finite 

element is used by LS-DYNA to compute the stresses in the hull. Finally the motion and 

induced stresses are input to a magnetostatic volume integral equation code to compute the 

magnetic field. The changes in the magnetic field due to the wave induced motion and hull 

stresses is presented for the box ship and S-175 for multiple ship headings and wave 

amplitudes. At this time, no other results for the magnetic field of ship like structure under 

motion and stress are known to have been published for comparison.  

 The current method for simulating ship motion has several limitations. Strip theory 

requires a large length to breadth ratio which may limit the types of structures that may be 

analyzed. Only the restoring and Froude-Krylov forces are considered in computing the 

stresses in the hull as the strip method has not been derived for use with finite elements. 

Other more computationally complex techniques such as a panel method may also be 

implemented in the future which could allow all forces to be included in the stress analysis. 

Computation of rudder forces and a maneuvering model are not currently implemented 

which should improve the stability of the ship motion for oblique angles of incidence. 

Additionally, it should be fairly straightforward to expand the capabilities of the current 
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code to include multiple wave amplitudes and headings either by superposition, or by 

defining the wave in terms of a spectral density function as proposed in [17]. 

The results of this work have shown the ability of the magnetostatic volume integral 

equation to compute the magnetic field around a ferromagnetic material under motion and 

non-uniform stress, however, the magnetostrictive material model is still largely in 

development. The current model is only valid up to around 50% of saturation. More 

importantly, the results of this work have shown that the stress becomes periodic at steady 

state motion where effects such as creeping, which are currently not included, should 

provide an increased accuracy in results. Based on the results of the ship motion and wave 

induced pressure it may be possible to develop statistical models of the stresses in the hull 

of a ship which could simplify the simulation in the future. 
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APPENDIX A: VISCOUS DAMPING USING IKEDA’S METHOD 

As previously stated, the viscous roll damping can be expressed by 

 44 F W E BK LB B B B B B= + + + +  , (69) 

where each term is computed using Ikeda’s prediction method [30, 31]. The normalized 

roll damping coefficient is defined as  

 44
44 2

ˆ
2

B BB
B gρ

=
∇

 , (70) 

and the normalized circular wave frequency is defined as  

 ˆ
2
B
g

ω ω=  , (71) 

where ρ  is the density of water, B  is the ship breadth, ∇  is the volume of water displaced 

by the ship, and g  is the acceleration due to gravity. Note that 44B  as expressed in (36) 

and (69) is not normalized. Only the wave and eddy terms are computed as normalized 

quantities, therefore they must be un-normalized before used in the motion equations. 

Frictional Component ( FB ) 

The frictional damping component at zero speed is  

 3
0

4
3F f f a fB s r cρ ϕ
π

=   (72) 

where fs is the wetted surface area, fr  is the average radius from the axis of rolling, aϕ  is 

the roll angle in radians, and fc  is the frictional coefficient. These parameters are given by 
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2 23.22

1.328 f a
f

r
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Tv
ϕ

=  , (73) 

 ( )( )0.887 0.145 1.7 2b b
f

C d C B OG
r

π
+ + −

=  , (74) 

and 

 ( )1.75f pp bs L d C B= +  , (75) 

where T  is the roll period, v  is the kinematic viscosity of water, bC  is the block coefficient 

of the ship, d  is the ship draft, and OG  is the distance from the calm water surface to the 

axis of rolling with positive direction being downward. The kinematic viscosity of sea 

water in 2m s  is given by [11] 

 ( ) ( )( )2610 1.063 0.1039 1000 0.02602 1000v ρ ρ−= + − + −  . (76) 

It is important to note that this model for the frictional component only includes laminar 

flow, thus the computed magnitude will be negligible for a full-size ship. Adding a 

correction factor to (72) which includes the turbulent flow for a full-size ship results in 

 
0.3862 2

2
0 0.787 1 0.00814 e a

F f f
rB s r ϕ ωρ ων

ν

   = +  
   

 . (77) 

For a ship moving with forward speed U   

 0 1 4.1F F
pp

UB B
Lω

 
= +  

 
 . (78) 
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Lift Component ( LB ) 

In the case of non-zero forward speed, the lift component is  

 
2

30.075 1 2.8 4.667L pp N
OG OGB UL d k
d d

ρ
  = − +  

   
 , (79) 

where  

 2 4.1 0.045N
pp pp

d Bk
L L

π κ
 

= + −  
 

 . (80) 

Also 

 
0.0 0.92
0.1 0.92 0.97
0.3 0.97 0.99

M
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M

for C
for C
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κ
κ
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= ≤
= < ≤
= < ≤

 , (81) 

where mC  is the midship coefficient. 

 

Wave Component ( WB ) 

The wave component is given by  
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2 5 31
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 − −
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 , (82) 

where  
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and  

 

( )2
1 11 2 12 2 13 1

3 2
2 2 2 2

6 5 3 2
3 31 2 32 2 33 2 35 2 36 2 37 3
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= −

 . (84) 

Detailed computation of the unknown coefficients in (84) can be found in [21]. 

 

Eddy Component ( EB ) 

The eddy component is given by 

 0 3
2 1

ˆ4ˆ
3

a
E RB C

x x
ωϕ

π
=  , (85) 

where 
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( )
( )( )

( )( ) ( )
( )

( )

3
1 2 3

3 4 3
2 1 2 2

2
2 2

2
2 2 4

1 1 2 4

2

3
2 4 4 2

exp

0.0182 0.0155 1.8 79.414 215.695

215.883 93.894 14.848

0.9717 1.55 0.723
0.2 1.6 3.98 5.1525

0.04567 0.9408

0.25 0.95 219.2 4

EB
R E E E

E

E

E

C A B B x

A x x x x

x x

x x x
B x x x

x

B x x x

= +

= − + − − +

− + −

 − +
 = − + −
 + + 

= + − +

( )

2
2 2

3 1 2 1

43.7 283.3 59.6

46.5 15 11.2 28.6E

x x

B x x x

− +

= − + −

 . (86) 

and the coefficients 1x , 2x , and 3x  are given by (83) and  

 4
OGx
d

=  . (87) 

If the ship has forward speed U , the eddy component decreases according to  

 
2

E 0 2

(0.04 / )ˆ ˆ
1 (0.04 / )

pp
E

pp

L U
B B

L U
ω

ω
 

=  
+  

 . (88) 
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APPENDIX B: CONFORMAL MAPPING 

Ursell derived an analytic solution for the potential coefficients of a circular 

cylinder [12]. The work of several others including Tasai [13] extended this solution by 

conformally mapping arbitrary ship sections to a unit semi-circle. The general 

transformation is given by 

 { }(2 1)
2 1

n
s nx iy M a ζ − −

−+ = ∑  , (89) 

where the left hand side of the equation is a point in the plane of the arbitrary ship section, 

iie eα θζ −=  is the plane of the unit circle, sM  is the scale factor, and 2 1na −  is a set of 

conformal mapping coefficients ( 1,..., )n N=  where N  is the number of mapping 

parameters, and 1 1a− = . 

The unit circle is obtained by setting 0α = , thus the relationship between the two 

coordinate systems becomes 

 
( )( ){ }

( )( ){ }

0 2 1
0

0 2 1
0

( 1) sin 2 1

( 1) cos 2 1

N
n

s n
n

N
n

s n
n

x M a n

y M a n

θ

θ

−
=

−
=

= − − −

= + − −

∑

∑
  (90) 

where 

 
2 10

2
s

s N
nn

B
M

a −=

=
∑

  (91) 

and sB  is the sectional breadth. It is important to note that the z -axis in Tasai’s coordinate 

system is positive facing downward. Using 2N =  mapping coefficients will result in the 
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so called Lewis transformation, while setting 10N =  will result in the Close-Fit conformal 

mapping. This work computes potential coefficients using Close-Fit conformal mapping 

beginning with Lewis coefficients as a first guess. The other mapping coefficients are 

computed iteratively until a specified error tolerance is achieved. 

From (90), the Lewis transformation is 

 
( )( )
( )( )

0 1 3

0 1 3

1 sin sin 3

1 cos cos3
s

s

x M a a

y M a a

θ θ

θ θ

= + −

= − +
 , (92) 

and the scale factor becomes 

 
1 3 1 3

2
1 1

s
s

B DM
a a a a

= =
+ + − +

  (93) 

where sD  is the sectional draft. The sectional half breadth to draft ratio is 

 1 3
0

1 3

12
1

s

s

B
a aH

D a a
+ +

= =
− +

 , (94) 

and the sectional area coefficient is 

 
( )

2 2
1 3

2 2
3 1

1 3
4 1

s
s

s s

A a a
B D a a

πσ − −
= =

+ −
  (95) 

where sA  is the area of the cross section. Solving (94) for 1a  and substituting into (95) 

results in the quadratic equation 

 2
1 3 2 3 3 0c a c a c+ + =   (96) 

with 
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2

0
1

0

2 1

3 1

4 4 13 1
1

2 6
4

s s Hc
H

c c
c c

σ σ
π π

 − = + + −    +  
= −
= −

 . (97) 

The valid solutions for 3a  and 1a  in (96) are 

 
( )

1 1
3

1

0
1 3

0

3 9 2

1 1
1

c c
a

c
Ha a
H

− + + −
=

−
= +

+

 . (98) 

All other mapping coefficients 2 1 ( 3,...,10)na N− =  are initially set to zero. With the 

initial sM  and 2 1na −  values, the iterative procedure begins by determining the angle iθ  

such that each point of the approximated section 0 0( , )i ix y  lies on the normal to the actual 

contour ( , )i ix y  which results in [32]  

 
2 1

0

2 1
0

cos cos ( 1) sin((2 1) )

sin sin ( 1) sin((2 1) ) 0

N
n

i i s i n
n

N
n

y i s i n
n

x M a n

x M a n

φ φ θ

φ φ θ

−
=

−
=

+ − −

− + − − =

∑

∑
  (99) 

where  

 

1 1
2 2

1 1 1 1

1 1
2 2

1 1 1 1

cos
( ) ( )

sin
( ) ( )

i i
i

i i i i

i i
i

i i i i

x x
x x y y

y y
x x y y

φ

φ

+ −

+ − + −

+ −

+ − + −

−
=

− + −

− +
=

− + −

 . (100) 
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This work uses Brent’s method [33] to find the value of iθ  in (99), but any other 

root finding algorithm may be used. Once the value of iθ  is determined, the square of the 

deviation from the point on the real contour is given by  

 2 2
0 0( ) ( )i i i i ie x x y y= − + −  . (101) 

After determining iθ  for all 1I +  points, the sum of squares of deviation is 

 
0

I

i
i

E e
=

= ∑  . (102) 

Substituting (90) and (101) into (102) results in  

 

2

2 1
0

2
0

2 1
0

( 1) sin((2 1) )

( 1) cos((2 1) )

N
n

i s n iI
n

Ni n
i s n i

n

x M a n
E

y M a n

θ

θ

−
=

=

−
=

  + + − −  
   =  

  + + − −    

∑
∑

∑
  (103) 

for which new values of 2 1[ ]s nM a −  must be determined to minimize E . This implies 

 
2 1

0 0,...
[ ]s j

E j N
M a −

∂
= =

∂
  (104) 

which results in 1N +  equations 

 

{ }

2 1
0

0
2 1

0

0

sin((2 1) ) ( 1) sin((2 1) )
0,...

cos((2 1) ) ( 1) cos((2 1) )

sin((2 1) ) cos((2 1) )

N
n

i s n iI
n

N
i n

i s n i
n

I

i i i i
i

j M a n
j N

j M a n

x j y j

θ θ

θ θ

θ θ

−
=

=
−

=

=

 − − − −   = 
 − − − −
  

= − − −

∑
∑

∑

∑

 . (105) 
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Equation (105) is rewritten as 

 
{ }

2 1
0 0

0

( 1) cos((2 2 ) )

sin((2 1) ) cos((2 1) ) 0,...

N I
n

s n i
n i

I

i i i i
i

M a j n

x j y j j N

θ

θ θ

−
= =

=

 − − = 
 

− − + − =

∑ ∑

∑
 . (106) 

To achieve the exact breadth and draft of the original contour, the last two equations are 

replaced such that (106) becomes 

 
{ }

2 1
0 0

0

2 1
0

2 1
0

( 1) cos((2 2 ) )

sin((2 1) ) cos((2 1) ) 0,... 2

12

( 1)

N I
n

s n i
n i

I

i i i i
i

N
s

s n
n
N

n
s n s

n

M a j n

x j y j j N

BM a j N

M a D j N

θ

θ θ

−
= =

=

−
=

−
=

 − − = 
 

− − + − = −

= = −

− = =

∑ ∑

∑

∑

∑

 . (107) 

The system of equations in (107) is solved numerically to obtain new values of 

2 1s nM a −  which are then be used to compute new values of iθ . This iterative procedure is 

repeated until a specified error tolerance is achieved. It is suggested [8] that the difference 

in error calculated by (103) between subsequent iterations be less than 

 ( )2
2 2

max max( 1) 0.00005E I b d∆ = + +  , (108) 

where maxb  is the maximum half breadth of the cross section and maxd  is the maximum 

draft of the cross section. 
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APPENDIX C COMPUTING HYDRODYNAMIC COEFFICIENTS 

 The 2D potential coefficients are computed in heave, sway, and roll using close-fit 

conformal mapping and the potential theory of Tasai. For each motion mode it is assumed 

that an infinitely long circular cylinder is forced to oscillate with frequency ω . This forced 

harmonic motion will produce a system of standing waves which will be denoted by the 

subscript A , and a set of travelling waves which will be denoted by the subscript B . The 

process of determining the hydrodynamic coefficients involves deriving a set of velocity 

potential and stream functions that satisfies Laplace’s equation and the boundary condition 

on the surface of the cylinder. This section very briefly describes the computation of the 

added mass and damping coefficients. A detailed derivation of these coefficients can be 

found in [8]. 

 

Heave Coefficients 

To calculate the heave coefficients 33a  and 33b  in (19) and (20), it is necessary to 

determine the values of 0A , 0B , 0M , and 0N . It can be shown that the stream function 

which satisfies the boundary condition on the surface of the cylinder is 

 0
0 ( ) ( ) ( )

2
by h C tθ θΨ = − +  . (109) 

Here, 0 2 1
0

N

s n
n

b M a −
=

= ∑  is the sectional breadth, ( ) 0C t =  due to the symmetry of the fluid 

about the y  axis, and  
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 { }0
2 1

00

2 1) ( 1) sin((2 1) )
N

n
n

na

xh a n
b

θ θ
σ −

=

( = = − − −∑   (110) 

where 2 1
0

N

a n
n

aσ −
=

= ∑  is the sectional area coefficient. 

The set of velocity potential functions for the standing wave that satisfies Laplace’s 

equation, the symmetric motion of the fluid, and the free surface condition is given by  

 2 2 2 2
1 1
{ ( , ) cos( )} { ( , )sin( )}a

A m A m m A m
m m

g P t Q tη φ α θ ω φ α θ ω
πω

∞ ∞

= =

 Φ = + 
 
∑ ∑   (111) 

where 

 

2
2

(2 2 1)
2 1

0

( , ) cos(2 )
2 1( 1) cos((2 2 1) )

2 2 1

m
A m

N
n m nb

n
na

e m
n a e m n

m n

α

α

φ α θ θ
ξ θ
σ

−

− + −
−

=

=

− − − + − + − 
∑

   (112) 

in which 
2

0

2b
b
g

ωξ =  is the non-dimensional square frequency. 

The set of conjugate stream functions for the standing wave is given by  

 2 2 2 2
1 1
{ ( , ) cos( )} { ( , )sin( )}a

A m A m m A m
m m

g P t Q tη ψ α θ ω ψ α θ ω
πω

∞ ∞

= =

 Ψ = + 
 
∑ ∑   (113) 

where 

 

2
2

(2 2 1)
2 1

0

( , ) sin(2 )
2 1( 1) sin((2 2 1) )

2 2 1

m
A m

N
n m nb

n
na

e m
n a e m n

m n

α

α

ψ α θ θ
ξ θ
σ

−

− + −
−

=

=

− − − + − + − 
∑

 .  (114) 

The velocity potential for the travelling wave is given by  
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 { }( , ) cos( ) ( , )sin( )a
B Bc Bs

g x y t x y tη φ ω φ ω
πω

Φ = +   (115) 

where  

 cos( )y
Bc e xνφ π ν−= +  , (116) 

and 

 2 2

sin( ) cos( )sin( ) k xy
Bs

o

ky k kye x e dk
k

ν νφ π ν
ν

∞
−− −

= + +
+∫  . (117) 

in which 
2

g
ων =  is the wave number in deep water. The conjugate stream function is given 

by  

 { }( , ) cos( ) ( , )sin( )a
B Bc Bs

g x y t x y tη ψ ω ψ ω
πω

Ψ = +   (118) 

where 

 sin( )y
Bc e xνψ π ν−= +  , (119) 

and 

 2 2

cos( ) sin( )cos( ) k xy
Bs

o

ky k kye x e dk
k

ν νψ π ν
ν

∞
−− +

= − +
+∫  . (120) 

Convergence rate of the integrals in (117) and (120) are very slow, so they are replaced by 

a power series expansion [34] such that 
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where  
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=  

 

+
=

⋅

∑

∑
 . (122) 

Here,  γ  is Euler’s constant. While these power series expansions converge much faster 

than the numeric integration, the summation over n  must be truncated at a certain value. 

It is suggested in [8] to use the number of mapping coefficients such that 1,...,n N= . 

The total velocity potential and stream function are now 

 A B

A B

Φ = Φ + Φ
Ψ = Ψ + Ψ

  (123) 

which after a change of parameters in (115) and (118) becomes 
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 . (124) 

By setting 0α =  in (124), which corresponds to the surface of the cylinder, the stream 

function is now equal to (109) such that 
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where 
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Therefore, 
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  . (127) 

The right hand side of (127) can be rewritten as 
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  (128) 

where 
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b
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b
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=

=
 . (129) 

This results in the two sets of equations 
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By setting 2θ π=  the coefficients 0A  and 0B  are obtained as 
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Substituting (131) into (130) yields two equations for each angle θ  that can be solved for 

the unknown parameters 2mP  and 2mQ   

 
0 0 2 2

1

0 0 2 2
1

( ) ( ) ( 2) ( )

( ) ( ) ( 2) ( )

B c B c m m
m

B s B s m m
m

h f P

h f Q

ψ θ θ ψ π θ

ψ θ θ ψ π θ

∞

=

∞

=

− =

− =

∑

∑
  (132) 

where 
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 2 02 02( ) ( ) ( ) ( 2)m A m A mf hθ ψ θ θ ψ π= − +  . (133) 

By multiplying both sides by θ∆  the summation over θ  can be replaced by integration 

such that 
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∑ ∫ ∫  . (134) 

To solve for 2mP  and 2mQ  in (134) it is required that M N≥  where 10N =  for a close-fit 

mapped section. Using the solutions for 2mP  and 2mQ , the coefficients 0A  and 0B  can now 

be obtained by (131), and the velocity potential on the surface of the cylinder becomes 
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The hydrodynamic pressure on the surface of the cylinder is obtained by the 

linearized Bernoulli equation as 
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,  (136) 

and the two dimensional vertical heave force acting on the cylinder is 
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Equation (137) can be rewritten as 
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and 
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Sway Coefficients 

To calculate the sway coefficients 22a  and 22b  in (19) and (20), it is necessary to 

determine the values of 0M , 0N , 0P  and 0Q . Following the same procedure used in the 

heave coefficients to define a set of velocity potential and stream functions results in 
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 cos( )y
Bc e xνψ π ν−= +  , (143) 
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∞
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 sin( )y
Bcj e xνφ π ν−= −  , (145) 
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Here, 
2

g
ων =  is the wave number in deep water and  

 
1 : 0
1 : 0

j for x
j for x

= + ≥
= − <

 . (147) 

The terms 2mP  and 2mQ  are determined according to  
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Finally 0M  and 0N  are computed as 
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and 
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Roll Coefficients 

To calculate the roll coefficients 44a  and 44b  in (19) and (20) it is necessary to 

determine the values of 0P , 0Q , RX , and RY . Following the same procedure used in the 

heave coefficients to define a set of velocity potential and stream functions results in 
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Here, 
2

g
ων =  is the wave number in deep water and  
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 . (159) 

The 2mP  and 2mQ  terms are calculated as  
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Finally RX  and RY  are computed as 
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and 



102 
 

 

{ }
2

0 2 1 2 12
0 00

2 2 1 2 12 2 2
1 0 0

2

2 1 2 1
3

1 ( ) ( 1) (2 1) sin((2 2 ) )
2

1 (2 1)(2 2 )( 1)
2 (2 1) (2 2 )

( 1)

( 2 2 2 1)(2 1)
2 28

N N
n i

R B s n i
n ia

M N N
m

m n i
m n ia

m
m

n ib

a

Y i a a n i d

i n iQ a a
m n i

Q

m n i i a a a
n i

π

φ θ θ θ
σ

σ

πξ
σ

+
− −

= =

− −
= = =

− − −

= − − −

  − −
+ −  + − −  

− ⋅

− + − − −
− −

∑∑∫

∑ ∑∑

2 2 2 1
0

1

2 1 2 1 2 2 2 1
0

( 2 2 2 1)(2 1)
2 2

N n m
M

m n i
n m i

m N m N

n i m n i
n i m n

m n i i a a a
n i

−

+ − −
= =

= −

− − − − + −
= = +

 
 
           − − + − −  +    −   

∑∑∑

∑ ∑

 . (164) 

 

Coefficients of Roll Motion Coupled into Sway Motion 

To calculate the coefficients 24a  and 24b  in (19) and (20), it is necessary to 

determine the values of 0M , 0N , 0P , and 0Q . The coefficients 0P  and 0Q  have already 

been determined by (160) in the procedure for finding the roll motion coefficients. The 

terms 0M  and 0N  are computed by (151) and (152) in the sway coefficient routine using 

the values for 2mP  and 2mQ  which were computed from (160). 
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APPENDIX: D HYDRODYNAMIC COEFFICIENTS OF A SHIP WITH 

FORWARD SPEED 

The hydrodynamic coefficients of a ship with forward speed are given by [17] 
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and 
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where subscript a  and superscript A  refer to the aftmost section, x  is the x-coordinate of 

the section in the body-fixed system, U  is the ship’s forward speed in m s , and eω  is the 

encounter frequency. 
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