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ABSTRACT OF DISSERTATION

LATTICE QCD CALCULATION OF MOMENTUM FRACTION CARRIED BY
QUARKS IN THE NUCLEON, AND THE ROPER PUZZLE

This thesis is concerned with the lattice QCD calculation of the momentum fraction carried
by quarks in the nucleon. Particularly, the strange quark contribution, ⟨x⟩s, is calculated,
as well as the ratio of the strange ⟨x⟩ to that of u/d in the disconnected insertion which
will be useful in constraining the global fit of parton distribution functions at small x.
The disconnected insertion is known to be hard to calculate on the lattice. We adopt the
overlap fermion action on several 2+1 flavor domain-wall fermion ensembles with a light sea
quark mass which corresponds to pion mass of 330 MeV and 139 MeV. Smeared grid sources
with Z3 noise are deployed to calculate the nucleon propagator with low-mode substitution.
Even-odd grid sources and the time-dilution technique with stochastic noises are used to
calculate the high mode contribution to the quark loop. Low mode averaging (LMA) for the
quark loop is applied to reduce the statistical error of the disconnected insertion calculation.
We also address the puzzle on the mass of the Roper resonance. Using overlap fermion on
top of domain-wall fermion configurations, as well as using the clover fermion action, we
explore various smeared sources, and use the variational approach to isolate the Roper. We
explain why chiral symmetry is important in resolving the discrepancies between lattice
calculations and experiment.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the fundamental quantum field theory of quarks and
gluons, which we believe are the basic degrees of freedom that make up hadronic matter.
Unlike QED which describes electrons and photons, QCD has the profound property of
asymptotic freedom and confinement. At large energy scale, coupling constant is small, and
perturbation theory has been applied with great success. On the other hand, at the scale
of the hadronic world, the coupling constant is of order unity and perturbative methods
fail. In this domain, lattice QCD provides a non-perturbative framework for calculating the
hadronic spectrum and matrix element of any operator within these hadronic states from
first principles.

Lattice QCD is formulated on a discretized Euclidean space time grid. The grid serves
two purposes. First, it is a non-perturbative way to regularize the theory. The finite lat-
tice spacing a provides an ultraviolet cutoff at π/a, and there is no infinity in the system.
Continuum limit a→ 0 can be taken on physical quantities after the calculation, and thus
remove lattice artifacts in the result. Second, discretization is a mean to simulate QCD on a
computer using methods that are analogous to that for statistical mechanics systems. With
this approach, statistical errors are controlled. One may seek arbitrarily small statistical
error given enough computation power. With the recent advancements in computer tech-
nology, lattice QCD results are comparable or better to those from experiments in terms
of accuracy, and can serve as inputs to phenomenological studies.

Another very useful feature of lattice QCD is that it allows tuning of parameters. It is a
common practice to vary quark masses in a wide region in order to study its effect on various
hadronic quantities. One may also seek to vary the number of flavors in lattice QCD, to
probe into the so-called “large-N” physics. Fermions can also be completely removed in
order to study the properties of a pure gauge theory.

Despite the many applications of lattice QCD, this thesis will focus on introducing
lattice QCD itself, as well as its application in two topics in hadronic physics.
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CHAPTER 1. INTRODUCTION

The first is to calculate the disconnected contribution to the momentum fraction carried
by quarks in the nucleon. Ever since the EMC experiment showed that the proton spin
carried by quarks is small [1], large effort has been made in both the experimental and the
theoretical frontiers to identify all the contributions to the nucleon spin. Calculating the
momentum fraction ⟨x⟩ is an integral part of the study of this subject. Experimentally,
this quantity is only measured indirectly, and fitted with models. Lattice QCD provides a
direct calculation, which can be used as input for global analysis.

Another topic will be covered is the disentanglement of the Roper puzzle. As a rare
example of parity reversal, the Roper resonance has been an intriguing subject since its
discovery. The SU(6) quark model and the relativistic quark model fail to predict the mass
of Roper resonance correctly. Since the quenched era, extensive effort has been taken to
calculate the Roper mass in first principle by the lattice community; however results from
all calculations except the ones with overlap fermion appear to be high. This indicates the
dynamical nature of Roper, and its sensitivity to chiral symmetry. In this thesis, we explain
the discrepancy on the Roper mass in the lattice community, and calculate the Roper mass.

2



Chapter 2

QCD on the Lattice

2.1 Putting QCD on the lattice

In order to calculate QCD on the lattice, one has to Wick rotate the spacetime to the
Euclidean space first. Suppose x and p are the spatial and momentum coordinates, and the
γ’s denotes Dirac Gamma matrices, then

xE4 = ixM0 , xEi = −xMi , (2.1)

pE4 = −ipM0 = iE, pEi = −pMi , (2.2)

γE4 = γM0 , γEi = iγMi , γE5 = γM5 , γE5 = γE1γ
E
2γ
E
3γ
E
4 , (2.3)

with i = 1, 2, 3.
From now on, all quantities are in Euclidean space by default, unless specified otherwise.
Consider the continuum vacuum expectation of an operator O,

⟨0|O|0⟩ =
∫
Dψ̄DψDAO(ψ, ψ̄,A) exp(−SG(A) − SF(ψ, ψ̄,A))∫

DψDψ̄DA exp(−SG(A) − SF(ψ, ψ̄,A))
, (2.4)

in which SG is the gauge action, and SF is the fermion action. The gauge field Aµ = AaµTa,
in which Ta are the generators of the SU(3) group. The field strength tensor is defined as

Faµν = ∂µA
a
ν − ∂νA

a
µ + g0fabcA

b
µA

c
ν. (2.5)

Therefore the pure gauge action is

SG(A) =
1

2
Tr
∫
d4x FaµνFaµν, (2.6)

and the fermion action is

SF(ψ, ψ̄,A) =

∫
d4x ψ̄(x)(γµDµ +m)ψ(x), (2.7)

3



CHAPTER 2. QCD ON THE LATTICE

in which Dµ is the covariant derivative

Dµ = ∂µ + ig0Aµ, (2.8)

so that the local SU(3) gauge symmetry is maintained.
In order to solve the system numerically, the spacetime needs to be discretized. Suppose

the discretized spacetime has lattice spacing a, then the gauge link variable Uµ(x) can be
defined as

Uµ(x) = e
ig0aAµ(x+

a
2
µ̂). (2.9)

Under gauge transformation Λ(x), Uµ(x) transforms as

Uµ(x)→ Λ(x)Uµ(x)Λ
−1(x+ µ̂). (2.10)

The gauge links also satisfy U†
µ(x) = U−µ(x+ µ̂), therefore the plaquette Uµν(x) as shown

below is gauge invariant,

Uµν(x) = TrUµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂). (2.11)

It can be shown that the gauge action in the following form has the right continuum limit
when a→ 0,

SG(U) =
2Nc

g20

∑
x

∑
µ,ν,µ>ν

Tr
[
1−

1

2Nc

(
Uµν(x) +U

†
µν(x)

)]
. (2.12)

Conventionally, we define β = 2Nc

g20
.

The discretization of the fermion action is not so trivial. Naively, one could simply
replace the derivative with a difference

∂µψ(x)→ 1

2a
[ψ(x+ µ̂) −ψ(x− µ̂)], (2.13)

and therefore the fermion action becomes

SF(ψ, ψ̄,U) = a
4
∑
x

ψ̄(x)

[∑
µ

γµ

2a
[Uµ(x)ψ(x+ µ̄) −U−µ(x)ψ(x− µ̄)] +mψ(x)

]
(2.14)

However, this possess a problem known as the “doubling problem”, namely 15 unphysical
modes would arise at the boundaries of the Brillouin zone because of the first order deriva-
tive. One way to solve this problem is by adding a second derivative to the action, which
will vanish at the continuum limit,

aD2µψ(x) = a
∑
µ

1

2a2
[Uµ(x)ψ(x+ µ̂) − 2ψ(x) +U−µ(x)ψ(x− µ̂)] . (2.15)

Then the fermion action becomes

SF = a
4
∑
x

{
ψ̄(x)

(
m+

4

a

)
ψ(x) − ψ̄(x)

1

2a

∑
µ

[(1− γµ)Uµ(x)ψ(x+ µ̂) + (1+ γµ)U−µ(x)ψ(x− µ̂)]

}
,

(2.16)

4



CHAPTER 2. QCD ON THE LATTICE

or if we write in terms of Dirac operator D(y, x),

D(y, x) =

(
m+

4

a

)
δxy −

1

2a

∑
µ

[
(1− γµ)Uµ(y)δy+µ̂,x + (1+ γµ)Uµ(y)δy−µ̂,x

]
, (2.17)

SF = a
4
∑
x,y

ψ̄(y)D(y, x)ψ(x). (2.18)

Conventionally, hopping parameter is defined as κ = 1
2(am+4) . Note that this construction

avoids the problem of doublers, but explicitly violates chiral symmetry.

2.2 Numerical methods

Even after we discretize the spacetime, it is still almost impossible to directly evaluate
Eq. (2.4) because of the sheer amount of computation needed for the multi-dimensional
integration. Therefore in reality the integral is approximated with Monte Carlo method.

Now let us consider a pure-gauge object

⟨O⟩ = 1

Z

∫
DUO(U)e−SG(U), Z =

∫
DUe−SG(U). (2.19)

In the Monte Carlo method, the integral is replaced by the average over the configuration
space,

⟨O⟩ = lim
N→∞ 1

N

N∑
i=1

O(Ui), (2.20)

in which Ui are sampled in the configuration space according to probability distribution

dP(U) = 1

Z
e−SG(U)DU. (2.21)

In practice, N is usually a large finite number, and the error of ⟨O⟩ is of order 1/
√
N.

Samples Ui can be generated with algorithms such as Metropolis.
However if we include the fermion action, this approach fails. The reason is that the

fermion fields anti-commute. This property is not captured in the usual Monte Carlo
method described above. Luckily, this can be addressed by using Grassmann numbers for
the fermion field. Consider Grassmann numbers ηi and ηj, then by definition, {ηi, ηj} = 0.
One property of Grassmann number is that since η2i = 0, a polynomial of Grassmann
number is always truncated. Therefore a most general form of a polynomial involving 1
Grassmann variable is

a+ a1η.

For 2 Grassmann variables, a general polynomial has only four terms,

a+ a1η1 + a2η2 + a12η1η2.

5



CHAPTER 2. QCD ON THE LATTICE

Derivatives can be defined by

∂1

∂ηi
= 0,

∂ηi
∂ηi

= 1,
∂

∂ηi

∂

∂ηj
= −

∂

∂ηj

∂

∂ηi
,

∂

∂ηi
ηj = −ηj

∂

∂ηi
.

For integration, a normalization condition is defined∫
dηi1 = 0,

∫
dηi ηi = 1.

Now suppose we apply a linear transformation on η with some matrix M, η ′ =Mη, then∫
Dηη1η2 · · ·ηN =

∫
Dη ′ η ′

1η
′
2 · · ·η ′

N

=

∫
Dη ′

∑
i1,···iN

M1i1 · · ·MNiNηi1ηi2 · · ·ηiN

=

∫
Dη ′

∑
i1···iN

M1i1 · · ·MNiNϵi1i2···iNη1η2 · · ·ηN

= detM
∫
Dη ′ η1η2 · · ·ηN,

(2.22)

in which ϵi1i2···iN is the sign of permutation i1i2 · · · iN. Thus

Dη = detMDη ′. (2.23)

Now consider the following gaussian integral

ZF =

∫
DηDη̄ eη̄Mη, (2.24)

in which M is a matrix. Again define η ′ =Mη, using Eq. (2.22),

ZF = detM
∫
Dη ′Dη̄ eη̄η ′

= detM
∏
i

∫
dη ′

idη̄i eη̄iη
′
i

= detM
∏
i

∫
dη ′

idη̄i(1+ η̄iη ′
i)

= detM.

(2.25)

Therefore, in order to include fermion action in Eq. (2.19), one may compute det(D),
in which D is the Dirac operator, and evaluate

Z =

∫
DU det(D(U)) e−SG(U), (2.26)

using det(D(U)) e−SG(U) as Boltzmann factor.

6



CHAPTER 2. QCD ON THE LATTICE

In order to compute physical quantities, we need to know how to compute matrix
element of operators. Suppose η, η̄, θ, and θ̄ are all Grassmann variables. Define

W(θ, θ̄) =

∫
DηDη̄ exp

(
η̄Mη+ θ̄η+ η̄θ

)
, (2.27)

in which M is a matrix. Note that

η̄Mη+ θ̄η+ η̄θ = (η̄+ θ̄M−1)M(η+M−1θ) − θ̄M−1θ.

Define η ′ = η+M−1θ, η̄ ′ = η̄+ θ̄M−1,

W(θ, θ̄) = e−θ̄M
−1θ

∫
Dη ′Dη̄ ′ eη̄

′Mη ′
= detMe−θ̄M

−1θ. (2.28)

Then to calculate any fermionic expectation values, one simply needs to take appropriate
derivatives of W. For example,

⟨ηi1 η̄j1 · · ·ηin η̄jn⟩

=
1

ZF

∂

∂θj1

∂

∂θ̄i1
· · · ∂

∂θjn

∂

∂θ̄in
W(θ, θ̄)

⏐⏐⏐⏐
θ=θ̄=0

= (−1)n
∑

P(1,2,...,n)

ϵP(M
−1)i1jP1 (M

−1)i2jP2 · · · (M
−1)injPn ,

in which ϵP is the sign of permutation P. In practice, matrix M is replaced by the Dirac
operator D. Therefore one can take the quark propagator D−1 as a basic building block of
all fermionic correlation functions.

However, calculating D−1 on the lattice is not trivial, not only because matrix inversions
are non-trivial to compute in general, but also the fact that the Dirac matrix is usually
big. It is impractical to fully invert the Dirac matrix to produce the so-called “all-to-all”
propagator. It is much more practical to calculate the propagator from a single point to all
points,

D−1(y, x0) =
∑
x

D−1(y, x)S(x, x0), S(x, x0) = δxx0 . (2.29)

Here S constraints the propagator to be from one point, x0, and therefore is called a point
source at x0.

2.3 Overlap fermion

As shown in section 2.1, Wilson fermion explicitly violates chiral symmetry. This can be
addressed by using more advanced fermion actions like overlap fermion and domain wall
fermion.

In the continuum, if we perform a chiral rotation on the fermion fields,

ψ→ ψ ′ = eiαγ5ψ, ψ̄→ ψ̄ ′ = ψ̄eiαγ5 ,

7



CHAPTER 2. QCD ON THE LATTICE

it is easy to show that the massless lagrangian L = ψ̄γµDµψ is unchanged, because γµ
anticommutes with γ5. In other words, the Dirac operator D is chiral, if

Dγ5 + γ5D = 0. (2.30)

In the continuum, D = γµDµ.
The lattice version of Eq. (2.30), as shown by Ginsparg and Wilson [2], is

Dγ5 + γ5D = Dγ5D. (2.31)

A solution of this equation has been found in the form of an overlap operator [3], defined
by

Dov = 1+ γ5 sign(H), H = γ5D, (2.32)

where D is some suitable kernel Dirac operator that is γ5-hermitian, γ5Dγ5 = D†. Since H
is hermitian, the matrix sign function is well-defined through the spectral theorem, therefore
the overlap fermion is also γ5-hermitian. Then

DovD
†
ov = (1+ γ5 sign(H))(1+ sign(H)γ5)

= 1+ γ5 sign(H) + sign(H)γ5 + 1+ γ5 sign(H) sign(H)γ5
= 1+ γ5 sign(H) + sign(H)γ5 + 1

= Dov +D
†
ov.

Thus, Dov satisfies the Ginsparg-Wilson relation Eq. (2.31).
However, the sign function has proven to be nontrivial to evaluate. If one is to use the

spectral theorem, the Wilson Dirac operator has to be diagonalized in order to extract the
eigensystem. Computationally this is equivalent to a full inversion of the operator, and
thus is impractical. In reality, the sign function is approximated through the Chebyshev
polynomials [4], which are orthogonal polynomials Tn(x) under the following inner product:

(f, g) =

∫ 1
−1

dx f(x)g(x)√
1− x2

.

Then a function r(x) can be expanded as

r(x) =

∞∑
n=0

cnTn(x) ≈
N−1∑
n=0

cnTn(x),

in which cn = (r, Tn). This expansion converges for functions that are continues in [−1, 1].
The coefficients can be approximated by

cn =
π

N

N∑
k=1

r(xk)Tn(xk), xk = cos
[(
k−

1

2

)
π

N

]
. (2.33)
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To calculate the sign function, we note that the sign function can also be written as
sign(H) = H/

√
H2. Suppose the eigenvalues of H2 is bounded in domain [α2, β2], any

values λ within this region can be mapped to variable x ∈ [−1, 1] by

x =
2λ− (α2 + β2)

β2 − α2
.

Operator 1/
√
H2 can then be calculated through spectral theorem by calculating

r(x) =
1√
λ
=

(
1

2
(α2 + β2) +

x

2
(β2 − α2)

)− 1
2

.

Coefficients cn can then be calculated with Eq. (2.33). The sign function is then

sign(H) = H√
H2

≈ H
N−1∑
n=0

cnTn(X), X =
2H2 − (α2 + β2)

β2 − α2
. (2.34)

9



Chapter 3

Correlation functions

3.1 Nucleon two-point correlation functions

For free spin-½ particles, the equations of motion are⎧⎨⎩(/p− im)u(p, s) = 0

ū(p, s)(/p− im) = 0.
(3.1)

Therefore

u(p, s) =

√
Ep +m

2m

(
I

−i σ⃗·⃗p
Ep+m

)
χs

ū(p, s) =

√
Ep +m

2m
χ†s

(
I

−i σ⃗·⃗p
Ep+m

)T
,

(3.2)

ū(p, s)u(p, s ′) = δss ′ ,
∑
s

u(p, s)ū(p, s) =
−i/p+m

2m
(3.3)

Consider the nucleon state with principle quantum number n, momentum p⃗, and spin
s. Normalization on the continuum is defined as∑

n,s

∫
d3p⃗
(2π)3

m

Ep⃗
|np⃗s⟩⟨np⃗s| = 1.

10
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The coupling strength λn can be defined via

⟨0|χ(0)|n+p⃗s⟩ = λ+n

√
m+
n

E+n
u+n(p⃗, s)

⟨n+p⃗s|χ̄(0)|0⟩ = λ̄+n

√
m+
n

E+n
ū+n(p⃗, s)

⟨0|χ(0)|n−p⃗s⟩ = λ−n

√
m−
n

E−n
γ5u

−
n(p⃗, s)

⟨n−p⃗s|χ̄(0)|0⟩ = − λ̄−n

√
m−
n

E−n
ū−n(p⃗, s)γ5,

where I have used m±
n and E±n to denote the mass and energy of the nth states with

even/odd parity. However on the lattice, the normalization is taken to be∑
n,⃗p,s

|np⃗s⟩⟨np⃗s| = 1. (3.4)

And if one replaces
∫ d3p⃗

(2π)3
with 1

V

∑
p⃗ to go from continuum to the discrete lattice, where

V = a3N, and N is the number of lattice sites in one time slice, it naturally follows that

|np⃗s⟩L =
√

m

VEp⃗
|np⃗s⟩C, (3.5)

where I have used subscripts C and L to denote continuum and lattice quantities, respec-
tively. Also it is conventional to let ψL = a

3
2ψC for fermion field ψ, in order to make it

dimension-less on the lattice. Then on the lattice

⟨0|χ(0)|n+p⃗s⟩ = a3λ+n

√
m+
n

NE+n
u+n(p⃗, s)

⟨n+p⃗s|χ̄(0)|0⟩ = a3λ̄+n

√
m+
n

NE+n
ū+n(p⃗, s)

⟨0|χ(0)|n−p⃗s⟩ = a3λ−n

√
m−
n

NE−n
γ5u

−
n(p⃗, s)

⟨n−p⃗s|χ̄(0)|0⟩ = − a3λ̄−n

√
m−
n

NE−n
ū−n(p⃗, s)γ5,

(3.6)

In order to calculate nucleon properties, we need an object χ̄ to create a nucleon state
at some initial point, and another object χ to annihilate the state at some other point. In
lattice QCD, these objects are called interpolators. For proton, the interpolator is usually
taken to be

χ(x) = ϵabcu(x)a[u(x)
T
bCγ5d(x)c], (3.7)

11
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in which u(x) and d(x) are quark fields for u and d quark respectively, and C is the charge
conjugation operator. Indices a, b, and c are for the color, and the Levi-Civita symbol is
presented to make the proton color-singlet. The gamma structure is to make sure the state
has the correct intrinsic quantum numbers. In this interpolator, u(x)TCγ5d(x) has isospin
I = 0 and spin J = 0, therefore χ has I = 1/2, Iz = +1/2 and J = 1/2.

Define the nucleon two-point function as

GNN(p⃗, t) =
∑
x⃗

e−ip⃗·⃗x⟨0|χ(x)χ̄(0)|0⟩. (3.8)

Insert complete energy eigenstates with principle quantum number n, momentum q and
spin s,

GNN(p⃗, t)

=
∑
x⃗

e−ip⃗·⃗x
∑
n,q,s

⟨0|eHte−iq⃗·⃗xχ(0)e−Hteiq⃗·⃗x|nq⃗s⟩⟨nq⃗s|χ̄(0)|0⟩

=
∑
x⃗

e−ip⃗·⃗x
∑
n

∑
s

e−Enteiq⃗·⃗x⟨0|χ(0)|nq⃗s⟩⟨nq⃗s|χ̄(0)|0⟩

= N
∑
n,q⃗,s

δp⃗q⃗e
−Enteiq⃗·⃗x⟨0|χ(0)|nq⃗s⟩⟨nq⃗s|χ̄(0)|0⟩

= N
∑
n,s

e−En(p⃗)teip⃗·⃗x⟨0|χ(0)|np⃗s⟩⟨np⃗s|χ̄(0)|0⟩

(3.9)

where En(p⃗) =
√
m2
n + p⃗

2. Use Eq. (3.3), and split the even parity from the odd parity
part,

GNN(p⃗, t) = a
6

(∑
n+

λ+n λ̄
+
ne

−E+n(p⃗)tm
+
n

E+n

−i/p+m+
n

2m+
n

+
∑
n−

λ−n λ̄
−
ne

−E−n(p⃗)tm
−
n

E−n

i/p+m−
n

2m−
n

)
.

In practice, one usually desire the correlation function with definite parity. Define parity
projection operator P± = (1± γ4)/2, and use

Tr
(
−i/p+m

)
= 4m, Tr

[
γ4(−i/p+m)

]
= −4ip4 = 4Ep, (3.10)

then

Tr[P+GNN(p⃗, t)] = a6
(∑

n+

λ+n λ̄
+
ne

−E+nt
m+
n

E+n

E+n +m+
n

m+
n

−
∑
n−

λ−n λ̄
−
ne

−E−nt
m−
n

E−n

E−n −m−
n

m−
n

)
.
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Figure 3.1: Effective mass plotted as a function of time. Overlap fermion is used on top of a
RBC/UKQCD domain wall emsemble, with 2+ 1 flavors, a = 0.112(3) fm, mπ = 330MeV.
Inversion is done on a point source.

For zero momentum, En → mn, the odd parity part vanishes, only even parity survives,

Tr[P+GNN(p⃗ = 0, t)]→ a6
∑
n+

λ+n λ̄
+
ne

−E+nt
m+
n

m+
n

(
1+

m+
n

m+
n

)
. (3.11)

If we sort the masses of all states as m0 < m1 < · · · , as t goes large, the lowest state
dominates the exponential, therefore

Tr[P+GNN(p⃗ = 0, t)]→ a6λ+0 λ̄
+
0 e

−E+0 t
m+
0

m+
0

(
1+

m+
0

m+
0

)
= 2a6λ+0 λ̄

+
0 e

−m+
0 t, t→∞. (3.12)

Conventionally, effective mass is defined on the lattice as

meff = log Tr[P+GNN(p⃗→ 0, t)]

Tr[P+GNN(p⃗→ 0, t+ 1)]
→ m+

0 , t→∞. (3.13)

In this case, m+
0 is the mass of the proton. If we plot meff as a function of t, we can see

that at large t, it approaches a constant number. Figure 3.1 shows a typical effective mass
plot. It is evident that at small t, contributions from excited states brings the effective
mass high; however as t gets big, effective mass forms a plateau.

With the help of interpolators, we can calculate nucleon correlation function. However
on the lattice, we don’t have access to quark fields; the most basic object we can calculate
is a quark propagator. Therefore we need to express the correlation function in terms of
quark propagators. To do that, let us write down the proton interpolator in a general way,
with different diquark structures.

χδ(x) = ϵabc[(u
T )aα(x)(Γ1)αβd

b
β(x)](Γ2)δγu

c
γ(x),

χ̄δ(x) = − ϵabcū
c
γ(x)(Γ

′
2)δγ[d̄

b
β(x)(Γ

′
1)αβ(ū

T )aα(x)],
(3.14)

in which Greek indices are in dirac space, while Latin indices are in color space; the Γ -s
are combinations of γ-matrices. If we set Γ1 = Γ ′1 = Cγ5, and Γ2 = Γ ′2 = 1, then we get
Eq. (3.7).
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Now consider a correlation function projected to a definite parity,

⟨P±χ(y)χ̄(x)⟩ = ⟨P±δ ′δϵabc[(u
T )aα(y)(Γ1)αβd

b
β(y)](Γ2)δγu

c
γ(y)

ϵa ′b ′c ′ū
c ′
γ ′(x)(Γ ′2)δ ′γ ′ [d̄b

′
β ′(x)(Γ ′1)α ′β ′(ūT )a

′
α ′(x)]⟩

= ⟨P±δ ′δϵabcϵa ′b ′c ′(Γ1)αβ(Γ2)δγ(Γ
′
1)α ′β ′(Γ ′2)δ ′γ ′

(uT )aα(y)u
c
γ(y)ū

c ′
γ ′(x)(ūT )a

′
α ′(x)dbβ(y)d̄

b ′
β ′(x)⟩.

(3.15)

Now we can contract quark fields into quark propagators. Since there are two pairs of u
fields, there are 2 kinds of contractions.

⟨P±χ(y)χ̄(x)⟩

= ⟨P±δ ′δϵabcϵa ′b ′c ′(Γ1)αβ(Γ2)δγ(Γ
′
1)α ′β ′(Γ ′2)δ ′γ ′[

G
(u)aa ′

αα ′ (y, x)G
(d)bb ′

ββ ′ (y, x)G
(u)cc ′

γγ ′ (y, x)

−G
(u)ac ′

αγ ′ (y, x)G
(d)bb ′

ββ ′ (y, x)G
(u)ca ′

γα ′ (y, x)
]
⟩,

(3.16)

in which G(u)ba
βα (y, x) denotes a quark propagator of flavor u from position x, color a, and

Dirac index α, to position y, color b, and Dirac index β. For clarity, let us ignore color
indices and spacetime coordinates, and write this expression in matrix notation in Dirac
space. The first term becomes

Tr
[
P±

(
Γ2G(u)(Γ

′
2)
T
)T]

Tr
[
Γ ′1(G

T
(u)Γ1G(d))

T
]

= Tr
(
P±Γ

′
2G

T
(u)Γ

T
2

)
Tr
(
Γ ′1G

T
(d)Γ

T
1 G(u)

)
.

The second term becomes

− Tr
[(
Γ ′2

((((
Γ T1 G(u)

)T
G(d)

)
(Γ ′1)

T

)
GT(u)

)
Γ T2

)]
= − Tr

[
P±Γ

′
2

(
Γ2G(u)Γ

′
1G(d)Γ

T
1 G(u)

)T]
.

If we project to zero momentum, and use point source at t = 0, then there’s no spatial
dependence in the correlation function,

Tr[P±GNN(t, 0)]

=
∑
x⃗

⟨P±χ(x)χ̄(0)⟩

=
∑
x⃗

⟨
Tr
(
P±Γ

′
2G

T
(u)Γ

T
2

)
Tr
(
Γ ′1G

T
(d)Γ

T
1 G(u)

)
− Tr

[
P±Γ

′
2

(
Γ2G(u)Γ

′
1G(d)Γ

T
1 G(u)

)T]⟩
(3.17)
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3.2 Three-point correlation functions

Three-point correlation functions can also be constructed on the lattice. For any operator
O in general, the three-point function is

GNON(t2, t1, p⃗f, p⃗i) =
∑
x1,x2

e−ip⃗f·(⃗x2−x⃗1)e−ip⃗i·(⃗x1−x⃗0)⟨0|T(χ(x2)O(x1)χ̄(x0))|0⟩, (3.18)

in which t1 is the insertion time, and t2 is the sink time. We are only interested in forward
scattering case, so we may set p⃗i = p⃗f = p⃗, and rewrite GNON as

GNON(t2, t1, p⃗f, p⃗i) =
∑
x2,x1

e−ip⃗·(⃗x2−x⃗0)⟨0|T(χ(x2)O(x1)χ̄(x0))|0⟩. (3.19)

If we insert a complete energy eigenstate, and note that

⟨0|O(x)|n⟩ = ⟨0|eH(t−t0)e−ip⃗(⃗x−x⃗0)O(x0)e−H(t−t0)eip⃗(⃗x−x⃗0)n⟩

= e−Ep(t−t0)eip⃗(⃗x−x⃗0)⟨0|O(x0)|n⟩,
(3.20)

GNON becomes

GNON(t2, t1, p⃗)

=
∑
x2,x1

e−ip⃗·(⃗x2−x⃗0)
∑

n1q⃗1s1
n2q⃗2s2

e−E2(t2−t1)e−E1(t1−t0)⟨0|χ(x2)|n2q⃗2s2⟩⟨n2q⃗2s2|O(x1)|n1q⃗1s1⟩⟨n1q⃗1s1|χ̄(x0)|0⟩

=
∑
x2,x1

e−ip⃗·(⃗x2−x⃗0)
∑

n1q⃗1s1
n2q⃗2s2

e−E2(t2−t1)e−E1(t1−t0)φ⟨0|χ(x0)|n2q⃗2s2⟩⟨n2q⃗2s2|O(x0)|n1q⃗1s1⟩⟨n1q⃗1s1|χ̄(x0)|0⟩,

(3.21)

where

φ =e−E2(t2−t0)eiq⃗2·(⃗x2−x⃗0)eE2(t1−t0)e−iq⃗2·(⃗x1−x⃗0)

e−E1(t1−t0)eiq⃗1·(⃗x1−x⃗0)eE1(t1−t0)e−iq⃗1·(⃗x1−x⃗0).
(3.22)

Evaluating the sum over x⃗1 and x⃗2, one gets

GNON(t2, t1, p⃗)

= N2
∑

n1q⃗1s1
n2q⃗2s2

e−E2(t2−t1)e−E1(t1−t0)δp⃗q⃗2δq⃗1q⃗2e
−E2(t2−t0)eE2(t1−t0)e−E1(t1−t0)eE1(t1−t0)e−iq⃗1·(⃗x1−x⃗0)

⟨0|χ(x0)|n2q⃗2s2⟩⟨n2q⃗2s2|O(x0)|n1q⃗1s1⟩⟨n1q⃗1s1|χ̄(x0)|0⟩

= N2
∑
n1s1
n2s2

e−E2(t2−t1)e−E1(t1−t0)⟨0|χ(x0)|n2p⃗s2⟩⟨n2p⃗s2|O(x0)|n1p⃗s1⟩

⟨n1p⃗s1|χ̄(x0)|0⟩.
(3.23)

15



CHAPTER 3. CORRELATION FUNCTIONS

For forward scattering, set s1 = s2 = s, and rewrite

GNON(t2, t1, p⃗) = N
2
∑
n1n2s

e−E2(t2−t1)e−E1(t1−t0)⟨0|χ(x0)|n2p⃗s⟩⟨n2p⃗s|O(x0)|n1p⃗s⟩⟨n1p⃗s|χ̄(x0)|0⟩.

(3.24)
If we let t2 ≫ t1 ≫ t0, then only the ground state survives the exponentials,

GNON(t2, t1, p⃗)→ N2
∑
s

(
e−E

+
0 (t2−t0)⟨0|χ(x0)|0+p⃗s⟩⟨0+p⃗s|O(x0)|0+p⃗s⟩⟨0+p⃗s|χ̄(x0)|0⟩

+ e−E
−
0 (t2−t0)⟨0|χ(x0)|0−p⃗s⟩⟨0−p⃗s|O(x0)|0−p⃗s⟩⟨0−p⃗s|χ̄(x0)|0⟩

) (3.25)

Use Eq. (3.6),

GNON(t2, t1, p⃗)

→ Na6
(
e−E

+
0 (t2−t0)⟨0+p⃗s|O(x0)|0+p⃗s⟩ |λ+|2

m+

E+

∑
s

u+(p⃗, s)ū+(p⃗, s)

+ e−E
−
0 (t2−t0)⟨0−p⃗s|O(x0)|0−p⃗s⟩ |λ−|2

m−

E−

∑
s

γ5u
−(p⃗, s)ū−(p⃗, s)γ5

)
,

(3.26)

If we project this three-point function to positive parity by multiplying P+ = (1 + γ4)/2,
and use Eq. (3.3) and Eq. (3.10), we get

Tr(P+GNON(t2, p⃗))

→ Na6
[
e−E

+
0 (t2−t0)

∑
s

⟨0+p⃗s|O(x0)|0+p⃗s⟩ |λ+|2
m+

E+

(
1+

E+

m+

)
+ e−E

−
0 (t2−t0)

∑
s

⟨0−p⃗s|O(x0)|0−p⃗s⟩ |λ−|2
m−

E−

(
1−

E−

m−

)]
.

(3.27)

For small momentum, E ≈ m. Also notice that E−0 > E+0 and therefore the exponential
factor e−E−0 (t2−t0) is much smaller than the corresponding positive parity factor, when t2−t0
is large. Thus the negative parity contribution becomes negligible, we can ignore the +
superscripts.

Tr(P+GNON(t2, p⃗))→ Na6e−E0(t2−t0)
∑
s

⟨0p⃗s|O(x0)|0p⃗s⟩ |λ|2
m

E

(
1+

E

m

)
. (3.28)

In terms of quark fields, consider having a nucleon two-point function, and insert a
general operator in the form of O = ψ̄Γψ, in which ψ and ψ̄ are quark fields. Using
Eq. (3.7), also similarly to Eq. (3.15), one can have

⟨χα ′(x)O(y)χ̄α(0)⟩

=
∑
a,b,c

a ′,b ′,c ′

⟨
db

′
β ′(x)(Γ2)β ′γ ′uc

′
γ ′(x)(Γ1)α ′δ ′u

a ′
δ ′ (x) ψ̄

d
ρ(y)Γρρ ′ψ

d ′
ρ ′ (y)

ūaδ (0)(Γ 1)δαū
c
γ(0)(Γ 2)γβd̄

b
β(0)ϵ

abcϵa
′b ′c ′

⟩
.

(3.29)
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u d u ū d̄ ūū u

(a) Example of connected insertions

u d u ū d̄ ūū u

(b) Example of disconnected insertion

Figure 3.2: Illustrations of different ways of three-point function contractions. The udu
and ūd̄ū denote proton interpolation fields, and ūu in the middle denotes current insertion.

Depending on the flavor of ψ, there can be different ways of contraction. For example if
ψ are u quarks, it can contract with the u quarks in the proton interpolation fields, and
result in

⟨χ(x)O(y)χ̄(0)⟩ =
⟨
Γ1G

(u)(x, 0)Γ̄2

[
G(d)(x, 0)

]T
Γ2G

(u)(x, y)ΓG(u)(y, 0)Γ̄1

⟩
. (3.30)

This is one of the “connected insertions” shown in Figure 3.2a. The quark fields in the
current can also contract with themselves, as shown in Figure 3.2b. This is the “discon-
nected insertion”, in which the three-point function is simply a product of proton two-point
function and the loop,

Tr⟨P±χ(x)O(y)χ̄(0)⟩

=
⟨{

Tr
(
P±Γ

′
2G

T
(u)(x, 0)Γ

T
2

)
Tr
(
Γ ′1G

T
(d)(x, 0)Γ

T
1 G(u)(x, 0)

)
− Tr

[
P±Γ

′
2

(
Γ2G(u)(x, 0)Γ

′
1G(d)(x, 0)Γ

T
1 G(u)(x, 0)

)T]}
Tr
[
ΓG(u)(y, y)

]⟩ (3.31)

Obviously, if the current has heavy flavors, only the disconnected insertion contributes
to the matrix element.
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Chapter 4

Numerical Techniques

4.1 Extended quark sources

As mentioned in section 2.2, propagators are calculated from quark sources. Point sources
are the simplest quark sources one can have, and not necessarily the most useful. As shown
in Figure 3.1, excited states contribute significantly at small t, which is not ideal if we
want to calculate hadron properties. In principle, we would like the nucleon plateau in the
effective mass plot to be as long as possible. This is usually achieved by using a smeared
source [5].

Consider a quark source
ηS(x

′) = S(x ′, x)η(x), (4.1)

where ηS is the smeared source. By design, S(x ′, x) produces a gaussian distribution with
a Klein-Gordon propagator. It is computed by repeating an iteration n times, so that [6]

S(x ′, x) =

(
1−

3w

2n

)n [
1+

w2

4n− 6w2

3∑
i=1

(
Ui(x

′, t)δ
x ′,x−î +Ui(x

′ − î, t)δ
x ′,x+î

)]n
.

The coefficients are designed so that w would be approximately the “size” of the smeared
source. If we define the radius to be

r =

√∑
x x

2ρ(x)∑
x ρ(x)

, (4.2)

where ρ(x) is the norm of the source at x. Then as shown in Figure 4.1 r increases with w
Smearing is known to make the signal of the ground state stronger in the nucleon 2-

point function. As shown in Figure 4.2, the nucleon is enhanced with a bigger smear size,
which results in a flatter effective mass, and in turn giving a longer nucleon plateau to fit.
This is most desirable if nucleon properties are of interests.
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Figure 4.1: Smear size for different parameters.
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Figure 4.2: Effective mass from sources with various size. Inversion is done on
RBC/UKQCD’s 243 × 64 domain wall lattice with mπ ≈ 330MeV.

4.2 Grid source with Z3 noises

So far we have considered quark source with a single (smeared) point. A natural next step
is to look into source with multiple points; specifically, a simple case would be where the
source points are arranged in a grid on the source time slice. Ideally, such a source would
provide more statistics and small error, because it covers a larger subspace in the whole
propagator space. However, this is not the case if one actually inverts such a grid source.

The reason is shown in Figure 4.3. When using a grid source, three propagators are
contracted to form a 2-point function. However the three propagators do not necessarily
comes from the same source point (illustrated by the red lines in the figure). Without any
quark lines to connect different source points, the 2-point function is not gauge-invariant,
and therefore is noisy.
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Figure 4.3: Illustration of quark lines with grid source. The red lines are not gauge-
invariant, while the black lines are.

To make sure the propagators in a 2-point function comes from the same point, a
stochastic technique can be applied [7]. Consider an ensemble of random variables θ(x)
distributed on the lattice with the following properties

θ(x)3 = 1, ⟨θ(x)θ(y)θ(z)⟩ = δxyδyz, (4.3)

in which the angular bracket denotes expectation value over the noise ensemble. As shown
in Eq. (3.16), the 2-point function of nucleon can be writting as a linear function of three
quark propagators

⟨P±χ(y)χ̄(x)⟩ =

⟨
GNN

⎛⎝∑
i

θiGi,
∑
j

θjGj,
∑
k

θkGk

⎞⎠⟩

=
∑
i,j,k

⟨θiθjθkGNN (Gi, Gj, Gk)⟩ ,
(4.4)

in which i, j, and k labels the source grid points. Use Eq. (4.3) and evaluate the summations
over j and k,

⟨P±χ(y)χ̄(x)⟩ =
∑
i

⟨GNN (Gi, Gi, Gi)⟩ . (4.5)

Thus the stochastic noises force the three propagators to come from the same source point,
and avoid the gauge invariance problem. In practice, random numbers from the Z3 group
has been found to satisfy Eq. (4.3), and work well. [8]

4.3 Lowmode substitution

However, it is found that adding Z3 noises is not enough in order to use the grid source
effectively. A technique called lowmode substitution must be applied along with it. Define
the massive overlap operator as

D(m,ρ) = ρDov(ρ) +m

(
1−

Dov(ρ)

2

)
= ρ+

m

2
+
(
ρ−

m

2

)
γ5 sign(H),

(4.6)

20



CHAPTER 4. NUMERICAL TECHNIQUES

in which ρ = 4−1/(2κ), and κ is the hopping parameter for the Wilson kernel. If we replace
the quark field with ψ ′ = (1 − Dov

2 )ψ in correlation functions, for example, Eq. (3.15), we
arrive at the so-called effective propagator D−1

eff [9, 10], which has the same factor,

G = D−1
eff =

(
1−

Dov
2

)
D−1
m =

1

Dc +m
, (4.7)

in which
Dc =

ρDov

1− Dov
2

(4.8)

is chiral, {γ5, Dc} = 0. Suppose Dov has eigenvectors |i⟩ and eigenvalues λi, then

D(m,ρ)|i⟩ =
[
ρλi +m

(
1−

λi
2

)]
|i⟩. (4.9)

It is possible to separate the propagator into low-mode part and high-mode part, by
defining the low-mode source ηL and high-mode source ηH as

ηL =

n∑
i

|i⟩⟨i|η⟩, ηH = η− ηL,

in which i goes from the lowest-lying mode to some cutoff n. Also notice that the eigenvalues
of Dov come in pairs of conjugate numbers, with associated eigenvectors |i⟩ and γ5|i⟩ [8],

Dov|i⟩ = λi|i⟩, Dovγ5|i⟩ = λ∗iγ5|i⟩. (4.10)

Therefore the low-mode source can be written as

ηL =

n∑
i

(|i⟩⟨i|+ γ5|i⟩⟨i|γ5)|η⟩. (4.11)

Then the high-mode propagator GH and low-mode propagator GL are defined as

D(m,ρ)GH = ηH, D(m,ρ)GL = ηL, G = GL +GH. (4.12)

The low-mode propagator can be easily calculated using spectral theorem and Eq. (4.9),

GL =
∑
i

⎡⎣ |i⟩⟨i|η⟩

ρλi +m
(
1− λi

2

) +
∓γ5|i⟩⟨i|η⟩

ρλ∗i +m
(
1−

λ∗i
2

)
⎤⎦ . (4.13)

Now let’s go back to Eq. (4.4), and change the notation,

⟨P±χ(y)χ̄(x)⟩ =
⟨
GNN

(
Ḡ, Ḡ, Ḡ

)⟩
, (4.14)

in which Ḡ-s are the Z3 noise estimated quark propagator calculated from a grid source,
and each of them has a θi accompanied. For simplicity, let us also drop the angular bracket,

GNN(Ḡ, Ḡ, Ḡ) = GNN

(
ḠH + ḠL, ḠH + ḠL, ḠH + ḠL

)
. (4.15)
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Notice that function GNN is just a multiplication of all its variables with some gamma
structure. Therefore it can be expanded into [8]

GNN =GNN(Ḡ
H, ḠH, ḠH) +GNN(Ḡ

L, ḠL, ḠL)

+GNN(Ḡ
L, ḠH, ḠH) +GNN(Ḡ

H, ḠL, ḠH) +GNN(Ḡ
H, ḠH, ḠL)

+GNN(Ḡ
H, ḠL, ḠL) +GNN(Ḡ

L, ḠH, ḠL) +GNN(Ḡ
L, ḠL, ḠH).

(4.16)

For the term GNN(Ḡ
L, ḠL, ḠL), since one can calculate the exact low mode propa-

gator from the low-lying eigenvectors, it can be substituted with its exact counterpart∑
iGNN(G

L
i , G

L
i , G

L
i ), in which GLi is the exact low mode propagator calculated from the

point source at the ith grid point. For terms like GNN(ḠL, ḠL, ḠH) that involve two low
mode propagators, one can still substitute them with the exact propagators, but will have
to multiply back the Z3 noise in order to work with the noise-estimated high mode propaga-
tor, and therefore it becomes

∑
i θ
2
iGNN(G

L
i , G

L
i , Ḡ

H). Thus the nucleon two-point function
becomes

GNN = GNN(Ḡ
H, ḠH, ḠH)

+GNN(Ḡ
L, ḠH, ḠH) +GNN(Ḡ

H, ḠL, ḠH) +GNN(Ḡ
H, ḠH, ḠL)

+
∑
i

θ2i

[
GNN(G

L
i , G

L
i , Ḡ

H) +GNN(G
L
i , Ḡ

H, GLi ) +GNN(Ḡ
H, GLi , G

L
i )
]

+
∑
i

GNN(G
L
i , G

L
i , G

L
i )

(4.17)

This technique is named “low-mode substitution”. By replacing noise-estimated low mode
propagators with its exact version, noise/signal ratio can be improved tremendously. Fig-
ure 4.4 shows a comparison among nucleon two-point functions calculated from a point
source, a grid source with Z3 noise, and with low mode substitution. As one can see,
Z3 noises along with low-mode substitution lower the errorbar of fitted nucleon mass by
roughly 3 folds.

In order to use low-mode substitution, one needs first a number of the low-lying eigen
modes. These are usually calculated with the Arnoldi iteration algorithm. It is a time-
consuming process; however it does not only enable one to use techniques such as low-mode
substitution, but also accelerates the inversion significantly [11].

4.4 The variational method

The variational method is a powerful tool for the analysis of excited states [12]. It is
now widely adopted in hadron spectroscopy studies. Suppose we have a matrix of 2-point
correlation functions

Gij(t) = ⟨χi(t)χ̄j(t)⟩ =
∑
n

⟨0|χi|n⟩⟨n|χ̄j|0⟩e−Ent,
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Figure 4.4: Comparison among nucleon two-point functions calculated from a point source,
a grid source with Z3 noise, and with low mode substitution. The blue points are calculated
from a point smeared source; the green points are calculated from grid smeared source with
Z3 noises, but without low-mode substitution; the red and cyan points are calculated from
grid smeared source with Z3 noises and low-mode substitution. All these are calculated
from 203 configuration with 2 sources for each configuration, except for the cyan points,
where 32 sources per configuration, and high mode propagators are calculated with low
precision.

in which i and j denote different types of operator, and zero momentum projection is
taken for simplicity. In practice, the matrix usually consists of different combinations of
source/sink smearing sizes, or interpolation operators. It is then proved [12] that if λn(t)
are the eigenvalues of G(t), then

λn(t) = cne
−Ent

[
1+O(e−∆Ent)

]
, (4.18)

in which ∆En = En+1 − En. However, at large t, the error on G(t) becomes large, and
therefore e−∆Ent is not clearly bounded. It is more practical to look at generalized eigenvalue
problem

G(t)v = λ(t, t0)G(t0)v,

in which t0 is usually small. Since G(t0)v = λ(t0)v, it is obvious that λn(t, t0) = e−En(t−t0).
This eigenvalue problem can be rewritten as

G(t)G(t0)
− 1

2G(t0)
1
2 v = λ(t, t0)G(t0)

1
2G(t0)

1
2 v.

Define v ′ = G(t0)
1
2 v, then

G(t0)
− 1

2G(t)G(t0)
− 1

2 v ′ = λ(t, t0)v
′. (4.19)
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Therefore, in order to find the energy levels, we only need to choose an appropriate t0, and
diagonalize G(t0)−

1
2G(t)G(t0)

− 1
2 on all time slices.

The variational method is a well-defined and systematic way to extract energy levels.
However it does suffer from several disadvantages,

• The existence of the ∆En term in Eq. (4.18) means we can only acquire upper bound
of energy levels.

• It is required to have at least several source/sink operator combinations. For expensive
fermion actions such as the overlap fermion, this could be impractical depending on
the target precision.

• As shown in chapter 6, we suspect the result may be sensitive to the choice of operators.
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Chapter 5

Nucleon Momentum Fraction
Carried by Quarks

5.1 Introduction

The understanding of the structure of nucleon has been one of the central issues in hadron
physics. For instance, the parton distribution functions (PDFs) have been studied exten-
sively, and the observation of scaling violation in PDFs provides the cradle for the estab-
lishment of the fundamental theory, QCD. Yet, there exist many unresolved questions on
the structure of the nucleon. Ever since the EMC experiment showed that the proton spin
carried by quarks is small [1], large effort has been made in both the experiments and the
theoretical frontiers to identify all the contributions to the nucleon spin. Calculating the
momentum fraction ⟨x⟩ is an integral part of the study of this subject.

However, it has been found that calculating the disconnected insertion contribution
to this quantity, which is necessary for the strange momentum fraction, is very difficult.
Most lattice calculations are done for the connected insertion contribution. So far, only one
quenched calculation exists that includes all contributions to the nucleon spin [13], as well
as one dynamical clover fermion calculation on the strange momentum fraction [14]. In
this paper, we calculate the strange momentum fraction with the overlap fermion on 2+ 1
flavor domain wall fermion configurations with the help of an array of lattice techniques.
We also calculate the momentum fraction in the u/d channel for the disconnected insertion
(DI), and take the ratio between strange and u/d channel in DI. In the end, we compare
our result with previous lattice calculations, as well as current global analyses of parton
distribution at small x.
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5.2 Deep Inelastic Scattering

The scattering amplitude of deep inelastic scattering can be written as

iM = (−ie2)

(
−igµν
q2

)
⟨k ′|jµl (0)|k, sl⟩⟨X|j

ν
h(0)|p, λ⟩, (5.1)

in which sl in the polarization of the initial lepton, λ is the polarization of the initial
hadron, and jl, jh are the leptonic and hadronic electromagnetic current, respectively. The
differential cross section is

dσ =
∑
X

∫
d3k ′

(2π)32E ′ (2π)
4δ4(k+ p− k ′ − pX)

|M|2

(2E)(2M)

=
∑
X

∫
d3k ′

(2π)32E ′ (2π)
4δ4(k+ p− k ′ − pX)

e4

4Q4EM

⟨p, λ|jµh(0)|X⟩⟨X|j
ν
h(0)|p, λ⟩⟨k, sl|jlµ(0)|k ′⟩⟨k ′|jlν(0)|k, sl⟩

(5.2)

By convention, the leptonic tensor is defined as

lµν =
∑

final spin
⟨k ′|jlν(0)|k, sl⟩⟨k, sl|jlµ(0)|k ′⟩, (5.3)

and the hadronic tensor is defined as

Wµν(p, q, λ ′, λ) =
1

4π

∫
d4x eiq·x⟨p, λ ′|[jµ(x), jν(0)]|p, λ⟩. (5.4)

Note that

⟨p, λ ′|jµ(x)|X⟩ = ⟨p, λ ′|jµ(x)|X⟩ei(p−pX)·x,

⟨X|jµ(x)|p, λ⟩ = ⟨X|jµ(x)|p, λ⟩ei(pX−p)·x,
(5.5)

therefore

Wµν =
1

4π
(2π)4

∑
X

[
δ4(q+ p− pX)⟨p, λ ′|jµ(0)|X⟩⟨X|jν(0)|p, λ⟩

− δ4(q+ pX − p)⟨p, λ ′|jν(0)|X⟩⟨X|jµ(0)|p, λ⟩
]
.

(5.6)

However, only the first delta function can be satisfied by the kinematics. Therefore

dσ =
e4

Q4

∫
d3k ′

(2π)32E ′
4πlµνWµν(p, k− k

′, λ, λ)

4EM
, (5.7)

⇒ d2σ
dE ′dΩ

=
e4

16π2Q4
E ′

ME
lµνWµν(p, q, λ, λ). (5.8)

For spin-1/2 target, the hadronic tensor is conventionally arranged in terms of structure
functions

Wµν = F1

(
−gµν +

qµqν

q2

)
+

F2
p · q

(
pµ −

p · qqµ
q2

)(
pν −

p · qqν
q2

)
+
ig1
p · q

ϵµνλσq
λsσ +

ig2
(p · q)2

ϵµνλσq
λ(p · qsσ − s · qpσ)

(5.9)
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One way to evaluate the hadronic tensor Eq. (5.4) is operator product expansion (OPE).
For a production of two local operator Ja(x) and Jb(0),

lim
x→0 Ja(x)Jb(0) =

∑
k

cabk(x)Ok(0), (5.10)

where Ok is a local operator. For QCD, the operators in the expansion are quark and
gluon operators Oµ1···µndn with arbitrary spin n and dimension d. The leading term in the
expansion has twist t = d−n = 2. Note thatO is independent of the direction of momentum
qµ; only the proton momentum Pµ is available to carry the vector indices. Therefore the
spin-averaged matrix element of O can be written as

⟨P|O(f)µ1···µn
dn |P⟩ = 2Anf Pµ1 · · ·Pµn − traces, (5.11)

in which f labels quark flavor. For twist-2, the simplest operators are

⟨P|ψ̄fγµψf|P⟩ = 2PµA1f , (5.12)

in which A1f is the number of quarks minus antiquarks of flavor f in state |P⟩, and

⟨P|ψ̄fγ{µiDν}ψf|P⟩ = 2PµPνA2f , (5.13)

in which γ{µiDν} = γµiDν−γνiDµ, and the operator is the QCD energy-momentum tensor.
Therefore A2f is the fraction of the total energy-momentum of the proton that is carried by
the quark flavor f.

5.3 Formalism

X. Ji has proposed that in Minkowski space, the nucleon matrix element of energy-momentum
tensor can be split into form factors as [15]

⟨P ′|Tµν|P⟩ = ū(P ′)

[
A(Q2)γ{µP̄ν} +

B(Q2)

2m
P̄{µiσν}αQα +

C(Q2)

m
(QµQν − gµνQ2) + C̄(Q2)gµνm

]
u(P),

(5.14)
in which P̄ = (P + P ′)/2, Q = P ′ − P. For forward case, P = P ′, coefficient A(0) gives the
momentum fraction of the nucleon carried by quarks, i.e. A(0) = ⟨x⟩. For µ = 0, ν = i

specifically,

⟨P|Tµν|P⟩ = ⟨P|ψ̄γ{0(iD)i}ψ|P⟩ = A(0)

2
ū(P)(P0γi + Piγ0)u(P). (5.15)

Using the Gordon identity

ū(P ′)γµu(P) = ū(P ′)

(
P̄µ

m
+
iσµνQν

2m

)
u(P),

⇒ ū(P)γµu(P) = ū(P)
Pµ

M
u(P), (5.16)
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it follows that
⟨P|ψ̄γ{0(iD)i}ψ|P⟩ = A(0)

m
p0pi =

A(0)

m
Epi.

In euclidean space, this becomes

⟨P|ψ̄γ{4(iD)i}ψ|P⟩ = A(0)

m
Epi.

On the lattice, this becomes

⟨P|ψ̄γ{4(iD)i}ψ|P⟩ = pi
N
A(0) (5.17)

In order to calculate the strange contribution to nucleon ⟨x⟩, we must insert the twist-2
operator into a quark loop. Therefore we need to calculate the disconnected insertion of a
three-point correlation function on the lattice.

Continue from Eq. (3.28), and use Eq. (5.17)

Tr(P+GNON(t2, p))→ a6e−E0(t2−t0)⟨x⟩pi |λ|2
m

E

(
1+

E

m

)
. (5.18)

Recall from Eq. (3.12) that at large time, the nucleon two-point function is

Tr(P+GNN(t, p))→ a6e−E0(t−t0)|λ|2
m

E

(
1+

E

m

)
. (5.19)

Therefore, if we calculate the following ratio between the three-point function and the
two-point function, we can extract ⟨x⟩,

1

pi

Tr[P+GNON(t2, pi)]
Tr[P+GNN(t2, pi)]

→ ⟨x⟩. (5.20)

However, the expression above is not enough if we want to calculate it on the lattice.
On the lattice, quark propagators are the smallest element one can compute. We need to
express the three-point function in terms of quark propagators. Recall that our operator
O4i is from

Ō4i(x) = −
i

2

[
ψ̄(x)γ4

−→
Diψ(x) − ψ̄(x)γ4

←−
Diψ(x)

]
, (5.21)

O4i =
1

2
(Ō4i + Ōi4). (5.22)

And covariant derivatives are replaces with differences between neighbors,

Ō4i(x) = −
i

4a

[
ψ̄(x)γ4Ui(x)ψ(x+ î) − ψ̄(x)γ4U

†
i (x− ī)ψ(x− î)

+ ψ̄(x− î)γ4Ui(x− î)ψ(x) − ψ̄(x+ î)γ4U
†
i (x)ψ(x)

]
.

(5.23)
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Therefore

⟨χ(x2)O(x1)χ̄(x0)⟩

= −
i

4a

∫
DuDūDdDd̄DψDψ̄ (uT (x2)Cγ5d(x2))u(x2)[

ψ̄(x1)γ4Ui(x1)ψ(x1 + î) − ψ̄(x1)γ4U
†
i (x1 − ī)ψ(x1 − î)

+ ψ̄(x1 − î)γ4Ui(x1 − î)ψ(x1) − ψ̄(x1 + î)γ4U
†
i (x1)ψ(x1)

]
(d̄(x0)Cγ5ū

T (x0))ū(x0),

(5.24)

in which color indices are understood and ignored. Note that ψ can be any flavor (when it
is u/d, the integration measure is just DuDūDdDd̄). However if ψ is a heavy flavor, then
the ψ field can only contract to itself, and the u and d part of the expression contracts to
a normal nucleon propagator, as shown in Eq. (3.31). Specifically,

Tr[P+GNON(t2, p⃗)] = ⟨C2(t2, p⃗)CO(t1)⟩, CO(t) =
∑
x⃗

1

2
(C4i(x) + Ci4(x)) (5.25)

in which C2 is the nucleon propagator in each configuration, and

C4i(x) = −
i

4a

(
Tr[G(x+ î, x)γ4Ui(x)] − Tr[G(x− î, x)γ4U†

i (x− î)]

+ Tr[G(x, x− î)γ4Ui(x− î)] − Tr[G(x, x+ î)γ4U†
i (x)]

)
.

(5.26)

As shown in this expression, the operator part of the calculation is computed by generating
propagators that comes from a point and ends up at its neighbors, and multiply it by
the correct gauge link and gamma matrices. This quantity is usually called the “loop”.
Therefore

1

|⃗p|

Tr[P+GNON(t2, p)]
Tr[P+GNN(t2, p)]

=
1

|⃗p|

⟨C2(t2, p⃗)CO(t1)⟩
⟨C2(t2, p⃗)⟩

→ ⟨x⟩. (5.27)

In reality, this is done by calculating parity projected nucleon two-point function, and the
loop, and then take an appropriate ratio.

5.4 Calculation details

Our calculation uses the 2 + 1-flavor domain wall fermion configurations generated by the
RBC/UKQCD collaboration [16, 17]. A wide range of quark masses are involved in this
study spanning from physical pion mass to strange mass. The three lattices involved are
listed in Table 5.1.

The nucleon 2-point function is calculated with low-mode substitution described in
section 4.3. Grid sources arranged in 2-2-2 (or 4-4-4 for the 48I lattice) geometry with Z3
noises are used, meaning two grid points are placed in each spatial direction. In order to
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Table 5.1: The parameters for the RBC/UKQCD configurations.

Lattice Size a (fm) msea
s (MeV) mπ (MeV) # confs

24I 243 × 64 0.1105(3) 120 330 203
32I 323 × 64 0.0828(3) 110 300 309
48I 483 × 96 0.1141(3) 94.9 139 81

4

24

Figure 5.1: Source scheme for the loop, on the 24I lattice. The right figure shows the grid
points on different time slices in each diluted inversion.

further boost the signal/noise ratio, 32 sources are inverted for each configuration, shifted
in space and time. Low precision calculation is used in the high mode part in order to
increase computation speed.

Similarly, the loop is calculated with a 6-6-6 grid source with Z4 noises, placed at every
other time slices in a even-odd fashion. The high mode part is also calculated with low
precision. Like for the 2-point function, 32 sources are inverted for each configuration,
shifted in space and time. An illustration of the sources used in the loop calculation is
shown in Figure 5.1.

With Eq. (5.20), nucleon two-point function projected to finite momentum is required.
If we use a point source, momentum can be any integer. However for the grid source we use,
only a subset of momenta can be acquired. Specifically, for a 2-2-2 configuration, we can
only project the correlation function to zero momentum and momenta 2, 4, etc. (in lattice
unit). In order to acquire momentum 1, an extra set of grid sources needs to be inverted.
These grid sources are multiplied by a phase factor eipxx + eipyy + eipzz before inversion,
and produce momenta 1, 3, etc. And thus we recover a complete set of momenta.

The three-point/two-point function ratio is then fitted to acquire the value of ⟨x⟩. To
address the effect of excited states, we go beyond Eq. (5.20), and take into account the first
excited state. Take Eq. (3.21), the next leading term is n1 = 0, n2 = 1, or n1 = 1, n2 = 0.
Define

Mij = ⟨0|χ|Ni⟩⟨Ni|O|Nj⟩⟨Nj|χ̄|0⟩,

where Ni is the ith nucleon state (N0 being the ground state). Then

GNON(t2, t1) = e
−E0t2 [M00 + e

−∆(t2−t1)M10 + e
−∆t1M01 +O(e

−∆ ′t1)],
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Figure 5.2: 3-point/2-point function ratio from the 24I lattice, the 2-point function is with
pion mass ∼ 340MeV, while the loop is with pion mass ∼ 640MeV. The green transparent
bar shows the fitted plateau (C0 in Eq. (5.28)). Note that the plot is shifted in time by
t1 − t2/2, so for all the sink times, the plateaus are centered at 0.

in which the source time is set to zero, ∆ = E1 − E0, and ∆ ′ = E2 − E0. For the 2-point
functions, we only write the leading term,

GNN(t2) = e
−E0t2

[
⟨0|χ|N0⟩⟨N0|χ̄|0⟩+O(e−∆t2)

]
.

Therefore the 3-point/2-point ratio is in the form of

1

|⃗p|

GNON(t2, t1)

GNN(t2)
= C0 + C1e

−∆(t2−t1) + C2e
−∆t1 . (5.28)

If we take the constant term C0, we should recover the approximation Eq. (5.27), and
acquire the appropriate value of ⟨x⟩. It is well-known that for this kind of 3-point/2-point
ratio, the summed method [18] helps isolating the ground state in the presence of excited
states, by summing over the insertion time t1,

1

|⃗p|

t2−1∑
t1=0

GNON(t2, t1)

GNN(t2)
= C0t2 +

e−∆ − e−∆(t2+1)

1− e−∆
C1 +

1− e−∆t2

1− e−∆
C2. (5.29)

Note that the values of C0, C1, C2, and ∆ are shared between Eq. (5.28) and Eq. (5.29),
and are used as parameters when we fit these two models simultaneously with the 3-
point/2-point ratio data.
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Table 5.2: Renormalization factors used in this study.

Lattice Zqq Zqg
24I 0.991 0.017

32I 1.026 0.0096

48I 0.986 0.018

Table 5.3: The fitted parameters, with χ2/DoF = 0.2

c1 c2 c3 c4 c5 c7 c8 c9 c10 c11 c12 c13
Value 0.053 0.16 0.025 0.063 0.12 0.014 −0.044 −0.0024 −0.73 −0.76 0.76 0.93

Error 0.02 0.097 0.028 0.021 0.09 0.03 0.1 0.12 0.36 0.37 0.75 0.79

5.5 Results

We calculate 2-point/3-point function ratios from all quark mass combinations. An example
of such ratio is shown in Figure 5.2. These ratios are renormalized and matched to MS
scheme at 2GeV, with consideration of glue mixing.

⟨x⟩q = Zqq⟨x⟩bareq + Zqg⟨x⟩g, (5.30)

in which ⟨x⟩g = 0.4 is the glue momentum fraction in nucleon, acquired from the CTEQ
global analysis [19, 20]. The renormalization factors Zqq and Zgq are calculated from lattice
perturbation theory under 1-loop order, and have the values shown in Table 5.2.

We then extrapolate ⟨x⟩DI
u/d and ⟨x⟩s simultaneously to physical pion mass, large volume,

and continuum limit with the following functional form [21]

⟨x⟩s = c1 + c2m2
π,vv + c10m

2
π,vs + c12m

3
π,vs + c3a

2 + c8 exp(−mπ,vvl)

⟨x⟩DI
u/d = c4 + c5m

2
π,vv + c11m

2
π,vs + c13m

3
π,vs + c7a

2 + c9 exp(−mπ,vvl),
(5.31)

in which mπ,vv is the valence-valence pion mass, and the c’s are fitting parameters. The
valence-sea quark mass is defined as

m2
π,vs =

1

2
(m2

π,vv +m
2
π,ss) + a

2∆mix,

where mπ,ss is the sea-sea pion mass. The effect of ∆mix is a small shift (10 ∼ 30MeV) on
the pion mass due to the mismatch between the sea and valence QCD action [22]. The
fitting is done with 1000 bootstrap samples for each ensemble. Value of χ2 for this fit is
0.2, and the value of the parameters are listed in Table 5.3. The extrapolated values at
physical pion mass and continuum are

⟨x⟩s = 0.046(15), ⟨x⟩DI
u/d = 0.055(16). (5.32)

We also plot the fitting result in Figure 5.3 and Figure 5.4. Lattice spacing dependence
is found to be negligible in our study.
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Figure 5.3: Chiral and continuum extrapolation of ⟨x⟩s. The renormalized three-point
function slopes from the 24I, 32I, and 48I lattice are denoted by blue, red, and magenta
bars, respectively. The black curve shows the chiral fit line at continuum. The green bar
shows the extrapolated value.
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Figure 5.4: Chiral and continuum extrapolation of ⟨x⟩DI
u/d. The renormalized three-point

function slopes from the 24I, 32I, and 48I lattice are denoted by blue, red, and magenta
bars, respectively. The black curve shows the chiral fit line at continuum. The green bar
shows the extrapolated value.
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Figure 5.5

Last but not least, we calculate the ratio ⟨x⟩s/⟨x⟩DI
u/d at physical pion mass and contin-

uum
⟨x⟩s
⟨x⟩DI

u/d

= 0.83(7). (5.33)

It is worthwhile to compare this ratio with the global analysis shown in Figure 5.6 [23].
But before doing this, we recall that the experimental result for ū and d̄ does not exactly
correspond to our lattice result of disconnected insertion; rather, part of them are from
the so called “connected sea” contribution, which is the result of the diagrams shown in
Figure 5.5a [24, 25]. However, the connected sea contribution behaves as x−1/2 in the small
x region, while the disconnected sea, which corresponds to the disconnected insertion on the
lattice, behave as x−1. Therefore at small x, only the latter survives. This is demonstrated
in Figure 5.5b, in which the disconnected-sea contribution ūds(x)+ d̄ds(x) is assumed to be
(s(x)+s̄(x))/R, where R is the ratio obtained in a previous lattice result by T. Doi et al. [14],
and s(x) + s̄(x) is taken from the HERMES result [26]. The connected sea contribution
ūcs(x) + d̄cs(x) can be obtained by taking the CT10 global fit [27] and subtract out the
disconnected sea part, i.e.

ūcs(x) + d̄cs(x) = ū(x) + d̄(x) −
1

R
(s(x) + s̄(x)).

As shown in the plot, connected sea contribution indeed vanishes at small x. Furthermore,
Figure 5.6 shows a flat behavior at small x region, therefore can be treated as a constant,
and be directly compared with our lattice result Eq. (5.33). In this region, our result is
compatible with the global analysis, and be used as input for future analysis.
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Figure 5.6: Ratio of s+ s̄ over ū+ d̄ versus x at Q2 = 5GeV2 from various recent PDFs.

5.6 Conclusion and Discussion

In conclusion, we have studied the momentum fraction carried by quarks in nucleon with
overlap fermions on 2+ 1 flavors domain wall dynamical fermion configurations. We utilize
an array of lattice techniques including low mode substitution and low mode averaging, as
well as grid sources with Z3 and Z4 noises to greatly improve the signal of both the nucleon
propagator and the quark loop. We find signals for ⟨x⟩s and ⟨x⟩DI

u/d with about 3.5 sigma
at the physical point. After taking the ratio ⟨x⟩s/⟨x⟩DI

u/d, we found it to be consistent with
global analysis result, but with much smaller error. Since we calculate from first principle,
our result can be used to further constrain the global analysis of this ratio at small x. We
would also like to point out that our result is in agreement with previous lattice calculations
by T. Doi et al. [14] and M. Deka et al. [13]. Note that result is obtained from a complete
study at the physical pion mass, large volume and continuum limit, while the two previous
result are only at the physical pion mass.
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Chapter 6

The Roper Puzzle

6.1 Introduction

The nature of the lowest nucleon excited state, Roper, has been an intriguing subject since
its discovery. Measured with a mass at 1430MeV and a width of 350MeV, it is unusual
to have a radial excitation to have lower mass than the P-wave excitation (S11(1530)).
Many speculations have circulated around the nature of Roper. For example, shortly after
the discovery of Roper, it has been discussed that it could be a candidate of the so-called
hermaphrodite hadrons [28]. The quark model based on SU(6) symmetry with color-spin in-
teraction fails to explain this pattern of parity reversal [29]. Realistic potential calculations
with linear and Coulomb potentials [30] and the relativistic quark model [31] all predict the
Roper to be about 100 to 200MeV above the experimental value with the negative parity
state lying lower. The skyrmion model initially predicts a Roper mass at about 200MeV
lower than the experimental value [32, 33], and was later improved by adding a sixth order
term [34]. Also with the discovery of more and more exotic hadrons, the possibility of
Roper being a pentaquark state has been mentioned [35]. However, quenched calculations
on the lattice with overlap fermion has indicated that at low pion mass, consistency with
experiments can be achieved with three-quark interpolation field in the even parity channel
[36]; it is only at higher pion mass region, that the mass of Roper becomes higher than
the P-wave excitation. As shown in Figure 6.1a, this result is in contrast with other lattice
results obtained from Wilson-type fermions, which are all much higher (∼ 2.2GeV) than the
experimental value [37]. Similar results are obtained from dynamical fermions. As shown
in Figure 6.1b, for the first excited state, the overlap result (“χQCD”, magenta points) [38]
is consistent with experiment value when extrapolated to physical pion mass, and is signif-
icantly lower than most results from other groups in the whole pion mass region, while the
ground state masses are consistent among all groups. [39, 38, 40, 41]. In both the quenched
and dynamical cases, the mass of the excited state from overlap fermion are consistently
∼ 500MeV higher than the ground state across the whole pion mass region.
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(a) Quenched results of mass of nucleon ground state and first excited state across the pion mass
region. The green stars are results obtained from the overlap fermion.
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(b) Dynamical results of the mass of the nucleon ground state and excited states across the pion
mass region. The light blue and purple points/band are results obtained from the overlap fermion.

Figure 6.1: Mass of the ground state and the excited states in the nucleon channel, calcu-
lated by various groups.

It is tempting to identify the significant discrepency between the overlap results and
calculations from other groups as a result of distinct choices of fermion action; however, this
obvious identification is also a hasty one. The overlap results are based on the Sequential
Empirical Bayesian (SEB) method [42], with coulomb wall sources, while other results from
Wilson-like actions are calculated with the variational approach (see section 4.4). But how
much does the choice of the analysis method contribute to the discrepency? To answer this
question, we isolate the dynamical result from Jefferson Lab [39], at mπ = 396MeV, and
take a lattice with identical action, quark mass, lattice spacing, and pion mass, but with
a larger volume (243 × 128 instead of 163 × 128), and perform the same calculation we did
with the overlap fermion, i.e. we use a coulomb wall source and analyze the result with the
SEB method. We plot the results in Figure 6.2 as the blue points.
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Figure 6.2: Results obtained from the anisotropic clover lattice with the SEB method,
compared with that from the variational method, and from the overlap fermion with the
SEB method.

As shown in the plot, the result is significantly lowered from the variational calculation
by ∼ 300MeV, but is still higher than the overlap calculation by ∼ 250MeV. The latter is
supposedly due to the difference in fermion action. To investigate the possible contributions
to the former difference, let us turn our attention to the Roper wave function.

As reported by multiple groups [43, 44], the Roper wave function has a node at ∼ 0.8 fm
radius as shown in Figure 6.3. And also recall that with the variational method, smeared
sources/sinks with multiple smear sizes are used to construct the variational matrix. It is
then vital to have an appropriate set of sources/sinks, to have reasonable overlap with the
Roper state. Given that the only difference between the Roper and nucleon wave function
is the node, it is natural to require that at least some of the smear sizes should be large
enough to cover this important feature. If the smear size is not large enough, it may be
more likely to couple to the 3S state of nucleon, whose first node is at smaller radius than
Roper, and therefore results in a higher mass in variational method.

To illustrate this statement, we apply the so-called Ground State Elimination (GSE)
method. Specifically, we recall that the lattice 2-point correlation functions are sum of
exponentials,

GNN(t) =
∑
n

cne
−Ent = c0e

−E0t + c1e
−E1t + · · ·

If we calculate two correlation functions from different operators, we acquire Ga(t) and
Gb(t) with different set of coefficients ca0 , ca1 , …and cb0 , cb1 , …Then there must exist a
number A, such that

AGa(t) +Gb(t) = (Aca1 + c
b
1)e

−E1t + (Aca2 + c
b
2)e

−E2t + · · · , (6.1)
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Figure 6.3: The Roper wave function, obtained by various groups.

i.e. the ground state vanishes with Aca0 + cb0 = 0. With this we can treat the first excited
state as the new ground state, and fit for its energy.

Utilizing this method, we arrive at Figure 6.4. In these figures, we compare the first
excited state obtained with the GSE method, but from operator with different size. In
Figure 6.4a, the result is obtained from two large sources, which have RMS radius ap-
proximately 0.63 fm and 0.86 fm. These sources are large enough to cover the node in
Roper’s radial wave function (note that these gaussian sources have a long tail at large
distance), and therefore the mass of first excited state as acquired with the GSE method
is at 1.736(28)GeV, which is compatible with what we extracted with the SEB method on
the same lattice. However, if we choose a point source and small source with RMS radius of
∼ 0.4 fm, as shown in Figure 6.4b, the mass of the first excited state raised to about 2GeV,
which is in the range of most variation results. This result reinforces our statement that
one may need to have at least a number of large sources in order to achieve a lower first
excited state mass with the variational method.

6.2 Result and Discussion

Equipped with this knowledge, a natural next step is to choose a set of operators including a
number of large smear sizes, and construct a variational matrix. We use the same anisotropic
clover lattice as used in the SEB study, with the smearing parameters shown in Table 6.1.
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(a) Result obtained from smeared sources with w = 7 and w = 11. The mass is fitted to be
1.736(28)GeV, which is compatible with the blue point in Figure 6.2.
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(b) Result obtained from a point source and a smeared source with w = 4. The mass is fitted to be
2.07(13)GeV, which is significantly higher than that in (a).

Figure 6.4: Correlation functions acquired with the GSE method. The 243×128 anisotropic
clover lattice with mπ = 396MeV is used. Effective mass is plotted on the left, and corre-
lation function on the right. The red points in the correlation function denote the portion
of data that is canceled.

40



CHAPTER 6. THE ROPER PUZZLE

Table 6.1: The smearing parameters used for our variation study.

w Iterations RMS radius (fm)
0 (point) 0 -

2 50 0.185

4 100 0.39

7 200 0.63

11 400 0.86
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Figure 6.5: Effective mass of the states extracted from the variation study. Some states are
painted faintly for clarity. The red horizontal line and band shows the fit on Roper mass.
Fitting result for the ground state is not drawn.

We inverted 761 configurations, on each of which we choose 36 time slices to place the source,
resulting in 27396 measurements in total. Spatially the sources are randomly placed.

Result of this calculation is plotted in Figure 6.5. Interestingly, the Roper mass obtained
from small operators and large operators are significantly different, at 2.19(11)GeV and
1.92(6)GeV. More importantly, the former result is compatible with the JLab result, while
the latter with our result obtained with the SEB method. This confirms our statement that
in order to acquire a lower Roper mass, large operators should be used to cover the node
in Roper’s radial wave function. However, we should also point out that the clover lattice
used by JLab differs with the one we use in volume, whose effect is unknown at this point.

However, this does not explain the discrepancy between the result from overlap fermion
with SEB and CSSM result near the physical point. It is argued that the low Roper mass
could be due to meson-baryon interaction. This is motivated in the framework of the so-
called JLMS model [45], which models effective vertices such as meson-baryon-N∗. It is
found that a bare state at 1736MeV in the P11 channel evolves into a pole at 1364MeV and
another at 1820MeV, corresponding to Roper and N∗(1710), respectively, due to meson-
baryon interaction [46]. It is possible that the strength of these meson cloud effects differs
between overlap and clover fermion, and may be an a2 effect.
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Figure 6.6: Result compared to other studies.

More importantly, it can be argued that the mass of Roper is sensitive to chiral sym-
metry. It is shown that in the framework of SU(6) relativistic quark model, the Roper
is heavier than the lightest state in the parity-odd channel. In order to achieve parity
reversal, the hyperfine interaction should be flavor-dependent, and the best candidate for
such an interaction is a Goldstone-boson exchange, as a result of spontaneous chiral sym-
metry breaking [47, 36]. It is very much likely that the Roper mass calculated with the
overlap fermion is much lower than other results, because the overlap fermion satisfies the
Ginsparg-Wilson relation at finite lattice spacing, while Wilson-type fermion actions only
restore chiral symmetry at a → 0. It is not unusual that we observe different behavior of
this kind between chiral fermions and non-chiral fermions. In the quenched era, ghost states
were seen in scalar two-point functions, which were results of the so-called “quenched chiral
loops” [48]. Its effect is most pronounced with chiral fermions such as the overlap fermion.
For example, with the overlap fermion, η ′π and η ′N ghost states have been reported on
lattices with spacing as large as 0.2 fm [36, 49], while they can only be seen on much finer
(a < 0.06 fm) Wilson lattices. In a recent variational study on clover fermion [50], ex-
plicit Nπ and Nππ interpolation fields are included in a variational calculation. Although
N(0)π(0)π(0) and N(1)π(−1) states were found, the Roper mass still appears high. The
authors conclude that the Roper is sensitive to the dynamics of the system, and good cou-
pling to multi-hadron states such as Nπ is essential to the creation of the Roper resonance.
We postulate that with chiral fermion actions such as the overlap, such multi-hadron states
are more readily created dynamically with only the nucleon interpolation field, and thus
bring down the Roper mass; as opposed to with Wilson-type fermions, one has to explicitly
include the multi-hadron interpolation fields.
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CHAPTER 6. THE ROPER PUZZLE

6.3 Conclusion and Future Works

We have investigated the the Roper mass puzzle in lattice QCD, and discussed the mech-
anism with which the choice of operators and preservation of chiral symmetry can affect
the mass of Roper. We found that with a careful choice of operators, the Roper mass can
be brought down by ∼ 300MeV , and can be further lowered by using a chiral fermion. A
natural next step is to take all these factors into account in one calculation, by performing
a variational study using overlap fermion and a suitable set of operators, and check if the
result would be compatible with the SEB result with overlap fermion in Figure 6.1b.
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Chapter 7

Summary and Outlook

We have utilized lattice QCD as a first principle framework to study hadronic properties. A
number of numerical techniques are established to improve the signal. We have used overlap
fermion on top of domain wall configurations to calculate the disconnected contribution
to the momentum fraction carried by quarks in the nucleon for u, d, and s quark. We
calculate both the 3-point and 2-point correlation function on three lattices with different
pion masses, spacings, and volumes, and take ratio to extract the momentum fraction. The
values are then renormalized, and extrapolated to physical pion mass, large volume, and
continuum limit. Our result is found to be consistent with smaller error than the global
analysis, and we suggest that it to be used to further constrain the global analysis. However,
there is still work to be done on this topic. The 483×96 lattice we use in this study is at the
physical pion mass, and with large volume. Improvement on the statistics of this lattice is
much needed to further shrink the error. Furthermore, similar to ⟨x⟩, the second moment
⟨x2⟩ has no direct experimental measurements, and input from lattice QCD calculations is
appreciated to constrain its value.

We have also investigated the Roper mass puzzle, and the discrepancy of the Roper
mass among lattice calculations. Results from the Roper wave function study and the
GSE method hint that care must be taken when choosing the size of the quark source.
Calculation is then done with a clover lattice and the Roper mass is extracted with the
variation method, which shows that with the appropriate smear sizes, result obtained this
way is consistent with a previous calculation using a similar clover lattice, and the SEB
fitting method. However, this result is still higher than the previous overlap result with
the SEB method, which, when extrapolated to the physical pion mass, is consistent with
the experimental value. We theorize that the difference is due to the distinct choice of
fermion action, and that the Roper is sensitive to chiral symmetry. A further calculation
with overlap fermion and the variation method is proposed to finally settle the discrepancy,
and resolve the puzzle.
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