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ABSTRACT OF DISSERTATION 

 

DEEP SLEEP, COGNITION, BODY WEIGHT, BODY TEMPERATURE, AND 
BEHAVIORAL DISTRESS RESPONSES TO NEW ONSET PSYCHOSOCIAL 

STRESSORS ARE BLUNTED WITH AGE IN MALE F344 RATS 

Complaints associated with aging, including cognitive deficits and sleep loss, are 
highly prevalent and negatively impact quality of life. Further, with increased age, 
humans are also more likely to experience new-onset psychosocial stressors, 
such as divorce, loss of a spouse, and social isolation. Stress has detrimental 
consequences that in many ways parallel the effects of aging on sleep and 
cognition. The long-standing stress/ glucocorticoid hypotheses of brain aging 
posit that stress exposure exacerbates aging symptoms, and extensive prior 
studies have shown that early life stress exposure does worsen phenotypic aging 
symptoms. However, despite its prevalence in aged humans, little basic research 
has investigated the response of aged subjects to new-onset psychosocial 
stress. Prior work in our lab showed aged rodents to be hyporesponsive to a 
new-onset acute psychosocial stress. Here, we assess the age-course of this 
acute response, as well as evaluate the consequences of chronic psychosocial 
stress exposure in aged animals. Our lab tested two hypotheses. First, we 
hypothesized that mid-aged animals will have an intermediate response between 
young and aged to acute psychosocial stress. Second, we hypothesized that 
aged animals’ will continue to be hyporesponsive during a chronic psychosocial 
stress.  

We focused on mid-aged animals for our first study because this age-point 
serves as the transition period from young to aged and could hold some key 
information about the transition from healthy to unhealthy brain aging. We used 
restraints to induce stress, the Morris water maze to test cognitive function, and 
telemetry devices to characterize sleep architecture and body temperature. We 
showed that, among age-related acute stress hyposensitive findings (deep sleep 
loss, hyperthermia, and cognitive deficit), mid-aged animals were 
hyporesponsive to sleep, but not body temperature or maze performance. This 
suggests that the failure to manifest a sleep response to stress precedes 
cognitive and body temperature related stress insensitivity.  



In our second study, we investigated the influence of new-onset chronic 
psychosocial stress (three hours per day, four days per week for one month) in 
young and aged rodents. Aged animals were hyporesponsive to multiple 
common indicators of stress including distress during the restraint, weight loss, 
and cognitive deficits, all of which were easily detectable in young animals. 
These results suggest that the age-related blunting of the stress response is 
sustained from acute to chronic exposures. While the hyporesponsiveness may 
seem advantageous in the aged, a failed response could also be maladaptive, 
reducing a subject’s ability to compensate for a changing environment. Together, 
this work supports prior observations that stress exposure makes young animals 
more aged like. Aged animals also showed a more limited response to stress, 
suggesting that age itself may act as an occluding stressor. Finally, this work 
points to deep sleep promoting interventions as potential therapeutic strategies 
for managing age-related changes in stress response.   

 

KEYWORDS: Aging, Psychosocial Stress, Cognition, Sleep Architecture 
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Chapter 1 Thesis Overview and Significance 

1.1 Aging 

Aging is a chronic condition that involves multiple systems and impacts most 

species. Common ailments associated with normal aging include cognitive 

decline (Barnes, 1988; Barrientos et al., 2010; Klempin and Kempermann, 2007; 

Miller and O'Callaghan, 2005; West, 1993; Wimmer et al., 2012), altered sleep 

architecture (Bixler et al., 1984; Buechel et al., 2011; Ehlers and Kupfer, 1989; 

Espiritu, 2008; Foley et al., 1995; Hayashi and Endo, 1982; Kirov and Moyanova, 

2002; Zepelin et al., 1972), and increased neuroinflammation (Godbout et al., 

2005; Ownby, 2010). In humans, prevalence of neurodegenerative disorders, 

such as Alzheimer’s disease (AD) is increased, leading to a poor quality of life 

and, often, eventually forcing them into assisted living facilities.   

 

However, not everyone is susceptible to the negative consequences associated 

with aging and instead experience “successful aging.” There are three factors 

that describe “successful aging”: low probability of developing disease, high 

cognitive and physical function, and active engagement with society (Rowe and 

Kahn, 1997). It has been argued that a healthy diet (Fontana et al., 2010), 

exercise (Cotman and Berchtold, 2002; Hillman et al., 2008; Pedersen and 

Hoffman-Goetz, 2000; Penedo and Dahn, 2005), and cognitive stimulation 

(Nithianantharajah and Hannan, 2009; Whalley et al., 2004) contribute to 

successful aging.  
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1.2 Brain Aging  

The brain plays a key role in regulating several functions in the body, such as 

cognition and memory, the physiological stress response, and sleep (McEwen, 

2007; Walker and Stickgold, 2006). Because this organ is crucial to everyday 

function, it has been the center of a multitude of studies, especially relating to 

aging, trauma, and neurodegenerative diseases. Like other systems in the body, 

the brain is affected by aging and this can cause the aged human population to 

have a poorer quality of life including the need to move into an assisted living 

facility.  Consequently, there have been many hypotheses that have explored the 

effects of aging on the brain, such as the calcium dysregulation, allostatic load, 

and glucocorticoid hypotheses.   

1.2.1 Calcium Dysregulation Hypothesis  

There are several theories to explain brain aging and in particular, unhealthy 

brain aging. One of the earlier lines of thinking proposed calcium dysregulation 

as a proponent for brain aging (Disterhoft et al., 1994; Gibson and Peterson, 

1987; Khachaturian, 1989; Landfield and Pitler, 1984). One thing researchers 

observed was increased calcium influx in neurons via voltage-gated calcium 

channels (Moyer and Disterhoft, 1994; Pitler and Landfield, 1990; Thibault and 

Landfield, 1996), causing a surge in  intracellular calcium concentrations and 

leading to prolonged afterhyperpolarizations (Landfield and Eldridge, 1994a; 

Landfield and Pitler, 1984) and increased long term depression (LTD) (Foster 

and Norris, 1997; Landfield, 1987b; Landfield and Pitler, 1984; Norris et al., 1998; 
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Norris et al., 1996). Later, it was noted that ryanodine receptors in the brain 

appeared to work in conjunction with voltage-gated calcium channels, and both 

contributed to aging-related calcium dysregulation (Thibault et al., 2007). 

Normally, ryanodine receptors activate calcium-induced calcium release from the 

endoplasmic reticulum via physical interaction with voltage-gated calcium 

channels (Blaustein, 1988; Giannini et al., 1995; Kostyuk and Verkhratsky, 1994). 

It appears that aging results in enhanced calcium-induced calcium release from 

ryanodine receptors and together with the voltage-gated calcium channels cause 

calcium dysregulation (Thibault et al., 2007).  

 

In the hippocampus, long-term potentiation (LTP) and long-term depression 

(LTD) are involved in synaptic plasticity (Bliss and Collingridge, 1993). The 

concept of synaptic plasticity was first introduced by D. O. Hebb in 1949 when he 

hypothesized a mechanism for the formation of memories. In his hypothesis he 

states, “When an axon of cell A is near enough to excite a cell B and repeatedly 

or persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A’s efficiency, as one of the cells firing 

B, is increased (Viana Di Prisco, 1984).” LTP was first observed in the 

hippocampus (Bliss and Lomo, 1973) and was discovered to contribute to 

synaptic plasticity via the pairing of pre- and post-synaptic activity and increased 

synaptic excitability (Bear and Malenka, 1994; Martin et al., 2000; Thompson, 

1986). Mechanistically, LTP occurs by when glutamate is released from 
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presynaptic terminals and to N-methyl-D-aspartate receptors (NMDA-R), causing 

depolarization of the postsynaptic membrane and the consequent influx of 

calcium via the postsynaptic membrane (Bear, 1996). Complementing LTP is 

LTD, which has been implicated in the storage of information via NMDA-R 

activation and an increase in intracellular calcium concentration (Bear, 1996).  

 

Both of these are also altered in aging and neurodegenerative diseases. It has 

been shown that there is an increase in LTP decay and increased LTD induction 

in the aged hippocampus (Foster and Norris, 1997; Norris et al., 1996). Among 

other things, calcium influx is required for LTD induction (Mulkey and Malenka, 

1992), but too much can lead to excitotoxicity. Specifically, the increased NMDA-

R activation from prolonged glutamate exposure and consequently, increased 

concentration of intracellular calcium from NMDA-Rs and voltage-gated calcium 

channels can result in neuronal death (Norris et al., 2006).  

 

The rise in calcium seen in aging could be explained by an increase in the 

density of the voltage-gated calcium channels (Thibault and Landfield, 1996). 

These channels have been shown to be positively correlated with deficits in 

cognition in aged animals (Thibault and Landfield, 1996). Also, the introduction of 

an antagonist specific to these channels improved cognition in impaired aged 

animals (Deyo et al., 1989; Disterhoft et al., 2004; Wu et al., 2002), supporting 

their role in age-related cognitive changes.   
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1.2.2 Allostatic Load/ Glucocorticoid Hypothesis 

Two other closely related hypotheses are the allostatic load and glucocorticoid 

hypotheses. These describe the accumulation of repeated activation of the 

hypothalamic-pituitary-adrenal (HPA) axis as a result of the body trying to 

maintain allostasis (McEwen, 1998b; McEwen, 2001; McEwen and Stellar, 1993; 

Sapolsky et al., 1986b) in a stressful environment. Acute stress can transiently 

elevate glucocorticoids (Kirschbaum et al., 1996; McEwen and Sapolsky, 1995), 

but long-lasting problems, such as obesity (Epel et al., 2001), cardiovascular 

disease (Bjorntorp, 1990; Brindley and Rolland, 1989; Lupien et al., 1998; 

Sapolsky et al., 1986b; Troxler et al., 1977), and type 2 diabetes (Bjorntorp, 

1990; Brindley and Rolland, 1989) are associated with chronic and/ or repeated 

elevation of glucocorticoids. Eventually, hippocampal damage (Lupien et al., 

1998; McEwen et al., 1999; Sapolsky et al., 1990), cognitive impairment (Dellu et 

al., 1994; Martignoni et al., 1992), and brain aging (Landfield, 1987c; Landfield et 

al., 1978; Sapolsky et al., 1985) can accelerate brain aging from sustained 

glucocorticoid levels.  

 

The glucocorticoid hypothesis of brain aging mechanistically describes the 

allostatic load hypothesis and posits that chronic exposure to glucocorticoids 

promotes brain aging (Landfield, 1978; Porter and Landfield, 1998). This was 

developed based on early studies and observations of glucocorticoid actions in 

peripheral tissues that mimicked aging (Finch, 1972; Wexler and McMurtry, 
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1983). It was also shown that glucocorticoid receptors are prominently expressed 

in the hippocampus (de Kloet et al., 1990; Joels and de Kloet, 1992; McEwen et 

al., 1968) and participate in the regulation of the stress response (Sapolsky et al., 

1986a; Tsigos and Chrousos, 2002; Wolf, 2003). Over time, the hypothesis was 

modified: aging could increase or decrease glucocorticoid efficacy depending on 

the cell type (Landfield et al., 2007). For my studies, I suspected that aging 

decreased glucocorticoid efficacy because the aged animals in a prior acute 

stress study (Buechel et al., 2014) were hyporesponsive to acute stress. This 

blunted response suggested, to me, that the aged animals had difficulty utilizing 

glucocorticoids to mount a response similar to a classic stress response (Section 

1.5) that is more commonly seen when faced with an acute stressor.   

1.3 Rodent Cognition Model 

There are several models used to test cognition, including delayed match to 

sample, active avoidance, and the Morris water maze. In a delayed match to 

sample task, the subject (animal or human) is trained to either press a lever or 

match pictures that were previously displayed. Correct responses are rewarded 

and incorrect responses result in a “time out” and no reward (Dunnett, 1985; 

Schon et al., 2004; Tagamets and Horwitz, 1998). Typically, the percentage of 

successful trials declines to chance as the time delay between first presentation 

and second match presentation increase. Correctly responding after longer 

delays is associated with improved hippocampal function. This has been shown 

with fMRI imaging and implicates the parahippocampal gyrus in participating in 
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the maintenance of the memory trace during the delay phase. The activity of this 

region during the delay phase positively correlates with long-term memory. 

(Schon et al., 2004).  

 

Active avoidance involves placing the animal in a brightly lit “holding” chamber. 

At time “0” a door opens to a darker room in the chamber and when the animals 

escape to that room, they receive a foot shock. To test cognition, the animals 

repeat the task the next day, however there is no foot shock. Shorter latencies to 

escape the darker room (avoidance) are considered form of memory (Freeman 

and Young, 2000; Li et al., 2004; Nabeshima et al., 1990; Zarrindast et al., 2002).  

 

The Morris water maze involves training the animal to find a submerged platform 

by using external cues (Morris, 1984) and has been extensively used in aging 

studies (Carter et al., 2009; Frick et al., 2003; Latimer et al., 2014; Ma et al., 

2014; van Praag et al., 2005; Yau et al., 2002; Zyzak et al., 1995). This task 

allows for manipulations, such as drugs (Forcelli et al., 2012; Ishida et al., 2007; 

Niyuhire et al., 2007; Pedraza et al., 2009; Yamazaki et al., 1995), stress 

(Buechel et al., 2014; Markham et al., 2010; McKim et al., 2016; Woodson et al., 

2003), exercise (Ben et al., 2010; Fordyce and Wehner, 1993; Lee et al., 2012; 

van Praag et al., 2005), etc. Using distal cues to spatially map the location of the 

hidden platform is considered a hippocampus-dependent task. While other 

cognitive assessments such as delayed match to sample and active avoidance 
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are valid and used quite often, we chose a method that was consistent with 

previous studies in our lab. Also, a task similar to delayed match to sample 

requires a long period of time to train the animals as well as food deprivation to 

motivate the animals’ performance. Food deprivation can be considered as an 

additional stressor and we therefore chose the water maze. For our purposes, we 

use a locally cued task to assess the ability of the animals to learn and swim as 

well as a spatially cued task to assess the effects of stress on young, mid-aged, 

and aged animals’ cognition.  

1.4 Role of the Hippocampus 

The hippocampus is part of the limbic system and is described, in humans, as a 

curved structure resembling a seahorse (Andersen, 2007; O'keefe and Nadel, 

1978). In addition to the hippocampus, the limbic system includes the amygdala, 

hypothalamus, septal nuclei, epithalamus, and anterior thalamic nuclei (Mega et 

al., 1997). The limbic system is involved in processing emotion (Mega et al., 

1997) and memory (O'keefe and Nadel, 1978).  

 

One of the roles of the hippocampus is the consolidation of memory, in particular, 

short-term and spatial memory (Bird and Burgess, 2008). The hippocampus has 

been widely researched, but one of the more famous studies involved a patient 

referred to as “Patient H.M.” He was thoroughly studied after he underwent a 

bilateral medial temporal-lobe resection in an attempt to cure epilepsy (Scoville 

and Milner, 1957). As a result, he suffered from severe memory defects and was 
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unable to form new, episodic memory and could not remember anything 

immediately prior to the surgery, despite maintaining the ability to recall 

childhood memories. Around the same time period, other patients diagnosed with 

psychiatric disorders unable to be ameliorated with conservative treatments had 

similar operations with comparable memory defects varying in the degree of 

severity, depending on the length of the resection. These were compared to 

other cases where the temporal neocortex was unilaterally lesioned to treat 

temporal epilepsy and resulted in no memory defects (Milner, 1954). This served 

as early evidence for the role the hippocampus played in memory consolidation 

(Scoville and Milner, 1957). Together with extensive aging studies later on in 

human and animal models, the hippocampus was discovered to not only be 

important in memory, but was also a target for age-related memory deficits, as 

previously discussed. Furthermore, it also appeared to play a central role in 

regulating hypothalamic-pituitary-adrenal axis activity during a physiological 

stress response.  

1.5 Stress and Hypothalamic-Pituitary-Adrenal Axis 

The idea of stress dates back to the era of the great philosophers, such as 

Hippocrates, who expanded on Empedocles’ theory (Chrousos et al., 2013) of all 

matter existing in a state of harmonious balance (now termed “homeostasis”). 

Hippocrates described the harmonious balance as a state of health, while 

disharmony was considered as a state of disease (Chrousos et al., 2013). Walter 

Bradford Cannon was the first person to describe the term homeostasis and coin 
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the phrase “fight or flight” which described an animal’s ability to prepare to fight 

or flee because of the activation of the sympathetic nervous system in response 

to an exogenous stressor (Fink, 2009).  

 

Hans Selye was the first person to provide a clear definition of stress and 

developed the term “heterostasis” to describe how the body adapts to stress; this 

is thought to be an early idea of the concept of allostasis (Fink, 2009; Selye, 

2013). Selye brought stress to the forefront of research and decades later, we 

have a clearer idea of the underlying mechanisms involved in a stress response. 

A couple of things occur when a stressor is introduced: the first response is the 

activation of the autonomic nervous system to release epinephrine and 

norepinephrine within seconds (Sapolsky et al., 2000; Wolf, 2003). The second 

response is slower and involves the production of glucocorticoids (Wolf, 2003). 

Both responses are driven by the hypothalamic-pituitary-adrenal (HPA) axis, 

however glucocorticoid action is the focus for our lab because a sustained 

increase in glucocorticoids in the hippocampus have been implicated in aging-

related cognitive deficits. When this axis is activated (Fig. 1), corticotrophin 

releasing factor (CRH) is released from the paraventricular nucleus in the 

hypothalamus and binds to CRH receptors in the pituitary gland. From there, 

ACTH is released and travels to the adrenal gland, binds, and releases 

glucocorticoids (Sapolsky et al., 1986a; Tsigos and Chrousos, 2002; Wolf, 2003) 

in systemic circulation. Glucocorticoids are lipophilic and therefore have the  
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Figure 1. Stress Response 

  

Figure 1. Stress response When a stressor is encountered, the hypothalamus 
releases corticotropin releasing factor where it binds in the anterior pituitary to 
release ACTH. The ACTH travels to the adrenal cortex, which releases 
glucocorticoids into the circulating bloodstream. Some of those glucocorticoids 
travel back to the hippocampus where they bind to mineralocorticoid and 
glucocorticoid receptors to trigger a negative feedback loop to shut down the 
stress response. 
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ability to cross the blood-brain-barrier in order to bind to receptors in the brain, 

predominantly in the hippocampus (Joels and de Kloet, 1992; McEwen, 1999; 

McEwen et al., 1992; Wolf, 2003). There are two receptors that bind 

glucocorticoids: mineralocorticoid receptors (MRs) and glucocorticoid receptors 

(GRs). These are nuclear receptors with a 94% sequence homology in the DNA 

binding domain (de Kloet et al., 1990). MRs have a 6- 10 fold greater binding 

affinity for glucocorticoids compared to GRs and typically bind glucocorticoids at 

basal levels (de Kloet et al., 1990; De Kloet et al., 1998; Reul and de Kloet, 1985; 

Reul et al., 1987; Srivareerat et al., 2009). During a response to a stressful 

stimulus, the elevation of glucocorticoids will result in the binding to the lower 

affinity glucocorticoid receptors (Windle et al., 1998) once the mineralocorticoid 

receptors have been occupied. One of the roles of glucocorticoids is to convert 

fatty acids into energy (Sapolsky et al., 2000) and prime the body to either fight 

the cause of the stress or retreat. In a normal stress response, glucocorticoids 

released from the adrenal cortex travel and bind to glucocorticoid receptors in the 

hippocampus to trigger negative feedback, shutting down the HPA axis (Wolf, 

2003), hence signaling the resolution of the stress. 

1.6 Psychosocial Stress 

Because stress is such a large field of study and almost any stimulus can be 

considered a stressor, it is helpful to narrow the scope and define the specific 

type of stress our lab studies. Our lab studies psychosocial stress or stress 

caused by a non-noxious stimulus (Fink, 2009). In humans, examples of this 
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would include divorce, loss of a loved one, or social isolation. The onset of 

psychosocial stress can occur at any point in an individual’s life, but often occurs 

later in life, and more often presents as a chronic stressor. Failure of the 

physiological response to resolve the stress (McEwen, 1998a) can also cause a 

normally acute stressor to become chronic and can have significant negative 

effects on the body. Combined with the existing consequences of aging, it is 

reasonable to deduce chronic stress to have the potential to lead to worsened 

health outcomes in the aging population.  

 

The literature shows acute psychosocial stress can be both beneficial (McGaugh 

and Roozendaal, 2002; Roozendaal and McGaugh, 1996; Sandi and Rose, 

1997) and detrimental (de Quervain et al., 1998; de Quervain et al., 2000; 

Diamond et al., 1999; Kirschbaum et al., 1996; Newcomer et al., 1994; 

Newcomer et al., 1999) to young subjects’ cognition, depending on the time the 

stress occurred in reference to learning or recall. Some studies show stress can 

facilitate learning if the stress is encountered immediately following the training 

(Wolf, 2003). On the other hand, other studies have shown worsened spatial 

memory when the stress occurred immediately prior to a memory recall test 

(Buechel et al., 2014; de Quervain et al., 1998; de Quervain et al., 2000). 

 

While HPA axis activation during acute stress can be beneficial and is necessary 

for survival (Tsigos and Chrousos, 2002), activation from chronic stress can be 
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harmful to an individual. The increased HPA response associated with chronic 

stress is a risk factor for diabetes (Brindley and Rolland, 1989), increased 

adiposity (Tsigos and Chrousos, 2002), and impaired cognition (Wolf, 2003). In 

the brain, chronic stress has also been shown to decrease neurogenesis (Gould 

et al., 1997; Pham et al., 2003) and hippocampal volume (McEwen, 2000b) as 

well as to decrease the survival of newly proliferated neurons (Heine et al., 2004; 

Malberg and Duman, 2003; Vollmayr et al., 2003).  

1.7 Rodent Stress Model 

Humans and nonhuman primates have a highly developed prefrontal cortex, 

giving them the ability to “learn across time,” or anticipate particular outcomes 

based on previous experiences (Asaad et al., 1998). Evolutionarily, this can be 

advantageous because humans and nonhuman primates can quickly adapt new 

strategies to handle stressors based on previous outcomes with the same or 

similar stress (Modirrousta and Fellows, 2008). While rodents have been shown 

to have a prefrontal cortex, it is not as evolved (Ongur and Price, 2000; Uylings 

et al., 2003) and researchers must find alternative means to simulate a chronic 

psychosocial stressor. There are several methods to stress rodents, but for our 

purposes, we require a stressor that would be considered a non-noxious 

stressor. Our lab chose restraint stress, a widely used method of psychosocial 

stress (Buynitsky and Mostofsky, 2009; Luine et al., 1994; McEwen, 1999). 

Although there are other ways to model psychosocial stress, such as strobe light 

(Kapoor et al., 2009; Leonhardt et al., 2007) or water avoidance (Bradesi et al., 
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2005; Santos et al., 2000), we have previously used restraint stress (Buechel et 

al., 2014) and chose to be consistent with those prior studies.  

1.8 Sleep 

1.8.1 Definition and Sleep Architecture 

Sleep can broadly be defined as a decrease in the response to stimuli and 

voluntary motor activity (Fuller et al., 2006). It also has several different roles 

including memory processing (Kushida, 2012; Marshall and Born, 2007; 

Sejnowski and Destexhe, 2000; Tononi and Cirelli, 2006, 2012; Walker, 2009), 

energy conservation (Berger and Phillips, 1995; Walker and Berger, 1980), 

metabolism (Leproult and Van Cauter, 2010; Spiegel et al., 1999) and physical 

restoration (Adam and Oswald, 1977; Kushida, 2012). In humans, there are two 

broad categories of sleep: non-rapid eye movement (NREM) and rapid eye 

movement (REM). NREM can be further separated into light sleep (NREM stages 

1-2) and deep sleep (NREM stages 3-4). During a typical night, a person will 

oscillate between light, deep, and REM sleep with the duration of deep sleep 

decreasing as the night progresses while the inverse is true of REM (Kryger et 

al., 2004; Kushida, 2012; Tononi and Cirelli, 2003). 

 

Polysomnographic recordings of sleep indicate light sleep, in humans, consists of 

the transition of beta and gamma waves to the lower frequency theta waves as 

well as decreased muscle tone and slow eye movement (Fuller et al., 2006; 

Mendelson, 2012; Stickgold and Walker, 2010). In NREM 1, a person can be 
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easily awakened (Kushida, 2012). NREM 2 is characterized by the appearance 

of sleep spindles and K-complexes (Fuller et al., 2006; Kushida, 2012) and the 

loss of awareness (Fuller et al., 2006). It is thought that sleep spindles (sudden 

increase in wave frequency) and K complexes (sudden increase in wave 

amplitude) play a role in information processing and memory consolidation via 

thalamic and cortical neuron interaction (Fogel and Smith, 2011). 

 

Deep sleep is dominated by delta waves (Kushida, 2012; Stickgold and Walker, 

2010) and a person is not easily aroused from this stage (Kushida, 2012). During 

this stage, muscle activity, eye movement, respiratory and heart rates, and blood 

pressure are all decreased (Kushida, 2012; Stickgold and Walker, 2010). The 

appearance of spindles and K complexes are significantly less in this stage 

compared to NREM 2 (De Gennaro and Ferrara, 2003; Fogel and Smith, 2011).   

 

REM is characterized by rapid eye movement, muscle atonia, and is enriched in 

theta waves, often described as ‘desynchronized’ sleep (Fuller et al., 2006; 

Kushida, 2012; Stickgold and Walker, 2010). In humans, REM oscillates every 

90-110 minutes and is prominent in the last one-third of sleep (Kushida, 2012). 

Memory consolidation does occur during REM, especially for procedural memory 

(Marshall and Born, 2007; Siegel, 2001). 
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1.8.2 Deep Sleep and Significance 

On an EEG recording, deep sleep can be detected by the prevalence of delta 

waves (Kushida, 2012; Stickgold and Walker, 2010) and is thought to occur when 

there are synchronized oscillations between the thalamus and the neocortex 

(Steriade, 2003b). Deep sleep plays an important role in macromolecular 

biosynthesis (Mackiewicz et al., 2007; Mackiewicz et al., 2009), the release of 

growth hormones (Steiger, 2006; Suchecki and Tufik, 2006), and learning and 

memory consolidation (Marshall et al., 2006; Marshall and Born, 2007; Stickgold, 

2005; Tononi and Cirelli, 2006). It has also been shown that people with a 

reduced amount of deep sleep have increased insulin resistance and elevated 

risk of type 2 diabetes (Kawakami et al., 2004; Tasali et al., 2008).  

 

In regards to learning and memory, there are three main processes in the 

formation of a memory: encoding, consolidation, and retrieving. During the 

encoding phase, information is taken in from the animals’ interaction with their 

environment during the wakeful periods (Tononi and Cirelli, 2003), creating a 

memory trace. Mechanistically, learning has been shown to increase gene 

expression associated with LTP, resulting in the strengthening of synaptic 

neurons and hence, the synaptic weight (Knott et al., 2002; Silva, 2003; Sjostrom 

et al., 2001; Tononi and Cirelli, 2003). Lending more credence to this idea is the 

evidence that LTP-related gene expression is decreased during sleep (Cirelli and 

Tononi, 2000b; Tononi and Cirelli, 2003). It is thought that this increase in 
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synaptic weight increases the propensity for sleep and is in line with an 

established fact that deep sleep duration is proportional to the duration of wake 

from the previous day (Borbely, 2001; Tononi and Cirelli, 2003).  

 

Consolidation of a memory trace involves the stabilization and storage of the 

trace. Deep sleep, or slow wave activity, is described as a slow oscillation 

consisting of a de-polarized up-phase where the neurons are rapidly firing and a 

hyperpolarized down-phase where the neurons are quiescent (Steriade, 2003a).  

This stage of sleep is thought to relieve the synaptic weight of all synapses by 

transferring the information to the neocortex for processing and storage (Mander 

et al., 2011; Maquet et al., 2003; Tononi and Cirelli, 2003; Van Der Werf et al., 

2009) and there is a lot of evidence to support this idea. Comparative studies of 

the upregulation/downregulation of genes during wakefulness and deep sleep 

show a selective downregulation of LTP-related genes during NREM as well as a 

selective upregulation in molecules involved in depotentiation during the same 

period (Cirelli et al., 2004; Cirelli and Tononi, 2000a).  

 

Finally, retrieval is the act of recalling the stored information (Rasch and Born, 

2013). Researchers have shown that the hippocampus is involved in retrieval, 

though the signaling may be different than in acquisition and consolidation. For 

the latter and former, the NMDA receptor, PKA, and PKC have played role (Abel 

and Lattal, 2001; Goosens et al., 2000; Steele and Morris, 1999). Unfortunately, 
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the exact mechanism is still being investigated, however, it has been 

demonstrated that glucocorticoid exposure can impair retrieval depending on the 

timing of exposure in relation to recall (Buechel et al., 2014; Roozendaal, 2002).       

1.8.3 Sleep with Age 

Just like several other systems in the body, age influences sleep. With increasing 

age, the amount of total sleep time (Siegel, 2003; Weitzman et al., 1982), REM 

(Ehlers and Kupfer, 1989; Weitzman et al., 1982), and deep sleep (Foley et al., 

1995; Siegel, 2003; Wolkove et al., 2007) decrease (Fig. 2). In exchange, there is 

an increase in wake and light sleep duration, as well as a circadian advance 

(Bliwise, 1993; Espiritu, 2008; Siegel, 2003). Other common sleep complaints 

include sleep fragmentation and increased daytime napping (Bliwise, 1993; 

Espiritu, 2008; Foley et al., 1995; Wolkove et al., 2007).  

1.8.4 Sleep and Neurodegenerative Diseases 

While augmented sleep architecture is a normal observation in elderly 

individuals, it is also common in neurodegenerative disorders, such as 

Alzheimer’s disease (AD), which frequently appear in older populations (Corder 

et al., 1993). Pathophysiologically, AD typically presents with Aβ plaques and 

neurofibrillary tangles (Dubois et al., 2010; Glenner and Wong, 1984; Hardy and 

Higgins, 1992; Katzman and Saitoh, 1991). Clinical symptoms of AD include 

memory and executive function impairments as well as apraxia and  
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Figure 2. Sleep Architecture of Young and Aged Human 

 

  

Figure 2. Sleep architecture of young and aged human. Top: Stages of sleep 
of young adult. Deep sleep dominates the first third of the night, while REM is 
increased during the last third of sleep. Bottom: Stages of sleep of elderly 
adult. The amount of deep sleep and REM is decreased and sleep 
fragmentation is present. 
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neuropsychiatric problems (irritability, apathy, etc) (Cummings, 2004; Dubois et 

al., 2010; Price et al., 1993). 

 

Interestingly, sleep disturbances are associated with both of these diseases, as 

well as other neurodegenerative diseases. Most of the disturbances (circadian 

advance, reduced total sleep time, sleep fragmentation) seen in normal aging 

also present in these diseases (Bombois et al., 2010; Culebras, 2007), but it 

appears the disease state plays a role in worsening sleep. For example, sleep-

wake disturbances are common in AD (Lavie et al., 2002; Malkani and Attarian, 

2015; Zhong et al., 2011). Melatonin has been documented to be an important 

regulator of circadian rhythms and the sleep-wake cycle (Arendt and Skene, 

2005; Srinivasan et al., 2005; Srinivasan et al., 2006). However, melatonin levels 

decline in normal aging (Bombois et al., 2010), but further decline with AD 

(Malkani and Attarian, 2015; Pandi-Perumal et al., 2005). This decrease can 

worsen the sleep disturbances and ultimately cognition in AD patients (Pandi-

Perumal et al., 2005).   

1.8.5 Rodent Sleep Model 

To examine sleep in our studies, we use F344 rats that are surgically implanted 

with wireless telemetry devices (DSI International). These devices detect and 

record EEG and EMG signals that aide us in the determination of the stage of 

sleep the rats were in during the recording period. With this information, we can 

analyze the impact stress has on the duration of each stage of sleep compared 
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to a baseline recording taken at the very end of the recovery period immediately 

prior to the commencement of the restraint protocol, as well as to control 

animals.  

 

Neuroscore software enables us to further analyze deep sleep power (quality) 

using a fast fourier transform that graphically displays the magnitude of 

frequencies within the EEG signal, hence allowing us to measure the change in 

magnitude stress has on the quality of deep sleep in young, mid-aged, and aged 

rodents.  

1.9 Thesis Significance  

Aging and stress have both been extensively studied as two separate entities 

and the negative consequences are well-documented. Cognitive decline, sleep 

architecture, and increased neuroinflammation have all been associated with 

aging. On the other hand, repeated or chronic exposure to stress can cause 

impaired cognition, decreased neurogenesis and eventually lead to obesity, 

metabolic syndrome, cardiovascular disease, and increased risk of infection or 

other long-term maladies. Increased prevalence of chronic psychosocial stress is 

also associated with aging, yet the influence of these stressors on an aged 

system has not been thoroughly investigated. This work was designed to tackle 

this very issue. The ability for the aging population to resolve, or at least cope 

with, these stressors could restore or preserve cognition and therefore delay the 

transition to assisted living facilities.  
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Secondly, this work studies the impact psychosocial stress has on deep sleep. 

Deep sleep plays a crucial role in learning and memory, but it is also thought to 

be a mechanism which helps restore the body to homeostasis after a stress 

period. Because it is nearly impossible to control the existence of exogenous 

stressors, this restoration likely is important in preventing permanent damage.    

 

To simulate stress, we restrained F344 male rats and documented signs of 

distress to create a distress index. Performance in the Morris water maze was 

used to assess the impact stress had on cognition. Wireless telemetry devices 

provided insights on body temperature and sleep architecture. Finally, 

corticosterone was analyzed to biochemically evaluate stress.  

 

This work was designed to bring together two naturally occurring and highly 

comorbid phenomena to hopefully better understand how they influence each 

other. Both are unavoidable and have the potential to have negative 

consequences. By understanding stress’s influence on aging and vice versa, we 

can hopefully improve the health and cognitive abilities of the aging population, 

as well as improve quality of life.   
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Chapter 2 Acute psychosocial stress in mid-aged male rats: restraint 

causes cognitive decline and hyperthermia, but does not alter sleep 

architecture (in review at Neurobiology of Aging) 

Authors: Kendra Hargis, Heather Buechel, Jelena Popovic, Eric Blalock 

Summary 

Aging is associated with altered sleep architecture and worsened hippocampus-

dependent cognition, highly prevalent clinical conditions detract from quality of 

life for the elderly. Interestingly, exposure to psychosocial stress causes similar 

responses in young subjects, suggesting that age itself may act as a stressor. In 

prior work we demonstrated that young animals show loss of deep sleep, deficits 

in cognition, and elevated body temperature after acute stress exposure, while 

aged animals are hyporesponsive on these three measures. However, it is 

unclear if these age-altered stress responses occur in parallel over the course of 

aging. To address this, here we repeated the experiment in mid-aged animals. 

We hypothesized that mid-aged stress responses would be intermediate 

between those of young and aged subjects. Sixteen mid-aged (12 mo) male 

F344 rats were implanted with EEG/EMG emitters to monitor sleep architecture 

and body temperature, and were trained on the Morris water maze for three 

days. On the fourth day, half of the subjects were restrained for three hours 

immediately prior to the water maze probe trial. Sleep architecture and body 

temperature were measured during the ensuing inactive period, and on the 

following day, end point measures were taken. Restrained mid-aged animals 

showed an aging-like resistance to deep sleep loss, but demonstrated young-like 
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stress-induced water maze probe trial performance deficits as well as post-

restraint hyperthermia. These data suggest that age-related loss of sleep-

architecture stress sensitivity may precede both cognitive and body temperature 

related stress insensitivity.  

2.1 Introduction  

There are several consequences of normal aging including cognitive decline 

(Barnes, 1988; Driscoll et al., 2006; Gallagher and Pelleymounter, 1988; Klempin 

and Kempermann, 2007; Wimmer et al., 2012), reduced deep sleep (Buechel et 

al., 2011; Espiritu, 2008; Kirov and Moyanova, 2002; Zepelin et al., 1972) altered 

circadian rhythm (Dijk et al., 2000; Monk, 2005; Pace-Schott and Spencer, 2011), 

and increased neuroinflammation (Gemma and Bickford, 2007; Nikodemova et 

al., 2007). Additionally, hypothalamic-pituitary-adrenal (HPA) activity has been 

documented to be increased with aging (Paul et al., 2015). Loss of deep sleep 

and deficits in hippocampal function are also observed with stress exposure 

(Prenderville et al., 2015). The allostatic load hypothesis of aging (McEwen and 

Stellar, 1993) posits that stress exposure has a cumulative and exacerbating 

influence on age-related processes. Several studies have shown that stress in 

young rodents and humans has long-lasting consequences throughout the 

lifespan (Lupien et al., 2009). Further, the chances of experiencing a new onset 

stressor, particularly a psychosocial (non-painful stressor such as losing a job, 

death of a spouse, or becoming socially isolated, increases with age (House et 

al., 1994) and the negative consequences of a stress exposure can be more 
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severe in the aged population (Azuma et al., 2015; Machado et al., 2014; 

Prenderville et al., 2015; Stein-Behrens and Sapolsky, 1992). However, the lack 

of basic research on the age-related responses to new onset stressors 

represents an important area of investigation and has recently been referred to 

as part of the ‘stress-aging gap’ (Epel and Lithgow, 2014).  

 

To address this, in prior work (Buechel et al., 2014), we used restraint to model 

of acute psychosocial stress in young and aged male F344 rats. This 

manipulation induces sleep loss, cognitive deficit, and body temperature 

elevation in young animals. However, the same treatment failed to elicit these 

canonical responses in aged animals, despite the aged animals showing clear 

signs of distress during the restraint. Whether these sleep, cognitive, and body 

temperature changes in stress response occur in parallel across aging is not 

known, and mid-age could represent a crucial transition period in the aging 

stress-response phenomenon. 

 

In this study, mid-aged male (12 mo) F344 rats were implanted with EEG/EMG 

telemetry devices to measure sleep architecture and body temperature. Effects 

on cognition were evaluated with the Morris water maze. Three hour restraint 

was used to model psychosocial stress in half of the animals. Middle-aged 

animals showed post-stress cognitive deficits and hyperthermia, but did not show 

stress-associated deep sleep loss. These results indicate that age-related stress 
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hypo-responsiveness begins to develop earlier for sleep response than for 

cognitive and body temperature responses, suggesting sleep alteration may be a 

critical upstream target for therapeutic manipulation in protecting against age-

related cognitive decline. 

2.2 Materials and Methods 

2.2.1 Subjects 

Sixteen middle-aged (12 mos) male Fischer 344 rats were obtained from the NIA 

aging colony. Animals were individually housed with enviro-dry bedding, rat 

tunnel and Nyla bone. They had access to food and water ad libitum and were 

acclimated to a 12 hour reverse light/dark cycle (4:30 AM lights off, 4:30 PM 

lights on). Two additional animals were excluded due to surgical complications. 

Rats were randomly assigned to control and stress groups. All experiments were 

performed in accordance with institutional and national guidelines and 

regulations, and conform to our approved protocol (University of Kentucky 

IACUC #2008-0347).  

2.2.2 Surgery 

All subjects were implanted according to standard procedures with wireless 

EEG/EMG emitters (Data Sciences International- TL11M2-F40-EET) as in prior 

work (Buechel et al., 2011; Buechel et al., 2014). Prior to surgery, EEG wires 

were cut to length and a sterile 1/8” stainless steel screw was soldered to the end 

of each lead. To begin surgery, animals were anesthetized with isoflurane and 

placed in a stereotaxic frame. A two-inch incision was made to expose the skull 
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and spinotrapezius muscles. The emitter was placed under the skin between the 

left scapulae and the left ileum along the flank. The exposed dorsal region of 

skull was cleaned with 3% peroxide and the skull surface dried with sterile cotton 

swabs soaked in 70% ethanol. For EEG electrodes, a 0.7 mm hole was drilled 1 

mm from either side of the sagittal suture line and 1–2 mm anterior to the lambda 

suture line. Screws were inserted into the holes and positioned so that the flat 

screw tip rested on the dura. Screw heads were covered with dental cement and 

left to dry. EMG electrodes were inserted through the trapezius muscle with a 21 

gauge needle, perpendicular to the muscle fibers. The free wire end was capped 

with insulation and both sides of the incision were tied off with surgical thread to 

prevent fluid infiltration. The incision was then closed with 6–8 mattress stitches. 

2.2.3 Sleep Data Acquisition and Analysis 

Sleep data was acquired according to established protocols in prior work 

(Buechel et al., 2014). Animals were housed individually and cages were 

positioned at least 18” apart to avoid interference during radiotelemetry data 

acquisition. EEG, EMG, and temperature data were recorded continuously with 

DSI's Data Art acquisition software and binned in 10 s epochs. For these 

nocturnal rodents, the first 4 h of their active period (dark) and the first 4 h of their 

resting period (light) were evaluated for sleep architecture on the day prior to the 

start of water maze training (baseline), and following the stress/probe trial 

paradigm. Architecture was scored using Neuroscore's (v. 2.1.0 Data Sciences 

International) analysis console in 30 s increments while being viewed in 2–5 min 
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windows. EEG waves were stratified into “low amplitude” (≤ 50% of maximum) 

and “high amplitude” (> 50% of maximum) tiers, and underwent fast Fourier 

transforms for each of 5 frequency ranges: Δ (0.5–4 Hz), Θ (4–8 Hz), A (8–12 

hz), Σ (12–16 Hz), and B (16–24 Hz). EMG waves were stratified into 3 tiers: 

“basal” ≤33% (seen during REM), “intermediate” (between 33 and 66%), and 

“high” (>66%). Stages based on EEG/EMG signaling were established as 

follows: Wake- intermediate or high EMG ± locomotor activity, EEG variable; 

Light Sleep- low amplitude EEG, intermediate EMG, and no locomotion; REM 

(paradoxical) Sleep- high frequency EEG, “basal” EMG and no locomotor activity; 

Deep Sleep- high amplitude EEG activity enriched in delta band frequency, basal 

to light EMG activity, no locomotor activity. Prior assigned sleep stages informed 

subsequent assignments. Ambiguous epochs, as well as those containing 

artifacts, were not scored and accounted for < 5% of scored time. 

2.2.4 Water Maze 

The water maze task was performed as in previous studies (Buechel et al., 2011; 

Buechel et al., 2014). A 190 cm diameter circular, black painted pool was 

centered (250 cm/side) in a cubicle of floor to ceiling black curtains, making the 

environment relatively neutral. High contrast black and white cues (90 × 90 cm- 

circle, triangle and vertical lines), were placed, one to each of three curtains 

facing the maze, 60 cm above the maze rim. Maze temperature was maintained 

at 26 ± 2°C. One quadrant contained a 15 cm diameter escape platform covered 

with black neoprene for improved traction. Illumination in the room was set at 3.6 
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to 3.8 lux and a Videomex-V water maze monitoring system (v. 4.64 Columbus 

Instrument) was used for analyses. All training and probe sessions took place 

between 12PM and 4PM (during the rats' active period). 

2.2.4.1 Visual Cue Training (pre-surgery) 

The visual cue task took place over 3 days. A Styrofoam cup served as an 

additional cue and was hung by a black thread 12 inches above the submerged 

platform. Rats were given 3-60s trials and 60s on the platform with 2 minute 

inter-trial intervals. On the third day, all rats could reach the platform in under 30s 

for 2/3 trials (criterion for this study). The spatial cues for the spatially cued task 

were already present during this task.  

2.2.4.2 Spatial Cue Training and Probe (post-surgery) 

After rats recovered from surgery (2 weeks), they performed a spatially cued task 

as in prior work (Buechel et al., 2014). Briefly, spatial cues were provided and the 

Styrofoam cup used in the visual cue was removed. As in the visual cue task, 

rats had 3-60s trials/day for three days with one minute on the submerged 

platform and 2 minute inter-trial intervals. On the fourth day, the platform was 

removed and rats performed one 60s probe trial. Path length, latency, platform 

crossings and path length in goal quadrant were recorded. Placement of the 

platform remained unchanged through the duration of the study; however, the 

starting quadrant changed for each trial. Animals started in the quadrant opposite 

the quadrant containing the platform for the probe trial.  
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2.2.5 Restraint Stress 

Stressed group rats were restrained in their home cages using Rat Snuggles 

(Harvard Apparatus) for 3 h immediately preceding the probe trial. They were 

continuously monitored for the duration of the restraint and their vocalizations 

and struggles were noted and analyzed to construct an index of apparent 

distress (the number of times each rat squawked or struggled to get out of the 

restraint was tallied for each hour of the stress period). Control animals remained 

in the housing facility during the stress period and joined the stressed group at 

the beginning of the probe trial. Animals were returned to the housing facility at 

the conclusion of the probe trial for sleep data collection during the ensuing 12 

hour inactive period.   

2.2.6 Blood and Tissue Collection 

On the following morning, animals were anesthetized with isoflurane and 

decapitated. Trunk blood was collected in K2EDTA vacutainers (BD biosciences) 

and immediately centrifuged at 1200 g for 10 min. The serum was collected for 

corticosterone and adrenocorticotropic hormone analysis (AniLytics Inc., 

Gaithersburg, MD). Brain tissue was rapidly removed as in prior work (Buechel et 

al., 2011; Buechel et al., 2014). Hippocampal tissue from one hemisphere was 

snap frozen while the other hemisphere was post-fixed in 4% formalin, 

cryoprotected in a 15% sucrose mixture and stored at −80°C for future use.  

2.3 Results 

Statistical tests and results are detailed in figure captions. 
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2.3.1 Water Maze 

The visual cue task (Fig. 3 A1 inset) was used to determine if rats could perform 

non-spatial aspects of the water maze (all subjects performed to criterion- see 

Methods). Rats showed a significant improvement over training days. After this 

task, the animals underwent surgery and two weeks of recovery. Rats were then 

trained on the spatially cued Morris water maze task for three days and showed 

significantly shorter latencies and path lengths with training (Fig. 3 A1 and B1). 

On the fourth day, half of the animals (the ‘Stress’ group) were restrained and 

32.1 ± 5.0 vocalizations/ struggles were noted over the 3 hour restraint period. 

Immediately following restraint, all animals were presented with the water maze 

probe trial. For the probe trial, the submerged platform was removed and the 

animals were placed in the tank and allowed to swim for 60s. During the probe 

trial, software tracked time and distance within four platform-sized and 

symmetrically spaced rings, with ring 3 (R3) positioned over the original trained 

platform location. The total amount of time (Fig. 3 A2) and distance (Fig. 3 B2) 

the animals spent in each of the rings was measured, and greater time/ distance 

in R3 interpreted as remembering the platform location. Control animals showed 

the expected preference for R3, while Stress animals spent significantly less time 

and distance in R3. 
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Figure 3. Water Maze Before and After Acute Stress 
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Figure 3. Water Maze Before and After Acute Stress. Training latency plotted 
as a function of training day. By the third day, the latency to the platform was 
significantly reduced (p = 0.004, repeated measures one-way ANOVA, ** p =< 
0.01 Tukeys post-hoc day 1 vs day 3). Inset: Pre-surgery locally cued water 
maze training. Subjects’ latency was reduced over the 3 day period (p = 1.68E-10 
Repeated measures one-way ANOVA, *** p < 0.001 Tukeys post-hoc all pairwise 
comparisons). A2. Time spent inside goal-sized circular areas (Rings- R) within 
each quadrant (1-4) during probe trial. R3*= goal ring. Control but not stressed 
rats spent significantly more time in the correct goal ring (p < 0.05 for main 
effects of Stress and Ring, ** p = 0.002 post hoc Tukeys pairwise control vs 
stress in R3*). B1. Spatially cued path length is plotted as a function of time. Path 
length was significantly reduced by the third day (p = 0.005 repeated measures 
one-way ANOVA, ** p = 0.004 Tukeys post hoc day 1 vs day 3). B2. Path spent 
inside goal-sized circular area (ring- R) within each quadrant during probe trial. 
R3*- goal area. Control but not stressed rats had significantly longer path lengths 
in the correct goal ring (p = 0.03 for main effect of Ring, * p = 0.03 post hoc 
Tukeys pairwise control vs stress in R3). 
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2.3.2 Sleep Architecture 

Four-hour blocks of time from the start of the active and inactive periods on both 

the day before the spatial water maze task (baseline) and following the probe trial 

(post-stress) were analyzed. As expected, the baseline recording (Fig. 4A) shows 

characteristic active to inactive period sleep changes such as significant 

decreases in wake duration, and significant increases in all sleep stages. 

Following the water maze probe trial (Fig. 4B), the stress group’s sleep stage 

duration architecture remained unchanged in both the active and inactive 

periods. However, there was a significant and selective increase in delta power 

during deep sleep during the inactive period (Fig. 4 Inset) in the stress group.  

2.3.3 Body Temperature and Hormone Analysis 

Psychosocial stress is well documented to induce relatively long-lasting 

hyperthermia in multiple mammalian species including rats and humans (Adriaan 

Bouwknecht et al., 2007; Vinkers et al., 2008). In prior work, young, but not aged, 

animals exhibited this response. Here, body temperature was monitored using 

surgically implanted telemetry devices. 

The baseline temperature (Fig. 5A) follows a circadian rhythm that is not altered 

by water maze exposure, but post-stress (Fig. 5B) body temperatures are 

significantly elevated in the inactive period. The day after the restraint and probe 

trial, rats were euthanized and their trunk blood was collected for hormone 

analysis (see Methods). Neither CORT (ng/ ml: control 425 ± 124, stress 345 ± 

97; n.s., Student’s t-test) nor ACTH (control 361 ± 113, stress 394 ± 76; n.s.,  
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Figure 4. Sleep Architecture Before and After Stress 

Figure 4. Sleep Architecture Before and After Stress. (A) The first four hours 
of the active and inactive periods prior to the first day of the spatially cued water 
maze task were scored. The duration was plotted for each stage of sleep. 
Subjects showed characteristic sleep architecture during these two periods prior 
to the restraint stress and the stages of sleep between the active and inactive 
periods are significantly different (Wake, REM, and Deep: paired t-test, p < 0.01; 
Light: paired t-test, p ≤ 0.04). (B) Immediately following the restraint, the first four 
hours of the inactive and active periods were scored. The stressed subjects’ 
sleep duration in each stage was unchanged in both the active (Wake, Mann-
Whitney Rank Sum, p = 0.281; REM, t-test, p = 0.135; Light, t-test, p = 0.753; 
Deep, t-test, p = 0.145)  and inactive periods (Wake, t-test, p = 0.274; REM, 
Mann-Whitney Rank Sum, p = 0.281; Light, t-test, p = 0.989; Deep, t-test, p = 
0.958). Inset. The inactive period following the restraint stress showed 
significantly more power than control (2-way ANOVA RM, main effects of 
treatment and frequency, p ≤ 0.05). 
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Figure 5. Baseline and Post-stress Body Temperature 

Figure 5. Baseline and Post-stress Body Temperature. A. Baseline and post-
water maze exposure body temperatures are plotted as a function of time (0- lights on, 
12- lights off). Temperature showed significant effects of time (p < 0.001) and interaction 
(p = 0.002) (repeated measures two-way ANOVA, * p < 0.05, Tukeys pairwise 
comparisons of baseline vs. water maze at indicated time). B. Stress-associated 
hyperthermia. Animals had significantly elevated inactive period body temperature after 
stress exposure (p < 0.001 for both time and interaction, repeated measures two-way 
ANOVA, * p < 0.05, Tukeys pairwise comparisons of control vs stress at specified time). 
Reference lines for baseline low (dashed blue) and baseline high (dashed red) body 
temperatures provided for reference. 
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Student’s t-test) were significantly altered with treatment, although the reported 

values are elevated compared to prior work (Fig. 6A). Hormone levels were 

elevated, even in control, beyond normal physiological ranges previously 

reported (Sonntag et al., 1987), varied as a function of the time after transport/ 

kill order (Fig. 6B) and correlated strongly (Fig. 6C) with ACTH levels. This 

suggests that transport (~20 minutes in a covered cart) had a detectable stress 

effect that endured for approximately 2 hours after transport was completed. 

Although, subjects were balanced across treatment groups for kill order, these 

transport- related stress effects may have obfuscated the restraint paradigm’s 

potential effects on blood stress hormone levels. 

2.4 Discussion  

Acute stress in young subjects causes spatial memory deficits (de Quervain et 

al., 1998; de Quervain et al., 2000; Stillman et al., 1998), elevated body 

temperature (Adriaan Bouwknecht et al., 2007; Vinkers et al., 2008) and loss of 

deep sleep (Kecklund and Akerstedt, 2004; Lesku et al., 2008; Vandekerckhove 

et al., 2011). In prior work (Buechel et al., 2014) we validated these effects in 

young animals, and further demonstrated that aged animals were 

hyporesponsive to the same stress exposure for these three measurements. 

However, prior work also clearly shows aged animals and humans are the more 

vulnerable chronic psychosocial stress population  
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Figure 6. Blood Hormone Analysis Following Stress 

Figure 6. Blood Hormone Analysis Following Stress. Trunk blood was 
collected following decapitation for the analysis of CORT levels 18-20 hrs 
following restraint. (A) There was no significant difference between the groups 
(One Way ANOVA on Ranks p = 0.798). (B) The CORT levels were analyzed 
according to the order of kill to determine if transport stress was the reason 
behind elevated CORT levels compared to normal physiological ranges 
regardless of grouping. There was a significant effect of the kill order (Two Way 
ANOVA Kill order p = 0.015, Stress p = 0.513, Interaction p = 0.936 post hoc 
Tukey’s pairwise comparison *p ≤ 0.05) (C) ACTH was plotted as a function of 
CORT and there was a strong correlation between the two measures. 
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(Azuma et al., 2015; Machado et al., 2014; Prenderville et al., 2015; Stein-

Behrens and Sapolsky, 1992), that glucocorticoids themselves can be protective 

against stress (Rao et al., 2012), and that the aged hippocampus transcriptional 

profile in response to glucocorticoid exposure is fundamentally shifted from that 

of the young. Taken together, these data suggest that the lack of a response to 

stress can be maladaptive. 

 

Very little work has investigated acute stress response in mid-aged animals, 

despite the importance of the mid-age time point in the trajectory of age-related 

changes. Here, we tested this response in the context of behavior, sleep 

architecture and body temperature. Water maze probe trial performance was 

significantly worsened by restraint stress (Fig. 3, 7A). While it’s been shown that 

encountering stress before learning a task has minimal effects (Wolf, 2003), or 

can even promote memory (Roozendaal et al., 1997; Stamatakis et al., 2008; 

Zheng et al., 2007), stress immediately prior to memory retrieval is well-

understood to have detrimental effects (de Quervain et al., 1998), possibly via 

neuroendocrine signaling directly in the hippocampus (Thomas, 2015) or via the 

innervation of stress-sensitive circuitry from the forebrain (Paul et al., 2015). Prior 

work (Chen et al., 2013) also shows that the glucocorticoid-responsive molecular 

machinery in the hippocampus is altered with age, suggesting that the 

transcriptome may play a role in the mechanism for the loss of stress-related 

recall disruption with age. Work here demonstrates that the  
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Figure 7. Summary Figure 
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Figure 7. Summary Figure. Summarized mid-aged from the present study are 
compared to prior work (Buechel et al., 2014) on young and aged subjects (* 
indicates that significance was assigned in prior study) A. Path in goal ring 
during probe trial (Fig. 1) is re-plotted with prior young vs. aged study. B. 
Perceived distress was calculated as average # vocalizations and struggles per 
hour during the three hour restraint. C. Amount of time spent in deep sleep 
during the inactive period after restraint is plotted. D. Body Temperature 
response is the average of the three hour middle of the post-stress inactive 
period (9-11 PM). 
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recall-disrupting effects of stress exposure remain intact in mid-aged animals and 

may play a role in age-related cognitive decline detectable by mid-age (Blalock et 

al., 2003; Guidi et al., 2015; Pancani et al., 2013). Both REM and deep sleep are 

significantly decreased with aging (Behan and Brownfield, 1999; Ehlers and 

Kupfer, 1989; Espiritu, 2008; Foley et al., 1995; Pace-Schott and Spencer, 2011) 

and this loss is strongly associated with poor health and cognitive deficits (Ancoli-

Israel, 2009). Previously (Buechel et al., 2014), we showed that young, but not 

aged, subjects had decreased deep sleep duration in the inactive period 

following a stress. Here, mid-aged animals showed an aging-like hyposensitivity 

to stress-induced deep sleep loss (Fig. 4, 7C), but did show young-like cognitive 

and body temperature stress responses, suggesting that age-related sleep 

changes may be early critical changes in the hyposensitive stress phenotype of 

age. Interestingly, mid-aged animals did show a significant increase in delta 

power during deep sleep (Fig. 2B, inset) after stress, an effect not seen in either 

young or aged animals exposed to stress in prior work (Buechel et al., 2014). 

Increasing deep sleep power is thought to improve stress resilience (Brand et al., 

2014) and therefore may represent a unique mid-age stress-management 

phenomenon. 

 

Mid-aged body temperature following stress was hyperthermic (Fig. 5B, 7D), 

characteristic of the stress-induced hyperthermia in young adult subjects. 

However, mid-aged animals did not show hyperthermia in response to water 



42 

 

maze exposure (Fig. 5A), a response that is statistically significant, albeit of lower 

magnitude, in young adult subjects, and absent in aged subjects. Thus, the mid-

aged stress-induced hyperthermic response may be somewhat intermediate 

between that seen in young and aged subjects. 

 

In our previous study (Buechel et al., 2014), stress-induced hyperthermia might 

have been associated with the increased wakefulness in the young during their 

inactive period, as body temperature is generally higher during wake. However, 

the middle-aged animals here did not show a significant increase in the time 

spent awake during their inactive period following the probe trial, but still showed 

an elevated body temperature. Alternatively, stress-induced hyperthermia could 

result from PGE2 signaling in the preoptic area of the hypothalamus due to 

stress-induced norepinephrine release (Glavin, 1985; Nakane et al., 1994; Oka et 

al., 2001; Vellucci and Parrott, 1995) or corticotropin-releasing factor (CRF) 

stimulating brown adipose tissue (Morimoto et al., 1993; Oka et al., 2001). This 

latter observation may also help to explain why stress-induced hyperthermia 

(Buechel et al., 2014) declines with age, as brown adipose tissue content is 

decreased in aged animals (Cannon and Nedergaard, 2004; Pfannenberg et al., 

2010).  

 

The influence of transport on stress hormone signaling observed here (Fig. 6) 

has also been reported in other work (Dallmann et al., 2006). This is an important 
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observation for researchers who are considering studies where transport can 

have a significant influence on endpoint measurements associated with stress, 

and, based on these studies, we would advise allowing at least a two hour ‘cool 

down’ period between transport and measurement.  

2.5 Conclusion  

Despite the relative importance of characterizing the psychosocial stress 

response phenotype in mid-aged animals, relatively little work has investigated 

this time-frame. To facilitate comparison with young and aged subjects, results 

from the present study are juxtaposed with similar results from prior work 

(Buechel et al., 2014) (Fig. 7- no statistics are applied across studies, only the 

statistical results from within each study are noted). Like the young animals, the 

mid-aged showed a stress-associated decrease in path length in the goal ring 

during the water maze probe trial as well as hyperthermia during the inactive 

period following restraint (Fig. 7A, D). Based on vocalizations/ struggles, all age 

groups undergoing the stress procedure perceived the restraint to be stressful 

while it was occurring (Fig. 7B). Mid-aged animals showed young-like body 

temperature and cognitive responses to stress, but aged-like sleep architecture 

hyposensitivity to stress (Fig. 7C). This suggests that, by mid-age, subjects have 

already established an aging-like hyporesponsive phenotype for sleep stress-

response that may presage the age-related development of cognitive and body 

temperature stress hyposensitivity. Interestingly, mid-aged animals also showed 

a significant elevation in delta power during deep sleep. As it is often associated 
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with improved sleep ‘quality’, increased post-stress delta power may represents a 

unique, mid-aged mechanism for compensating for psychosocial stress 

exposure, although further work will be needed to test this. 
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Chapter 3 Aged male F344 rats are hyporesponsive to chronic restraint 
stress (submitted to Behavioral Brain Research) 
Authors: Kendra Hargis, Sara Qutubbin, Jelena Popovic, Eric Blalock 
Summary 

The allostatic load hypothesis of aging posits that exposure to repeated and/or 

unresolved stressors throughout life results in accumulated stress-associated 

changes that manifest as, or accelerate, brain aging. Indeed, a large body of 

literature supports the allostatic load hypothesis by demonstrating profound 

worsening of the aging phenotype in animals exposed to severe stress 

perinatally, or by showing that acutely stressing young adult animals results in 

acute age-like cognitive symptoms. However, little basic research has examined 

the response of phenotypically aged animals to new-onset stress. In humans, the 

incidence of new-onset psychosocial stress (PS- non-painful stimuli that evoke a 

stress response; e.g. social isolation, death of a loved one) increase with age 

and are associated with reduced quality of life and worsened health outcomes. 

Previously, we showed aged animals were hyporesponsive to acute PS. Here, 

we hypothesized aged animals would be hyporesponsive to chronic PS. Young 

(3mos) and aged (19mos) male Fischer344 rats were assigned to control or PS 

(restraint, 3 h/day, 4 days/week, 4 weeks; n = 7-10/ group) treatments. Morris 

water maze, sleep architecture, behavioral distress, body weight, body 

temperature, and corticosterone levels were measured. Chronic PS had no 

detectable effect on deep sleep, body temperature, or blood corticosterone levels 

at either age. However, aged animals were hyporesponsive on typical stress 

parameters including response to behavioral distress, weight loss, and cognitive 
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deficit. Taken together, the aged animals appear cognitively and behaviorally 

hyporesponsive to chronic PS. Restoring the blunted PS response in aged 

subjects represents a novel, age-selective intervention strategy. 

3.1. Introduction 

Aging is a strong positive risk factor for several conditions that dramatically 

reduce quality of life, including cardiovascular disease, type II diabetes, cancer, 

epilepsy, and Alzheimer’s disease (Prince et al., 2015; Riedel et al., 2016; 

Stephen et al., 2006; Zhao et al., 2016). The chronic nature of these conditions, 

coupled with the projected increase in the worldwide aging population (He et al., 

2016) is projected to overwhelm healthcare systems if the status quo between 

age and disease is maintained (Comlossy and Walden, 2013). The burgeoning 

field of ‘normal aging’ basic research focuses on age-related changes to 

understand the causes and reduce the risks for multiple age-related conditions. 

In the absence of disease, normal age-related changes include disruptions in: 

cognition (Craik and Salthouse, 2008; Gemma and Bickford, 2007; Harada et al., 

2013; Salthouse, 2010), sleep architecture (Bonnet, 1985; Espiritu, 2008; 

O'Donnell et al., 2009; Wolkove et al., 2007; Zepelin et al., 1972), circadian 

rhythm (Kondratova and Kondratov, 2012; Van Someren, 2000), 

thermoregulation (Blatteis, 2012; Guergova and Dufour, 2011), and inflammation 

(Franceschi et al., 2000; Franceschi and Campisi, 2014).  

Interestingly, many of these normal age-related changes are mimicked or 

exaggerated by stress and stress hormone exposure (Chen et al., 2013; 
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Goosens and Sapolsky, 2007; Holt-Lunstad et al., 2010; Kerr et al., 1992; 

Landfield and Eldridge, 1994b; Snyder-Mackler et al., 2014). The long-standing 

allostatic load hypothesis posits that stress responses to repeated and/or 

unresolved stressors results in accumulated changes that manifest as, or at least 

accelerate, brain aging and vulnerability to aging-related pathologies (McEwen, 

2002). In the central nervous system, the hippocampus is thought to play a 

prominent role in this interplay between stress and aging (Hauger et al., 1994a; 

Landfield et al., 1978; Lupien et al., 1998; Meaney et al., 1995; Stein-Behrens et 

al., 1994).  

Chronic psychosocial stress (PS) is a non-noxious stressor associated with major 

life changes such as divorce, loss of a loved one, reduced social status, or 

isolation. Much like physiological stressors that cause pain and injury, a highly 

conserved stress response is evoked by PS stimuli, activating the hypothalamic-

pituitary-adrenal (HPA) axis (Chrousos et al., 2013; Fink, 2009; Lazarus, 1966). 

The activated HPA axis facilitates changes in physiology and behavior that are 

thought to help a subject re-acquire homeostasis with the environment. However, 

in chronic PS, the HPA response, by definition, does not resolve the stressor. 

The resulting sustained stress response damages the hippocampus, causes 

cognitive, cardiovascular and metabolic deficits, thereby further reducing the 

subject’s fitness (Heraclides et al., 2009; Krajnak, 2014; Meaney, 2015; Williams 

et al., 2013; Wood, 2014). PS is among the most common of environmental 

stressors in the human population, and some authors have suggested that 



48 

 

humans, based on our capacity for memory of the past and anticipation of the 

future, may be particularly vulnerable to its negative influences. PS elevates 

stress hormone levels (Leonard, 2005; Sapolsky, 1999), disrupts sleep 

(Akerstedt, 2006; Kim and Dimsdale, 2007) and impairs cognition (Conrad et al., 

1996; Gouirand and Matuszewich, 2005; Luine et al., 1994).  

In humans, the incidence of new-onset PS increases with age and is associated 

with reduced quality of life and worsened health outcomes (Kremen et al., 2012). 

However, little basic research has examined the response of phenotypically aged 

animals to new-onset chronic PS. Determining aged subjects’ response to 

chronic PS may be critical to understanding the influence of an existing allostatic 

load for a new onset PS event, as both hyper- and hypo-responsiveness are 

considered maladaptive. Based on prior work (Buechel et al., 2014) 

demonstrating that aged animals were hyporesponsive to acute PS, we tested 

the hypothesis that aged animals would be hyporesponsive to new-onset chronic 

PS. Young (three month old) and aged (nineteen month old) male Fischer 344 

rats were assigned to control or PS (restraint, 3 h/day, 4 days/week, 4 weeks; n = 

7-10/ group) treatments. Morris water maze, sleep architecture, behavioral 

distress during restraint, body weight, body temperature, and corticosterone 

levels were measured. Neither young nor aged animals demonstrated significant 

effects on stress response measures associated with body temperature or deep 

sleep. Corticosterone levels in blood eighteen hours after the last stress 

exposure were borderline elevated in both ages. However, aged animals were 
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hyporesponsive on stress parameters to which young animals showed significant 

responses, including behavioral distress, weight loss, and cognitive deficit. Thus, 

this work supports the hypothesis that aging subjects are hypo-responsive to 

new-onset chronic PS and suggests therapeutic strategies focusing on restoring 

the stress response in aged subjects. 

3.2. Materials and Methods  

3.2.1 Subjects 

Seventeen young (3 mos) and 17 aged (19 mos) male Fischer 344 rats were 

obtained from the NIA aging colony. Animals were individually housed with 

enviro-dry bedding. They had access to food and water ad libitum and were 

acclimated to a 12 hour reverse light/dark cycle (4:30 AM lights off, 4:30 PM 

lights on) and experimenter handling for two weeks prior to initiating study. Rats 

were assigned to control (7 aged, 8 young) and stress (10 aged, 9 young) groups 

and were weighed weekly. All experiments were performed in accordance with 

institutional and national guidelines and regulations, and conform to our 

approved protocol (University of Kentucky IACUC #2008-0347). Twelve 

additional animals (10 aged, 2 young) were removed from the study. Of these, 

two aged and one young were removed due to failure to reach cut-off on visual 

cue testing. Eight aged were euthanatized during the course of the study due to 

pale appearance, lethargy and weight loss. Gross pathology demonstrated 

enlarged spleens in all cases suggesting large granular lymphocytic leukemia  
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(Thomas et al., 2007) and one young subject due to developing ataxia (a pituitary 

tumor was found in gross pathology).  

3.2.2 Surgery 

All subjects were implanted according to standard procedures with wireless 

EEG/EMG emitters (Data Sciences International- TL11M2-F40-EET) as in 

previous work (Buechel et al., 2011; Buechel et al., 2014). Prior to surgery, EEG 

wires were cut to length and a sterile 1/8” stainless steel screw was soldered to 

the end of each lead. To begin surgery, animals were anesthetized with 

isoflurane and placed in a stereotaxic frame. A two-inch incision was made to 

expose the skull and spinotrapezius muscles. The emitter was placed under the 

skin between the left scapulae and the left ileum along the flank. The exposed 

dorsal region of skull was cleaned with 3% peroxide and the skull surface dried 

with sterile cotton swabs soaked in 70% ethanol. For EEG electrodes, a 0.7 mm 

hole was drilled 1 mm from either side of the sagittal suture line and 1–2 mm 

anterior to the lambda suture line. Screws were inserted into the holes and 

positioned so that the flat screw tip rested on the dura. Screw heads were 

covered with dental cement and left to dry. EMG electrodes were inserted 

through the trapezius muscle with a 21 gauge needle, perpendicular to the 

muscle fibers. The free wire end was capped with insulation and both sides of the 

incision were tied off with surgical thread to prevent fluid infiltration. The incision 

was then closed with 6–8 mattress stitches. 
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3.2.3 Sleep Data Acquisition and Analysis 

Sleep data was acquired according to established protocols (Buechel et al., 

2014). Animals were housed individually and cages were positioned at least 18” 

apart to avoid interference during radiotelemetry data acquisition. EEG, EMG, 

and temperature data were recorded continuously with DSI's Data Art acquisition 

software and binned in 10 s epochs. For these nocturnal rodents, the first 4 h of 

their active period (dark) and the first 4 h of their resting period (light) were 

evaluated for sleep architecture during the 24 hour period following the final 

stress/probe trial paradigm. Architecture was scored using Neuroscore's (v. 2.1.0 

Data Sciences International) analysis console in 30 s increments while being 

viewed in 2–5 min windows. EEG waves were stratified into “low amplitude” (≤ 

50% of maximum) and “high amplitude” (> 50% of maximum) tiers, and 

underwent fast Fourier transforms for each of 5 frequency ranges: Δ (0.5–4 Hz), 

Θ (4–8 Hz), A (8–12 hz), Σ (12–16 Hz), and B (16–24 Hz). EMG waves were 

stratified into 3 tiers: “basal” ≤33% (seen during REM), “intermediate” (between 

33 and 66%), and “high” (>66%). Stages based on EEG/EMG signaling were 

established as follows: Wake- intermediate or high EMG ± locomotor activity, 

EEG variable; Light Sleep- low amplitude EEG, intermediate EMG, and no 

locomotion; REM (paradoxical) Sleep- high frequency EEG, “basal” EMG and no 

locomotor activity; Deep Sleep- high amplitude EEG activity enriched in delta 

band frequency, basal to light EMG activity, no locomotor activity. Prior assigned 

sleep stages informed subsequent assignments. Ambiguous epochs, as well as 
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those containing artifacts, were not scored and accounted for < 10% of scored 

time. 

3.2.4 Water Maze 

The water maze task was performed as in previous studies (Buechel et al., 2011; 

Buechel et al., 2014). A 190 cm diameter circular, black pool was centered (250 

cm/side) in a cubicle of floor to ceiling black curtains. Maze water temperature 

was maintained at 26 ± 2°C. Except for probe trials, one quadrant always 

contained a 15 cm diameter escape platform covered with black neoprene. 

Illumination in the room was set at 3.6 to 3.8 lux and a Videomex-V water maze 

monitoring system (v. 4.64 Columbus Instrument) was used for analyses. All 

training and probe sessions took place between 12 PM and 4 PM (during the 

rats' active period). 

The visual cue task took place over 3 days on the week before surgery to assess 

non-hippocampus-dependent function (Guidi and Foster, 2012; Guidi et al., 

2014). A Styrofoam cup served as a visual cue and was hung by a black thread 

12 inches above the submerged platform. Rats were given three trials (60s each) 

and the location of the platform, as well as the drop location, was changed for 

each trial. Animals that did not reach the platform within 60s were gently guided 

to the platform. All animals were allowed to stay on the platform for 60s after 

each trial and were then towel-dried and placed in a dry cage with excelsior 

bedding under a warming lamp for 2 min (intertrial interval). Reaching the 
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platform in under 30s for 2/3 trials on the third day was criterion for this study. 

The spatial cues were not present during the visual cue task.  

In surgically implanted animals during the last week of the chronic restraint 

paradigm, rats performed a spatially cued Morris water maze task as in prior 

work (Buechel et al., 2014) immediately following restraint. Briefly, spatial cues 

(high contrast black and white 90 × 90 cm- circle, triangle and vertical lines, one 

to each of the three curtains facing the maze, 60 cm above the maze rim) were 

provided and the Styrofoam cup used in the visual cue was removed. As in the 

visual cue task, rats had 3 trials (60s each)/ day for three days with one minute 

on the submerged platform and 2 minute inter-trial intervals. On the fourth day, 

the platform was removed and rats performed one 60s probe trial. Path length 

and latency to platform, platform crossings and path length in goal quadrant were 

recorded. Placement of the platform remained unchanged throughout spatial cue 

training. However, the starting quadrant changed for each trial. Animals started in 

the quadrant opposite the goal quadrant for the probe trial.  

3.2.5 Restraint Stress 

Rats in the psychosocial stress (PS) group were moved from the vivarium to a 

procedure room, and placed in restraint (Rat Snuggle, Harvard Apparatus) while 

under brief (< 30s) isoflurane anesthesia. Restraint was applied 3h/ day, 4 days/ 

week for a total of 4 weeks. Animals were continuously monitored during restraint 

and vocalizations and struggles were quantified to construct an index of 
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observable distress. Animals were returned to the housing facility at the 

conclusion of stress.  Control animals were maintained in the vivarium. 

3.2.6 Blood and Tissue Collection 

On the morning following the Morris water maze probe trial, animals were 

anesthetized with isoflurane and decapitated. Trunk blood was collected in 

K2EDTA vacutainers (BD biosciences) and immediately centrifuged at 1200 g for 

10 min. The plasma was collected for corticosterone quantification by 

radioimmunoassay (Antech, Irvine, CA). Brain tissue was rapidly removed as in 

prior work (Buechel et al., 2011; Buechel et al., 2014). Hippocampal tissue from 

one hemisphere was snap frozen while the other hemisphere was post-fixed in 

4% formalin, cryoprotected in a 15% sucrose mixture and stored at −80°C for 

future use. 

3.3. Results 

3.3.1 Morris Water Maze 

Following acclimation, and prior to surgery, all animals were evaluated on the 

visual cue task to determine if animals could swim were able to orient towards a 

visible, localized cue. Three animals (2 aged, 1 young) were removed from the 

study because they did not meet performance criteria by the last day of visual 

cue (see Methods). Remaining animals showed significantly reduced latencies 

(Fig. 8A) and path lengths (Fig. 8B) over training. In addition, aged animals were  
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Figure 8. Visual Cue (pre- chronic stress) 

 

Figure 8. Visual Cue (pre-chronic stress). (A) Visual cue latency was plotted 
as a function of day. Animals in both age groups significantly improved their 
performance each day and the young animals were significantly faster finding the 
platform on day 1 than the aged animals. (Two-Way RM ANOVA  Age p = 0.006, 
Day p < 0.001, Interaction p = 0.698 post hoc Tukey’s pairwise comparison *p ≤ 
0.05) (B) Path length was plotted as a function of day. Both age groups 
significantly decreased their path length each day during visual cue. (Two-Way 
RM ANOVA: Age p = 0.177, Day p < 0.001, Interaction p = 0.375) (C) Swim 
speed was plotted as a function of day. Both age groups significantly improved 
their swim speed by day 3 and the aged animals were swimming  on par with the 
young animals by the last day. (Two-Way RM ANOVA  Age p < 0.001, Day p < 
0.001, Interaction p < 0.001 post hoc Tukey’s pairwise comparison *p ≤ 0.05). 
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significantly slower swimmers initially (Fig. 8C), but their swim speeds were 

similar to those of the young by the third day of training.  

During the final week of stress (week 4), all animals were trained on the spatial 

cue task immediately following the restraint period. There was a significant effect 

of training, but not stress, for both young (Fig. 9A1) and aged (Fig. 9A2) groups. 

Further, in young but not aged subjects, there was a significant interaction 

between training and stress, and post-hoc pairwise analysis indicated a 

significant performance deficit in stressed young animals on day 2. Immediately 

after the final restraint period, probe trial testing was done. As in prior work, aged 

animals took significantly longer paths than young to the goal area. Further, 

restraint stress was associated with a significant path length increase in young 

animals, while aged animals showed no significant effect of stress (Fig. 9B). 

These results suggest that aged animals, although showing performance deficits 

compared to young, are hyporesponsive to chronic stress-induced cognitive 

deficits. 

3.3.2 Sleep Architecture  

Following visual cue and prior to the start of restraint stress, all animals were 

surgically implanted with wireless telemetry emitters that recorded EEG, EMG, 

and temperature data. The first four hours of the final inactive and final active 

periods after the water maze probe trial were recorded and analyzed to 

determine the effect of chronic psychosocial stress in both age groups.   
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Figure 9. Spatial Cue and Probe Trial  
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Figure 9. Spatial Cue and Probe Trial. Spatial cue training was conducted 
immediately following the 3 hr restraint period during the final week of stress. (A) 
Path length was plotted as a function of training day. A1. All of the young animals 
significantly improved their path length by the third day of training compared to 
the first day (Two-Way RM ANOVA Stress p = 0.882, Day p < 0.001, Interaction 
p = 0.015 post hoc Tukey’s pairwise comparison *p ≤ 0.05) A2. By the last day of 
training, only the aged control animals had significantly shorter path lengths 
compared to the first day of training (Two-Way RM ANOVA Stress p = 0.632, 
Day p = 0.005, Interaction p = 0.423 post hoc Tukey’s pairwise comparison) (B) 
Probe trial was performed immediately following the final day of stress. Path 
length to the original platform location was plotted for each group. The young 
control group had a significantly shorter path length to the platform location 
compared to the age-matched stress group (Two-Way ANOVA Age p = 0.816, 
Stress p = 0.05 Interaction p = 0.036 post hoc Tukey’s pairwise comparison vs 
Young Control: *p ≤ 0.05; ** p ≤ 0.01) 
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Interestingly, there were no differences in deep sleep duration with stress or 

aging. However, there was a significant decrease in wake in the aged stressed 

animals during the active period (Table 1), similar to the decreased active period 

wake observed in prior work after acute restraint (Buechel et al., 2014).  

3.3.3 Distress Index and Body Weight 

The animals in the stress groups were restrained for 3 hrs/ day, 4 days/ week, 4 

weeks. During each restraint period, the animals were continuously monitored 

and each struggle and/or vocalization was counted. A tally of the total struggles 

and vocalizations over the 3 hour period for each animals was defined as their 

behavioral stress index. Averaged per week by age (Fig. 10), behavioral stress 

indices were consistently higher in young than aged animals. Body weights were 

measured throughout the course of the study. Young adult control animals (Fig. 

11) showed steadily increasing weight over time. Young stressed subjects 

significantly deflected from that trend by the 3rd and 4th weeks of treatment. Aged 

control animals were heavier than young adults and showed a plateaued, or 

slightly decreasing weight over time. Stress had no statistically detectable effect 

on aged animal body weight. 

3.3.4 Body Temperature and Corticosterone Levels 

In a previous study (Buechel et al., 2014), young, but not aged animals showed a 

delayed, long-lasting acute restraint stress-induced hyperthermia. Three hours 

after removal from restraint, animals showed a 9 hours hyperthermic response.  
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Table 1. Sleep Duration 

  
    

2-Way ANOVA 

Period Sleep 
Stage YC YS AC AS Age Treatment Interaction 

Active Wake 122.8 ± 
12.2 

139.9 ± 
14.6 

165.3 ± 
12.6 

74.6 ± 
18.6 0.62 0.04 0.01 

Active PS 8.2 ± 
1.4 

6.1 ± 
1.6 

3.0 ± 
0.9 

9.9 ± 
2.1 0.54 0.08 0.07 

Active SWS1 82.0 ± 
9.6 

59.3 ± 
11.3 

58.6 ± 
6.0 

83.2 ± 
5.3 0.65 0.56 0.04 

Active SWS2 24.8 ± 
5.4 

18.9 ± 
5.8 

17.8 ± 
2.4 

22.0 ± 
1.4 0.68 0.86 0.29 

Inactive Wake 59.0 ± 
11.5 

77.6 ± 
2.7 

76.8 ± 
10.6 

82.3 ± 
5.8 0.62 0.04 0.01 

Inactive PS 38.7 ± 
1.8 

23.9 ± 
1.1 

30.9 ± 
4.0 

33.9 ± 
5.2 0.54 0.08 0.07 

Inactive SWS1 111.5 ± 
13.1 

92.7 ± 
4.9 

93.2 ± 
10.6 

106.6 
± 7.3 0.65 0.56 0.04 

Inactive SWS2 93.2 ± 
10.9 

82.1 ± 
11.1 

96.5 ± 
6.4 

96.7 ± 
7.1 0.68 0.86 0.29 

 

  

Table 1. Sleep duration. The first four hours of the final (following the last restraint 
and probe trial) active and inactive periods were analyzed. There was a significant 
decrease in the aged stressed animals’ wake and increase in SWS1 in the final active 
period but no changes in the inactive period. There were no significant changes in the 
duration of deep sleep for any group of animal in either the active or inactive periods. 
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Figure 10. Chronic Stress Distress Index 

 

Figure 10. Chronic Stress Distress Index. The average number of struggles 
and vocalizations per 3 hour restraint period (distress index) is plotted by week 
for young and aged animals. The young had significantly more struggles than 
aged animals (Two-Way RM ANOVA Age p < 0.001 Week p = 0.220 Interaction 
p = 0.106 post hoc Tukey’s pairwise comparison *p ≤ 0.05). 
 

 

 

 

 

 

 



62 

 

Figure 11. Body Weight During Chronic Stress 

 

 

Figure 11. Body Weight During Chronic Stress. Animals were weighed 
throughout the entire study before the beginning of the restraint stress. The 
young stressed animals showed significant changes in weight compared to all 
other groups (Two-way RM ANOVA: Group p ≤ 0.001, Week p = 0.18, Interaction 
p ≤ 0.001 post hoc Tukey’s pairwise comparison *p ≤ 0.05) 
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To determine if there was a hyperthermic response in the chronic restraint 

paradigm, we looked at the same post-stress time span. All groups showed a 

significant circadian effect of time on body temperature, with a consistent 

elevation associated with onset of the active period (dashed gray vertical line; 

Fig. 12A, B). Young subjects showed no significant influence of stress on body 

temperature or any significant interaction between time and stress. Aged animals 

showed a significant interaction between body temperature and time, with 

elevated stress-associated body temperatures early in the inactive period. 

However, this effect, though statistically significant, only occurred at one time 

point and did not endure through the inactive period. Trunk blood was collected 

at the end of the study (19 h following the end of the last restraint period) and 

analyzed for levels of corticosterone, a biomarker for stress. Chronic restraint 

showed a trend (p = 0.1) towards increasing cort levels (Fig. 13) and no effect of 

aging.   

3.4. Discussion 

We tested the hypothesis that aged animals would be hyporesponsive to new-

onset chronic psychosocial stress (PS). The key findings were that aged animals 

were hyporesponsive on classic stress-sensitive measures, including cognitive 

impairment, weight loss, and behavioral distress. In addition, neither young nor 

aged animals showed deep sleep loss or stress-induced hyperthermia with 

chronic PS. In acute stress, glucocorticoid levels are elevated for hours to days 
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Figure 12. Temperature Following Chronic Stress 

 

Figure 12. Temperature Following Chronic Stress. (A) Body temperatures of 
young animals following the final stress period and probe trial. Body temperature 
is plotted as a function of time over 12 hours starting at 7 PM and ending at 7AM 
with lights off marked (4:30 AM- beginning of the active period, dashed gray 
vertical line). (Two-Way RM ANOVA Treatment p = 0.495 Time p < 0.001 
Interaction p = 0.898) (B) Body temperatures of aged animals following the final 
stress period and probe trial. (Two-Way RM ANOVA Treatment p = 0.494 Time p 
< 0.001 Interaction p = 0.02; post hoc Tukeys pairwise *p ≤ 0.05) 
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Figure 13. Stress Hormone Analysis Following Chronic Stress 

 

Figure 13. Stress Hormone Analysis Following Chronic Stress. Immediately 
following decapitation, trunk blood was collected to be analyzed for plasma 
corticosterone levels (Two-Way ANOVA Age p = 0.987, Stress p = 0.111, 
Interaction p = 0.855) 
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after stress (Buechel et al., 2014; Dunn et al., 1972; Ottenweller et al., 1992). 

However, in chronic PS, young and aged animals only showed borderline 

elevations in corticosterone blood levels eighteen hours after PS.  

In the human population, both the incidence of new-onset chronic psychosocial 

stress (e.g., chronic illness/ death of a loved one, and socioeconomic upheaval) 

and the severity of health consequences after such exposure, including cancer, 

cardiovascular disease, metabolic disorders, and neurodegenerative disease, are 

worsened in aged subjects (Kremen et al., 2012). These clinical observations are 

consistent with the long-standing stress/glucocorticoid hypotheses of aging, and 

suggest an age-related decrease in the ability to adapt to a changing 

environment. However, little basic research has focused on the potential age-

related differences in downstream stress responses.  

3.4.1 Effects of Chronic PS in Young Subjects.  

In this study, young subjects’ cognition, body weight, and behavioral distress 

responses were consistent with prior work. Cognitive effects in young animals 

may be associated with stress/glucocorticoid-mediated dendritic atrophy (Conrad 

et al., 1996; Luine et al., 1994; McLaughlin et al., 2007; Tynan et al., 2010) 

(Conrad et al., 1999; Cook and Wellman, 2004; Lupien et al., 2009) and 

glutamate receptor downregulation (Yuen et al., 2012). Similarly, the stress-

induced weight loss reported here is a well-established response to PS (Bielajew 

et al., 2002; McLaughlin et al., 2007; Tynan et al., 2010) and is thought to 
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proceed through central modulation of food intake (Retana-Marquez et al., 2003) 

(Scherer et al., 2011) and peripheral metabolic changes (Lemche et al., 2016).  

Numerous studies report the importance of sleep and stress in relation to 

memory (Borbely, 2001; Marshall et al., 2006; Roozendaal, 2002; Stickgold, 

2005; Wolf, 2003). However, in this study there were no significant differences in 

inactive period deep or REM sleep, the two stages most commonly associated 

with memory. Thus, the chronic PS-induced cognitive disruption seen in young 

animals either did not proceed through a sleep-related mechanism, or sleep 

disruption may have been an acute response to which animals adapted over 

time. Because promoting deep sleep has been associated with stress resiliency 

(Brand et al., 2014; Meerlo et al., 2008; Sadeghi Bahmani et al., 2016), deep-

sleep enhancing agents may help preserve cognition in chronic PS.  

Acute PS in young animals results in significant elevations in blood 

corticosterone levels for hours or days after the stressor is removed (Akerstedt, 

2006; Buechel et al., 2014; Kuhlmann et al., 2005; Lupien et al., 2009). The 

borderline significant glucocorticoid blood levels reported here, coupled with the 

absence of stress-induced hyperthermia (Barnum et al., 2007; Tynan et al., 

2010) suggest that using this chronic stress paradigm (3h/ day, 4d/ week for 4 

weeks) results in stress adaptation or adrenal insufficiency/ exhaustion in which 

some effects (body weight, cognition, behavioral distress) are more sensitive to 

ongoing stress.  
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3.4.2 Chronic PS Hyposensitivity in Aged Animals.  

Just as in our prior studies in aged animals exposed to acute stress (Buechel et 

al., 2014), the aged animals in this study maintained a hyporesponsive 

phenotype. Aged-matched control animals showed characteristic deficits in water 

maze performance compared to young (Gallagher and Pelleymounter, 1988), but 

further deficits were not observed with chronic PS. A similar pattern was 

observed for both weight loss and behavioral signs of distress. These results 

suggest that HPA axis signaling, and/or the downstream response to it, is 

dampened in aged animals. Because glucocorticoid levels were similar in young 

and aged, it seems reasonable that localized glucocorticoid signaling (Yau and 

Seckl, 2012), glucocorticoid receptor expression (Oitzl et al., 2010), or mediators 

of glucocorticoid action, could play a role in stress-hyposensitivity with age. 

Glucocorticoid receptors in the hippocampus play key roles in regulating the 

stress response (Jacobson and Sapolsky, 1991; Sapolsky et al., 2000) and 

stress (McEwen, 1998a; Sapolsky, 1996) and aging (Lupien et al., 1998; Porter 

and Landfield, 1998; Roth, 1974) both impair hippocampus-mediated feedback 

suppression of the HPA axis. 

3.4.3 Conclusion 

The allostatic load hypothesis posits the accumulation of stress responses over 

time can accelerate brain aging and eventually lead to negative health outcomes 

(Seeman et al., 2001; Upchurch et al., 2015). Chronic and/or repetitive stress 
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increases the allostatic load, resulting in either hyper- or hypo-response and 

could ultimately wear out the HPA axis (McEwen, 1998a) and accelerate 

symptoms of brain aging (Lupien et al., 1998; McEwen et al., 1999). Taken 

together, these results support a hypo-responsive interpretation of the allostatic 

load hypothesis (McEwen, 1998a; Seeman et al., 1997) in which aging acts as a 

stressor that mechanistically interferes with responses to new onset stress. A 

blunted stress response is maladaptive (Heim et al., 2000). Indeed, many 

conditions associated with increased allostatic load, including depression, post-

traumatic stress disorder, and care giver stress, can result in blunted (Burke et 

al., 2005; McEwen, 1998a) (but see Chida and Hamer, 2008) responses. In the 

aged population, disruption of the HPA axis could explain worsened health 

outcomes, such as increased vulnerability to infection and disease (Glaser, 2005; 

Kiecolt-Glaser et al., 2003). Restoring stress-sensitivity in aged subjects could 

represent a novel target for the treatment of stress-related conditions in aged 

subjects. Finally, this work highlights the rationale and feasibility of modeling 

stress responses in age-appropriate systems in order to more accurately target 

interventions. 
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Chapter 4 Supplemental Data 

Both studies either brought up more questions or had an aspect that deserved a 

closer look. I decided to further investigate and performed a few smaller studies 

to address these. While these smaller studies are not the main focus, they do 

deserve mention. Therefore, I have included this smaller section.   

4.1 Corticosterone Levels During Restraint  

Before I started both of my studies, I helped Dr. Heather Buechel with a small 

study measuring the corticosterone levels in young and aged animals during the 

restraint period. My lab as well as other studies (Buechel et al., 2014; Kuhlmann 

et al., 2005; Lupien et al., 2009), had already demonstrated a sustained 

corticosterone response several hours after the termination of stress, but we 

were interested in measuring corticosterone levels during the restraint in young 

and aged animals.  

 

We used eight young (3 mos) and six aged (19 mos) male F344 rodents to 

accomplish this task. Blood samples were collected via tail prick beginning at the 

beginning of the restraint and then every hour for three hours (the length of our 

restraint period). Samples were immediately centrifuged and the plasma was 

collected and stored on dry ice until the end of the restraint period.  
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Consistent with other studies (Barlow et al., 1975; Marin et al., 2007), 

corticosterone was elevated during the entire restraint period in the young and 

aged animals (Fig. 14). The data from this small experiments served multiple 

purposes. First, it provided me with the confidence that the restraints sufficiently 

stressed both age groups. Second, I determined that it was not feasible for my 

lab to efficiently collect blood samples from control and stressed animals, 

accurately record observations from the stressed animals to create a distress 

index, and properly prepare blood samples for analysis (centrifuge and storage). 

For this experiment, the numbers were small and we focused specifically on 

stressed animals. We also had several people helping out. Unfortunately, I knew 

I would not have the manpower to accomplish this for my studies. Therefore, I 

decided to only collect trunk blood samples from my animals for all of my studies. 

4.2 Transport Stress  

When analyzing corticosterone data from the mid-aged acute stress study, I 

noticed the corticosterone levels were outside the normal physiological ranges 

for that time of day. Corticosterone levels follow a circadian rhythm and based on 

findings in the literature (Dhabhar et al., 1993; Hauger et al., 1994b; Morano et 

al., 1994; Sonntag et al., 1987), I was able to create an abstract representation of 

corticosterone levels during the day (Fig. 15) and predict the normal physiological 

range of corticosterone based off the time of day I sacrificed the animals. This 

prompted me to take a closer look at the data and I discovered there was a  
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Figure 14. Corticosterone During Restraint 
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Figure 15. Physiological Corticosterone Levels in Rodents 

 

 

Figure 15. Physiological Corticosterone Levels in Rodents. Based on 
literature, I was able to create a graph showing the typical zenith and nadir of the 
corticosterone levels in rodents. The gray box represents the time of restraint and 
the orange box represents the time of transport and trunk blood collection. Using 
this data, I predicted the expected physiological range (165-176 ng/ ml) the 
corticosterone should fall in for my animals based on the time the animal was 
killed. This helped me determine how transport affected the animals’ 
corticosterone levels and what adjustments could be made in the future.  
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pattern in the order the animals were killed (Fig. 16)—the animals (regardless of 

treatment group) killed immediately following transport had significantly higher 

corticosterone levels compared to the animals killed last (two hours after 

transport). Interestingly, the same observations have been documented in rats 

(Dallmann et al., 2006) and cattle (Palme et al., 2000; Trunkfield and Broom, 

1990). While I could not comment on the effect acute stress had on 

corticosterone levels in the study, this raised an important point regarding 

transport stress and the need for a ‘cooling off’ period before sampling if stress 

hormones are being measured.  

4.3 Pharmacologically Promoting Deep Sleep  

Spontaneous deep sleep loss occurs during aging (Bixler et al., 1984; Bliwise, 

1993; Espiritu, 2008) and deep sleep is thought to play a role in stress 

management (Brand et al., 2014; Sadeghi Bahmani et al., 2016). While I 

demonstrated that aged animals were hyporesponsive to chronic PS, a blunted 

response is still maladaptive (McEwen, 1998a). Additionally, young animals 

demonstrated cognitive deficits in chronic PS without any effect on deep sleep. 

Although neither age groups’ deep sleep was altered during chronic PS, 

promoting deep sleep could: 1. at least partially restore the stress response in 

aged animals and help them become resilient to PS and 2. in young animals, it  

could remedy some of the cognitive deficits observed after acute PS (Buechel et 

al., 2014).  

In this study, 32 young (3 mos) and 40 aged (19 mos) male F344 rats were used 
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Figure 16. Kill Order After Transport 

 

 

Figure 16 Kill Order After Transport. The CORT levels were analyzed 
according to the order of kill to determine if transport stress was the reason 
behind elevated CORT levels compared to normal physiological ranges 
regardless of grouping. Approximately 1- 1.5h after transport (4), the 
corticosterone levels have returned to normal physiological levels and are 
significantly lower than the animals killed immediately after transport.  There was 
a significant effect of the kill order (Two Way ANOVA Kill order p = 0.015, Stress 
p = 0.513, Interaction p = 0.936) 
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to study the influence of administering Gaboxadol during acute PS. Gaboxadol is 

a selective GABAA receptors (Mathias et al., 2001a; Wafford and Ebert, 2006). 

This drug differs from others, such as benzodiazepines that bind to the BZD 

domain of GABAA receptors, in that it is selective to the delta subunit of 

extrasynaptic GABAA receptors (Wafford and Ebert, 2006). Unlike current sleep 

aids on the market (e.g. zolpidem and zopiclone) that do not actively enhance 

deep sleep, Gaboxadol lengthens episodes of deep sleep without altering sleep 

latency and REM sleep (Lancel, 1999). Animals were divided into four treatment 

groups (control + drug, control + vehicle, stress + drug, stress + vehicle). I, with 

the help of Sara Qutubuddin and Jelena Popovic, measured cognition, activity, 

behavioral distress, and corticosterone to determine gaboxadol’s effect. The drug 

was administered daily 30 minutes prior to the onset of the inactive period. 

Restraint stress (3h/ day, 4 days) was used to model acute psychosocial stress. 

All animals were trained on the spatial cue task of the Morris water maze for 

three days immediately following restraint stress. The probe trial was conducted 

on the final restraint day after the termination of stress. Activity was monitored 

using Home Cage – Locomotor Activity (Accuscan Instruments) and the first five 

hours of the inactive and active periods were monitored daily.  

 

Interestingly, the Gaboxadol appears to selectively work in young stressed 

animals. The drug had no effect on the cognition of the young control animals, 

but cognitive ability appears to have improved in the young stressed animals that 
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were administered the drug. While all young stressed animals experienced 

increased activity during the inactive period compared to control animals, 

gaboxadol was associated with a significant decreased activity during this period.  

 

Consistent with prior data (Buechel et al., 2014), aged animals were 

hyporesponsive to stress in terms of cognition, but the drug did not appear to do 

anything to improve performance during the probe trial (Fig. 17A) as the aged 

animals’ path length to the original platform location was unaffected. During 

acute and chronic PS, young stressed rodents have demonstrated cognitive 

deficits during the probe trial (Buechel et al., 2014). Interestingly, the young 

stressed animals that received Gaboxadol as an intervention improved their path 

length to the original platform location (Fig. 17B), suggesting that the drug was 

able to help restore stress-associated cognitive deficits. While the analysis is 

ongoing, it does appear that administering Gaboxadol at the onset of a new 

stress does help maintain stress resiliency in young animals and prevents stress-

associated cognitive deficits. Unfortunately, this intervention did not seem 

beneficial to the aged animals. Similar to prior work, this highlights the 

differences in the stress responses in young and aged animals, and further 

suggests the need for age-specific interventions. 
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Figure 17. Probe Trial Following Acute Stress 

 

Figure 17 Probe Trial Following Acute Stress. The path length to the original 
platform location was recorded. A. The aged animals were hyporesponsive to the 
stress and drug intervention (Two-Way ANOVA Stress p = 0.962, Drug p = 
0.778, Interaction p = 0.766). B. There was a trend towards a significant 
decrease in the path length of the young stressed animals receiving the drug 
intervention (Two-Way ANOVA: Stress p = 0.619, Drug p = 0.100, Interaction p = 
0.056 (*Tukey’s post hoc p = 0.015).  
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Chapter 5 Discussion 

5.1 Summary of Introduction 

Current research is quick to dedicate many resources to investigate the cause, 

and attempt to find a cure, for aging-related diseases, such as Alzheimer’s 

disease. While that is important, especially in attempting to improve the quality of 

life for individuals suffering from those diseases, we should take a step back and 

look at the definition of aging. To summarize Hayflick’s characterization of aging 

(2000), it is a phenomena that occurs in virtually all species after reaching 

reproductive maturity and is the result of the reduced capacity for cells to 

maintain their integrity. He goes on to eloquently argue that aging causes 

molecular disorder that increases the vulnerability to diseases and can ultimately 

lead to death in the aged population. To get to the bottom of this issue, 

researchers need to focus on the “molecular disorder” in the aging population in 

the absence of age-related disease—then we will begin to understand why the 

human population is living as long as it is (Hayflick, 2000).  

 

The average human lifespan has remained 125 years (Hayflick, 2000), however, 

life expectancy in the United States was reported to be 79 years (Xu et al., 2016). 

The statement ‘humans are living longer’ is true, but what percentage of the 

population experiences good quality of life during the later portion of life? 

Additionally, how do humans increase the average life expectancy and is that 

something to even consider? Some interventions, such as caloric restriction 
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(Colman et al., 2009; Cox and Mattison, 2009; Mehta and Roth, 2009), 

resveratrol (Csiszar, 2011; de la Lastra and Villegas, 2005), and rapamycin 

(Blagosklonny, 2013; Harrison et al., 2009; Richardson, 2013) have been shown 

to increase maximal lifespan in animal models, but so far no one has unlocked a 

magical cure to aging.  

 

Trying to increase human lifespan raises a very important argument between 

utopian and dystopian aging. The former describes improvements on health that 

essentially delay morbidity and disability until the end of one’s life and ultimately 

improve one’s quality of life (Schaie et al., 2013). The latter describes increasing 

life expectancy, but with a steadily worsening quality of life. The additional years 

added onto one’s life are filled with chronic disease and the individual becomes 

increasingly less independent (Schaie et al., 2013). Advances in medical 

research and technology have vastly improved the lifespan and healthcare in 

developed countries. However, as the population lives longer, there is also an 

increased burden on society to care for these individuals because most are 

unable to care for themselves, suggesting dystopian aging. Some of the 

increased burden could be explained by the consequences of aging, such as 

neurodegeneration (Bombois et al., 2010; Hindle, 2010) preventing the elderly 

from maintaining their independence. However, not all the aging population 

experiences these consequences; in fact, some people experience what has 
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been termed “successful aging” and these people maintain the ability to care for 

themselves. 

 

It is widely known that the aging population already experiences cognitive deficits 

(Erickson and Barnes, 2003; Klempin and Kempermann, 2007; Nithianantharajah 

and Hannan, 2009; Rosenzweig and Barnes, 2003; Whalley et al., 2004) and 

changes in sleep architecture (Ancoli-Israel and Alessi, 2005; Jaussent et al., 

2013; Kryger et al., 2004; Naylor et al., 1998; Zepelin et al., 1972). There are 

also several potential factors that may increase the probability of a person to 

experience “unsuccessful aging,” such as genetics (Aviv et al., 2003; Franceschi 

et al., 2000), socioeconomic status (Adler et al., 1994; House et al., 1990), or 

social support (Rowe and Kahn, 1997). Another possibility could be exposure to 

stress and the resulting activation of the HPA axis in the attempt to 

physiologically re-establish homeostasis.  

 

The HPA axis is a conserved physiological response to an exogenous stressor 

and is present in species, such as fish (Wendelaar Bonga, 1997), birds (Siegel, 

1980) and mammals (Tsigos and Chrousos, 2002). This is also called the “fight-

or-flight” response and functions to promote survival and re-establish 

homeostasis (Chrousos and Gold, 1992). Briefly, the hypothalamic-pituitary-

adrenal (HPA) is activated to release glucocorticoids, epinephrine, and 

norepinephrine (Tsigos et al., 2000). These hormones participate in actions, such 
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as diverting energy away from non-essential muscles and regulating the stress 

response (Tsigos and Chrousos, 2002), that allow for the maximal chance of 

survival. Several researchers have argued that stress can be described as 

hormetic (Calabrese et al., 2012; Gems and Partridge, 2008; Rattan, 2001); it 

can be beneficial, but prolonged exposure or increased intensity can be harmful.  

 

Not only does exposure to new onset stress have its own consequences, but the 

probability of experiencing new onset stress increases with age and may 

exacerbate the existing consequences of aging (Epel et al., 2004; Sapolsky, 

1999). The allostatic load hypothesis posits that the accumulation of stress 

responses over time can accelerate brain aging and lead to a hyper- or hypo-

response of the HPA axis (McEwen, 1998a). McEwen and colleagues describe 

the consequences of increased allostatic load and include suppressed 

neurogenesis and synaptic and dendritic remodeling (McEwen, 2000a) which 

lead to cognitive deficits. Ongoing allostatic load can lead to prolonged exposure 

to the stress hormones epinephrine, norepinephrine, and cortisol (Juster et al., 

2010; McEwen, 2006). More specifically, the increased secretion of cortisol can 

not only lead to symptoms resembling Cushing ’s disease (McEwen, 2008), but 

can begin to induce an aged-like brain profile in the young (Sapolsky, 1999). In 

addition to cognition and hormones, allostatic load can also influence sleep 

(Karatsoreos and McEwen, 2011) and body temperature (McEwen, 2003). 

Despite the extensive research already performed in this area, there still remains 
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a deficit in studies looking at the effects of new-onset stress on existing allostatic 

load as hypothesized in aging.  

 

Sleep plays a role in memory processing (Kushida, 2012; Marshall and Born, 

2007; Sejnowski and Destexhe, 2000; Tononi and Cirelli, 2006, 2012; Walker, 

2009), energy conservation (Berger and Phillips, 1995; Walker and Berger, 

1980), metabolism (Leproult and Van Cauter, 2010; Spiegel et al., 1999) and 

physical restoration (Adam and Oswald, 1977; Kushida, 2012). Additionally, deep 

sleep is thought to play a role in stress resiliency, as it inhibits the HPA axis and 

the sympathetic system (Basta et al., 2007; Brand et al., 2014; Meerlo et al., 

2008; Sadeghi Bahmani et al., 2016). Unfortunately, gerontology research shows 

that elderly individuals have disrupted sleep architecture (Espiritu, 2008; Foley et 

al., 1995; Wolkove et al., 2007) and a loss of deep sleep (Carskadon and 

Dement, 2005; Mathias et al., 2001b), suggesting a dampened ability to manage 

stress.  

5.2 Summary of Methods 

5.2.1 Psychosocial Stress 

Psychosocial stress results from a non-noxious stimulus (Fink, 2009), therefore 

any method I used to stress the animals could not be classified as a physical 

stressor (e.g. exercise, cold stress, foot shock, etc.). While there are several 

methods to induce psychosocial stress (e.g. strobe, water avoidance), I chose 
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restraint stress because this method was used in prior studies (Buechel et al., 

2014) from my lab and I wanted to reduce variability between studies.  

 

Compared to rats, humans have a highly developed prefrontal cortex, giving 

them the ability to reminisce and anticipate their stressors (Ongur and Price, 

2000; Uylings et al., 2003), turning an acute stressor into chronic stress. To 

model chronic psychosocial stress in rodents, the restraint protocol was repeated 

daily, always avoiding the rats’ inactive period. However, in the literature, there is 

a variation in the duration (Buynitsky and Mostofsky, 2009; Jackson and 

Moghaddam, 2006; Kang et al., 2007; Luine et al., 1996) of the restraint 

protocols. I chose a duration of three hours as an optimal duration because the 

animals have plenty of time to mount a response to the stressor and the duration 

is short enough to minimize other stressors like food/ water/sleep deprivation. I 

made sure to stress all animals during their active period to reduce the 

contributions of sleep deprivation.  

5.2.2 Cognitive Measures 

The Morris water maze was used in both studies to assess cognition in the 

animals. This method requires the animals to use external cues to find a 

submerged platform (Morris, 1984) and has been previously used in aging 

studies (Carter et al., 2009; Frick et al., 2003; Latimer et al., 2014; Ma et al., 

2014; van Praag et al., 2005; Yau et al., 2002; Zyzak et al., 1995). While other 

cognitive tasks such as delayed match to sample and avoidance are appropriate 
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to measure cognition, the amount of time to train animals, the introduction of a 

noxious stimuli, and methods for motivation to learn and perform the task were 

not feasible for my studies.  

5.2.3 Sleep Monitoring  

Surgically implanted wireless telemetry devices (DSI International) were used to 

monitor sleep architecture and body temperature in both studies. Because 

animals were not tethered by wires, I could easily restrain them to model stress 

as well as put them in the water maze to analyze cognitive abilities. I also had the 

capability of continuously collecting temperature data without introducing an 

additional stressor. The continuity of data collection provided a more accurate 

picture of the temperature response to psychosocial stress throughout the entire 

inactive period instead of a couple of time points.  

5.2.3 Stress Hormone Measures 

Studies have demonstrated sustained elevation of corticosterone after the 

termination of stress (Akerstedt, 2006; Buechel et al., 2014; Kuhlmann et al., 

2005; Lupien et al., 2009). I was more interested in the implications of prolonged 

elevation of corticosterone, especially in terms of allostatic load. Therefore, trunk 

blood was collected at the end of the study and corticosterone levels were 

analyzed.  
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I had two aims in this work: 1) to investigate the influence of acute psychosocial 

stress on sleep, cognition, body temperature, and blood hormone levels in mid-

aged male rats and 2) to investigate the influence of chronic psychosocial stress 

on the same measures in young and aged male rats. To complete this, I used the 

approaches described above to develop a thorough understanding of how 

psychosocial stress was influencing the animals. 

5.3 Summary of Hypotheses 

In the first study, I hypothesized that the stress response of the mid-aged animals 

would be intermediate between the response of young and aged animals. The 

main focus of this project was to determine the influence of psychosocial stress 

in different age groups. Prior work (Buechel et al., 2014) provided a good 

foundation of the acute stress response in young and aged animals, however 

there is a lack of research of the acute stress response in mid-aged animals. 

Therefore, in the first study, I aimed to fill that knowledge gap by investigating 

this response in mid-age animals. Mid-age is a key transition period from young 

to aged and this age population could hold important information about the 

transition from healthy to unhealthy brain aging.  

 

While acute stress gave us a nice snapshot of the stress response in all age 

groups, stressors humans typically encounter are thought to be more chronic in 

nature. This is mainly due to the anticipation and/or rumination of a singular 

stressor. Thus, the second study investigated the influence of chronic 
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psychosocial stress in young and aged rats. Here, I hypothesized that aged 

animals would continue to be hyporesponsive to chronic psychosocial stress. 

5.4 Summary of Hypothesis Tests 

Previous work in our lab provided a foundation of the acute psychosocial stress 

response in young and aged animals (Buechel et al., 2014). Our lab found that 

while young animals demonstrated a response to acute stress, resulting in 

cognitive deficits, deep sleep loss, hyperthermia, and elevated corticosterone, 

aged animals were hyporesponsive. I tested the same parameters in mid-aged 

subjects. Just like the young, the mid-aged experienced cognitive deficits and 

hyperthermia. Similar to the aged, the mid-aged showed no changes to their 

inactive period deep sleep. Interestingly, we did note that transport before end 

measurement collection actually stressed our animals (see Supplemental Data 

4.2). This provided very useful information for future studies about the necessity 

of a “cooling off” period before blood collection. 

 

In our second study, we chronically stressed young and aged animals to model 

the influence of chronic psychosocial stress. While aged animals maintained their 

hyporesponsiveness to chronic stress as they did with acute stress, interestingly, 

the young animals developed a blunted response in some classic measures of 

the stress response. The young still suffered from cognitive deficits, but by the 

termination of the chronic stress, their sleep architecture, body temperature, and 

corticosterone levels were unaltered. 
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5.5 Theoretical Implications 

The results of my work have raised several questions, as well as have 

implications that are outside the original scope of the studies. 

5.5.1 Age-related sleep changes may be early critical changes in the 

hyposensitive stress phenotype of age  

I demonstrated mid-aged animals did not show changes to their sleep 

architecture following acute psychosocial stress (see Mid-aged Acute Stress 

2.3.2), when compared to young animals (Buechel et al., 2014). On the other 

hand, the mid-aged animals did show post-stress hyperthermia and cognitive 

deficits. Hyperthermia is an established consequence of stress (Kataoka et al., 

2014; Morimoto et al., 1993), however the exact mechanism and reason why this 

effect is lost in the aged population is still unclear. 

 

It is that possible stress-induced hyperthermia occurs via prostaglandin E2 

(PGE2) signaling in the preoptic area of the hypothalamus from stress-induced 

elevations of glucocorticoids (Morimoto et al., 1991; Oka et al., 2001; Vellucci 

and Parrott, 1995). It has been demonstrated that increased c-Fos expression in 

the median preoptic nucleus can cause significantly elevated temperature. 

However, the rise in temperature can be blocked by administering indomethacin, 

which prevents PGE2 synthesis (Morimoto et al., 1991; Vellucci and Parrott, 

1995). While we did not observe sustained elevations in corticosterone (18 hrs 

post-stress), it is probable that glucocorticoids were elevated during and 
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immediately following the restraint stress, leading to the increase in c-Fos 

expression. 

 

Another possibility is through stimulation of brown adipose tissue (BAT) via 

stress-induced increases of corticotropin releasing factor (CRF) (Morimoto et al., 

1993; Nakamori et al., 1993; Oka et al., 2001; Watanabe et al., 1990). CRF 

activates the SNS, leading to increases in norepinephrine, epinephrine, and 

glucose (De Souza, 1995; Fisher and Brown, 1991). Interestingly, consistent with 

our findings, the response to CRF in aged subjects is blunted (De Souza, 1995; 

Hylka et al., 1984); researchers point towards a decrease in the CRF receptor 

density to explain the dampened response. While controversial, some studies 

show elevated basal levels of glucocorticoids in the aging population (Lupien et 

al., 1998; Sapolsky, 1992). Sapolsky et al (1983) suggests that aged-related 

increases in glucocorticoids may contribute to the blunted CRF response.  

 

Given these possible mechanisms to explain the hyperthermia, the young and 

mid-aged rodents were the only age groups to experience hyperthermia and it 

was only present during acute stress. Brown adipose tissue has been shown to 

not only decrease with age, but to also have impaired function with increasing 

age (McDonald et al., 1988; Norman et al., 1985; Saely et al., 2012). Another 

possibility is that the temperature elevation seen in the young and mid-aged 
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animals is working through a completely different mechanism and that 

mechanism becomes impaired/ blunted with increased age.  

5.5.2 Aging acts as a stressor and occludes additional stressors  

Stress (McEwen, 1998a; Sapolsky, 1996) and aging (Lupien et al., 1998; Porter 

and Landfield, 1998; Roth, 1974) can alter the concentration of glucocorticoids. 

Long-term exposure to stress stimuli leads to dendritic atrophy and cognitive 

impairments. These impairments were seen in aged control and young stressed 

animals in my study, indicating that the additional exogenous stress does not 

further impact aged animals’ cognition, but does so in the young. Our work 

supports the hyporesponsiveness McEwen (1998a) described in the allostatic 

load hypothesis. 

 

This hypothesis shows that chronic stress can result in remodeled dendrites in 

tree shrews (Magarinos et al., 1996), rats (Conrad et al., 1996; Galea et al., 

1997; Watanabe et al., 1992), and primates (Uno et al., 1994). Mechanistically, 

the increased glucocorticoids cause an increase in extracellular glutamate 

(Moghaddam et al., 1994). This could potentially cause a downregulation in the 

glutamate receptors and contribute to decreased dendritic branching (Magarinos 

and McEwen, 1995). While we did not specially focus on dendritic branching, it is 

tempting to speculate that this happened to our chronically stressed young 

animals. 
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5.5.3 Stress-induced cognitive dysfunction could be a result of leaky 

neuronal ryanodine receptors  

Ryanodine receptors (RyR) help regulate the release of intracellular calcium 

stores (Kostyuk and Verkhratsky, 1994; Spacek and Harris, 1997). 

Mechanistically, calstabin2 (FKBP1b/FKBP12.6) binds to and stabilizes RyR2 

channels and prevents calcium leak from intracellular stores. PKA mediated 

phosphorylation and oxidation/nitrosylation (Yuan et al., 2014) modifications to 

the RyR2 channel after stress reduce the RyR2 channel’s affinity for FKBP12.6, 

resulting in ‘leaky’ RyR2 channels and increased intracellular Ca2+ (Bellinger et 

al., 2008; Liu et al., 2012; Shan et al., 2010). RyR1 and RyR2 are also found in 

the hippocampus, with RyR2 found to be significantly upregulated after cognitive 

training (Cavallaro et al., 1997; Zhao et al., 2000). 

 

It has been documented that the ryanodine receptor channels of chronically 

stressed mice showed significantly higher open probabilities than the non-

stressed mice or the RyR2-S2808A+/+ mice (Liu et al., 2012). This also led to 

significantly worsened cognition in the stress animals compared to the controls, 

suggesting a role for these channels in the cognitive deficits of our chronically 

stressed young animals. Interestingly, mice treated with a compound S107, 

which has been found to prevent a leaky RyR2 channels (Bellinger et al., 2008), 

have reduced stress-induced calcium leak and improved cognition (Liu et al., 

2012). We did not specifically investigate the influence of chronic stress to the 
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ryanodine receptor channels. It is possible we are seeing this happen in the 

young animals and it would be a possible avenue in the future to investigate 

mechanistically the role chronic stress has in ryanodine receptor channel 

modifications (if any). 

 

The long-standing calcium hypothesis of aging posits that neuronal calcium 

becomes dysregulated with age, leading to an increase in intracellular calcium 

associated with cognitive deficits in aging and neurodegeneration (Berridge, 

2010; Khachaturian, 1994; Landfield, 1987a; Landfield and Pitler, 1984). 

Considering RyR2’s role in leaky calcium channels in chronically stressed 

animals, RyR2 could play a role in the increased intracellular calcium in aged 

subjects. In fact, it has previously been reported that disrupting calstabin2 with 

small interfering RNA induces the calcium dysregulation seen in the calcium 

hypothesis of aging (Gant et al., 2014; Gant et al., 2011). If ryanodine receptor 

channels are already disrupted with age then it could not only explain the age-

related cognitive deficits, but also explain why the aged animals were 

hyporesponsive to new onset stressors in my studies.  

5.5.4 The timing of the stressor is important to memory recall  

There are three phases of memory: acquisition (acquiring the information), 

consolidation (processing/storing the information), and recall (the ability to 

remember the information) (Marshall and Born, 2007). Activation of the HPA axis, 

and thus elevated glucocorticoids, at the appropriate time in a physiologically 
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normal system has been shown to contribute to the learning and memory 

consolidation process (Wolf, 2003). For instance, exposure to a stressor 

immediately following a training exercise can actually enhance consolidation 

(Cordero and Sandi, 1998; Ferry et al., 1999; Flood et al., 1978; Roozendaal and 

McGaugh, 1996), indicating that acute stress in the proper context can be 

beneficial. 

 

Whilst beneficial, glucocorticoids can also have a negative effect on the same 

process. Stress prior to a memory recall task hinders the subject’s ability to recall 

the information, both in humans (Domes et al., 2004; Kuhlmann et al., 2005; 

Sandi and Pinelo-Nava, 2007) and in animals (de Quervain et al., 1998; Diamond 

et al., 2006; Sandi and Pinelo-Nava, 2007). Our animals were stressed 

immediately prior to acquisition as well as recall (Chapters 2 and 3). While the 

young animals did demonstrate the ability to learn the spatial cue task (based off 

the improvement each day), the elevated glucocorticoid levels they experienced 

during the restraint immediately prior to recall clearly impacted their ability to 

recall the position of the platform. This does raise a very good question about the 

impact that stress immediately prior to acquisition has on recall. While the 

animals were stressed during the acquisition period, we cannot comment about 

the effects other than the animals still possessed the ability to learn the task. 
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5.5.5 Aging has Benefits  

While aging does have many negative consequences, there are some benefits to 

getting older. For example, Salthouse points out that older individuals score 

higher on vocabulary and comprehension tests (Salthouse, 2004). Carstensen et 

al., (1999) argue that the older population have higher emotional reasoning skills 

than their younger counterparts. To add to this, other researchers have indicated 

that older adults have better understanding of various emotional states 

(Carstensen et al., 1999; MacKay and James, 2001), allowing them to more 

successfully control their negative emotions (Carstensen et al., 1999; Lawton et 

al., 1992). Thus, one challenge may be to address the cognitive losses 

associated with aging, while retaining aging’s benefits.  

5.6 Limitations and Future Directions  

While these studies accomplished the aims I originally set out to complete, the 

results opened up the realm to further investigate different aspects of stress, 

aging, cognition, and sleep. I was also able to determine how to optimize the 

execution of future studies using similar techniques, as well as new approaches 

(e.g. selective sleep stage suppression) to test the molecular underpinnings of 

these age-related changes.  

5.6.1 Surgical implants  

The wireless telemetry devices provided us with a wealth of data and a lot of 

possibilities for measurements (e.g. temperature, sleep architecture, sleep 
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power) that we would not normally be able to measure. Additionally, because 

they are wireless, we could subject our animals to restraint stress and water 

maze behavior tasks. That said, these implants did lengthen our study and 

limited the number of animals we had in each cohort. Due to surgery and 

recovery periods, an additional three weeks had to be added to each cohort’s 

timeline. Also, because each animal had to have its own receiver for the emitter, 

we could only have eight animals per cohort. 

 

To combat this in the future, I have been working with SignalSolution, LLC, a 

small biotech company co-founded by Dr. Bruce O’Hara, to investigate using 

piezo electronics to monitor sleep and activity non-invasively. This method uses 

a pad embedded with piezo electronics that is placed under the animals’ cage. It 

is able to monitor the animals’ breathing with such a degree of sensitivity that it 

may be possible to distinguish between the stages of sleep. Currently, I have 

used implanted animals together with the piezo pads to record sleep data. After a 

recording period of 24h, I analyze the data collected from the telemetry devices 

and send the results to the company so they can determine how well the data 

has matched up and make adjustments for future recordings. While the number 

of animals per cohort would be limited to the number of piezo pads, the time 

saved by eliminating surgery and recovery would afford us more time, as well as 

give us the ability to stack our cohorts more tightly and reduce surgery stress on 

the animals. 
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5.6.2 Sleep Stage Intervention  

Though the telemetry devices add additional time to a study, they can be an 

asset for targeting specific stages of sleep for sleep stage interventions/ studies. I 

had the opportunity to work with biomedical engineers, specifically Dr. Sridhar 

Sunderam, to attempt to suppress deep sleep in young male F344 rats. Briefly, 

we used a vibrating pad that was programmed to vibrate whenever the computer 

detected the animal in deep sleep. The pad vibrated just enough to bring the 

animal out of deep sleep without waking the animal. The reasoning was to study 

seizures brought on by deep sleep suppression, but there is an application in 

aging as well. Because deep sleep is lost with aging (Bliwise, 1993; Espiritu, 

2008; Zepelin et al., 1972), we could potentially manipulate the sleep architecture 

in young animals to model the consequences of deep sleep loss without using 

sleep deprivation.  

5.6.3 Blood Sampling  

In my studies, I collected trunk blood to measure sustained circulating levels of 

corticosterone 18-20h following stress. The reason behind this was because it 

was previously documented that corticosterone could remain elevated even after 

acute stress (Buechel et al., 2014). Having a baseline corticosterone 

measurement along with additional sampling throughout the study could provide 

valuable information, such as when the young animals began to show a blunted 

biochemical response to the restraint. Cannulas would allow for long-term blood 

sampling; however, these are not compatible with the water maze. However, 
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other hippocampal-dependent assessments, such as radial arm or Y-mazes 

could be used in place of the water maze to allow the use of cannulas.   

5.6.4 Intervention Strategies  

Sleep is important for learning and cognition (Borbely, 2001; Goerke et al., 2013; 

Marshall and Born, 2007; Stickgold, 2005) and can be disrupted by stress 

(Akerstedt, 2006). More specifically, deep sleep is thought to play a crucial role in 

not only memory processing (Marshall et al., 2006), but also stress resiliency 

(Brand et al., 2014; Sadeghi Bahmani et al., 2016). Pharmacologically promoting 

deep sleep may help preserve the young animals’ ability to mount a proper stress 

response and therefore sustain cognition while facing an exogenous stressor. In 

the older animals, promoting deep sleep may help restore the ability to process 

new information as well as potentially alleviate some of the allostatic load they’ve 

accumulated from aging. This was recently studied in my lab using gaboxadol as 

a deep-sleep promoting agent. The data has been collected and the analysis is 

ongoing.  

 

Other than promoting deep sleep, investigating the in RyR2 channel in aged 

subjects may help determine if these leaky calcium channels could help explain 

much of the negative consequences seen with age. The use of ryanodine 

receptor stabilizers or Rycals (e.g. S107) to help stabilize calstabin2’s binding to 

RyR channels, or over-expressing calstabin 2 via viral injection, in young 

chronically stressed animals may help to elucidate their role. It would be 
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interesting to determine if promoting stable binding in these channels helps 

prevent or reverse the cognitive deficits and stress hyposensitivity seen with 

aging. It would also be beneficial to see the interplay between sleep and leaky 

RyR2 channel activity, as changes in sleep architecture are associated with both 

stress and aging. 
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