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ABSTRACT OF DISSERTATION 

SLEEP ALTERATIONS IN MOUSE GENETIC MODELS OF HUMAN DISEASE 

 

Sleep is a process essential for the well-being of an animal and in humans as much 

as one-third of our life is spent in sleep. Yet, the biological need for sleep still remains a 

conundrum. Our knowledge of the genes influencing sleep and the mechanisms regulating 

the process can be advanced with the utilization of genetic and genomic approaches which, 

in turn, may inform us about the functions of sleep as well. With this goal, I have 

investigated and examined sleep-wake phenotypes for a variety of transgenic and knock 

out animals.  

 

For the first part of my research (Chapter 3), I examined mouse models of 

Alzheimer’s disease, and a combined model of Alzheimer’s disease (AD) and Diabetes. 

Sleep disturbances in case of AD are evident long before the onset of cognitive decline. I 

investigated sleep-wake alterations in 5XFAD, a double transgenic mouse model of AD 

which displays an early onset of AD pathology and cognitive impairments. We found that 

these mice have shorter bout lengths under baseline conditions. This was true for both 

sexes, however, the effect was more prominent in females. Additionally, females also had 

a shorter duration of sleep compared to control animals. These overall bout length 

reductions are indicative of increased sleep fragmentation similar to the ones seen in human 

AD patients.  

 

Inadequate sleep is associated with increased risk for metabolic disorders such as 

diabetes besides neurodegenerative diseases such as AD. There is also growing evidence 

that type 2 diabetes mellitus (T2DM) poses an increased risk of AD. To understand how 

the two conditions interact, we studied a combined mouse model of AD and diabetes 

(db/AD) which was generated by crossing of db/db (diabetic obese mice) and APP-PS1 

(knock-in AD mouse model). The resulting mice showed profound cerebrovascular as well 

as AD pathology. Both females and males, diabetic AD animals had longer sleep duration 

compared to non-diabetic AD animals. They also exhibited attenuated sleep-wake rhythms. 

Females were found to have shorter sleep bouts than males. In addition, significant two 

way interactions were found for the age and db/AD genotype. Our findings suggest that db 

genotype and not cerebrovascular pathologies affect sleep in our mouse model. For the last 

part of my research, we analyzed over 300 single gene knock out mouse lines generated on 

a C57BL6/NJ background, monitored at The Jackson Laboratory. With this unbiased 

approach where the knockouts were chosen at random, we identified 55 novel genes 

affecting various sleep traits, utilizing a variety of statistical approaches. Sex differences 

were found for a number of knockouts as well as controls. Control females were found to 

have shorter bout lengths and less sleep duration compared to male littermates.  

 

Keywords: amyloid beta, sleep fragmentation, diabetes, phenotyping, piezoelectric 

system, knockout mice 
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Chapter 1 Introduction 

Sleep is a complex behavior regulated by circadian and homeostatic processes. The 

circadian process gives time context to most physiological processes including sleep by 

entraining internal rhythms to the daily photoperiod. On the other hand, the homeostatic 

process works like an hour glass and tracks sleep need. In the absence of sleep, sleep need 

accumulates and in the presence of sleep, it dissipates (Borbely 1982, Flores, Flores et al. 

2007, Franken, Thomason et al. 2007, Maret, Dorsaz et al. 2007, O'Hara, Ding et al. 2007, 

Wisor, Striz et al. 2007, Andretic, Franken et al. 2008). Though the two processes develop 

independently of each other, their interaction determines the sleep and wake parameters of 

timing, duration, and quality (O'Hara, Jiang et al. 2017). 

Many genes related to the circadian system have already been well characterized, 

however much remains unknown about the homeostatic process of sleep and its general 

functions (Flores, Flores et al. 2007, Franken, Thomason et al. 2007, Maret, Dorsaz et al. 

2007, O'Hara, Ding et al. 2007, Wisor, Striz et al. 2007). Early evidence of genetic 

regulation of sleep comes from twin studies which showed that monozygotic twins have 

more similarity in their brain architecture and higher concordance for EEG spectrum traits 

than dizygotic twins (Stassen, Lykken et al. 1988, Ambrosius, Lietzenmaier et al. 2008, De 

Gennaro, Marzano et al. 2008). Further, it was found that for many EEG traits more than 

80% of the phenotypic variance could be attributed to genetic factors (i.e. 80% heritability).  

Sleep disturbances and disorders are common in today’s society. An estimated 30 

to 40% of adults show signs of insomnia and nearly 5 to 15% have problems with excessive 

daytime sleepiness (Bamne, Mansour et al. 2010). Inadequate sleep results in cognitive 

deficits which include increased reaction time, and impaired reasoning and decision 

making. Such deficits are a serious cause of concern in operational set-ups where they 

elevate risks of accidents and chances of making fatal errors (Killgore, Rupp et al. 2008), 

including medical errors (Ker, Edwards et al. 2010, Mongrain, Hernandez et al. 2010, 

Rillich, Schildberger et al. 2011, Bertram and Rook 2012, Callander, Bolton et al. 2012, 

Reichert and Gerhardt 2013). Apart from day to day risk, there is growing evidence that 

sleep disturbances are also a risk factor for disorders such as neurodegenerative diseases 
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including Alzheimer’s and Parkinson’s disease, hypertension, obesity, depression, 

diabetes, heart attack and the metabolic syndrome (Bamne, Mansour et al. 2010, Bertram, 

Rook et al. 2011, Pack and Pien 2011). Efforts aimed at improving sleep quality and 

treatment of sleep disorders are limited by our rudimentary knowledge of sleep functions 

and the mechanisms that regulate these functions. Identification of the genetic influences 

and elucidation of underlying mechanisms would therefore be critical in developing novel 

drugs targeting these regulators or other molecules that influence sleep.  

One approach to broaden our understanding of sleep regulation is by use of genetic 

resources such as transgenic and mutant animals. Given that sleep studies in humans tend 

to be difficult and expensive, it calls for generating animal models for human diseases that 

recapitulates sleep alterations seen in human conditions. As mentioned earlier, sleep 

disturbances are often seen in many neurodegenerative diseases including AD. AD is the 

most common form of dementia and associated sleep perturbations such as increased 

daytime sleepiness, fragmented sleep is the single biggest cause for institutionalization of 

patients, as middle of the night wanderings put both AD sufferer and caregivers at increased 

risk (Pollak and Perlick 1991, Vitiello, Poceta et al. 1991).  

AD pathology begins at least 10-15 years before clinical onset of the disease (Kang, 

Lim et al. 2009, Potvin, Lorrain et al. 2012, Sterniczuk, Theou et al. 2013, Hahn, Wang et 

al. 2014). Drug regiments successful in animal models have not offered any symptomatic 

relief or delay in progression in the case of human clinical trials, which calls for a different 

approach towards the treatment and mechanistic dissection of AD. It is proposed that 

therapeutic interventions may prove more successful if targeted at preclinical stages; before 

pathological changes become irreversible or too extensive to repair. This calls for potential 

biomarkers or behaviors that could identify the preclinical pathologies and provide 

alternative drug targets. Improving sleep and wake quality is an exciting potential target 

not only to improve life quality, but may even directly impact disease progression. Sleep 

alterations precede cognitive impairments and begin in parallel with accumulation of Aβ 

plaques (Anafi, Pellegrino et al. 2013, Aoyama and Nakaki 2013, Dyakonova and 

Krushinsky 2013, Fitzsimmons and Bertram 2013, Ju, McLeland et al. 2013, Malkki 2013, 

Möller-Levet, Archer et al. 2013, Simon, Greenaway et al. 2013, Spira, Gamaldo et al. 

2013, Stevenson and Schildberger 2013, Vagelatos and Eslick 2013, Yoo, Mohawk et al. 
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2013, Ju, Lucey et al. 2014). Also, sleep is shown to have a role in clearance of toxic 

metabolites like Aβ resulting from neuronal activity (Xie, Kang et al. 2013). Recent 

developments suggest that a positive feedback loop might exist between sleep perturbations 

and AD pathology, such that each factor might amplify the other, driving the progression 

of disease. Therefore, for my first project, detailed in chapter two, I evaluated sleep-wake 

alterations in 5XFAD, a mouse model for AD (Oakley, Cole et al. 2006).  

Insufficient sleep also has been linked to elevated risk of metabolic disorders such 

as obesity and diabetes (Knutson, Spiegel et al. 2007). Previous studies have shown that 

the leptin-resistant diabetic animals have diminished sleep wake rhythms (Laposky, 

Bradley et al. 2008). Also, there is increasing evidence that diabetes and obesity present a 

risk for AD development (Ott, Stolk et al. 1999, Kroner 2009). To study how the interaction 

of the two disorders effect sleep, we took advantage of the combined model of AD and 

diabetes generated by Dr. M. Paul Murphy’s lab (Niedowicz, Reeves et al. 2014). The 

combination of the two diseases results in additional pathologies such as aneurysms and 

strokes in addition to the ones that are characteristic of the parental AD mouse line.  

Similar to transgenic animals, and disease models described above, mutant mice 

such as knockouts also have the potential to add to our knowledge of the genes involved in 

sleep regulation. With this aim, I examined a large-scale knockout population phenotyped 

for their sleep-wake traits in addition to many other physiological aspects at the Jackson 

Laboratory (JAX) as part of the IMPC (International Mouse Phenotyping Consortium) 

project, as described next. 

The number of protein coding genes for the mouse genome stands at around 25,000. 

With developments in genome sequencing, and the advancement in gene targeting 

technology, it became feasible to knockout every single gene of the mouse genome. This 

led to the establishment of the International Knockout Mouse Consortium (IKMC) in 2007 

with the aim of functionally annotating the entire mammalian genome. The first phase 

involved creating ES (embryonic stem) cell lines for each targeted mouse gene (Abbott 

2010, Bradley, Anastassiadis et al. 2012). By 2011, over one-third of the mouse genes were 

established in ES cell lines. At this point, the second phase of the project, KOMP2 under 

the umbrella of IMPC began; an effort to turn these ES cell into “knockout mice” and then 



4 
 

comprehensively phenotype over 5000 knockout mouse lines generated in this phase 

(Brown and Moore 2012).  Our collaborator, The Jackson Laboratory, is one of the primary 

KOMP2 centers. Behavioral assays such as rotarod, holeboard exploration, and especially 

sleep, are unique to the JAX phenotyping pipeline. Such a large scale endeavor has many 

advantages over individual lab efforts, in part due to use of a standardized mouse 

background for the knockouts, standard protocols, and quality control. 

Traditional sleep analysis makes use of EEG/ EMG (Electroencephalogram/ 

Electromyogram) recordings which have been considered the “gold standard”. EEG/EMG 

techniques pose many limitations when it comes to recording rodents, especially on a large 

scale, as required for KOMP2. The system requires extensive surgery to fix the electrodes, 

recovery time, hooking up cables, and limited animal movement, in addition to labor 

intensive signal analysis (Flores, Flores et al. 2007). Alternative less invasive techniques 

like infrared beam breaking and wheel running have a lower correlation rate (70-80%) with 

sleep, depending upon the mouse strain under observation (Koteja, Garland et al. 1999). 

To overcome all these limitations, our lab designed the Piezoelectric system for non-

invasive higher throughput monitoring of sleep in rodents. 

The use of this system for phenotyping the sleep-wake traits has been central to my 

research projects. This non-invasive sleep-wake monitoring system consists of a 

Polyvinylidine Difluoride (PVDF) sensor pad placed on the cage floor which detects gross 

body movements of the animal to generate signals (Fig. 1). During sleep, rhythmic 3 Hz 

signals produced by breathing is the principal motion detected by the system in contrast to 

wakefulness which is characterized by high frequency and erratic movements which masks 

this breathing (Donohue, Medonza et al. 2008, Mang, Nicod et al. 2014). The system is 

capable of recording various sleep parameters including percent sleep, bout lengths, peak 

activity, activity onset and breath rate. Current efforts are directed toward adding more 

features and training the classifier based on correlation of Piezosystem recording with 

human observation and EEG. With these features, the system would be expanded to resolve 

sleep further into REM (Rapid Eye Movement) and NREM (Non-rapid eye movement), 

which would make the system more valuable for additional sleep assessments. In the future, 

the current data will be reanalyzed by these newer algorithms, but we can already determine 

sleep and wake with accuracy comparable to EEG/EMG.  
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To date, I have analyzed more than 6000 animals representing over 300 knockout 

lines, and more than 1800 control mice have been recorded. Around 20% of these knockout 

lines demonstrated altered sleep phenotypes, depending on the specific sleep traits assessed 

and the statistical approaches utilized. Some genes were found to specifically alter total 

sleep amounts or sleep fragmentation (sleep bout lengths) primarily in the light phase, 

others in the dark phase. Among controls and knockouts, males sleep slightly more than 

females in most but not all cases. The high hit rate seen in our study may also reflect that 

a high percentage of genes are expressed in the brain, and that many factors affect sleep. 

In addition, the same piezoelectric system also enabled us to look for altered breathing 

rhythms. Several genes were found to affect breathing variables as well. 

In summary, in the following chapters of this dissertation I describe in detail my 

studies to fill the gaps in our knowledge of the genetic regulators of sleep by examining a 

variety of mouse models. We utilized novel screening technology to phenotype sleep-wake 

traits and identified novel candidate genes that regulate sleep and perhaps sleep functions. 

Also, we evaluated mouse models of AD and Diabetic conditions for their sleep alterations 

that may be relevant for human AD and Diabetic diseases, and serve as a tool for the 

development of drugs to improve sleep and potentially slow the progression of disease. 
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Abstract 

 

Mouse models are an essential tool to dissect the genetic mechanisms that underlie 

complex behaviors such as sleep. A variety of genetic and genomic techniques are available 

to manipulate the mouse genome, and identify the genetic influences regulating sleep. 

Forward genetic techniques such as Quantitative trait loci (QTL) and mutagenesis screens 

are aimed at characterization of gene/s responsible for the phenotype in question. In 

contrast, reverse genetic methods may utilize knockout or other transgenic mice to 

ascertain the novel functions associated with a gene of interest. To fully exploit these 

available resources, and disentangle the pathways that regulate sleep, it is essential to 

implement robust phenotypic screens. In addition, for the detection of subtle phenotypes, 

analysis of a large number of animals is required. Conventional EEG/EMG is a popular 

sleep recording method, however, it is invasive and labor-intensive, and therefore not 

suitable for use in large-scale projects. There are many other alternative tools available 

such as video tracking, wheel running, light beam breaking, and piezoelectric systems. The 

choice for any of the particular alternative methods depend upon the specific needs of a 

research study. This paper reviews the large-scale projects as implemented in the field of 

sleep, and the advantages and shortcomings of the various phenotypic paraphernalia. 
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Introduction 

Sleep is a complex behavior that results from multiple underlying neuronal 

pathways, and is regulated (in part) by gene networks. In the last few decades, there has 

been increasing realization that sleep is critical for the overall well-being of an animal. 

Sleep has been suggested to be restorative in nature and critical in memory consolidation 

(Nishida, Pearsall et al. 2009, Walker 2009). In addition, it also has a role in modulating 

energy balance and immunity. Furthermore, sleep has been shown to facilitate clearance of 

toxic metabolites, including beta amyloid, a neuronal by-product of the APP protein that is 

a major constituent of the plaques in Alzheimer’s Disease (AD). Currently, more than 50 

million Americans are affected by sleep disorders or disturbances. These sleep deficiencies, 

in turn, are associated with a variety of health problems. For instance, inadequate sleep, 

which is becoming increasingly common due to the demands of a modern lifestyle, has 

been implicated in a variety of diseases including neurodegenerative and metabolic 

disorders (Knutson, Spiegel et al. 2007, Rothman and Mattson 2012, Suzuki, Miyamoto et 

al. 2012). Sleep apnea is linked to pathological conditions such as obesity, diabetes, 

hypertension, stroke, renal failure, and myocardial infarction (Shamsuzzaman, Gersh et al. 

2003). Some of these sleep problems arise as a result of a desynchronized biological clock, 

while others seem to be linked to disrupted physiological functions of sleep. Efforts aimed 

at improving sleep quality and treatment of sleep disorders are limited by our rudimentary 

knowledge of the functions of sleep and the mechanisms that regulate these functions. 

Identification of the genetic influences on sleep, and elucidation of the regulatory 

mechanisms at the molecular and biochemical level, would therefore be significant for the 

development of drugs targeting these regulators or other molecules that influence sleep and 
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wake. This review provides an overview of the large-scale genetic approaches undertaken 

to identify the sleep-related genes in mice, and also the scalable technology available to 

phenotype and characterize the sleep traits in these large mouse populations. 

Mouse-an animal model for sleep studies 

Human studies tend to be expensive and difficult to control in many cases. Given 

that there is 90% homology between the mouse and human genome (in the critical coding 

and gene regulatory regions), in addition to the strong conservation of most brain and 

physiological systems, the mouse has become the preferred animal model to emulate a 

wide variety of both normal and human pathological conditions. In areas relevant to sleep 

research, the mouse shares striking similarities to humans at the level of neural circuits 

and the neurotransmitters involved in sleep regulation, in addition to nearly 100% 

identity for critical circadian and sleep-related genes (at least among the few that are 

known). Furthermore, the availability of hundreds of inbred mice strains, and a wide-

array of genetic tools allow for easy manipulation of the mouse genome. Therefore, use 

of mice in parallel with well-established genetic resources can provide insight into the 

genetic determinants of sleep physiology.  

Forward Genetic Approaches 

QTL- mapping genomic loci  

A higher concordance of various sleep parameters and sleep architecture in mono- 

vs. di-zygotic twins provided early evidence for the genetic regulation of sleep (Stassen, 

Lykken et al. 1988, Ambrosius, Lietzenmaier et al. 2008, De Gennaro, Marzano et al. 

2008). Genetic studies conducted by Valatx, on several inbred, recombinant inbreds (RI) 
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and hybrid mice further strengthened the notion that sleep is under genetic control (Valatx, 

Bugat et al. 1972, Valatx 1978, Kitahama and Valatx 1980). Forward genetic techniques, 

which involve screening for sleep-related phenotypes, followed by scanning the genome 

in pursuit of genes affecting the trait in question, is one mechanism to determine the genetic 

components of sleep regulation. Traditional QTL analysis is one such phenotype-driven 

approach to identify genetic variants associated with complex traits. It typically involves 

crossing of two inbred strains that differ for the trait of interest. The F1 progeny is inter-

crossed, or back-crossed to one of the parents to generate an F2, which are then subjected 

to phenotypic assessment. In some cases, these crosses are followed by several generations 

of brother-sister matings to obtain homozygosity, and a set of defined Recombinant Inbred 

(RI) strains. Using the QTL approach, sleep-related genes such as Homer 1a, involved in 

recovery from glutamate-induced neuronal hyperactivity, Acads (acyl-coenzyme A 

dehydrogenase), which influences theta oscillations, and Rarb (Retinoic acid receptor 

beta), involved in long-term potentiation, were identified  (Tafti, Petit et al. 2003, Drager 

2006, Flores, Flores et al. 2007, Franken, Thomason et al. 2007, Maret, Dorsaz et al. 2007, 

O'Hara, Ding et al. 2007, Wisor, Striz et al. 2007). In a similar study, a QTL linked to phase 

advancement relative to dark onset, was mapped to chr 18 in “early runner” mice (Wisor, 

Striz et al. 2007). A comprehensive study by Winrow and colleagues, utilizing more than 

250- BL6 (BL6 and BALB/c) mice for the analysis of 20 sleep-wake traits, identified 52 

significant QTLs represented by 20 genomic loci (Winrow, Williams et al. 2009). In a 

follow up study, using pharmacological compounds, the investigators validated six of the 

candidate genes shortlisted previously- Chrm3, Chrna4, Drd5, Htr1d, Glp1r and Cacnali, 

for their role in regulating various aspects of sleep (Brunner, Gotter et al. 2011). 
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Furthermore, the same research group also narrowed down a QTL on chr 17, influencing 

REM sleep parameters, to the gene Ntsr1 by microarray expression analysis of over 28,000 

brain transcripts (Fitzpatrick, Winrow et al. 2012).  

A disadvantage of a typical QTL analysis is that the F2 progeny are unique, and 

thus require genetic mapping each time to identify the recombination patterns. There is 

also only a single individual mouse representing each F2 genotype, limiting the reliability 

of each phenotypic measure. Furthermore, even with accurate phenotyping, such crosses 

present limited mapping resolution, where a QTL can span several hundred genes (Flores, 

Flores et al. 2007, Franken, Thomason et al. 2007, Maret, Dorsaz et al. 2007, O'Hara, Ding 

et al. 2007, Wisor, Striz et al. 2007). Additionally, conventional crosses suffer from the 

issue of low genetic diversity present in most of the common laboratory mice as a result of 

historical development of inbred strains. In contrast, RI strains have fixed recombination 

patterns, and multiple mice of each genotype can be tested.  Since the genotype of each RI 

strain is fixed, they only need to be mapped once, and can then be used repeatedly by many 

investigators, in many different experiments, and can be replicated as often as desired in 

the future. Lastly, each RI strain represents multiple generations of recombinations, and 

thus has increased mapping power, although the limited number of RI lines has historically 

limited mapping resolution. To overcome these shortcomings of traditional QTL studies 

using RI lines, existing reference panels are being expanded as in the case of BXD strains, 

along with the development of new reference panels such as the Collaborative Cross (CC) 

using eight diverse parental strains (see below), and then using these same eight parental 

strains in Diversity Outbred (DO) mice (Peirce, Lu et al. 2004). 
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Collaborative cross for precision mapping 

CC and DO mouse resources exhibit a marked increase in genetic diversity, as 

much as 4 times that of the classical inbred mice, and can facilitate high resolution 

mapping, sometimes to the level of a single gene (Bradley, Anastassiadis et al. 2012, 

Gkoutos, Schofield et al. 2012, Schofield, Hoehndorf et al. 2012). The CC reference panel 

utilizes random crossing of eight founder strains. The founder strains are comprised of five 

traditional inbred laboratory strains and 3 wild-derived strains, which capture around 90% 

of the genetic diversity found in the laboratory inbred mice strains (Bradley, Anastassiadis 

et al. 2012, Gkoutos, Schofield et al. 2012, Schofield, Hoehndorf et al. 2012, Threadgill 

and Churchill 2012). These mice are being inbred to achieve a goal of generating 1000 

strains. CC mice provides another advantage- as with other RI strains, all lines are 

reproducible and, for each line, the genotyping is needed only once (Churchill, Gatti et al. 

2012, Svenson, Gatti et al. 2012, Threadgill and Churchill 2012).  

Diversity Outbred mouse- genetic panel with improved genetic diversity 

The Diversity Outbred panel is a heterogeneous stock of highly diverse mice from 

the same eight parental strains. They were designed to maximize genetic diversity similar 

to what is found in human populations. The DO founder mice were obtained from the 

incipient CC mice. Unlike the CC panel, the DO mice are maintained through random 

outbreeding rather than inbreeding, leading to additional recombinations and minimizing 

the chance of allelic loss. Random mating and the outbred nature yields a unique genetic 

constitution for each mouse and therefore non-reproducibility of DO animals (Churchill, 

Gatti et al. 2012, Svenson, Gatti et al. 2012, Threadgill and Churchill 2012). Thus, each 

mouse is required to be genotyped for the QTL analysis- a disadvantage compared to CC 
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mice. Overall mapping results from DO can be independently validated in CC lines 

(Bradley, Anastassiadis et al. 2012, Churchill, Gatti et al. 2012, Gkoutos, Schofield et al. 

2012, Schofield, Hoehndorf et al. 2012, Svenson, Gatti et al. 2012, Threadgill and 

Churchill 2012, Threadgill and Churchill 2012). Even though, CC and DO animals are yet 

to be utilized to their full potential, their successful application is already evident. One such 

noteworthy example of utilization of pre-CC (incipient CC mice) comes from a study 

conducted by Philip et al (Philip, Sokoloff et al. 2011). A QTL for peak activity after sleep 

deprivation, was mapped on chr 9, spanning 530 kb and harboring only 3 genes. In addition, 

another QTL, linked to sleep percentage during the dark phase, mapped to a genomic 

region on chr 7 representating a region of about39 genes. 

ENU mutagenesis- random point mutations of genes 

As the name suggests, ENU mutagenesis projects utilize ENU (N-ethyl-N-

nitrosourea), a chemical mutagen that randomly induces base substitutions in mouse 

spermatogonia. Mutagenized mice are then screened for a phenotype that shows significant 

deviation from the population mean for the trait of interest (Gondo 2010). Using this 

approach, the circadian genes, Clock and Rab3a in mice, and Per and Dbt in flies, were 

successfully isolated (Takahashi, Pinto et al. 1994, Vitaterna, King et al. 1994, Flores, 

Flores et al. 2007, Franken, Thomason et al. 2007, Maret, Dorsaz et al. 2007, O'Hara, Ding 

et al. 2007, Wisor, Striz et al. 2007). These genes further helped in discerning several other 

clock genes, such as Bmal1, Cry1,2, Per1,2,3, which regulate circadian and homeostatic 

aspects of sleep. Such successes lead to the initiation of many large-scale ENU mutagenesis 

projects (Gondo, Fukumura et al. 2009), targeting the entire mouse genome, each one of 

them focused on a phenotype of specific interest. Vitaterna and colleagues in their 
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mutagenesis screen, concentrated on behavioral and nervous system phenotypes, and 

reported 46 confirmed circadian mutants as of 2005 (Goldowitz, Frankel et al. 2004, 

Vitaterna, Pinto et al. 2006). In follow up studies, Ovtm was identified as a mutation in 

Fbxl3 gene, which was linked to a long circadian period (25.8 h) (Siepka, Yoo et al. 2007). 

In contrast, Prtm, a short circadian period (21.4 h) mutation, resulted from a loss-of-

function mutation in the Cry1 gene, and Psttm, another short period mutation (22.9 h) was 

traced to Fbxl21 gene (Siepka, Yoo et al. 2007, Yoo, Mohawk et al. 2013). 

A shortcoming of ENU mutagenesis is that it requires follow up with positional 

cloning for the identification of the causative gene, which is a difficult and time consuming 

process. However, with further advancement in genome sequencing, the mutations can now 

be identified in a cost and time efficient way. The process is still quite labor intensive in 

the case of mammals. Despite these difficulties and shortcomings, QTL studies and ENU 

mutagenesis are arguably our most powerful tools to find novel genetic pathways, as no a 

priori assumptions are made about the functions of any given gene. Given the pleiotropic 

nature of most genes, and our lack of knowledge regarding most of the 22,000 protein 

coding genes in mammals, these “blind” approaches are necessary.    

KOMP2- a large-scale, gene-driven approach 

              Reverse genetics, in contrast to forward genetics, is a genotype-driven approach 

that utilizes knockouts and other genetically altered mice to find novel functions associated 

with a gene of interest. It has helped further characterize, the roles of neurotransmitters and 

canonical circadian genes, such as Clock, Bmal and Npas (O'Hara, Jiang et al. 2017). 

Individual lab efforts are most often biased towards a small number of genes of interest, 

due to limitations of resources and expertise. These individual efforts at producing single 
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gene knockouts are also marked by heterogeneity of genetic background. To overcome 

these drawbacks, a more systematic and comprehensive project commenced in 2007, with 

the establishment of the International Knockout Mouse Consortium (IKMC). This large-

scale undertaking aims at generating single gene knockout ES cells for the entire mouse 

genome on the C57BL/6N background (Abbott 2010, Bradley, Anastassiadis et al. 2012). 

Knockout animals thus generated, are being comprehensively phenotyped for over 200 

physiological parameters as part of the Knockout Mouse Phenotyping Program (KOMP2) 

(Brown and Moore 2012). Many of the behavioral assays, such as rotarod and sleep 

assessments are unique to the Jackson Laboratory (JAX), one of the KOMP2 centers. 

KOMP2 has been instrumental in uncovering new candidate sleep genes. In collaboration, 

we have established a role for more than 50 genes, not implicated in sleep regulation 

previously (see Chapter 5).   

Recording systems for analysis of sleep 

EEG/EMG limitations 

             Phenotyping sleep-wake traits is an essential component of both forward and 

reverse genetic approaches towards a better understanding of sleep. The different sleep-

wake parameters that can be screened range from duration of sleep states (REM, NREM 

sleep), the number of such sleep bouts, and other variables such as sleep latency (time to 

fall asleep, which works better in humans that consolidate most sleep in one long sleep 

period at night, as opposed to the polyphasic sleep of mice). Sleep in all mammals is 

associated with distinct electrophysiological changes in brain activity. Traditionally, 

EEG/EMG techniques have been exploited for the measurement of these brain changes 

with high accuracy. However, for rodents which have smaller brains, it requires surgical 
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implantation of electrodes followed by recovery periods of many days, and labor intensive 

scoring. In addition, it entails tethering the animal to the EEG recording system that 

restricts the free movement of an animal. These drawbacks limit the application of EEG 

for high-throughput behavioral studies that require large numbers of mice for discerning 

phenotypic effects. Multiple, non-invasive, alternative systems have been developed in the 

past few decades for the assessment of sleep-wake related behaviors. There are several 

automated recording systems available, such as those based on monitoring of activity or 

video recordings which can assess behaviors related to sleep, and also some variations to 

make EEG/EMG easier, as discussed next.    

Telemetry- alternative EEG/EMG method to record sleep  

           Telemetry provides another way of doing EEG/EMG, which does not require 

animals to be tethered for data acquisition. It allows recording animals under a variety of 

conditions such as group housing, as well as more enriched environments. Furthermore, it 

can measure various physiological parameters in addition to sleep, such as body 

temperature and activity of an animal. Similar to typical EEG/EMG recordings, it still 

requires surgical implantation of electrodes as well a transmitter. Typical radio transmitters 

tend to be relatively heavy and big for the size of the skull of a mouse (for instance, 3.9 g 

at a volume of 1.9 cc for DSI PhysioTel EA-F20 and ETA-F10; 

https://www.datasci.com/products/implantable-telemetry/mouse-(miniature)). However, 

the newer generation of these systems can be as light as 1.4 g, which is still extremely 

heavy and causes problems for typical inbred strains weighing 20-30g. There are other 

improvements being made to this system. Recently, a wireless telemetry system was 

developed that does not require anchor screws to affix the system to the skull, but just the 

https://www.datasci.com/products/implantable-telemetry/mouse-(miniature))
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burr holes, and can be used in young pups as well (Zayachkivsky, Lehmkuhle et al. 2013).  

However, despite these improvements, these telemetry systems typically have much higher 

noise and poorer sleep scoring than traditional cabled EEG/EMG systems.   

Minimally-invasive approach 

           A less-intensive surgery method based on locomotor activity, was developed by 

Storch et al (Storch, Hohne et al. 2004). This method requires implanting small magnets 

subcutaneously near neck muscles of mice. Mice activity is characterized by magnet 

movement relative to a sensor plate placed beneath the cage. The system can detect 

sleep/wake quantitatively with limited accuracy, in addition to activities such as grooming 

and rearing. However, it cannot discern quiet rest, or sub-stage sleep into REM and NREM. 

Additionally, it has a low resolution, and still requires surgery which makes the system 

difficult for higher throughput studies (e.g. more than 200 mice). 

Non-invasive approaches 

         As described above, both EEG/EMG and telemetry involves surgical implants, which 

can affect the natural behavior of an animal. In addition, these methods are expensive as 

well, and thus not suitable for assessment of a large number of mice. To address these 

deficiencies, a number of other, non-invasive devices for sleep phenotyping have been 

developed. One such scoring system designed by Pack et al utilizes object recognition 

algorithms in combination with video-scoring and infrared beam breaks (Pack, Galante et 

al. 2007). The characterization of sleep and wake was based on the investigators’ premise 

that an activity of more than 40s can be classified as sleep. This setup showed high 

correlation with EEG assessments. Fisher et al also utilized video tracking- based on 

locomotor analysis, which shows high correlation with EEG/EMG assessment of sleep-
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wake, however, it cannot discern sleep architecture- REM and NREM sleep, similar to the 

system developed by Pack et al (Fisher, Godinho et al. 2012). There are other limitations 

associated with video-based devices such as adjustment of camera angle, and need for 

proper illumination at all times. There are other systems available as well, such as infrared 

beam breaking which is limited to detecting gross body movements. It cannot distinguish 

quiet rest from sleep, and also does not work well when the mouse does not change its 

location frequently. 

         Respiratory patterns have also been used as an alternative to EEG/EMG, as in the 

case of a system developed by Zeng and colleagues (Zeng, Mott et al. 2012). They utilized 

a Doppler radar system, and support vector machine, a supervised learning system, to 

classify different vigilance states. The system has high classification accuracy for 

wakefulness and NREM (91% and 85% respectively) but low accuracy for REM sleep 

(~70%).  

        PiezoSleep- a novel, non-invasive and high-throughput system, is based on periodic 

signals generated during respiration. It utilizes a motion sensor- piezoelectric film, placed 

at the bottom of the cage floor, which transforms the pressure variations into electrical 

signals. During sleep, the prominent movement is from breathing, in contrast to 

wakefulness that is characterized by more erratic signals is the basis of discerning sleep 

and wakefulness by this system (Flores, Flores et al. 2007, Donohue, Medonza et al. 2008, 

Mang, Nicod et al. 2014). The system demonstrates a classification accuracy of over 90% 

for sleep and wakefulness compared to traditional EEG/EMG (Donohue, Medonza et al. 

2008, Mang, Nicod et al. 2014). Additionally, the system due to its highly sensitive nature 

can discriminate quiet wake from sleep, and also detect short arousals which almost all 
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other non-invasive systems fail to. This automated system is equipped to record a variety 

of sleep parameters- sleep percent across 24h, dark and light phase, and bout length across 

24h, dark and light phase. The systems’ additional hourly data assessment feature finds its 

use in time-sensitive studies such as those involving sleep deprivation, or effect of dosage 

of drugs as exemplified by my research project on 5XFAD, as described in chapter 3 (Sethi, 

Joshi et al. 2015). It has also been equally effective, as validated by IR camera and 

EEG/EMG in recording sleep for larger rodents such as Spiny mice.  

           Recently, the systems capabilities were enhanced further, and it integrated 

assessment of breath rate, a supplemental tool in determining aberrant sleep physiology in 

animals. The system was recently tested for its assessment of sub-stages of sleep, and was 

found to have a high classification rate for wake and NREM sleep but underestimated REM 

sleep (Yaghouby, Donohue et al. 2016). With further improvements in its algorithm, 

classification of REM sleep as well is expected to improve in near future. In its current 

form, the piezosystem has been significant in identifying more than 50 sleep-related genes, 

and several other genes affecting breath rate in mice, as part of KOMP2, an ongoing large-

scale endeavor, within a short time span (Chapter 5). Thus, PiezoSleep, an important 

component of KOMP2, contributed massively to such unprecedented success in the field 

of sleep. A pre-CC study, also utilized this system and found reasonable success in finding 

QTLs affecting a variety of sleep parameters (Philip, Sokoloff et al. 2011).  

Conclusion 

 No single technique of gene analysis is complete by itself and has limitations of its 

own. EEG/EMG technique is invasive, and can alter the natural behavior of an animal, and 

on other hand, most of the other, non-invasive alternatives fail to record sleep measures 
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such as NREM delta waves, a measure of sleep intensity. For high-throughput behavioral 

studies, the relatively inexpensive, non-invasive alternatives, such as PiezoSleep can serve 

well as a first pass. Later, the animals with phenotype of interest can be followed with 

EEG/EMG if needed, for more comprehensive sleep phenotyping. This 2-step process can 

reduce time and efforts by many fold. Further improvements in existing techniques as in 

case of PiezoSleep, and also ongoing development of new strategies will equip us better at 

the task of annotating genes without the need of EEG/EMG eventually. Large scale 

phenotype- or gene- driven approaches are invaluable tools to unravel novel sleep-related 

genes, and identify novel pathways depicting relationship among them by utilizing various 

bioinformatics tools. Furthermore, different approaches can complement each other and 

reveal further the association between protein domains of a gene and their functions. In 

summary, advancements in sleep phenotyping techniques in parallel with systematic 

phenotyping pipelines is critical in identifying novel candidate genes underlying sleep 

modulation.  
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Abstract 

            Sleep perturbations including fragmented sleep with frequent night-time 

awakenings and daytime naps are common in patients with Alzheimer’s disease (AD), and 

these daily disruptions are a major factor for institutionalization. The objective of this study 

was to investigate if sleep-wake patterns are altered in 5XFAD mice, a well-characterized 

double transgenic mouse model of AD which exhibits an early onset of robust AD 

pathology and memory deficits. These mice have five distinct human mutations in two 

genes, the amyloid precursor protein (APP) and Presenilin1 (PS1) engineered into two 

transgenes driven by a neuron specific promoter (Thy1), and thus develop severe amyloid 

deposition by 4 months of age. Age matched (4-6.5 months old) male and female 5XFAD 

mice were monitored and compared to wild-type littermate controls for multiple sleep traits 

using a non-invasive, high throughput, automated piezoelectric system which detects 

breathing and gross body movements to characterize sleep and wake. Sleep-wake patterns 

were recorded continuously under baseline conditions (undisturbed) for 3 days and after 

sleep deprivation of 4 hours, which in mice produces a significant sleep debt and challenge 

to sleep homeostasis. Under baseline conditions, 5XFAD mice exhibited shorter bout 

lengths (14% lower values for males and 26% for females) as compared to controls 

(p<0.001). In females, the 5XFAD mice also showed 12% less total sleep than WT 

(p<0.01). Bout length reductions were greater during the night (the active phase for mice) 

than during the day, which does not model the human condition of disrupted sleep at night 

(the inactive period). However, the overall decrease in bout length suggests increased 

fragmentation and disruption in sleep consolidation that may be relevant to human sleep. 
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The 5XFAD mice may serve as a useful model for testing therapeutic strategies to improve 

sleep consolidation in AD patients. 

 

Key words:  sleep, sleep homeostasis, amyloid beta, diurnal rhythm, sleep fragmentation 

Introduction 

            Alzheimer’s disease (AD), which is characterized by accumulation of extracellular 

amyloid beta (Aβ) plaques and intra-neuronal hyperphosphorylated neurofibrillary tau 

tangles in the brain, is the most common form of dementia (Glenner and Wong 1984). 

Aside from severe cognitive deficits, approximately 25 to 40% of AD patients also display 

profound circadian rhythm and sleep-wake disturbances, which may precede overt 

cognitive impairments (Carpenter, Strauss et al. 1996, Moran, Lynch et al. 2005, Snyder, 

Nong et al. 2005). These disturbances include fragmented sleep, frequent nighttime 

awakenings, and excessive daytime sleepiness (Prinz, Peskind et al. 1982, Bliwise 2004, 

Bliwise, Mercaldo et al. 2011). Altered sleep architecture in AD includes reduced rapid 

eye movement (REM) and slow wave (SWS) sleep in addition to increased latency to REM 

sleep (Prinz, Peskind et al. 1982, Bliwise, Tinklenberg et al. 1989, Perry, Walker et al. 

1999, Stevenson and Schildberger 2013). Fragmented sleep, which is also common in 

many other pathological conditions including Parkinson’s Disease, Diffuse Lewy Body 

Disease (DLBD), sleep apnea, and neuromuscular disorders, has wide spread consequences 

ranging from excessive daytime sleepiness to impaired memory consolidation (Kimoff 

1996, Dauvilliers 2007, Deschenes and McCurry 2009, Rolls, Colas et al. 2011). Recent 

studies suggest that reduced slow wave sleep, which has been shown to have restorative 

functions, might be the contributing factor to this impaired memory consolidation (Nishida, 
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Pearsall et al. 2009, Walker 2009). However, there is still much debate regarding the 

contribution of different sleep stages in the consolidation of different type of memories, 

with some data supporting a role for all stages of NREM in declarative memory and a 

greater role for REM in non-declarative memory (Tucker, Hirota et al. 2006, Marshall and 

Born 2007, Nishida, Pearsall et al. 2009, Diekelmann and Born 2010).  

            In regard to circadian system dysfunction, Saitlin et al found that AD subjects have 

reduced locomotor activity and phase delays of approximately four hours in their activity 

rhythms and three hours for the core body temperature rhythm compared to healthy elderly 

subjects (Satlin, Volicer et al. 1995). Often, AD patients also display “sundowning”; a 

behavioral state characterized by increased aggressiveness, restlessness and anxiety seen 

towards the afternoon and evening hours (Vitiello, Bliwise et al. 1992). These changes in 

sleep and circadian rhythms, which correlate positively with the degree of progression of 

AD, not only affect the quality of life of patients and their care givers but also constitute 

one of the major factors for institutionalization (Pollak and Perlick 1991, Vitiello, Poceta 

et al. 1991).   

            Aggregation of amyloid beta (Aβ) in the brain has been implicated in sleep 

perturbations as well as in the pathogenesis of AD (Hardy and Higgins 1992, Hardy and 

Selkoe 2002). Various findings suggest that Aβ aggregation, as indicated by reduced 

cerebrospinal fluid (CSF) Aβ42 levels, begins as early as 15 years prior to the appearance 

of clinical symptoms  (i.e. the preclinical stage) (Morris and Price 2001, Perrin, Fagan et 

al. 2009, Sperling, Aisen et al. 2011, Fitzsimmons and Bertram 2013). Even in 

asymptomatic individuals, Aβ is associated with neural dysfunction of the brain networks 

subserving memory formation (Sheline, Raichle et al. 2010). Among cognitively 
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unimpaired individuals, those with higher levels of Aβ accumulation had poorer sleep 

quality and shorter sleep duration compared to controls without Aβ plaques (Anafi, 

Pellegrino et al. 2013, Aoyama and Nakaki 2013, Dyakonova and Krushinsky 2013, 

Fitzsimmons and Bertram 2013, Ju, McLeland et al. 2013, Malkki 2013, Möller-Levet, 

Archer et al. 2013, Simon, Greenaway et al. 2013, Spira, Gamaldo et al. 2013, Stevenson 

and Schildberger 2013, Vagelatos and Eslick 2013, Yoo, Mohawk et al. 2013, Ju, Lucey et 

al. 2014).  

            Various studies performed in mouse models of AD also indicate an association 

between sleep perturbations and AD pathogenesis. Using microdialysis, Kang et al 

demonstrated that young Tg2576 mice (a model of AD), and wild type mice (C57BL6) 

have diurnal oscillations of brain interstitial fluid (ISF) Aβ, with higher levels during the 

active phase (night-time) (Kang, Lim et al. 2009). In aged APPswe/PS1δE9 mice with 

prominent Aβ plaques, sleep is disrupted as well as ISF Aβ diurnal rhythm is lost (Bertram, 

Rook et al. 2011, Roh, Huang et al. 2012). Further, sleep deprivation increases ISF Aβ, 

which decreases during sleep recovery (Kang, Lim et al. 2009, Bertram, Rook et al. 2011, 

Roh, Huang et al. 2012). Similar diurnal oscillations were found for CSF (cerebrospinal 

fluid) Aβ in healthy human subjects, with higher Aβ levels in day and reduced levels at 

night (Kang, Lim et al. 2009). These studies suggest that sleep loss accelerates the Aβ 

deposition and therefore sleep alterations may serve not only as an early marker of AD but 

also raise the possibility that improved sleep could slow progression of the disease. The 

extent to which the changes in sleep-wake patterns contribute to or are the result of AD 

progression is poorly understood. Because studies in AD patients are difficult and 
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expensive, an animal model displaying sleep alterations that mimic those found in AD is 

necessary.    

            Our present study aimed at investigating whether 5XFAD mice (MGI: 3693208), a 

well-characterized, double transgenic model of familial, early onset AD, show alterations 

in sleep-wake patterns. These mice have five distinct human mutations: three in the 

amyloid precursor protein (APP) namely Swedish, Florida and London mutations 

(K670N/M671L, I716V, V717I) and two in the Presenilin1 protein (PS1), i.e., mutations 

M146Ll and L286V engineered into two transgenes driven by a neuron specific promoter 

(Thy1). Each of these PS1 and APP mutations increase Aβ42 production but when present 

together act additively to bring about an excessive Aβ42 burden and hence early onset and 

aggressive AD pathology (Citron, Westaway et al. 1997, Eckman, Mehta et al. 1997, 

Citron, Eckman et al. 1998, Oakley, Cole et al. 2006, Ohno, Chang et al. 2006). These mice 

thus develop severe intraneuronal Aβ42 at an early age of 1.5 months, amyloid deposition 

at 2 months, and loss of synapses around 9 months of age (Oakley, Cole et al. 2006, Ohno, 

Chang et al. 2006). As well as aggressive neuropathology, 5XFAD mice exhibit memory 

deficits as early as 4-6 months of age, in a range of behavioral assays such as Y maze, 

Morris water maze, contextual fear conditioning, auditory trace fear conditioning 

paradigm, and olfactory H maze (Oakley, Cole et al. 2006, Ohno, Chang et al. 2006, Ohno 

2009, Devi, Alldred et al. 2010, Devi and Ohno 2010, Girard, Baranger et al. 2013). Since 

the 5XFAD mice exhibit well characterized, early onset AD-like neuropathological 

changes and cognitive impairments, the current study investigated whether these mice also 

exhibit sleep alterations similar to those reported in AD patients. Since AD affects men and 

women, we included both male and female 5XFAD mice in our study. More women are 
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known to have AD compared to men, possibly because of longer life expectancy in women 

(Hebert, Scherr et al. 2001) or due to hormonal alterations late in life (Morinaga, Ono et 

al. 2011, Barron and Pike 2012, O'Hagan, Wharton et al. 2012, Anaclet, Ferrari et al. 2014, 

Bhattacharya, Haertel et al. 2014, Civelek and Lusis 2014, Ju, Lucey et al. 2014, Lan, Zhao 

et al. 2014, Lim, Ellison et al. 2014, Lim, Gerstner et al. 2014, Mang, Nicod et al. 2014, 

Niedowicz, Reeves et al. 2014, Webster, Bachstetter et al. 2014). In this study, we analyzed 

the following sleep traits: sleep during the day and night, sleep bouts during the day and 

night under baseline conditions, and then examined sleep behavior again after 4 hour sleep 

deprivation in an effort to find if 5XFAD mice model some aspects of the sleep alterations 

reported in human AD patients.    

Experimental procedures 

Animal and housing conditions 

            This study utilized individually housed 5XFAD mice (males: N=10; females: N=7) 

and wild type mice (males: N=7; females: N=11) for baseline recording and sleep 

deprivation protocol was applied on 5XFAD (males: N=9; females: N=6) and wild type 

mice (males: N=6; females: N=11) of 4-6.5 months of age (lost data for few mice because 

of system failure), obtained from a breeding colony maintained at University of Kentucky. 

The original 5XFAD stock was provided by The Jackson Laboratories. Originally, 5XFAD 

were generated on B6/SJL background as previously described (Oakley, Cole et al. 2006, 

Ohno, Chang et al. 2006). This mouse model co-expresses three APP (Swedish: 

K670N/M671L, Florida: I716V and London mutation: V717I) and two PS1 human familial 

mutations (M146L, L286V) under the regulation of neuron-specific murine Thy1 

promoter. These mice show intracellular Aβ accumulation at the age of 1.5 months. Plaque 
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deposition can be detected since 2 months of age; first appearing in deep layers of cortex 

and subiculum and eventually spreading to most of the cortex, subiculum and 

hippocampus. Apart from neuroinflammation, these mice also present neuronal loss, a 

characteristic often missing in most of the other transgenic mouse models of AD (Oakley, 

Cole et al. 2006, Ohno, Chang et al. 2006, Jawhar, Trawicka et al. 2012, O'Hagan, Wharton 

et al. 2012, Eimer and Vassar 2013, Girard, Baranger et al. 2013, Ju, McLeland et al. 2013, 

Lim, Yu et al. 2013, Malkki 2013, Sterniczuk, Theou et al. 2013, Vagelatos and Eslick 

2013, Ju, Lucey et al. 2014). In 5XFAD mice, synaptic degeneration as evident from 

reduced expression of synaptic markers is seen commencing at the age of 4 months, the 

same age at which various hippocampal- and cortical- dependent memory impairments 

have been observed (Oakley, Cole et al. 2006, Ohno, Chang et al. 2006, Ohno 2009, Devi, 

Alldred et al. 2010, Devi and Ohno 2010, Girard, Baranger et al. 2013).  The 5XFAD mice 

have also been reported to have lower body weight (~10%) than wild-type controls at 6-7 

months of age (Jawhar, Trawicka et al. 2012, Bhattacharya, Haertel et al. 2014); whether 

this results from changes in food intake or metabolism has not been reported, to the best of 

the authors’ knowledge.  

             In the current study, all mice were exposed to an alternating light (L): dark cycle 

(D), with lights on from 7 AM to 7 PM. Food (pellets) and water were provided ad libitum. 

All experimental procedures (described below) were approved by the Institutional Animal 

Care and Use Committee at the University of Kentucky and are consistent with the Institute 

of Laboratory Animal Resources Guide for Care and Use of Laboratory Animals, 8th 

edition.  
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Sleep recording with piezoelectric system  

            Sleep and wake states were determined using a piezoelectric system, as described 

previously (Flores, Flores et al. 2007, Donohue, Medonza et al. 2008). The system is 

comprised of plexiglass cages lined with piezoelectric films across the bottom that detect 

pressure variations. For all sleeping postures of the mouse, pressure variations from 

breathing are detected. Sleep states are characterized by quasi-periodic signals with low 

variations in amplitude, whereas wakefulness and rest states are characterized by irregular 

transient and high amplitude pressure variations corresponding to conscience body 

movements and weight shifting. Signal features sensitive to the differences between the 

sleep and wake states are extracted from the short-time pressure signal segments, and 

classification is automatically performed every 2 seconds. Data collected from the piezo 

system were binned over specified time periods (e.g. 5 minutes, 1 hour) using a rolling 

average of the percent sleep, as well as binned by length of individual bouts of sleep and 

the mean bout lengths were calculated. The sleep bouts were computed as the duration of 

contiguous sleep states. Sleep bouts were terminated by any arousal more than 2 seconds 

in duration. When counting all short arousals and short sleep bouts, average bouts in mice 

are typically less than 1 minute (Franken, Malafosse et al. 1999). The piezo system has 

been validated with EEG and human observations and demonstrates a classification 

accuracy of over 90% (Donohue, Medonza et al. 2008, Mang, Nicod et al. 2014).   

            Prior to sleep recording, the mice were acclimated in the plexiglass cages for 2-4 

days. For the baseline measurements, mice were recorded for 3-5 days, during which time 

the mice were undisturbed except for monitoring once daily for food and water. The 

parameters that were analyzed under baseline conditions included total sleep time averaged 

over 24 h, average percentage of sleep across day (light phase), average percentage of sleep 
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across night (dark phase), average sleep bout length (across 24 hours, day and night), 

activity onset defined as the time relative to dark onset when the first sharp increase in 

percent wake states computed over a 2-hour sliding window occurs between 3 hours before 

and 3 hours after dark onset, on each day. This is typically the largest increase in this period, 

increasing from below 40% wake time to over 80% wake time. Diurnal wake ratios are 

related to the differential wake percentages during the light and dark phases, and are 

defined as the ratio of maximum wake-state percent in the dark phase to the minimum 

wake-state percent in the light phase, where percentages are computed over 3-hours 

intervals. Activity onset, as defined above, was also used a phase marker for the daily 

rhythm of sleep and activity.   

             For the second part of the study, the mice were sleep deprived for 4 hours 

beginning either at 8 or 9 AM. Sleep deprivation was accomplished by transferring the 

mice to novel cages. To keep the mice awake, nestlets (squares of cotton fibers that mice 

shred to build nests) and other novel objects were introduced to the cages, and cages were 

tapped gently when mice appeared ready to sleep. As the four hours progressed, more 

action was needed to keep mice awake. First, cage lids were gently removed and then 

replaced, providing additional air flow and olfactory and visual stimulation. If this failed 

to arouse the mice, then they were gently manipulated to induce movement. At the end of 

the sleep deprivation protocol, the mice were transferred back to their piezoelectric cages 

to continue monitoring sleep bout lengths and total amount of sleep.  

Data analysis  

            The data were analyzed using SPSS statistics software version 20.0. Group data 

was analyzed by a general linear model of analysis of variance (ANOVA) for the baseline 
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studies. Initial assessment showed that males and females differed significantly from each 

other (not shown), consequently all the data were pooled and analyzed separately for the 

two sexes. Before conducting ANOVA, the data were tested for normal distribution and 

homogeneity of variance. For all of the sleep-wake parameters under consideration (listed 

above), P-value less than 0.05 were considered significant. Genotype was considered as an 

independent variable and the parameter under observation as the dependent variable. 

Hourly sleep percentage and bout length after 4 hour of sleep deprivation were analyzed 

with mixed ANOVA. 

Post-mortem genotyping 

            After the sleep recording was complete, the mice were euthanized by CO2 

inhalation and decapitation. From dissected brains, cortex was preserved at -70° C for 

genotyping. Genotyping was conducted using conventional PCR or/and three-step serial 

extractions of Aβ with sequentially increasing denaturing conditions followed by 

quantification with a two-site (sandwich) ELISA as described previously (Kukar, Murphy 

et al. 2005, McGowan, Pickford et al. 2005, Beckett, Niedowicz et al. 2010, Bruce-Keller, 

Gupta et al. 2011). The primers used are listed here: 

PCR Primer Sequence (5' to 3') 

 

APP Forward: AGAGTACCAACTATGACTACG 

APP Reverse:  ATGCTGGATAACTGCCTTCTTATC 

PS1 Forward:  ATGACAGAGTTACCTGCACCGTTG 

PS1 Reverse:   CTGACTTAATGGTAGCCACGACCA  

Results  

Sleep under baseline (undisturbed) conditions 

            Sleep-wake patterns were monitored in 5XFAD mice in order to determine the 

effects of Aβ42 overexpression. Statistical analyses (ANOVA) showed that 5XFAD male 
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mice did not differ from control littermates in the average total amount of sleep [ i.e., sleep 

across 24h (F(1,49)= 1.11, P=0.298)]; daytime sleep (F(1,49)=0.48, P=0.493), or nighttime 

sleep (F(1,49)=0.63, P=0.431) (Figure 1 and Table 1)]. In the case of females, 5XFAD mice 

showed a significant reduction in average total amount of sleep (F(1,52)=7.09, P=0.01) as 

well as nighttime sleep (F(1,52)=7.54, P=0.008), compared to wild-type mice (Figure 1). 

Additionally, average total sleep bout length (across 24h) was reduced in 5XFAD mice of 

both the sexes; 14% in males and 26% in females (Figure 1). The decreased bout length in 

5XFAD mice was observed during both the light phase and the dark phase (male mice: 

average bout length across 24h, F(1,49)=12.12, P=0.001; daytime, F(1,49)=7.97, P=0.007; 

nighttime, F(1,49)=8.77, P=0.005) and for female mice: average bout length across 24h, 

F(1,52)=24.18, P<0.001; daytime, F(1,52)=10.48, P=0.002; nighttime, F(1,52)=34.48, P<0.001).   

 

 

Parameter Wild type          5XFAD Wild type          5XFAD 

  Male Male Female Female 

Percent sleep day 56.5±0.8 55.7±0.8 55.1± 1.4 52.5± 0.8 

Percent sleep night 27.1±1.5 25.4±1.4 23.2± 1.3 17.2± 1.8** 

Percent sleep total (24h) 41.8±0.8 40.6±0.8 39.1± 1.1 34.8± 0.9* 

Bout length day 60.4±2.0 54.0±1.3** 65.6± 2.1 54.0± 3.0** 

Bout length night 46.1±2.5 37.0± 1.9** 33.7± 1.2 21.0± 1.9*** 

Bout length total (24h) 54.5±1.9 46.9±1.2** 50.4± 1.2 39.9± 2.0*** 

Activity onset  0.11±0.13 0.13±0.18 0.14±0.17 0.02±0.99 

 

Values represent means ± SEM. *: P < 0.05; **P <0.01, ***P < 0.001.  All comparisons are 

between WT and 5XFAD of the same sex.   

Table 1 Effect of genotype on sleep wake traits under baseline conditions 
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Figure 1 Sleep-wake patterns in 5XFAD and WT littermates under baseline conditions. Average 

percent sleep across 3 consecutive days analyzed over (A) 24 hours, (B) dark phase, and (C) light 

phase. Female but not male 5XFAD mice show reduction in sleep duration across 24 h and during 

the dark phase.  (D to F) depicts average bout length in seconds (s) over (D) 24 h (E) dark phase, 

and (F) light phase.  5XFAD mice of both sexes had shorter average bout lengths across all phases 

in both the sexes. Values represent means ± SEM. *: P < 0.05; **P <0.01, ***P < 0.001 

 

A                D 

   
B                E 

   
C          F 
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There was no apparent genotypic difference in the sleep wake profile for both the 

sexes compared to their control littermates (Figure 2). Both WT and 5XFAD mice had 

activity onsets closely coinciding with dark onset, suggesting that there was no apparent 

change in phase of the daily sleep-wake rhythms. Similarly, there was no change in the 

peak activity or diurnal wake ratio. For males, the diurnal wake ratio (mean + S.E.M.) was:  

WT, 2.67±0.21, and 5XFAD, 2.93±0.34. For females, the diurnal wake ratio (mean + 

S.E.M.) was:  WT, 4.46±0.33 and 5XFAD, 4.38±0.58. The higher ratio in females was due 

to less sleep during the dark period, as is typical for female mice.   
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A. 

 
B. 

 
C. 

 
D. 

 
Figure 2 Representative sleep-wake profiles for 5XFAD mice (A and C) and control littermates (B 

and D). The percent wake plotted on the Y axis is represented as a sliding average over a 2 hour 

window. Hours of recording are plotted on the X-axis where 0 represents the midnight of day 1. 

Broken vertical lines demarcate the dark phase, which is also indicated by a heavy horizontal black 

line at the bottom.  
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Sleep after 4-h sleep deprivation 

           Percent of sleep and bout length (dependent variables) in the 6 hours immediately 

after sleep deprivation (4 hours) was compared between wild type and transgenic (5XFAD) 

groups using mixed ANOVA model with the genotype as the between-subjects variable 

and time (6 time points) as the repeated measure (or within subject variable). There was no 

interaction between genotype and time for bout length (males: F (5,65)=0.49,  P=0.782; 

females: F (5,75)=0.580, P=0.715) and sleep duration (males: F (5,65)=1.55,  P=0.186; 

females: F (5,75)=0.922, P=0.471) after sleep deprivation for either sex (Table 2 and Figure 

3). 

 

Percent sleep post-SD      

 1st h 2nd h 3rd h 4th h 5th h 6th h 

WT Male 24.4±6.2  65.9±7.3 46.9±8.5  

 

30.0±7.5 41.4±10.3 10.4±8.2 

5XFAD Male                                             24.9±5.1 49.1±5.9 49.8±7.0 39.9±6.1 35.3±8.4  23.7±6.7 

WT Female 60.4±5.9  67.4±4.2 67.8±4.6 62.8±4.2 54.2±6.2 59.3±4.1 

5XFAD Female                                             50.3±8.1 57.4±5.7 54.3±6.3 56.3±5.7 55.6±8.5 42.5±5.6 

       

    Bout length (seconds) post-SD     

 1st h 2nd h 3rd h 4th h 5th h 6th h 

WT Male 22.9±4.5  55.9±6.7 51.6±10.3  37.5±7.0 48.8±23.3 22.1±10.5 

5XFAD Male                                             20.5±3.7 36.7±5.5 43.5±8.4 34.9±5.7 50.6±19.0  25.9±8.6 

WT Female 42.5±5.1  50.4±4.7 52.0±5.1 48.4±5.3 45.0±4.6 50.5±5.5 

5XFAD Female                                             45.4±6.9 44.2±6.4 46.6±6.9 43.7±7.1 37.7±6.3 39.6±7.4 

Values represent mean ± SEM 

 

Table 2 Effect of genotype on sleep wake traits after sleep deprivation (SD) 
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Discussion  

 

            Sleep has become a key avenue of research in the quest to find mechanisms 

underlying Alzheimer’s disease and development of effective therapeutics. It plays a 

variety of roles crucial to maintaining optimal brain functions and has been found to be 

           A        B 

                  
 

           C                                         D 

                  

Figure 3 Comparison of the sleep-wake patterns of WT and 5XFAD mice after a sleep deprivation of 4 h. 

Average percent sleep in males (A),  females (B), and average bout length in male (C) and female mice (D) 

was analyzed for 6 h of the recovery period. No genotype difference was found using Mixed ANOVA. 
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closely linked to AD pathology. One source of evidence comes from a study where 

improved sleep lowered the risk of AD in people with at least one APOE Ɛ4 allele (Lim, 

Yu et al. 2013, Simon, Greenaway et al. 2013). This finding is consistent with other studies 

showing that AD patients frequently have poor quality of sleep, even before the onset of 

clear symptoms. Poor sleep may be one factor contributing to their compromised cognition 

since sleep plays a critical role in learning, memory, and other brain functions (Durmer and 

Dinges 2005, Killgore, Balkin et al. 2006, Killgore, Rupp et al. 2008, Ker, Edwards et al. 

2010, Mongrain, Hernandez et al. 2010, Rillich, Schildberger et al. 2011, Bertram and 

Rook 2012, Callander, Bolton et al. 2012, Reichert and Gerhardt 2013).  In a recent study, 

Lim and colleagues found that loss of neurons  in the intermediate nucleus, a proposed 

homologue of the rodent ventrolateral preoptic nucleus (VLPO), is a potential contributing 

factor for the fragmented sleep seen in older individuals including Alzheimer’s patients 

(Lim, Ellison et al. 2014).  

            This study aimed at identifying sleep-wake alterations in the AD mouse model- 

5XFAD, that recapitulates certain features of the human AD condition and may help in 

understanding the underlying mechanisms of this disease. Both male and females 5XFAD 

mice belonged to the age group, 4 to 6.5 months, which shows many of the pathological 

characteristics of AD including accumulation of intraneuronal Aβ, cerebral plaque 

deposition, gliosis, synaptic degeneration, neuronal loss, and memory deficits (Oakley, 

Cole et al. 2006, Ohno, Chang et al. 2006, Jawhar, Trawicka et al. 2012, O'Hagan, Wharton 

et al. 2012, Eimer and Vassar 2013, Girard, Baranger et al. 2013, Ju, McLeland et al. 2013, 

Lim, Yu et al. 2013, Malkki 2013, Sterniczuk, Theou et al. 2013, Vagelatos and Eslick 

2013, Ju, Lucey et al. 2014). Early onset of the robust pathology seen in these mice 



39 
 

attributable to the incorporation of five additive mutations lead to increased total Aβ 

production which makes the 5XFAD mouse a useful experimental tool for investigating 

the effects of increased Aβ42 levels which is thought to be one of the key factors involved 

in disease progression. Also, only a handful of previous studies of AD mouse models have 

included both sexes or investigated sleep fragmentation.  

            Our findings show that under baseline conditions, average length of sleep bouts was 

reduced in both male and female 5XFAD mice. In addition, female mice also had 

significant reduction in total sleep time averaged over 3 days and sleep occurring during 

the dark periods. However, male mice did not differ from control littermates in their sleep 

duration. In contrast to initial expectations, reductions in bout length were found to be 

greater during the night (the active phase in mice), which does not necessarily model the 

human condition of disrupted sleep at night (the usual inactive phase for humans). 

However, the overall decrease in bout lengths in the 5XFAD mice suggests increased 

fragmentation and disruption in sleep consolidation throughout the day. This finding is 

likely to be relevant to human sleep disturbances, since mice (unlike humans) usually 

exhibit considerable amounts of sleep during both the day and night. Assessment of the 

sleep-wake parameters for the 6 h immediately after sleep deprivation (for 4 h) indicated 

that genotype did not affect bout length or sleep percentage in either males or females, 

although there was a general trend of reduced bout length in both sexes.  

            In general, our findings of decreased sleep bout lengths in 5XFAD mice support 

and extend previous findings of differences in sleep physiology in other AD mouse models. 

Reduced NREM duration has been reported in PLB1triple knock in mice (hAPP/hTau/hPS1), 

whereas lower REM sleep (during light period) was observed in PDAPP (overexpresses 
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hβAPP) and Tg2576 mice (Huitron-Resendiz, Sanchez-Alavez et al. 2002, Zhang, Veasey 

et al. 2005, Platt, Drever et al. 2011). APPswe/PS1δE9 mice aged 9 months had reduced 

REM and NREM sleep stages across both light and dark phases (Bertram, Rook et al. 2011, 

Roh, Huang et al. 2012). However, some AD mouse models, such as APP/PS1 knock-in 

mice, do not exhibit obvious changes in sleep (Bassett, Gogakos et al. 2012, Duncan, Smith 

et al. 2012, Jiang, Franklin et al. 2012).   

            In the current study, we did not find any change in the phase of the rhythm in 

5XFAD which replicates previous findings in APP/PS1 mice and other AD mouse models 

(Sterniczuk, Dyck et al. 2010, Bassett, Gogakos et al. 2012, Duncan, Smith et al. 2012, 

Jiang, Franklin et al. 2012). In this respect, the AD mice do not closely resemble the AD 

patients, which show large delays in the phase of their activity and temperature rhythms 

compared to those of normal elderly subjects. However, there were sex differences in the 

5XFAD transgenic mice. The mechanisms causing the sex differences in sleep over 24 

hours and sleep at night in the 5XFAD mice are unknown. It is possible that sex disparity 

in Aβ levels contributes to the sleep differences. Oakley et al in their studies on 5XFAD 

have reported that Aβ42 levels were higher in young females compared to age-matched 

males (until at least 9 months of age). This may explain the differences found between the 

two sexes in our study. Further, this observation indicates that the extent of sleep 

disruptions may be linked to the levels of Aβ as proposed by previous studies. In addition, 

some studies indicate that hormonal alterations in the later part of life in women may pose 

a higher risk of AD for them as compared to men, although some studies indicate otherwise 

(Morinaga, Ono et al. 2011, Barron and Pike 2012, O'Hagan, Wharton et al. 2012, Anaclet, 

Ferrari et al. 2014, Bhattacharya, Haertel et al. 2014, Civelek and Lusis 2014, Ju, Lucey et 
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al. 2014, Lan, Zhao et al. 2014, Lim, Ellison et al. 2014, Lim, Gerstner et al. 2014, Mang, 

Nicod et al. 2014, Niedowicz, Reeves et al. 2014, Webster, Bachstetter et al. 2014). It is 

possible that there may be other underlying causes present which require further 

investigation. In the 5XFAD mice, Devi et al illustrated that stressful conditions resulted 

in higher Aβ42 levels and plaque burden in hippocampus of females but not in males (Devi 

and Ohno 2010). Sex differences were also seen in a study of Tg2576 mice (Wisor, Edgar 

et al. 2005, Wisor and Kilduff 2005). Post AD pathology (22 months old), females in 

addition to exhibiting sleep-wake alterations common to males also showed increased 

REMS. However, Tg2576 mice (15-17 months) did not show any significant effect of sex 

or sex X genotype interaction on theta to delta ratio in the EEG (Wisor, Edgar et al. 2005, 

Wisor and Kilduff 2005). In another study in 3XTg mice, males with AD pathology did 

not show genotypic differences in circadian phase shifts post AD pathology but females 

had a tendency towards large circadian phase shifts in response to light pulses presented in 

the early subjective night (Sterniczuk, Dyck et al. 2010).   

            While the present findings indicate that the 5XFAD mice exhibits some sleep 

alterations that are relevant to AD, there were also some limitations to this study. One 

limitation was that the algorithms currently used by the piezoelectric system do not 

distinguish REM sleep from NREM sleep, although algorithms under development may be 

able to do this in the future. Also, it should be kept in mind that this mouse model represents 

the advanced stage of AD with its early onset and extensive pathology.  

            5XFAD mice show amyloid pathology- an important characteristic of Alzheimer’s 

disease - but fail to exhibit hyperphosphorylated tau. Those AD mouse models that do show 

tau pathology differ from human clinical presentation in important AD features like 
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neuronal loss and intraneuronal Aβ (Wirths and Bayer 2010, Barone and Menna-Barreto 

2011, Bertram, Rook et al. 2011, Bliwise, Mercaldo et al. 2011, Bruce-Keller, Gupta et al. 

2011, Brunner, Gotter et al. 2011, Holtzman, Morris et al. 2011, Jiang, Striz et al. 2011, 

Keane, Goodstadt et al. 2011, Li, Cheung et al. 2011, Lloyd 2011, Moreno-De-Luca, 

Helmers et al. 2011, Morinaga, Ono et al. 2011, Pack and Pien 2011, Pavlova and Sheikh 

2011, Philip, Sokoloff et al. 2011, Platt, Drever et al. 2011, Raizen and Wu 2011, Rillich, 

Schildberger et al. 2011, Ringwald, Iyer et al. 2011, Rolls, Colas et al. 2011, Skarnes, 

Rosen et al. 2011, Sperling, Aisen et al. 2011, Barron and Pike 2012, Bertram and Rook 

2012, Callander, Bolton et al. 2012, Jawhar, Trawicka et al. 2012, Sakurai 2012, Zeng, 

Mott et al. 2012, Dyakonova and Krushinsky 2013, Fitzsimmons and Bertram 2013, 

Reichert and Gerhardt 2013, Stevenson and Schildberger 2013).  In spite of their various 

limitations, the 5XFAD mice and other AD mouse models exhibit sleep alterations that 

resemble some aspects of the sleep disruptions reported in AD patients. As described 

above, the 5XFAD mouse model is especially useful because it exhibits neuronal loss, 

similar to AD patients, and the early onset pathology in the 5XFAD mice allows them to 

be studied at younger ages than other AD mouse models.  Therefore, this mouse model is 

useful for investigations of the role of sleep loss in the progression of AD. 

            Recent studies show that sleep impacts Aβ levels in the brain. Diurnal oscillations 

of Aβ levels in human cerebrospinal fluid (CSF) and in mouse hippocampal interstitial 

fluid (ISF) exhibit lowest values during the rest phase. Furthermore, sleep deprivation 

during the normal rest phase elevates these Aβ levels (Kang, Lim et al. 2009). The diurnal 

rhythms of Aβ levels become attenuated and eventually lost as Aβ deposition in the brain 

progresses (Bertram, Rook et al. 2011, Roh, Huang et al. 2012). These changes begin in 
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parallel to onset of sleep disruptions in mice (Bertram, Rook et al. 2011, Roh, Huang et al. 

2012). Further, a recent study by Xie and colleagues demonstrated that sleep strongly 

increases clearance of Aβ, one of the metabolites generated by neuronal activity, which is 

greatest during wakefulness (Xie, Kang et al. 2013). These studies further support the 

concept that sleep disruption may be one of the causal factors involved in progression of 

the AD. A feedback loop might exist where Aβ accumulation might deteriorate sleep 

quality which could lead to further Aβ accumulation and increasing the susceptibility of 

the patients further to the pathophysiological changes associated with AD. 

Conclusions 

            The 5XFAD mouse model of AD overexpresses amyloid β at an early stage and is 

therefore useful in studying the effect of Aβ on sleep. Our findings showed various sleep-

wake alterations in both male and female 5XFAD mice under baseline conditions and also 

after sleep deprivation. The overall decrease in bout length suggests increased 

fragmentation and disruption in sleep consolidation that may be relevant to human sleep 

disturbances in AD and other neurological diseases. Because sleep disturbances precede 

overt AD symptoms by ten years or more, and experimental sleep disruption accelerates 

Aβ deposition, sleep enhancement may be a valuable therapeutic target for treatment of 

AD that can be investigated in 5XFAD mice.   
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Abstract  

 

Sleep has been suggested to play a variety of roles ranging from learning, memory 

consolidation, and clearance of toxic metabolites such as amyloid beta (A), to regulation 

of energy metabolism. Current data suggest bidirectional roles for sleep and Alzheimer’s 

Disease (AD), with poor sleep promoting AD, and AD increasing sleep disruption. 

Insufficient sleep is also correlated with an increased risk of obesity and type 2 diabetes 

mellitus (T2DM), which in turn are increasingly linked to AD. Previous studies have shown 

that leptin-resistant db/db mice, which have T2DM and obesity, have attenuated sleep-

wake rhythms in addition to increased sleep duration and sleep fragmentation. AD mouse 

models often show fragmented and/or reduced sleep. To examine the interaction of T2DM 

and AD, a novel mouse model was created by combining the db/db mutations with a 

commonly used mouse model of AD (APP/PS1). Mice with these combined mutations 

display severe cerebrovascular pathology, without increased A deposition (Neidowicz et 

al., 2014). Cognitive impairments in the db/AD mice were more profound than those in 

db/db or APP/PS1 mice (Neidowicz et al., 2014). Given the association of sleep disruptions 

in both of these disorders, we examined multiple sleep variables in db/AD, and the 

individual mouse models db/db and APP/PS1. In the db/AD mice, we found significant 

alterations in baseline sleep including age associated reduced sleep duration across 24h, 

and in the dark as well as the light phase. The most significant differences were found 

during the dark phase. We also found sex and age effects for many of the sleep parameters. 

These db/AD mice may serve as an important tool to study the mechanisms involved at the 

intersection of T2DM and AD, and to examine sleep interventions to slow the progression 

of disease. 
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Introduction 

 

 Sleep is indispensable for the role it plays in learning, memory consolidation, 

energy conservation, and the overall health of an animal. Sleep is also important for optimal 

cognition over short time periods, and probably also over longer time periods of many 

years (Ellenbogen 2005, Killgore and Weber 2014). Sleep perturbations are seen in a wide 

array of diseases- neuromuscular disorders, neurodegenerative diseases including 

Alzheimer’s disease (AD), Parkinson’s disease, and Diffuse Lewy Body disease, as well 

as metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM) (Knutson, 

Spiegel et al. 2007, Rothman and Mattson 2012, Suzuki, Miyamoto et al. 2012). With the 

increased life expectancy of the human population, the prevalence of age-related ailments 

such as AD and T2DM have reached epidemic proportions; therefore, it is imperative to 

interrogate the underlying mechanisms by which sleep modulates these pathologies.  

 

AD is one of the most common types of dementia; characterized by amyloid beta 

(A) plaques and neurofibrillary tangles as the hallmarks (Barker, Luis et al. 2002). 

Approximately, 25-60% of AD patients are affected by profound circadian and sleep-wake 

aberrations which are the major reason for their institutionalization (Pollak, Perlick et al. 

1990, Bianchetti, Scuratti et al. 1995, Moran, Lynch et al. 2005, Guarnieri, Adorni et al. 

2012). Circadian dysfunction is presented as a reduction of locomotor activity, and a phase 

delay of as much as 4 hours in body temperature and activity rhythms (Satlin, Volicer et 
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al. 1995, Harper, Stopa et al. 2001, Harper, Volicer et al. 2005). The sleep alterations are 

manifested as a reduction in slow wave sleep (Loewenstein, Weingartner et al. 1982, 

Martin, Loewenstein et al. 1986, Vitiello, Prinz et al. 1990) and rapid eye movement 

(REM) sleep, increased latency to REM sleep, increased sleep fragmentation associated 

with reduced nighttime and increased daytime sleepiness (Holth, Patel et al. , Prinz, 

Peskind et al. 1982, Martin, Loewenstein et al. 1986, Vitiello, Prinz et al. 1990, Petit, 

Gagnon et al. 2004). These sleep impairments in turn are positively correlated to the degree 

of progression of AD and also believed to lead to memory deficits (Walker 2009). 

Aggregation of A in the brain has been implicated in sleep perturbations and also 

in AD pathogenesis. A deposition has been reported to begin as early as 10-15 years 

before the onset of clinical symptoms, and sleep disruptions as well can be seen since 

preclinical stages of AD (Kang, Lim et al. 2009, Potvin, Lorrain et al. 2012, Sterniczuk, 

Theou et al. 2013, Hahn, Wang et al. 2014). In one study, cognitively normal individuals 

with increased A deposition were found to have shorter sleep and poorer quality of sleep 

(Ju, McLeland et al. 2013, Malkki 2013, Spira, Gamaldo et al. 2013). Studies in animal 

models also corroborate these findings and demonstrate an association between sleep 

perturbations and AD pathogenesis. In the APPswe/PS1dE9 AD mouse model, normal 24-

hour fluctuations of A in the hippocampal interstitial fluid (ISF) dissipated in older 

animals with A plaque deposition along with disruption of sleep-wake cycle (Roh, Huang 

et al. 2012). Recently, Xie and colleagues have shown that sleep is linked to as much as 

60% increase in brain interstitial space, which in turn facilitates increased A clearance 

(Xie, Kang et al. 2013). Thus, the existing data posits that there exists a bidirectional role 
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for sleep and AD, with poor sleep increasing A deposition and reducing clearance, and 

increasing A leading to more sleep disruption. 

T2DM, a chronic metabolic disorder, is a major health concern that affects 8% of 

adults in America (Harris, Flegal et al. 1998). T2DM and associated obesity, in turn are 

risk factors for other diseases including cardiovascular diseases as well as metabolic 

syndrome (Kahn, Buse et al. 2005). Similar to bidirectional relationship between A 

deposition and AD, it has been postulated that a feedback loop exists between sleep 

impairments and type 2 diabetes (Barone and Menna-Barreto 2011). Additionally, reduced 

sleep is another risk factor for diabetes (Laposky, Bradley et al. 2008). Multiple studies 

have shown that sleep restriction (or deprivation) leads to reduced insulin sensitivity and 

impaired glucose metabolism (Knutson, Spiegel et al. 2007, Donga and Romijn 2014). 

Conversely, in rodents, diet (type, its availability and timings) has been shown to affect 

sleep patterns (Mavanji, Billington et al. 2012). The db/db mice have attenuated sleep-

wake rhythms in addition to increased sleep fragmentation and increased overall sleep 

duration, which further strengthens the idea that sleep and metabolism are linked inversely 

(Laposky, Shelton et al. 2006, Laposky, Bradley et al. 2008).  

AD and T2DM, which are both age-associated diseases, share several similarities 

such as cognitive deficits (Stolk, Breteler et al. 1997, Saedi, Gheini et al. 2016, Zilliox, 

Chadrasekaran et al. 2016), degenerative changes, and sleep alterations (Kuusisto, Koivisto 

et al. 1997, Luchsinger, Tang et al. 2004, Peila, Rodriguez et al. 2004, Yaffe, Blackwell et 

al. 2004, Ronnemaa, Zethelius et al. 2008, Ronnemaa, Zethelius et al. 2009, Schrijvers, 

Witteman et al. 2010). Amyloid is conceived to be a main factor responsible for the 

observed cellular degeneration of brain and pancreas in AD and T2DM, respectively 
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(Abedini and Schmidt 2013). Since the first Rotterdam study, many other studies have 

shown that individuals with diabetes have a doubled risk of AD (Ott, Stolk et al. 1999, 

Kroner 2009). Janson et al in a study of Mayo Clinic Alzheimer Disease Patient Registry 

(ADPR) found that diabetic patients are more vulnerable to AD compared to non-diabetic 

individuals (Janson, Laedtke et al. 2004). Thus, it is proposed that there may be common 

pathophysiological mechanisms related to both the diseases. 

The patients with AD and a prior history of T2DM have cerebrovascular anomalies, 

in addition to the typical AD-related neuropathology without showing additional A 

burden. The role of cerebrovascular anomalies or vascular dementia, a frequent 

comorbidity with Alzheimer’s disease, is poorly understood. An animal model 

recapitulating both disease aspects is critical to understand how the two conditions interact 

at the cellular and molecular level, and promote cerebrovascular abnormalities. Previous 

attempts to model key features of both- diabetes and AD in rodents includes utilization of 

streptozotocin, which induces type 1 rather than type 2 diabetes (Park 2011, Thibault, 

Anderson et al. 2013). Other approaches such as feeding of a high-fat or western diet had 

only short term effects, while combined models of APP and insulin-resistant, or APP and 

leptin-resistant mice showed only a limited spectrum of pathology (Killick, Scales et al. 

2009, Studzinski, Li et al. 2009, Julien, Tremblay et al. 2010, Kohjima, Sun et al. 2010, 

Takeda, Sato et al. 2010).  

Recently, Niedowicz and colleagues created a novel mouse model by crossing 

leptin resistant db/db mice with APP/PS1, a knock-in mouse model of AD (Neidowicz et 

al., 2014). The parental strains- db/db animals are obese since the age of 3-4 weeks, display 

elevated plasma insulin at an early age of 10 days and increase in blood sugar levels since 
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4 to 8 weeks. They have a shorter life span and tend to live upto 18-20 months of age 

(Coleman 1978). A deposition in APP/PS1 animals can be observed since the age of 6 

months (Anantharaman, Tangpong et al. 2006). Neuritic plaques do not appear until 9 

months of age (Murphy, Beckett et al. 2007). Cognitive and memory deficits have been 

reported during old- age (Bruce-Keller, Gupta et al. 2011). 

The db/AD mice resulting from the cross of the above 2 strains, displayed 

additional pathologies than either of the parental lines, in particular, severe cerebrovascular 

abnormalities including aneurysms and small strokes, without increased A deposition 

(Neidowicz et al., 2014). Cognitive impairment on the Morris water maze task was 

markedly profound in these mice compared to db/db and APP/PS1 mice alone. These 

db/AD mice are obese and glucose intolerant beginning at an early age and have 

parenchymal amyloid plaques similar to parental lines (Neidowicz et al., 2014). Thus, the 

db/AD mouse model mimics several of the significant features of humans with T2DM and 

AD. Given the role of sleep in both of these disorders, in this study we aimed to evaluate 

multiple sleep variables in the combined mouse model (db/AD) and also, the individual 

mouse models db/db and APP-PS1 and WT mice for comparisons. 

Methods and Design  

Generation of combined- db/AD mice 

 As  described previously, the db/AD mice were generated by crossing APPNL/NL 

/PS1 P264L/P264L  
(APP/PS1) knock-in mice (Citron, Oltersdorf et al. 1992, Mullan, Crawford 

et al. 1992) with leptin receptor-deficient mice (Leprdb/db) (Niedowicz, Reeves et al. 2014). 

Briefly, the original heterozygous Lepr+/db stock (homozygous db/db animals are infertile) 

on a C57BL/6J background was purchased from The Jackson Laboratories, and APP/PS1 
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mice on CD-1/129 background were obtained from a breeding colony maintained at 

University of Kentucky and derived from stock purchased from Cephalon. F1 mice, 

heterozygous for the 3 alleles were then crossed to generate offspring of the genotypes: 

wild type, and homozygous db mice that were in turn wild type and homozygous for APP 

and PS1. For our study, we utilized the genotypes as listed: Leprdb/db  X APPNL/ NL /PS1 

P264L/P264L (db/AD), Lepr+/+  X APPNL/ NL /PS1 P264L/P264L  
(AD), Leprdb/db  X APP+/+ /PS1 

+/+ (db) and Lepr+/+  X APP+/+ /PS1 +/+ (WT).  

Experimental procedures 

Animal housing and sleep phenotyping  

This study utilized individually housed control and mutant mice generated on B6 

X CD1/129 background. We included both males and females that were 2 to 16 months 

old. The animals were provided with ad-libitum access to water and food. Prior to the sleep 

recordings, mice were group-housed and exposed to a 14:10 alternating light/dark (LD) 

cycle (lights on at 8 h). We recorded a total of 119 animals in several subgroups as listed 

in Table 1. The animals underwent sleep recording in 2 batches based on their availability 

at two different times. The first batch included 29 animals, and the rest of the animals were 

recorded in the second batch. The baseline sleep data were collected for 3 days from most 

animals but for only 2 days in 30 animals because of issues at the animal facility. During 

sleep recording, the mice were exposed to a 12:12 LD cycle (lights on at 4am for first batch 

and 8am for second batch). The PiezoSleep system used in the study is comprised of 8 quad 

cage units, which allowed assessment of up to 32 mice per experiment. Pine shavings were 

added as bedding to the cages, and cotton squares (nestlets), which could be shredded and 

used to build nests, were provided as environmental enrichment. All experimental 
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procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Kentucky and are consistent with the Institute of Laboratory Animal 

Resources Guide for Care and Use of Laboratory Animals, 8th edition.  

Genotyping 

Tail snips were collected before weaning for genotyping for APP, db and PS1. 

Genomic DNA was isolated and purified using the Promega Wizard Genomic DNA kit 

(Promega; Madison, WI). db genotyping was then carried out using a single nucleotide 

polymorphism Taqman genotyping kit purchased from Applied Biosystems Life 

Technologies. As for APP and PS1, genotyping was performed using Promega GoTaq 

Flexi DNA Polymerase (as described previously; (Anantharaman, Tangpong et al. 2006)). 

Sleep recording with piezoelectric system 

Sleep and wake states were determined using the PiezoSleep System as described 

elsewhere (Flores, Flores et al. 2007, Donohue, Medonza et al. 2008, Mang, Nicod et al. 

2014). The system is comprised of plexiglass cages lined with piezoelectric films across 

the cage floor that detect pressure variations. For all sleeping postures, pressure variations 

from breathing are detected. Sleep states are characterized by quasi-periodic signals with 

low variations in amplitude, whereas wakefulness and rest states are characterized by 

irregular transient and high amplitude pressure variations corresponding to voluntary body 

movements and weight shifting.  

Signal features sensitive to the differences between the sleep and wake states are 

extracted from 8-second pressure signal segments, and classification is automatically 

performed every 2 seconds using overlapping windows. Sleep-wake decisions in the 2-

second intervals are binned over specified time periods (e.g., 5 minutes, 1 hour) for local 
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percent sleep/wake statistics. In addition, durations of consecutive sleep states are used to 

compute mean sleep bout lengths. For the current study, the PiezoSleep system eliminates 

commonly occurring short arousals (as seen during instances of stirring or twitching) 

during sleep bouts. These arousals were counted as wake instances in the previous chapter, 

resulting in shorter bout lengths. 

The sleep bout is calculated as the amount of time from initial sleep state to the first 

30-second interval when the mouse is awake for over 50% of the time. The sleep bout 

length computed with the 50% wake in the 30-second interval rule typically marks a clear 

transition into an extended wake period, where the mouse does not quickly transition back 

into the sleep state. The piezo system has been validated with simultaneous EEG/EMG and 

human scoring of mice demonstrating a classification accuracy of over 90% in mice 

(Donohue, Medonza et al. 2008, Mang, Nicod et al. 2014). Mice unlike humans, are 

nocturnal and polyphasic i.e. they have fragmented sleep (each episode termed as bout), 

distributed across 24 h, and more so during daytime. Thus their sleep is measured in terms 

of number and length of such sleep bouts. The sleep statistics analyzed under baseline 

(undisturbed) conditions for experiments in this report were: percent sleep over 24 h 

periods, percent sleep during light phase, percent sleep during dark phase, average sleep 

bout length (across 24 h, light phase, and dark phase periods).  

Statistical Analysis 

Females and males were broadly grouped into 2 age groups: young (2-8 months), 

and old (8.5-15 months), given the predicted life span of db/AD mice is 15-16 months 

(Niedowicz, Reeves et al. 2014). For baseline data, we conducted ANOVA (analysis of 

variance) to determine statistically significant differences for the sleep-wake parameters 
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between different genotypes; segregated into subgroups by sex and age. As mentioned 

earlier, the animals were recorded in 2 batches. Initial assessment showed that there was 

no difference between first and second batch of animals therefore, the data was merged for 

subsequent analysis.  

To examine the association between sleep parameters and interaction effects 

(genotype X sex, genotype X age, age X sex), baseline data was examined using multiple 

regression model. Each of the six sleep-wake parameters was treated as the outcome of 

interest. Genotype (db/AD, AD, db, WT), sex (male and female) and age (young and old) 

were included as categorical predictors. Backward selection approach was utilized with a 

significance level of five percent for the models, starting with the main effects of all 3 

covariates and all the possible 3 two-way interactions (described above). Individual 

predictor terms and their interaction terms were removed if the P value was less than 0.05. 

JMP statistics software version 12.0 was used for all modeling analysis and ANOVA. Plots 

were used to test the data for normal distribution and homogeneity of variance. 

Results 

In all, 119 animals- males and females, categorized as young and old were utilized. 

The number of animals per sub-group is listed in table 1. The means and standard error for 

each group is presented in table 2.  

Females 

Genotypic differences 

Total sleep time (% sleep per 24h) was increased in old db females compared to 

age-matched all other 3 genotypes- db/AD (p<0.0011), wild type (p=0.019) and AD 

(p=0.0224). A similar genotype effect was seen concerning sleep during the dark phase, in 
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that db mice had increased sleep amounts compared to the other 3 groups of animals- 

db/AD (p=0.0017), AD (p=0.001) and WT (p=0.0017). The order follows: db>WT and 

AD>db/AD for sleep across 24h and dark phase. This indicates that genotypic differences 

in sleep duration mainly occur during the active or dark phase. The genotypic effect was 

less prominent in younger animals; db/AD had elevated sleep compared to controls across 

24 h (p=0.0291) as well as during the dark phase (p=0.0041). db/AD and db had 

comparable sleep durations. There was no genotype difference in bout length durations for 

any of age groups (Figure 1 and Table 2).   

Effect of age 

Old db/AD mice slept less than the young animals across both light and dark phase. 

In contrast, bout length did not reflect an age difference. We did not have any females in 

the AD young group. For the remaining groups, we did not find any effect of age. 

Males 

Genotypic differences 

  Younger males displayed more prominent genotypic differences unlike females 

which showed marked differences in older age. Both db and db/AD mice have increased 

duration of sleep across 24 h, and dark phase compared to WT and AD animals. The total 

sleep duration is comparable between db mice and db/AD mice, and between WT mice and 

AD mice. Concerning sleep duration during the light phase, db/AD and db mice mice had 

similar sleep durations that were elevated compared to WT (p=0.0151 and 0.0129 

respectively). Sleep durations tend to be equal for db/AD and db across light phase. Bout 

length across 24h was in the same mean range for all the groups. Mice of the db/AD 

genotype had shorter sleep bouts than WT mice during the dark phase, and AD mice had 
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increased bout lengths with respect to db animals for the light phase. AD mice did not differ 

from WT for bout lengths across 24 hours or during the dark or light phase. Concerning 

the older subjects, no db mice were available. For the other three groups, there were no 

differences in sleep amounts or the bout lengths. 

Effect of age 

The older males of the db/AD genotype slept less during the light phase than 

younger mice. Like db/AD females, younger male littermates slept longer than old animals 

during light phase. AD young males had less sleep duration compared to old mice during 

24h and dark phase. Control males in general had increased bout lengths during night 

compared to females. db/AD young males during light phase displayed increased bout 

lengths than females of same age.  

Multiple regression 

 The adjusted multiple regression models are shown in Table 3, with each sleep 

parameter as an outcome of interest, and genotype, age, sex or/and the interaction terms- 

ageX genotype and sex X genotype as predictor variables. The co-variates included in each 

of the model is depicted in the Table 3. The selection of the variables is based on backward 

elimination as described in the Methods section. For sleep across 24h, the Radjusted
2 is 0.19 

which means that the model explains 19% of variation seen in overall sleep. The diabetic 

animal group has significantly higher sleep percent (p=0.0007) than the control group after 

controlling for age and ageXgenotype interaction effect. Age and genotype interaction 

effect was significant for db/AD group compared to WT animals. For sleep across dark 

phase, the model explained 26% of the variation. After adjusting for other covariates in the 

model, diabetic animals were estimated to sleep 10% more during the dark phase compared 
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to controls (p<0.0001). In addition, AD animals slept approx. 6% less than the reference  

(control) group (p=0.0045). Similar to total sleep, age and genotypic interaction for db/AD 

animals were associated with sleep across the dark phase (p=0.0002) as well as across the 

light phase (p=0.0034).  

Sex was included as covariate in the models for bout length. In case of bout length 

across 24h, AD animals had increased bout length (42 s/bout, p=0.0236) after controlling 

for other covariates in the model. Females compared to males had shorter sleep bout across 

24 h (31.5 s; p=0.0055) as well as during the dark phase (28.63 s; p=0.0077). Additionally, 

sex Xage interactions were significant for the old animals (p=0.0159) for bout length 

during the dark phase. Older animals had shorter bout length during light phase (39.32s; 

p=0.0359) than the younger mice after adjusting for the other predictors in the model. 

Females also have reduced bout lengths for the light phase (39.48 s; p=0.013). AD animals 

have increase in light phase bout lengths by an estimated mean of 100s (p=0.0004) with 

respect to the controls.  
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Table 3 List of the sample size for each of the group divided based on genotype, sex and 

age 

Animal count 

Genotype-sex-age Count 

Db/AD -F-old 7 

Db/AD -F-Young 17 

Db/AD -M-old 4 

Db/AD-M-Young 8 

Db-F-old 3 

Db -F-Young 8 

Db -M-Young 11 

AD -F-old 19 

AD -M-old 7 

AD -M-Young 3 

WT -F-old 14 

WT -F-Young 6 

WT -M-old 7 

WT -M-Young 4 

Total 119 

 

Table 4 . Effect of genotype on sleep wake traits under baseline conditions for males and 

females 

Males   Genotype   

Parameter Age group WT  DB AD AD/Db 

% Sleep 24 h Old 47.6±2.3 N.D. 50.7±1.6 43.8±7.5 

 Young 43.5±2.2 55.6±1.6 44.3±3 53.7±1.3 

% Sleep Dark Old 38.7±3 N.D. 37.2±2.5 35.8±3.8 

 Young 31.4±2.5 45.3±1.8 25.3±3.7 41.3±2.5 

% Sleep Light Old 56.5±2.3 N.D. 64.2±2 51.9±11.4 

 Young 55.7±3.5 65.9±2.4 63.3±2.4 66.1±1.5 

Bout length 24h Old 439.6±44.6 N.D. 528.2±41.1 465.2±119.7 

 Young 501.2±52.3 466.7±27.1 542.2±31.8 462.7±21.5 

Bout length Dark Old 384.6±43.4 N.D. 429.9±42.6 412.1±97.3 

 Young 438.4±57.2 372.8±23.1 313.4±41.2 330.2±27 

Bout length Light Old 496.7±53.4 N.D. 633.9±44 512±142.4 

 Young 562.3±51.1 577.6±36.1 763.4±14.5 660.7±57.7 
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Females   Genotype   

Parameter Age group WT  DB AD AD/Db 

% Sleep 24 h Old 48.7±1.8 58.2±2.1 49.2±0.8 43.3±3.9 

 Young 40.9±8.2 51.9±4 N.D. 53.5±1.7 

% Sleep Dark Old 33.9±2.9 52.9±2.1 33.4±1.5 32.4±4.2 

 Young 26.4±6.2 42.7±4.4 N.D. 43.6±2.4 

% Sleep Light Old 63.5±1.9 63.6±2.4 65±1.4 54.3±4.4 

 Young 55.4±11.3 61.1±3.8 N.D. 63.5±1.6 

Bout length 24h (s) Old 395±29.3 324.5±15.1 443.5±29 404.8±66.7 

 Young 385.8±59.3 438.7±34.5 N.D. 419.6±24.7 

Bout length Dark (s) Old 272.6±16.8 275.6±22.3 324.4±21.6 310.3±72.5 

 Young 280.3±29.5 369.1±34.5 N.D. 360.3±31.4 

Bout length Light (s) Old 476.5±34.1 386.1±4.6 571.1±52.8 485.9±65.8 

 Young 445.9±104.8 511.7±38.1 N.D. 494.2±24.2 

  

Values represent mean ± SEM. N.D. No data 
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Figure 4 Sleep–wake patterns in AD, db, db/AD and WT littermates under baseline conditions. 

Average percent sleep analyzed over (A) 24 h, (B) dark phase, and (C) light phase. (D–F) depicts 

average bout length in seconds (s) over (D) 24 h (E) dark phase, and (F) light phase. 
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Table 5 Multiple linear regression results using sleep parameters as the outcome of interest. 

Estimate corresponds to the respective non-intercept parameter estimates in the final 

model. 

 

Predictor Estimate Standard 

error 

P value 

1. Sleep % across 24 

hours 

 Radj
2=0.19 p<0.0001 

Age:                           

Young 

 

Reference 

  

Old 0.62 0.96 0.5187 

Genotype:                   

WT 

 

Reference 

  

db/AD -0.76 1.38 0.5840 

db 6.83 1.97 0.0007 

AD -1.91 1.77 0.28 

AgeXGenotype:     

AgeXWT 

 

Reference 

  

AgeXdb/AD -5.66 1.38 <.0001 

AgeXdb 1.49 1.97 0.45 

AgeXAD 1.59 1.77 0.37 

2. Sleep % across dark 

phase 

 Radj
2=0.26 p<0.0001 

Age:                  

Young 

 

Reference 

  

Old 1.49 1.10 0.1791 

Genotype:                  

WT 

Reference   

db/AD 0.63 1.59 0.6921 

db 10.92 2.26 <.0001 

AD -5.89 2.03 0.0045 

AgeXGenotype:     

AgeXWT 

 

Reference 

  

AgeXdb/AD -6.11 1.59 0.0002 

AgeXdb 2.83 2.26 0.2136 

AgeXAD 1.20 2.03 0.5549 

3. Sleep % across light 

phase 

 Radj
2=0.08 p=0.0225 

Age:                          

Young 

 

Reference 

  

Old -0.25 1.20 0.8371 

Genotype:                    

WT 

 

Reference 
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db/AD -2.15 1.74 0.2185 

db 2.75 2.47 0.2688 

AD 2.06 2.22 0.3543 

AgeXGenotype:     

AgeXWT 

 

Reference 

  

AgeXdb/AD -5.20 1.74 0.0034 

AgeXdb 0.15 2.47 0.9514 

AgeXAD 1.99 2.22 0.3726 

 

Predictor Estimate Standard 

error 

P value 

1. Bout length 24h Radj
2=0.07 p=0.0135 

Genotype:                          

WT 

 

Reference 

  

db/AD -7.37 17.51 0.6746 

db -12.10 20.79 0.5617 

AD 42.56 18.55 0.0236 

Sex:  

Male 

 

Reference 

  

Female -31.50 11.14 0.0055 

2. Bout length Dark Phase Radj
2=0.08 p=0.0162 

Age: 

Young 

 

Reference 

  

Old -2.77 12.49 0.82 

Genotype: 

WT 

 

Reference 

  

db/AD -3.99 17.29 0.8178 

db 5.62 21.41 0.7934 

AD 21.80 19.54 0.2668 

Sex: 

Male 

 

Reference 

  

Female -28.63 10.55 0.0077 

SexXAge: 

SexXYoung 

 

Reference 

  

SexXOld -26.25 10.72 0.0159 

3.Bout length Light phase Radj
2=0.13 P=0.0012 

Age: 

Young 

Reference   

Old -39.32 18.51 0.0359 

Genotype: 

WT 

 

Reference 

  

db/AD -14.93 25.63 0.5615 
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db -52.83 31.74 0.0988 

AD 106.01 28.96 0.0004 

Sex: 

Male 

 

Reference 

  

Female -39.48 15.64 0.013 

SexXAge: 

SexXYoung 

 

Reference 

  

SexXOld 16.89 15.89 0.29 

 

The percentage of total variation in any of the sleep parameter that can be explained by our 

model is indicated by value of Radj2 as listed in the table. 
 

Discussion 

Sleep is a multifaceted process with diverse indirect and/or direct functions in 

cognition, metabolism, learning and memory consolidation, and amyloid beta clearance 

(Tucker, Hirota et al. 2006, Knutson, Spiegel et al. 2007, Marshall and Born 2007, 

Diekelmann and Born 2010, Xie, Kang et al. 2013, Krueger, Frank et al. 2016). 

Dysfunctional sleep therefore has detrimental effects on health, and is linked to many 

pathological conditions including AD and T2DM (Grandner, Seixas et al. 2016). 

Previously, sleep aberrations were considered to be a byproduct of these pathologies but 

mounting evidence supports the proposition that a reciprocal relationship exists between 

sleep loss and AD, and sleep apnea and T2DM.  

 Apart from cognitive decline, T2DM can also lead to renal impairments, vision 

loss and cardiovascular disease (Association). It also increases the risk of dementia, 

specifically vascular dementia and AD (Ott, Stolk et al. 1999, Xu, Qiu et al. 2004, Biessels, 

Staekenborg et al. 2006, Luchsinger, Reitz et al. 2007, Reijmer, van den Berg et al. 2010, 

Vagelatos and Eslick 2013). Furthermore, in individuals with T2DM  who also exhibit 

dementia, there is an increased incidence of cerebrovascular pathology (Ahtiluoto, 
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Polvikoski et al. 2010). In addition to the pathways regulating interaction of AD and 

T2DM, the cerebrovascular dysfunction co-occurring with other dementias or in isolation 

is poorly understood (Grinberg and Heinsen 2010). A mouse model was thus generated by 

crossing a db/db mouse with APP/PS1- a knock-in AD animal model. This novel db/AD 

mouse model can further our understanding of diabetes promoting neurodegenerative 

diseases, specifically AD and vascular dementia, and other secondary implications 

resulting from interaction between AD and db. The db/AD mouse recapitulates the key 

aspects of both AD and db parental lines. These mice are obese, insulin resistant and 

glucose intolerant, and have amyloid deposition similar to their parental lines. In addition, 

they also exhibit exacerbated cerebrovascular abnormalities such as aneurysms and 

strokes, without any additional burden of amyloid beta similar to the human disease 

condition. They have a significant decline in cognition- more than either of the AD or db 

parents, which might be due to the vascular abnormalities. In our current studies, we were 

interested in evaluating the effect of db/AD genotype on sleep phenotypes. We assessed 

several sleep-wake parameters in db/AD animals as well as their parental lines to 

understand holistically the effect of the interaction between db and AD on sleep, and the 

origin of these sleep differences. In addition to the main effect of genotypes, we also 

examined 2-way interaction amongst genotype, sex and age. 

Multiple regression indicated that bout length is affected by sex and females tend 

to have shorter bouts compared to males. Shorter sleep duration during the dark phase was 

found in case of AD animals, after controlling for other variables. Increased bout lengths 

were found across 24h as well as light phase. In a previous study conducted on the parental 

APP/PS1 strain, our research group did not find any effect of genotype on sleep for the 
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male mice. In that study, there was an effect of age on percent sleep during day and bout 

length during either day or night, with older animals sleeping less and having shorter bouts 

of sleep (Duncan, Smith et al. 2012).  In the current study, one-way ANOVA indicated that 

aging increases sleep in male AD mice, in contrast to the earlier study. This difference 

might be related to several factors, including differences in the age ranges, low sample size 

for younger group, or a genetic difference in the background strain (i.e., additional BL6 

composition of the mice in the current study).  Our findings are similar to the ones reported 

in 5XFAD AD mouse model.  5XFAD male and female mice, with early onset of AD 

pathology, exhibited increased sleep fragmentation (as indicated by longer sleep bouts) 

with prominent effects evident during the dark phase than light phase (Sethi, Joshi et al. 

2015). In addition, females also had reduced overall sleep due to marked reduction in sleep 

in dark phase. Other AD models such as PLB1triple  (hAPP/hTau/hPS1) and TgCRND8 mice 

were found to have reduced NREM sleep. In contrast, PDAPP (overexpresses hBAPP) and 

Tg2576 have less REM sleep during dark phase (Huitron-Resendiz, Sanchez-Alavez et al. 

2002, Zhang, Veasey et al. 2005, Platt, Drever et al. 2011, Colby-Milley, Cavanagh et al. 

2015). Another, related mouse- APP/PS1 with a different PS1 mutation 

(APPswe/PS1dE9), was reported to have reduced REM and NREM sleep (Roh, Huang et 

al. 2012).  

Sleep and metabolism are mutually exclusive processes (Adamantidis and de Lecea 

2008), with inadequate sleep resulting in reduced leptin and elevated ghrelin levels, in 

addition to an increase in BMI in a dose dependent way (Gupta, Mueller et al. 2002, Sekine, 

Yamagami et al. 2002, Taheri, Lin et al. 2004). In contrast, food deprivation in rats was 

linked to reduction in sleep duration, and refeeding to increase in its duration (Borbely 
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1977, Danguir and Nicolaidis 1979, Shemyakin and Kapas 2001, Minet-Ringuet, Le Ruyet 

et al. 2004). Sleep architecture is also modulated by the type of diet and the time of 

availability. As observed in mice, a high fat diet resulted in increased duration of NREM 

sleep, as well as number of episodes (Jenkins, Omori et al. 2006). The leptin deficient ob/ob 

mice and leptin insensitive db/db mice have altered sleep architecture reflected as 

fragmented sleep, and increased total NREM sleep. Furthermore, their sleep-wake rhythms 

are diminished, and NREM delta power and locomotor activity is reduced as well 

(Laposky, Shelton et al. 2006, Laposky, Bradley et al. 2008). Additionally, recovery sleep 

followed by sleep deprivation is also reduced in both db/db and ob/ob mice (Laposky, 

Shelton et al. 2006, Laposky, Bradley et al. 2008, Mavanji, Billington et al. 2012). Similar 

alterations in sleep-wake patterns have been reported in several other rodent models of 

obesity including obese zucker and spontaneously hypertensive rats, and diet-induced 

obese mice. Our results also depict similar sleep patterns for both db and db/AD animals 

for both the sexes. Marked differences were seen in particular during the dark phase where 

both db and db/AD animals slept longer than controls implicating the effect of db gene. 

Multiple regression reflected that age interacts with db/AD genotype for the sleep duration 

variables. Although we did not find any evidence of sleep fragmentation in these db/AD 

and db mice, increased sleep during the active phase of the mouse emulates the human 

condition. We found similar sleep phenotype for db/AD and db animals. However, db/AD 

has been reported to have severe cognitive impairments relative to db animals (Niedowicz, 

Reeves et al. 2014). Our findings thus indicate that the cerebrovascular pathology seen in 

db/AD mice, believed to be responsible for their cognitive deficits does not lead to 

additional sleep aberrations.   
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Since sleep modulates energy metabolism, and the reverse holds true as well, some 

common neural circuits can be involved in regulating both sleep and metabolism  (Collet, 

van der Klaauw et al. 2016). Some of those neural pathways might be mediated through 

the hypothalamus, a brain region central to sleep regulation as well as energy homeostasis. 

A set of SCN neurons have been shown to project to the arcuate nucleus of the 

hypothalamus, which then forms reciprocal connections with orexigenic neurons 

expressing NPY/AGRP, and anorexigenic neurons expressing POMC and CART (Saeb-

Parsy, Lombardelli et al. 2000, Yi, van der Vliet et al. 2006, Huang, Ramsey et al. 2011). 

These neuropeptides are modulated by leptin- a satiety hormone under circadian regulation 

which is released in increased amounts at night (Sinha, Ohannesian et al. 1996, Licinio, 

Mantzoros et al. 1997).  

Leptin can be one of the upstream molecular components involved at the 

intersection of AD and diabetes. Leptin mediates its functions through JAK/STAT 

signaling pathway, activating kinases such as MAPK, AKT and mTOR (Marwarha and 

Ghribi 2012). These kinases are known to inhibit Glycogen synthase 3 Kinase (GSK3B) 

which then suppresses GSK3 dependent tau phosphorylation. Down-regulation of leptin 

signaling as seen in T2DM can therefore result in increased tau phosphorylation which can 

subsequently promote AD development (Chen, David et al. 2004). Niedowicz et al found 

that db/AD and db mice do in fact have upregulated tau phosphorylation along with 

increased PS1 expression. Unlike expected, these increased levels of PS1 were not 

accompanied by additional A deposition, either in the brain or in vasculature (Neidowicz 

et al., 2014). Though, A oligomers were found to be elevated in db and more so in AD/db 

mice. Hyperinsulinemic individuals have an increased tau phosphorylation, and are at a 
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higher risk of developing AD and cognitive decline (Luchsinger, Tang et al. 2004). Thus, 

another possible instigator of tau pathology can be insulin, the release of which is 

temporally regulated. 

Leptin also acts at the level of hippocampus and modulates synaptic plasticity and 

is presumed to be a cognitive enhancer. A study utilizing data from AD Neuroimaging 

Initiative (ADNI) reported low plasma leptin in 70% of subjects with MCI. Leptin 

treatment in AD mice reduces AD pathology, i.e. tau phosphorylation and amyloid beta, 

which consequently also improved cognition (Freude, Plum et al. 2005). The mechanism 

listed above, explaining the interplay among sleep, AD and db is possibly only one aspect 

of the complex cascade of events. There may be several yet unappreciated signaling 

pathways involved; with other neuroendocrine and metabolic components playing a critical 

role as well. For instance, GSK3, in addition to their involvement in the leptin pathway, 

also affects rhythm of clock genes in SCN (Avila, Leon-Espinosa et al. 2012, Besing, Paul 

et al. 2015). Reduction in leptin can result in upregulated GSK3 which might 

subsequently result in fragmented sleep, as found in transgenic mice overexpressing 

GSK3 (Ahnaou and Drinkenburg 2011). Orexin can be another possible component 

considering that is implicated in metabolism in addition to sleep. Inhibition of orexin 

system has been reported to not only improve sleep but also glucose metabolism in db/db 

animals (Tsuneki, Kon et al. 2016). Collectively, these studies suggest that diabetes 

associated dysfunctions promote AD pathology which can then disrupt sleep. Conversely, 

sleep impairments might be augmenting the AD and T2DM diseased states. Further 

interrogation of the underlying pathways can bridge the gap in our understanding of how 

sleep, AD and diabetes are inter-connected.  
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 In summary, our study indicate that AD mice tend to sleep less during night 

compared to control mice. In contrast, db genotype (db/AD and db) resulted in increased 

overall duration of sleep culminating from increased sleep duration at night. The db/AD 

mice are obese, insulin resistant and glucose intolerant, and have amyloid deposition 

similar to their parental lines. Furthermore, they also display additional cerebrovascular 

abnormalities, and reduction in A compared to AD mice, as have been reported in case of 

diabetic humans with AD-neuropathology. These mice thus emulate key aspects of human 

pathological condition and can well serve as model to interrogate how the interaction of db 

and AD leads to cerebrovascular abnormalities, and reduction in AD pathology.  
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Abstract  

Sleep is a critical process that is well-conserved across mammalian species, and 

perhaps most animals, yet its functions and underlying mechanisms remain poorly 

understood. Identification of genes and pathways that can influence sleep may shed new 

light on these functions. Genomic screens of sleep enable the detection of previously 

unsuspected molecular processes of sleep. In this study, we report on a large scale 

phenotyping of sleep-wake parameters for a population of single-gene knockout mice at 

The Jackson Laboratory, a primary production and phenotyping center for the Knockout 

Mouse Program (KOMP2). Sleep-wake parameters were measured using a high 

throughput, non-invasive piezoelectric. Knockout mice generated on a C57BL6/N (B6N) 

background were monitored for sleep and wake parameters for five days under baseline 

conditions. Thus far, we have recorded sleep in over 6000 mice representing over 300 

single gene knockout lines, and more than 1800 B6N control mice (females and males). 

Our study also integrated assessment of breath rates as a supplemental tool in determining 

aberrant physiology in these knockout lines.  Significant sleep-wake differences in both 

light and dark phases were found for a number of knockout lines compared to controls. We 

have identified more than 60 genes influencing various sleep traits which have not 

previously been implicated in sleep. Additionally, sex differences were found for B6N 

mice and many of the knockout mouse strains. Control females exhibited shorter bout 

lengths and less total sleep compared to males as reported by other studies. Further studies 

investigating these genes, their correlation with other phenotypes and interaction with other 

known sleep related genes can provide insight into the pathways regulating sleep and its 

associated functions.  
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Introduction   

Sleep is a complex behavior common to all birds and mammals, and probably most 

or all other vertebrates and invertebrates with a nervous system. Regulated by a multitude 

of neuronal processes and indirectly by gene networks, it is a process vital for an 

organism’s well-being. Sleep has been suggested to have a role in functions such as 

learning, memory consolidation, energy restoration, synaptic optimization and recently it 

has also been implicated in the clearance of metabolites, including amyloid beta (Aβ) 

(Tononi and Cirelli 2006, Tucker, Hirota et al. 2006, Marshall and Born 2007, Nishida, 

Pearsall et al. 2009, Diekelmann and Born 2010, Xie, Kang et al. 2013, Krueger, Frank et 

al. 2016). 

Genetic manipulations have advanced our knowledge about some aspects of sleep, 

including influences on the sleep EEG, sleep disorders, brain areas regulating sleep 

processes, and molecular pathways underlying sleep and its regulation. However, relatively 

few gene mutations or gene knockouts in mice have been examined for effects on sleep, 

and there are still many unresolved questions regarding the biological need for sleep, 

functions of sleep, and the genetic and physiological basis of sleep homeostasis that could 

be addressed with insights from model organisms (Rechtschaffen 1998, Cirelli 2009, 

Vassalli and Dijk 2009). 

There have been numerous efforts to address these questions utilizing a variety of 

animal models including mice. These efforts range from individual labs studying specific 

knockout mice, to large-scale QTL (quantitative trait loci) and genome-wide projects 
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including phenotype-driven ENU (N-ethyl-N-nitrosourea) mutant screens involving many 

labs, and gene-driven knockout mouse phenotyping programs (Gondo, Fukumura et al. 

2009). 

 

Circadian clock genes such as Clock and Rab3a in mice, and Per, and Dbt in flies, 

which influence both circadian timing and sleep homeostasis have been identified using 

ENU/EMS ( N-ethyl-N-nitrosourea/Ethyl methanesulfonate) mutagenesis techniques 

(Vitaterna, King et al. 1994, Kloss, Price et al. 1998, Kapfhamer, Valladares et al. 2002, 

O'Hara, Ding et al. 2007, Cirelli 2009). Discovery of these clock genes led to identification 

of many others (Bmal1/Cyc, Cry1,2, Per1,2,3, etc.) that also underlie circadian and 

homeostatic aspects of sleep. However, many of these mutations produce only subtle 

phenotypes, which are difficult to detect, and, in addition are also affected by the genetic 

background of the mouse (Nadeau 2001). Approaches using traditional mouse strains, 

genetic crosses, and QTL strategies have also identified a modest number of genes that 

influence sleep including Homer1a, Acads (acyl-coenzyme A dehydrogenase), and Rarb 

(Retinoic acid receptor beta) (Tafti, Petit et al. 2003, Drager 2006, Maret, Dorsaz et al. 

2007). A disadvantage of traditional QTL approaches is that they are subject to limited 

mapping resolution, and identifying the causal gene(s) is often difficult or not undertaken 

(Tabor, Risch et al. 2002, Churchill, Gatti et al. 2012), although this situation is improving 

with recent advances in mapping populations and related approaches (Jiang, Scarpa et al. 

2015).   

A major bottleneck in large scale genetic studies of sleep is the difficulty, expense, 

and time demands of traditional EEG/EMG studies. While knockout studies of selected 

https://en.wikipedia.org/wiki/Nitroso
https://en.wikipedia.org/wiki/Nitroso
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target genes such as neurotransmitter receptors have found modest effects on at least one 

sleep parameter, relatively few genes have been examined (O'Hara, Jiang et al. 2017).  

Using a higher throughput, non-invasive approach allows for much larger numbers of mice 

to be examined (Flores, Flores et al. 2007, Pack, Galante et al. 2007, Donohue, Medonza 

et al. 2008, Philip, Sokoloff et al. 2011, Mang, Nicod et al. 2014). Our approach utilizes a 

sensitive piezoelectric film across the mouse cage floor, and is especially well suited to 

characterization of large-scale resources such as the International Knockout Mouse 

Consortium (IKMC) (Ringwald, Iyer et al. 2011). IKMC aimed to generate mutant 

embryonic stem cells (ES) for every coding gene in the mouse genome on the B6N 

background. As live mice are made from the ES cell lines, these single-gene knockouts 

undergo a core set of broad-based phenotyping screens at the KOMP2 centers and as part 

of the International Mouse Phenotyping Consortium (IMPC) (Abbott 2010, Bradley, 

Anastassiadis et al. 2012, Brown and Moore 2012). At The Jackson Laboratory KOMP2 

Center (JAX-KOMP2) sleep is part of this pipeline, and the results thus far are described 

in this report. 

Methods and Design  

Generation of KO mice  

IKMC mouse mutants generated on a C57BL/6NJ mouse background have either 

null alleles, which have an entire locus removed or “knockout-first” alleles, which permits 

generation of conditional alleles by utilization of site-specific recombinase as described 

previously (Skarnes, Rosen et al. 2011, Schofield, Hoehndorf et al. 2012). Strain C57BL/6 

is a well-characterized inbred strain which also serves as a reference strain for the mouse 

genome, making it an ideal choice for this effort, although differences between the 
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C57BL/6J and C57BL/6NJ substrains exist (Keane, Goodstadt et al. 2011, Simon, 

Greenaway et al. 2013, Mekada, Hirose et al. 2015). Mice generated by the JAX-KOMP2 

effort are non-conditional (Tm1b) null alleles. Homozygous mutants were screened for 

sleep wake phenotype in this study. 

As part of the JAX-KOMP2 phenotyping pipeline, each mouse is comprehensively 

phenotyped for over 200 measurements, from age 4-18 weeks, for a range of 

morphological, physiological and behavioral traits including many disease relevant 

parameters pertaining to neurobehavior, metabolism, immune, cardiovascular, sensory, 

and musculo-skeletal systems, followed by terminal collection of blood and histopathology 

(Morgan, Simon et al. 2012) (Fig 1). Additional tests such as light/dark and hole-board 

exploration tests, rotarod, and sleep, are unique to the JAX-KOMP2 pipeline. Sleep is 

evaluated using a PiezoSleep System (Signal Solutions, LLC, Lexington, KY), a non-

invasive, high throughput sleep-wake monitoring system (details provided in following 

sections). The primary traits analyzed are total sleep duration averaged across 24 h, across 

the 12 h light phase and 12 h dark phase, and average sleep bout lengths (across 24 h, dark, 

and light phase), and breath rate during all sleep periods. 
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Figure 5 Phenotyping pipeline at The Jackson Laboratory 
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Sleep recording with piezoelectric system 

Sleep and wake states were determined using the PiezoSleep System (Flores, Flores 

et al. 2007, Donohue, Medonza et al. 2008, Mang, Nicod et al. 2014). The system is 

comprised of plexiglass cages lined with piezoelectric films across the cage floor that detect 

pressure variations. For all sleeping postures, pressure variations from breathing are 

detected. Sleep states are characterized by quasi-periodic signals with low variations in 

amplitude, whereas wakefulness and rest states are characterized by irregular transient and 

high amplitude pressure variations corresponding to voluntary body movements and 

weight shifting.  

Signal features sensitive to the differences between the sleep and wake states are 

extracted from 8-second pressure signal segments, and classification is automatically 

performed every 2 seconds using overlapping windows. Sleep-wake decisions in the 2-

second intervals are binned over specified time periods (e.g., 5 minutes, 1 hour) for local 

percent sleep/wake statistics.  In addition, durations of consecutive sleep states are used to 

compute mean sleep bout lengths. To eliminate the impact of short and ambiguous arousals 

on the bout length statistic, a bout length count is initiated when a 30-second interval 

contains greater than 50% sleep and terminates when a 30-second interval has less than 

50% sleep. The sleep bout length computed with the 50% wake in the 30-second interval 

rule typically marks a clear transition into an extended wake period, where the mouse does 

not quickly transition back into the sleep state. The piezo system has been validated with 

simultaneous EEG and human scoring of mice demonstrating a classification accuracy of 

over 90% in mice (Donohue, Medonza et al. 2008, Mang, Nicod et al. 2014). The sleep 

statistics analyzed under baseline (undisturbed) conditions for experiments summarized in 

this report were: percent sleep over 24 h periods, percent sleep during light phase, percent 
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sleep during dark phase, average sleep bout length (across 24 h, light phase, and dark phase 

periods), and mean breath rate during sleep. 

Animal housing and Phenotyping  

This study utilizes control and KO mice generated on B6N background. From wean 

age, mice were housed at 3-5 mice per pen in pressurized, individually ventilated cages 

using pine shavings as bedding, with free access to acidified water and food (LabDiets 

5K52, LabDiet, Scott Distributing, Hudson, NH). The housing facility was maintained on 

a 12:12 light/dark cycle starting at 0600. At 15 weeks of age, mice were removed from 

their home cages and placed into individual cages of the piezo system. The system used in 

the JAX-KOMP2 pipeline is comprised of 16 4-cage units, allowing assessment of up to 

64 mice per 5-day experiment. Light cycle and food and water access were as that of 

standard housing conditions. A minimum amount of pine shavings was provided to each 

cage to allow sufficient detection of pressure signal. In each testing week, 10 control B6N 

animals (five females and five males) and 3-19 animals per KO line were tested. Females 

and males of all KO strains were analyzed, with a pipeline throughput goal of testing eight 

animals of each sex for all screens. Data presented in this report includes 1884 B6N mice 

(Females= 960, Males= 924) and 4467 KO mice (2243 females and 2224 males) from 318 

KO strains. 

Analysis 

A data confidence metric that ranges from 0 through 1 assesses the signal quality 

and/or outlying signal behavior. Any of the sleep recordings with a data confidence value 

below the threshold of 0.6 was removed from the analysis. The control mice were also 

screened for outliers based on extreme high/low values for their sleep/wake parameters. 
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Control mice with Mahalanobis outlier distance (MD) above the upper control limit of 3.75 

were excluded from the analysis.  The final dataset used for analysis contained 1884 

Controls (960 Females; 924 Males), and 4467 KO (2243 Females; 2247 Males). One-way 

analysis of variance (ANOVA) was performed for each sleep variable and breath rate, and 

posteriori multiple comparisons were done using Dunnett’s test to identify genotypes 

showing significant difference/s with respect to the control group. Similar analysis was 

done to identify genotypes with sex-specific effects. 239 of the knockout cohorts 

containing at least 3 females and 3 males each were included in this analysis. For all of the 

sleep-wake parameters under consideration (listed above) measured, a P-value of less than 

0.05 was considered significant. Family-wise error rate was controlled by Dunnett’s test. 

Genotype was considered as an independent variable and the parameter under observation 

as the dependent variable. Initially, weight was accounted for as a co-variate. There was 

no effect of weight; therefore, it was excluded from the subsequent analysis. Also, 

multivariate outliers were identified using Mahalanobis distance (MD) in our data, as 

described elsewhere (Mitchell and Krzanowski 1985). In brief, it calculates 

multidimensional distance of each of the observations from the centroid mean vector of all 

measured variable scores, (Bassett, Gogakos et al. 2012).  

Principal components analysis (PCA) was performed on six of the sleep variables 

under consideration: sleep duration in the light and dark phases and across 24 hours, bout 

length across 24 h and bout length in the dark and light phase, and breath rate. PCA is used 

to reduce the number of variables into principal components (PC) that account for most of 

the variance of the original variables (as reported in terms of eigenvalue) and also to get 

insight into the patterns in the data. 
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We investigated relationships between results from the targeted knockout genes and 

some of the known circadian and sleep-influencing genes, by implementing a network 

analysis using GeneMANIA plugin (University of Toronto) with Cytoscape 

(version3)(Warde-Farley, Donaldson et al. 2010). 

Results 

B6N mice 

Mean values for sleep traits obtained from piezo system for B6N mice were 

established as a reference range, obtained separately for each sex. We found that female 

B6N have a significant reduction in total sleep time, as well as reduced sleep in both the 

light and dark periods (Fig 2A) compared to B6N males, though it is less pronounced 

during the light phase (p < 0.05) as compared to dark phase (p<0.05). The mean percent 

sleep across 24 h was 41.72 ± 0.11% for females and 45.09 ± 0.11% for males. During the 

dark phase, mean sleep duration was 21.49 ± 0.16% in females and 27.23 ± 0.17% in males, 

and in the light phase, for females sleep duration was 61.93 ± 0.15 % and 62.95 ± 0.14% 

in males. Similar to sleep duration patterns, females also show shorter bout lengths 

measured across 24 h (Females: 369.72 ± 1.98 s; Males: 444.56 ± 2.5 s), and during both 

the dark (Females: 199.48 ± 1.39 s; Males: 276.19 ± 2.16 s) and light phases (Females: 

537.22 ± 2.92 s; Males: 618.97 ± 3.48 s) (Fig 2B). Overall, B6N female mice have reduced 

sleep duration and shorter bout length than their male counterparts.  
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A. 

 

B. 

 

Figure 6 Sleep–wake patterns in control mice under baseline conditions. Average percent 

sleep across three consecutive days analyzed over (A) 24 h, dark phase, and light phase. 

Female mice show reduction in sleep duration across 24 h and during the light and dark 

phase. (B) depicts average bout length in seconds (s) over 24 h, dark phase, and light phase. 

Females had shorter average bout lengths across all phases. Values represent mean ± SD 

as obtained by Dunnett’s test. **P< 0.01, ***P < 0.001. 
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Knockout mice 

This report presents the analysis of piezo system sleep recordings from 318 KO 

strains (Figure 4). Of these, 55 KO strains showed significance at p<0.01 in Dunnett’s post 

hoc analysis for one or more of the sleep variables recorded. Across the 24-hour period, 

reduction in sleep percent (total sleep) was observed in Ap4e1, Bzw2, Pitx3, Ppp1r9b, and 

Vsig4 KO strains, while increased total sleep was seen in Ccl26, Cbln3 and Tpgs2 

compared to control mice. During light phase, the reduced sleep percent was recorded in 

Kcnh3, Pitx3, Ppp1r9b, Hsd17b1, Htr3b, Nrcam, Tmem79 and Bzw2, and longer sleep 

duration in Bex4, Ccl26, Cdk15, Cpb1, Dnaja4, Eogt, Epgn, Epha10, Foxo3, Gjd4, Htr1f, 

Ifnl3, Ncald, Neurl2, Npm3, Rab3ip, Rimklb, Serpinb5, Slc46a3, Slc8b1, Tdrkh, Ttll6, Ydjc, 

Zbtb4, Zfp961 and Zbtb4 KO mice. During dark phase, sleep durations was reduced for 

Mylip, Ppp1r9b, Rimklb, and Vsig4 knockouts, and increased for Macrod2, Cbln3, Myh1, 

and Postn. Additionally, as compared to controls, mean bout length was significantly 

reduced across 24h in Ap4e1, Pitx3, Ppp1r9b, Hsd17b1, Myh1 and Rnf10, and increased in 

Tmem136 mutant mice. In light phase, bout lengths were significantly shorter in Ap4e1, 

Hsd17b1, Myh1, Nrcam, Ptpru, Pitx3 and Ppp1r9b, and longer in Adck2, Arrb2, Ermp1, 

Htr1d, Ipp, Nfatc4, Slc8b1, Tmem136, Tmem79 and Zfp961 relative to control mice. During 

dark phase, significantly shorter mean bout lengths were seen in Ap4e1, Bex4, Mylip, Nefh, 

Nes, Ppp1r9b, Rab27b, Rimklb, Rnf10, Rnf25, Stx16, Tmem151b, Tmod2, and Zzef1, and 

longer bout lengths were found in case of Ghrhr (Fig 3 and Table 1).  
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G.  

 
Figure 7 Represents mutant mice that differed significantly from control mice in percent 

sleep across 24 h (A), in light phase (B) and in dark phase (C); and bout length (D, E, F) 

across respective phases. (G) KO strains that differed significantly compared to control 

mice in their breathing rates. 
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A. 
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B. 

 

Figure 8 Represents complete dataset for all 318 KO strains arranged alphabetically for 

(A) sleep percent (24h, dark phase, light phase), and (B) bout length (24h, dark phase, 

light phase) measured in seconds as depicted on y axis. Each bar represents mean (dot) ± 



89 
 

Similar analysis was performed for 239 KO strains, each of which had at least 3 

females and 3 males to evaluate sex-specific differences in sleep parameters measured. The 

results for Pitx3 are similar to that observed in the overall data. In both males and females, 

as compared to controls, Pitx3 has significantly lower sleep percent and bout length only 

during the light phase. Ppp1r9b, though significantly reduced for overall sleep percent in 

both males and females, was not found to be significant in both males and females for bout 

lengths during the light phase. Myh1 had reduced sleep percent and bout lengths during 

light phase in males and higher sleep percent in females. Hsd17b1 had reduced sleep 

percent in males and reduced bout lengths in both males and females only during the light 

phase. Increased sleep percent was seen in both males and females in Postn during dark 

phase, and Slc8b1 during light phase. Cbln3 and Ccl26 had increased sleep percent in 

females with Ccl26 affecting sleep only during the light phase and Cbln3 affecting both 

light and dark phases. Significantly higher sleep percent during light phase were seen in 

females belonging to Cpb1, Serpinb5, Slc46a3, and Ydjc, while reduced values were seen 

in Col18a1. Adck2 and Ptpru have significantly lower sleep percent during light phase 

while it is increased in Ipp, Nrn1l, and Tmem136. Zbtb4 had increased values for sleep 

percent and bout lengths during the light phase in females, whereas Vsig4 and Ghrhr had 

significantly reduced values during the dark phase. Among the genotypes specific to males, 

Dnaja4 and Epha10 have significantly higher values for sleep percent, while it is reduced 

in Prom2 during the light phase. Bout lengths are significantly reduced specifically during 

dark phase in Ap4e1, Rimklb, Rnf10, Stx16 and Zzef1. In Zfp961 males, sleep percent and 

bout length are both increased during the light phase in males while they are lower during 

the dark phase in Tmem151b and Tmod2 males. 
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Table 6 Sex differences in genotypes significant for (A) sleep percent and (B) bout lengths  

with direction of change.  represents values higher than Control animals, and  represent 

values lower than Controls. 

A. 
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B. 

 

Prinicpal Component and Outlier Analysis 

 We performed additional analyses to identify sleep related genes based on multiple 

measures using Principal Component Analysis (PCA) . We included standardized values 

for sleep percent and bout lengths for 24 hours, light phase and dark phase in our analysis. 

For our dataset, as can be seen from the scree plot, the first three principal components had 

eigenvalues greater than 1 (a conventional threshold rule of thumb) and explained for more 
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than 95% variability in the data, with PC1 accounting for 46.92% of the variability (Fig. 

5). Correlation between the principal component and the original variables is described in 

terms of loadings. There is a point of inflection in the eigenvalues after 4 components. 

However, fourth factor has eigenvalue less than 1, indicating that 3 components may best 

represent the data. Biplot reveals the relationship between different sleep variables in first 

two principal components.  

The first PC1 had high loading values for each variable (mean loading = 0.68; 

Figure 5C). ANOVA with multiple comparison through Dunnett’s post hoc test of PC1 

resulted in 9 genotypes that showed significance. These genotypes are Pitx3, Ppp1r9b, 

Ap4e1, Hsd17b1, Rnf10, Ghrhr, Fam186b, and Tnfsf18. Interestingly, the PC2 had positive 

loadings for sleep percent and negative loadings for bout lengths, and Tpgs2, Tmem79, 

Cbln3, Myh1, Ppp1r9b, Parp8, Rnf25, Arrb2, Macrod2, Dcaf10, and Ccl26 were 

significant. Similarly, PC3 had positive loadings for light phase and negative loadings for 

dark phase. In addition to others, the genes significant for PC3 include Pitx3, Rimklb, 

Zfp961, Postn, Hsd17b1, Slc8b1, Serpinb5, Nrcam, Cpb1, Macrod2, Ipp, Dnaja4, and 

Mylip. Based on the results from ANOVA of individual variables and PC3, we propose 

these genes as candidate genes that affect sleep in a specific circadian phase. 
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A. scree plot      B: Biplot 

 

C.  Loading matrix for PCs 

Figure 9 Scree plot depicting relationship between eigenvalue and number of 

components. 

Outlier Analysis 

As an additional outlier detection strategy, Mahalanobis distances (MD) for multivariate 

outliers were calculated for the sleep percent and bout length variable means of all KO 

strains and candidate genes were identified with upper control threshold of 3.75. Based on 

outlier analysis, the top candidate genes for sleep are Pitx3, Ppp1r9b, Ap4e1, Akr1d1, 

Postn, Myh1, Tnfsf18, Ptpru, Mdk, Vsig4, Tmem79, Serpinb5, Ipp, Bex4, Gpr156, Stat5b, 

Hsd17b1, Plekha3, Esrra, Gpr19, Stx16, Slc1a1, Actrt3, Rabac1, Tpgs2, Arrb2, and Ghrhr. 
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Gene Network Analysis 

To further evaluate genes with significant sleep phenotypes discovered in our study, 

and to compare these to genes known to affect sleep, we used the GeneMANIA tool 

(Warde-Farley, Donaldson et al. 2010), implemented in Cytoscape software (version 3). 

The GeneMANIA application determines relationships between the query genes and other 

related genes based on their genetic and physical associations, shared protein domains, co-

expression, co-localization and their participation in the shared pathways. Predictive gene 

networks were created as depicted in Figure 6, using candidate genes from our analysis 

with respect to the key genes previously implicated- Arntl, Clock, Per1, and Per2 in 

regulation of sleep behavior.  
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Arntl 

 

Clock 
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Per1  

 

Per2 

 

Figure 10 Gene networks as predicted by GeneMANIA based on genetic and physical 

associations, shared protein domains, co-expression, co-localization and their participation 

in the shared pathways for the candidate genes of interest with respect to the genes that are 

known to affect sleep- Arntl, Clock, Per1 and Per2. 
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Breath Rate 

Breath rate significantly differed from controls for 34 of the strains (p< 0.05) (Fig 

3G and Table 1C). A few of these mice displayed a sleep phenotype in addition to varied 

breath rate and include knockouts for genes: Myh1, Nes, Cbln3, Htr1f, Slc8b1, Tdrkh, 

Rab3ip, Slc46a3, Adck2, Postn, Tmod2, Cbln3, Nes, Dnaja4, and Stx16. Sex differences 

were found for breath rate as well. 

Discussion 

We have reported here the results from a large-scale phenotyping study that 

systematically assesses sleep in knockout mice. With sleep wake recordings from more 

than 6000 mice, consisting of more than 1800 controls and nearly 300 gene knockouts, the 

KOMP2 pipeline at The Jackson Laboratory has generated a wealth of information-rich 

gene centric data that is unprecedented in sleep research. Through our analysis, we have 

been able to identify sleep-related genes that have been previously unknown to influence 

sleep. An experimental design using both sexes, and piezo monitoring system that 

consistently reports multiple sleep variables, has allowed for an in-depth analysis to 

identify genes that affect sleep in one or both sexes and during specific times of day. We 

found a considerably high hit rate with nearly 20% of gene knockouts tested differing 

significantly from controls for at least one sleep phenotype. This is perhaps not surprising 

given the dramatic changes in brain physiology and function that occur with sleep and wake 

transitions, and further suggests a potential to uncover many as yet unappreciated pathways 

affecting sleep. Although the purpose and functions of sleep are still unclear, we know that 

sleep is an essential physiological process and that even modest reductions in sleep have 
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substantial effects on health and cognitive functions (Shaw and Franken 2003, Durmer and 

Dinges 2005, Cohen, Doyle et al. 2009, Cespedes, Bhupathiraju et al. 2016).  

The key findings from data in this report are best exemplified by results obtained 

from Pitx3, Ppp1r9b Slc1a1, and Ap4e1 knockout mice that have a significant effect across 

many sleep traits. Pitx3 is the Paired Like Homeodomain Transcription Factor 3 and its 

deletion was associated with reduced sleep and bout length across 24h and light phase in 

our study. Although little is known about the role of Pitx3 and sleep, Derwinska et al have 

reported that a hemizygous deletion on chromosome 10 involving Pitx3 resulted in sleep 

disturbances beginning early childhood in a Caucasian boy (Derwinska, Mierzewska et al. 

2012). In addition, Pitx3 is well known for its role in regulating lens development and is 

therefore associated with ocular abnormalities as seen in a range of animals including 

xenopus, zebrafish, humans as well as mice where its deficiency is reflected as a form of 

aphakia (Flint, Valdar et al. 2005, Harper, Volicer et al. 2005, Hirai, Pang et al. 2005, 

Khosrowshahian, Wolanski et al. 2005, Shi and Chiang 2005, Shi, Bosenko et al. 2005, 

Laposky, Shelton et al. 2006, Popov, Kaminskaya et al. 2009, Huang and He 2010, 

Bertram, Rook et al. 2011, Bertram and Rook 2012, Callander, Bolton et al. 2012, Mavanji, 

Billington et al. 2012, Dyakonova and Krushinsky 2013, Reichert and Gerhardt 2013). In 

the KOMP2 pipeline, in addition to sleep, Pitx3 is associated with a multitude of 

phenotypes including vision/eye, neurological/behavior, growth/size, 

homeostasis/metabolism, cardiovascular and skeleton. As expected, the Pitx3 KO mice 

have anopthalmia or absence of eyes. In mice, Pitx3 is also thought to be essential in 

development of dopaminergic neurons in Substantia Nigra (SN). Besides SN, Pitx3 is also 

expressed in Ventral Tegmental area (VTA)  Reviewed by (Peirce, Lu et al. 2004, Maret, 
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Dorsaz et al. 2007, Chandran, Shahana et al. 2009, Cirelli 2009, Cohen, Doyle et al. 2009, 

Deschenes and McCurry 2009, Gondo, Fukumura et al. 2009, Kang, Lim et al. 2009, 

Koethe, Schreiber et al. 2009, Kroner 2009, Li, Dani et al. 2009, Mekada, Abe et al. 2009, 

Millstein, Zhang et al. 2009, Miura, Matsuda et al. 2009, Miyake, Takahashi et al. 2009, 

Moy, Nonneman et al. 2009, Nishida, Pearsall et al. 2009, Ohno 2009, Panda, Patra et al. 

2009, Perrin, Fagan et al. 2009, Popov, Kaminskaya et al. 2009, Regal, Amigo et al. 2009, 

Sorensen, Vermeulen et al. 2009, Vassalli and Dijk 2009, Walker 2009, Winrow, Williams 

et al. 2009, Wisor, Jiang et al. 2009, Devi and Ohno 2010, Sheline, Raichle et al. 2010, 

Wang, Liu et al. 2010, Rillich, Schildberger et al. 2011, Bertram and Rook 2012, Callander, 

Bolton et al. 2012, Dyakonova and Krushinsky 2013, Fitzsimmons and Bertram 2013, 

Reichert and Gerhardt 2013, Stevenson and Schildberger 2013). Not only these regions are 

associated with reward, addiction and movement, they also play an important role in sleep 

and alertness Reviewed by (Nishino 2013). 

Ppp1r9b is the Protein Phosphatase 1 Regulatory Subunit 9B (or Neurabin II or 

Spinophilin), and as the name indicates is a regulatory subunit of protein phosphatase 

(PP1). It is a protein highly enriched in dendritic spines (Feng, Yan et al. 2000). Sleep is 

reported to promote formation of dendritic spines for memory consolidation (Yang, Lai et 

al. 2014). In addition, PP1 regulates AMPA channels that are believed to play a role in 

synaptic plasticity, and learning and memory Reviewed in (Prince and Abel 2013). Further, 

Ppp1r9b is one of the substrates of GSK3B (Glycogen Synthase Kinase 3 Beta) which is a 

crucial circadian clock regulator (Kaasik, Kivimae et al. 2013). Casein Kinase I enzymes 

have been shown to play a critical role in regulating clock genes such as Per2, and Ppp1r9b 

may dephosphorylate some of these same sites and work in opposition (Fukuyama 2003 
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and Padiath 2005). There is increasing evidence that clock genes not only influence 

circadian aspects of sleep and wake, but are fundamentally tied to sleep homeostasis as 

well, which appears to be altered in the Ppp1r9b knockout mice (Flores, Flores et al. 2007, 

Franken, Thomason et al. 2007, Maret, Dorsaz et al. 2007, O'Hara, Ding et al. 2007, Curie, 

Mongrain et al. 2013, Franken 2013, Mang and Franken 2013).  

Ap4e1 codes for the Epsilon subunit 1 of Adaptor Protein (AP) 4 complex that is 

involved in vesicle trafficking. Ap4e1 has been associated with Cerebral Palsy, and 

mutations in humans have been known to cause intellectual disabilities, of which abnormal 

sleep behavior is one of the symptoms (Moreno-De-Luca, Helmers et al. 2011). Like Pitx3, 

Ap4e1 is associated with multiple additional aberrant phenotypes observed in the KOMP2 

pipeline, and is also found to be within the QTL Cplaq15 (Circadian Period of Locomotor 

Activity 15) (Hofstetter, Trofatter et al. 2003).  

Another KO that showed significant changes in sleep-wake traits is Kcnh3 (Kv12.2) 

a subunit of potassium channels that regulate neuronal excitability. Kcnh3 KO mice have 

shorter sleep duration in the light phase. A similar but less pronounced reduction was also 

seen in Kcnh3 heterozygous mice (data not included). Its overexpression has been 

associated with deficits in learning, and its ablation with enhanced cognitive functions 

(spatial and working memory), hippocampal hyperexcitability and spontaneous seizures 

(Miyake, Takahashi et al. 2009, Zhang, Bertaso et al. 2010). Many other Kv channels are 

known to modulate sleep-wake. A well-known example is Shaker in drosophila (Cirelli, 

Bushey et al. 2005). Flies mutant for the Shaker gene have reduced sleep and are short 

sleepers. In Kcnc1, Kcnc3, Kcnc1/3 and Kv1.2 KO mice less NREM sleep has been 

observed, with a similar magnitude to sleep phenotypes observed for Kcnh3 reported here 



101 
 

Reviewed in (Rechtschaffen 1998, Cirelli 2009). Hence, our study identifies and adds 

another novel potassium channel associated gene that affects sleep. Lack of certain K 

channels may reduce the resting membrane potential of neurons, leading to increased 

firing, and reduced sleep. While this would occur in both inhibitory and excitatory circuits, 

the net effect is presumably increased excitation. Recently, Ding et al has shown that 

reduction seen in brain extracellular potassium ion levels is associated with sleep and 

anesthetized mice supporting this hypothesis (Holth, Patel et al. , Cespedes, Bhupathiraju 

et al. 2016, Ding, O'Donnell et al. 2016, Yaghouby, Donohue et al. 2016).  

Slc1a1 (EAAC1 or EAAT3), a glutamate transporter is found mainly in neurons. 

Lack of this transporter may increase glutamate transmission, and similar to the K channel 

story, may lead to greater excitatory responses and more difficulty falling asleep (Kanai, 

Bhide et al. 1995, Aoyama and Nakaki 2013).  Slc1a1 knockout mice have both lower sleep 

amounts and shorter bout lengths.   

Nrcam KO mice have reduced sleep and bout length during light phase. Nrcam 

(Neuronal cell adhesion molecule), a neuronal cell adhesion molecule, serves many 

functions such as axonal guidance, clustering, and maintenance of sodium channels 

essential for action potential propagation at nodes of Ranvier (Sakurai 2012, Amor, 

Feinberg et al. 2014). It also regulates density of dendritic spines (Demyanenko, Mohan et 

al. 2014). Nrcam has been shown to be associated with autism in humans as Reviewed in 

(Sakurai 2012). Cognitive deficits were also found in Nrcam null mutant mice (Reviewed 

in (Moy, Nonneman et al. 2009). 

Cbln3 KO mice had increased duration of sleep across 24 hours and dark phase. 

Cbln3 belongs to precerebellin family and studies conducted by Miura and colleagues show 
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that it co-localizes at purkinjee cell synapse along with Cbln1, another cerebellum specific 

protein, important for synaptic plasticity (Hirai, Pang et al. 2005, Miura, Matsuda et al. 

2009). 

With a multitude of phenotypes and rich data in the KOMP2 pipeline, cross trait 

analysis is the logical extension of this study. As an initial step, we conducted cross trait 

analysis between sleep and neurobehavioral phenotypes performed as part of the JAX 

KOMP2 pipeline. In the 38 KO strains we identified with abnormal sleep, we found 

significant associations with abnormal behavioral responses to light and hyperactivity. 

Specifically, Chn1, Rnf10, Rimklb, Ap4e1, and Macrod2. Pitx3, Foxo3, Ccl26, and Ghrhr 

were associated with abnormal behavioral response to light, and Mylip, Nxn and Zbtb4 to 

hyperactivity. Ppp1r9b had abnormal responses to new environments, whereas Mylip and 

Pitx3 showed increased exploratory activity in new environments. Startle reflex was 

increased in Pitx3, Ajap1, and Nxn, while it was decreased in Foxo3. As seen with the gene 

networks, several of these genes have a circadian footprint and may contribute to these 

coincident phenotypes. 

Sex differences were seen for many of the KO lines as well as in B6N controls 

throughout our study. Previous studies in mice and humans also report similar sex 

differences in sleep and circadian rhythms, although with relatively small sample sizes. 

Sex differences in sleep have also been observed in BL6J mice for baseline sleep 

parameters such as REM and NREM sleep, with lower values observed in female mice 

(Koehl, Battle et al. 2006, Paul, Dugovic et al. 2006). Sex differences observed in human 

studies have generally been small, but include higher EEG power density in women 

(Carrier, Land et al. 2001). EEG profiles in primary insomnia patients also show sex 
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differences (Buysse, Germain et al. 2008). Sex hormones are thought be one of the 

contributing factors for these differences (Collop, Adkins et al. 2004, Krishnan and Collop 

2006, Pavlova and Sheikh 2011). 

In addition to small but significant sex differences in our control mice, several 

genotypes had highly significant sleep trait differences for a specific sex. KO strains in 

which sex differences were found might be helpful in identifying causes for the intriguing 

sexual dimorphism seen in sleep behavior, such as those in which female mice sleep less 

than males. In our data, the majority of significant findings are sex specific, suggesting at 

least some biochemical differences in female vs. male sleep regulation.  

Our study demonstrates the utility of rapid-non-invasive sleep phenotyping in high 

throughput mouse screens. This initial set of approximately 300 genes was not selected to 

have sleep phenotypes and yet a high percentage were found to have altered sleep 

phenotypes, and of a magnitude as large as any that have been selected specifically for 

sleep studies over the past 25 years (Reviewed by (Cirelli 2009). This supports the utility 

of an unbiased selection and phenotyping for mouse knockouts, especially given that a 

majority of genes are not well understood. Unlike most individual studies of KO mice that 

examine genes predicted to influence a trait of interest, the IMPC/KOMP2 is a 

comprehensive, unbiased approach, having examined more than 2000 genes to date, and 

thus holds potential for detecting and identifying unexpected and pleiotropic effects of the 

knocked out genes (Brown and Moore 2012).With fewer than 300 KOs analyzed to date, 

we demonstrate the potential of this large scale effort to find novel sleep phenotypes for a 

significant percentage of coding genes.  
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Some of the potential sleep regulating genes identified in our study can be broadly 

categorized into transcription factors (Pitx3, Foxo3), immune system related (Ccl26), 

membrane transporters (Slc46a3, Slc8b1) ion channels (Kcnh3), neurotransmitters 

receptors (Htr3b, Htr1f, Htr1d), signal transduction (Ppp1r9b, Rab27b, Ap4e1), and 

metabolism (Ghrhr). A wide variety of genes belonging to these functional categories have 

been previously implicated in influencing sleep parameters. Furthermore, these categories 

are likely not exhaustive. Several of these genes have brain-associated functions such as 

myelin formation, neuronal differentiation, synaptic transmission, neuronal signal 

transduction and yet for many others such as Adck2 and Zfp961, there is little information 

available in the literature. None of the target genes, with the exception of Ghrhr and Pitx3, 

have been implicated in sleep regulation before to the best of our knowledge. Continued 

broad phenotyping for sleep in this resource is likely to open many new avenues for sleep 

research. 

There are some limitations to this study. The current analysis software does not 

distinguish REM sleep from NREM sleep, however, an algorithm to distinguish these sleep 

states from the piezoelectric recordings is in development and will be utilized in future 

studies once it has had sufficient validation. This algorithm and others will also be used to 

re-analyze data from the present study. Although we were able to detect many novel genes, 

the extensive filtering of sleep signals used in our study most likely excluded genes 

affecting sleep in subtle ways. Genes involved in sleep that have extensive redundancy or 

compensatory mechanisms in place to mask the effect of a gene ablation would also be 

missed. Finally, the knockout method is in general limited by the fact that a gene is ablated 

in all tissues, so KO of essential genes that may in fact be involved in sleep result in a non-
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viable animal, preventing sleep phenotyping. However, utilization of the conditional allele 

obtained from these KOs in the future may overcome this limitation.  It is also unclear to 

what extent any of the sleep alterations from gene ablation are due to direct or indirect 

effects of the gene in question. These questions may be partially addressed by examining 

the multiple phenotypes for each knockout, and can be pursued in other ways for the most 

interesting cases. There is no reason to believe that there are any genes whose sole functions 

are related to sleep, as even the so-called core circadian clock genes are pleiotropic.   

Because the piezoelectric system monitors breath rate as the primary movement 

during sleep, it may also be useful to detect sleep apneas. There is limited overlap between 

genotypes significant for sleep wake alterations, and those for breathing rate. The results 

thus far suggest it is not a variable directly related to sleep percent and bout length, and so 

it was excluded from PCA and MD analysis. The non-invasive nature of the piezo set up 

allows assessment of breathing without the stress of most other alternative methods for 

assessing breathing.  

 Several genes were found to affect breath rate. Majority of these genes affected 

breath rate only as is the case with Tppp (p25 alpha/p24) mice which had shorter breath 

rate.  A study conducted by Lehotzky et al suggests that Tppp, a tubulin-binding protein 

plays an important role in oligodendrocyte differentiation (Lehotzky, Lau et al. 2010). In 

addition, it also functions as a glycogen synthase kinase 3 inhibitor (Martin, Vazquez et al. 

2002, Reichert and Gerhardt 2013). However, some of the genes that affect breath rate 

were also implicated in influencing various aspects of sleep phenotype. For instance, Nes 

mice have reduced breath rate compared to control mice as well as shorter bout length 

during dark phase. Nestin is an intermediate filament protein expressed predominantly in 
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the initial developmental stages of stem cells of the CNS as well as skeletal muscle 

(Frederiksen and McKay 1988, Lendahl, Zimmerman et al. 1990, Sejersen and Lendahl 

1993).  

We don’t know yet if breath rate regulating mechanisms are in any way 

associated with other brain functions or sleep-related pathways, but the ability to assess 

breathing should provide additional variables of interest to the larger efforts to understand 

the multiple roles of all protein coding genes.   

Conclusions 

This study utilizes data generated from the KOMP2 project at The Jackson 

Laboratory, a large-scale project intended to phenotype knockout mice in alignment with 

the IMPC. This study reports on 6000 mice representing 300 different gene knockouts, 

along with over 1800 BL6NJ control mice all assessed for sleep and wake as a unique part 

of the JAX phenotyping pipeline. Our findings showed altered sleep and wake in many of 

the knockout lines compared to the controls.  

 Many of these strains also exhibit sex differences in sleep traits. In all, we identified 

a large number of genes in which target deletion resulted in high to modest effects on one 

or more of the observed sleep-wake traits, as well as breath rate. Follow up of these 

potential sleep regulating and breath rate modulating genes will likely suggest new 

signaling pathways underlying these two processes.  
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Table 7 Genotypes with significant differences compared to controls for (A) sleep percent 

and (B) bout lengths and (C) breath rate. 
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Genotype p-Value p-Value p-Value p-Value p-Value p-Value p-Value 

1700016K1

9Rik 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

4921509C19

Rik 0.99962 1.00000 0.11773 1.00000 1.00000 1.00000 1.00000 

A1cf 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Abca7 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Abcg2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Acap1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Acsf2 1.00000 1.00000 1.00000 0.86965 0.99985 1.00000 0.00016 

Acsm2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Actrt3 0.99971 1.00000 0.98181 1.00000 1.00000 1.00000 1.00000 

Adad2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Adck2 1.00000 1.00000 0.17446 1.00000 1.00000 0.00806 0.03159 

Adck5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Adgrb2 1.00000 1.00000 0.33340 1.00000 1.00000 1.00000 1.00000 

Adora2b 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ahrr 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 1.00000 

AI464131 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ajap1 1.00000 1.00000 0.32801 1.00000 0.44121 1.00000 0.10606 

Akap11 0.99984 1.00000 0.76679 1.00000 1.00000 1.00000 1.00000 

Akip1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Akr1b8 1.00000 1.00000 0.95400 1.00000 1.00000 1.00000 1.00000 

Akr1d1 1.00000 1.00000 1.00000 1.00000 0.99940 1.00000 1.00000 

Ap4e1 0.00076 0.21807 0.05671 0.00048 0.00221 0.00760 0.99971 

Arf2 1.00000 1.00000 0.93698 1.00000 1.00000 0.04677 0.99992 

Arhgef10 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Arrb1 1.00000 0.67450 1.00000 1.00000 1.00000 1.00000 0.68630 

Arrb2 0.32676 0.05610 1.00000 1.00000 1.00000 0.04312 1.00000 

Arrdc1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99964 

Arsk 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Asb10 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Bbox1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

BC030499 0.79457 1.00000 0.54030 1.00000 1.00000 1.00000 0.04413 

BC100451 1.00000 1.00000 0.37081 1.00000 1.00000 1.00000 0.97249 

Bex4 1.00000 1.00000 0.02559 0.77634 0.02136 1.00000 0.74879 

Bhlhe40 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99953 

Bmp2k 1.00000 1.00000 1.00000 0.99997 0.99442 1.00000 1.00000 

Btg2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Bzw2 0.01586 1.00000 0.00405 1.00000 1.00000 0.86152 0.17542 

C1qa 1.00000 1.00000 1.00000 0.99993 1.00000 0.99804 0.00003 

C1qb 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.15766 

C1qtnf5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.25933 

C3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99842 

C9 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Car12 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Carf 0.99883 1.00000 0.43063 1.00000 0.97268 1.00000 0.00060 

Cast 1.00000 1.00000 1.00000 0.79872 1.00000 0.85807 1.00000 

Cbln3 0.00048 0.00081 0.99998 1.00000 1.00000 1.00000 

<0.00001

 

Ccdc120 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ccl26 0.00161 0.88741 0.00451 1.00000 1.00000 0.83682 1.00000 

Cd33 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Cd84 0.84255 1.00000 0.70273 1.00000 1.00000 1.00000 0.02760 

Cdh4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Cdk15 0.05326 1.00000 0.04206 1.00000 1.00000 1.00000 0.52529 

Cdk19 1.00000 1.00000 0.98743 1.00000 1.00000 1.00000 1.00000 

Ceacam16 0.84604 0.99926 1.00000 1.00000 1.00000 1.00000 1.00000 

Cers5 0.73257 1.00000 0.18859 1.00000 1.00000 1.00000 0.03310 

Ces4a 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.09808 

Cfb 1.00000 1.00000 0.92660 1.00000 1.00000 1.00000 0.00702 

Chek2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Chn1 0.13375 0.99862 0.53975 0.99981 0.99972 1.00000 1.00000 

Cited4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Cldn13 1.00000 1.00000 0.65678 1.00000 1.00000 0.10247 0.98646 

Cldn19 1.00000 1.00000 1.00000 1.00000 0.99999 1.00000 1.00000 

Clvs1 1.00000 0.99994 1.00000 1.00000 1.00000 0.86035 0.77300 

Cml2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Col18a1 0.99999 1.00000 0.88021 1.00000 1.00000 1.00000 1.00000 

CONTROL 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Cp 1.00000 1.00000 0.99663 1.00000 1.00000 1.00000 1.00000 

Cpb1 1.00000 1.00000 0.00126 1.00000 0.88755 0.99035 0.92633 

Crym 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.02616 

Cyb5d1 1.00000 1.00000 0.58110 1.00000 0.99866 1.00000 1.00000 

Cyb5d2 1.00000 1.00000 0.99854 1.00000 1.00000 1.00000 0.99938 

Dcaf10 1.00000 1.00000 1.00000 0.15692 0.05769 1.00000 0.00008 

Dennd2d 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.87328 

Dixdc1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Dnaja4 1.00000 1.00000 0.00039 1.00000 0.99990 0.52167 0.00003 

Dnajb3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Dnajb7 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.95353 

Dnajc14 1.00000 0.41574 0.69828 1.00000 0.99999 1.00000 0.99975 

Dnajc28 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Dnajc5g 1.00000 1.00000 1.00000 1.00000 1.00000 0.99957 0.85968 

Dnajc7 1.00000 1.00000 1.00000 0.96069 0.99463 1.00000 0.03437 

Dnase1l2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Dntt 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Dpf1 1.00000 1.00000 0.99997 0.99392 1.00000 0.99969 1.00000 

Elk1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 

Eogt 1.00000 1.00000 0.01830 1.00000 1.00000 0.70973 0.99682 

Epb4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Epgn 1.00000 1.00000 0.00406 1.00000 0.99960 0.99923 0.29782 

Epha10 1.00000 1.00000 0.02732 1.00000 1.00000 0.98108 0.89822 

Ermp1 1.00000 1.00000 1.00000 1.00000 1.00000 0.01685 1.00000 

Espnl 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 

Esrra 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

F2rl1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Fam161a 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.20642 

Fam186b 0.98672 1.00000 0.99980 0.21741 0.99658 0.05921 1.00000 

Fam217b 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Far2 0.85965 1.00000 0.95150 1.00000 1.00000 1.00000 0.99488 

Fastkd5 1.00000 1.00000 0.98823 1.00000 1.00000 1.00000 1.00000 
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Fdxacb1 1.00000 1.00000 0.96367 1.00000 0.99998 1.00000 0.16071 

Foxi2 0.99915 1.00000 0.09700 1.00000 1.00000 1.00000 0.06559 

Foxo3 0.99170 1.00000 0.00847 1.00000 1.00000 0.98206 1.00000 

Foxred2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ghrhr 0.73473 0.05054 1.00000 0.74584 0.00048 1.00000 1.00000 

Ghsr 1.00000 1.00000 0.99846 1.00000 1.00000 1.00000 1.00000 

Gimap6 0.96312 1.00000 0.10616 0.99961 0.86516 1.00000 0.97581 

Gimap8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Gipc3 1.00000 1.00000 0.12197 1.00000 1.00000 0.15981 0.99964 

Gjd4 0.97336 1.00000 0.02652 1.00000 0.99824 1.00000 0.80596 

Glycam1 1.00000 1.00000 1.00000 0.99956 0.88946 1.00000 1.00000 

Gpnmb 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Gpr142 1.00000 1.00000 1.00000 0.99561 0.54208 1.00000 1.00000 

Gpr156 0.98860 1.00000 1.00000 1.00000 0.99999 1.00000 1.00000 

Gpr183 1.00000 1.00000 0.92334 1.00000 1.00000 1.00000 1.00000 

Gpr19 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

H1fx 1.00000 0.99983 0.99999 1.00000 0.34013 0.99422 1.00000 

Hc 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Hdac10 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Hemgn 1.00000 0.99991 1.00000 0.95509 0.10681 1.00000 1.00000 

Heyl 1.00000 0.99891 1.00000 1.00000 1.00000 1.00000 1.00000 

Hfe2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Hsd17b1 1.00000 0.99632 0.00003 <0.00001 1.00000 <0.00001 1.00000 

Hsd17b11 1.00000 1.00000 0.51096 1.00000 1.00000 1.00000 0.45232 

Hsf2 1.00000 1.00000 1.00000 1.00000 0.99900 1.00000 0.99991 

Hsf4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Hspb1 1.00000 1.00000 1.00000 0.99991 0.96012 1.00000 0.99969 

Hspb2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Hspb3 1.00000 0.99942 1.00000 0.98860 1.00000 1.00000 1.00000 

Htr1a 1.00000 1.00000 0.79472 1.00000 1.00000 1.00000 1.00000 

Htr1d 1.00000 1.00000 0.99929 1.00000 1.00000 0.00075 0.97581 

Htr1f 0.91148 1.00000 0.00074 1.00000 0.99990 1.00000 0.00245 

Htr3b 1.00000 1.00000 0.03519 1.00000 1.00000 1.00000 1.00000 

Htr7 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Hyal3 0.99996 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ifnk 1.00000 1.00000 0.99981 1.00000 1.00000 1.00000 1.00000 

Ifnl3 0.96795 1.00000 0.00229 1.00000 0.99997 1.00000 0.13360 

Igsf11 1.00000 0.64460 0.99978 1.00000 1.00000 1.00000 0.31266 

Il12rb2 1.00000 1.00000 0.63810 1.00000 1.00000 0.67855 0.00558 

Il24 0.99990 0.60789 1.00000 0.99999 1.00000 0.76901 1.00000 
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Ipp 1.00000 1.00000 0.40140 1.00000 1.00000 0.00010 0.47273 

Iqcj 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Iqgap2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Irf8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Jam2 1.00000 1.00000 0.33528 1.00000 1.00000 1.00000 0.05637 

Jmjd8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99969 

Kcnh3 1.00000 1.00000 0.04012 1.00000 0.74510 1.00000 1.00000 

Klk14 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Krt77 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Krt9 1.00000 1.00000 0.74664 1.00000 1.00000 1.00000 0.01956 

Lcn2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Lima1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Limch1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Lin28b 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00001 

Lipn 0.99993 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Lman1l 1.00000 1.00000 1.00000 1.00000 1.00000 0.98382 0.99551 

Loxl1 1.00000 1.00000 1.00000 0.99995 0.81536 1.00000 0.80418 

Lpar6 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Lrch1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Lrrc15 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ltbp2 1.00000 0.97685 1.00000 1.00000 0.99999 1.00000 1.00000 

Macrod2 0.94355 0.00004 0.98001 0.96051 1.00000 0.19091 1.00000 

Mag 1.00000 0.46726 1.00000 1.00000 1.00000 1.00000 0.00078 

Mdk 1.00000 0.17186 1.00000 1.00000 0.99983 1.00000 1.00000 

Mdp1 1.00000 1.00000 0.50462 1.00000 1.00000 1.00000 1.00000 

Mepce 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.81046 

Mettl21c 1.00000 1.00000 0.77394 1.00000 1.00000 1.00000 0.04942 

Mettl7b 1.00000 0.91667 1.00000 0.29576 0.10787 0.59416 0.00082 

Mfsd10 1.00000 1.00000 0.99993 1.00000 1.00000 1.00000 0.94635 

Mmp8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Moxd1 1.00000 1.00000 0.47566 1.00000 1.00000 1.00000 0.99096 

Mpdz 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Mrgpre 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Myh1 1.00000 0.01319 0.91948 0.00007 0.98694 0.00005 

<0.00001

 

Mylip 1.00000 0.00669 0.41814 1.00000 0.03605 1.00000 1.00000 

Myo3b 1.00000 1.00000 1.00000 0.29230 0.07871 1.00000 1.00000 

Myo7b 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.97413 

Nat1 1.00000 1.00000 0.96747 0.99997 1.00000 0.10895 0.99927 

Ncald 0.44568 1.00000 0.00167 1.00000 1.00000 1.00000 0.05868 

Nefh 1.00000 1.00000 1.00000 0.62263 0.04344 1.00000 0.92851 
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Nek11 1.00000 1.00000 0.99636 1.00000 1.00000 1.00000 1.00000 

Nes 1.00000 1.00000 1.00000 0.44716 0.03251 1.00000 

<0.00001

 

Neurl2 0.96514 1.00000 0.00251 1.00000 1.00000 1.00000 0.94709 

Nfatc4 1.00000 0.99960 0.46211 0.23840 1.00000 0.03742 1.00000 

Nmrk2 1.00000 1.00000 0.99911 1.00000 1.00000 1.00000 0.17522 

Npm3 1.00000 1.00000 0.00402 1.00000 1.00000 0.23074 0.46484 

Nrcam 1.00000 0.99856 0.00003 0.64614 1.00000 0.01323 1.00000 

Nrn1l 1.00000 1.00000 0.98253 1.00000 1.00000 0.29187 0.88305 

Nrsn1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Nsun7 0.99945 1.00000 0.99840 1.00000 1.00000 0.91420 0.99999 

Nt5c 1.00000 1.00000 0.99866 1.00000 1.00000 1.00000 1.00000 

Oard1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ocstamp 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.81566 

Ogn 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.94635 

Osm 1.00000 1.00000 0.48178 1.00000 1.00000 1.00000 0.96424 

Pacsin2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Paqr7 1.00000 0.99998 1.00000 1.00000 1.00000 1.00000 1.00000 

Pard6a 1.00000 1.00000 1.00000 0.90411 0.99999 0.91909 1.00000 

Parp16 1.00000 0.97431 0.18518 1.00000 0.72654 1.00000 1.00000 

Parp8 0.28412 0.57899 1.00000 1.00000 1.00000 0.99620 0.99809 

Pcdh12 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Pcsk4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Pitx3 <0.00001 1.00000 <0.00001 <0.00001 1.00000 <0.00001 0.83024 

Pkn3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Pkp4 1.00000 1.00000 1.00000 0.80459 0.64098 1.00000 0.00003 

Pla2g2d 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Plekha3 1.00000 1.00000 1.00000 0.99998 0.13563 1.00000 1.00000 

Plk5 1.00000 1.00000 0.99997 1.00000 1.00000 1.00000 1.00000 

Pnmt 1.00000 1.00000 1.00000 1.00000 0.99685 0.83489 0.95626 

Postn 0.08822 

<0.00001

 0.96233 1.00000 0.79094 1.00000 0.04203 

Ppp1r26 1.00000 1.0000 0.99999 1.00000 1.00000 1.00000 1.00000 

Ppp1r9b <0.00001 <0.00001 <0.00001 0.00010 <0.00001 0.00019 0.65755 

Prkab1 1.00000 1.00000 1.00000 0.99904 0.52823 1.00000 1.00000 

Prokr1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.38500 

Prom2 1.00000 1.00000 0.35239 0.99999 0.62360 1.00000 1.00000 

Prss40 0.99517 0.99992 1.00000 1.00000 1.00000 1.00000 1.00000 

Prss56 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 

Ptpn20 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ptpn5 0.20353 0.30580 1.00000 1.00000 0.99755 1.00000 1.00000 
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Ptpru 1.00000 1.00000 0.98088 0.59129 1.00000 0.00014 1.00000 

Pycr1 1.00000 0.99758 1.00000 1.00000 1.00000 1.00000 0.86458 

R3hcc1l 1.00000 1.00000 1.00000 1.00000 1.00000 0.99968 1.00000 

Rab11fip5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Rab20 1.00000 0.99989 1.00000 1.00000 1.00000 1.00000 1.00000 

Rab24 0.60031 1.00000 0.06027 1.00000 1.00000 1.00000 1.00000 

Rab27b 1.00000 1.00000 1.00000 0.17053 0.01980 1.00000 0.87499 

Rab36 1.00000 1.00000 0.87943 1.00000 0.99999 1.00000 0.00022 

Rab39 1.00000 1.00000 1.00000 1.00000 0.99948 1.00000 0.99999 

Rab3ip 0.99674 1.00000 0.03877 1.00000 0.77375 0.81519 0.01999 

Rab43 1.00000 1.00000 1.00000 1.00000 0.99995 1.00000 0.99952 

Rab5a 1.00000 1.00000 0.98602 0.99949 0.99517 1.00000 0.11026 

Rabac1 1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 1.00000 

Rad21l 1.00000 1.00000 0.99001 1.00000 1.00000 1.00000 1.00000 

Rap2b 1.00000 1.00000 1.00000 0.96079 0.95092 1.00000 1.00000 

Resp18 1.00000 0.96304 0.99997 1.00000 1.00000 1.00000 1.00000 

Rexo4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Rhbdl2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.98985 

Rilpl2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Rimklb 1.00000 0.00795 0.00055 1.00000 0.00015 1.00000 0.47273 

Rin3 1.00000 1.00000 1.00000 1.00000 1.00000 0.98209 1.00000 

Rnf10 1.00000 1.00000 1.00000 0.00013 0.00002 0.89154 1.00000 

Rnf112 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Rnf13 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.03397 

Rnf133 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Rnf25 1.00000 1.00000 0.09629 0.22376 0.04616 1.00000 1.00000 

Rps6kl1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Rrad 1.00000 1.00000 1.00000 1.00000 1.00000 0.96571 1.00000 

Rxfp4 1.00000 1.00000 0.25707 0.99998 1.00000 0.87516 0.04697 

Scg2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Serpina1f 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Serpina7 1.00000 1.00000 0.99997 1.00000 1.00000 1.00000 1.00000 

Serpinb5 1.00000 1.00000 0.00345 1.00000 0.14922 0.18500 0.87780 

Setd6 1.00000 1.00000 0.95386 1.00000 1.00000 0.95874 1.00000 

Sfxn4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Sgta 1.00000 1.00000 0.99372 1.00000 1.00000 1.00000 1.00000 

Sh3tc2 0.88140 1.00000 0.88515 1.00000 1.00000 1.00000 1.00000 

Slc1a1 0.99998 0.07564 1.00000 1.00000 0.25652 1.00000 0.69838 

Slc24a5 1.00000 1.00000 1.00000 0.69724 0.92114 0.99989 1.00000 

Slc25a35 1.00000 1.00000 1.00000 1.00000 1.00000 0.99960 1.00000 
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Slc46a3 0.05127 1.00000 0.00001 1.00000 1.00000 0.60701 0.02093 

Slc8a3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Slc8b1 0.27322 1.00000 <0.00000 1.00000 0.98869 0.01925 0.00631 

Smoc2 0.99999 1.00000 0.05730 1.00000 1.00000 0.95387 1.00000 

Snx15 1.00000 1.00000 0.12902 1.00000 1.00000 1.00000 0.71906 

Sorbs2 1.00000 1.00000 1.00000 1.00000 1.00000 0.93435 1.00000 

Sox18 1.00000 1.00000 0.99831 1.00000 1.00000 0.14447 0.67412 

Sp5 1.00000 1.00000 1.00000 1.00000 0.98822 1.00000 1.00000 

Spag4 1.00000 1.00000 0.99997 1.00000 1.00000 1.00000 1.00000 

Spp1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Sprr1b 1.00000 1.00000 1.00000 1.00000 0.98382 1.00000 1.00000 

Sprr3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Sptssb 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Stag3 1.00000 1.00000 1.00000 0.99997 0.37120 1.00000 1.00000 

Stat5b 1.00000 1.00000 0.99969 1.00000 1.00000 1.00000 1.00000 

Stk16 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Stx16 1.00000 0.70597 0.67266 0.57495 0.00105 1.00000 0.00345 

Stx19 1.00000 1.00000 0.99782 1.00000 0.99977 1.00000 0.05429 

Syce1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Syce1l 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Sycp3 1.00000 1.00000 0.99999 1.00000 1.00000 1.00000 1.00000 

Syn3 1.00000 1.00000 0.99413 1.00000 1.00000 1.00000 0.11460 

Tbc1d4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Tbx22 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 

Tdrkh 1.00000 1.00000 0.04083 1.00000 1.00000 0.99994 0.00669 

Tex101 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Tex29 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Thsd1 1.00000 1.00000 0.94754 1.00000 0.99941 1.00000 0.20642 

Timp3 1.00000 1.00000 1.00000 1.00000 0.99943 1.00000 1.00000 

Tmem136 1.00000 1.00000 1.00000 0.00254 0.99852 0.00042 1.00000 

Tmem151b 1.00000 1.00000 0.74676 0.61905 0.03149 1.00000 0.99973 

Tmem181 1.00000 1.00000 0.98210 1.00000 1.00000 1.00000 1.00000 

Tmem181a 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Tmem79 0.12915 1.00000 0.00405 0.80889 1.00000 0.03757 1.00000 

Tmod2 1.00000 0.13353 1.00000 1.00000 0.03712 1.00000 0.04314 

Tnfsf18 0.38505 0.99958 0.97423 0.82131 0.94422 0.98041 0.71783 

Tpcn1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Tpgs2 0.03009 0.21296 0.99866 0.37887 0.99354 1.00000 0.95626 

Tppp 1.00000 1.00000 1.00000 0.56355 0.62933 1.00000 

<0.00001

 

Tprn 0.86892 0.80537 1.00000 1.00000 1.00000 1.00000 1.00000 
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Trip13 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Try4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Tspan18 1.00000 1.00000 1.00000 0.91584 0.96123 1.00000 1.00000 

Tssk5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ttll10 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Ttll6 0.57716 1.00000 0.00085 1.00000 1.00000 0.08389 0.99824 

Vcpkmt 0.99999 1.00000 0.98888 1.00000 1.00000 1.00000 1.00000 

Vegfb 0.69083 1.00000 0.16113 1.00000 1.00000 1.00000 1.00000 

Vsig4 0.03580 0.00043 1.00000 1.00000 0.06173 1.00000 0.88800 

Vsig8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Wee2 1.00000 1.00000 1.00000 1.00000 1.00000 0.15328 0.99866 

Ydjc 0.34380 1.00000 0.00005 1.00000 1.00000 1.00000 1.00000 

Ypel1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Zbtb32 1.00000 1.00000 0.98617 1.00000 1.00000 1.00000 1.00000 

Zbtb4 0.41262 1.00000 0.00975 1.00000 1.00000 0.08996 1.00000 

Zdhhc11 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Zfp14 1.00000 1.00000 1.00000 0.99996 1.00000 0.70127 1.00000 

Zfp219 1.00000 0.71832 1.00000 1.00000 1.00000 0.99909 1.00000 

Zfp689 1.00000 1.00000 1.00000 1.00000 0.99982 1.00000 0.00579 

Zfp961 1.00000 0.99999 0.00006 1.00000 0.05686 0.00726 0.91956 

Zfyve26 1.00000 0.06976 1.00000 1.00000 0.93841 1.00000 1.0000 

Zzef1 0.99999 0.33032 1.00000 0.96146 0.00138 1.00000 0.15004 
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Chapter 6 Discussion and conclusions  

As much as one-third of human life is spent in sleep, a behavioral state 

characterized by reduced consciousness and increased arousal threshold. Sleep is well 

conserved across mammals and birds, and at least some form of sleep appears common in 

almost all animals.  Sleep is thus believed to serve some important physiological function. 

It has been described as a process “of the brain, by the brain and for the brain” (Hobson 

2005). However, getting sufficient sleep, which is a major health concern, has far-reaching 

health consequences beyond the more obvious deterioration of cognitive performance. 

Insufficient sleep has been implicated in many health conditions including metabolic 

disorders, such as obesity and diabetes, cardiovascular diseases, hypertension, depression, 

and neurodegenerative diseases such as Alzheimer’s disease (AD) (Palagini, Bruno et al. 

2013, Van Someren, Cirelli et al. 2015).  

 

Reports on higher concordance of brain architecture and sleep phenotypes in 

monozygotic vs dizygotic twins provided some of the early evidence that sleep is under 

genetic control (Stassen, Lykken et al. 1988, Ambrosius, Lietzenmaier et al. 2008, De 

Gennaro, Marzano et al. 2008). In 1999, in a major discovery, a mutation in hypocretin 

receptor-2 was found to underlie canine narcolepsy (Lin, Faraco et al. 1999). Many other 

genes since then have been found to affect sleep; in a review, Cirelli summarizes more than 

80 genes that have been reported to alter sleep parameters (Cirelli 2009). There have been 

many advancements in the field of sleep, however, we still lack understanding about the 

fundamental functions of sleep and the need for sleep. This in turn limits our efforts at 

improving sleep quality, and developing more effective drugs for sleep disorders. The 
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knowledge of genetic regulators thus may not only provide an insight into the general 

functions and genetic basis of sleep, but also might suggest novel drug targets to alleviate 

symptoms associated with sleep disorders. To this end, one approach to identify genetic 

components of sleep regulation is by exploiting existing genetic tools and utilizing rodent 

mouse models of human disease conditions. Another possible method to probe the genetic 

basis of sleep is through the use of knockout animals to discover novel sleep-related genes. 

For the first part of my project, I examined an AD mouse model, and a combined mouse 

model of AD and db (diabetes) for alterations in their sleep-wake patterns (Chapters 3 and 

4). For the second part of my thesis, I analyzed data from a large-scale knock out project 

to identify novel sleep-related genes (Chapter 5). 

 

An accurate measure of sleep and sleep-related traits is critical for both forward and 

reverse genetic approaches towards a better understanding of sleep. The different sleep-

wake parameters that can be screened range from sleep duration (REM, NREM sleep), the 

number of such sleep bouts, and distribution of sleep across dark and light phases. To detect 

subtle effects of a gene mutation or an allelic variant in the phenotypic screens, a large 

population of mice is required. However, traditional EEG/EMG techniques used for sleep-

wake assessment has limitations to its scalability for large-scale studies. Not only it is time 

and labor intensive, but also it is an invasive technique which can confound behavioral 

studies, in particular sleep. Furthermore, it requires animals to be tethered to the EEG 

system for data acquisition, which restricts the animal movement. To overcome these 

deficiencies, our lab developed the PiezoSleep system- a high throughput, non-invasive 

system suitable for sleep studies for large numbers of animals. It shows a classification 

accuracy of over 90% compared to human observation and EEG/EMG recordings 
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(Donohue, Medonza et al. 2008, Mang, Nicod et al. 2014). PiezoSleep comprises a highly-

sensitive piezoelectric sensor pad placed on the cage floor. The sensor pad detects the 

pressure variations to classify sleep and wake states. During sleep, the prominent 

movement detected is breathing of an animal compared to wakefulness, which is 

characterized by erratic movements. The system can as well discriminate quiet rest from 

sleep and brief arousals, the feature that is missing in many other non-invasive alternative 

devices. PiezoSleep thus finds its use as an essential tool in all of my research projects. 

However, the system cannot as yet sub-stage sleep into REM and NREM sleep. A detailed 

description of the system can be found in Chapter 2. 

AD, an age-related, progressive neurodegenerative disease, has become a health 

epidemic with more people living beyond their 60s. Sleep alterations are a common 

occurrence, in addition to circadian impairments in many of the AD patients. 

Epidemiological studies indicate that sleep disturbances are one of the primary causes of 

institutionalization of AD patients (Pollak, Perlick et al. 1990, Bianchetti, Scuratti et al. 

1995, Moran, Lynch et al. 2005, Guarnieri, Adorni et al. 2012). Sleep disruptions are 

manifested in the form of reduced slow wave sleep (SWS) andREM sleep, in addition to 

increased nighttime awakenings, and excessive daytime sleepiness (Holth, Patel et al. , 

Prinz, Peskind et al. 1982, Martin, Loewenstein et al. 1986, Vitiello, Prinz et al. 1990, Petit, 

Gagnon et al. 2004). These sleep alterations in turn are believed to be linked to cognitive 

impairments seen in AD patients (Nishida, Pearsall et al. 2009, Walker 2009). Findings 

from human and mouse studies suggest that AD pathology begins as early as 15 years prior 

to the appearance of clinical symptoms, in parallel to sleep aberrations  (Morris and Price 

2001, Sperling, Aisen et al. 2011, Fitzsimmons and Bertram 2013). Improvement in sleep 
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has been found to lower the risk of AD in people with at least one APOE 4 allele (Lim, 

Yu et al. 2013, Simon, Greenaway et al. 2013). Recently, in a seminal work, Xie el al have 

shown that sleep facilitates clearance of toxic metabolites, including A, a neuronal by-

product of the APP protein that is a major constituent of the plaques in Alzheimer’s Disease 

(AD) (Xie, Kang et al. 2013). Taken together, these studies suggest that a bidirectional 

relationship exists between AD and sleep, with poor sleep enhancing the predisposition to 

amyloid beta (A) deposition and reduced clearance, and increasing A causing sleep 

disruption. Thus, sleep may be critical as both a therapeutic intervention for AD, and also 

a key symptom that needs relief.  This information should support further development of 

therapeutics that can alleviate sleep aberrations in AD. Since human studies tend to be 

expensive, take many years, and are difficult to control, animal models are an important 

alternative. Given that a wide variety of genetic resources are well-established for mouse, 

and there is 90% homology between the mouse and human genome in the critical coding 

and gene regulatory regions, the mouse has become a preferred animal model to emulate a 

wide variety of both normal and human pathological conditions, including AD.  

 

In chapter 3, I investigated whether 5XFAD, a well-characterized AD mouse 

model, exhibits sleep-wake alterations similar to those reported in human AD patients. 

These animals show early onset of AD neuropathology as a result of additive effects of 5 

distinct human mutations: 3 in the amyloid precursor protein (APP) namely Swedish, 

Florida and London mutations, and 2 in the presenilin protein (PS1) i.e. M146L and L286V 

(Oakley, Cole et al. 2006). These mice thus develop severe intraneuronal A42  at an early 

age beginning at 1.5 months, amyloid deposition at 2 months, synaptic loss at 9 months of 
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age. Memory deficits as tested on behavioral assays such as Y maze, Morris water maze, 

can be seen at an age of 4 to 6 months onwards (Oakley, Cole et al. 2006). Considering 

that men as well as women are affected by AD, I included both male and female 5XFAD 

mice (4-6.5 months old) in my study. Sleep parameters that were recorded with the Piezo 

system include sleep across 24 h, dark and light phases, and bout length across 24h, dark 

and light phase. After baseline recording of 3-5 days, mice were sleep deprived for 4 hours. 

Under baseline conditions, both male and female 5XFAD mice had shorter bout 

lengths compared to controls. Additionally, females also had reduced overall sleep due to 

marked reduction seen in sleep during the dark phase. However, males did not differ from 

controls in their sleep durations. The bout length reductions for 5XFAD mice (both males 

and females) were more prominent in dark phase (active phase of mice) than the light 

phase, which does not necessarily match the human condition. However, the overall 

decrease still reflects increased sleep fragmentation, which is akin to sleep disruptions seen 

in human AD condition. There was no effect of genotype for bout length and sleep duration 

in 6 h following sleep deprivation (Sethi, Joshi et al. 2015). Thus, in general, our findings 

are similar to previous reports of altered sleep-wake patterns in other AD animals. Reduced 

sleep including REM and NREM sleep, and/ or increased wake time has been reported in 

many AD mice- APP/PS1, PDAPP, TgCRND8, Tg2576 (Huitron-Resendiz, Sanchez-

Alavez et al. 2002, Zhang, Veasey et al. 2005, Platt, Drever et al. 2011, Roh, Huang et al. 

2012, Colby-Milley, Cavanagh et al. 2015). In summary, 5XFAD exhibits sleep alterations 

that resemble some key aspects of sleep disruptions reported in AD patients.  

Sex differences found in our study might stem from difference in A levels for the 

2 sexes. Oakley et al have reported that A42 levels tend to be higher in young 5XFAD 
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females compared to age-matched males (Oakley, Cole et al. 2006). There may be other 

factors contributing to this disparity between the 2 sexes. An understanding of what drives 

these different levels of A in the two sexes may provide further insight to human AD 

sleep alterations as well.   

  Type 2 Diabetes (T2DM), a chronic metabolic disorder, affects more than 8% of 

the American population. Obesity is known to increase the risk for T2DM. In addition, 

inadequate sleep has been linked to elevated risk of T2DM, independently of obesity. It is 

proposed that sleep restriction might alter energy metabolism, by upregulating appetite and 

reducing the energy expenditure (Knutson, Spiegel et al. 2007). These events in turn can 

lead to weight gain, and contribute to insulin resistance, which again is a risk factor for 

developing T2DM. Animal studies further corroborate the inverse relationship between 

sleep and metabolism. Leptin-deficient ob/ob, and leptin-resistant db/db mice and obese 

zucker rats have attenuated sleep-wake rhythms in addition to increased sleep 

fragmentation, and increased overall sleep duration (Mavanji, Billington et al. 2012). 

Conversely, type, timings and availability of diet, has been shown to affect sleep in rodents  

(Jenkins, Omori et al. 2006).  

 

Furthermore, there is growing evidence that diabetes and obesity present an 

increased risk of AD development. The Rotterdam study, and several more recent studies, 

have shown that diabetic individuals have double the risk of AD prevalence (Ott, Stolk et 

al. 1999, Kroner 2009). In a clinical study, Janson et al found that AD patients are more 

prone to develop T2DM than non-Alzheimer controls (Janson, Laedtke et al. 2004). The 

individuals with AD, and a prior history of T2DM also exhibit cerebrovascular 
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abnormalities, in addition to the typical AD-related neuropathology without showing any 

additional A burden. Effects of cerebrovascular anomalies or vascular dementia, a 

frequent comorbidity with Alzheimer’s disease, are poorly understood. An animal model 

recapitulating- both AD and T2DM, is therefore critical to further our understanding about 

how the two conditions interact, and promote cerebrovascular abnormalities. 

 With the aim to evaluate how the interaction of AD and T2DM affect sleep, I took 

advantage of the combined mouse model of AD and T2DM (db/AD) created by Niedowicz 

et al. The db/AD mouse was generated by crossing leptin-resistant db/db with APP/PS1, a 

knock-in mouse model of AD (Neidowicz et al., 2014). db/AD mice exhibit additional 

cerebrovascular pathologies (aneurysms and strokes), not present in either of the parental 

lines. These animals are obese, insulin resistant and glucose tolerant beginning early age. 

Plaque deposition is reduced in db/AD animals compared to AD mice. A levels do not 

differ between db/AD animals relative to AD mice across different age groups. However, 

A42 levels are reduced significantly in db/AD animals than AD mice, at 6 and 12 months 

of age (Neidowicz et al., 2014). 

For my study, as detailed in chapter 4, I assessed sleep duration and bout length in 

db/AD mouse, as well as individual parental strains- db/db and APP/PS1, for comparisons. 

We included mice of both the sexes and different age groups (young and old), and 

examined the interaction effects between different predictor variables. Our findings are 

similar to previous reports on AD animals. In our study, AD animals slept less during dark 

phase, and also had longer bout lengths during the light phase and across 24h, after 

controlling for all other covariates. It is thus possible that AD animals tend to compensate 

for shorter sleep duration seen during dark phase, with longer sleep bouts during the light 
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phase (an increase in average bout lengths by approx. 100 s). db animals were found to 

have longer overall duration of sleep, attributable to prominent differences seen during the 

dark phase. This is similar to previous reports in case of leptin-deficient ob/ob and leptin-

resistant db/db mice, and Obese zucker rats.  

For db/AD mice (both males and females) similar to db animals, an increase in 

sleep duration across 24 h and dark phase compared to controls was found. Our findings 

thus indicate that the cerebrovascular pathology seen in db/AD mice, believed to be 

responsible for their cognitive deficits does not lead to additional sleep aberrations. Also, 

Niedowicz et al in their studies reported that db/AD animals have less plaque deposition 

and A42 levels than AD animals (Neidowicz et al., 2014). This might explain a more 

prominent effect of db genotype on sleep measures than AD in case of db/AD mice.  

We found significant age and db/AD genotype interactions for sleep across 24h, 

light as well as dark phase, which means that as db/AD mice grow older; they tend to sleep 

less. Reduction in sleep duration tends to be more salient during the dark phase. These 

findings indicate that with an increase in age for db/AD animals, they sleep less than when 

they are young, and thus the sleep differences dissipate between db/AD and WT animals 

at later age. 

Sex effects were seen in case of bout lengths, as females tend to have shorter bouts 

compared to males and these differences were more prominent in dark than the light phase. 

In regard to age difference, older subjects were found to have shorter bouts during the light 

phase. Interaction between sex and age was found to be significant for the older animals 

for bout length during the dark phase implying that there is reduction in bout length as the 

age progresses for any of the given genotype. 
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Leptin can be one of the upstream molecular components involved at the 

intersection of AD and diabetes. It is known to activate MAPK, AKT and mTOR kinases, 

which are known to inhibit Glycogen synthase 3 kinase (GSK3B) and thus GSK3B-

dependent tau phosphorylation. Down-regulation of leptin signaling as seen in T2DM can 

therefore result in increased tau phosphorylation which can subsequently promote AD 

development (Shiromani, Xu et al. 2004, Bertram, Rook et al. 2011). Collectively, these 

studies suggest that diabetes associated dysfunctions promote AD pathology which can 

then disrupt sleep. Conversely, sleep impairments might be augmenting the AD and T2DM 

diseased states. Further interrogation of the underlying pathways can bridge the gap in our 

understanding of how sleep, AD and diabetes are inter-connected. In particular, it will be 

interesting to trace the molecular mechanisms that lead to reduced plaque deposition and 

A42 levels in db/AD animals, which might be significant in developing novel drug targets 

aimed at ameliorating AD pathology.  

There are many mechanisms to determine genetic regulators of sleep. Each of the 

available techniques has its own strengths and limitations, and together have advanced our 

understanding about sleep. For my research, I mainly took advantage of reverse genetics 

techniques. In my earlier chapters, I utilized a variety of mouse models recapitulating 

human diseased conditions and assessed if they are similar in their sleep-wake phenotype 

to human conditions.  For my fifth chapter, I report identification of novel sleep-related 

genes by screening sleep-wake parameters for a large-scale population of single gene 

knockout mice being recorded as part of Knockout mouse phenotyping program (KOMP2) 

(Abbott 2010, Bradley, Anastassiadis et al. 2012, Brown and Moore 2012). Sleep-wake 

traits were analyzed by PiezoSleep system. Knockout mice were generated on C57BL6/N 
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background, a common laboratory inbred strain. The mice are being recorded at the 

Jackson Laboratory (Jax), one of the KOMP2 centers. As part of the Jax phenotyping 

pipeline, each of the mouse is comprehensively screened for over 200 measurements, 

ranging from morphological, physiological to behavioral traits. Additional behavioral 

assays such as rotarod, holeboard exploration tests, and sleep, are unique to Jax pipeline.  

  These knockout mice were recorded for 5 baseline days, under 12:12 LD conditions 

at the age of 15 weeks. To date, I have analyzed data for more than 6000 animals, 

representing over 300 knockout lines, and over 1800 control animals. I have identified 55 

novel sleep-related genes by utilizing multiple statistical approaches including ANOVA, 

Principal component analysis and Multivariate analysis (Mahalanobis distance). 

Significant sleep-wake differences were found for a number of knockout strains relative to 

controls, in both light and dark phase. Some of the shortlisted candidate sleep genes are 

Adck2, Bzw2, Cbln3, Cpb1, Htr1d, Pitx3, Ppp1r9b, Rab27b, Rab36, Rimklb, Rnf10 and 

Tmem136. For many of the genes not much is known as is the case for Tmem136 and 

Rimklb while others have been associated with a wide variety of functions such as neuronal 

differentiation, modulating dendritic morphology, protein-protein interactions, and signal 

transduction. But none of these genes have been implicated in sleep regulation before, other 

than Htr1d and Pitx3.  

Additionally, sex differences were found for controls and many of the knockouts. 

Females slept less than males in most of these cases. Amongst other behavioral assays in 

the pipeline, sleep has been found to be the most consistent, which is not surprising given 

that sleep is a tightly regulated process and plays a critical role in overall health of an 
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animal. In addition to sleep traits, we also recorded breath rate for the knockout and control 

animals and found several genes affecting breathing variables as well. 

This project demonstrates the potential of an unbiased approach such as KOMP2 

in underscoring the role of novel genes, not implicated in sleep regulation earlier. The 

wealth of data generated by KOMP2 is unprecedented in sleep research. This analysis may 

not be the final step in functional annotation of sleep-related genes, but one crucial step 

towards our understanding of sleep regulation. Further follow up from our lab and other 

researchers would hopefully yield success in our quest to answer the questions of why do 

we need sleep and how are the genes implicated from these genetic studies responsible for 

its regulation and functions. 

 For the follow up, next logical extension of this project will be to elucidate the 

mechanisms through which our novel, candidate sleep genes regulate sleep. In particular, 

knockouts for the genes- Ap4e1, Ppp1r9b and Cbln3, which affect multiple sleep-wake 

traits can be followed primarily for the gene expression studies. Based on their RNA seq 

analysis results, consistently upregulated or downregulated genes (especially in brain) 

common to all the knockouts, can be studied further. Pathways of genes shortlisted based 

on their common occurrence can then be investigated, and knockout mice be generated for 

the gene/s thought to be upstream or downstream of the pathway of the deleted gene. 

Generation of knockouts is a time consuming process; an alternative could include the use 

of morpholinos, targeting the gene. Rescue experiments may be conducted for the 

suggested target downstream gene/s by introduction of its wild type transgenes in the 

knockout mouse. Pharmacological agonists/ antagonists could also be tried if appropriate. 

Complete/ partial rescue of the phenotypes and restoration of expression levels of the 
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affected genes, similar to the control, would implicate the gene as a downstream target and 

would lead us to hypothesize the pathway by which aforesaid genes might play a role in 

sleep regulation. Other assays/ approaches will be helpful in framing the hypothesis. In-

situ hybridization (ISH) can locate the site of expression of the affected gene/s in the brain. 

Expression in some specific region of the brain might correlate with the observed 

phenotypes or might give further clues to the other possible functions of the gene. An 

alternative to ISH will be the use of public databases (such as Allen’s Brain Atlas or 

BioGPS). Behavioral assays (such as learning and cognitive tasks) could be performed for 

the KO mice before and after transgene introduction to find if the behavioral phenotypes 

(if there were any), could be rescued too.  
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