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ABSTRACT OF THESIS 

 

PHYSICO-CHEMICAL, RHEOLOGICAL AND BAKING PROPERTIES OF PROSO MILLET 

 

Due to climate change, water scarcity, increasing population and rising food 

prices, agriculture and food security has been affected worldwide. Cereal grains being a 

major part of world food supply also act as important energy source in human diet. In 

order to counter food insecurity, alternative grains are being explored, and millet being 

drought-resistant has the potential to serve as an alternative grain due to its comparable 

nutritional composition with other major cereals and its gluten free proteins. The 

evidence that gluten sensitivity is one of the increasing food intolerances is driving an 

increasing demand for gluten-free foods. However, gluten is a structure building protein 

essential for optimum dough development. Therefore, obtaining high-quality gluten-free 

bread (GFB) is a technological challenge. Due to lack of research about proso millet, this 

study investigates the physical properties of nine different cultivars to help in equipment 

design and significant difference was observed in dimensions, sphericity, volume, surface 

area, bulk density, porosity and angle of repose. This study also focused on 

characterization of proso millet starch and effect of acid and hydrothermal modification 

on native starch was observed. We were also interested in determining the rheological 

properties of millet based gluten free formulation with different hydrocolloids, and the 

quality attributes of bread made from them. Dough undergoes deformation during 

preparatory processes which was evaluated with the application of rheology. And the 

final baking parameters such as bread volume, texture, color allowed correlation between 

rheological and baking performance. This study has helped us to better understand millet 

potential in different industries including starch and bakery and in designing equipment 

and storage structures. 

KEYWORDS: Proso millet, Gluten free, Physical Properties, Baking, Rheology, Starch 
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1. Introduction 

In United States, millets are used mostly as feed for animals, birds especially, but very 

little is used as human food. Millet plays an important role in serving under-privileged 

groups in Africa, East-Asia and Indian sub-continent. Millet became a part of human diet 

about 10,000 years ago even before the rise of wheat and rice (Saleh et al., 2013). Millet 

is the 6th most important cereal crop in world agriculture production. The total world 

production of millet seeds was estimated as 762,712 tons in 2012 with India leading as 

the top producer (334,500 tons) followed by Niger (108,798 tons) and Nigeria (59,994 

tons) (FAO, 2012). 

Millet has many advantages over other cereals such as higher resistance to pests and 

diseases, adaptability to a wide range of climate conditions and grows well in higher 

temperatures and dry conditions compared to other cereals (Saleh et al., 2013). Millets 

are rich in fiber, iron, calcium, B vitamins and low in phytic acid, their nutritional value is 

comparable to other cereals like rice and wheat. However, millet is not consumed in 

major part of world as a staple food due to the presence of anti-nutritional factors of 

certain phytochemicals which interfere with mineral bioavailability, carbohydrate and 

protein digestibility (Pradeep and Sreerama, 2015). But these effects can be minimized 

with methods like cooking, soaking, and fermentation (Pradeep and Sreerama, 2015) and 

most of the anti-nutritional factors are present in husk and bran fractions and might be 

easily removed by dehulling and polishing. However, millet is reported to have beneficial 

effect in cancer and cardiovascular diseases prevention, lowering blood pressure due to 

the presence of phenolic compounds (Saleh et al., 2013).  
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1.1. Hypothesis 

The hypothesis of this study was that millet has comparable quality characteristics as 

wheat, corn or other major cereals and possess similar functional properties that allow 

its application in gluten free foods. Furthermore, the addition of different starches and 

hydrocolloids will enhance the millet flour’s viscoelastic properties.   

1.2. Problem Statement  

Physical characteristics of grains are important parameters for determination of proper 

standards for the design, processing, and packaging systems. Proso millet being an under-

researched grain lacks processing equipment, although pearl millet has been studied in 

other parts of the world including China, India and African countries for its physical 

properties but the difference between both varieties is vast. So there is a need to 

investigate the physical properties of proso millet cultivars grown in USA to help in 

designing processing and storage equipment.  

Starch is the second most abundant carbohydrate present in higher plants and it is a major 

ingredient used in food and non-food industries. Corn and potato starches are used 

extensively but millet also contain high amount of starch which can be used for various 

applications. Generally, modified starches are used in industries due to instability of 

native starches. There is limited information available on modified millet starch with most 

attention on pearl millet. Hence, modified proso millet starch was considered for study in 

this project, and two most common modification methods were selected, which are acid 

modification and hydrothermal modification.  
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Millet has comparable nutritional profile to wheat (Saleh et al., 2013), and has potential 

application in gluten free baking. Many different combinations of starches and 

hydrocolloids were used in recent studies to make the dough more viscoelastic. Previous 

studies focused on rice, corn and other cereal based gluten free breads which produced 

low quality bread. Therefore, it is important to investigate the effect of different 

hydrocolloids and starches with millet flour. It was hypothesized that the addition of both 

starches and hydrocolloids would improve the overall quality of millet based bread.   

The following objectives were identified to address all the issues discussed above: 

Objective 1. Understand the physical and functional properties of nine different proso 

millet cultivars 

 Determine the proximate content and amylose content  

 Determine physical properties including dimensions, equivalent diameter, 

sphericity, volume, surface area, bulk density, solid density, porosity and angle of 

repose 

 Determine effect of amylose on thermal and pasting properties of the cultivars 

Objective 2. Characterize modified starch from commercial proso millet 

 Assess the effect of modifications (acid and hydrothermal) on physico-functional 

properties of starch 

 Investigate the effect of thermal and pasting properties  
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Objective 3. Elucidate the rheological and baking properties of millet based gluten free 

formulations  

 Determine the effects of starch on rheological and baking properties 

 Determine the effects of hydrocolloids on gluten free formulations 

 Investigate the correlation between rheological and baking properties 
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2. General literature review 

2.1. Physical properties of millet 

Physical characteristics of grains are important parameters for determination of proper 

standards for the design of grading, conveying, processing, and packaging systems 

(Tabatabaeefar and Rajabipour, 2005). Among these physical characteristics, mass, 

volume, surface area, sphericity, bulk density, porosity and angle of repose are the most 

important ones in determining sizing systems (Singh et al., 2010). Information regarding 

dimensional attributes is used in describing grain shape which is often necessary in 

designing processing equipment (Swami and Swami, 2010). During transportation of 

grains, the design of equipment is related to bulk density and porosity. Volumes and 

surface area of grains must be known for accurate modeling of heat and mass transfer 

during cooling and drying (Mohsenin, 1986). Determining a relationship between mass, 

dimensions and projected areas is useful and applicable in grading and sorting (Swami 

and Swami, 2010).  

This literature review focuses on various studies conducted by researchers on different 

millet varieties. Adebowale et al. (2012) studied the effect of variety and initial moisture 

content on physical properties of improved Nigerian millet grains. Millet grains were 

conditioned to 10, 20 and 30% moisture content and physical properties such as length, 

width, thickness, arithmetic mean diameter, effective mean diameter, surface area, 

sphericity, volume, mass, bulk density, true density, porosity, angle of repose, static 

coefficient of friction and specific heat capacity were determined. The study showed that 



6 
 

variety and moisture content had significant effect (P<0.05) on the physical properties of 

millet. 

Mir and Bosco (2013) studied physical properties of seven rice cultivars commonly grown 

in temperate regions of India and found significant differences in the physical properties 

including length, width, thickness, equivalent diameter, surface area, sphericity, aspect 

ratio, volume, bulk density, true density, porosity, thousand kernel weight, angle of 

repose and coefficient of friction (p ≤ 0.05). Similarly, Balasubramanian and Viswanathan 

(2010) studied influence of moisture content on physical properties of minor millets 

(foxtail, little, kodo, common, barnyard and finger millet) varying in moisture content 

from 11.1 to 25% db. Thousand kernel weight, angle of repose, coefficient of static and 

internal friction for minor millets were found to be directly proportional to moisture 

content however, bulk density, true density, porosity and grain hardness were found to 

be inversely proportional to moisture content. Baryeh (2002) studied physical properties 

of millet variety P. gambiense as a function of moisture. Baryeh (2002) reported that all 

linear dimensions of grain, grain surface area, grain volume, 1000 kernel weight, true 

density, angle of repose, coefficient of friction on plywood, mild steel and galvanized iron, 

and terminal velocity increased with an increase in grain moisture content with high 

correlation.  

Ojediran et al. (2010) studied physical properties of pearl millet seeds (Penisetum 

glaucum) (Ex-Borno and SOSAT C88) as a function of moisture content in the range of 5-

22% (db) and found similar results as reported by other researchers, sphericity changes 

with increase in moisture content. The estimated porosity, angle of repose and the 
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thousand kernel weight increased with increase in seed moisture content for both 

varieties, while bulk density and solid density decreased. 

A review of the literature showed that physical and nutritional properties of proso millet 

cultivars have not been determined. These properties are necessary for the design of 

equipment for harvesting, processing, transporting, sorting, separating and packing. 

Therefore, in this study the physical properties, namely, length, width and thickness, 

equivalent mean diameters, surface area, sphericity, thousand kernel weight, volume, 

bulk and solid densities, porosity, angle of repose, nutritional content, thermal and 

pasting properties were determined and compared. 

2.2. Starch 

Starch is a naturally occurring high-molecular weight polymer of α-D-glucose and serves 

not only as an energy reservoir of higher plants but also as a major supplier of energy in 

human and animal diets. Starch consists of two main components: amylose and 

amylopectin. Amylose is linear polymer with few side chains while amylopectin is a highly 

branched polymer. Amylose and amylopectin hold different properties and are therefore 

best suited for different applications (Zobel, 1988). Generally, non-waxy millet starch 

contains about 28% amylose and 72% amylopectin. 

 Amylose is an almost linear, water-soluble polysaccharide formed by α-D-1,4- 

anhydroglucose linkages. The molecular weight of amylose is  105-106 Da for most starch 

sources (Buléon et al., 1998; Whistler and Daniel, 1984). The molecular size depends on 

the source and it may contain anywhere from about 200 to 2000 anhydroglucose units. 

The amylose polymers have a tendency to orient themselves in a parallel fashion where 
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hydrogen bonds can be formed between adjacent polymers, because of its linearity, 

mobility and hydroxyl groups. This phenomenon of intermolecular association is 

commonly known as retrogradation (Wurzburg, 1986) and as a result the amylose gels 

become opaque. The configuration of amylose is still ambiguous (Whistler and Daniel, 

1984) but it is said that in water, amylose exists as a random coil, whereas in a good 

solvent (e.g. dimethyl sulphoxide) it exists as an extended coil. In the presence of a 

complexing agent (e.g. lipids) amylose exists as a helix (Banks and Greenwood, 1975). Due 

to its linear character, amylose can crystallize and films of amylose thus have better 

barrier properties and show higher modulus than amylopectin films (Stading et al., 2001). 

 

Figure 2.1. Structure of amylose and amylopectin (Starch, 2014) 

 

Amylopectin is a highly branched polymer and contains mostly α-D-1,4- anhydroglucose 

linkages along with α-D-1,6-anhydroglucose linkages at the branch points. The molecular 

weight of amylopectin is 106-108 Da (Whistler and Daniel, 1984). Each branch contains 

about 20 to 30 anhydroglucose units and the degree of polymerization is about 2 million 

units. The large size and branched nature of the amylopectin polymer causes a reduction 

in its mobility and prevents the polymers from becoming oriented close enough to permit 
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hydrogen bonding. As a result, aqueous solutions of amylopectin are clear and resistant 

to gelling upon ageing. Amylopectin supports the framework of the crystalline regions in 

the starch granule. It has been shown that branching points do not induce extensive 

defects in the double helical structure (Buléon et al., 1998). Properties of starch granules 

are majorly influenced by crystalline and non-crystalline structures (Zobel, 1988).  

Native starches are unsuitable for most applications and are not widely utilized in food 

industry due to their poor functional properties such as, poor shear and thermal stability 

and high rates and extend of retrogradation (Hoover, 2000). Therefore, most starches are 

modified physically or chemically to enhance their positive characteristics and to 

minimize their limitations. Starch derivatives are used in food products as thickeners, 

gelling agents and encapsulating agents, in papermaking as wet-end additives for dry 

strength, surface sizes and coating binder (Hoover, 2000). The properties required for a 

particular application play an important role in selecting the type of modification. 

Therefore, it is necessary to understand how proso millet starch respond to these 

modifications (Dolmatova et al., 1998). Two modifications used in this study, 

hydrothermal and acid modifications are the most common type of physical and chemical 

modifications of starch, respectively.  

2.2.1. Hydrothermal treatment (HMT)  

Hydrothermal treatment involves thermal application in the presence of a limited amount 

of water (typically less than 35% w/w) and a process time typically between 15 min to 16 

h (Jacobs and Delcour, 1998). This treatment alters morphological and physicochemical 

properties of starch granules including important changes in crystalline structure, swelling 
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capacity, gelatinization, pasting properties and retrogradation (Hoover, 2010). Structural 

and physicochemical changes generated by HMT are directly influenced by the botanical 

source of the starch granule with respect to its composition and organization of amylose 

and amylopectin. HMT is also used as a pre-treatment because of the structural 

modification to amorphous and crystalline regions of the granules. These alterations 

make the granule susceptible to chemical and enzymatic modifications and acid 

hydrolysis (da Rosa Zavareze and Dias, 2011). 

2.2.2. Acid modification (AM) 

Acid modification is the oldest chemical modification technique. Products of acid 

modification have several applications and uses in the food, paper, textile and 

pharmaceutical industries (Hoover, 2000). Acid modification involves the application of 

acidic solutions (commonly HCl and H2SO4) to form a concentrated paste (35–40% of 

solids) at a temperature below glass transition for a specific duration depending on the 

desired viscosity or conversion degree (Thirathumthavorn and Charoenrein, 2005). The 

mechanism of acid modification is also known as acid hydrolysis. Hydrolysis is produced 

randomly, breaking the α-1,4 and α-1,6 links and shortening the polymeric chains. Acid 

hydrolysis of starch develops in two stages: an early stage in which hydrolysis 

preferentially attacks the amorphous regions of granules at a high reaction rate and a 

subsequent stage in which hydrolysis occurs in the crystalline region at a slower rate 

(Wang, L. and Wang, Y.-J., 2001). The hydrolysis rate and starch modification are in 

proportion to the amylose : amylopectin ratio, as well as to the size and conformation of 

granules (Hoover, 2000).  
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Balasubramanian et al. (2014) studied hydrothermal, acidic and enzymatic modifications 

of pearl millet starch. They found that hydrothermal modification caused an increase in 

swelling power and solubility. They also reported a significant reduction (p<0.05) in 

sediment value and water binding capacity for acid modified starch (AMS) and enzyme 

modified starch (EMS). However, an improved freeze-thaw stability and paste clarity was 

observed for AMS and EMS. Another study was performed on characterization of starches 

of proso, foxtail, barnyard, kodo, and little millets (Kumari and Thayumanavan, 1998). 

They used scanning electron microscopy and determined that proso millet contained 

small spherical and large polygonal granules while few large granules were present. Peak 

viscosity of proso millet was high when compared to other small millets but a low 

gelatinization temperature was noticed. 

A similar study was conducted on white sorghum starch (Olayinka et al., 2008) and high 

solubility and swelling power of the starches was observed under alkaline conditions. An 

increase in gel formation and gel strength was also observed indicating potential use of 

modified starch for thickened sauces. Water absorption capacity, oil absorption capacity 

and alkaline water retention of the starches were improved after heat-moisture 

treatment. Effect of heat-moisture treatment and acid treatment on physico-chemical, 

pasting, thermal and morphological properties of horse chestnut starch was studied 

(Rafiq et al., 2016).  Both heat-moisture and acid treatments reduced the swelling 

capacity of the native starch. Heat treatment caused an increase in amylose content, 

water absorption capacity and pasting temperature, suitable for food products like soup, 

noodles, dumpling and bread, while acid treatment promoted breakage of starch chains 
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in amorphous regions, resulting in reduced peak viscosity, breakdown and final viscosity 

and thus desirable for formation of biodegradable films due to low viscosity and increased 

crystallinity.  

2.3. Rheology and baking properties of gluten free breads 

2.3.1. Role of hydrocolloids in gluten free baking 

Gluten is the major component of wheat based bread which helps in ability to form thin 

gas-retaining films that trap gases, allowing dough to expand to become a softer, lighter 

and palatable food after baking (Cauvain and Young, 2007). Due to increasing gluten 

intolerance, development of healthier and better quality gluten-free products that would 

greatly improve the quality of life of celiac patients and those who develop sickness from 

wheat consumption is needed. A major challenge in producing bread without gluten is its 

inability to form viscoelastic dough and the resulting bread contains numerous quality 

defects including reduced volume, lack of cell structure, a dry, crumbly, grainy texture, a 

cracked crust, poor mouthfeel and flavor, and quick staling (Capriles and Arêas, 2014). 

Several additives, such as hydrocolloids, proteins, enzymes, antioxidants, emulsifiers and 

preservatives are used to improve dough properties, enhance quality and texture of 

breads (Capriles and Arêas, 2014). 

Millet flour is often used to produce flat breads, porridges, beer and soup in countries of 

Africa, the Indian subcontinent and China (Saleh et al., 2013). Lorenz and Dilsaver (1980) 

used whole millet flour which produced low volume and dense texture breads but breads 

with blends of millet and wheat flour produced better results. Badi and Hoseney (1976) 

and Crabtree and Dendy (1979) made breads of optimum quality with 10% millet flour by 
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adding 0.5% calcium stearoyl-2-lactylate to dough, and improved the baked bread quality 

significantly. Bread quality produced from composite flour of wheat and proso millet 

(50:50) is remarkably improved by the combined addition of emulsifiers and enzymes 

(xylanase and transglutaminase) at elevated dough moisture (Schoenlechner et al., 2013).  

Millet use in producing gluten free bread (GFB) can be enhanced with the addition of 

hydrocolloids in bread making formulations. Hydrocolloids interact with water and 

produce a gel network structure that leads to increase in batter viscosity and increase in 

gas retention capability during proofing and baking, and improve texture, volume and 

structure of GFB (Anton and Artfield, 2008). Hydrocolloids showed promising results with 

other gluten free flours to produce high quality and consumer acceptable bread (Capriles 

and Arêas, 2014). Xanthan and hydroxypropyl methylcellulose (HPMC) are the most 

commonly used gums in GFB due to their favorable effects on the characteristics of the 

final product (Capriles and Arêas, 2014). Sabanis and Tzia (2011) evaluated the effect of 

HPMC and xanthan gum to gluten free formulations and results showed that gums helped 

in producing increased loaf volume and softer crumb. Demirkesen et al. (2010a) evaluated 

the effects of a combination of different hydrocolloids and emulsifiers on the quality of a 

rice-based GFB formula. Results showed that 0.5% DATEM (Diacetyl Tartaric Acid Esters 

of Monoglycerides) combined with 0.5% xanthan–guar blend provided the best final 

product, with good volume and crumb texture. Chestnut flour was tested as a raw 

material in GFB by Demirkesen et al. (2010b). They observed that breads containing 30% 

chestnut flour and 70% rice flour, in addition to a blend of xanthan–guar gum and DATEM 

emulsifier, had the best quality parameters (hardness, specific volume, color, and sensory 
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values). Ahlborn et al. (2005) determined the blend of xanthan and HPMC which helped 

in improving moistness and overall freshness of a rice bread over that of the control rice 

bread and wheat bread. Imaging with SEM showed that the dough made with rice flour, 

cassava starch, HPMC, Xanthan, egg and milk protein created a bicontinuous matrix. 

Xanthan gum was investigated in this study because it forms high-viscosity pseudoplastic 

material and is very common in commercial GF loaves. Furthermore, xanthan mannose 

and glucuronic side chains are hydrophilic and are used to increase the water binding 

ability of GFB and increased moistness of the loaf. However, xanthan is never used alone 

but in combination with alternative proteins, hydrocolloids, or even supplemented with 

amino acids.  

Recently many researchers investigated the effect of gluten-free doughs with the addition 

of various hydrocolloids, such as pectin, agarose, CMC and xanthan gum (Lazaridou et al., 

2007; Sivaramakrishnan et al., 2004). They reported that water absorption of 

formulations containing hydrocolloids at 2% level (rice flour basis) varied between, 63.4% 

- 67%. Also, the dough development time in farinograph parameter increased with the 

addition of hydrocolloids from 4 minutes for the control to a range of 7.5-26.5 minutes, 

with the exception of xanthan, which decreased the dough development time to 2 

minutes. The dough elasticity and cohesiveness when 500BU (Brabender Unit) of 

consistency is reached, was differently affected by each hydrocolloid with xanthan gum 

resulting to the highest elasticity values (100BU).  

Gallagher (2009) studied that fundamental rheometry conducted on gluten-free doughs 

revealed an improvement in the viscoelastic properties of gluten-free doughs after 
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supplementing the formulations with hydrocolloids. The addition of various hydrocolloids 

at 1 and 2% levels (rice flour basis) resulted in rise of elastic modulus, Gˈ as well as an 

increase in the resistance to deformation. Xanthan gum, β-glucan and pectin addition 

resulted in firmer doughs (higher Gˈ values) with increasing hydrocolloid concentration. 

Lazaridou et al. (2007) found that the elasticity and resistance to deformation of doughs 

followed in order of xanthan >CMC>pectin>agarose> oat β-glucan. The elasticity of the 

gluten-free doughs depended on water and hydrocolloid and increased by 65-75%, 45-

50%, 35-40%, 25% and 8-15% when xanthan, pectin, agarose and oat β-glucan, 

respectively, were added.  

2.3.2. Role of Starch in Bread-making 

Starch plays a significant role in dough development and bread formation. Wheat flour 

used for bread-making contains about 80% starch and 12% protein (Petrofsky and 

Hoseney, 1995). Gluten formation and its viscoelastic behavior peaks the interest of 

researchers but the role of starch is not deeply investigated. However, starch also 

contributes abundantly in dough formation, playing different roles such as dilution of 

wheat gluten, provides surface for bonding with gluten, acts as substrate for amylase to 

produce fermentable sugars, flexibility for loaf expansion during partial gelatinization 

during baking, gives structural and textural properties to the final baked product, holds 

and retains water by acting as a water sink, and contributes to staling upon storage. 

Quality and shelf life of bread are restricted by staling which is a physico-chemical 

deterioration that leads to hard and crumbly texture bread upon storage (Eliasson, 2003). 

Bread staling starts immediately the product is taken out of the oven and begins to cool. 
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Many factors contribute to staling such as product formulation, baking process and 

storage conditions (BeMiller, 2007). It also reduces the shelf life of bread and major cause 

is the starch retrogradation which is gradual transition of amorphous starch (amylopectin) 

to a partially crystalline, retrograded state (Eliasson, 2003). Moreover, the bread firmness 

is affected by loss of moisture or redistribution which leads to bread hardening. 

Bread-making is a complex process in which physical, chemical and biochemical changes 

takes place and results in formation of final product. Researchers have experimented with 

reconstituted flours in order to understand the starch behavior and gelatinization of 

starch granules is essential to the formation of a porous, elastic crumb. Kusunose et al. 

(1999) studied the role of starch granules in the expansion of doughs during baking, using 

artificial flours made from dry vital wheat gluten and wheat starch, potato starch, or 

tapioca starch. The authors concluded that the starch in bread doughs should gelatinize 

and set the dough after complete expansion. Tapioca starch gave the largest loaf volume 

whereas potato starch flour gave the smallest volume and the least shrinkage. Wheat 

starch, with its higher gelatinization temperature, allowed a longer time for the loaf to 

expand producing a larger loaf volume. Wheat starch granules gelatinized individually in 

the gluten matrix, which caused cracks in the cell membranes and prevented shrinkage 

upon cooling. Therefore, the gelatinization temperature of the different starches showed 

direct correlation to the expansion of the dough in the oven, the loaf volume, and the 

prevention of shrinkage of the loaves after baking. 

Dennett and Sterling (1979) studied starch from different sources such as wheat, potato, 

tapioca, rice, maize, waxy maize, and high-amylose maize and assessed their effects on 



17 
 

the properties of a bread-making. The authors concluded that as the amylose content 

decreases, the loaf volume increases, and the crumb gets softer and more hydrated. 

Amylose content showed positive effect on starch-gluten affinity and characteristics that 

affect the interaction between the starch and gluten components. Since as starches 

gelatinize during bread baking they hydrate from the neighboring gluten possibly causing 

gluten denaturation. The general reduction in bonding during baking might be essential 

to the formation of a softer more flexible crumb. Lastly, the reduced affinity also may 

produce weakening in the walls of gas cells, where rupture can occur and gases can enter 

during cooling, causing a collapse in the loaves. 

Likewise, Goesaert et al. (2008) studied the role of the starch during bread production 

and storage. Authors used modified wheat starches in gluten−starch flour models to study 

the role of starch in bread making. Incorporation of hydroxyl-propylated starch in the 

formulation reduced loaf volume and initial crumb firmness and increased crumb gas cell 

size. The water uptake by the gelatinizing starch granule resulted in a loss of flexibility of 

the gelatinizing starch granules and of the gluten protein leading to destabilization of the 

gas cell walls, gas cell coalescence and ultimately their rupture as described by the 

previous studies mentioned. Starch swelling is already restricted due to limited water 

availability during baking, so cross-linking (additional restriction) had no-effect. Crumb 

firmness during storage depends upon amylopectin retrogradation and moisture loss 

after baking and during storage. These studies showed that starch plays a major role 

during bread production and affects loaf volume, expansion and firmness.  
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2.3.3. Effect of rheological properties on baking  

Rheology, the science that studies the flow and deformation of matter when force is 

applied, can be used to analyze complex systems such as bread (Dobraszczyk and 

Morgenstern, 2003). Rheology tests allow opportunity to evaluate the performance of 

dough under various baking processes. It helps to determine the efficacy of processing 

aids and sufficient amount of water to make the best quality bread. The rheology of bread 

dough changes significantly between the mixing and the final product. Bread dough from 

wheat exhibits viscoelastic behavior, which is a combination of properties of both purely 

viscous fluids and purely elastic solids (Petrofsky and Hoseney, 1995). Rheology can be 

related to product functionality: many rheological tests have been used to determine 

hydration ratio, to predict final product quality such as mixing behavior, sheeting and 

baking performance (Dobraszczyk and Morgenstern, 2003). Several authors have studied 

the rheological properties such as elastic (Storage) modulus (G’), viscous (Loss) modulus 

(G”), and tan δ (G’/G”) of good and poor breadmaking flours, gluten, and sub-fractions of 

gluten. The rheological response of any material is expressed physically by stresses, strain 

and strain rate (Petrofsky and Hoseney, 1995). Particularly, dynamic oscillatory testing 

measures the elastic and viscous component of a material to assess the frequency-

dependent properties of material that may provide important parameters of the behavior 

of food processing at a large scale. It is important to note that the validity of the calculated 

rheological parameters requires the samples to be linearly viscoelastic, so that the small 

deformation testing is not detrimental to the dough structure (Weipert, 1990). 
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Buresová et al. (2014) determined viscoelastic properties of gluten-free dough prepared 

from amaranth, chickpea, millet, corn, quinoa, buckwheat and rice flours using dynamic 

oscillation rheometry. Authors determined the relationship between storage modulus G´, 

loss modulus G´´ and phase angle tan(δ) with bread-making quality. In the conclusion, 

dynamic oscillation rheometry was found to be useful in differentiating the bread-making 

quality of gluten-free flour. Bread-making quality of gluten-free flour is best characterized 

by curve slope of storage modulus G´and phase angle tan(δ) while bread with larger 

volume was prepared from dough with nonlinear slope of storage modulus G´ and phase 

angle in the range of lower frequencies 0.01–0.10 Hz. 

Zheng et al. (2000) examined deformations in dough during mixing and development. In 

order to monitor development of dough, both viscous and elastic behavior had to be 

monitored. Authors determined rheological changes, occurring during mixing, shear and 

extensional properties of dough prepared with two flours of different strength and 

various levels of mixing energy. Small deformation and large deformation, extensional 

flow and extrusion test were used to determine rheology of dough. In conclusion, results 

from small deformation shear tests exhibited large variability, particularly when non-

mixed and underdeveloped doughs were tested. This variability was associated with poor 

water distribution in the sample due to insufficient mixing. Results of large deformation 

tests, including shear, planar extensional flow and the extrusion test, were less variable 

and showed that mixing and type of flour affect the rheological properties of dough. 

Petrofsky and Hoseney (1995) studied the influence of dough rheological properties on 

starch-gluten interactions. The authors found that starches isolated from different wheat 
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cultivars and mixed into dough with constant gluten concentration gave largely different 

rheological properties. Greater starch-gluten interactions in soft wheat and non-wheat 

starches produced higher moduli when compared to the hard wheat starch and 

commercial doughs. The source of gluten also had significant effect on dough rheology. 

Hard wheat gluten doughs had low Gˈ and Gˈˈ values, indicating a greater extensibility and 

possibly less starch-gluten interaction. Soft wheat gluten doughs had higher Gˈ and Gˈˈ 

values, possibly because of increased starch-gluten interactions.  

Demirkesen et al. (2010a) studied the effect of rheological properties of gums and 

emulsifiers on rice bread dough. Different gums (xanthan gum, guar gum, locust bean 

gum (LBG), hydroxyl propyl methyl cellulose (HPMC), pectin, xanthan–guar, and xanthan–

LBG blend) and emulsifiers (PurawaveTM and DATEM) were used. Shear thinning effect 

was observed in all formulations and elastic and loss module were obtained for rice dough 

samples containing xanthan gum, xanthan–guar and xanthan–LBG blend with DATEM. 

The viscoelastic properties of rice dough were found to be related to bread firmness. Both 

flow and oscillation measurements indicated that DATEM had more pronounced effect 

on rheological properties of dough.  
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3. Physical and functional properties of nine proso millet cultivars 

3.1. Introduction 

Millets are a group of small seeded cereal crops including many different species of 

Poaceae family. Major species in order of world production are pearl millet (Pennisetum 

glaucum), foxtail millet (Setaria italic), proso millet (Panicum miliaceum) and finger millet 

(Eleusine coracana) (Ojediran et al., 2010). Millet crops have unique ability to grow in 

regions with relatively low rainfall and can tolerate high temperatures and survive under 

drought conditions. Millets are widely grown in Africa and Asia and is the one of the major 

source of calories in developing countries with harsh natural environments (Saleh et al., 

2013). In United States, proso millet is the major type of millet grown in a couple of states 

like Colorado, Nebraska, South Dakota and some limited production in Kansas, Kentucky, 

Minnesota and Wyoming (Baltensperger, 2002) with total production of 305,790 tons in 

2014 (FAO, 2014). There is a growing interest in millet because of the technological 

potentials of its utilization in such industrial applications as gluten free foods, starch 

production and biofuels. 

Proso millet is a warm season grass capable of producing seed 60 to 90 days after planting 

(Baltensperger, D et al., 1995). It grows best in full sun, moist to dry conditions, and can 

perform well in many soil types. Proso millet have higher protein contents compared to 

other varieties of millet and also nutritionally superior to major cereals like wheat, rice 

and corn (Saleh et al., 2013). A significant variation exists between proso millet cultivars’ 

growth period, seed size, length of panicle, height of plant and straw strength necessitate 

evaluation of physical properties of the cultivars. Panhandle from Nebraska (1967), Minco 
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from Minnesota (1976), are similar to the original common white millet but differ slightly 

in height, yielding ability, and maturity (Robinson, 1976). Nebraska released Dawn in 

1976, a very short, very early variety, matures 7-10 days earlier than Panhandle, tight 

panicle, superior white grain but short in height (Nelson, 1976). A similar variety, Rise 

developed in 1984, is taller, better yielding, tight panicle and has smaller white seed. It is 

more stable under a wide range of production environments (Nelson, 1984). Cope was 

released by Colorado in 1978, which has medium size white seed and due to its maturity, 

Cope is likely best adapted to Colorado conditions and matures 5 days later than 

Panhandle (Hinze et al., 1978). Three cultivars Huntsman, Earlybird and Sunrise were 

released in 1994 and 1995, all having excellent lodging tolerance indicating stronger 

stems preventing bending or breakage during maturation. Huntsman is a large, white-

seeded variety with excellent yield potential. It is late in maturity, has closed type panicle, 

good straw strength and was expected to replace Cope in most growing areas 

(Baltensperger, DD et al., 1995b). Earlybird is a large, white-seeded variety with excellent 

yield potential. It is early in maturity, and was expected to replace Dawn and Rise in most 

growing areas (Baltensperger, DD et al., 1995a). Sunrise is a large, white-seeded variety 

with excellent yield potential, intermediate in maturity, and has compact panicle 

(Baltensperger et al., 1997). Plateau is the latest cultivar released by Nebraska in 2014 a 

cross between Huntsman and a Chinese line that is high in waxy starches (Santra et al., 

2015). Plateau demonstrated grain yields competitive with those currently grown 

cultivars and is the first waxy (amylose free) proso millet cultivar.  
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Therefore, evaluation and knowledge of physical and engineering properties of different 

proso millet cultivars is required for designing appropriate equipment for process 

operations like sorting, drying, heating, cooling, and milling (Sahay and Singh, 1996). 

Material quality indicators such as color, hardness, gelatinization, and pasting properties 

have significant importance in the food industry. The present study also investigates the 

effect of amylose/amylopectin on both pasting and gelatinization properties. This study 

will help provide new classification of proso millet cultivars based on their physical, 

thermal, pasting properties. 

3.2. Materials and methods-  

3.2.1. Raw materials 

Nine proso millet cultivars namely cope, earlybird, huntsman, dawn, rise, sunrise, plateau, 

panhandle was obtained from Panhandle Research and Extension Center, University of 

Nebraska, Scottsbluff, USA. Cultivars were cleaned and sifted to remove foreign materials 

such as stones, straw and dirt. The cleaned grains were dehulled using modified disc mill 

(Glenn mills inc, Clifton, NJ). In the mill, the stationary disc was replaced with rubber disc 

to minimize the breaking and proper removal of hulls.   

3.2.2. Proximate analysis 

Samples were ground with a Quadrumat Junior mill (C.W. Brabender Instruments, Inc. 

South Hackensack, NJ) and AOAC standard methods were used to measure moisture, 

protein, crude fiber, crude fat, ash and carbohydrates(AOAC, 1990a, b, c). Amylose 

content was measured using official AACCI method 61-03.01  (AACCI, 1997).   
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3.2.3. Grain’s physical properties 

Millet grains were randomly selected and 100 grains of each cultivar were scanned using 

X-ray microCT-scanner (SkyScan 1173 x-ray microCT scanner, Bruker, Kontick, Belgium) 

and images were reconstructed using NRecon software (Bruker micro-CT, Belgium). CTAn 

software (Bruker micro-CT, Belgium) was used to measure the dimensions of the grains 

along three axis Length (L), Breadth (B), Thickness (T). 

The equivalent diameter (De) considering spherical shape for a proso millet grain was 

determined using (Mohsenin, 1986). 

𝐷𝑒 = (𝐿 ∗ 𝐵 ∗ 𝑇)
1
3 

The sphericity (Φ) and volume (V) were determined using following expressions 

(Mohsenin, 1986). 

𝛷 =
(𝐿 ∗ 𝐵 ∗ 𝑇)

1
3

𝐿
 

𝑉 =
𝜋

6
(𝐿 ∗ 𝐵 ∗ 𝑇) 

Surface area (S) was calculated using expression described by (Singh et al., 2010). 

𝑆 = 𝜋 ∗ (𝐷𝑒)2 

3.2.4. Bulk Density and True density 

The bulk density (ρb) was determined by measuring weight of packed grains in a container 

of known volume.  
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𝜌𝑏 =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟
 

The solid density (ρt) was determined using gas pycnometer (Model 1340 multivolume, 

Micromeritics Instrument Corporation, Norcross, GA, USA).  

3.2.5. Grain Porosity  

Grain porosity (ɛ) is defined as the ratio of intergranular void space volume and the 

volume of the bulk grain. Porosity was determined using an expression as described (Jain 

and Bal, 1997). 

𝜖 = 1 −
𝜌𝑏

𝜌𝑡
 

3.2.6. Thousand kernel weight 

The thousand kernel weight was determined by randomly selecting one thousand grains 

from each cultivar and weighed in 10 replicates.  

3.2.7. Angle of repose 

The angle of repose (Θ) was determined by placing a hollow cylinder, filled with grains on 

a steel plate. The cylinder was raised gradually until it formed a cone and height (H) and 

diameter (D) was measured and Θ was calculated using following expression. 

Θ = tan−1 (
2𝐻

𝐷
) 
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3.2.8. Hardness 

Hardness was measured using a texture analyzer (TA-XT plus, Stable Micro Systems, UK). 

Force was measured in compression using following setting, return to start at 90% strain, 

with pre-test speed of 0.5 mm/s, test speed of 0.5 mm/s, post-test speed of 10.0 mm/s.  

3.2.9. Color Characteristics 

The color of millet cultivars was determined using digital colorimeter (Model CR400, 

Konica Minolta, Chiyoda, Tokyo, Japan). The color was determined on L, a and b scale 

where L indicates the degree of lightness or darkness (black to white), a indicates degree 

of redness (+a) to greenness (-a) and b indicates the degree of yellowness (+b) to blueness 

(-b). 

3.2.10. Gelatinization 

Gelatinization properties were determined using differential scanning calorimetry (DSC 

– Q20 TA instruments, New Castle, Delaware, USA). Flour sample (10 mg, dry basis) was 

weighed into high volume stainless steel pans, followed by addition of 20 µl of distilled 

water. The pan was hermetically sealed and equilibrated at 4°C for 24 hrs. Samples were 

kept at room temperature for one hour prior to scanning from 10 to 150°C at 10°C/min 

(Krueger et al., 1987).  

3.2.11. Pasting properties 

Pasting characteristics were determined using Discovery Hybrid Rheometer (DHR-2, TA 

instruments, New Castle, Delaware, USA) with starch pasting cell. A mixture of 3.5 g starch 

(14% moisture) in 25 ml of distilled water was stirred at 160 rpm. Sample was held at 50°C 



27 
 

for 1 min and then heated to 95°C at 4°C/min and held at 95°C for 5min. Subsequently, 

samples were cooled to 50°C at 4°C/min and held at 50°C for 5 min. A plot of viscosity 

(Pa.s) vs. time (s) was used to determine pasting temperature, peak and final viscosity, 

holding strength, setback and breakdown. 

3.2.12. Statistical analysis 

The data were analyzed statistically using SAS software and when there was significant 

effect of the model on variations observed the means were separated using the Duncan’s 

multiple range test (p ≤ 0.05). All the data are presented as the mean with the standard 

deviation. Correlation test was determined using Pearson correlation test. 

3.3. Results 

3.3.1. Physical properties 

The mean values of proximate content and physical properties of nine cultivars are 

presented in Tables 3.1 and 3.2, respectively. Moisture content of cultivars varied from 

9.40 to 10.71%. Among cultivars, protein content varied from 11.10 (Rise) to 13.72% 

(Dawn), whereas fiber and ash were less than 1% in all cultivars. Cope showed the lowest 

fat content of 1.80% whereas all other cultivars did not have significant (P<0.05) 

difference among their fat content and remained in the range of 2.91 to 3.45%. 

Carbohydrate content varied from 72.45 (Panhandle) to 74.34% (Cope). Cultivars had 

significantly (P<0.05) different amount of amylose content. Plateau being waxy millet had 

3.10% amylose whereas Minco had highest amylose content of 34.60% and Cope (18.15%) 

had low amylose among all other cultivars.   



 

 
 

28
 

Table 3.1. Proximate content of proso millet cultivars 

  Moisture  

(%) 

Crude protein 

(%) 

Crude Fat 

(%) 

Crude Fiber 

(%) 

Ash 

(%) 

Carbohydrate 

(%) 

Amylose 

(%) 

Cope 10.29 ± 0.02b 12.90 ± 0.06c 1.80 ± 0.08b 0.57 ± 0.06a 0.68 ± 0.02d 74.34 ± 0.12a 18.15 ± 1.06 f 

Dawn 9.40 ± 0.08d 13.72 ± 0.01a 3.18 ± 0.03a 0.59 ± 0.30a 0.77 ± 0.01b,c 72.93 ± 0.06b,c 25.10 ± 0.28 c 

Earlybird 10.18 ± 0.06b 12.38 ± 0.05d 3.23 ± 0.13a 0.94 ± 0.35a 0.83 ± 0.08b,c 73.38 ± 0.10b 30.20 ± 0.57 b 

Huntsman 10.18 ± 0.15b 12.11 ± 0.08e 3.30 ± 0.11a 0.90 ± 0.04a 0.84 ± 0.02b,c 73.57 ± 0.20a,b 21.40 ± 0.57 e 

Minco 9.64 ±0.11c,d 12.10 ± 0.01e 3.12 ± 0.23a 0.71 ± 0.06a 0.82 ± 0.00b,c 74.33 ± 0.25a 34.60 ± 0.28 a 

Panhandle 10.35 ± 0.03b 12.85 ± 0.03c 3.45 ± 0.04a 0.84 ± 0.28a 0.90 ± 0.04a,b 72.45 ± 0.02c 26.40 ± 0.57 c 

Plateau 9.71 ± 0.13c 13.36 ± 0.02b 3.28 ± 0.13a 0.80 ± 0.08a 0.74 ± 0.00c,d 72.88 ± 0.11b,c 3.10 ± 0.28 g 

Rise 10.71 ± 0.01a 11.10 ± 0.01f 2.91 ± 0.76a 0.93 ± 0.11a 0.99 ± 0.02a 74.27 ± 0.79a 25.75 ± 0.07c,d 

Sunrise 9.45 ±0.09c,d 12.86 ± 0.01c 3.25 ± 0.07a 0.81 ± 0.01a 0.98 ± 0.01a 73.45 ± 0.05b 24.40 ± 1.41 d 

The values are means ± standard deviations of two replicates. Means with different letter in a column differ significantly (P<0.05). %Carbohydrate = 100 - %(Moisture + protein + fat + ash) 
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Variation in length among the cultivars was observed from 2.27 (Huntsman) to 2.37 mm 

(Minco), whereas variation in width and thickness was from 2.08 (Cope) to 2.29 

(Panhandle) and 1.59 (Cope) to 1.84 mm (Earlybird). These dimensions are important in 

equipment design for grain handling such as sieves, sorters, hullers and mills. Size and 

shape of perforations in these equipment are determined using dimensions of the seeds 

(Mohsenin, 1986). Different cultivars of pearl millet had their length (mm) in range from 

3.16 to 3.87, width (mm) 2.30 to 2.93 and thickness (mm) 1.54 to 2.05 at 10% moisture 

content (Ojediran et al., 2010).  

The De and Φ for cultivars differs significantly (P<0.05). The mean De and Φ varied from 

1.96 (Cope) to 2.14 mm (Earlybird) and 0.86 (Cope) to 0.91 (Earlybird). Determination of 

De is important in estimating projected area and conveying pattern in pneumatic 

equipment, also helps in determining terminal velocity and drag coefficient. Higher 

sphericity of all cultivars indicate that proso millet grains have high rolling tendencies 

which is very important in designing hoppers and other processing equipment (Ghadge 

and Prasad, 2012). Jain and Bal (1997) studied pearl millet and reported it be more conico-

spherical shape whereas proso millet is more round-shaped. Ojediran et al. (2010) also 

reported pearl millet have lower sphericity (70 – 72%) compared to proso millet (86-91%) 

and lower angle of repose, porosity, and solid density.   

Among the cultivars, the volume (V) and surface area (S) varied significantly (P<0.05) from 

3.97 (Cope) to 5.14 mm3 (Earlybird) and 12.12 (Cope) to 14.39 mm2 (Earlybird). 

Determination of surface area and volume play important role in calculating processing 
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times and energy requirements for processes such as drying rates (Alonge and Adigun, 

1999).  

Thousand kernel weight (TKW) was found to be in the range of 4.97 (Cope) to 6.19 grams 

(Sunrise) and significantly (P<0.05) different among cultivars. It has high significance in 

determining seeding rates during planting (Miller and McLelland, 2001). The bulk density 

and solid density varied significantly (P<0.05) from 765.49 (Plateau) to 809.67 kg/m3 

(Minco) and 1371.86 (Plateau) to 1417.36 kg/m3 (Minco), respectively. The values of 

porosity were found to be ranged from 42.87 (Minco) to 44.59% (Dawn). TKW, bulk, solid 

and porosity helps in determining transportation conditions, design of hoppers, cleaning 

and storage equipment. High solid density than water indicates wet cleaning can be used 

for cleaning grains, as grains will not float. Bulk density and porosity helps in designing 

storage bins as these properties help in determining space required to store specified 

amount of grains and void area present between grains. Swami and Swami (2010) 

determined physical properties of finger millet and reported true density to be around 

1120 kg/m3; bulk density 709 kg/m3 and sphericity 96%. Pearl millet is reported to have 

higher porosity than proso millet indicating that pearl millet required larger space per unit 

mass than proso millet to store equal volume of grains (Jain and Bal, 1997). 

Angle of repose varied among cultivars from 21.95° (Huntsman) to 26.68° (Dawn). It is the 

measure of internal friction between the grains, high cohesive forces between grains lead 

to higher angle of repose. It also provides maximum slope at which grains are stable. It is 

very important in designing the hoppers and silos for proper flow of grains. Hardness of a 

grains determines the milling yields and energy requirements for processing. Proso millet 
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cultivar’s hardness varied from 3.23 (Huntsman) to 4.05 kg (Plateau). Hardness or cracking 

force and strength of grains helps determining the seed resistance to cracking during 

harvesting and hulling. Balasubramanian and Viswanathan (2010) studied effect of 

moisture on physical properties of minor millets available in India and reported (at 10% 

moisture content) proso millet’s bulk density to be 899.65 kg/m3; true density 1838.5 

kg/m3; porosity 52.88 %, which are higher than values found in this study. However, angle 

of repose is in accordance with the current study.  

 

 

 

 

 

 

 

 

 

 



 

 
 

32
 

Table 3.2. Physical properties of proso millet cultivars 

Cultivar # Cope Dawn Earlybird Huntsman Minco Panhandle Plateau Rise Sunrise 

L (mm) 100 2.29 ± 
0.14c,d 

2.36 ± 
0.08a,b 

2.34 ± 
0.06b 

2.27 ± 
0.07d 

2.37 ± 
0.09a 

2.36 ± 
0.08a,b 

2.27 ± 
0.13d 

2.30 ± 
0.06c 

2.35 ± 
0.07b 

W (mm) 100 2.08 ± 
0.08d 

2.28 ± 
0.08a 

2.28 ± 
0.07a 

2.19 ± 
0.10c 

2.27 ± 
0.09a 

2.29 ± 
0.08a 

2.18 ± 
0.07c 

2.24 ± 
0.07b 

2.28 ± 
0.07a 

TH (mm) 100 1.59 ± 
0.086f 

1.76 ± 
0.09b 

1.84 ± 
0.11a 

1.73 ± 
0.07c,d 

1.76 ± 
0.08b 

1.76 ± 
0.10b 

1.66 ± 
0.07e 

1.75 ± 
0.08b,c 

1.72 ± 
0.08d 

Φ 100 0.86 ± 
0.04f 

0.90 ± 
0.02c,d 

0.91 ± 
0.02a 

0.90 ± 
0.02b,c 

0.89 ± 
0.02d,e 

0.90 ± 
0.02b,c 

0.89 ± 
0.03e 

0.91 ± 
0.02b 

0.89 ± 
0.02d,e 

V (mm3) 100 3.97 ± 
0.37g 

4.94 ± 
0.47b,c 

5.14 ± 
0.42a 

4.51 ± 
0.40e 

4.97 ± 
0.42b 

4.99 ± 
0.50b 

4.30 ± 
0.37f 

4.73 ± 
0.39d 

4.85 ± 
0.42c,d 

De (mm) 100 1.96 ± 
0.06g 

2.11 ± 
0.07b,c 

2.14 ± 
0.06a 

2.05 ± 
0.06e 

2.12 ± 
0.06b,c 

2.12 ± 
0.07b 

2.02 ± 
0.06f 

2.08 ± 
0.06d 

2.10 ± 
0.06c,d 

S (mm2) 100 12.12 ± 
0.76g 

14.01 ± 
0.90b,c 

14.39 ± 
0.79a 

13.19 ± 
0.79e 

14.08 ± 
0.79b 

14.11 ± 
0.94b 

12.79 ± 
0.74f 

13.62 ± 
0.75d 

13.84 ± 
0.81c,d 

Bulk density 
(kg/m3) 

5 782.56 
± 5.02d 

774.30 
± 2.86e 

790.38 ± 
9.45c,d 

798.65 ± 
6.20b 

809.67 
± 6.82a 

788.98 ± 
3.62c,d 

765.49 
± 5.47f 

795.53 
± 5.10b,c  

788.65 
± 3.52c,d 

Solid density 
(kg/m3) 

5 1397.72 
± 1.22e 

1397.28 
± 1.95e 

1411.88 
± 0.97b,c 

1413.20 ± 
1.15b 

1417.36 
± 1.53a 

1409.94 ± 
1.53c 

1371.86 
± 0.94f 

1410.46 
± 1.853c 

1402.68 
± 1.931d 

Porosity (%) 5 44.01 ± 
0.34a,b,c 

44.59 ± 
0.19a 

44.02 ± 
0.67a,b,c 

43.49 ± 
0.46c 

42.87 ± 
0.53d 

44.04 ± 
0.29a,b,c 

44.20 ± 
0.39a,b 

43.60 ± 
0.41c 

43.78 ± 
0.22b,c 

Angle of repose 
(°) 

5 22.99 ± 
0.73c,d 

26.68 ± 
0.91a 

22.68 ± 
0.72c,d 

21.95 ± 
0.90d 

23.10 ± 
0.74c,d 

23.70 ± 
0.98b,c 

25.74 ± 
0.83a 

22.96 ± 
0.63c,d 

24.53 ± 
0.79b 

TKW (g) 10 4.97 ± 
0.09e 

5.79 ± 
0.07c 

6.19 ± 
0.04a 

6.01 ± 
0.05b 

5.78 ± 
0.04c 

5.58 ± 
0.06d 

4.69 ± 
0.06f 

6.06 ± 
0.08b 

6.19 ± 
0.05a 

Hardness (kg) 20 3.63 ± 
0.52b 

3.24 ± 
0.51c,d 

3.40 ± 
0.47b,c,d 

3.23 ± 
0.51c,d 

3.46 ± 
0.45b,c 

3.33 ± 
0.45b,c,d 

4.05 ± 
0.52a 

3.13 ± 
0.44d 

3.38 ± 
0.51b,c,d 

The values are means ± standard deviation. Means with different letter in a row differ significantly (P<0.05). L:Length, W: Width, TH: Thickness,  Φ : Sphericity, V: Volume,  D
e

: Geometric 

mean, S: Surface area, TKW: Thousand kernel weight, #: no of samples
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The color of proso millet cultivars determined on L, a and b scale is presented in Table 

3.3. Color of the cultivars is the important factor for utilization and can be used to design 

color sorter. Rise cultivar (L=71.80) is the darkest whereas Plateau (L=77.13) is the 

lightest. The a value is highest for Sunrise (-2.67) and lowest for Plateau (-4.56). However, 

the value of b was observed to be highest for Sunrise (43.46) and lowest for Panhandle 

(35.29). The color difference can be attributed to the differences in pigments, 

composition and genetic breeding of the cultivars.   
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Table 3.3. Color characteristics of proso millet cultivars 

Cultivar L a b 

Cope 76.43 ± 1.19a -4.47 ± 0.59d 38.12 ± 1.31d 

Dawn 72.07 ± 1.81e -2.57 ± 0.81a 41.27 ± 1.99b 

Earlybird 73.31 ± 1.51d -3.32 ± 0.55b 39.49 ± 1.33c 

Huntsman 74.51 ± 0.94c -3.52 ± 0.48b,c 39.38 ± 1.40c 

Minco 74.31 ± 0.94c -3.72 ± 0.50c 41.72 ± 1.74b 

Panhandle 75.63 ± 0.91b -3.50 ± 0.39b,c 35.29 ± 1.37e 

Plateau 77.13 ± 1.17a -4.56 ± 0.49d 38.73 ± 1.31c,d 

Rise 71.80 ± 3.62e -3.41 ± 0.41b 41.90 ± 2.01b 

Sunrise 72.59 ± 1.32d,e -2.67 ± 0.43a 43.46 ± 1.42a 

The values are means ± standard deviation of 30 replicates. Means with different letter in a 

column differ significantly (P<0.05). 
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3.3.2. Pasting properties 

Pasting properties of proso millet cultivars are presented in Table 3.4, and the pasting 

profiles of cultivars are shown in Figure 3.1. The cultivars showed significant (P<0.05) 

difference in pasting profiles. Proso millet cultivars can be classified in three different 

categories, i.e., low amylose or waxy millet (Plateau), medium amylose (Cope) and high 

amylose (Dawn, Earlybird, Huntsman, Minco, Panhandle, Rise, Sunrise). Waxy millet 

(Plateau) showed the lowest peak (0.92 Pa.s) and final viscosity (0.71 Pa.s) and medium 

amylose, Cope had peak (1.05 Pa.s) and final viscosity (1.49 Pa.s) which is significantly 

(P<0.05) lower than high amylose cultivars. Lower peak viscosities observed in waxy 

cultivar can be explained by the fact that starch granule swelling is a property of 

amylopectin, causing waxy starches to swell rapidly indicating that waxy cultivar develops 

viscosity but cannot maintain the stability of paste viscosity because at reduced amylose 

content, heating disrupts the structure of gel (Tester and Morrison, 1990). Pasting 

temperature varied from 76.76°C (Plateau) to 88.87°C (Rise). High amylose cultivars 

showed higher pasting temperatures compared to waxy and medium amylose cultivars 

indicating higher resistance to swelling (Singh et al., 2004).  

Plateau had the lowest setback value of 0.28 Pa.s, also medium amylose cultivar, Cope 

provides lower setback compared to high amylose cultivars. Setback value reflects degree 

of retrogradation of paste. Waxy millet retrogrades to lesser extent as compared to 

cultivars having high amylose content. Three Korean proso millet cultivars including waxy 

millet showed similar setback and peak viscosities (Kim et al., 2012). 
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Figure 3.2, 3.3 and 3.4 illustrates strong positive correlation of amylose content with peak 

viscosity (r=0.84), final viscosity (r=0.91) and setback (r=0.90), respectively. Pasting 

temperature and setback values of Plateau and Cope were lower than high amylose 

cultivars and are in accordance with results reported for starches from different botanical 

sources (Jane et al., 1999). Wu et al. (2014) reported similar results for millet varieties 

grown in China and reported positive correlation of peak viscosity, final viscosity and 

setback with amylose content. 
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Table 3.4. Pasting properties of cultivars  

Cultivar Pasting temp 

(°C) 

Peak 

viscosity 

(Pa.s) 

Holding 

strength 

(Pa.s) 

Final 

viscosity 

(Pa.s) 

Breakdown 

(Pa.s) 

Setback 

(Pa.s) 

Cope 77.52 ± 0.10f 1.05 ± 0.02e 0.52 ± 0.01d 1.49 ± 0.03d 0.53 ± 0.02d 0.97 ± 0.03e 

Dawn 82.05 ± 0.81c 1.62 ± 0.01c 0.74 ± 0.01c 2.84 ± 0.04b 0.88 ± 0.01b 2.10 ± 0.04b 

Earlybird 79.06 ± 0.39e 1.91 ± 0.03a 0.83 ± 0.01b 3.15 ± 0.01a 1.08 ± 0.04a 2.32 ± 0.01a 

Huntsman 77.31 ± 0.77f 1.80 ± 0.01b 0.77 ± 0.01c 2.24 ± 0.01c 1.03 ± 0.03a 1.47 ± 0.02d 

Minco 80.56 ± 0.75d 1.89 ± 0.04a,b 0.84 ± 0.03b 2.88 ± 0.04b 1.05 ± 0.07a 2.04 ± 0.01b 

Panhandle 80.49 ± 0.51d 1.53 ± 0.01d 0.87 ± 0.01a,b 2.81 ± 0.01b 0.66 ± 0.01c 1.94 ± 0.01c 

Plateau 76.76 ± 0.03f 0.92 ± 0.01f 0.43 ± 0.01e 0.71 ± 0.01e 0.49 ± 0.01d 0.28 ± 0.01f 

Rise 88.87 ± 0.23a 1.93 ± 0.05a 0.90 ± 0.02a 3.22 ± 0.01a 1.03 ± 0.04a 2.32 ± 0.02a 

Sunrise 87.31 ± 0.16b 1.62 ± 0.08c 0.73 ± 0.04c 2.80 ± 0.13b 0.89 ± 0.05b 2.06 ± 0.09b 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (P<0.05). 
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Figure 3.1. Pasting profile of different proso millet cultivars. 
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Figure 3.2. Relationship between % amylose and peak viscosity (Pa.s) for different proso 

millet cultivars. 
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Figure 3.3. Relationship between % amylose and final viscosity (Pa.s) for different proso 

millet cultivars. 
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Figure 3.4. Relationship between % amylose and setback (Pa.s) for different proso millet 

cultivars. 
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3.3.3. Gelatinization 

Gelatinization properties of proso millet cultivars are summarized in Table 3.5. Among 

cultivars, significant difference (P<0.05) in onset (TO), peak temperature (TP), conclusion 

temperature (TC) and enthalpy (ΔHG) was observed. TO varied from 70.59°C (Minco) to 

74.27°C (Plateau), TP varied from 75.5 (Minco) to 79.29°C (Plateau) and ΔHG ranged 

between 2.38 (Sunrise) to 3.45 J/g (Plateau).  

Waxy millet, Plateau had higher TO and TP than other cultivars and showed strong 

negative correlation of TO (r = -0.94) and TP (r = -0.94) with amylose content as illustrated 

in Figure 3.5 and 3.6, respectively. Waxy barley showed similar results and higher TP and 

ΔHG was observed compared to other barley cultivars (Gudmundsson and Eliasson, 1992). 

Some authors reported negative correlation of TP, TC and ΔHG with amylose content of 

wheat starches (Sasaki et al., 2000; Yasui et al., 1996). Amylopectin plays an important 

role in starch granule crystallinity, so with increase in amylose content, % crystallinity 

decreases and melting temperature of crystalline regions lowers resulting in lower energy 

requirements for gelatinization (Sasaki et al., 2000). The negative correlation of amylose 

content with onset and peak temperatures indicates that higher amylose implies more 

amorphous and less crystalline region. Wu et al. also reported higher TP and ΔHG for waxy 

millet compared to normal millet (Wu et al., 2014).  
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Table 3.5. Gelatinization properties of cultivars  

Cultivar Onset (°C) Peak (°C) Stop (°C) Area (J/g) Range (°C) 

Cope 71.85 ± 0.01c 78.32 ± 0.17b 91.80 ± 0.49a,b 2.65 ± 0.39b,c,d 19.95 ± 0.51a 

Dawn 71.62 ± 0.02c,d 77.22 ± 0.15c 91.78 ± 1.54a,b 2.51 ± 0.22b,c,d 19.17 ± 2.93a 

Earlybird 71.32 ± 0.01d 76.49 ± 0.12d 88.95 ± 0.60c 2.41 ± 0.08c,d 17.63 ± 0.59a 

Huntsman 72.57 ± 0.50b 77.84 ± 0.64b,c 91.92 ± 0.17a,b 2.43 ± 0.16c,d 19.36 ± 0.33a 

Minco 70.59 ± 0.01e 75.66 ± 0.15e 89.38 ± 1.84c 2.91 ± 0.36b 17.79 ± 3.26a 

Panhandle 71.90 ± 0.28c 77.20 ± 0.14c 92.13 ± 0.58a,b 2.88 ± 0.03b,c 20.23 ± 0.30a,b 

Plateau 74.27 ± 0.09a 79.41 ± 0.01a 92.53 ± 1.58a,b 3.45 ± 0.09a 18.26 ± 1.67a 

Rise 71.59 ± 0.01c,d 76.54 ± 0.15d 90.19 ± 0.18b,c 2.52 ± 0.08b,c,d 18.60 ± 0.19a 

Sunrise 72.38 ± 0.21b 78.14 ± 0.42b 92.64 ± 0.67a 2.38 ± 0.18d 20.26 ± 0.88a 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (P<0.05). 
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Figure 3.5. Relationship between % amylose and onset temperature (°C) for different 

proso millet cultivars. 
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Figure 3.6. Relationship between % amylose and peak temperature (°C) for different 

proso millet cultivars. 
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3.3.4. Conclusion 

The dimensions, sphericity, volume, surface area, equivalent diameter, bulk and solid 

density, porosity, angle of repose, hardness, weight and color was determined and 

significant (P<0.05) difference was observed among cultivars. Strong positive correlation 

of amylose content with peak viscosity (r=0.84), final viscosity (r=0.91) and setback 

(r=0.90) was observed. Negative correlation of onset temperature (r = -0.94) and peak 

gelatinization temperature (r = -0.94) with amylose content was observed. Evaluation of 

postharvest properties of different proso millet cultivars are mandatory to obtain the 

knowledge of their physical and engineering properties in order to design appropriate 

machineries for process operations like sorting, drying, heating, cooling, and milling. 
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Connecting text 

In chapter 3, physical and functional properties of nine proso millet cultivars were 

evaluated. The effect of cultivar was found to be significant on different physical 

properties and amylose content showed correlation with gelatinization and pasting 

properties. In chapter 4, proso millet starch was isolated from commercial proso millet 

and modified to study its physico-functional properties.     
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4. Characterization of modified proso millet starch 

4.1. Introduction 

Interest in millet utilization has increased due to the various rediscovered health benefits 

and also due to its increasing use as non-gluten ingredient in food applications (Zhu, 

2014). Millet has many advantages over other cereals such as higher resistance to pest 

and diseases, adaptability to a wide range of climatic conditions and grows well in high 

temperatures and dry conditions (Saleh et al., 2013). Besides having agronomic 

advantages, millets have better amino acid composition and high nutritive value which is 

comparable to that of major cereals such as wheat, corn and rice (Klopfenstein and 

Hoseney, 1995; Parameswaran and Sadasivam, 1994). Millet is widely consumed as food 

in African countries, China and Indian subcontinent, however it is not part of human diet 

in USA and mainly used for animal and bird feed (Lyon, 2008). Proso millet is the major 

variety of millet grown in the US with a total production of 418,145 tons in 2013 (FAO, 

2014). Proso millet being underutilized grain in USA can be alternative source of starch as 

it has been reported to contain 60-67% starch (Santra, 2013). Due to the vast application 

of starches in food systems, different sources with good functional properties are being 

explored. 

 Starch is a naturally renewable, inexpensive and biodegradable material which is 

used to alter the textural properties of several foods (Radley, 1976). It has various 

industrial applications such as a thickener, binder, encapsulating agent, stabilizer and 

gelling agent (Radley, 1976). However, it is the modified starch that is used mostly in 

industrial applications due to undesirable characteristics of native starch upon cooking 
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whereas modification improves gelling tendency, clarity and texture (Bemiller, 1997). 

Starch modification alters physical and chemical properties to improve functionality of 

native starch (Hermansson and Svegmark, 1996). Hydrothermal modification (HTM) 

involves controlled application of heat and moisture, which causes physical modification 

of starches without gelatinization and damage to the starch granules with respect to size, 

shape or birefringence (Stute, 1992). Acid modification (AM) of starch is a chemical 

modification process involving hydrolysis of starch using hydrochloric acid, which breaks 

the glycosidic linkages of α-glucan chains, changing the structure and characteristics of 

native starch (Hoover, 2000). AM is used to modify physicochemical properties of native 

starch for applications in various industries such as food and textile (Radley, 1976). Acid 

hydrolysis is widely used for production of starch gum candies, paper, cationic and 

amphoteric starches (Wurzburg, 1986). Understanding the properties, and potential uses 

of proso millet starch significantly contributes to the further expansion of millets as 

alternative functional crop (Zhu, 2014). The present study was undertaken to explore the 

behavior of native and modified starches as affected by different modifications methods. 

Most studies on millet starch have focused on pearl millet and other major millet varieties 

but no work has been done to investigate the effect of hydrothermal and acid modification 

on proso millet starch. 
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4.2. Materials and methods 

4.2.1. Raw materials 

Proso millet flour was purchased from Bob’s Red mill (Milwaukie, OR, USA) and stored at 

ambient temperature (24-28°C). Information on type of cultivar of commercial proso 

millet flour was not known. All chemicals used for the analyses were of analytical grade 

(Sigma Aldrich, St. Louis, MO, USA). 

4.2.2. Starch Isolation 

Starch was isolated using alkaline steeping method (Sira and Amaiz, 2004; Wang, L. and 

Wang, Y.-J., 2001). Proso flour (100 g) was steeped in 200 mL of 0.1% NaOH for 18 hrs. 

Mixture was blended for 2 min using waring blender and passed through a sieve (U.S. 100 

sieve size) and centrifuged at 2000 rpm for 15 min. The top layer was carefully decanted 

and the bottom layer was re-slurried and washed thrice with 0.1% NaOH, while removing 

the upper layer carefully every time. The starch was washed with deionized water, then 

neutralized with 0.1 N HCl to pH 6.5, and washed with deionized water four times, 

centrifuged, dried in an oven at 45°C for 48 hr. 

4.2.3. Acid modification 

Millet starch was modified according to the method described by Wang and Wang (Wang, 

L. and Wang, Y.J., 2001). HCl (0.14 N) was added to 40 g starch and kept in water bath for 

8 h at 50°C and thereafter, 1 N NaOH was used to adjust the pH to 6.5. Starch slurry was 

washed thrice with deionized water and then dried in an oven at 45°C for 24 h. 
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4.2.4. Hydrothermal modification 

Millet starch, conditioned to 30% moisture content (dry basis) was added in glass bottle 

and kept at 4°C for 12 h to equilibrate the moisture. Starch sample in sealed glass bottle 

was then heated for 3 h at 110°C. The bottle was occasionally shaken to distribute the 

heat evenly and then cooled and dried for 4 h at 45°C (Collado et al., 2001). 

4.2.5. Physico-chemical analysis 

Moisture, protein, fat, ash were determined using AOAC standard methods (AOAC, 2005). 

Amylose content were determined using AACCI method 61-03.01 (AACCI, 1997). Starch 

sample (100 mg) was mixed with 1 ml of 95% ethanol and 9 ml 1N NaOH and then 

transferred to 100 ml volumetric flask. Flasks were kept at room temperature for 10 min 

then heated in boiling water bath for 10 min and cooled for 2 h at room temperature. The 

resulting mixture was diluted to 100 ml using distilled water and mixed vigorously. An 

aliquot of starch solution (5 ml) was pipetted into 100 ml volumetric flask containing 50 

ml distilled water. 1.0 mL of acetic acid (1N) and 2mL iodine solution were added and 

diluted to 100 ml. After 20 min, absorbance was measured at 620 nm using blank to zero 

the spectrometer (EVO 60 ThermoFisher scientific, Waltham, MA USA). Standard curve 

was developed using standard amylose and amylopectin blends and used to measure 

amylose content.  

4.2.6. Thermal properties 

Degree of gelatinization was determined using differential scanning calorimetry (DSC – 

Q20, TA instruments, New Castle, Delaware, USA). Starch sample (10 mg, dry basis) was 

weighed into high volume stainless steel pans, followed by addition of 20 µl of distilled 
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water. The pan was hermetically sealed and equilibrated at 4°C for 24 h. Samples were 

kept at room temperature for one hour prior to scanning from 10 to 150°C at 10°C/min 

(Krueger et al., 1987). 

After gelatinization, the samples were kept at 4°C for 10 days and then reheated at the 

rate of 10°C/min from 10°C to 150°C to determine retrogradation properties. 

4.2.7. Pasting properties 

Pasting characteristics were determined using Discovery Hybrid Rheometer (DHR) with 

starch pasting cell (DHR-2, TA instruments, New Castle, Delaware, USA). A mixture of 3.5 

g starch (14% moisture) in 25 ml of distilled water was stirred at 160 rpm. Samples were 

held at 50°C for 1 min and then heated to 95°C at 4°C/min and held at 95°C for 5min. 

Subsequently, samples were cooled to 50°C at 4°C/min and held at 50°C for 5 min. A plot 

of viscosity (Pa.s) vs. time (s) was used to determine pasting temperature, peak and final 

viscosity, holding strength, setback and breakdown. 

4.2.8. Solubility and swelling power 

Solubility and swelling power was determined using Leach method (Leach et al., 1959) 

modified by Balasubramanian et al, Kusumayanti et al, and Subramanian et al 

(Balasubramanian et al., 2014; Kusumayanti et al., 2015; Subramanian et al., 1994). Starch 

(0.1 g) was heated in 10 ml of water at 70, 80, and 90°C for 30 min. Samples were stirred 

occasionally to avoid lump formation and then centrifuged at 3,000 rpm for 15 min. 

Supernatant was removed and starch sediment was weighed. Supernatant was dried for 

2 h at 130°C and then weighed.  
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sss WWilitySo /)100*((%)lub       (1) 

Where, Wss is the weight of soluble starch (g) and Ws is the weight of the sample (g). 

))lub%100(*/()100*((%) ilitysoWWpowerSwelling ssp   (2) 

Where, Wsp is the weight of sediment paste (g) and Ws is the weight of sample (g). 

4.2.9. Water binding capacity (WBC) 

WBC was determined using the method described by Yamazaki (Yamazaki, 1953) . A 

mixture of 2.5 g (dry basis) starch in 25 mL distilled water was stirred for 30 min and 

centrifuged at 3,000 rpm for 10 min. Excess water was removed and then residue is 

weighed.  

srs WWWBC /)100*((%)        (3) 

Where, Wrs is the weight of residual starch (g) and Ws is the weight of sample (g). 

4.2.10. Paste clarity 

Paste clarity was measured according to method described by Craig et al. (Craig et al., 

1989).  Starch (2% dry basis) aqueous mixture was heated and stirred in water bath for 30 

min at 95°C. Samples were cooled and stored for 4 days at 4°C and percent transmittance 

was measured every day at 640 nm against water blank using UV–VIS Spectrophotometer 

(EVO 60 ThermoFisher scientific, Waltham, MA USA). 
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4.3. Results and discussion 

4.3.1.  Physico-chemical analysis  

Proximate content of extracted proso millet starch is presented in Table 4.1. Starch 

extraction yield was 54.1% and it had low residual protein (1.21%), lipid (0.27%) and ash 

(0.62%) content. The amylose content and WBC properties of native, HTM and AM proso 

millet starches are presented in Table 4.2. The AM starch showed significant decline 

(P<0.05) in apparent amylose content from 28.51% in native starch to 25.78% in AM 

starch, which may be due to the attack of acid on amorphous section of starch. Hoover 

(Hoover, 2000) proposed that acid preferentially attacks the amorphous regions in the 

granules which leads to cleavage of amylose molecules causing reduction in amylose 

content. However, HTM starch with 29.08% amylose content showed no significant 

(P<0.05) change in amylose content. Rafiq et al. (2016) and  Sun et al. (2014) reported 

similar results for acid modified and hydrothermal modified horse chestnut and sorghum 

starch respectively.  
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Table 4.1. Proximate content of extracted proso millet starch 

 % Content 

Starch yield 54.1 ± 0.11 

Moisture 9.86 ± 0.08 

Protein 1.21 ± 0.07 

Ash 0.62 ± 0.02 

Lipid 0.27 ± 0.01 

Carbohydrates* 88.04 ± 0.04 

Amylose 28.51 ± 0.22 

The values are means ± standard deviation of 

three replicates. *Carbohydrates was calculated: 

100 – (Moisture + Protein + Ash + Lipid)  
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4.3.2.  Water binding capacity (WBC) 

WBC of native starch showed significant (P<0.05) decline from 138.43 to 108.13% upon 

AM but HTM increased the WBC to 191.5%. WBC of HTM starch increased due to the 

increased hydrophilicity, which reduces the crystalline regions and improves the 

accessible binding sites in the amorphous region resulting in improved WBC. Similar 

reports for increased WBC due to hydrophilic affinity have been reported in white 

sorghum and chestnut starch (Olayinka et al., 2008; Rafiq et al., 2016). The AM starch 

showed low WBC than native proso starch which may be due to the reduced accessible 

binding sites caused by reduced amorphous region in starch granules. Balasubramanian 

et al. (2014) reported similar trend in AM and HTM pearl millet starch and Kaur et al. 

(2011) has reported a decrease in WBC of various acid treated starches from different 

botanical sources. 
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Table 4.2. Effect of HTM and AM on native proso millet starch’s WBC and amylose 

content. 

Type WBC (%) Amylose Content (%) 

N 138.43c ± 1.93 28.51a  ± 0.22 

AM 108.13b ± 0.76 25.78b ± 0.25 

HTM 191.65a ± 1.94 29.08a ± 0.38 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ 

significantly (P<0.05). N: Native starch; AM: Acid modified starch; HTM: Hydrothermal modified starch.  
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4.3.3.  Solubility and swelling power 

The solubility and swelling power of native and modified starches are presented in Table 

4.3. The solubility of native starch increased from 2.62 to 34.88% whereas increase in AM 

starch is significantly large (P<0.05) from 18.97 to 86.17% with rise in temperature from 

70 to 90°C. However, HTM starch solubility increased from 1.71 to 12.45% but it is 

significantly (P<0.05) lower than native starch solubility. Swelling power also showed 

increase with increase in temperature. Native starch swelling power increased from 4.69 

to 24.99%, AM starch solubility increased from 4.94 to 21.26% and HTM starch solubility 

also rises from 5.29 to 10.37% from 70 to 90°C. According to Lawal and Adebowale (2005) 

and da Rosa Zavareze and Dias (2011), the decreased solubility and swelling power of 

HTM starch compared to native starch has been credited to starch granule’s internal 

reordering providing higher interactions between starch functional groups, formation of 

more ordered double helical amylopectin clusters and the formation of amylose-lipid 

complexes within starch granules. In addition, the physical variations within the starch 

granules and unravelling of double helices of crystalline region, which reduced the 

granular stability might be accountable for the drop in swelling capacity and starch 

solubility at higher temperature (Leach et al., 1959; Olayinka et al., 2008). 

Balasubramanian et al. (2014) and Gunaratne and Hoover (2002) reported similar results 

of reduced swelling power and solubility with heat moisture treated pearl millet starch 

and cassava starch, respectively. 

Solubility of AM starch was higher as compared to native proso starch and increased 

progressively with increase in temperature. AM leads to the structural weakening and de-
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polymerization of starch granules and similar effect on pearl millet was observed by 

Balasubramanian et al. (2014). However, swelling power showed no significant (P<0.05) 

change at 70°C, increase at 80°C but significant (P <0.05) reduction at 90°C was observed 

which may be due to amylose leaching, resulting in starch damage which limits swelling 

of starch (Jane et al., 1997). Acid hydrolysis causes an increase in percentage crystallinity 

as the crystalline region is not accessible to acid and the amorphous regions are being 

broken down. Rigidness of entangled amylopectin linkages in the crystalline area of the 

starch controls swelling and thus, increased crystallinity may cause reduction in swelling 

power of the AM (Kainuma and French, 1971). 
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Table 4.3. Effect of AM and HTM on native proso millet starch’s solubility and swelling power at 70, 80 and 90°C.  

Type  70°C 80°C 90°C 

Solubility (%) Swelling (%) Solubility (%) Swelling (%) Solubility (%) Swelling (%) 

N 2.62b ± 0.17 4.69b ± 0.26 6.59b ± 1.07 11.65b ± 1.12 34.88b ± 0.77 24.99a ± 0.22 

AM 18.97a ± 1.35 4.94a,b ± 0.41 67.98a ± 4.64 17.46a ± 2.48 86.17a ± 1.77 21.26b ± 1.68 

HTM 1.71c ± 0.34 5.29a ± 0.23 7.25b ± 1.36 7.78c ± 0.63 12.45c ± 3.31 10.37c ± 1.06 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (P<0.05). N: Native starch; AM: 

Acid modified starch; HTM: Hydrothermal modified starch. 
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4.3.4.  Light transmittance 

Figure 4.1 shows the native and modified proso millet starch light transmittance over a 4-

day period. It is used to assess the level of starch paste retrogradation during storage, 

which depends on the swollen and non-swollen granules during gelatinization process 

(Craig et al., 1989; Sandhu et al., 2007). The transmittance of native, AM and HTM pastes 

showed a gradual decrease with storage but native and AM showed pronounced 

reduction over time, 42 to 2% and 85 to 47%, respectively, which is a result of 

retrogradation tendency. HTM improve flexibility of chains within amorphous area of 

granules and resulted in significant (P<0.05) low transmittance, less than 6% (Hoover and 

Vasanthan, 1994). AM starch showed higher transmittance which may be due to leaching 

of amorphous region causing better interactive bond formation between amylopectin 

molecules thus resulting in clear paste (Lawal, 2004). Corn and pinhao starch showed 

similar results on acid modification (Thys et al., 2013). 

 



 

62 
 

 

Figure 4.1. Effect of modifications on proso millet starch % light transmittance over 4-

day period 
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4.3.5.  Thermal properties 

Degree of gelatinization of native, HTM and AM starches are shown in Table 4.4. HTM 

increased the onset (TO), peak (TP) and conclusion (TC) temperatures to 79.13, 87.17 and 

99.35°C, respectively compared to native starch TO, TP and TC which were 72.93, 78.61 and 

94.55°C, respectively. HTM starch needs more heat to break the bonds formed between 

freely moving amylose molecules and amylopectin chains present in crystalline regions, 

hence higher TO and TP (Sun et al., 2014). Moreover, high TC is due to the reduced 

destabilization effect of amorphous regions on crystalline melting which is result of 

reduced swelling power (Gunaratne and Hoover, 2002). Li et al. (2011) and Sun et al. 

(2014) reported similar results for hydrothermal treated sorghum starch and mung bean 

starch, respectively. The decrease in enthalpy of gelatinization (ΔHG) for HTM may be due 

to fewer double helices available to untangle. During modification some helices present 

in crystalline and non-crystalline regions are disrupted, which leads to reduction in 

relative crystallinity, hence reduction in enthalpy (Cooke and Gidley, 1992). Non-

significant (P<0.05) change in gelatinization range was observed for HTM starches. 

The acid treatment showed significant (P<0.05) decrease in the TO (69.71 °C), TP (77.26 °C) 

and increase in the range (26.56 °C). Acid modification focus on the amorphous region of 

the starch granules which no longer destabilizes the crystallites causing crystallites to melt 

at increased temperature resulting in wider range of gelatinization (Hoover, 2000). In 

addition, decreased in amorphous region results in an increase in relative crystallinity 

causing higher ΔHG than HTM. Increase in enthalpy compared to HTM may also be due 

interaction between amylose-amylose and amylose-amylopectin causing formation of 
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double helices which require more energy to break during gelatinization 

(Thirathumthavorn and Charoenrein, 2005).    

Retrogradation properties of native, HTM and AM starches after 10 days of storage were 

measured and shown in Table 4.5. TO, TP and TC of retrograded native, HTM and AM 

starches are significantly lower (P<0.05) when compared to TO, TP and TC of gelatinization. 

ΔHR (2.66 J/g) of native is lower than its ΔHG (3.83 J/g) but HTM starch’s ΔHR (2.99 J/g) 

increased which may be due to the interplay between crystallinity changes and amylose-

amylopectin interactions. The increase in ΔHR was attributed to increased crystallinity on 

modification, which reduces the level of separation among the outer branches of adjacent 

amylopectin chain groups. Thus, during retrogradation, the formation and lateral 

association of double helices involving amylopectin chains would be stronger and occur 

more rapidly in HTM than in native starches (Hoover, 2010). AM starch showed similar 

ΔHR (3.83 J/g) as ΔHG (3.97 J/g) but higher than native starch ΔHR (2.66 J/g) which is the 

result of high mobility of short chains and reduction in amylopectin branch points, 

consequently leading to high rate of realignment of chains during storage (Palma-

Rodriguez et al., 2012). 
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Table 4.4. Effect of AM and HTM on native proso millet starch’s degree of gelatinization. 

Type To Onset  

(°C) 

TP Peak  

(°C)  

Tc Stop 

 (°C) 

ΔHG (J/g) Range (Tc-To)  

(°C) 

N 72.93b ± 0.62 78.61b ± 0.83 94.55b ± 1.34 3.83a ± 0.28 21.62b ± 1.54 

AM 69.71c ± 1.67 77.26c ± 0.36 96.27b ± 2.93 3.97a ± 0.55 26.56a ± 1.44 

HTM 79.13a ± 1.70 87.17a ± 1.46 99.35a ± 1.36 1.95b ± 0.09 20.21b ± 1.12 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05). 

N: Native starch; AM: Acid modified starch; HTM: Hydrothermal modified starch. 
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Table 4.5. Effect of AM and HTM on native proso millet starch’s retrogradation. 

Type To Onset (°C) TP Peak (°C)  Tc Stop  (°C) ΔHR (J/g) Range(Tc-To) (°C) 

N 41.38a ± 0.88 55.05a,b ± 0.74 74.73b ± 1.49 2.66b ± 0.33 33.35b ± 1.26 

AM 42.21a ± 1.90 56.58a ± 2.14 78.36a ± 2.09 3.83a ± 0.47 36.15a ± 1.53 

HTM 41.49a ± 0.47 54.62b ± 0.52 75.05b ± 1.26 2.99b ± 0.08 33.55b ± 0.99 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05). N: 

Native starch; AM: Acid modified starch; HTM: Hydrothermal modified starch. 
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4.3.6.  Pasting properties 

The pasting properties of the native, AM, HTM proso millet starches presented in Table 

4.6 and pasting profiles of native and modified starches are illustrated in Figure 4.2. Both 

modifications showed significant changes (P<0.05) in pasting profile compared to native 

starch. HTM starch showed higher pasting temperature, 83.90°C compared to native 

starch 79.23°C, which may be due to additional heat requirements for degradation of 

starch granules and formation of paste caused by increased cross linking within starch 

granules (Singh et al., 2009). Low swelling power of HTM starch restricts amylose leaching 

and does not let the viscosity increase, resulting in low peak viscosity (2.29 Pa.s) (Hoover, 

2010). 

AM starches showed lower values for peak, breakdown, final viscosities and holding 

strength, which are 0.07, 0.03, 0.109 and 0.037 Pa.s respectively compared to native 

starch’s 4.60, 2.60, 3.68 and 1.99 Pa.s respectively. AM disrupts the amorphous region 

and weakens the starch granule structure and limits the swelling during gelatinization as 

amorphous region is primarly associated with starch swelling. During pasting, starch is 

unable to achieve its maximum swelling power which results in reduced peak viscosity 

(Wang, L. and Wang, Y.J., 2001). The secondary rise  during cooling in the pasting curve is 

known as setback, which is a measure of retrogradation was minimum for AM and no-

significant (P<0.05) change in HTM (Thirathumthavorn and Charoenrein, 2005). 
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Table 4.6. Effect of AM and HTM on native proso millet starch’s pasting properties. 

Type Pasting 
temperature 

(°C) 

Peak 
Viscosity 

(Pa.s) 

Holding 
strength 

(Pa.s) 

Final 
Viscosity 

(Pa.s) 

Setback 

(Pa.s) 

Breakdown 

(Pa.s) 

N 79.23 b ± 0.38 4.60 a ±0.15 1.99 a ±0.48 3.68 a ±0.37 1.69 a ±0.48 2.60 a ±0.64 

AM 79.57 b ±0.04 0.07c ±0.01 0.04b ±0.01 0.11 b ±0.01 0.07b ±0.01 0.03b ±0.01 

HTM 83.90 a ±1.94 2.29 b ±0.90 1.96 a ±0.74 3.21 a ±1.50 1.25 a,b ±0.76 0.32 b ±0.16 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05). N:  Native starch; 

AM: Acid modified starch; HTM: Hydrothermal modified starch. 
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Figure 4.2. Effect of modifications on proso millet starch pasting profile 
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4.4. Conclusion  

Proso millet starch modification by hydrothermal and acid resulted in a significant change 

in the physicochemical, functional, pasting and thermal properties. AM reduces the 

amylose content and WBC of starch, also improved the clarity of the paste whereas HTM 

had no effect on amylose content but increased the WBC and reduced the paste clarity. 

Both modifications significantly (p<0.05) change the swelling power and solubility of the 

native starch. The decrease in swelling is a desirable property for some food preparation 

such as noodle production. Modifications influenced the thermal and pasting properties, 

with low breakdown implying that starches were more stable during continued shearing 

and heating after modifications. Low setback viscosity after modification could enable the 

starches to be used in canned and frozen foods.  The increased knowledge on the effects 

of modified proso millet starch presented in this study will help broaden the applications 

of proso millet starch in food and non-food industries.  
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Connecting text 

Physico-functional properties of modified proso millet starch were determined. 

Modifications significantly (p<0.05) changed the native proso millet starch’s WBC, 

swelling, solubility, thermal and pasting properties. In chapter 5, rheological and baking 

properties of different gluten free formulations based on proso millet, supplemented with 

different hydrocolloids and starches were studied. 
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5. Rheological and baking properties of millet based gluten free formulations 

5.1. Introduction   

Traditionally, bread products are made from wheat flour and are consumed worldwide, 

however, some consumers are intolerant to gluten or are allergic to wheat. Gluten related 

disorders are classified into three different classes namely autoimmune, allergic and non-

autoimmune non-allergic. Celiac disease is a disorder associated with autoimmune 

response that compromises the small intestine on  ingestion of gluten based foods (Lee 

and Newman, 2003). According to survey done by The National Health and Nutrition 

Examination Survey (NHANES), 1 in every 131 Americans, i.e. at least 3 million Americans 

are affected by this disease (Rubio-Tapia et al., 2012). There is also wheat allergy, which 

may or may not be related to gluten ingestion but it generates immune response in the 

body and can cause nausea, vomiting, diarrhea, and rash. Wheat is one of the eight 

identified food allergens which accounts for 90% of food allergies (FARE, 2014) and the 

last class of gluten disorder consist of people who are not allergic to gluten and do not 

have celiac disease, but are people diagnosed with non-celiac gluten sensitivity (NCGS), 

however it is less severe than celiac disease. The people diagnosed with NCGS experience 

abdominal pain, fatigue, headaches, tingling/numbness and foggy brain (Czaja-Bulsa, 

2015). It is estimated that NCGS affects up to 6% of US population, i.e. about 18 million 

Americans and it is more common in adults whereas celiac disease can occur at any age 

but strongly linked with childhood and the only treatment available for all these diseases 

is to exclude gluten sources (wheat, rye, and barley) from their diet (Feighery, 1999). 
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Therefore, there is a need to find alternatives to wheat for production of bread for those 

who are intolerant to any of the above reasons. 

Gluten is the major component of wheat based bread which helps in ability to form thin 

gas-retaining films that trap gases, allowing dough to expand to become a softer, lighter 

and palatable food after baking (Cauvain and Young, 2007). Due to increasing gluten 

intolerance, development of healthier and better quality gluten-free products that would 

greatly improve the quality of life of celiac patients and those who develop sickness from 

wheat consumption is needed. Major challenge in producing bread without gluten is its 

inability to form viscoelastic dough and the resulting bread contains numerous quality 

defects including reduced volume, lack of cell structure, a dry, crumbly, grainy texture, a 

cracked crust, poor mouthfeel and flavor, and susceptibility to quick staling (Capriles and 

Arêas, 2014). Several additives, such as hydrocolloids, proteins, enzymes, antioxidants, 

emulsifiers and preservatives are used to improve dough properties, enhance quality and 

texture of breads (Capriles and Arêas, 2014). 

Millet has the potential to serve as an alternative to wheat in bread production. Millets 

proximate composition are similar to that of other major cereals like wheat, corn and rice. 

They are rich in fiber, iron, calcium, B vitamins, low in phytic acid, and have high protein 

content (11.8-12.5%) (Saleh et al., 2013). Millet flour is often used to produce flat breads, 

porridges, beer and soup in countries of Africa, Indian subcontinent and China (Saleh et 

al., 2013). Lorenz and Dilsaver (1980) used whole millet flour to produce breads, which 

had low volume and dense texture but breads with blends of millet and wheat flour 

produced better results. Badi and Hoseney (1976) and Crabtree and Dendy (1979) made 
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breads of optimum quality with 10% millet flour and adding 0.5% calcium stearoyl-2-

lactylate to dough, improved bread quality significantly. Bread quality produced from 

composite flour of wheat and millet (50:50) is remarkably improved by the combined 

addition of emulsifiers and enzymes (xylanase and transglutaminase) at elevated dough 

moisture (Schoenlechner et al., 2013).  

Millet use in producing GFB can be encouraged with the addition of hydrocolloids in bread 

making formulations. Hydrocolloids showed promising results with other gluten free 

flours to produce high quality and consumer acceptable bread (Capriles and Arêas, 2014). 

Hydrocolloids interact with water and produce a gel network structure that leads to 

increase in batter viscosity and increase in gas retention capability during proofing and 

baking, and improve texture, volume and structure of GFB (Anton and Artfield, 2008). 

Xanthan and carboxymethyl cellulose (CMC) are the most commonly used gums in GFB 

due to their favorable effects on the characteristics of the final product (Capriles and 

Arêas, 2014). Sabanis and Tzia (2011) evaluated the effect of xanthan gum on gluten free 

formulations and the results showed that gums helped in producing increased loaf 

volume and softer crumb. Demirkesen et al. (2010a) evaluated the effects of a 

combination of different hydrocolloids and emulsifiers on the quality of a rice-based GFB 

formula. Results showed that 0.5% Diacetyl tartaric acid esters of monoglycerides 

(DATEM) combined with 0.5% xanthan–guar blend provided the best final product, with 

good volume and crumb texture. Chestnut flour was tested as a raw material in GFB and 

was observed that breads containing 30% chestnut flour and 70% rice flour, in addition 

to a blend of xanthan–guar gum and diacetyl tartaric acid ester of mono- and diglycerides 
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(DATEM) emulsifier, had the best quality parameters (hardness, specific volume, color, 

and sensory values) (Demirkesen et al., 2010b). 

Rheology tests allows opportunity to evaluate the performance of dough under various 

baking processes. It helps to determine the efficacy of processing aids and sufficient 

amount of water to make the best quality bread. It is the science that studies the flow 

and deformation of matter when force is applied, and can be used to analyze complex 

systems such as bread (Dobraszczyk and Morgenstern, 2003). The rheology of bread 

change significantly between the mixing and the final product. Bread dough exhibits 

viscoelastic behavior which is a combination of properties of both purely viscous fluids 

and purely elastic solids (Petrofsky and Hoseney, 1995). Rheology can be related to 

product functionality: many rheological tests have been used to determine hydration 

ratio, to predict final product quality such as mixing behavior, sheeting and baking 

performance (Dobraszczyk and Morgenstern, 2003). The overall goal of this topic is to 

evaluate the rheological and baking properties of millet based gluten free formulations.  

5.2. Materials and method 

5.2.1. Raw materials 

Gluten free formulations consisted of millet flour, corn starch, potato starch and nonfat 

dry milk purchased from Bob red mills (Milwaukie, OR), active dry yeast (Fleischmann, St. 

Louis, MO), shortening (Crisco, Ohio), sugar and salt. In addition, four different 

hydrocolloids were used in the formulation Xanthan VI (Xanthan gum), CMC 2500 

(Carboxymethyl cellulose), Ticaloid 313 (Xanthan and Carboxymethyl cellulose), Ticaloid 

345 (Xanthan, locust bean, carrageenan and sodium alginate) were purchased from TIC 
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gums (White marsh, MD). Millet starch was isolated from proso millet flour using method 

described in chapter 3. 

5.2.2. Bread formulation 

Gluten free formulation used in this study are summarized in Table 5.1 and two different 

levels (2 and 3%) of hydrocolloid were used. Other ingredients are as follow: sugar (8.5%), 

shortening (4%), nonfat dry milk (4%), yeast (3%), salt (2%) and water (105%).  
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Table 5.1. Different gluten free formulations and their abbreviations 

Abbreviations Millet flour 

(%) 

Corn starch 

(%) 

Potato starch 

(%) 

Millet starch 

(%) 

Hydrocolloids 

MG1 100    Xanthan gum 

MG2 100    CMC 

MG3 100    Ticaloid 313 

MG4 100    Ticaloid 345 

MCG1 50 50   Xanthan gum 

MCG2 50 50   CMC 

MCG3 50 50   Ticaloid 313 

MCG4 50 50   Ticaloid 345 

MPG1 50  50  Xanthan gum 

MPG2 50  50  CMC 

MPG3 50  50  Ticaloid 313 

MPG4 50  50  Ticaloid 345 

MMG1 50   50 Xanthan gum 

MMG2 50   50 CMC 

MMG3 50   50 Ticaloid 313 

MMG4 50   50 Ticaloid 345 
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5.2.3. Dynamic oscillation measurements  

Dynamic oscillation measurements are one of the most popular and widely used 

techniques to determine visco-elastic behavior in doughs and batters. It measures the 

response of a material by the application of sinusoidal oscillating stress or strain with time 

(Dobraszczyk and Morgenstern, 2003). The measurement has to be performed in the 

linear viscoelastic region in which the properties of the material are independent on the 

shear strain and stress and are only a function of time or frequency (Buresová et al., 2014). 

In order to determine rheological properties, all ingredients except yeast were mixed in 

100 g micro mixer (National mfg. co. Lincoln, NE). Rheological properties were measured 

using dynamic oscillation rheometer (DHR-2 TA, instruments, USA) with a 35 mm parallel 

plate geometry at 2 mm gap. Dough sample was poured between the plates and left for 

20 min to relax and stabilize. Strain sweep test (0.01 to 100%) was performed at 25°C to 

determine linear viscoelastic region (LVR). Frequency sweep test was performed at 25°C 

from 0.1 Hz to 50 Hz using 0.05% strain value determined from the strain sweep test.  

In creep-recovery measurements, stress is held constant and the deformation is 

measured. Removal of stress causes the material to recoil to its rest position which 

corresponds to dough’s elasticity (Dobraszczyk and Morgenstern, 2003). It was performed 

using the same geometry as mentioned above. Stress of 50 Pa was applied for 60 s on the 

sample and then allowing strain recovery by sample in 180 s after removing the stress.  

5.2.4. Bread making process 

Optimized straight-dough bread making procedure AACC Method 10-10.03 (AACC, 1995a) 

was used for the baking experiments. A kitchen mixer (KitchenAid, Model KV25G0X, 
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Benton Harbor, MI) was used to mix the bread dough. All the ingredients were mixed for 

1 min at speed 1 and for 6 min at speed 2 while scrapping dough every 2 min. The dough 

was poured into pans and proofed for 35 min at 40°C and subsequently baked for 1 hr. at 

375°F.  Baked breads were kept for 1 hr. to cool before measurements. For storage effect, 

breads were packed in sealed poly bags and stored for 5 days at room temperature.    

5.2.5. Bread Volume  

Bread volume was determined according to AACC Method 10-05.01 (AACC, 2001) using 

seed displacement method. 

5.2.6. Bake loss (%)  

Moisture lost during baking was measured. 

5.2.7. Color  

Color of crust and crumb was determined with a chromameter (CR-400,Konica Minolta, 

USA) applying the L a b system. Crust color was measured at six different positions on top 

of the bread, then bread was sliced to obtain three uniform slices of 25 mm. Crumb color 

was measured in the center on both sides of each slice. 

5.2.8. Texture profile test 

The texture of GFB was determined according to the AACCI Method 74-09.01  (AACC, 

1995b) using a texture analyzer (TA-XT plus, Stable Micro Systems, UK). A 25 mm thick 

slice was compressed up to 40% strain at 2.0 mm/s speed. Bread firmness was taken as 

the force required for compression of the bread sample by 25%. TPA was also performed 

using the following settings: test speed of 2.0 mm/s with trigger force 20 g to compress 
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bread to 40% of its original height, and the following parameters were measured – 

hardness, gumminess, chewiness, resilience, springiness and cohesiveness.  

5.3. Results and discussion 

5.3.1. Frequency sweep 

The viscoelastic behavior of all the formulations was determined using oscillatory and 

creep measurements. Dynamic oscillation measurements require elastic and viscous 

modulus to be independent of shear stress. Measurements under linear viscoelastic 

region assures the dough structure is not damaged. The linear viscoelastic region (LVR) 

was determined using strain sweep test and decline in elastic modulus above 0.6% strain 

limits LVR indicates breakdown of dough structure beyond this strain level. Similarly, it 

has been previously found that wheat flour doughs exhibit linear viscoelasticity at strain 

levels lower than 0.1–0.25% (Phan-Thien and Safari-Ardi, 1998; Weipert, 1990).
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Figure 5.1a. Effect of gluten free formulations on elastic modulus (Gˈ) at 1 Hz 
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Figure 5.1b. Effect of gluten free formulations on viscous modulus (Gˈˈ) at 1 Hz 
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Figure 5.1c. Effect of gluten free formulations on tan(δ) at 1 Hz 
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Figure 5.1d. Effect of proso millet cultivars on elastic (Gˈ) and viscous (Gˈˈ) modulus at 1 Hz
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The elastic modulus (Gˈ), viscous modulus (Gˈˈ) and tan(δ) of all formulations in LVR at 1 

Hz frequency are summarized in Figure 5.1a, 5.1b, 5.1c and 5.1d. All formulations showed 

high elastic modulus compared to viscous modulus which indicates solid like behavior of 

doughs. Significant effect (p<0.05) of starch, gum and level was observed on Gˈ, Gˈˈ and 

tan(δ). Interaction effect between gum and level was also significant (p<0.05) for all three 

parameters and interaction between starch and gum was observed for Gˈˈ and tan(δ). 

Three different starches were used and compared with whole millet formulation. Whole 

millet flour formulation had high Gˈ and lower tan(δ) compared to other flour 

formulations indicating high elastic dough. The addition of starches led to the significant 

(p<0.05) decrease in Gˈ in all formulations but not much effect was observed on Gˈˈ. 

Hydrocolloid effect was also observed and G3 produced lower values of Gˈ compared to 

other gums whereas G1 and G4 showed lower values for Gˈˈ. Increase in tan(δ) values 

with addition of starches indicates higher viscous behavior and effect of gum was also 

significant (p<0.05) on tan(δ). The Gˈ and Gˈˈ both increased with increase in hydrocolloid 

level but opposite was observed for tan(δ) indicating significantly (p<0.05) high elastic 

behavior of dough at increased level. 

Among hydrocolloids at 2% level, G1 made the dough more elastic but no significant 

difference was observed among them, similarly at 3% level, addition of hydrocolloids 

showed no significant difference except G3 producing lowest Gˈ. Higher level of elasticity 

in 3% formulations indicates stronger dough. Tan(δ) values for all the formulations were 

<1 which indicates that all gluten free formulations have higher elastic behavior in the 

whole range of frequencies (curves presented in appendix). 
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Similarly, an increase of Gˈ was reported when HPMC added to rice flour dough (Gujral et 

al., 2003). Edwards et al. (1999) reported rheological measurements as means of 

differentiating durum wheat cultivars according to dough strength; higher Gˈ for stronger 

and least extensible samples. Previous studies suggested that dynamic rheological 

parameters of dough show little relationship with the functionality during processing and 

end-use performance (Autio et al., 2001; Phan-Thien and Safari-Ardi, 1998; Wang and 

Sun, 2002). No significant correlation (p<0.05) was observed between baking parameters 

and frequency sweep test but after excluding data of 3% level hydrocolloids (Figure 5.1e), 

negative correlation was observed between Gˈ and specific volume (r = -0.59, p<0.005). 

Proso millet cultivars also showed higher elastic behavior but waxy starches showed 

highest Gˈ values which was due to higher water absorption of amylopectin compared to 

amylose  consequently increasing dough elasticity (Hoover, 2000). High correlation was 

also observed between amylose content and Gˈ (r = -0.84) and Gˈˈ (r = -0.88). 



87 

G' (Pa) 

0 1000 2000 3000 4000 5000

S
p

e
c
if
ic

 v
o

lu
m

e
 (

m
l/g

)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

r = -0.59
p< 0.005

Figure 5.1e. Correlation between Gˈ and specific volume after excluding 3% hydrocolloid 

formulations data. 
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5.3.2. Creep and recovery 

Creep recovery tests were conducted on all gluten free formulations and presented in 

Table 5.2a and 5.2b. Higher maximum creep% strain indicates reduced resistance of 

dough to deformations. The creep-recovery curves of gluten-free doughs showed 

viscoelastic behavior combining both viscous and elastic components (Steffe, 1996). 

 At 2% gum level, the addition of starches increased the maximum creep% strain 

indicating reduced resistance to deformation. With Increased level of hydrocolloids to 3%, 

decrease in maximum strain% for all the formulations was observed indicating higher 

resistance to deformation which is due to the increased water absorption capacity of 

dough with increased hydrocolloids. Hydrocolloid G3 with all formulations showed 

highest maximum creep% strain whereas G1 and G4 showed highest resistance to 

deformation. These results are in contrast to the findings of Sivaramakrishnan et al. 

(2004), where the addition of HPMC at different concentrations into rice flour doughs 

resulted in creep recovery curves which shifted to higher values compared to the control 

dough. Wang and Sun (2002) reported high correlation between maximum recovery 

strains and baking volumes. 
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Table 5.2a. Effect of proso millet cultivars on maximum creep and recovery %strain. 

Maximum creep 

(%) strain 

Maximum 

recovery (%) 

strain 

Cope 11.38 + 1.74d 6.56 + 0.38f,g 

Dawn 11.40 + 1.25d 7.40 + 0.43e 

Earlybird 15.21 + 2.97c,d 8.28 + 0.22d 

Huntsman 18.01 + 0.72b,c 9.48 + 0.51b,c 

Minco 25.55 + 1.34a  10.81 + 0.47a 

Panhandle 21.45 + 4.32a,b 10.08 + 0.13a,b 

Plateau 9.96 + 1.10d 5.94 + 0.08g 

Rise 18.06 + 3.99b,c 8.73 + 0.57c,d 

Sunrise 13.62 + 1.44c,d 7.24 + 0.51e,f 

The values are means ± standard deviation of three replicates. Means with 

different letter in a column differ significantly (p<0.05).
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Table 5.2b. Effect of gluten free formulations on maximum creep and recovery %strain. 

2% 3% 

Maximum creep 

(%) strain 

Maximum 

recovery (%) 

strain 

Maximum creep 

(%) strain 

Maximum 

recovery (%) 

strain 

MG1 21.77 + 8.26h 9.10 + 2.31d 10.87 + 0.68b,c 3.60 + 0.06f 

MG2 99.02 + 10.50d-h 33.88 + 4.12b 9.82 + 1.17b,c 6.22 + 0.43d-f 

MG3 195.15 + 67.79b,c 32.80 + 2.76b 22.93 + 7.47b,c 11.22 + 1.27c 

MG4 46.80 + 17.39f-h 11.13 + 1.80c,d 5.06 + 0.25c 3.48 + 0.64f 

MCG1 76.99 + 18.45d-h 17.61 + 2.75c 6.43 + 0.45c 5.16 + 0.96e,f 

MCG2 133.91 + 35.37b-f 45.62 + 2.09a 14.04 + 1.18b,c 8.81 + 2.02c-e 

MCG3 156.17 + 59.38b-d 41.41 + 4.58a 62.05 + 7.26a 16.67 + 4.69b 

MCG4 115.42 + 26.83c-g 17.11 + 1.93c 9.55 + 3.09b,c 7.01 + 0.76d-f 

MPG1 103.55 + 56.29d-h 18.42 + 4.36c 6.43 + 0.97c 5.10 + 0.75e,f 

MPG2 141.83 + 68.16b-e 49.01 + 9.87a 14.88 + 0.07b,c 9.90 + 0.87c,d 

MPG3 206.87 + 67.92b 47.28 + 3.36a 26.93 + 3.04b 15.77 + 0.18b 

MPG4 28.24 + 10.17g,h 12.64 + 2.09c,d 6.51 + 0.71c 4.98 + 0.29e,f 

MMG1 56.50 + 25.17e-h 12.72 + 0.81c,d 19.67 + 0.14b,c 6.58 + 0.37d-f 

MMG2 90.99 + 5.46d-h 30.18 + 1.16b 26.49 + 11.64b 17.57 + 6.66a,b 

MMG3 346.03 + 155.26a 44.37 + 16.93a 71.78 + 27.49a 20.82 + 1.84a 

MMG4 54.13 + 43.05e-h 13.56 + 3.82c,d 13.73 + 5.01b,c 7.62 + 1.15c-f 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly 

(p<0.05) and a-e indicates a,b,c,d,e
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5.3.3. Specific volume 

Specific volume of all formulations were compared with whole wheat bread and 

presented in Table 5.3a and 5.3b. All the formulations showed significantly lower (p<0.05) 

volume compared to wheat bread. Addition of starches significantly (p<0.05) increased 

the volume compared to whole millet formulations except MP which showed significant 

(p<0.05) decrease. Among hydrocolloids, G3 produced the significantly (p<0.05) highest 

volume breads whereas G4 and G1 produced lowest. Increasing hydrocolloid level had no 

significant effect on volume of breads. 

The volume of breads decreased with increase in hydrocolloid level from 2 to 3% 

excluding gum G1 and G4 in some formulation and significant (p<0.05) interaction 

between gum and level was observed. The volume of loaves ranged from 1.88 to 2.88 

ml/g; the highest volume of breads were from MM and MC formulations. MP produced 

high volume breads when supplemented with G2 (2.84 ml/g) and G3 (2.63 ml /g) but 

reduced to 1.88 ml/g when G1 or G4 was added. Positive correlation was observed 

between specific volume and maximum creep% strain (r = 0.54) and also with maximum 

recovery% strain (r = 0.63). Effect of amylose was significant (p<0.05) on specific volume. 

Low amylose cultivars produced low volume breads and positive correlation was 

observed between amylose and specific volume (r = 0.82) which indicates that during 

baking, increased water absorption of amylopectin results in faster swelling of starch 

granules leads to poor structure holding capacity, hence produced low volume breads. 

Previously, McCarthy et al. (2005) reported decrease in loaf volume of a rice flour and 

potato starch based gluten-free bread with increasing levels of HPMC. Schober et al. 
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(2005) observed decrease in loaf volume of sorghum based gluten-free breads with 

increasing xanthan gum levels. Hydrocolloids can enhance dough development and gas 

holding by increasing dough viscosity (Rosell et al., 2001). Hydrocolloids such as CMC have 

hydrophilic nature enhancing water retention properties, but also contain hydrophobic 

groups which encourage further properties including increased interfacial activity within 

the dough system during proofing, and forming gel networks on heating during the bread-

making process. Such network structures serve to increase viscosity and to further 

strengthen the boundaries of the expanding cells in the dough, thus increase gas 

retention through baking, and consequently lead to a better loaf volume (Bell, 1990). 

5.3.4. Bake loss 

Bake loss% for all gluten free formulation was observed to be in the range of 16.22 – 

21.48%, which was significantly (p<0.05) higher than wheat based bread (10.89%). Higher 

bake loss was due to the high percentage of water used in the formulation. 
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Table 5.3a. Effect of gluten free formulations on specific volume and bake loss (%) 

Sample Specific 

volume (ml/g) 

Bake loss (%) Specific volume 

(ml/g) 

Bake loss (%) 

 
2% level 3% level 

Wheat 3.58 ± 0.03a 10.89 ± 0.25d 3.58 ± 0.03a  10.89 ± 0.2h 

M G1 2.08 ± 0.03g 18.52 ± 0.41c 2.34 ± 0.02e,f 17.06 ± 0.64e,f,g 

M G2 2.69 ± 0.16b,c  18.94 ± 0.65c 2.28 ± 0.03e,f 16.25 ± 0.74f,g 

M G3 2.65 ± 0.08b,c 18.98 ± 0.36c 2.43 ± 0.01e,f  18.36 ± 0.63b-e 

M G4 2.07 ± 0.17g 18.48 ± 0.67c 2.29 ± 0.05e,f 18.44 ± 0.36b-e 

MC G1 2.36 ± 0.04e,f 19.31 ± 1.36c 2.49 ± 0.08d,e 17.86 ± 0.76d,e,f 

MC G2 2.73 ± 0.02b,c 18.94 ± 0.76c 2.49 ± 0.08d,e 17.64 ± 1.59e,f,g 

MC G3 2.76 ± 0.12b,c 21.28 ± 1.70a 2.67 ± 0.05c,d  18.17 ± 0.83c,d,e 

MC G4 2.32 ± 0.16f 19.01 ± 0.59b,c 2.33 ± 0.01e,f 17.86 ± 0.61d,e,f 

MP G1 1.99 ± 0.10g 18.06 ± 0.42c 1.88 ± 0.23g 17.35 ± 0.59e,f,g 

MP G2 2.84 ± 0.19b 18.39 ± 0.50c 2.27 ± 0.12f 16.14 ± 0.22g 

MP G3 2.63 ± 0.02b,c,d 19.23 ± 1.44a,b,c 2.45 ± 0.04e,f 17.52 ± 0.95e,f,g 

MP G4 1.88 ± 0.14g 17.75 ± 0.92c 1.90 ± 0.17g 17.52 ± 1.66e,f,g 

MM G1 2.33 ± 0.13f 21.27 ± 0.52a 2.88 ± 0.07b 21.02 ± 0.69a 

MM G2 2.58 ± 0.05c,d,e 21.48 ± 1.21a 2.42 ± 0.04e,f 19.27 ± 0.31b,c,d 

MM G3 2.88 ± 0.03b 21.40 ± 0.83a 2.67 ± 0.07c,d 19.60 ± 0.26a,b,c 

MM G4 2.40 ± 0.02d,e,f 20.75 ± 1.16a,b 2.71 ± 0.13b,c 19.89 ± 0.58a,b 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly 

(p<0.05) and a-e indicates a,b,c,d,e. 
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Table 5.3b. Effect of proso millet cultivars on specific volume and bake loss (%) 

Specific Volume 

 (ml/g) 

Bake Loss (%) 

Wheat 3.58 ± 0.03a 10.89 ± 0.25b 

Cope 2.19 ± 0.05d,e 17.55 ± 1.19a 

Dawn 2.22 ± 0.05c,d,e 16.22 ± 2.23a 

Earlybird 2.40 ± 0.05b 18.43 ± 1.12a 

Huntsman 2.29 ± 0.08b-e 17.91 ± 1.02a 

Minco 2.32 ± 0.01b,c,d 18.15 ± 0.53a 

Panhandle 2.37 ± 0.08b,c 16.53 ± 1.74a 

Plateau 1.97 ± 0.01f 17.96 ± 0.71a 

Rise 2.43 ± 0.17b 17.86 ± 1.00a 

Sunrise 2.17 ± 0.02e 17.21 ± 0.75a 

The values are means ± standard deviation of three replicates. Means with 

different letter in a column differ significantly (p<0.05) and b-e indicates b,c,d,e.
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5.3.5. Bread Color 

Crust and crumb color of all the formulations were evaluated using L a b scale. The L scale 

measures lightness from dark (0) to white (100), the a scale extends from red hue (+) to 

green (-) and the b scale ranges from yellow (+) to blue (-). Table 5.4a, 5.4b, 5.4c 

summarizes the color of crust and crumb. Among the formulations, breads with MM 

formulation produced lighter color crust whereas breads produced from whole millet 

flour and MP were darker. The a value of crust were higher for whole millet bread and 

lowest for breads with millet starch in them.  Potato starch formulations showed high a 

value compared to other starches. The yellowness of formulations ranged from 26.69 to 

35.68 and significantly high for whole millet bread. Hydrocolloids had no significant effect 

on crust color but increasing the level from 2% to 3% decreased the L values in whole 

millet breads and significantly increased the a values for whole millet, MC and MP breads. 

Increasing hydrocolloid level showed no considerable effect on b values. 

Starch effect on lightness of crumb color was not significant and L value ranged from 63.33 

to 70.33 whereas G1 produced light color breads with MC and MM formulations 2% level. 

Both starch and hydrocolloid had no effect on a values at both levels whereas lower b 

value was observed for MC, MP and MM compared to whole millet bread. Increasing level 

from 2% to 3% increased the lightness values in M, MC and MM breads but no effect on 

a and b values. 

Cultivar effect on crust and crumb color is summarized in Table 4c. No significant effect 

on crust color was observed. Crumb color lightness varied from 63.11 to 70.17, Minco 
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producing lightest crumb among cultivars. The a value reduced for crumb compared to 

crust color and b value ranged from 18.85 to 23.23. 
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Table 5.4a. Effect of gluten free formulations on crust color 

Sample 2% level 3% level 

L a b L a b 

Wheat 43.86 + 2.02g 9.41 + 0.39a 25.35 + 1.61g 43.86 + 2.02e 9.41 + 0.39b 25.35 + 1.61f 

MG1 56.70 + 2.99c,d 6.71 + 0.29b,c 34.82 + 1.29a,b 52.72 + 5.00d 6.93 + 1.46d 33.74 + 2.09a,b 

MG2 52.67 + 1.85e,f 7.20 + 1.55b 32.58 + 3.04b-e 44.14 + 2.89e 11.27 + 0.64a 33.21 + 1.42b,c 

MG3 51.36 + 2.64e,f 7.69 + 1.25b 32.65 + 2.10b-e 46.68 + 1.74e 9.94 + 0.90b 30.51 + 1.26d,e 

MG4 55.10 + 3.54c-e 6.42 + 0.64b,c 34.27 + 1.51a,b 53.33 + 2.18d 8.39 + 0.84c 33.93 + 1.45a,b 

MCG1 66.79 + 4.43b 0.82 + 0.96g 32.46 + 1.78b-e 66.63 + 2.12c 2.71 + 1.09f 34.87 + 1.50a,b 

MCG2 65.13 + 5.22b 0.45 + 0.84g,h 30.27 + 3.47e,f 64.65 + 1.92c 3.32 + 1.02f 34.69 + 1.83a,b 

MCG3 65.67 + 4.10b -0.21 + 2.38g,h 29.87 + 4.18f 65.14 + 3.41c 2.72 + 1.91f 33.98 + 2.01a,b 

MCG4 68.48 + 1.70b 0.94 + 0.76g 33.79 + 0.84a-c 63.26 + 2.76c 3.21 + 0.71f 34.42 + 1.29a,b 

MPG1 57.56 + 4.88c,d 2.96 + 1.50f 31.74 + 2.94c-f 55.98 + 3.25d 6.06 + 0.60d,e 35.40 + 1.98a 

MPG2 54.60 + 2.94d-f 5.81 + 1.06c,d 35.68 + 1.50a 54.74 + 5.06d 6.84 + 0.86d 34.81 + 2.50a,b 

MPG3 51.15 + 5.69f 5.08 + 1.70d,e 31.32 + 2.33d-f 53.62 + 5.86d 6.75 + 1.08d 34.92 + 2.46a,b 

MPG4 58.69 + 5.06c 4.16 + 1.82e 33.34 + 1.47a-d 56.19 + 4.92d 5.44 + 1.03e 34.45 + 2.45a,b 

MMG1 73.17 + 2.00a -0.78 + 1.28h,i 31.20 + 2.17d-f 72.23 + 3.63b -0.14 + 0.70 g 31.22 + 1.01d 

MMG2 73.71 + 2.83a -2.09 + 0.92j 27.28 + 2.53g 75.19 + 3.13a,b -2.24 + 3.13i 25.68 + 2.26f 

MMG3 73.79 + 3.84a -2.46 + 0.74j 26.69 + 1.72g 75.86 + 1.30a -1.19 + 0.97h 29.14 + 1.73e 

MMG4 75.15 + 1.87a -1.53 + 0.74i,j 29.61 + 1.37f 73.81 + 0.93a,b 0.13 + 0.33g 31.80 + 0.41c,d 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e
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Table 5.4b. Effect of gluten free formulations on crumb color 

Sample 2% level 3% level 

L a b L a b 

Wheat 57.81 + 4.10f 2.52 + 0.46a 26.59 + 1.34b 57.81 + 4.07h 2.52 + 0.47a 26.59 + 1.34c 

MG1 68.50 + 2.55a-c -6.67 + 0.33c 31.16 + 0.98a 72.57 + 1.03a -7.15 + 0.24c,d 31.21 + 0.52b 

MG2 68.37 + 1.82a-c -7.36 + 0.22c 30.89 + 0.72a 72.39 + 1.99a -7.30 + 0.31c,d 32.34 + 1.43a 

MG3 66.45 + 4.21a-e -7.35 + 0.56c 28.96 + 1.43a 70.01 + 2.59a-d -7.14 + 0.27c,d 30.40 + 1.05b 

MG4 67.66 + 3.72a-d -6.76 + 0.37c 31.19 + 1.24a 71.43 + 2.76a,b -6.68 + 0.41b 30.43 + 1.66b 

MCG1 67.01 + 2.43a-e -7.12 + 0.44c 25.63 + 1.31b,c 68.90 + 3.87b-e -7.21 + 0.41c,d 24.67 + 1.04d,e 

MCG2 63.33 + 4.62e -3.99 + 3.34b 30.03 + 6.98a 68.82 + 2.60b-e -7.69 + 0.31e-g 25.45 + 1.13c,d 

MCG3 66.55 + 2.81a-e -7.56 + 0.32c 24.24 + 1.42b-d 65.64 + 1.68f,g -7.29 + 0.17c,d 24.48 + 0.73d-f 

MCG4 64.44 + 5.56c-e -7.05 + 0.66c 25.12 + 1.72b-d 69.84 + 4.22a-d -7.39 + 0.45c-e 25.87 + 1.59c 

MPG1 64.05 + 5.49d,e -6.78 + 0.62c 24.66 + 2.20b-d 64.73 + 4.60g -6.74 + 0.49b 24.32 + 1.56d-f 

MPG2 66.42 + 3.19a-e -7.39 + 0.37c 24.97 + 0.80b-d 68.85 + 2.47b-e -7.47 + 0.28d-f 26.06 + 1.64c 

MPG3 65.49 + 5.56b-e -7.54 + 0.54c 22.85 + 2.17d 68.13 + 2.76c-f -7.46 + 0.32d-f 24.26 + 0.75d-f 

MPG4 64.15 + 3.11d,e -6.80 + 0.22c 24.51 + 1.38b-d 66.27 + 2.05e-g -7.08 + 0.29c 23.75 + 0.99e,f 

MMG1 70.33 + 1.41a -7.59 + 0.13c 24.51 + 0.67b-d 71.27 + 2.92a-c -7.77 + 0.31g,f 24.15 + 0.36e,f 

MMG2 67.13 + 3.07a-e -7.57 + 0.36c 24.47 + 0.72b-d 68.01 + 3.02d-f -7.75 + 0.30g,f 23.85 + 0.47e,f 

MMG3 66.82 + 3.52a-e -7.73 + 0.39c 23.69 + 0.97c,d 69.10 + 3.57b-e -7.91 + 0.43g 24.03 + 1.25e,f 

MMG4 69.36 + 1.49a,b -7.66 + 0.22c 23.97 + 0.48c,d 70.42 + 1.53a-d -7.66 + 0.21e-g 23.21 + 0.95f 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05)  and a-e indicates 

a,b,c,d,e. 
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Table 5.4c. Effect of Cultivar on crust and crumb color 

Cultivar Crust Crumb 

L a b L a b 

Wheat 43.86 + 2.02c 9.41 + 0.39a 25.35 + 1.61b 57.81 + 4.10e 2.52 + 0.46a 26.59 + 1.34a 

Cope 65.89 + 3.73a,b 0.36 + 1.79b,c 31.41 + 4.56a 69.93 + 1.91a,b -6.28 + 0.24b 18.85 + 0.58f 

Dawn 63.82 + 4.94a,b 1.76 + 1.21b 33.02 + 2.94a 68.54 + 1.66a-c -6.32 + 0.18b 20.82 + 0.64d,e 

Earlybird 65.04 + 4.78a,b 0.36 + 0.94b,c 31.38 + 3.00a 67.70 + 2.58a-c -6.78 + 0.23c 21.37 + 0.75c,d 

Huntsman 61.89 + 6.93b 1.47 + 2.48b 31.84 + 4.63a 66.16 + 2.58c -7.09 + 0.25d 20.94 + 0.99d,e 

Minco 62.27 + 7.90b 0.95 + 0.70b,c 31.51 + 4.19a 70.17 + 1.25a -7.67 + 0.15e 23.23 + 0.80b 

Panhandle 65.31 + 4.68a,b 0.53 + 1.42b,c 31.42 + 3.01a 68.97 + 2.77a,b -6.90 + 0.28c,d 19.33 + 0.79f 

Plateau 68.35 + 5.29a -0.35 + 0.81c 30.72 + 2.96a 63.11 + 2.91d -7.08 + 0.33d 23.48 + 1.08b 

Rise 62.78 + 6.67b 1.17 + 1.31b 31.20 + 3.50a 68.54 + 2.38a-c -6.50 + 0.22b 20.42 + 0.60e 

Sunrise 66.15 + 6.06a,b 1.50 + 2.39b 32.78 + 3.16a 67.49 + 2.24b,c -7.00 + 0.29c,d 21.85 + 1.11c 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.



100 

5.3.6. Textural properties 

Firmness of all the formulation were compared with whole wheat bread over 5 days’ 

period and illustrated in Figures 5.2a, 5.2b and 5.2c. Firmness was found to be high 

compared to wheat bread for all formulations, and after 2 days sharp increase was 

observed in the firmness, which can be attributed to staling and increased retrogradation 

rate. Effect of starch was significant (p<0.05) on bread firmness as MC and MP bread 

produced low firmness value bread whereas MM had similar firmness compared to whole 

millet formulations. Hydrocolloids and their level showed no significant change in bread 

firmness, whereas interaction effect of starch-gum and starch-level of hydrocolloid is 

significant (p<0.05). 

Among the formulations, G3 had lower firmness in M formulations, G2 had lower firmness 

in MC and MP formulations whereas G4 showed low firmness in MM formulations. High 

firmness values at day 5 indicates the low shelf life of product and high rate of staling 

which might be due to increased percentage of starch in formulation. Cultivar effect was 

also observed and illustrated in figure 5.2a. Waxy cultivar produced low firmness bread 

compared to high amylose cultivars and positive correlation between amylose and 

firmness (not significant) was observed (r= 0.51). In previous studies, it has been found 

that addition of some hydrocolloids, such as CMC, carrageenan, and alginate, causes 

crumb softening of wheat bread, while inclusion of xanthan results in an increase of 

crumb hardness (Bell, 1990; Rosell et al., 2001).
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Figure 5.2a. Effect of proso millet cultivars on bread firmness 
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Figure 5.2b. Effect of gluten free formulations (at 2% level) on bread firmness 
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Figure 5.2c. Effect of gluten free formulations (at 3% level) on bread firmness
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Texture parameters for bread from TPA, which include hardness, chewiness, gumminess, 

cohesiveness, springiness and resilience, are illustrated in Figures 5.5a-5.5i. All the 

formulations showed higher hardness, gumminess and chewiness values compared to 

wheat bread on all observed days (0,2,5). Effect of starch and gum was significant (p<0.05) 

on all TPA parameters whereas effect of level was observed only on hardness and 

gumminess. 

On addition of starch, hardness values decreased significantly (p<0.05) except MM 

whereas increasing level of hydrocolloids showed significant (p<0.05) increase in 

hardness. Among hydrocolloids, G2 showed significantly higher hardness (p<0.05) 

compared to others. Hardness showed significant (p<0.05) time effect and increased 

upon storage whereas gumminess and chewiness had no time effect. Springiness of all 

formulations decreased with time whereas no change was observed in wheat bread, 

which indicates shorter shelf-life of gluten free breads compared to wheat. Sharp 

decrease in cohesiveness was also observed indicating the weak structure of bread. 

Unlike wheat bread, resilience decreased exponentially with time indicating the less 

elasticity of gluten free breads. Biliaderis et al. (1995) concluded that the effect of 

hydrocolloids on starch gel structure can be described by decrease in swelling of starch 

and limited amylose leaching from the granules resulting in increased rigidity of dough 

which determine the overall effect of hydrocolloids on mechanical properties of the bread 

structure. Cultivar effect was also observed to be significant with textural properties. 

Amylose content showed significant correlation with Gumminess (r = 0.67), Chewiness (r 

= 0.73), Resilience (r = 0.83). Waxy millet showed low hardness values compared to other 
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cultivars. Similarly, Schober et al. (2005) reported an increase of crumb hardness with 

xanthan gum concentration in gluten-free breads from sorghum. 
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Table 5.5a. Effect of cultivars on different TPA parameters on day0 

Cultivars Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 226.87 ± 8.49d 0.92 ± 0.01c 0.74 ± 0.01a 169.09 ± 7.07c 158.02 ± 3.54b 0.32 ± 0.02c 

Cope 606.30 ± 12.87a,b 0.91 ± 0.07c 0.66 ± 0.04b-e 399.19 ± 65.82a 362.21 ± 43.80a,b 0.33 ± 0.03b,c 

Dawn 641.18 ± 45.78a 0.95 ± 0.03b,c 0.64 ± 0.02d,e 413.07 ± 37.70 a 390.92 ± 42.93a 0.34 ± 0.02b,c 

Earlybird 640.25 ± 66.79a 0.98 ± 0.02a,b 0.66 ± 0.03b-e 424.67 ± 43.09a 415.97 ± 43.58a 0.36 ± 0.02a-c 

Huntsman 488.71 ±125.71b,c 0.99 ± 0.01a,b 0.62 ± 0.02e 304.10 ± 89.75b 299.65 ± 87.41b 0.33 ± 0.02b,c 

Minco 650.89 ± 43.15a 1.01 ± 0.03a 0.68 ± 0.02b-d 440.73 ± 15.29a 446.07 ± 17.84a 0.37 ± 0.02a,b 

Panhandle 499.41 ±100.43b,c 1.02 ± 0.04a 0.71 ± 0.03a-c 353.20 ± 78.11a,b 360.82 ± 89.63a,b 0.40 ±0.03a 

Plateau 448.51 ± 47.45c 0.98 ± 0.01a,b 0.65 ± 0.03c-e 292.15 ± 31.83 287.37 ± 30.05b 0.27 ± 0.04d 

Rise 576.27 ± 82.53a-c 0.97 ± 0.02a-c 0.71 ± 0.04a,b 409.42 ± 50.92a 395.56 ± 49.49a 0.39 ± 0.03a 

Sunrise 476.92 ± 53.32b,c 0.95 ± 0.01b,c 0.64 ± 0.01d,e 306.59 ± 35.25b 290.43 ± 35.15b 0.34 ± 0.01b,c 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.
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Table 5.5b. Effect of cultivars on different TPA parameters on day2 

Cultivars Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 634.06 ± 88.77d 0.86 ± 0.01a 0.63 ± 0.05a 370.79 ± 42.28a,b 305.57 ± 12.12c,d 0.25 ± 0.02a 

Cope 2563.78 ± 24.34a 0.78 ± 0.08a,b 0.31 ± 0.01c 532.86 ± 50.69a 548.71 ± 11.73a 0.12 ± 0.01c,d 

Dawn 1600.18 ± 15.96b,c 0.74 ± 0.08a,b 0.29 ± 0.03c,d 466.22 ± 48.99a,b 345.37 ± 73.61b,c 0.11 ± 0.01c,d 

Earlybird 1476.63 ± 82.93b,c 0.68 ± 0.02a-c 0.31 ± 0.01c 450.94 ± 18.61a,b 305.16 ± 1.34c,d 0.12 ± 0.01b,c 

Huntsman 1810.37 ± 144.78b 0.50 ± 0.01c 0.20 ± 0.01e 368.92 ± 7.16a,b 188.47 ± 3.42e 0.08 ± 0.01e 

Minco 1477.54 ± 151.26b,c 0.79 ± 0.17a 0.26 ± 0.01c,d 380.09 ± 18.71a,b 300.36 ± 49.32c,d 0.10 ± 0.01d,e 

Panhandle 1824.04 ± 165.51b 0.73 ± 0.15a,b 0.30 ± 0.01c 456.87 ± 171.14a,b 318.09 ± 53.31c,d 0.12 ± 0.01b-d 

Plateau 1345 ± 108.47c 0.84 ± 0.01a 0.38 ± 0.01b 506.34 ± 58.75a,b 424.59 ± 42.40b 0.14 ± 0.01b 

Rise 1617.45 ± 369.72b,c 0.58 ± 0.01b,c 0.24 ± 0.01d,e 391.86 ± 79.43a,b 228.32 ± 41.49d,e 0.09 ± 0.01e 

Sunrise 1240.94 ± 113.42c 0.72 ± 0.01a,b 0.30 ± 0.01c 359.46 ± 5.17b 252.70 ± 6.47c-e 0.13 ± 0.01b,c 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.
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Table 5.5c. Effect of cultivars on different TPA parameters on day5 

Cultivars Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 870.93 ± 2.16e 0.92 ± 0.01a 0.66 ± 0.74a 529.90 ± 1.43a 480.45 ± 1.52a 0.22 ± 0.01a 

Cope 3033.53 ± 159.80a 0.70 ± 0.02b 0.21 ± 0.01c,d 599.37 ± 78.17a 395.47 ± 69.89a,b 0.09 ± 0.01c,d 

Dawn 2365.90 ± 353.83b,c 0.71 ± 0.06b 0.22 ± 0.02b-d 533.14 ± 137.55a 382.42 ± 126.93a,b 0.09 ± 0.01c,d 

Earlybird 2107.35 ± 83.01c 0.70 ± 0.06b 0.24 ± 0.04b-d 515.09 ± 109.30a 364.80 ± 107.76a,b 0.10 ± 0.01b,c 

Huntsman 2061.90 ± 72.11c,d 0.71 ± 0.02b 0.26 ± 0.01b-d 502.11 ± 15.87a 359.34 ± 6.28a,b 0.12 ± 0.01b 

Minco 2491.70 ± 191.08b,c 0.72 ± 0.10b 0.22 ± 0.01b-d 548.34 ± 4.12a 394.84 ± 50.25a,b 0.09 ± 0.01c,d 

Panhandle 2668.95 ± 137.10a,b 0.67 ± 0.01b 0.29 ± 0.02b 682.92 ± 116.87a 459.09 ± 88.38a 0.12 ± 0.02b 

Plateau 2118.92 ± 74.79c 0.77 ± 0.13a,b 0.29 ± 0.03b,c 609.83 ± 42.12a 471.58 ± 110.06a 0.11 ± 0.01b 

Rise 2374.20 ± 240.57b,c 0.72 ± 0.12b 0.22 ± 0.03b-d 524.03 ± 27.24a 379.51 ± 79.92a,b 0.09 ± 0.01c,d 

Sunrise 1677.75 ± 102.99d 0.70 ± 0.01b 0.19 ± 0.01d 312.17 ± 2.86b 217.11 ± 8.31b 0.08 ± 0.01d 

The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.



109
 

Table 5.5d. Effect of different formulations at hydrocolloid level 2% on different TPA parameters on day0 

Formulation Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 226.87 ± 8.49i 0.92 ± 0.01b,c 0.74 ± 0.01a,b 169.09 ± 7.07g 158.02 ± 3.54g,h 0.32 ± 0.02c-e 

MG1 900.55 ± 25.86b 0.93 ± 0.02b,c 0.57 ± 0.02d-g 517.64 ± 37.30b 481.30 ± 45.50c-e 0.29 ± 0.02e,f 

MG2 790.55 ± 133.85b-d 1.76 ± 0.10a 0.68 ± 0.02b,c 539.37 ± 103.68b 954.02 ± 237.31a 0.39 ± 0.01b 

MG3 535.95 ± 65.78e,f 1.03 ± 0.07b,c 0.69 ± 0.01b,c 367.27 ± 48.76c-e 381.56 ± 78.37d-g 0.40 ± 0.01b 

MG4 850.89 ± 147.02b,c 0.89 ± 0.03b,c 0.56 ± 0.05e-h 470.79 ± 81.55b-d 419.42 ± 72.45d-f 0.27 ± 0.04e-g 

MCG1 429.58 ± 39.68f-i 0.92 ± 0.06b,c 0.60 ± 0.06d-f 255.02 ± 7.91e-g 235.03 ± 7.13f-h 0.31 ± 0.05d-f 

MCG2 642.28 ± 149.07c-f 1.43 ± 0.79a,b 0.75 ± 0.02a 481.75 ± 104.12b,c 635.88 ± 187.29b,c 0.46 ± 0.02a 

MCG3 587.17 ± 188.99d-f 1.28 ± 0.33a-c 0.77 ± 0.02a 453.11 ± 139.64b-d 581.98 ± 242.95b-d 0.48 ± 0.02a 

MCG4 532.45 ± 98.01e,f 0.94 ± 0.05b,c 0.61 ± 0.04d,e 322.21 ± 57.88e 301.99 ± 50.45e-h 0.32 ± 0.03c-e 

MPG1 472.29 ± 49.93e-h 0.82 ± 0.12c 0.54 ± 0.02f-h 254.99 ± 21.16e-g 207.49 ± 26.25f-h 0.22 ± 0.02h,i 

MPG2 519.39 ± 61.35e-g 0.98 ± 0.04b,c 0.59 ± 0.03d-f 306.50 ± 30.33e,f 301.69 ± 37.63e-h 0.29 ± 0.04e,f 

MPG3 318.88 ± 16.86g-i 0.96 ± 0.03b,c 0.58 ± 0.02d-f 185.87 ± 8.60f,g 178.49 ± 9.68g,h 0.28 ± 0.01e-g 

MPG4 277.63 ± 68.08h,i 0.94 ± 0.04b,c 0.52 ± 0.02g,h 143.29 ± 30.15g 134.18 ± 22.94h 0.20 ± 0.01i 

MMG1 686.65 ± 215.83b-e 0.78 ± 0.10c 0.46 ± 0.04i 309.60 ± 69.11e,f 244.12 ± 85.14f-h 0.22 ± 0.03g-i 

MMG2 1219.55 ± 89.71a 0.99 ± 0.01b,c 0.63 ± 0.05c,d 769.07 ± 3.00a 759.81 ± 6.91b 0.37 ± 0.04b,c 

MMG3 886.56 ± 36.24b 0.99 ± 0.01b,c 0.60 ± 0.02d-f 528.14 ± 39.90b 522.27 ± 47.22c-e 0.36 ± 0.01b-d 

MMG4 690.75 ± 81.94b-e 0.88 ± 0.06c 0.50 ± 0.02h,i 346.27 ± 31.92d,e 304.22 ± 34.49e-h 0.26 ± 0.02f-h 
The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.
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Table 5.5e. Effect of different formulations at hydrocolloid level 2% on different TPA parameters on day2 

Formulation Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 634.06 ± 88.77i 0.86 ± 0.01a 0.63 ± 0.52a 370.79 ± 42.28c-f 305.57 ± 12.12c-f 0.25 ± 0.02a 
MG1 1451.69 ± 207.13c-e 0.63 ± 0.04d,e 0.23 ± 0.01f 333.31 ± 25.73d-g 207.95 ± 3.40f-i 0.09 ± 0.01g,h 
MG2 1101.43 ± 210.02f-g 0.92 ± 0.02a 0.41 ± 0.02b,c 454.55 ± 94.45b-d 406.62 ± 38.75b,c 0.20 ± 0.04b,c 
MG3 745.21 ± 6.57h,i 0.88 ± 0.01a 0.43 ± 0.05b 324.29 ± 30.63d-g 281.93 ± 32.98d-g 0.19 ± 0.04b-d 
MG4 1449.77 ± 255.18c-e 0.67 ± 0.14c-e 0.35 ± 0.03c,d 509.13 ± 48.21b,c 339.68 ± 36.03b-e 0.16 ± 0.02d,e 
MCG1 995.71 ± 180.87g,h 0.65 ± 0.03d,e 0.24 ± 0.06f 247.87 ± 103.54f,g 162.78 ± 75.46h,i 0.10 ± 0.02g,h 
MCG2 1076.33 ± 219.37f-h 0.92 ± 0.01a 0.45 ± 0.04b 480.62 ± 135.78b-d 432.06 ± 110.36b 0.21 ± 0.01a,b 
MCG3 1366.06 ± 132.96d-f 0.89 ± 0.01a 0.40 ± 0.01b,c 455.18 ± 67.15b-d 425.91 ± 22.21b 0.19 ± 0.01b-d 
MCG4 1276.61 ± 109.43d-g 0.71 ± 0.07c,d 0.26 ± 0.01e,f 330.35 ± 16.56d-g 233.18 ± 9.95e-h 0.10 ± 0.01g,h 
MPG1 1930.35 ± 70.71b 0.58 ± 0.01e 0.16 ± 0.01g 291.25 ± 7.07e-g 172.95 ± 14.14g-i 0.06 ± 0.01h 
MPG2 1361.42 ± 184.73d-f 0.85 ± 0.04a 0.33 ± 0.02d 449.49 ± 87.09b-e 374.79 ± 68.07b-d 0.13 ± 0.01e-g 
MPG3 1743.45 ± 161.04b,c 0.75 ± 0.01b,c 0.31 ± 0.01d,e 496.17 ± 121.05b,c 386.37 ± 73.95b-d 0.12 ± 0.02e-g 
MPG4 1441.95 ± 77.78c-e 0.62 ± 0.01d,e 0.14 ± 0.01g 187.64 ± 3.55g 117.18 ± 1.51i 0.058 ± 0.01h 
MMG1 1044.37 ± 60.81f-h 0.49 ± 0.01f 0.24 ± 0.01f 265.42 ± 7.90f,g 134.26 ± 8.26h,i 0.11 ± 0.01f,g 
MMG2 2379.55 ± 134.35a 0.87 ± 0.01a 0.31 ± 0.01d,e 827.37 ± 70.71a 733.60 ± 70.71a 0.16 ± 0.01c-e 
MMG3 1465.97 ± 70.71c,d 0.823 ± 0.01a,b 0.33 ± 0.01d 533.55 ± 28.28b 445.03 ± 28.29b 0.14 ± 0.01d-f 
MMG4 1350.82 ± 49.50d-f 0.64± 0.01d,e 0.23 ± 0.01f 347.30 ± 25.32c-g 230.83 ± 21.23 0.11 ± 0.01f,g 
The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.
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Table 5.5f. Effect of different formulations at hydrocolloid level 2% on different TPA parameters on day5 

 

 

 

 

 

Formulation Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 870.93 ± 2.16f 0.92 ± 0.01a 0.66 ± 0.74a 529.90 ± 1.43c,d 480.45 ± 1.52d,e 0.22 ± 0.01a 
MG1 2269.22 ± 111.26c 0.51 ± 0.03e,f 0.22 ± 0.07e-g 374.83 ± 38.87e,f 193.18 ± 32.50g,h 0.10 ± 0.04d-g 
MG2 1890.45 ± 82.29d 0.82 ± 0.04a 0.33 ± 0.01b-d 630.35 ± 0.60c 517.69 ± 24.72d,e 0.14 ± 0.01b-f 
MG3 1747.55 ± 67.29d 0.79 ± 0.01a-c 0.30 ± 0.02b-e 525.19 ± 17.55c,d 416.76 ± 20.13e 0.12 ± 0.01b-g 
MG4 2199.85 ± 189.09c 0.53 ± 0.01e,f 0.19 ± 0.01f,g 420.34 ± 11.03d-f 223.65 ± 11.48f-h 0.08 ± 0.01f,g 
MCG1 1684.10 ± 159.89d 0.63 ± 0.06c-e 0.21 ± 0.07e-g 443.10 ± 34.60d-f 271.03 ± 61.95f,g 0.09 ± 0.04e-g 
MCG2 1828.73 ± 114.19d 0.89 ± 0.02a 0.35 ± 0.03b,c 642.98 ± 89.46c 586.45 ± 77.60c,d 0.16 ± 0.01b,c 
MCG3 1762.11 ± 178.25d 0.76 ± 0.17a-d 0.37 ± 0.03b 623.46 ± 60.47c 551.29 ± 77.18d 0.17 ± 0.02b 
MCG4 1657.33 ± 198.54d 0.64 ± 0.16b-e 0.34 ± 0.08b-d 473.17 ± 41.24d,e 298.76 ± 48.43f,g 0.16 ± 0.06b-d 
MPG1 2191.42 ± 96.84c 0.45 ± 0.01f 0.16 ± 0.01g 341.49 ± 28.28e,f 155.04 ± 14.10h 0.07 ± 0.01g 
MPG2 2704.59 ± 66.89b 0.85 ± 0.05a 0.32 ± 0.02b-d 868.93 ± 76.11 b 767.27 ± 67.12b 0.14 ± 0.01b-e 
MPG3 2252.15 ± 188.56c 0.79 ± 0.02a-c 0.26 ± 0.05c-f 541.38 ± 10.41c,d 437.92 ± 12.27e 0.12 ± 0.04b-g 
MPG4 2232.70 ± 147.42c 0.54 ± 0.05e,f 0.16 ± 0.05f,g 361.20 ±92.99e,f 197.29 ± 69.62f-h 0.07 ± 0.02g 
MMG1 1360.73 ± 127.28e  0.63 ± 0.01d,e 0.24 ± 0.01d-g 336.63 ± 21.21f 212.92 ± 7.07f-h 0.11 ± 0.01c-g 
MMG2 3014.57 ± 141.42a 0.80 ± 0.13 a,b 0.34 ± 0.03b-d 1112.92 ± 25.12a 1003.04 ± 11.23a 0.17 ± 0.01b,c 
MMG3 3277.56 ±141.42a 0.85 ± 0.04a 0.24 ± 0.01d-g 852.81 ± 141.42b 669.76 ± 70.70b,c 0.14 ± 0.02b-f 
MMG4 2335.47 ± 72.73c 0.64 ± 0.02b-e 0.18 ± 0.01f,g 453.68 ± 47.26d-f 309.40 ± 63.64f 0.08 ± 0.01e-g 
The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e. 
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Table 5.5g. Effect of different formulations at hydrocolloid level 3% on different TPA parameters on day0 

Formulation Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 226.87 ± 8.49f 0.92 ± 0.01b 0.74 ± 0.01a,b 169.09 ± 7.07g 158.02 ± 3.54g 0.32 ± 0.02c,d 
MG1 711.53 ± 197.16c,d 0.88 ± 0.02b 0.52 ± 0.04f-h 374.88 ± 108.09d,e 326.08 ± 87.49e,f 0.24 ± 0.03e 
MG2 998.82 ± 183.01a 0.97 ± 0.02a,b 0.65 ± 0.04c,d 643.00 ± 88.96a,b 621.75 ± 78.16 a-c 0.37 ± 0.03b.c 
MG3 899.68 ± 65.62a-c 0.98 ± .01a,b 0.65 ±.02c,d 583.40 ± 57.38b,c 571.58 ± 54.70b,c 0.37 ± 0.01b,c 
MG4 666.30 ± 88.96d 0.85 ± 0.03b 0.53 ± 0.02f-h 356.20 ± 49.92d,e 302.64 ± 50.21e-g 0.24 ± 0.02c,d 
MCG1 602.81 ± 110.38d,e 0.93 ± 0.05b 0.60 ± 0.07c-f 357.25 ± 27.98d,e 330.07 ± 20.10e,f 0.29 ± 0.05d,e 
MCG2 998.48 ± 151.87a 1.41 ± 0.77a 0.73 ± 0.02a,b 733.28 ± 108.72a 717.76 ± 114.90a 0.44 ± 0.02a 
MCG3 635.20 ± 30.01d,e 1.06 ± 0.10a,b 0.75 ± 0.03a 477.96 ± 31.87c,d 505.33 ± 67.03c,d 0.45 ± 0.02a 
MCG4 705.92 ± 80.67c,d 1.16 ± 0.41a,b 0.63 ± 0.05c-e 442.17 ± 50.95d 509.45 ± 176.80c,d 0.31 ± 0.04e 
MPG1 761.03 ± 55.83b-d 0.85 ± 0.09b 0.46 ± 0.06h 349.36 ± 68.16d,e 296.23 ± 53.42e-g 0.17 ± 0.02f 
MPG2 664.30 ± 135.24d 0.98 ± 0.01a,b 0.59 ± 0.09c-f 384.77 ± 25.59d,e 376.22 ± 26.41d,e 0.29 ± 0.05d,e 
MPG3 681.98 ± 255.85c,d 0.95 ± 0.01a,b 0.56 ± 0.06e-g 369.24 ± 109.06d,e 351.17 ± 101.15e 0.28 ± 0.03d,e 
MPG4 782.57 ± 48.44a-d 0.88 ± 0.11b 0.57 ± 0.06d-g 445.57 ± 60.07d 397.48 ± 93.90d,e 0.28 ± 0.07d,e 
MMG1 429.85 ± 27.46e 0.82 ± 0.04b 0.50 ± 0.04g,h 215.56 ± 2.08f,g 176.97 ± 7.80f,g 0.23 ± 0.04e 
MMG2 963.26 ± 28.34a,b 1.06 ± 0.08a,b 0.66 ± 0.01b,c 640.34 ± 23.29a,b 675.82 28.19a,b 0.40 ± 0.01a,b 
MMG3 968.06 ± 115.74a,b 0.99 ± 0.01a,b 0.61 ± 0.01c-f 590.86 ± 73.40b,c 584.18 ± 70.30b,c 0.36 ± 0.01b,c 
MMG4 552.38 ± 83.09d,e 0.96 ± 0.04a,b 0.56 ± 0.02d-g 310.20 ±58.84e,f 300.07 ± 68.56e-g 0.27 ± 0.01d,e 
The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.
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Table 5.5h. Effect of different formulations at hydrocolloid level 3% on different TPA parameters on day2 

Formulation Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 634.06 ± 88.77i,j 0.86 ± 0.01b-d 0.63 ± 0.52a 370.79 ± 42.28d,e 305.57 ± 12.12e,f 0.25 ± 0.02a 
MG1 800.39 ± 164.06h,i 0.59 ± 0.03h,i 0.27 ± 0.02g,h 216.49 ± 37.94g,f 126.09 ± 17.94h 0.10 ± 0.01e 
MG2 2002.88 ± 133.38a 0.84 ± 0.01b-e 0.40 ± 0.03b 801.44 ± 111.61a 670.61 ± 87.65a 0.18 ± 0.02b,c 
MG3 1560.56 ± 91.47c,d 0.80 ± 0.06c-e 0.34 ± 0.03c-f 529.55 ± 77.87b,c 428.25 ± 93.26c,d 0.14 ± 0.02d 
MG4 917.99 ± 164.82h 0.56 ± 0.06h,i 0.28 ± 0.01f-h 257.42 ± 43.61e,f 142.00 ± 7.84g,h 0.11 ± 0.01e 
MCG1 993.74 ± 59.94g,h 0.65 ± 0.01g,h 0.26 ± 0.01g,h 259.21 ± 26.66e,f 167.99 ± 16.42g,h 0.09 ± 0.01e 
MCG2 1882.78 ± 84.21a,b 0.92 ± 0.02a,b 0.40 ± 0.01b 757.63 ± 61.21a 697.01 ± 44.23a 0.18 ± 0.01b,c 
MCG3 1657.41 ± 53.48b,c 0.87 ± 0.04b-d 0.38 ± 0.02b,c 622.18 ± 21.08b 539.25 ± 3.65b 0.16 ± 0.02c,d 
MCG4 860.88 ± 62.50h,i 0.70 ± 0.11f,g 0.29 ± 0.04f-h 245.38 ± 20.45f 171.71 ± 42.40g,h 0.10 ± 0.01e 
MPG1 1042.89 ± 117.65f-h 0.63 ± 0.08g-i 0.26 ± 0.04g,h 270.79 ± 68.44e,f 172.35 ± 64.46g,h 0.10 ± 0.02e 
MPG2 1373.91 ± 157.48d,e 0.86 ± 0.02b-d 0.36 ± 0.01b-e 491.62 ± 64.73c 420.85 ± 46.60c,d 0.15 ± 0.01d 
MPG3 1509.26 ± 15.09c,d 0.77 ± 0.04d-f 0.30 ± 0.01d-g 458.45 ± 10.49c,d 354.70 ± 9.67d,e 0.12 ± 0.01e 
MPG4 2078.62 ± 166.90a 0.60 ± 0.01g-i 0.27 ± 0.02g,h 568.31 ± 80.63b,c 341.29 ± 42.52d,e 0.10 ± 0.01e 
MMG1 541.01 ± 42.43j 0.54 ± 0.01i 0.23 ± 0.01h 125.96 ± 14.13g 93.80 ± 45.25h 0.09 ± 0.01e 
MMG2 1681.31 ± 77.78b,c 0.97 ± 0.14a 0.36 ± 0.03b-d 639.41 ± 28.27b 640.07 ± 7.07a 0.18 ± 0.01b,c 
MMG3 1262.01 ± 63.69e,f 0.89 ± 0.02a-c 0.38 ± 0.01b,c 527.53 ± 14.14b,c 473.99 ± 12.15b,c 0.19 ± 0.01b 
MMG4 1188.49 ± 91.92e-g 0.75 ± 0.06e,f 0.30 ± 0.03e-g 335.23 ± 28.31e,f 233.67 ± 10.36f,g 0.12 ± 0.01e 
The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.
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Table 5.5i. Effect of different formulations at hydrocolloid level 3% on different TPA parameters on day5 

Formulation Hardness (g) Springiness Cohesiveness Gumminess (g) Chewiness (g) Resilience 

Wheat 870.93 ± 2.16h 0.92 ± 0.01a 0.66 ± 0.74a 529.90 ± 1.43h,i 480.45 ± 1.52e,f 0.22 ± 0.01a 
MG1 1193.14 ± 220.62h 0.41 ± 0.03d 0.19 ± 0.01f 221.23 ± 38.53j 91.14 ± 22.47j 0.07 ± 0.01d 
MG2 3041.86 ± 336.22c 0.83 ± 0.01a 0.38 ± 0.04b-d 1197.23 ± 177.84b 1010.80 ± 122.00b 0.17 ± 0.02a-c 
MG3 2447.17 ± 4.71d,e 0.83 ± 0.15a 0.37 ± 0.03b-d 906.72 ± 64.88d-f 757.58 ± 185.87c,d 0.17 ± 0.02a-c 
MG4 1822.48 ± 289.21f,g 0.44 ± 0.02d 0.19 ± 0.06f 291.12 ± 18.62h,i 127.01 ± 1.09j 0.07 ± 0.03d 
MCG1 1205.84 ± 207.93h 0.60 ± 0.03b,c 0.22 ± 0.03e,f 260.54 ± 3.97j 157.30 ± 5.56i,j 0.08 ± 0.01d 
MCG2 2758.40 ± 144.58c,d 0.89 ± 0.02a 0.40 ± 0.01b,c 1130.94 ± 83.00b,c 1002.22 ± 43.83b 0.19 ± 0.01a,b 
MCG3 2239.76 ± 70.72e 0.92 ± 0.01a 0.43 ± 0.01b 975.82 ± 35.35c-e 912.41 ± 12.73b,c 0.22 ± 0.01a 
MCG4 1656.17 ± 127.23g 0.60 ± 0.09b,c 0.23 ± 0.03e,f 370.72 ± 18.57i,j 223.43 ± 45.57g-j 0.09 ± 0.01d 
MPG1 3416.88 ± 141.42b 0.51 ± 0.01c,d 0.23 ± 0.02e,f 774.97 ± 42.42e-g 371.46 ± 21.21f-h 0.08 ± 0.01d 
MPG2 2282.76 ± 15.33e 0.90 ± 0.01a 0.36 ± 0.09b-d 823.46 ± 206.43e-g 738.18 ± 182.90c,d 0.17 ± 0.07a-c 
MPG3 2169.60 ± 185.58e,f 0.88 ± 0.03a 0.35 ± 0.05b-d 748.90 ± 53.56f,g 660.41 ± 67.59d,e 0.15 ± 0.05b,c 
MPG4 2331.30 ± 33.04e 0.68 ± 0.10b 0.22 ± 0.04e,f 509.96 ± 87.42h,i 340.17 ± 8.80f-i 0.09 ± 0.02d 
MMG1 833.08 ± 77.78h 0.561 ± 0.01b,c 0.28 ± 0.01d,e 277.79 ± 70.72j 175.61 ± 60.72h-j 0.12 ± 0.01c,d 
MMG2 4262.69 ± 282.84 a 0.87 ± 0.01a 0.36 ± 0.01b-d 1508.96 ± 141.42a 1320.01 ± 129.56a 0.18 ± 0.01a-c 
MMG3 2922.80 ± 70.72c 0.89 ± 0.01a 0.37 ± 0.01b-d 1036.54 ± 65.31b,d 908.43 ± 68.42b,c 0.16 ± 0.01b-c 
MMG4 2104.24 ± 114.55e,f 0.61 ± 0.01b,c 0.32 ± 0.01c,d 664.93 ± 63.64 g,h 378.42 ± 77.87f,g 0.13 ± 0.01c,d 
The values are means ± standard deviation of three replicates. Means with different letter in a column differ significantly (p<0.05) and a-e indicates a,b,c,d,e.
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5.4. Conclusion 

The study of dynamic oscillation and creep measurements showed that elasticity of dough 

and resistance to deformation of gluten free formulations supplemented with starches 

and hydrocolloids can be used to correlate to final bread volume. The extent of influence 

on bread quality produced were dependent on specific starch, hydrocolloid and its level. 

Corn or millet starch increased the bread volume and also produced low firmness bread 

whereas potato starch reduces the volume and produced high firmness bread. Among 

hydrocolloids G3 was able to produce highest volume breads. Millet starch resulted in 

light crust compared to other breads. Among cultivars, Plateau (waxy millet) showed 

lower volume compared to other cultivars but crumb firmness was similar to wheat 

bread.  Starch and hydrocolloids showed significant (p<0.05) effect on all TPA parameters 

whereas effect of hydrocolloid level was observed only on hardness and gumminess.
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6. General summary 

6.1. General conclusion  

Nine different cultivars of proso millet namely Cope, Earlybird, Huntsman, Minco, Plateau, 

Sunrise, Rise, Dawn and Panhandle were evaluated. Results showed significant (P<0.05) 

difference in their physical properties namely moisture content, sphericity, volume, bulk 

density, porosity and angle of repose, which range in values from 9.62 - 10.18%, 0.86 - 

0.91, 3.94 - 5.141 (mm3), 765.49 - 809.67 (kg/m3), 42.49 - 44.20%, and 22.98°-25.74°, 

respectively. Cultivars were also evaluated for pasting and gelatinization properties and 

high correlation was found between amylose content and onset (r=-0.94) temperature, 

peak gelatinization temperature (r=-0.92), peak viscosity (r=0.84), final viscosity (r=0.91) 

and setback viscosity (r=0.90).  

The current study also determined the effect of hydrothermal modification (HTM) at 30% 

moisture level and acid modification (AM) with HCl on extracted proso millet starch 

physicochemical and functional properties. Amylose content reduces with AM while HTM 

showed negligible effect. HTM starch had higher water binding capacity (WBC) whereas 

AM starch showed reduction in WBC. Additionally, the solubility and swelling power of 

HTM starch decreased with increase in temperature, and in AM starch solubility increased 

sharply but swelling power increases at 80°C but significantly (P<0.05) reduces at 90°C. 

HTM caused increase in gelatinization temperature with a mean value of 87.17°C 

compared to 78.61°C in native starch. AM reduced onset (69.71°C) and gelatinization 

temperature (77.26°C), and it increased the range (26.56°C) significantly (P <0.05) with no 
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effect on ΔHG. Pasting profiles of native proso millet starch changed significantly (P <0.05) 

upon modifications and reduction in peak viscosity was observed in both modifications. 

AM reduced the holding strength, final viscosity, setback and breakdown whereas HTM 

reduced only breakdown and no change was observed in other parameters.  

Proso millet based gluten free formulations supplemented with different starches and 

hydrocolloids showed correlation between specific volume and dynamic oscillation. 

Creep/recovery measurements also indicated the correlation with specific volume. Bread 

quality of gluten free formulation depend on type of starch or hydrocolloid or level of 

hydrocolloid used in the formulation. Mixture of xanthan and CMC was able to produce 

high volume breads and on the other hand corn and millet starches increased the bread 

volume and produced softer crumb bread.  

6.2. Recommendation 

There is a need to further investigate the effect of different modifications of proso millet 

starch such as annealing and enzymatic modifications. Gluten free formulations with 

different hydrocolloids, starches, proteins, enzymes and emulsifiers can be explored using 

response surface methodology to optimize ingredients which might help reduce the 

limitations faced in this study such as higher retrogradation rates, lower shelf life and low 

volumes.  

Another limitation of millet use in food industry is presence of anti-nutritional factors 

which affect starch and protein digestibility. So there is a need to evaluate the level of 
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anti-nutritional factors present in different millet cultivars and effect of various processes 

like baking, frying, extrusion and fermentation on minimizing those factors. 
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Appendices 

Appendix 1. Dynamic oscillation measurements curves 

 

Strain sweep test to determine linear viscoelastic region 
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Frequency sweep test curves of different cultivars 
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Creep recovery curves of different cultivars 

 

 

 

 

 

 

 



 

122 
 

 

Frequency sweep curves of whole millet flour formulations 
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Tan(δ) curves of whole millet flour formulations 
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Creep and recovery curves of whole millet flour formulations 
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Frequency sweep curves of MC formulations 
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Tan(δ) curves of MC formulations 
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Creep and recovery curves of MC formulations 
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Frequency sweep curves of MP formulations 
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Tan(δ) curves of MP formulations 
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Creep and recovery curves of MP formulations 
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Frequency sweep curves of MM formulations 
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Tan(δ) curves of MM formulations 
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Creep and recovery curves of MM formulations 
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Appendix 2. Images of all the different formulations of breads in this study 

Formulations 2% 3% 

MG1 

  

MG2 

 
 

MG3 

  

MG4 

  

MCG1 
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MCG2 

  

MCG3 

  

MCG4 

  

MPG1 

  

MPG2 

  

MPG3 
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MPG4 

  

MMG1 

  

MMG2 

  

MMG3 

  

MMG4 
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Minco Sunrise Rise Earlybird 

Panhandle Dawn Plateau 

Huntsman 

Cope 
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