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ABSTRACT OF DISSERTATION 

 

 

THE ROLE OF ASTROCYTIC CALCINEURIN ACTIVATION AND DOWNSTREAM 
SIGNALING IN NEURODEGENERATIVE DISEASES 

Calcineurin (CN) is a calcium (Ca2+)-sensitive serine/threonine protein 
phosphatase that plays a significant role in several cell signaling pathways, and has 
been implicated in many neurodegenerative diseases including Alzheimer’s disease 
(AD) and vascular cognitive impairment and dementia (VCID). Although normally found 
in neurons, CN also appears at high levels in activated astrocytes under conditions of 
injury and disease. To elucidate the role of astrocytic calcineurin signaling in 
neurodegenerative diseases, our lab has used primary rat astrocytes, transgenic and 
diet-induced mouse models of dementia, and human tissue biospecimens from 
confirmed AD and VCID cases.  
 

To better understand mechanisms for aberrant activation of CN during injury and 
disease, we created a custom antibody that selectively identifies a proteolyzed, 
constitutively active CN fragment. Immunolabeling in human biospecimens was done to 
determine which cell types express high levels of CN proteolysis and hyperactivation. 
Our results revealed extensive proteolysis of CN in activated astrocytes near pathologic 
hallmarks of AD (Aβ plaques) and VCID (microinfarcts). When a similar activated CN 
fragment was expressed in hippocampal astrocytes of healthy adult rats using adeno-
associated virus (AAV) vectors, we observed suppressed function of CA3-CA1 excitatory 
synapses, suggesting that proteolytic activation of CN in astrocytes is a key mechanism 
for driving neuronal dysfunction in neurodegenerative diseases. 
 

To explore the interaction between astrocytic CN and a possible downstream 
signaling target, we studied the hemichannel-forming protein, connexin43 (Cx43). 
Previous work has shown that serine 368 near the C terminus of Cx43 is 
dephosphorylated by CN. Here, we found that dephosphorylation of ser368 was 
increased in human hippocampal specimens from subjects diagnosed with mild cognitive 
impairment (MCI). Dephospho-Cx43 levels were correlated, within subject, to elevated 
levels of CN proteolysis and signaling. Moreover, dephosphorylation of Cx43 could be 
mimicked in rat primary astrocyte cultures using both exogenous Ca2+ mobilizers 
(phorbol ester/ionomycin) and endogenous inflammatory mediators (IL-1β), found 
previously to activate CN in astrocytes. Finally, we created a custom peptide (43Gap52) 
that encompasses Ser368 and mimics a portion of the C-terminus of Cx43. 43Gap52 
prevented IL-1β-mediated dephosphorylation of Cx43, but did not prevent CN-dependent 
activation of NFAT transcription factors, suggesting that 43Gap52 selectively disrupts 



 
 

CN/Cx43 interactions. Using 43Gap52 and the commercial CN inhibitor cyclosporin A 
(CsA), we found that blockade of CN/Cx43 interactions reduced hemichannel 
permeability in primary astrocytes following treatment with IL-1β, suggesting that 
aberrant CN activation in astrocytes may negatively affect neurons via interactions with 
Cx43-containing hemichannels.  
 

To more clearly understand CN/NFAT signaling in VCID we used a diet-induced 
model of hyperhomocysteinemia (HHcy) that drives vascular pathology. Using AAV-
mediated gene delivery, we injected mice with an astrocyte-targeted inhibitor of 
CN/NFAT binding (Gfa2-Egfp-VIVIT) or a control virus (Gfa2-Egfp). These mice were 
further split into two groups, one fed with the HHcy diet and one fed with control diet. 
Experiments are in progress to assess endpoint measurements including LTP and 
synaptic strength, RAWM behavior testing, as well as a panel of biochemical 
measurements. 
 
 
 
KEYWORDS: Astrocyte, Calcineurin, Neuroinflammation, Alzheimer’s disease, Vascular 
cognitive impairment and dementia  
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CHAPTER I: NEURODEGENERATIVE DISEASE, NEUROINFLAMMATION, 
ASTROCYTES, AND CALCINEURIN SIGNALING: A REVIEW 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



2 
 

 
1.1 Neurodegenerative disease 

 
As the world makes advances in both medical technology and healthcare, we see an 

increase in the aging population. Unfortunately, with the increase in life expectancy we 

see an increase in the number of people that develop neurodegenerative diseases. 

Neurodegenerative disease is a broad term that describes a disease characterized by 

chronic and progressive loss of both structure and function of neurons: e.g. amyotrophic 

lateral sclerosis (ALS) or Parkinson’s disease (PD). Although the symptoms vary greatly 

with each individual disease, individuals with neurodegenerative diseases typically show 

some type of cognitive and/or motor deficits. It is believed that distinct 

neurodegenerative diseases are driven by unique pathological features (e.g. prions in 

Creutzfeldt-Jakob disease, amyloid in Alzheimer’s disease, microinfarcts in vascular 

dementia) that lead to the breakdown of neuronal structure and function. Despite 

differences in pathogenic mechanisms, nearly all neurodegenerative diseases are 

unified by the appearance of neuroinflammation (Chen et al. 2016), involving feed-

forward cycles of cytokine production and neuroglial “activation”. For the scope of this 

dissertation, I will focus on the role of activated astroglia in two of the most common 

causes of neurodegeneration and dementia: Alzheimer’s disease (AD) and 

cerebrovascular disease. 

 

1.1.1 Alzheimer’s disease 

AD is a devastating neurodegenerative disorder characterized by progressive 

cognitive deficits, marked personality changes, and gradual loss of everyday skills and 

functions. As of 2015, over 5.4 million people in the United States suffer from AD and 

that number is expected to increase to 16 million by 2050. Moreover, in 2016 the total 

direct cost of caring for individuals with AD in the United States alone is an estimated 
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$236 billion. While rates of many other diseases (i.e. cardiovascular disease, stroke, and 

breast cancer) have declined, the prevalence of AD has increased at the alarming rate of 

71% between 2000 and 2013. Furthermore, current medications on the market have 

failed to prevent or cure AD (Alzheimer’s Association, 2016 Facts and Figures). It is 

imperative that we develop treatments that will prevent, or at the very least slow the 

progression of AD in order to avoid both health and financial crises. Finding effective 

treatments has proven difficult given that the exact molecular mechanisms responsible 

for the onset and progression of AD remain poorly understood.  

In clinic, AD patients present with some degree of learning and memory 

impairment (Selkoe, 2001; Mattson, 2004) although symptoms vary from person to 

person. To make a clinical diagnosis of AD, physicians most often use behavioral or 

cognitive examinations but can additionally use imaging techniques i.e. positron 

emission tomography (PET) imaging as well as protein biomarkers from cerebrospinal 

fluid (CSF) (Anoop et al., 2010; Counts et al., 2016). It should be noted that a final and 

definitive diagnosis of AD cannot be made until brain tissue is examined at autopsy, 

where macroscopic examination can reveal brain atrophy along with severe neuronal 

loss, and microscopic examination can reveal the two pathologic hallmarks of AD—beta 

amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) (Braak and Braak, 1991).  

Neurofibrillary tangles are intraneuronal aggregations of hyperphosphorylated 

tau, a microtubule-stabilizing protein that is abundant in neurons (Avila et al., 2004). 

Hyperphosphorylation of tau can cause disintegration of microtubules that leads 

disrupted axonal transport and synaptic dysfunction (Maccioni et al, 2001). Additionally, 

studies have shown that tau can aberrantly associate with ribosomes in AD, leading to 

decreased synthesis of synaptic proteins that ultimately contributes to synaptic 

dysfunction (Meier et al., 2016). Aβ plaques are extracellular aggregations of cleaved 

amyloid peptides. These peptides are produced by the cleavage of the membrane-
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spanning amyloid precursor protein (APP). Normally, APP is cleaved extracellularly by α-

secretase which releases a non-toxic, soluble fragment (sAPPα) (Nunan and Small, 

2000). However, with AD, APP is cleaved extracellularly by β-secretase (BACE) followed 

by intra-membrane cleavage by γ-secretase which releases toxic Aβ fragments from the 

membrane (Haass and Selkoe, 1993; Nunan and Small, 2000). These fragments can 

remain monomeric or assemble into oligomers, the most toxic form of Aβ, as well as 

fibrils that form Aβ plaques. All forms are found in AD (Irvine et al., 2008), and while 

some studies suggest disruption of synaptic function as the main mechanism of Aβ 

toxicity (Shankar et al., 2008), the exact mechanisms remain poorly understood. 

The most widely accepted hypothesis for the mechanisms that lead to memory 

loss in AD is known as the “amyloid cascade”. In this model, increased production of 

toxic Aβ oligomers interferes with neuronal synaptic function, resulting in formation of Aβ 

plaques, neurite atrophy, activation of neuroinflammatory responses (astrocyte and 

microglial activation), and hyperphosphorylation of tau that eventually culminates in a 

dementia with hallmark plaque and tangle pathology (Hardy and Higgins, 1992; 

Lovestone, 2000). However, as treatments that target Aβ clearance or degradation have 

been largely ineffective at improving cognitive function, it is becoming more accepted 

that a combinatorial approach to AD that targets mechanisms beyond or in addition to 

Aβ may prove most effective. The majority of this dissertation will focus on the 

neuroinflammatory response, namely astrocyte activation, as a possible target for AD 

therapeutics. 

 
 
1.1.2 Cerebral small vessel disease 
 

Cerebral small vessel disease (SVD) describes a group of pathologic processes 

that affects arterioles, capillaries, and venules of the brain. Most commonly, this 

describes arteriolosclerosis and cerebral amyloid angiopathy (CAA). Damage to the 
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small vessels can result in white matter lesions (WMLs), lacunar infarcts, and cerebral 

hemorrhages which can be detected easily by neuroimaging, and thus SVD is often 

used to describe the above pathologies (Pantoni, 2010). Different studies have 

suggested that both macroscopic and microscopic infarcts are sufficient on their own to 

drive vascular cognitive impairment and dementia (VCID) (Smith et al., 2012). The 

extent of cognitive impairment, however, may depend on number of infarcts as well as 

brain region affected (Gorelick et al., 2016).  

VCID is not only the second leading cause of dementia behind AD, but is also a 

frequent comorbidity with AD, with up to 40% of patients presenting with a mixed 

dementia e.g. AD and VCID (Dubois and Hebert, 2001; Kammoun et al., 2000; Korczyn 

et al., 2012). Moreover, some evidence suggests that AD and VCID pathology may act 

synergistically, requiring less of either pathology to express a state of dementia 

(Schneider and Bennett, 2010). Risk factors for VCID often overlap with traditional risk 

factors for stroke or cardiovascular disease and can include hypertension, diabetes, 

hyperhomocysteinemia, and arterial stiffness (Gorelick et al., 2011).   

 Due to the heterogeneity of the disease, patients present in clinic with varying 

symptoms of cognitive impairment. The lack of a precise and uniform pathologic 

definition for VCID presents somewhat of a challenge as the gold standard for diagnosis 

involves a neuropathological examination. However, physicians are generally able to 

make a diagnosis based on a combination of neuropsychological examinations (focused 

more on executive function than on learning and memory), brain imaging techniques 

(Peca et al., 2013), and more recently, an assessment of biomarkers in the CSF. 

Pathologic features of VCID may be any single or combination of brain vascular factors 

that includes small vessel disease (SVD) including WMLs, infarcts (lacunar, macro-, and 

micro-), as well as microbleeds (Gorelick et al., 2011).  
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The mechanisms by which cerebrovascular factors contribute to dementia is still 

not greatly understood. Pathologies such as microhemorrhages and WMLs may 

represent direct tissue damage i.e. breakage of vessels leading to bleeds or 

degeneration of white matter resulting in a lesion. For example, several studies have 

implicated the matrix metalloproteinases 2 and 9 (MMP-2/MMP-9) in the induction of 

cerebral hemorrhages (Klein and Bischoff, 2011; Candelario-Jalil et al., 2011; 

Hernandez- Guillamon et al., 2012). Moreover, VCID pathologies can be both focal (i.e. 

single infarct or lesion) as well as diffuse (i.e. widespread hypoxia or oxidative stress). 

These pathologies can have profound and devastating impacts on the integrity of the 

neurovascular unit i.e. the junction of vessel endothelial cells, astrocyte endfeet, and 

pericytes, as well as on the BBB and white matter. Whether on its own or as a 

comorbidity with AD, it is critical to find effective therapeutics to slow or treat the multi-

varied pathologies of VCID. 

 

1.2 Neuroinflammation 

Neuroinflammation is associated with aging, injury, and many neurodegenerative 

disorders, including AD and VCID (Akiyama et al., 2000; Skaper, 2007). The general 

hallmarks of neuroinflammation include altered number of neuroglia, change in glial 

morphology, as well as increased expression of cytokines, chemokines, reactive oxygen 

species, and other inflammatory mediators (Wisniewski and Wegiel, 1991; Van Eldik and 

Griffin, 1994; Mrak and Griffin, 2001b, a; Heneka et al., 2015). Acutely, the inflammatory 

response can isolate and facilitate the repair of sites of injury, pathogen invasion, and 

protein aggregation. However, it is becoming increasingly clear that a chronic state of 

neuroinflammation is detrimental to neuronal health and synaptic function (Griffin et al., 

1998; Griffin and Mrak, 2002; Mrak and Griffin, 2005b). 
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 The two predominant glial cell types are microglia and astrocytes, both of which 

are associated with neuroinflammation.  Microglia are macrophages that circulate 

throughout the brain foraging for invading pathogens or foreign molecules which they 

remove via phagocytosis. Additionally, with neuroinflammation, microglia undergo 

complex morphological changes where they secrete cytokines, chemokines, 

complement factors, and reactive oxygen species which aid in recruiting more 

monocytes and macrophages to the site of injury (Akiyama et al., 2000; Griffin, 2006). 

Similarly, with neuroinflammation, astrocytes undergo a hypertrophic activation where 

they increase production of pro-inflammatory factors (Sama et al., 2008; Fuller et al., 

2009; Sofroniew, 2009; Fuller et al., 2010; Sofroniew and Vinters, 2010; Colombo and 

Faring, 2016). With a severe and/or chronic insult such as AD or VCID, the production of 

pro-inflammatory mediators is nearly continuous, resulting in a positive, feed-forward 

cycle between astrocytes and microglia that is accompanied by a likely detrimental state 

of neuroinflammation.  

 For example, targeting pro-inflammatory molecules e.g. TNFα, p38 MAPK, or IL-

1β in a mouse model of AD revealed improved functional and reduced pathological 

outcomes (Munoz et al., 2007; McCoy and Tansey, 2008; Shaftel et al., 2008; Munoz 

and Ammit, 2010; Kitazawa et al., 2011; Bachstetter et al., 2012), suggesting that 

neuroinflammation is not only a byproduct of the disease but is also playing a significant 

role in the progression of AD pathophysiology. Other studies using a diet-induced model 

of VCID have found an elevated pro-inflammatory cytokine panel i.e. IL-1β, IL-6, and 

TNFα in mice on the diet compared to control mice (Hofmann et al., 2001; Sudduth et 

al., 2013b), suggesting that neuroinflammation is also a significant contributor to VCID 

pathology. 

 In support of these findings, data from epidemiological studies have shown that 

people who take long-term courses of common anti-inflammatory agents i.e. non-
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steroidal anti-inflammatory drugs (NSAIDs) have a delayed or decreased risk of 

developing AD (Andersen et al., 1995; Rich et al., 1995; McGeer et al., 1996; Lee et al., 

2010). However, controlled trials have not been able to replicate these findings (Aisen et 

al., 2003; Reines et al., 2004), possibly due to poor therapeutic targeting or poor drug 

delivery timing, given that neuroinflammation is a complex process involving several cell 

types and mediators. Only several pathways have been well-studied to date, so targeting 

neuroinflammation should not be disregarded in the search for a viable treatment for 

neurodegenerative diseases.  

 

1.3 Mouse models of neurodegeneration  

A multitude of mouse models exist to study AD. The most widely-used models 

involve a genetic modification of amyloid processing proteins (APP and/or PS1). Models 

include but are certainly not limited to Tg2576 (Hsaio et al., 1996), APP/PS1 transgenic 

(Jankowsky et al., 2004), APP/PS1 knock-in (KI) (Flood et al., 2002), 5xFAD (Oakley et 

al., 2006), and the 3xTg-AD (Oddo et al., 2003). Although these models vary slightly in 

their mutations within the genes, they all develop parenchymal Aβ plaques and deficits in 

spatial working memory albeit the timing and extent to which they develop these differs 

(Elder et al., 2010; Webster et al., 2014). Unlike the others mentioned above, the 3xTg-

AD model not only has mutations in amyloid processing genes, but also contains a 

mutation in the tau gene, making it a more representative model of AD with both amyloid 

and tau pathology. In addition to the amyloidogenic models of AD, some researchers 

also use tauopathic models. These can include the P301S (Gotz et al., 2001a) and the 

rTg (tauP301L) 4510 (Gotz et al., 2001b) mice. Again, although timing of development 

may differ these mice have profound NFT formation, neuronal loss, as well as cognitive 

decline (Bryan et al., 2009).  
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While numerous AD mice are available, some concerns come to mind about their 

usefulness as a model system. One, while these mice may exhibit striking pathology 

their cognitive deficits are only lackluster. Moreover, many interventions and 

therapeutics that are efficacious in mouse models of AD have shown underwhelming 

results in human clinical trials, bringing into question whether these models are 

translatable (Bryan et al., 2009). Some research suggests better model systems for 

studying AD e.g. canines (Cummings et al., 1993; Head 2013).  

Unlike AD, the heterogeneity of disease pathology that is seen with VCID presents a 

huge challenge in developing appropriate models. Numerous mouse and/or rat models 

have been developed to study the different causes of VCID, which has recently been 

well-reviewed (Gooch and Wilcock, 2016). The bilateral common carotid artery stenosis 

(BCAS) mouse model is the most widely-used to study subcortical ischemic vascular 

dementia (Nakaji et al., 2006; Shibata et al., 2007; Yoshizaki et al., 2008; Bink et al., 

2013), and less commonly used is the asymmetrical common carotid artery stenosis 

(ACAS) mouse model (Bink et al., 2013; Hattori et al., 2015). Several genetic variants 

have been developed to study cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy (CADASIL) (Hainsworth and Markus, 2008; Wallays et 

al., 2011; Cognat et al., 2014; Ehret et al., 2015), which is the most common genetic 

cause of VCID. Type 2 diabetes mellitus (T2DM) mice develop vascular pathologies in 

addition to AD-like neuropathologies (Jiwa et al., 2010; Takeda et al., 2010; Niedowicz et 

al., 2014). Several transgenic models exist to study cerebral amyloid angiopathy (CAA) 

(Davis et al., 2004; Herzig et al., 2004; Miao et al., 2005; Kumar-Singh, 2009; 

Hernandez-Guillamon et al., 2011; Kulic et al., 2012). Additionally, cerebral SVD is most 

commonly studied in a spontaneously hypertensive (SHR) rat model (Jiwa et al., 2010; 

Joutel et al., 2010; Yun et al., 2014). Several varying occlusion models have been 

developed in rats to study cerebral hypoperfusion (Sakai et al., 1996; Roof et al., 2001; 
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Neto et al., 2005; Pereira et al., 2012). However, none are optimal as they lack 

metabolic similarity to humans i.e. white matter vascular injury and hypertension (Snyder 

et al. 2015).  

Some genetic models exist to study HHcy-induced VCID which are achieved by 

inducing mutations in enzymes that are critical for converting homocysteine in the 

transsulfuration pathway, including cystathionine β-synthase (Baumbach et al., 2002) 

and methylenetetrahydrofolate reductase (Devlin et al., 2004). These models can be 

helpful for studying the microhemorrhage component of VCID. However, unlike the diet-

induced model which will be described in the following section, transgenic models do not 

easily facilitate the observation of neurodegenerative disease comorbidities. Thus, the 

diet-induced HHcy mouse appears to be a valuable model for studying VCID and its 

comorbidities. 

 

1.3.1 Using excess homocysteine to drive VCID in a mouse model 
 

Homocysteine is a sulfur-containing, non-essential amino acid produced in all cells 

that is a product of normal folate and methionine metabolism. Homocysteine is a 

transient product that is normally converted to cystathionine via the transsulfuration 

pathway. With some aging, injury, and even some rare genetic mutations, levels of 

homocysteine can become elevated in the plasma, which is referred to as 

hyperhomocysteinemia (HHcy). Buildup of homocysteine in the plasma can occur as a 

result of mutations in certain enzymes in the transsulfuration pathway i.e. cystathionine-

β-synthase (CBS) or methylenetetrahydrofolate reductase (MTHFR) as well as from a 

deficiency of critical co-factors e.g. vitamins B6, B12, and folate and/or an excess of 

methionine, a precursor for homocysteine (Stipanuk and Ueki, 2011). This dissertation 

will focus on a diet-induced HHcy model to study VCID. 
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A Teklad custom research diet (Harlan laboratories) has been developed to induce 

HHcy, which is deficient in folate, B6, and B12, and also has excess methionine (7.7 g/kg) 

versus control diet (3.0 g/kg). Levels of other vitamins and minerals, as well as protein 

(195 g/kg) are uniform across the HHcy and control diets. Studies suggest that animal 

placed on the HHcy diet for a minimum of 11 weeks develop a moderate HHcy, defined 

by plasma homocysteine levels between 30-100 µmol/L (Ernest et al., 2005). This HHcy 

diet is sufficient to cause cognitive decline (Troen et al., 2008), inflammation (Hoffman et 

al., 2001), as well as increased microhemorrhages (Sudduth et al., 2013b). Moreover, 

mice from alternative disease models e.g. AD (Sudduth et al., 2014; Weekman et al., 

2016) can be placed on the diet, making it an easily-controlled and valuable model for 

studying not only VCID but also its comorbidities in a mouse model. 

 

1.4 Astrocytes 

As one of the most abundant cell types in the brain (Chen and Swanson, 2003), the 

role and contribution of astrocytes to AD, VCID, and other neurological disorders 

remains underappreciated. Astrocytes are no longer considered as only “support” cells, 

as they perform critical functions including but not limited to maintenance of neurons and 

synapses, regulation of ions, metabolites, and glutamate, as well protection of the blood-

brain barrier (Pekny and Nilsson, 2005; Sofroniew and Vinters, 2010; Pekny et al., 2016; 

Pekny and Pekna, 2016). As mentioned above, astrocytes are also one of the key 

players in the neuroinflammatory response, where they undergo a hypertrophic 

morphological change and increase secretion of pro-inflammatory cytokines in a process 

known as astrocyte activation (Fuller et al., 2009; Sofroniew, 2009; Fuller et al., 2010; 

Sofroniew and Vinters, 2010). Acutely, astrocyte activation may serve to isolate areas of 

injury, recruit additional support cells, and prevent any further damage. However, chronic 

astrocyte activation, as is seen with AD or VCID, may result in a damaging feed-forward 
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production of pro-inflammatory cytokines, and also in a loss of extracellular glutamate 

regulation (Sofroniew, 2009; Fuller et al., 2010). Several studies have been performed 

using mouse models of AD and VCID to target signaling pathways in astrocytes known 

to result in astrocyte activation. Modulation of astrocyte signaling pathways has been 

shown to have both beneficial and detrimental effects on neural function, suggesting that 

activated astrocytes have a complex phenotype and may play a myriad of roles during 

the progression of neurodegenerative disease. These observations suggest that the 

refinement of astrocyte-targeting strategies may lead to more effective treatments of 

neurodegenerative conditions such as AD and VCID. Moreover, work from our lab 

suggests that astrocytic calcineurin (CN) signaling may be a promising target for 

ameliorating the synaptic deficits seen in neurodegeneration (Furman et al., 2012; 

Furman et al., 2016; Pleiss et al., 2016; Pleiss et al., in preparation).  

 
 

1.5  Calcineurin 

CN is an exquisitely calcium (Ca2+)/calmodulin (CaM)-dependent serine/threonine 

protein-phosphatase that is expressed in most mammalian cell types, but found in 

particularly high levels in the CNS (Klee, 1991). In healthy brain tissue, CN is most 

abundant in neurons where it performs critical functions in the maintenance of synaptic 

viability and plasticity. In healthy neural tissue, intracellular Ca2+ levels are low and 

tightly regulated; however, under conditions of aging, injury, and disease such as AD 

and vessel damage, cytosolic Ca2+ levels are elevated and regulation is often unchecked 

(Abdul et al., 2010). Hyperactivation of CN due to aberrant changes in neuronal Ca2+ 

levels, has deleterious effects on synapses and neuronal viability, such as activation of 

apoptosis cascades (Springer et al., 2000; Norris et al., 2005; Sama et al., 2008). On the 

other hand, expression of CN in astrocytes is incredibly low in healthy tissue but under 

neurodegenerative conditions with profound astrocyte activation, there is a striking 
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increase in CN expression (Hashimoto et al., 1998; Norris et al., 2005; Celsi et al., 2007; 

Abdul et al., 2009; Pleiss et al., 2016). In mouse models of AD as well as human AD 

tissue, CN is intensely labeled in astrocytes around amyloid deposits later in the disease 

stage (Norris et al., 2005; Pleiss et al., 2016). In mouse models of VCID as well as 

human VCID tissue, CN is strikingly labeled in astrocytes surrounding microinfarcts 

(Pleiss et al., 2016).  

Normally, minor changes in intracellular Ca2+ levels result in increased activation of 

CaM that in turn results in increased activation of CN. Aberrant and unchecked Ca2+ 

dyshomeostasis can lead to activation of calpain (CP), a Ca2+-dependent cysteine 

protease, which results in a constitutive and irreversible activation of CN (ΔCN) (see 

Figure 1.1). Proteolyzed calcineurin has been implicated in activation of apoptosis 

cascades, in part through dephosphorylation of the proapoptotic factor BAD (Wang et 

al., 1999; Springer et al., 2000) Furthermore, Ca2+ dysregulation has been associated 

with dendritic spine retraction and synaptic dysfunction, likely due to the actions of CN 

on cytoskeletal proteins and glutamate receptors (Halpain et al., 1998; Shankar et al., 

2007; Tackenberg and Brandt, 2009; Wu et al., 2010). In Chapter II, I outline studies that 

used a novel antibody reagent to show that CN proteolysis occurs extensively in 

activated astrocytes associated with AD and VCID pathologic features, suggesting that 

hyperactivation of CN signaling pathways in astrocytes is a critical component of both 

diseases, possibly through activation of neuroinflammatory cascades. CN interactions 

with downstream targets, such as NF-κB, have been implicated in production of 

inflammatory mediators (e.g. IL-2) (Crabtree, 2001). As outlined in Chapters III and IV, 

work from our lab, and others, suggest that the transcription factor NFAT and the 

hemichannel-forming protein, connexin 43, may be particularly important for coupling CN 

hyperactivity to astrocyte-dependent neurologic dysfunction.   
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1.5.1 NFATs 

Although they have been extensively studied in peripheral immune cells, little was 

known about the role of the nuclear factor of activated t-cells (NFATs) in the CNS until 

recently. NFATs are transcription factors that are normally found in the cytosol in a 

heavily-phosphorylated state (Crabtree and Olson, 2002). With cellular activation, 

NFATs translocate to the nucleus following CN-dependent dephosphorylation and 

exposure of a nuclear localization peptide. Once in the nucleus, NFATs promote the 

synthesis of pro-inflammatory cytokines, chemokines, and mediators such as IFNγ or 

TNFα (McCaffrey et al., 1994; Stankunas et al., 1999; Avni et al., 2002; Palanki, 2002; 

Kitazawa et al., 2004; Demuro et al., 2005; White et al., 2005; Shankar et al., 2008) (see 

Figure 1.2). NFATs remain in the nucleus in an activated state until they are re-

phosphorylated by protein kinases and exported back to the cytosol. Thus, CN/NFAT 

interactions play a critical role in the peripheral immune/inflammatory response. 

In astrocytes, CN and NFAT appear to have many similar functions. Pro-

inflammatory factors, excitotoxins (e.g. glutamate and ATP), and pathogenic oligomers 

of Aβ and α-synuclein robustly stimulate CN/NFAT activity in a variety of neural cell 

types including astrocytes (Sama et al., 2008; Abdul et al., 2009). Once activated, 

CN/NFAT signaling triggers the production of cytokines that are associated with 

neurodegeneration i.e. IL-6 and TNFα, and has also been shown to downregulate 

glutamate transporter levels (Van Wagoner et al., 1999; Fernandez et al., 2007; Sama et 

al., 2008). This can result in a feed-forward cycle of toxic cytokine production and an 

accumulation of glutamate around synapses, both of which can be detrimental to 

neurons. Several animal models of injury and disease using commercial calcineurin 

inhibitors (CNIs) have revealed a reduction of neuroinflammation (Taglialatela et al., 

2009; Hong et al., 2010; Rozkalne et al., 2011; Saganova et al., 2012); however, CNIs 
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have wide volumes of distribution and numerous off-target effects (Marks, 1996; Aliabadi 

et al., 2007) and thus provide little information about the specific impact of CN signaling 

in astrocytes. Our work has overcome these difficulties using a small peptide (VIVIT) 

(Aramburu et al., 1999) directed to astrocytes using adeno-associated virus to 

specifically inhibit interactions between CN and NFAT. In mouse models of both AD and 

VCID, inhibition of CN/NFAT interactions ameliorated synaptic function, suggesting that 

CN/NFAT-mediated activation in astrocytes plays a detrimental role in the 

commencement and/or progression of neurodegenerative diseases such as AD or VCID 

(Furman et al. 2012; Pleiss et al. in preparation). Using astrocyte-specific AAV-Gfa2-

VIVIT to inhibit CN/NFAT in a diet-induced model of VCID will be further explored in 

Chapter III of this dissertation.  

 
1.5.2 Connexin43 

Connexins are membrane-spanning proteins that form hexameric pores used for 

the transport of small molecules and ions. When unopposed, these hexamers form 

hemichannels (HCs) that allow for the indiscriminate flow of potassium ions, water, and 

glutamate between the cytosol and extracellular milieu. A hexamer in direct contact with 

another hexamer on an adjacent cell, forms a cell-to-cell conduit known as a gap 

junction (GJ), which allows the shuttling and transfer of small molecules and ions 

between cells (see Figure 3). In healthy brain tissue, HCs are normally in a closed state 

while GJs are normally open (Dbouk et al., 2009; Takeuchi and Suzumura, 2014; Moore 

and O’Brien, 2015; Olsen et al., 2015). However, with neurological insults and diseases 

this can be reversed, resulting in a leaking of ions/molecules e.g. K+ and glutamate into 

the extracellular milieu and a loss of communication between cells, both being potentially 

detrimental to neurons and synapses (Orellana et al., 2009; Koulakoff et al., 2012; 

Orellana et al., 2012).  
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Connexin43 (Cx43) is by far the most abundant and ubiquitously expressed 

connexin across all tissues, and astrocytes are no exception (Solan and Lampe, 2009). 

The cytosolic C-terminus of Cx43 is thought to be a critical region for regulatory and 

protein-protein interactions, and is highly regulated by several kinases (Dbouk et al., 

2009) e.g. protein kinase C (PKC) (Lampe and Lau, 2000) and mitogen-activated protein 

kinase (MAPK) (Seo et al., 2006). Several studies have shown that changes in 

phosphorylation state are associated with neurodegenerative conditions such as AD 

(Lampe and Lau, 2004; Solan and Lampe, 2009; Solan and Lampe, 2014). Work from 

our lab and others has shown that serine 368 within the Cx43 C-terminus is strongly 

sensitive to CN activity (Li and Nagy, 2000; Tence et al., 2012; Pleiss et al., in 

preparation). Using an antibody that specifically recognizes Cx43 when 

dephosphorylated at Ser368, researchers found that levels of dephosphorylated Cx43 

were increased in cell cultures under hypoxic conditions. Dephosphorylation of Cx43 

was blocked by the addition of commercial CN inhibitors to the culture medium i.e. 

FK506 or cyclosporin A (Li and Nagy, 2000). Together, these results suggest that 

targeting CN/Cx43 interactions in astrocytes may be a valuable strategy to prevent 

breakdown of intercellular communication and synaptic function (via HC leakage) during 

the progression of AD. Chapter IV explores this possibility using human postmortem 

hippocampal tissues, primary astrocyte cultures, and novel reagents for disrupting 

CN/Cx43 interactions. 

 

 
1.6 Summary 

Neurodegenerative diseases i.e. AD and VCID are often accompanied by robust and 

striking neuroinflammation, which may significantly contribute to disease processes. 

Upon activation, astrocytes express unfavorable inflammatory properties and lose many 
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protective properties, which appears to be mediated, in part, by the activation of CN. The 

work in my dissertation investigates the role of CN activation and its interactions with 

downstream targets in neurodegenerative diseases, specifically focusing on AD and 

VCID. This was accomplished using rat primary astrocyte cell cultures, mouse models of 

both AD and VCID, as well as human biospecimens from confirmed cases of AD and 

VCID. My work also explored the use of several novel compounds to study CN activation 

and to inhibit CN’s interactions with its downstream targets. Results showed that CN 

activation and signaling cascades may play a significant and central role in initiation 

and/or development of neurodegenerative disease processes like AD and VCID. 

Together, results suggest that CN activation/signaling is a valuable molecular target for 

neurodegenerative diseases like AD and VCID.  
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Figure 1.1 Normal versus Aberrant CN Activation. (A) In healthy tissue, CN is 

extremely sensitive to small changes in intracellar Ca2+ levels. Under low intracellular 

Ca2+ levels, an auto-inhibitory domain (AID) covers the catalytic binding site, maintaining 

CN in an inactive state. Rises in intracellular Ca2+ levels cause displacement of the AID, 

which allows CaM to bind to CN and renders it active. (B) However, with 

neurodegenerative diseases a profound Ca2+ dysregulation occurs resulting in activation 

of the calcium-dependent cysteine protease, calpain (CP). CP cleaves the AID from CN, 

exposing the catalytic site and launching it into a state of constitutive and unchecked 

phosphatase activity independent of intracellular Ca2+ levels.  
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Figure 1.2 NFAT translocation into the nucleus promotes transcription of pro-

inflammatory factors. Rises in intracellular Ca2+ levels lead to activation of CN via 

binding of CaM. CN phosphatase activity dephosphorylates the nuclear factor of 

activated t-cells (NFAT), allowing it to translocate into the nucleus where it promotes the 

transcription of pro-inflammatory factors e.g. TNF-α and IFN-γ. 
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Figure 1.3 Connexin43 hemichannels and gap junctions help form the astrocytic 

network. Unopposed connexin43 hexamers form hemichannels (HCs) that allow for the 

passage of small molecules e.g. K+ ions and glutamate between the cell and the 

extracellular milieu. When connexin43 hexamers are in direct contact with one another, 

they form gap junctions (GJs) that allow for direct cell-to-cell communication. Both HCs 

and GJs play a critical role in helping astrocytes maintain the neural metabolic 

homeostasis.  
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2.1 Introduction 

Mounting evidence suggests that the hyperactivation of the Ca2+/ calmodulin (CaM) -

dependent protein phosphatase calcineurin (CN) is a key contributor to the patho-

physiologic and clinical symptoms of Alzheimer’s disease (AD) and other 

neurodegenerative disorders (Norris et al., 2005; Reese et al., 2008; Abdul et al., 2009; 

Wu et al., 2010; Furman et al., 2012; Rojanathammanee et al., 2013; Rojanathammanee 

et al., 2015; Taglialatela et al., 2015). The detrimental effects of CN dysregulation may 

arise through unique alterations in neurons and glial cells (Abdul et al., 2010; Reese and 

Taglialatela, 2011; Furman and Norris, 2014). In astrocytes and microglia, CN controls 

immune/inflammatory phenotypes through activation of key transcription factors 

including nuclear factor of activated T cells (NFAT), nuclear factor κB (NFκB), and 

FOXO, among others (Fernandez et al., 2007; Canellada et al., 2008; Sama et al., 2008; 

Abdul et al., 2010; Fernandez et al., 2012; Fernandez et al., 2016). Previously, we 

showed that the selective blockade of astrocytic CN/NFAT signaling with the NFAT-

inhibitory peptide, VIVIT, suppresses markers of glial activation, alleviates amyloid 

pathology, and protects against cognitive deficits in experimental models of AD (Sama et 

al., 2008; Abdul et al., 2009; Furman et al., 2012) and prevents synapse dysfunction in 

models of AD and acute brain injury (Furman et al., 2012; Furman et al., 2016). These 

results suggest that astrocytes are a key locus of hyperactive CN signaling during the 

progression of AD. However, little is known about the mechanisms that lead to or sustain 

aberrant astrocytic CN/NFAT signaling. 

           Hyperactivation of CN in other cell types, including neurons and cardiomyocytes, 

can arise from the disruption, or proteolytic removal, of a critical autoinhibitory domain 

(AID) located near the C-terminus of the CN catalytic subunit (CN A) (for review, see 
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Norris, 2014). Normally, when Ca2+ levels are low, the AID strongly limits phosphatase 

activity until it is displaced from the catalytic site by Ca2+/CaM (Perrino et al, 1995).  

Proteolytic removal of the AID by the cysteine protease, calpain (CP), can occur after 

cellular insults and large surges in intracellular Ca2+ (Wu et al., 2004). Without the AID, 

CN A is largely, and irreversibly uncoupled from local Ca2+ gradients, resulting in 

elevated phosphatase activity, whether normal levels of Ca2+ are restored or not (Wu et 

al., 2004). Many commercial antibodies to the C-terminus of CN A recognize full length 

CN (FL-CN, ~60 kDa), but fail to detect CN proteolytic fragments (i.e. ΔCNs) because 

the epitope is located in the region that is cleaved away. In contrast, N-terminus 

antibodies identify both FL-CN and ΔCNs.  Use of Western blot techniques and N-

terminus CN antibodies has revealed the presence of ΔCNs in whole brain tissue under 

several neurodegenerative conditions (Huang et al., 2005; Liu et al., 2005; Shioda et al., 

2006; Shioda et al., 2007; Wu et al., 2010; Rosenkranz et al., 2012). Previous work from 

our group on human subjects with mild cognitive impairment revealed elevated 

hippocampal levels of a ΔCN fragment in the 45-48 kDa range (Abdul et al., 2011). A 

similar fragment was generated in mixed (neurons and glia) primary hippocampal 

cultures, coincident with elevated NFAT activity and frank neuronal degeneration, 

following treatment with oligomeric amyloid-β peptides. The appearance of ΔCN at early 

stages of neurologic dysfunction suggests that CN proteolysis is more than a biomarker 

of neurodegeneration, and may be an antecedent for later neurodegenerative events.  

Unfortunately, because of the cell-type heterogeneity of whole brain homogenates, it’s 

nearly impossible to discern where (i.e. in what cell type) CN proteolysis is occurring. In 

immunohistochemical (IHC) applications, N terminus antibodies reveal the presence of 

CN in multiple cell types, including activated astrocytes (Norris et al., 2005; Abdul et al., 

2009). However, it remains unclear whether the labeled CN is of the intact, full-length 
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variety or of the proteolyzed, highly active variety. To resolve this issue, we generated 

custom antibodies to CN A based on previously identified CP-cleavage sites (Wu et al., 

2004). One of these antibodies selectively detected a 45-48 kDa fragment (∆CN) in 

Western blot assays. IHC investigations of human brain tissue revealed the presence of 

∆CN in numerous astrocytes, especially those associated with Aβ deposits and 

microinfarcts. Adeno-associated virus (AAV)-mediated delivery of a similar ΔCN 

fragment to hippocampal astrocytes of healthy adult rats caused a reduction in CA1 

synaptic strength. Together, the results are consistent with the hypothesis that CN 

dysregulation in activated astrocytes is attributable, in part, to limited proteolysis. 

Moreover, the presence of proteolyzed CN in astrocytes appears to be sufficient for 

disrupting synaptic function, indicating a possibly critical mechanism for synaptic decline 

in AD and other neurodegenerative conditions. 

 

2.2 Methods 

2.2.1 ∆CN antibody production and purification. Peptides based on known CP 

dependent cleavage sites (Wu et al., 2004) were generated by PrimmBiotech (West 

Roxbury, MA) and used to inoculate adult rabbits. Antisera from rabbits inoculated with 

the peptide, ESVLTLK (amino acid sequence immediately upstream of the 48 kDa CN 

cleavage site) detected a 45-48 kDa fragment in initial Western blot assays. The antisera 

were then purified using a negative selection approach. In brief, the ESVLTLK peptide 

was coupled to HiTrapTM NHS-activated HP columns (GE Healthcare, Little Chalfont, 

United Kingdom) followed by addition of antisera. Antibodies were then eluted and 

collected according to manufacturer instructions. Following a second round of column-

purification, the eluate was aliquoted and frozen for additional Western blot screening. 
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2.2.2 Primary cell culture. Primary mixed (astrocytes and neurons) hippocampal 

cultures were prepared from embryonic day 18 Sprague-Dawley rat pups as described 

previously (Porter et al., 1997; Norris et al., 2006; Sama et al., 2008). Cells were 

investigated at between 14 and 21 days in vitro (DIV). To generate CN proteolysis, 

cultures plated in 35 mm dishes were treated for 24 h with synthetic oligomeric β-

amyloid 1-42 (Aβ1-42) peptides (~65 nM) prepared as described in our previous work 

(Abdul et al., 2009; Abdul et al., 2011). Aβ1-42 was delivered in the presence or 

absence of the CP inhibitor, calpeptin (10 μM), obtained from EMD Millipore (Gibbstown, 

NJ). Calpeptin was added to cultures approximately 2 h prior to the addition of Aβ1-42.   

 

2.2.3 Western blot analysis. At 24 h post- Aβ treatment, cells were homogenized in 

high sucrose buffer and protein concentration determined using the Lowry method. 

Samples were loaded onto a Bio-Rad gradient gel (4-20%) with protein concentrations 

held constant across lanes. Proteins were resolved by electrophoresis and transferred to 

PVDF membranes for Western blot analysis. Membranes were blocked then incubated 

overnight at 4°C in the following primary antibodies:  1:3000 anti-CN-Aα (Millipore) and 

1:1000 anti-∆CN (custom). Primary antibodies were labelled with appropriate HRP-

conjugated secondary antibodies and detected using the ECL Plus Western Blotting 

system (GE Healthcare). Relative molecular weights of full length CN and ∆CN were 

quantified using a Bio Rad Chemidoc XRS Gel imager and Quantity One Software 

(Hercules, CA).   
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2.2.4 Human biospecimens. Post-mortem brain specimens from the amygdala, 

hippocampus, and superior and middle temporal gyri (SMTG) were obtained from the 

University of Kentucky Alzheimer’s Disease Center (UK-ADC) Tissue Repository. 

Amygdala and hippocampal specimens from 6 different AD cases and 2 different age-

matched control cases were investigated. SMTG biospecimens were from five individual 

subjects. All subjects were participants in the UK-ADC Autopsy program. Postmortem 

autopsy intervals for UK-ADC samples, including the ones used in this study, is 

approximately 3 hours (e.g. see [Nelson et al., 2007; Abdul et al., 2009; Abdul et al., 

2011]). The presence of AD pathology (amyloid plaques and neurofibrillary tangles) and 

vascular pathology (microinfarcts) in all human cases was confirmed by personnel in the 

UK-ADC neuropathology core.  

 

2.2.5 Histology. Paraffin-embedded SMTG sections were cut to ~8 μm thickness and 

baked overnight at 40°C. Sections were deparaffinized in fresh Xylene and rehydrated 

through a series of graded alcohols to water. Sections were dipped into Harris’s 

hematoxylin for 4 minutes then rinsed in running water. Following a water rinse, sections 

were dipped twice into acid alcohol, rinsed in running water, dipped twice into 1% 

ammonia water, and rinsed in water for 10 minutes. Sections were dipped into Eosin 

solution for 15-20 seconds and then dehydrated through graded alcohols, cleared using 

Xylene, and mounted.  

 

2.2.6 Immunohistochemistry. Amygdala, hippocampal, and SMTG specimens were 

fixed in 10% formaldehyde, embedded in paraffin, and cut into ~8 µm thick sections. 

Slides were baked in a 40°C oven overnight, deparaffinized using SafeClear (Fisher 
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Scientific), and rehydrated through a series of graded alcohols to water. Slides were 

boiled for 10 minutes in Borg Decloaker antigen retrieval solution, pH = 6.0 (Biocare 

Medical) before blocking endogenous peroxidase activity with 3% hydrogen peroxide + 

10% methanol.  The slides were blocked (0.1 M Tris buffer with 0.1% Triton X-100 and 

2% bovine serum albumin) and incubated overnight at 4°C in the following primary 

antibodies: 1:25 rabbit polyclonal anti-∆CN; 1:500 mouse monoclonal anti-CN-Aα (C-

terminus) (Sigma); 1:50 mouse monoclonal anti-Aβ (Vector Laboratories. Secondary 

antibodies were added at a 1:200 dilution for 1 hour at room temperature as follows: 

anti-mouse IgG + horse normal serum or anti-rabbit IgG + goat normal serum. Following 

secondary antibody, signal was amplified with avidin-biotin complex for 1 hour at room 

temperature and then detected using either DAB or SG substrates (Vector Laboratories). 

Following dehydration through a series of graded alcohol and clearing (SafeClear), 

slides were permanently mounted using VectaMount (Vector Laboratories) and 

coverslipped. 

 

2.2.7 Immunofluorescence. Amygdala, hippocampal, and SMTG sections were fixed in 

4% paraformaldehyde and preserved in sucrose buffer. Slices were cut on a freezing 

microtome to 50μM thickness. Free-floating sections were blocked (0.1 M Tris buffer with 

0.1% Triton X-100 and 2% bovine serum albumin) and incubated overnight at 4°C with 

primary antibodies including: 1:25 anti-ΔCN; 1:50 anti-GFAP directly conjugated to Alexa 

594 (Cell Signaling); 1:100 anti-NeuN (Millipore). After washing, sections were incubated 

1:500 in Alexa Fluor 488 or 594 secondary antibodies (Life Technologies). Fluorescent 

sections were mounted with ProLong Gold Antifade Reagent with DAPI (Molecular 

Probes) and coverslipped.  
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2.2.8 Animals. Adult male Sprague Dawley rats were obtained from Harlan Laboratories 

(Indianapolis, IN). Rats were held in standard laboratory cages under 12-h light/12-h 

dark cycles in a pathogen free environment in accordance with University of Kentucky 

guidelines. The animals had access to food and water ad libitum. All animal procedures 

were conducted in accordance with the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and were approved by University of Kentucky 

Institutional Animal Care and Use Committees. 

 

2.2.9 Intrahippocampal delivery of adeno-associated virus (AAV). cDNA encoding 

the first 398 amino acids of the CN Aα isoform (ΔCN), which lacks the Ca2+/CaM 

binding domain and the AID (Kincaid et al., 1990), was subcloned into the polylinker site 

of a hybrid pCI vector containing IRES2-DsRed-Express (Clontech, Mountain View, CA). 

IRES-DsRed2 (control construct) or ΔCN-IRES-DsRed2 were then inserted into pAAV2-

Gfa104-EGFP (University of Pennsylvania Vector core) in place of EGFP. High titer 

(1012 IFU/mL) AAV vectors (AAV-Gfa104-DsRed and AAV-Gfa104-ΔCN) were then 

generated in the University of Kentucky Vector core using an AAV5 helper plasmid and 

HEK293 cells. The Gfa104 promoter has been characterized previously, and has been 

shown to drive transgene expression selectively in astrocytes of intact animals (Ortinski 

et al., 2010; Cui et al., 2014), similar to that seen with the Gfa2 promoter (e.g. see 

Furman et al., 2016).  

Rats were placed in a stereotaxic frame (David Kopf Instruments Tujunga, CA) and 

anesthetized with isoflurane (2.5%) throughout the surgery process. For each rat, AAV-

Gfa104-DsRed and AAV-Gfa104-ΔCN were loaded into separate microinjectors and 

delivered into alternate hemispheres, such that one hippocampus was treated with 

Gfa104-DsRed and the other hippocampus was treated with Gfa104-ΔCN. Each 
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hemisphere was injected with 4 µL of AAV (1012 IFU/mL) at 0.2 µL/min. Injection 

coordinates were -3.8mm anteroposterior and +1.8mm mediolateral relative to bregma, 

and -1.8mm dorsoventral relative to dura. DsRed visualization in formaldehyde-fixed 

tissue sections was achieved using a rabbit polyclonal antibody to red fluorescent 

protein (Abcam) and Alexa Fluor secondary antibodies as described above for human 

sections. 

 

2.2.10 Hippocampal slice electrophysiology. At 4 months after AAV injection, rats 

were euthanized under CO2 anesthesia and decapitated. Brains were rapidly removed 

and placed in ice-cold, oxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid 

(ACSF) containing (in mM) 124 NaCl, 2 KCl, 1.25 KH2PO4, 2 MgSO4, 0.5 CaCl2, 26 

NaHCO3, and 10 dextrose (pH 7.4). Brains were hemisected and glued to a specimen 

mounting block and submerged in oxygenated, ice-cold ACSF. Brains were then 

sectioned coronally into ~400 µm slices using a Vibratome® 1000 (Leica Biosystems, 

Buffalo Grove, IL) and transferred to a custom interface holding chamber (Mathis et al., 

2011) and incubated with warmed (32° C) oxygenated ACSF containing 2 mM CaCl2 

until electrophysiological recordings (usually 1.5-5 h). 

Slices were transferred to a Kerr Tissue Recording system (Kerr Scientific Instruments, 

Christchurch, New Zealand) and submerged in warmed (~32° C) oxygenated ACSF 

containing 2mM CaCl2 and 2mM MgSO4. Schaffer collaterals were activated with a 

bipolar stainless steel electrode located in stratum radiatum. Stimulus intensity was 

controlled by a constant current stimulus isolation unit (World Precision Instruments, 

Sarasota, FL), and stimulus timing was controlled by LabChart 8 software 

(ADInstruments Inc., Colorado Springs, CO).  Field potentials were recorded in CA1 

stratum radiatum using a Ag/AgCl wire located ~1-2 mm from the stimulating electrode. 
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Field potentials were amplified 100X and digitized at 10kHz using the Kerr Tissue 

Recording System amplifier and a 4/35 PowerLab analog-to-digital converter 

(ADInstruments). To assess basal synaptic strength, 100 µs stimulus pulses were given 

at 12 intensity levels (range 25–500 µA) at a rate of 0.1 Hz. Five field potentials at each 

level were averaged, and measurements of fiber volley (FV) amplitude (in mV) and 

excitatory postsynaptic potential (EPSP) slope (mV/ms) were performed offline using 

LabChart 8 software. Synaptic strength curves were constructed by plotting EPSP slope 

values against FV amplitudes for each stimulus level. Curves were fit with a three 

parameter sigmoidal equation using SigmaPlot 12 software (Systat Software Inc. San 

Jose, CA) (Norris et al., 2016). Curve parameters included maximal EPSP amplitude 

(Max), curve slope, and the FV amplitude associated with the half-maximal EPSP 

amplitude (half-Max). Maximal synaptic strength for each slice was also estimated by 

taking the maximal EPSP slope amplitude during the input/output curve and dividing by 

the corresponding FV amplitude.  To estimate population spike (PS) threshold, the 

EPSP slope amplitude at which a population spike first appeared in the ascending phase 

of the field potential was calculated and averaged across five successive trials at the 

spike threshold stimulation level.  

 

2.2.11 Statistics. For slice electrophysiology studies, one to three slices from each 

hemisphere (either the Gfa104-DsRed or the Gfa104-ΔCN-treated hemisphere) were 

analyzed. Synaptic measures were averaged across all slices within each hemisphere 

and these averaged values were compared across hemispheres using paired T-tests, 

with significance set at p < 0.05. 
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2.3 Results 

2.3.1 Custom antibody shows greater selectivity to a ΔCN fragment. The CN A 

subunit is a 521 amino acid protein consisting of a catalytic domain and an autoinhibitory 

domain (AID), as well as binding sites for the CN B regulatory subunit and 

Ca2+/calmodulin (Ca2+/CaM) (Hashimoto et al., 1990; Kincaid et al., 1990, see Figure 1). 

Proteolysis of CN A near the carboxy-terminus by calpains results in the disruption or 

removal of the AID leading to reduced Ca2+ sensitivity and constitutive phosphatase 

activity (Wu et al., 2004).  Calpain-mediated generation of 45 and 48 kDa ∆CN 

fragments are found at elevated levels in human brain tissue during cognitive decline, 

are triggered by oligomeric Aβ, and are causatively linked to greater CN signaling and 

neurodegeneration (Wu et al., 2004; Abdul et al., 2011).  

CN A antibodies that target epitopes between amino acid residues 425 and 521 (i.e. C 

terminus antibodies) recognize full length CN (FL-CN), but do not detect ΔCN fragments 

and may therefore fail to identify important pathological changes in CN regulation. In 

contrast, N terminus-directed antibodies identify CN proteolysis in Western blot 

applications, but do not distinguish between FL-CN and ΔCN in immunohistochemical 

applications, making it difficult to pinpoint where CN proteolysis occurs in a 

heterogeneous cell population. We therefore set out to make new antibody reagents with 

greater selectivity to ΔCN, relative to FL-CN. Peptides composed of amino acids found 

immediately upstream of calpain-dependent cleavage sites (Wu et al., 2004) were used 

to immunize rabbits (Figure 2.1). Antisera generated by immunization with the ESVLTLK 

peptide, found immediately upstream from lysine 424, revealed a 45-48 kDa band in 

preliminary Western blots (not shown) and was therefore subjected to further affinity 

purification (see Methods) to obtain ∆CN antibodies (Figure 2.1A,B). We then performed 

Western blots (Figure 2.1C) on whole cell lysates obtained from rat primary mixed 
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(neurons + glia) hippocampal cultures exposed to oligomeric Aβ peptides (65 nM for 24 

h) to stimulate CN proteolysis, as described in our earlier work (Abdul et al., 2011). The 

same samples were processed in parallel for Western blot using a commercially 

available N terminus CN antibody for comparison.  Both antibodies showed diffuse 

labeling in the 70-75 kDa range. However, unlike the ∆CN antibody, the N terminus 

antibody showed a prominent band in the 60 kDa range (where FL-CN is found) in 

untreated cultures, along with lower molecular weight bands between 25 and 37 kDa 

(Figure 2.1C, lane 5). Both antibodies revealed bands in the 45-48 kDa range when 

cultures were treated with oligomeric Aβ (Figure 2.1C, lanes 2 and 6), the appearance of 

which was blocked by co-application of the calpain inhibitor, calpeptin (Figure 2.1C, 

lanes 3 and 7), but not by the caspase inhibitor Z-YVAD (Figure 2.1C, lanes 4 and 8). 

Together, these data demonstrate that, relative to the N-terminus antibody, the ∆CN 

antibody shows far greater selectivity to calpain-dependent CN proteolytic products in 

the 45-48 kDa range.  

 

2.3.2 Astrocytes in AD brain tissue are labeled intensely with the ΔCN antibody. 

Western blot analyses have shown elevated levels of ∆CN in brain homogenates from 

human subjects with mild-cognitive impairment (Abdul et al., 2011) or AD (Wu et al., 

2010), relative to age-matched non-demented human subjects. Though CN is primarily 

found in neurons, it can also appear at high levels in activated astrocytes during injury 

and disease, especially around Aβ deposits (Norris et al., 2005; Celsi et al., 2007; Abdul 

et al, 2009). To determine if ΔCN is found in activated astrocytes, we 

immunohistochemically (IHC) labeled human postmortem brain sections (encompassing 

the amygdala and overlying entorhinal cortex) from subjects with confirmed AD (see 

Methods). These brain regions show high levels of CN expression in healthy adult 
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animals (Goto et al., 1986; Kuno et al., 1992), and exhibit extensive amyloid and 

neurofibrillary tangle pathology during AD (Kromer Vogt et al., 1990). Concurrent with 

AD-related pathological changes, these brain regions also show widespread GFAP 

labeling indicative of gliosis, or astrocyte activation (Murphy et al., 1992 and see Figure 

2.2A).  

In IHC applications, the ΔCN antibody provided excellent labeling intensity with low 

background (Figure 2.2B-E). With rare exceptions (see arrow in Figure 2.2E), most of 

the labeled cells exhibited a clear astrocyte morphology, with thick ramified processes, 

characteristic of astrocyte activation (Figure 2.2B, 2.2C). Unlike the GFAP antibody, 

which provided labeling across most of the tissue (Figure 2.2A), the ΔCN antibody 

generally provided only faint labeling, except for numerous discrete regions 

characterized by astrocyte “clusters” (Figure 2.2B and C). Cells within these clusters 

showed intense labeling, which appeared throughout the soma and usually throughout 

several major processes (Figure 2.2C). Many of the most intensely labeled astrocytes 

were in close juxtaposition to blood vessels (Figure 2.2D, arrow). Co-staining with an 

antibody to Aβ showed that many ΔCN-positive clusters occurred around extracellular 

amyloid plaques (Figure 2.2E), suggesting that the proteolysis of CN in astrocytes is 

strongly coupled to amyloid pathology, consistent with previous reports (Wu et al., 2010; 

Abdul et al., 2011).  

In contrast to the conspicuous labeling patterns shown in human AD tissue, staining with 

the ΔCN antibody appeared much less prominent in the amygdala of age-matched 

control subjects (Figure 2.7).  We also observed sparse labeling when tissue sections 

were incubated with the ΔCN antibody alone (i.e. without secondary antibody, Figure 

2.7) or with the ΔCN antibody plus ESVLTLK blocking peptide (Figure 2.2F and 2.2G). 

These results demonstrate that antibody labeling was specific.   
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Finally, to confirm that ΔCN is definitively expressed in astrocytes, AD amygdala 

sections were co-labeled with a GFAP antibody and confocal microscopy was used to 

assess co-localization. As illustrated in Figures 2.2H-K, GFAP and ΔCN were co-

localized in numerous cells. Note, however, that ΔCN was not present in all GFAP 

positive cells. For instance, arrowheads in Figures 2.2H-J show two immediately 

adjacent astrocytes, with one cell expressing ΔCN and the other cell apparently devoid 

of ΔCN (also see Figure 2.2K). These images, along with the immunohistochemical 

evidence shown in Figures 2.2B-2.2E highlight the heterogeneous nature of CN 

proteolysis in astrocyte populations associated with AD pathology.       

As mentioned, a relatively small number of ΔCN-positive cells in the amygdala exhibited 

a clear neuronal morphology (see Figure 2.2E, arrow). As a further attempt to explore 

neuronal labeling with the ΔCN antibody, we investigated hippocampal sections using 

both immunohistochemistry and confocal microscopy. The hippocampus is 

advantageous for immunohistochemical investigations because its neurons are densely 

packed into discrete layers and are easy to identify, even in unstained tissue. Moreover, 

studies from our group have reported signs of hyperactive CN signaling in the 

hippocampus during the progression of AD (Abdul et al., 2009; Abdul et al., 2011).  

As shown in Figures 2.3A and B, neurons in the CA1 and dentate granule layers of AD 

subjects showed abundant expression of the full length form of CN (Goto et al., 1986; 

Kuno et al., 1992), as revealed using a commercial antibody to the CN carboxyl 

terminus. The ΔCN antibody also labeled neurons, albeit more sparsely (Figure 2.3C 

and 2.3D) than the commercial antibody. Similar to amygdala sections, hippocampal 

tissue from control subjects provided little to no labeling (Figure 2.7). When present, 

ΔCN expression was generally limited to the somal and proximal apical dendritic regions 

(for CA1 pyramidal neurons), and tended to be faint, even when other structures in the 
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same region, including perivascular elements (Figure 2.3C) and astrocytes (inset, Figure 

2.3D), were strongly labeled. In many neurons, ΔCN co-localized with the nuclear 

marker, NeuN, which is consistent with earlier work that found elevated levels of 

proteolyzed CN in nuclear extracts from AD subjects (Wu et al., 2010). Thus, while 

activated astrocytes appear to provide the most striking ΔCN labeling patterns 

associated with AD, these cells are not the only source for CN proteolysis.  

 

2.3.3 Association of ΔCN with microinfarcts. In addition to AD, ΔCN fragments have 

been observed in a number of other neurodegenerative conditions, particularly those 

caused by vasculature disruption and/or occlusion (Shioda et al., 2006; Shioda et al., 

2007; Rosenkranz et al., 2012). Vascular pathology is highly co-morbid with AD 

pathology and likely exacerbates cognitive decline with the progression of AD (Kalaria et 

al., 2012; van Norden et al., 2012; Raz et al., 2016; Corriveau et al., 2016; Nelson et al., 

2016; Vemuri and Knopman, 2016; Wilcock et al., 2016). Mounting evidence suggests 

that microinfarcts are among the most common and insidious contributors to vascular 

cognitive impairment and dementia (VCID) (Smith et al., 2012; Kapasi and Schneider, 

2016). Moreover, microinfarcts are commonly enveloped by activated astrocytes (Wang 

et al., 2012; van Veluw et al., 2015).  

To determine whether the appearance of ΔCN coincides with vascular disruption, we 

investigated cortical brain sections from subjects with confirmed microinfarct pathology. 

Figure 2.4A-E shows ∆CN labeling in SMTG sections from a 90 year old human subject 

with multiple microinfarcts, but little-to-no AD pathology (Braak stage II). At low 

magnification, several discrete regions show very intense ΔCN labeling (Figure 2.4A). 

The region marked by the arrowhead in Figure 2.4A is shown at higher magnification in 

an H&E labeled serial section in Figure 2.4B and confirms the presence of a microinfarct 
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approximately 400 μm in greatest dimension (approximate center shown with arrow). 

This microinfarct is surrounded by numerous cells intensely labeled for ΔCN (Figure 

2.4C), many of which exhibit clear activated astrocyte histomorphology (Figures 2.4D-E). 

When the ΔCN antibody was delivered in the presence of the ESVLTLK peptide (Figure 

2.4F and 2.4G), cellular labeling was greatly diminished, confirming binding specificity. 

Interestingly, ΔCN-positive microinfarcts were not labeled with a commercial C-terminus-

directed antibody that selectively detects full length CN (Figure 2.4H and I). Note, 

however, that the C-terminus antibody does label neurons within the same brain section 

(Figure 2.8). Thus, microinfarcts appear to be more strongly associated with proteolyzed 

CN than with full-length CN.   

Confocal micrographs showed that ΔCN was associated with both activated astrocytes 

and neurons in the immediate vicinity of microinfarcts (Figure 2.5). ΔCN localization to 

astrocytes was most prominent around the microinfarct core, with expression diminishing 

with increasing distance from the injury (Figure 2.5A-2.5D). For neurons, ΔCN was most 

highly expressed within the microinfarct core, though many ΔCN/NeuN positive cells 

could also be found outside the core as well (Figure 2.5E-H). Together; these 

observations demonstrate that CN proteolysis can occur in the immediate vicinity of 

small vessel pathology in the human brain. 

 

2.3.4 Forced overexpression of ΔCN in astrocytes of intact rats disrupts synaptic 

function. The consequences of CN proteolysis in neurons have been investigated in 

many different model systems (Norris, 2014). Conversely, little is known about the 

functional outcomes of CN proteolysis in astrocytes. Hyperactivation of CN signaling in 

astrocytes has been linked to the elevated expression of inflammatory mediators, 

impaired glutamate regulation, Aβ production, and altered astrocytic Ca2+ dynamics 
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(Norris et al., 2005; Fernandez et al., 2007; Canellada et al., 2008; Sama et al., 2008; 

Jin et al., 2012; Grolla et al., 2013; Norris, 2014). Using adeno-associated virus (AAV) 

vectors, equipped with astrocyte specific promoters, we have shown that the selective 

inhibition of astrocytic CN/NFAT signaling provides numerous beneficial effects in a 

mouse model of AD (Furman et al., 2012), and a rat model of traumatic brain injury 

(Furman et al., 2016). These results suggest that hyperactivation of CN in astrocytes can 

mediate and/or exacerbate pathophysiological processes.  

One of the primary responsibilities of astrocytes is to regulate synaptic transmission and 

plasticity (Allen, 2014). Since we previously found that inhibition of astrocytic CN/NFAT 

signaling protects multiple synaptic properties, we sought to test whether the presence 

of ΔCN in astrocytes is sufficient to drive synaptic dysfunction.  AAV2/5 vectors 

expressing ΔCN-DsRed2 or DsRed2 alone (control vector) were injected into the 

hippocampus of adult rats. One hemisphere received ΔCN and the other hemisphere 

received DsRed2 control vector (Figure 2.6A). The ∆CN used here lacks the CN AID, is 

nearly identical in size to the ∆CN fragment found in human AD brain (Figures 2.2 and 

2.3, and see Furman et al., 2012), and shows increased phosphatase activity when 

expressed in many different cell types (Wang et al., 1999; De Windt et al., 2000; Friday 

et al., 2000; Norris et al., 2010), including primary astrocytes (Sama et al., 2008). Both 

ΔCN and DsRed2 were transcriptionally regulated by a truncated human GFAP 

promoter (Gfa104), which provides astrocyte-specific expression (Ortinski et al., 2010; 

Cui et al., 2014). Using confocal microscopy and/or immunodepletion assays, we 

previously showed that AAV-mediated expression of EGFP was driven exclusively in 

astrocytes (in mice and rats) when a similar Gfa2 promoter was used (Furman et al., 

2012; Furman et al., 2016). Consistent with these observations, immunofluorescent 



38 
 

labeling of the DsRed2 tag in the present study was limited to astrocytes and showed no 

co-localization with the neuron-specific protein MAP2b (Figure 2.6B).  

At 4 months post-AAV injection, brain slices from both hemispheres were harvested and 

processed in parallel for the electrophysiological assessment of basal CA3-CA1synaptic 

strength. Field EPSP slopes were recorded in CA1 stratum radiatum and plotted against 

corresponding FV amplitudes at 12 different stimulus intensities to generate synaptic 

strength curves (Figure 2.6C, D). Compared to slices from the DsRed2 control vector-

treated hemisphere, slices from the ∆CN-treated side exhibited depressed synaptic 

strength curves (Figure 2.6D) with a corresponding reduction in the maximal EPSP/FV 

ratio (p <0.05, Figure 2.6E). Further analyses of synaptic strength curve parameters 

revealed a significant reduction in the maximal EPSP amplitude (p <0.05), but did not 

find any differences in the slope of the curve or in the FV amplitude necessary for half-

maximal EPSP amplitude (Figure 2.6F). Finally, while the evoked field EPSP was 

reduced in slices from the ∆CN-treated hemisphere, these slices were also generally 

more excitable as indicated by a reduced population spike (PS) threshold (Figure 2.6G). 

A similar reduction in the PS threshold has been reported in APP/PS1 mice (Furman et 

al., 2012) and may be indicative of neuronal hyperexcitability. Together, these results 

suggest that the presence of ∆CN in astrocytes is sufficient to drive synaptic dysfunction 

in intact animals. 

 

2.4 Discussion 

CN proteolytic fragments show abnormally high levels of phosphatase activity under 

resting Ca2+ levels and are associated with numerous forms of neurologic injury and 

disease (Norris, 2014). Using a novel antibody generated to the ΔCN proteolytic 
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fragment, the present study has provided some of the first evidence that CN proteolysis 

can occur extensively in astrocytes associated with AD and small vessel pathology. 

Furthermore, overexpression of the ΔCN fragment in astrocytes of otherwise healthy 

adult animals causes synaptic deficits. The results demonstrate that proteolysis may be 

an important source of CN dysregulation in astrocytes leading to altered astrocyte 

function and neural dysfunction with the progression of neurodegenerative disease.  

 

2.4.1 Importance of antibody selection for assessing CN expression/activity in 

disease. The proteolysis of CN was first shown under in vitro conditions, but has 

subsequently been demonstrated to occur in intact nervous tissue after cellular insult 

(Wu et al., 2004; Huang et al., 2005; Shioda et al., 2006; Shioda et al., 2007; Abdul et 

al., 2011; Rosenkranz et al., 2012). Using an antibody directed to the N terminus of CN 

A, Wu et al. (2004) showed that at least three distinct CN A fragments are generated in 

vivo in response to cellular injury and high levels of calpain activity. The 48 and 45 kDa 

fragments generated by calpain-dependent proteolysis are fully-functional enzymes that 

show high activity at low (resting) Ca2+ levels due to the absence of an AID that normally 

keeps CN activity in check. High levels of CN proteolysis can dramatically alter cellular 

function and viability (Wang et al., 1999; Wu et al., 2004; Abdul et al., 2011), which 

highlights the importance of choosing the appropriate antibody to investigate CN 

functions in CNS injury and disease. In particular, C-terminus directed antibodies to CN 

A only detect full length CN and may give the impression that CN expression is reduced, 

rather than proteolytically activated, under neurodegenerative conditions. The use of C-

terminus antibodies may explain why early reports observed reductions in CN A levels 

and activity in AD tissue (Billingsley et al., 1994; Ladner et al., 1996; Lian et al., 2001; 

Karch et al., 2013). 
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While N-terminus antibodies are useful in Western blot applications for determining the 

extent of CN proteolysis in whole brain tissue, they do not specify which cell types give 

rise to CN proteolysis, nor do they determine whether proteolysis occurs selectively in 

the close proximity of specific pathological markers. Furthermore, because of the vast 

cellular heterogeneity of the CNS, changes in proteolysis for any one cell type may be 

masked or diluted in biochemical analyses of whole tissue homogenates. This problem 

severely limits mechanistic insights into the downstream consequences of CN 

proteolysis, primarily because CN is expressed in many different cell types (Goto et al., 

1986; Kuno et al., 1992; Hashimoto et al., 1998; Norris et al., 2005; Celsi et al., 2007; 

Abdul et al., 2009), each of which can use CN for unique functions. For example, when 

expressed in neurons using gene delivery techniques, ∆CN causes alterations in 

synaptic function, Ca2+ channel dysregulation, degeneration of neurites, and apoptosis 

(Kromer Vogt et al., 1990; Celsi et al., 2007; Smith et al., 2012; Norris, 2014; 

Rojanathammenee et al., 2015; van Veluw et al., 2015; Kapasi and Schneider, 2016).   

Astrocytes may also be an important source for CN dysregulation (Furman and Norris, 

2014), which is notable given the increasing attention astrocytes have received for their 

contributions to neurologic dysfunction during aging, injury, and disease (Hamby and 

Sofroniew, 2010; Pekny and Pekna, 2014; Verkhratsky et al., 2012; Verkhratsky et al., 

2015). Overexpression of ∆CN in astrocytes leads to the production and release of a 

variety of immune factors (e.g. cytokines and chemokines) linked to glial activation and 

neuroinflammation (Norris et al., 2005; Fernandez et al., 2007; Sama et al., 2008). While 

many of these cell-specific processes arise in neurodegenerative diseases, and are 

blocked by both calpain and CN inhibitors (Norris, 2014), it has been unclear if (and to 

what extent) CN proteolysis actually occurs in these cell types during the disease 

process. 
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The ΔCN antibody was designed with the intent to identify the cellular source for CN 

proteolysis in diseased and/or injured brain tissue. This antibody showed much greater 

selectivity to calpain-generated CN fragments than to full-length CN (Figure 2.1C) in 

Western blot applications and was associated with high-signal to background labeling in 

IHC applications (e.g. see Figures 2.2 and 2.4). When incubated with postmortem 

human brain sections from confirmed AD cases, the ΔCN antibody provided intense 

labeling of astrocyte clusters, many of which were in close juxtaposition to Aβ deposits 

and/or blood vessels (Figure 2.2). Previously, we observed a similar co-localization of 

CN to activated astrocytes in amyloidogenic mice and human AD brain tissue using N-

terminus antibodies, which identify both full length and proteolyzed CN (Norris et al., 

2005; Abdul et al., 2009). The findings of the present study suggest that the elevated 

activity of CN and/or CN-dependent signaling mediators (e.g. NFAT) reported earlier for 

AD mouse models and human AD cases (Reese et al., 2008; Abdul et al., 2009; Wu et 

al., 2010; Abdul et al., 2011) may arise, at least partly, from the calpain-dependent 

proteolysis of CN in astrocytes. 

 

2.4.2 ΔCN and Microinfarcts. ΔCN labeling was also particularly intense for astrocytes 

in human cases characterized by extensive vascular pathology (Figure 2.4). 

Microinfarcts, in particular, are increasingly recognized as a key mechanism for 

dementia (Smith et al., 2012; Kapasi and Schneider, 2016). Though etiologically distinct 

from AD pathology, microinfarcts and other forms of vascular pathology show high 

comorbidity with AD, where they appear to exacerbate neurodegenerative processes 

and hasten cognitive decline (Kalaria et al., 2012; van Norden et al., 2012; Raz et al., 

2016; Corriveau et al., 2016; Nelson et al., 2016; Vemuri and Knopman, 2016; Wilcock 

et al., 2016). Microinfarcts are often defined by extensive gliosis surrounding the core, 



42 
 

including profound astrocyte activation (Wang et al., 2012; van Veluw, 2015). Similar to 

Aβ plaque-associated astrocytes, we found that activated astrocytes surrounding 

microinfarcts were intensely labeled with the ΔCN antibody (Figure 2.4), suggesting that 

small vascular pathologies can result in aberrant CN proteolysis, which may, in turn, 

contribute to further glial activation and/or elevated levels of harmful neuroinflammatory 

factors (Sama et al., 2008). While many of the ΔCN-labeled cells around microinfarcts 

had activated astrocyte morphology, it’s possible that GFAP-negative astrocytes, 

activated microglia, and/or infiltrating immune cells are also an important source of ΔCN. 

Microglia, in particular, express numerous CN-dependent substrates, including NFATs 

that play key roles in cytokine production and neuroinflammation (Nagamoto-Combs and 

Combs, 2010; Shiratori et al., 2010 Kim et al., 2011; Rosenkranz et al., 2012; 

Rojanathammenee et al., 2013). Other cells relevant to the vasculature, such as 

microvascular pericytes, can express high levels of NFAT4 (Filosa et al., 2007), which is 

intriguing given that ∆CN was also commonly observed in or around microvessels in the 

present study.  

In addition to glial cells, we also observed ΔCN labeling in neurons, especially within 

close proximity to microinfarcts (Figure 2.5B). NeuN- ΔCN colocalization appeared most 

extensive within the microinfarct core region, which may be subject to marked hypoxic 

damage (Shih et al., 2013)—a well-characterized stimulus for CN proteolysis in brain 

tissue (Shioda et al., 2006; Shioda et al., 2007).  As mentioned, ΔCN expression in 

neurons has been shown to activate both necrotic and apoptotic signaling pathways 

(Wang et al., 1999; Wu et al., 2004), suggesting that the neuronal expression of ΔCN 

within and near microinfarcts may also be a major contributor to neurodegeneration 

associated with vascular damage.  Additional work directed at identifying all of the 

different cell types expressing ΔCN following microvessel damage and how CN 
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proteolysis in each cell type specifically contributes to neural function/dysfunction should 

provide important insights into the pathophysiology of AD and VCID. 

 

2.4.3 ∆CN in Astrocytes and synapses. One of the major functions of astrocytes is to 

promote the structural and functional integrity of synaptic contacts (Allen, 2014). Deficits 

in synaptic function are usually found in animal models characterized by extensive 

astrocyte activation (Bachstetter et al., 2012; Furman et al., 2012; Rossi, 2015), 

suggesting that activated astrocytes directly damage and/or lose the capacity to protect 

synapses.  We previously showed that the blockade of astrocytic CN/NFAT signaling, 

using AAV-Gfa vectors, ameliorated synaptic deficits in both basal synaptic transmission 

and plasticity and normalized the PS threshold in APP/PS1 mice (Furman et al., 2012). 

Similar levels of synaptoprotection were observed in brain-injured rats treated with the 

same AAV reagents (Furman et al., 2016). Consistent with these findings, the present 

study found that hippocampal synaptic strength was compromised in healthy adult rats 

following the forced overexpression of ∆CN in astrocytes. Together, the results are 

consistent with the possibility that proteolytic activation of CN in activated astrocytes is a 

crucial causative mechanism for the deterioration of synaptic function. However, our 

results do not rule out the possibility that full-length CN could mediate similar effects (in 

the absence of proteolysis), if the phosphatase was activated at high levels by normal 

binding to Ca2+/calmodulin. 

While the present study did not address how astrocytic CN activity disrupts synaptic 

function, there are many possible mechanisms that will need to be systematically 

investigated. For instance, CN signaling pathways help drive the production of numerous 

immune factors, including tumor necrosis factor and other cytokines, which are 

implicated in chronic neuroinflammation (Griffin et al., 1998; Mrak and Griffin, 2005; Van 
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Eldik et al., 2007; Sama et al., 2008) and widely regarded as causal factors of synaptic 

decline in animal models of aging, injury, and AD (Pickering and O’Connor, 2007; Sama 

and Norris, 2013; Rossi, 2015). Synaptic function is also strongly modulated by a variety 

of releasable factors (e.g. SPARC/SPARC-L, C3, and ephrin/Eph receptors) (Stevens et 

al., 2007; Jones et al., 2011; Murai and Pasquale, 2011), which are produced in 

activated astrocytes (Ridet et al., 1997; Frugier et al., 2012; Ingram et al., 2014) and 

sensitive to CN/NFAT activity (Norris et al., 2005; Furman et al., 2016), while other 

toxins, such as glutamate and Aβ peptides, can be released from activated astrocytes 

via the CN-dependent downregulation of glutamate transporters (Sama et al., 2008; 

Abdul et al., 2009) and the upregulation of β-secretases (Furman et al., 2012; Jin et al., 

2012) respectively. But, regardless of the specific cellular mechanism, our data provide 

proof-of-concept that CN hyperactivity in astrocytes, especially in areas of amyloid and 

vascular pathology (as shown with the ∆CN antibody, see Figures 2.2-2.4), can have 

deleterious effects on synapses. Whether the proteolysis of CN is directly linked to the 

striking synapse loss that occurs with AD (Scheff et al., 2013; Scheff et al., 2015; Scheff 

et al., 2016) and VCID (Sinclair et al., 2015) is still unknown and will need to be 

determined.  

 

2.4.4 ∆CN in Astrocytes: Deleterious vs Beneficial Effects on Neural Function. The 

electrophysiological findings in the present study are consistent with numerous studies 

that have found a deleterious role of CN signaling in rodent models of aging (Foster et 

al., 2001; Norris et al, 2005), AD (Norris et al., 2005; Kuchibhotla et al., 2008; Reese et 

al., 2008; Taglialatela et al., 2009; Wu et al., 2010; Furman et al., 2012; Hudry et al., 

2012; Taglialatela et al., 2015), and injury (Wu et al., 2004; Huang et al., 2005; Shioda et 

al., 2006; Shioda et al., 2007; Furman et al., 2016). The data provided here also directly 
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supports our previous work (Furman et al., 2012; Furman et al., 2016) and work from 

others (Fernandez et al., 2016) showing that astrocyte-specific inhibition of CN signaling 

results in improved neuronal viability, synaptoprotection, and/or improved cognition. 

However, these results are apparently in disagreement with another study by the Torres-

Aleman lab that showed a number of neurologic benefits in amyloidogenic mice when 

∆CN was overexpressed in astrocytes (see Fernandez et al., 2012). The reason(s) for 

this discrepancy is not immediately clear. In many tissues, overexpression of ∆CN is 

associated with cellular toxicity (e.g. see Wang et al., 1999; Wu et al., 2004). It’s 

therefore possible that the overexpression of ∆CN, in the context of an already toxic 

environment (i.e. high amyloid levels), leads to the death of activated astrocytes. The 

end result may be beneficial, if activated astrocytes are having a deleterious impact on 

neural function. Though we observed no evidence for astrocyte deterioration in adult rats 

treated with AAV-Gfa vectors, the viability of ∆CN -expressing astrocytes should be 

closely monitored in future studies, especially when ∆CN is expressed in animal models 

where neuropathology is already extensive. Alternatively, the beneficial vs. detrimental 

effects of ∆CN could be a further indication of the highly heterogeneous nature of 

astrocytes both within and across different brain regions.  In the present study, forced 

overexpression of ∆CN was limited to astrocytes in the hippocampus, which is also 

where we observed beneficial effects of CN/NFAT inhibition using AAV-Gfa vectors 

(Furman et al., 2012; Furman et al., 2016). In contrast, Fernandez et al. 2012 induced 

∆CN expression in astrocytes across the entire forebrain. The specific outcome of ∆CN 

expression may therefore depend critically on the brain region examined. It’s also 

possible that ∆CN generates some neurologic benefits, including improved cognition, at 

the cost of other functions, like synaptic transmission and plasticity, though this would be 

contrary to numerous other studies where synaptic deficits and cognitive impairments 
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run in parallel. Finally, it is interesting to note that a more recent study by the Torres-

Aleman lab (Fernandez et al., 2016) reported a number of functional benefits in AD 

transgenic mice following treatment with reagents that disrupt astrocytic CN signaling, 

which is more consistent with our present findings and previous research. Regardless, it 

would appear that astrocytic CN signaling is highly complex and additional research will 

be necessary to fully characterize the molecular, cellular, and behavioral phenotypes of 

animals that show elevated levels of ∆CN in brain astrocytes.  
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Figure 2.1 Production of ΔCN antibody. 

(A) Calpain-dependent cleavage between lysine 424 and glycine 425 generates a 45–48 

kDa fragment (ΔCN). (B) The peptide immediately upstream from the ΔCN cleavage site 

(ESVLTLK) was used to immunize rabbits. Antisera were column-purified to enrich the 

ΔCN antibody. (C)Western blot showing proteolysis of CN in primary rat hippocampal 

cultures treated for 24 h with oligomeric Aβ1–42 peptides (65 nM) in the presence or 

absence of the CP inhibitor, calpeptin (10 μM) or caspase-1 inhibitor, Z-YVAD. The ΔCN 

antibody (left panel) detects the 45–48 kDa fragment but not full-length CN. Commercial 

N terminus antibodies (right panel) recognize both full-length (60 kDa) CN and the 45–48 

kDa fragment. Blockade of CP activity with calpeptin prevents Aβ-dependent proteolysis 

while inhibition of caspase activity does not.  
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Figure 2.2 ΔCN antibody labels astrocytes in human tissue. 

(A) GFAP labeling in an AD section from a subject with confirmed AD. (B–C) Low and 

high power photomicrographs of human AD amygdala showing intense labeling of 

astrocyte clusters and (D) astrocytes in close proximity to microvessels using the ΔCN 

antibody. (E1–4) Co-labeling reveals that ΔCN-positive cells (brown) appear around 

amyloid deposits (blue). Though most cells contained within clusters exhibited a clear 

astrocyte morphology, some cells showed neuron-like characteristics (see arrow in E4). 

(F, G) Serial sections of amygdala labeled with ΔCN antibody alone (F) or ΔCN antibody 

plus ESVLTLK blocking peptide (G). (H–K) Confocal micrographs showing labeling with 

a GFAP antibody (red) and the ΔCN antibody (green). The merged image shows areas 

of colocalization, indicating that most GFAP-positive astrocytes have regions that are 

also occupied by the ΔCN fragment (arrows). However; some GFAP-positive astrocytes 

(indicated by arrowheads and shown at larger magnification in K) were devoid of ΔCN. 
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Figure 2.3 ΔCN antibody shows faint labeling in NeuN positive neurons. 

(A–B) Photomicrographs of human AD hippocampus in CA1 (A) and in the dentate gyrus 

(B) show strong labeling of neurons using a commercial antibody to the C-terminus of 

CN. (C–D) Labeling of the CA1 and dentate granule layers with the ΔCN antibody. 

Neuronal labeling with the ΔCN antibody was relatively faint and limited to the cell body 

region and proximal apical dendrites (for pyramidal neurons). Inset in D shows an 

intensely labeled astrocyte and blood vessel near weakly labeled dentate granule cells. 

(E–F) Low (E) and higher-powered (F) confocal micrographs of NeuN and ΔCN double-

labeling in area CA1 of an AD subject. Merged low-power images from the region 

denoted by the arrow in panel E shows punctate localization of ΔCN (red) to NeuN 

positive cell bodies (green). 
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Figure 2.4 ΔCN antibody labels microinfarcts. 

Representative low magnification photomicrograph (A) that shows ΔCN labeling around 

several microinfarcts (arrows and arrowhead) in neocortex. (B) Serial section through 

neocortex stained by H&E to confirm the presence of microinfarcts. The image shown is 

a high magnification of the region denoted by the arrowhead in Panel A. (C) High power 

photomicrograph of the region in A (arrowhead) showing intense ΔCN antibody labeling 

of astrocytes. Higher magnification of the areas denoted by arrows are shown in panels 

D and E. (F, G) Serial sections of neocortex labeled with ΔCN antibody alone (F) or ΔCN 

antibody plus ESVLTLK blocking peptide (G). The blocking peptide greatly reduced the 

labeling intensity of the ΔCN antibody. (H, I) Serial sections of human cortical tissue 

treated with the ΔCN antibody (H), or a commercial C-terminus antibody (I) that detects 

FL-CN, but not proteolyzed CN (G). Little to no labeling in the microinfarct region is 

observed with the C-terminus antibody. 
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Figure 2.5 ΔCN localizes to astrocytes and neurons around microinfarcts. 

(A) Merged confocal micrograph showing the colocalization of ΔCN (green)with GFAP 

(red). B–D, high magnification images of the infarct in Panel A shown in individual 

channels (B, C) and merged (D). Co-localization of ΔCN with GFAP was most extensive 

in the region immediately adjacent to the infarct. (E) Merged confocal micrograph 

showing the colocalization of ΔCN (green) with NeuN (red). Note, this image is a serial 

section of the region shown in Panel A. F–H, high magnification images of the infarct in 

Panel E shown in individual channels (F, G) and merged (H). Co-localization of ΔCN 

with NeuN was most extensive in the microinfarct core, but could also be observed for 

numerous cells adjacent to the insult.  
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Figure 2.6 ΔCN expression and hippocampal synaptic function. 

(A) AAV2/5 vectors encoding a DsRed2 control construct or a ΔCN construct under the 

control of the astrocyte-specific promoter, Gfa104, were injected into alternate 

hemispheres (intrahippocampal) of intact adult rats (n = 6). B, Confocal micrograph of 

the stratum radiatum region of area CA1 showing MAP2b (green), GFAP (blue), and 

DsRed2 (red). Arrow points to a DsRed2-positive astrocyte shown in higher 

magnification images below. While many astrocytes labeled positive for DsRed2, there 

was no overlap in labeling for DsRed2 and MAP2b. C, representative waveforms 

recorded in stratum radiatum of CA1 in response to electrical orthodromic stimulation of 

Schaffer collaterals illustrating a reduced EPSP in slices from the ΔCN-treated 

hemisphere relative to the DsRed2-treated hemisphere, given a similar FV amplitude. 

Calibration bars: vertical 0.5 mV; horizontal 5 msec. D, Synaptic strength curves 

showing the mean ± SEM EPSP slope values plotted against the mean ± SEM FV 

amplitude values at increasing stimulus intensities. The average synaptic strength curve 

for the ΔCN-treated hemisphere exhibited a downward shift, consistent with reduced 

basal synaptic strength. E, Mean ± SEM maximal EPSP-to-FV ratio in each AAV-treated 

hemisphere. F, Synaptic strength curve parameters (Mean ± SEM maximal EPSP, curve 

slope, and half-maximal activation) from the data shown in panel C. G, Mean ± SEM PS 

threshold in ΔCN- and DsRed2-treated slices. *p b 0.05, paired t-test. 
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Figure 2.7 ΔCN labeling controls.  

Labeling with the ΔCN antibody in both amygdala (far left column) and hippocampus (far 

right column) from non-demented control subjects reveals little-to-no labeling across the 

sections. Furthermore, sections were labeled in the absence of primary antibody and 

secondary antibody as additional controls to confirm antibody specificity.  
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Figure 2.8 Commercial C-terminus CN antibody reveals labeling of neurons. 

A cortical section labeled with a commercial C-terminus CN antibody reveals labeling of 

neurons.  
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3.1 Introduction  

Astrocytes are one of the most abundant cell types in the brain (Chen and Swanson, 

2003), and play a vital role in maintaining healthy nervous tissue. Calcineurin (CN), an 

exquisitely Ca2+-sensitive Ser/Thr protein phosphatase, is profuse in neurons under 

normal conditions (Klee, 1991) but with neurodegenerative diseases (e.g. Alzheimer’s 

disease and vascular cognitive impairment and dementia) CN can be highly expressed 

in a subset of activated astrocytes (Hashimoto et al., 1998; Norris et al., 2005; Celsi et 

al., 2007; Abdul et al., 2009). Activated astrocytes exhibit an increased production of 

pro-inflammatory cytokines, a decreased production of glutamate transporters, and a 

hypertrophic morphological change, and they have been implicated as a major 

component of neuroinflammation (Sama et al., 2008; Fuller et al., 2009; Sofroniew, 

2009; Fuller et al., 2010; Sofroniew and Vinters, 2010). 

 Work from our lab and others has shown that changes in signaling pathways in 

activated astrocytes-- including CN signaling pathways-- can contribute to neural 

dysfunction (Abdul et al., 2009). One pathway in particular, the CN/nuclear factor of 

activated t-cells (NFAT) pathway, has been implicated in the initiation and/or progression 

of Alzheimer’s disease (AD) (Abdul et al., 2009; Abdul et al., 2010; Wu et al., 2010; 

Hudry et al., 2012). Moreover, inhibition of the CN/NFAT pathway using a small 

inhibitory peptide (VIVIT) ameliorates synaptic deficits and glial activation in a mouse 

model of AD (Furman et al. 2012). To our knowledge, however, inhibition of CN/NFAT 

signaling has not been well-studied in the context of vascular cognitive impairment and 

dementia (VCID).  

 Pathological features of VCID include but are not limited to macro- and micro-

infarctions, micro-hemorrhages, and arteriolosclerosis (Kapasi and Schneider, 2016).  

Buildup of homocysteine, a non-essential amino acid that is a transient, intermediate 

step in the transsulfuration pathway, either by genetic mutation (e.g. cystathionine β-
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synthase) or dietary modifications (e.g. a deficiency of folate or excess of methionine) 

can result in an accumulation of homocysteine known as HHcy (Stipanuk and Ueki, 

2011). HHcy is a risk factor not only for cardiovascular conditions (i.e. atherosclerosis 

and stroke) (Graham et al., 1997), but it is also an independent risk factor for AD 

(Seshadri et al., ,2002) and VCID (Brattstrom et al., 1984). In this study, we used a 

Teklad custom research diet (Harlan Laboratories) that was deficient in folate, B6, and 

B12, and also had excess methionine (7.7 g/kg) versus control diet (3.0 g/kg) in order to 

induce a moderate HHcy (as described by Ernest et al., 2005). Levels of other vitamins 

and minerals, as well as protein (195 g/kg) were uniform across the HHcy and control 

diets. A previous study using this diet to induce HHcy revealed significant cognitive 

deficits on the radial arm water maze, increased number of microhemorrhages, and 

increased expression of proinflammatory cytokines after just 11 weeks on the diet 

(Sudduth et al., 2013b). 

 To determine the role of astrocytic CN/NFAT signaling in HHcy-dependent VCID, 

we directed expression of a potent NFAT inhibitor, VIVIT, to wild type mice treated with 

either control or HHcy diet using adeno-associated virus (AAV) with an astrocyte-specific 

promoter. Results revealed that NFAT-DNA binding activity was greater in HHcy mice 

compared to mice on control diet. Moreover, consistent with our previous work (Furman 

et al., 2016), very preliminary NFAT4 labeling in HHcy tissue exhibited an astrocyte bias. 

Treatment of HHcy mice with AAV-Gfa2-VIVIT to inhibit astrocytic NFAT activity 

ameliorated deficits in synaptic strength and plasticity.  Furthermore, VIVIT had 

favorable effects on cerebral blood flow (CBF) and several critical brain metabolites. 

Taken together, results suggest that inhibition of CN/NFAT in astrocytes is 

synaptoprotective in a mouse model of VCID.    
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3.2 Methods 

3.2.1 Animals. Female C57Bl/6 (10 weeks of age) were housed in groups, provided 

access to food and water ad libitum, and used in accordance with International Animal 

Care and Use Committee of University of Kentucky.  

 

3.2.2 Stereotaxic surgery. Mice underwent surgery as previously described (Furman et 

al., 2012). Briefly, mice were anesthetized with 2.5% isoflurane throughout the duration 

of the surgery. Once immobilized in the stereotaxic frame, AAV vectors (Gfa2-VIVIT or 

Gfa2-EGFP) were delivered bilaterally into the hippocampus (4uL/hemisphere) at a rate 

of 0.2uL/min using a sterotaxic injector (Stoelting). Coordinates for injection relative to 

bregma were +2.0 mm anteroposterior, ±1.5 mm mediolateral, and -1.5 mm 

dorsoventral. 

 

3.2.3 Diet. One week post-AAV injection, mice were switched from normal chow diet to a 

custom research diet. Mice either went onto control diet (Harlan Teklad 5001 C) or HHcy 

diet (deficient in folate, B6, B12; enriched in methionine) (Harlan Teklad TD97345). Mice 

were maintained on custom diets ad libitum for a minimum of 11 weeks up to 

euthanasia. 

 

3.2.4 Hippocampal slice preparation. Briefly, mice were deeply anesthetized with CO2 

and decapitated. Brains were removed and stored briefly in Ca2+-free, ice-cold, 

oxygenated (95% O2, 5% CO2) artificial CSF (ACSF) containing the following (in mM): 

124 NaCl, 2 KCl, 1.25 KH2PO4, 2 MgSO4, 26 NaHCO3, and 10 dextrose, pH 7.4. 400µm-

thick sections from one hemisphere were cut on a vibrating microtome (Leica). Slices 

were then quickly transferred to netting in a custom Plexiglas holding chamber and 

maintained in CaCl2-containing (2 mM) ACSF at an interface with warm (32°C), 
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humidified air. Slices were permitted to equilibrate for at least 1.5 h before beginning 

electrophysiological analysis. 

 

3.2.5 Synaptic strength and LTP measurements. For each slice, dual-stimulus pulses 

(S1 and S2), separated by 50 ms, were delivered at eleven different intensity levels 

(range of 25 –500 mA) at a rate of 0.1 Hz to establish a synaptic strength curve. Three 

field potentials at each stimulus level were averaged and measurements of fiber volley 

(FV) amplitude (in millivolts) and EPSP slope (millivolts per milliseconds) were 

performed offline using Clampfit software (Molecular Devices). Averaged EPSP slope 

measures were plotted against their corresponding FV amplitudes to estimate the 

strength of CA3–CA1 synaptic contacts. Paired-pulse facilitation (PPF) of the EPSP 

slope was calculated along the linear portion of the synaptic strength curve by dividing 

the EPSP slope of S1 by the EPSP slope of S2 and multiplying by 100. Following 

measurements of synaptic strength, stimulation intensity was readjusted to elicit an 

EPSP of 1 mV, and stimulus pulses were delivered at 0.033 Hz until a stable 20 min 

baseline was established. High-frequency stimulation (two 100 Hz trains, 1 s each, 10 s 

intertrain interval) was then delivered at the baseline stimulation intensity to induce long-

term potentiation (LTP), followed by an additional 60 min baseline. Within each group, 

EPSP slope measures from the last 10 min of the post-LTP baseline were averaged 

across slices within animal and compared with the pre-LTP baseline slope average. For 

each animal, electrophysiological parameters were averaged across all slices within 

each animal (one to three slices), and the n used for statistical comparisons reflects the 

number of animals per diet and treatment group. All electrophysiological recordings were 

conducted and analyzed by personnel who were blind to diet and treatment conditions. 
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3.2.6 Cerebral blood flow and magnetic resonance spectroscopy. MRI experiments 

were performed on a 7T Clinscan MR scanner (Siemens) at the Magnetic Resonance 

Imaging & Spectroscopy Center of the University of Kentucky. Mice were anesthetized 

with 4.0% isoflurane for induction and then maintained in a 1%–2.5% isoflurane and air 

mixture using a nose cone. Heart rate (90–110 bpm), respiration rate (50–80 

breaths/min), and rectal temperature (36±1 °C) were continuously monitored. A water 

bath with circulating water at 50–55 °C was placed outside the room and used to 

maintain body temperature. 

Cerebral blood flow (CBF) was measured using a pseudocontinuous arterial spin 

labeling technique. Paired images were acquired with field of view (FOV) = 40×30mm2, 

matrix = 128×128, slice thickness = 1mm, slice = 4, 120 measurements, labeling 

duration = 2,100ms, repetition time (TR) = 4,000ms, and echo time (TE) = 20ms. 

Quantitative CBF (mL/g/min) was computed employing codes written in Matlab. 

Following CBF measurements, we acquired proton (1H) MR spectra (MRS) to determine 

brain metabolite levels. In vivo 1H-MRS were obtained using a point-resolved 

spectroscopy sequence. Water-suppressed spectra were acquired with following 

parameters: TR = 1,500ms, TE = 135ms, spectral width = 60 Hz and average = 400. A 

voxel of interest of 18.2mm3(2.0×7.0×1.3mm) covered bilateral hippocampus. An 

acquisition of nonwater suppressed spectrum with 10 averages was followed (the rest of 

the parameters were kept the same). Both with- and without-water suppression spectra 

were then processed using LCModel to determine the concentrations of the metabolites. 

LCModel uses a linear combination of model spectra of metabolite solutions in vitro to 

analyze the major resonances of in vivo spectra as previously reported (Provencher, 

1993). The protocol, including MRI and MRS, took approximately 60 minutes for each 

mouse. 
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3.2.7 Radial arm water maze. Behavior testing was performed at the University of 

Kentucky Rodent Behavior Core. The 2-day radial arm water maze (RAWM) protocol 

was carried out as previously described in Alamed et al., 2006. Briefly, a six-arm maze 

was submerged in a pool of water maintained at 20.5°C, and a platform was placed at 

the end of one arm (equipment and tracking software from Noldus Information 

Technology). Each mouse was subjected to 15 trials per day for 2 days. Each mouse 

began each trial in a different arm while the arm containing the platform remained the 

same. The number of errors (incorrect arm entries) and time to platform was counted 

over a 1-minute period. The errors were averaged over three trials, resulting in ten 

blocks for the 2-day period. 

 

3.2.8 Electrophoretic mobility shift assay. EMSAs were performed  to determine 

NFAT-DNA binding as described previously in Furman et al., 2016. Briefly, whole cell 

extracts from frozen cortical brain tissue were made using a kit from Active Motif 

following the manufacturer’s instructions. Images were obtained and fluorescent bands 

were quantified using the Licor Odyssey scanner. Control diet and HHcy tissue samples 

were run on the same gel for direct statistical comparisons.  

 

3.2.9 Immunofluorescence. Immunofluorescent labeling was performed as described 

previously (Furman et al., 2016; Pleiss et al., 2016). In brief, human cortical samples 

were labeled using a 1:20 dilution of anti-mouse NFAT4 (Santa Cruz), amplified and 

labeled using tyramide-Alexa 594 from a tyramide signal amplification kit (Invitrogen). 

Sections were further labeled using a 1:100 dilution of anti-rat GFAP (Life Technologies) 

and labeled using the secondary rabbit anti-rat Alexa 488 (Invitrogen). Images were 

obtained using confocal microscopy (Nikon Eclipse Ti).  
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3.2.10 Immunohistochemistry. Immunohistochemistry was performed as described 

previously (Pleiss et al., 2016). In brief, human cortical sections were labeled primarily 

with a 1:25 dilution of ΔCN (custom, see Chapter II) or 1:20 dilution of NFAT4 (Santa 

Cruz). Following primary antibody incubation, secondary antibodies and ABC kits 

(Vector Laboratories) were used to amplify the signal, followed by detection with DAB 

substrate kit (Vector Laboratories). Images were obtained using X scope. 

 

3.2.11 Statistics. Unless otherwise noted, outcome measures were assessed for both 

the control diet and HHcy diet animals and compared across treatment groups using 

two-way ANOVA. When appropriate, Fisher’s protected least significant difference test 

was used for post hoc analyses. Significance for all statistical comparisons was set at p 

≤ 0.05. 

 

 

3.3 Results 

3.3.1 Elevated NFAT4-DNA binding and labeling is seen in mouse and human 

tissue with vascular-associated pathologies.  

We have previously shown that NFAT-DNA binding is elevated in a rat model of TBI, and 

the NFAT4 isoform in particular exhibits a strong astrocyte bias (Furman et al., 2016). 

Consistent with previous findings, using electrophoretic mobility shift assays (EMSAs) 

we found that NFAT-DNA binding was increased cortical tissue from mice on an HHcy-

diet induced model of VCID compared to tissue from mice on the control diet (Fig 3.1A-

B). Previous studies have observed ΔCN fragments in neurodegenerative conditions 

with significant vascular contributions (Shioda et al., 2006; Shioda et al., 2007; 

Rosenkranz et al., 2012). Moreover, elevated NFAT levels have been implicated in 

neurodegenerative conditions like MCI (Abdul et al., 2009). Using human cortical tissue 
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from a case of VCID with confirmed microinfarct pathology, we found intense labeling of 

ΔCN (See Chapter II, Fig 2.4) as well as NFAT4 (Fig 3.1 C, E, F) surrounding the 

microinfarct core. Studies have recently, suggested that microinfarcts are the most 

common and significant contributor to vascular cognitive impairment and dementia 

(Smith et al., 2012; Kapasi and Schneider, 2016). Moreover, activated astrocytes often 

envelope the microinfarct core (Wang et al., 2012; van Veluw et al., 2015). Double 

labeling with NFAT4 and GFAP, an intermediate filament that is found almost exclusively 

in astrocytes (Eng, 1985), revealed co-labeling in human cortical tissue from a confirmed 

case of VCID (Fig 3.1 F). Together, these results suggest that CN/NFAT4 signaling is 

elevated in astrocytes in both human and mouse tissue with cerebrovascular-associated 

pathologies.  

 

3.3.2 Inhibition of CN/NFAT using AAV-Gfa2-VIVIT improves synaptic strength and 

plasticity in an HHcy diet-induced model of VCID. 

Previous studies have shown that selective inhibition of CN/NFAT in models of AD 

(Furman et al., 2012) and TBI (Furman et al., 2016) using adeno-associated virus (AAV) 

with an astrocyte-specific promoter (Gfa2) has many protective benefits including 

improved synaptic parameters. Moreover, astrocytes play a major role in the regulation 

and maintenance of synaptic transmission and plasticity (Allen, 2014). Together, this 

suggests that elevated CN/NFAT signaling in astrocytes can significantly contribute to 

disease pathophysiological processes and selective inhibition of CN/NFAT provides 

many benefits. To our knowledge the role CN/NFAT signaling in a mouse model of VCID 

has not been well-investigated.  

To determine if selective inhibition of CN/NFAT could improve synaptic parameters in a 

diet-induced model of VCID, we delivered AAV 2/5 vectors expressing VIVIT-EGFP or 

EGFP alone (control) into the hippocampus of 10 week old C57BL/6 mice. VIVIT has 
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been previously shown to potently and selectively inhibit CN/NFAT interactions 

(Aramburu et al., 1999). One hippocampus received VIVIT-EGFP and the other 

hippocampus received EGFP control for a within-subject experimental design (see Fig 

3.2). Both VIVIT-EGFP and EGFP control vectors were transcriptionally regulated by a 

human GFAP promoter (Gfa2) which provides astrocyte-specific expression (Lee et al., 

2008), which we have previously shown drives AAV-mediated expression of EGFP 

exclusively in astrocytes in both mice and rats (Furman et al., 2012; Furman et al., 

2016).  

At 12 weeks post-injection, brain slices from both hemispheres were harvested and 

processed in parallel for the electrophysiological assessment of basal CA3-CA1synaptic 

strength. Field EPSP slopes were recorded in CA1 stratum radiatum and plotted against 

corresponding FV amplitudes at 12 different stimulus intensities to generate synaptic 

strength curves. Compared to slices from the EGFP alone control vector-treated 

hemisphere, slices from the VIVIT-treated side exhibited improved synaptic strength 

curves (Figure 3.3A). Furthermore, following a 20 minute baseline recording, high-

frequency stimulation was then delivered at the baseline stimulation intensity to induce 

long-term potentiation (LTP), followed by an additional 60 min baseline recording. 

Comparted to slices from the EGFP alone control vector-treated hemisphere, slices from 

the VIVIT-treated side exhibited improved LTP (Figure 3.3B) Together, these results 

suggest that selective inhibition of CN/NFAT signaling in astrocytes is sufficient improve 

synaptic parameters and plasticity in an animal model of VCID. 
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3.3.3 Inhibition of CN/NFAT using AAV-Gfa2-VIVIT favorably improves cerebral 

blood flow and brain metabolite levels in an HHcy diet-induced model of VCID. 

Previous studies have shown significant deficits in cerebral blood flow (CBF) in mice on 

an HHcy diet versus mice on control diet. Decreased CBF has been associated with 

increased vascular risk factors (e.g. hypertension) (Muller et al., 2012; Bangen et al., 

2014). Moreover, changes in several brain metabolites has been implicated in 

neurodegenerative conditions such as AD. Specifically, in healthy tissue, levels of N-

acetylaspartate (NAA) are normally elevated with reductions in NAA levels being 

indicative of increased neuronal loss. Additionally, levels of myo-Inositol (mI) are 

normally low but indicate increased glial activation when elevated (Parnetti et al., 1997; 

Zhu et al., 2006; Chang et al., 2013; Lin and Rothman, 2014; Lin et al., 2016). To our 

knowledge, selective inhibition of CN/NFAT to observe its effects on CBF and brain 

metabolite levels has not been well-investigated. 

At 14 weeks post-initiation of HHcy diet, we performed arterial spin labeling (ASL) 

magnetic resonance imaging (MRI) to measure CBF. We also used magnetic resonance 

spectroscopy (MRS) normalized to a water peak to obtain brain metabolite levels (see 

Fig 3.2). In mice on the HHcy diet, we found that treatment with AAV-Gfa2-VIVIT 

compared to treatment with AAV-Gfa2-EGFP control improved CBF (p = 0.045 [1-tailed 

T-test]) (Fig 3.4A). Moreover, treatment with AAV-Gfa2-VIVT compared to treatment with 

AAV-Gfa2-EGFP control favorably elevated levels of NAA (p = 0.03 [1-tailed T-test]) (Fig 

3.4B) and appeared to favorably reduce levels of mI (n.s) (Fig 3.4C). Although a large 

spectrum of metabolites was obtained, we did not see any significant change in other 

metabolite levels (e.g. glutamate) in VIVIT-treated versus EGFP control-treated mice on 

the HHcy diet. Together, these results suggest that selective inhibition of CN/NFAT in 

mice on an HHcy diet favorably improves both CBF and levels of brain metabolites.  
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3.3.4 Inhibition of CN/NFAT using AAV-Gfa2-VIVIT did not significantly improve 

performance on the radial arm water maze. 

The 2-day radial arm water maze (RAWM) task can expose deficits in spatial learning 

and memory as described by Alamed et al., 2006. Previous studies have revealed a 

significant deficit on the RAWM with mice on the HHcy diet versus mice on a control diet 

(Sudduth et al. 2013b). Additionally, inhibition of CN/NFAT signaling in an aggressive 

5xFAD model of AD shows improved performance on the RAWM (Sompol et al., in 

preparation). To our knowledge, selective inhibition of CN/NFAT and its effect on spatial 

learning has not been well-studied in a mouse model of VCID. 

At 16 weeks post-initiation of HHcy diet, mice were run on the 2-day RAWM task (see 

Fig 3.2). We observed a significant deficit on the task in mice on HHcy diet versus those 

on the control diet (Fig 3.5). Within mice on HHcy diet, treatment with AAV-Gfa2-VIVIT 

(Fig 3.5, green line) did not significantly improve performance on the task compared to 

treatment with AAV-Gfa2-EGFP (Fig 3.5, red line). While results did not show a 

significant improvement, treatment with AAV-Gfa2-VIVIT may improve performance on 

an executive function task, which tends to be more impaired in VCID as opposed to 

learning and memory in AD, and will be elaborated in the Chapter III discussion.  

 

3.4 Discussion 

An overarching hallmark of neurodegeneration is neuroinflammation that is driven in part 

by CN/NFAT signaling (Griffin et al. 1998; Mrak and Griffin, 2005a). Inhibition of this 

pathway has been shown to be beneficial in several mouse models of injury and 

neurodegenerative disease (Furman et al., 2012; Furman et al., 2016). Using a potent 

NFAT inhibitor specifically targeted to astrocytes, AAV-Gfa2-VIVIT, the present study 

has provided some of the first evidence that inhibition of CN/NFAT interactions in a diet-

induced mouse model of VCID is synaptoprotective. Moreover, blockade of CN/NFAT 
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appears to improve parameters of cerebral blood flow and brain metabolism. The results 

suggest that elevated CN/NFAT signaling may contribute to detrimental alterations in 

synaptic and cerebrovascular function in VCID, and inhibition of this pathway may have 

potential therapeutic benefits.  

 

 

3.4.1 Elevations in NFAT4 in tissue with vascular pathology: a good target? 

The biochemical findings in this study are consistent with previous studies that show 

elevated levels of NFATs in tissue following injury and disease (Serrano-Perez et al., 

2011; Neria et al., 2013; Yan et al., 2014; Furman et al., 2016). Our previous work has 

found elevated levels of NFAT1 activation in human hippocampus in the early stages of 

AD (Abdul et al., 2009) Furthermore, our group recently found elevated levels of NFAT4-

DNA binding activity in the hippocampus of traumatic brain injured rats that was 

confirmed using immunofluorescence and confocal microscopy (Furman et al., 2016). 

Consistent with these reports, the present study found elevated NFAT-DNA binding in 

cortical tissue from mice on HHcy diet versus those on control diet. Moreover, using 

immunohistochemical techniques in human tissue from confirmed cases of VCID, we 

found elevated labeling of ΔCN (see Chapter II, also see Fig 2.4) and NFAT4, especially 

around microinfarcts (Fig 3.1 C, E, F). The elevations in both CN (see Chapter II) and 

NFAT4 suggest that these proteins may be playing a significant role in HHcy-induced 

VCID.  

 What is the role of NFATs and why do we see elevations with CNS injury and 

disease? NFATs are transcription factors that are activated by CN in response to Ca2+ 

influx into cells, and are intimately involved in the immune/inflammatory response 

(Crabtree and Olson, 2002). Once in the nucleus, NFATs coordinate the transcription of 

pro-inflammatory cytokines and chemokines such as TNFα or IFNγ (McCaffrey et al., 
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1994; Stankunas et al., 1999; Avni et al., 2002; Palanki, 2002; Kitazawa et al., 2004; 

Demuro et al., 2005; White et al., 2005; Shankar et al., 2008) (refer to Fig 1.2), which 

can have a detrimental effect if chronically activated. Furthermore, we have shown that 

both levels of CN and NFATs are robustly elevated in activated astrocytes with CNS 

injury and disease (Norris et al., 2005; Furman et al., 2016; Pleiss et al., 2016). Thus, an 

ideal therapeutic agent would need to inhibit CN/NFAT interactions specifically in 

astrocytes.  

 Using a potent NFAT inhibitor (VIVIT) targeted directly to astrocytes using a 

GFAP promoter (Gfa2) in an adeno-associated virus vector, we have previously shown 

that inhibition of CN/NFAT in astrocytes in mouse models of CNS injury and disease is 

synaptoprotective (Furman et al., 2012; Furman et al., 2016; Sompol et al., in 

preparation), shows cognitive benefits (Furman et al., 2012; Sompol et al., in 

preparation), and shows reduced glial activation (Furman et al., 2012). Although AAV-

Gfa2-VIVIT treatment reveals numerous benefits- and AAV vectors in general are 

associated with low immunogenicity (Zaiss and Muruve, 2005)- our AAV2/5 constructs 

cannot cross the blood-brain barrier (BBB) and therefore must be directly injected into 

the brain. Future studies using a less invasive strategy (e.g. AAV9 that can cross the 

BBB; Manfredsson et al., 2009) should be considered. However, from a translational 

viewpoint, when looking at the benefits of specific CN/NFAT inhibition versus the cost of 

invasiveness, AAV-Gfa2-VIVIT should not be ruled out as a viable therapeutic agent.   

 

3.4.2 Astrocytic CN/NFAT and synapses 

Astrocytes play a critical role in maintaining the structural and functional integrity of 

synapses (Allen, 2014). Animal models characterized by extensive astrocyte activation 

often have deficits in synaptic function (Bachstetter et al., 2012; Rossi, 2015), 

suggesting that activated astrocytes lose the ability to protect and/or directly disrupt 
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synapses. We have previously shown that inhibition of astrocytic CN/NFAT in APP/PS1 

mice (Furman et al., 2012), 5xFAD mice (Sompol et al., in preparation), and rats with 

traumatic brain injury (TBI) (Furman et al., 2016) ameliorates deficits in basal synaptic 

transmission as well as plasticity. Consistent with these findings, the present study found 

that hippocampal synaptic strength and plasticity was normalized in mice on an HHcy 

diet treated with AAV-Gfa2-VIVIT versus those treated with AAV-Gfa2-EGFP control (Fig 

3.3). These results are consistent with the idea that CN/NFAT activation in astrocytes 

can help drive synaptic deficits, and inhibition of this pathway can ameliorate these 

deficits. 

 While the results revealed striking synaptoprotection in a mouse model of VCID, 

it did not address the mechanisms by which the synaptic deficits occur. One possible 

mechanism is the CN-dependent production of numerous immune factors (e.g. TNFα or 

IL-6) that are associated with neuroinflammation (Griffin et al., 1998; Mrak and Griffin, 

2005a; Van Eldik et al., 2007; Sama et al., 2008) and implicated as causal factors of 

synaptic decline in models of CNS injury and disease (Pickering and O’Connor, 2007; 

Sama and Norris, 2013; Rossi, 2015). Alternatively, pathogenic toxins associated with 

neurodegenerative diseases (e.g. Aβ peptides and glutamate) can be released from 

activated astrocytes by upregulation of β-secretases (Furman et al., 2012; Jin et al., 

2012) or downregulation of glutamate transporters (Sama et al., 2008; Abdul et al., 

2009). Regardless of mechanism, this study in combination with our previous studies 

shows that astrocytic-specific inhibition of CN/NFAT provides overarching 

synaptoprotection in animal models of CNS injury and disease. 

 

3.4.3 Astrocytic CN/NFAT and cerebral blood flow and metabolism 

Maintenance of cerebral blood flow is critical for delivering crucial oxygen to brain tissue 

(Cipolla, 2009) This may be mediated, in part, by astrocyte endfeet that project onto 
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cerebral blood vessels and participate in regulation of blood flow via release of 

vasoactive metabolites (Howarth, 2014; MacVicar and Newman, 2015). Under 

conditions of injury and disease, increased astrocyte activation- driven in part by 

CN/NFAT activation- disrupts normal astrocyte physiology and may lead to 

compromised cerebral blood flow (CBF) which can have detrimental effects on cells. 

Previous studies have revealed impairments in cerebral blood flow (cerebral 

hypoperfusion) in several neurodegenerative disorders including AD (Lin et al., 2015; 

Dai et al., 2016) as well as VCID (Ighodaro et al., 2016; Sun et al., 2016). Consistent 

with these findings, the present study revealed a deficit in CBF in mice on an HHcy diet-

induced model of VCID that was normalized by treatment with AAV-Gfa2-VIVIT (Fig 3.4). 

These results suggest that targeting a mechanism that can help drive astrocyte 

activation (i.e. CN/NFAT) may restore normal astrocyte regulation of cerebral vessels 

and thus restore CBF. 

 Additionally, shifts in brain metabolism have been implicated in 

neurodegenerative diseases (Herminghaus, 2003; Graff-Radford and Kantarci, 2013). 

Metabolites of interest include N-acetylaspartate (NAA), a marker of neuronal viability, 

and myo-inositol (mI), a marker of glial activation (Zhu et al., 2006). Previous studies in 

both mouse models of neurodegeneration and humans have revealed alterations in 

brain metabolites including NAA and mI (Chang et al., 2013; Lin et al., 2015). Consistent 

with previous findings, the present study found reduced levels of NAA in mice on the 

HHcy diet that was improved by treatment with AAV-Gfa2-VIVIT. Moreover, we found 

increased levels of mI in mice on the HHcy diet that was improved by treatment with 

AAV-Gfa2-VIVIT (Fig 3.4). Surprisingly, we did not see any significant differences in 

levels of glutamate-glutamine.  

 One possible explanation for the lack of change in glutamate levels could be that 

inhibition of CN/NFAT has a stronger effect on brain metabolites associated with 
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neuroinflammation (i.e. NAA and mI) than those associated with glutamate 

synthesis/release. Additionally, our measurements were done in the hippocampus, but it 

would be interesting to determine if significant changes in CBF and/or brain metabolism 

occurs in the cortex. Regardless, this study provides proof that astrocyte-specific 

inhibition of CN/NFAT can have beneficial effects on cerebral blood flow as well as brain 

metabolism. 

 

3.4.4 Spatial memory and VCID: is there a better behavior test? 

Consistent with previous studies (Sudduth et al., 2013b) mice on the HHcy diet exhibited 

a significant deficit on the radial arm water maze (RAWM) (Fig 3.5). The RAWM consists 

of six arms in a round pool, with the platform fixed in the same “goal” arm throughout the 

entire paradigm (Alamed et al., 2006) and is designed to elicit impairments in spatial 

learning and memory (Shukitt-Hale et al., 2004). Mouse models of AD exhibit striking 

deficits in spatial learning and memory (Ashe, 2001; Scearce-Levie, 2011; Yin et al., 

2011). Moreover, we have previously shown that inhibiting CN/NFAT in astrocytes 

improves spatial learning and memory in 5xFAD mice treated with the potent NFAT 

inhibitor VIVIT versus those treated with our control construct (Sompol et al., in 

preparation). However, in the present study, mice on the HHCy diet treated with AAV-

Gfa2-VIVIT did not exhibit a significant improvement in performance on the RAWM 

versus those treated with control EGFP (Fig 3.5, green line).  

While this is surprising, it is possible that cerebrovascular pathology does not 

affect spatial learning and memory in VCID to the same capacity as Aβ plaque and NFT 

pathology does in AD. This is plausible because Aβ plaques and NFT accumulate in the 

hippocampus in the earliest stages of the disease, and spatial learning and memory is 

largely a hippocampal-dependent function. On the other hand, if vascular pathology (e.g. 

microinfarcts or microhemorrhages) tends to affect the cortex or other brain regions in 
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VCID, perhaps using a treatment targeted to the hippocampus may not be the most 

effective strategy. Future studies could explore delivering AAV-Gfa2-VIVIT to astrocytes 

in the cortex as opposed to the hippocampus in order to see improvement on the 

RAWM. However, if AAV-Gfa2-VIVIT is injected into the cortex, it is likely that protective 

effects on hippocampal synaptic function and plasticity will be lost. Alternatively, different 

behavioral tests such as the puzzle box or set shifting (Birrell and Brown, 2000; 

McAlonan and Brown, 2003; Ben et al., 2011) could be used to elucidate the effects of 

CN/NFAT inhibition on executive function. Together, both additional approaches should 

help to improve understanding of how inhibition CN/NFAT signaling in VCID affects 

behavioral and cognitive performance.  
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Figure 3.1 Elevated NFAT4 DNA binding and labeling are seen in mouse and 

human tissue with vascular-associated pathology. 

(A) Representative gel showing NFAT band (NF) for control [C] and HHcy [H] mouse 

cortical tissue. (B) Fluorescence-quantified (AU) NFAT-DNA binding activity for control 

tissue vs. HHcy tissue. (C) Photomicrograph of human cortical tissue from confirmed 

VCID case reveals intense labeling of NFAT4 surrounding a microinfarct. 10x 

photomicrographs of double-labeling with GFAP (D) and NFAT4 (E) reveals co-labeling 

(F) between GFAP and NFAT4, and confirms that the NFAT4 isoform has a strong 

astrocyte bias.   
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Figure 3.2 Experimental design and timeline. 

The first cohort of animals was injected bilaterally with both AAV-Gfa2-EGFP (left 

hemisphere) and AAV-Gfa2-VIVIT-EGFP (right hemisphere) at 10 weeks of age. One 

week post-injection, mice were started on either control diet (n=10) or HHcy diet (n=10). 

Mice remained on diet for 11 weeks until sacrifice for slice electrophysiology recordings 

(synaptic strength and LTP). A second cohort of mice were injected bilaterally with either 

AAV-Gfa2-EGFP (n=20) or AAV-Gfa2-VIVIT-EGFP (n=20) at 10 weeks of age. One 

week post-injection, mice were started on either control diet (EGFP, n=10; VIVIT, n=10) 

or HHcy diet (EGFP, n=10; VIVIT, n=10). After 14 weeks on the diet, mice were imaged 

using MRI to obtain cerebral blood flow (CBF) and metabolite measurements. Two 

weeks following MRI measurements, mice underwent radial arm water maze (RAWM) 

behavioral testing. Three weeks post-behavior, mice were sacrificed via saline-perfusion. 

One hemisphere was immediately snap-frozen at -80°C using liquid nitrogen for 

electrophoresis mobility shift assays (EMSAs) and other biochemical measurements; the 

other hemisphere was immediately post-fixed in 4% paraformaldehyde and later 

sectioned for histochemical measurements. 
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Figure 3.3 AAV-Gfa2-VIVIT improves synaptic function in mice on HHcy diet 

Synpatic strength curves are shown for mice on control diet (A, left) and HHcy diet (A, 

center) in which mean EPSP slope (millivolts per milliseconds) amplitudes (SEM, vertical 

error bars) are plotted against FV (millivolts) amplitudes (SEM, horizontal error bars) 

across nine stimulus intensity levels. Quantified EPSP/FV ratio (A, right) shows that 

VIVIT-treated HHcy mice have normalized synaptic strength relative to control-treated 

HHcy mice. Similarly, Gfa2-VIVIT improves LTP in mice on HHcy diet. LTP plots are 

shown for mice on control diet (B, left) and HHcy diet (B, center) in which EPSP slope 

(% baseline) is plotted against time. Quantified LTP (B, right) revealed that VIVIT-treated 

HHcy mice have improved LTP relative to control-treated HHcy mice. 
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 Figure 3.4 AAV-Gfa2-VIVIT improves CBF/MRS parameters in HHcy mice. 

Mice at 25 weeks of age on the HHcy diet treated with EGFP control construct exhibited 

a reduction in cerebral blood flow that was improved in mice treated with VIVIT (A). A 

reduction in levels of N-acetylaspartate (NAA), indicative of neuronal loss, was seen in 

mice treated with EGFP; levels were normalized in mice treated with the VIVIT construct 

(B). An increase in levels of myo-inositol (mI), indicative of increased astrocyte 

activation, was seen in mice treated with EGFP; levels were normalized in mice treated 

with the VIVIT construct (C).  
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Figure 3.5 Radial arm water maze behavioral testing did not reveal a significant 

improvement in HHcy mice treated with AAV-Gfa2-VIVIT. 

Mice were run through radial arm water maze (RAWM) at 27 weeks of age. Analysis by 

time (s) revealed a significant deficit in mice on HHcy diet (red and green lines) versus 

those on the control diet (blue and black lines). However, analysis by either parameter 

did not reveal a significant improvement in mice treated with AAV-Gfa2-VIVIT (green 

line) versus those treated with AAV-Gfa2-EGFP (red line).  
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4.1 Introduction 

Astrocytes are one of the most abundant cell types in the brain and perform 

many critical functions in healthy brain tissue (Chen and Swanson, 2003). With aging, 

injury, and disease- including neurodegenerative conditions such as Alzheimer’s disease 

(AD)- astrocytes become activated which includes a hypertrophic change in morphology, 

increased production of pro-inflammatory cytokines, and a decreased regulation of 

glutamate transport (Sama et al., 2008; Fuller et al., 2009; Sofroniew, 2009; Fuller et al., 

2010; Sofroniew and Vinters, 2010). Astrocyte activation has been identified as a 

profound and key component of neuroinflammation (Colombo and Farina, 2016).  

Changes in several signaling pathways in activated astrocytes have been 

implicated in neural dysfunction, one of which being the calcineurin (CN) signaling 

pathway (Abdul et al., 2009). CN is an exquisitely calcium-sensitive serine/threonine 

phosphatase (Klee, 1991), and studies in both human AD tissue and transgenic AD 

mouse tissue have revealed intense labeling of CN in activated astrocytes, especially 

surrounding amyloid deposits (Norris et al., 2005; Furman et al., 2012; Pleiss et al., 

2016). Astrocytic CN has been shown to mediate many of its effects on neurons and 

other cell types via activation of downstream transcription factors, including nuclear 

factor of activated T cells (NFAT) and NFκB, both of which have been well-characterized 

(Fernandez et al., 2007; Abdul et al., 2009; Abdul et al., 2010). Another potential 

downstream target in astrocytes is connexin43 (Cx43), whose interaction with CN has 

not been extensively investigated. 

Hemichannels (HCs) are composed of connexin protein hexamers (Takeuchi and 

Suzumura, 2014; Olsen et al., 2015; Moore and O’Brien, 2015), with Cx43 being the 

most abundant isoform in astrocytes (Orellana et al., 2009; Koulakoff et al., 2012; 

Orellana et al., 2012). These HCs play a vital role in normal astrocyte function, including 

maintenance of synapses and neuronal viability. Studies from our lab and others 
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suggest that levels of Cx43 may change during the progression of AD (Nagy et al., 1996; 

Mei et al., 2010). The C-terminus of Cx43 is modulated by several protein kinases that 

are associated with neuroinflammation e.g. mitogen-activated protein kinase (MAPK) 

(Lampe and Lau, 2004; Solan and Lampe, 2009; Solan and Lampe, 2014). A few recent 

studies have shown that serine 368 in the C-terminus tail is strongly dependent on CN 

activity (Li and Nagy, 2000; Tence et al., 2012). Here, we found that levels of 

dephosphorylated connexin43 (dCx43) were increased in human hippocampus in 

parallel with CN activity in the mild cognitive impairment (MCI) stage of AD. Similarly, 

elevations in dCx43 were observed in rat primary astrocyte cultures treated with the 

endogenous inflammatory mediator IL-1β, and this effect was blocked by inhibition of CN 

with cyclosporin A (CsA) or by the addition of a decoy mimetic peptide to the C-terminus 

of Cx43, 43Gap52. The 43Gap52 peptide did not inhibit NFAT activity, suggesting that the 

peptide is relatively selective for Cx43/CN interactions although there was a high amount 

of variability between the samples. Lastly, application of CsA or 43Gap52 in primary 

astrocyte cultures reduced EtBr uptake in response to IL-1β, suggesting that CN/Cx43 

interactions increase astrocytic membrane permeability via HCs under 

neuroinflammatory conditions. Together, these results suggest that CN/Cx43 

interactions may have a major impact on the function of activated astrocytes and their 

maintenance of neural and synaptic function.  

 

4.2 Methods 

4.2.1 Human biospecimens. Post-mortem brain samples from the hippocampus were 

provided by the Neuropathology Core of the Alzheimer’s Disease Center (ADC) at the 

University of Kentucky Sanders-Brown Center on Aging and have been previously 

characterized for the status of multiple CN signaling properties including protein levels, 

proteolysis, and nuclear localization of NFAT transcription factors (Abdul et al., 2009; 
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Mohmmad Abdul et al., 2011). Briefly, specimens from individuals with mild cognitive 

impairment (n = 9), with confirmed AD (n = 15), or with low pathology and no dementia 

(n = 12) were obtained at autopsy and snap-frozen in liquid nitrogen until use. Diagnostic 

criteria have been described in detail elsewhere (Mirra et al., 1991; Nelson et al. 2007; 

Hyman et al., 2012; Montine et al., 2012; Nelson et al., 2012). Multiple case descriptors 

including age, sex, Braak stage, postmortem autopsy interval, and mini-mental status 

are provided for each diagnostic category. 

 

4.2.2 Preparation of cell extracts from human brain tissue. Membrane, cytosolic and 

nuclear fractions from hippocampal tissue samples were prepared as described 

previously (Abdul et al. 2009). The membrane fractions obtained were resuspended in 

sucrose buffer [in mM: 300 sucrose, 75 Nacl, 10 Tris (pH 7.4), 20 EDTA, 20 EGTA] 

containing phosphatase, protease, and CP inhibitor cocktails (EMD Chemicals). 

Cytosolic and nuclear fractions were resuspended in buffer C [in mM: 50 HEPES (pH 

7.6), 50 KCl, 0.1 EDTA, 10% glycerol, 1 dithiothreitol (DTT)], containing phosphatase, 

protease, and CP inhibitor cocktails and stored at −80° C until use. 

 

4.2.3 Western blot analysis- human biospecimens. Samples were loaded in equal 

amounts onto pre-cast 4-20% gradient gels (Bio-Rad), resolved using SDS-PAGE and 

electrophoresis, and transferred onto polyvinylidene difluoride membranes (PVDF) for 

semiquantitative Western blot. In brief, membranes were blocked using I-Bloc (Tropix) 

and incubated overnight at 4°C in the following primary antibodies. mouse anti-total 

Cx43 (1:5,000; Santa Cruz), mouse anti-dephosphorylated Cx43 (1:500; Invitrogen), and 

mouse anti-Na+,K+-ATPase (1:10,000; Abcam).  The Invitrogen antibody is a particularly 

useful tool as it specifically recognizes connexin43 that is dephosphorylated at Ser368, 

which has been shown to be a CN-sensitive target and is our primary residue of interest. 
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Primary antibodies were tagged with HRP-conjugated secondary antibodies (1:10,000), 

and developed using ECL-plus Western kit (GE Healthcare). Protein levels were 

quantified on the Storm Phosphor Imager (GE Healthcare). Signal intensity for resultant 

bands was calculated, and all protein signals were normalized to internal control (i.e. 

Na+,K+) bands. 

 

4.2.4 Primary astrocyte culture. Primary astrocyte cultures were prepared from E18 

Sprague Dawley rat pups similar to that described previously (Sama et al. 2008; Furman 

et al., 2010). Animals were treated in accordance with the National Institute of Health 

Guide for the Care and Use of Laboratory Animals. In brief, fetal cortical tissue was 

harvested and washed in Hanks Balanced Salt Solution before trypsinization and 

mechanical dissociation by trituration. Cells were plated in culture flasks in Minimal 

Essential Medium (MEM), buffered by NaHCO3, and supplemented with L-glutamine, 

1% antibiotics/antimitotics, and 10% fetal bovine serum. Astrocyte cultures were grown 

to 80–90% confluency (typically 10–12 days), and microglia were removed by vigorously 

shaking the flasks at room temperature for 30 min on an orbital shaker [Keller et al. 

1996]. Cells were trypsinized and replated with fresh medium in 35-mm culture dishes 

and grown to ~90% confluency. Previous immunocytochemical analyses of our cultures 

have indicated that fewer than 5% of plated cells label positively for the microglial marker 

Iba-1 (data not shown). For a serum-free environment, regular medium was replaced 

with serum-free medium (MEM, N2, and gentamicin) immediately prior to the start of 

experiments. 

 

4.2.5 Culture treatments and collection. At approximately 24 h before collection, 

astrocyte culture dishes were washed 2x with phosphate-buffered saline and switched 

into serum-free media. For all culture experiments, approximately 16 h prior to collection, 
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either CsA (10µM; Millipore) or 43Gap52 (1µM; RS Synthesis [described further in 

background]) were added to inhibitor condition dishes. For EtBr uptake assay, either CN 

auto-inhibitory peptide (CNAIP) (50μM; Millipore) was added in addition to CsA or 

43Gap52. Approximately 3-5 h prior to collection, dishes in CN-stimulating conditions 

were exposed to 10ng/mL IL-1β. For Western blot analysis, the exogenous Ca2+-

mobilizers ionomycin (Ion) (1µM; Sigma) and phorbol ester (PE) (1µM; Sigma) were also 

applied to culture dishes.  

For Western blot analysis, cultures were homogenized in 30% sucrose buffer containing 

a panel of phosphatase and protease inhibitors as described (Sama et al., 2009; Furman 

et al, 2010) and scraped free into Eppendorf tubes. Cell lysates from each dish were 

stored at -80°C until use.  

For NFAT-Luciferase assay endpoint measurements, cells were infected with Ad-NFAT-

Luc approximately 24 h prior to collection at multiplicity of infection (MOI) of 100. At an 

MOI of 100, more than 90% of all astrocytes are infected within each dish, ensuring 

uniform distribution of the NFAT-reporter construct across treatment groups. To collect 

cell lysates, each culture dish was washed two times with phosphate-buffered saline, 

and then cells were scraped free in mammalian protein extract reagent (M-PER) buffer 

(Thermo Fisher) into Eppendorf tubes. Cell lysates from each 35-mm dish were stored at 

-20°C until use. 

 

4.2.6 Western blot analysis- primary astrocyte culture. Equal amounts of protein 

using the Lowry method were loaded into individual wells of Criterion TGX pre-cast 4–

20% gradient gels (Bio-Rad) and resolved using SDS-PAGE. Proteins were then 

transferred to polyvinylidene difluoride membranes for semi-quantitative Western blot 

analysis using the Odyssey Sa Imager System. Membranes were pre-blocked with 

Odyssey Blocking Buffer and incubated overnight in blocking buffer plus primary 
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antibodies as described above for the blots with human samples. Primary antibodies 

were tagged with IRDye-conjugated fluorescent secondary antibodies (1:15,000 [800] or 

1:20,000 [680]; Li-Cor), and near-infrared signal was detected on the Odyssey Sa 

Imager System (Li-Cor). Signal intensity for resultant bands was calculated, and all 

protein signals were normalized to internal control (i.e. Na+,K+) bands. 

 

4.2.7 NFAT-luciferase reporter assay. As a control for potential between-group 

variability in NFAT-luciferase expression, all sample volumes were normalized to the 

same protein concentration with TCM buffer using the Lowry method. Luciferase 

expression was quantified using a luciferase detection kit (Luc Screen; Tropix) and a 

plate reader. Typically, six or more dishes were analyzed per treatment condition and 

experiment was repeated in triplicate, resulting in a well powered experimental design. 

 

4.2.8 Ethidium bromide dye uptake assay. To assess hemichannel permeability, cells 

were exposed to 5µM ethidium bromide (EtBr; Fisher) for 10 min, washed 2x with 

phosphate-buffered saline, and immediately imaged on an inverted fluorescent 

microscope [Nikon Eclipse TE200 with Nuance FX Multispectral Imaging System]. 

Typically, three or more dishes were analyzed per treatment condition and experiment 

was repeated in triplicate, resulting in a well powered experimental design. For analysis, 

total fluorescence intensity was calculated using Adobe Photoshop. 

 

4.2.9 Statistics. ANOVA was used to compare differences in Western blot protein 

levels. Average luciferase and ethidium bromide values were compared with repeated 

measures ANOVA. When appropriate, Fisher's protected least significant difference test 

was used for post hoc analyses. Significance for all statistical comparisons was set at p 

≤ 0.05. 
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4.3 Results 

4.3.1 Levels of dephosphorylated Cx43 are elevated early in the progression of AD 

and are positively correlated with increased CN activity.  

Studies from other labs have demonstrated raised levels of dephosphorylated Cx43 with 

neuroinflammation or other insults e.g. hypoxia. To assess levels of dCx43 through the 

progression of AD, we used human hippocampal biospecimens from confirmed cases of 

Mild Cognitive Impairment (MCI), AD, as well as age-matched non-demented controls 

(ND). All samples were obtained with a rapid post-mortem autopsy interval (approx. 3 

hours) and were extensively characterized for AD pathology i.e. Braak stage, MMSE 

score by a neuropathologist. Using an antibody that recognizes the entire Cx43 protein, 

Western blot analyses revealed a small, non-significant reduction in total Cx43 levels in 

MCI cases relative to ND control cases (Fig 4.1A). Further, using an antibody that 

specifically recognizes the Cx43 protein when it’s dephosphorylated at serine368 (CN-

sensitive residue), Western blot analyses revealed a significant increase (p < 0.01) in 

dCx43 levels in samples from MCI cases relative to ND control samples (Fig 4.1B). 

Thus, comparing the ratio of dCx43 to total Cx43 we see a significant increase (p < 

0.001) in MCI cases relative to ND control cases (Fig 4.1C). 

Using samples from the same cases, we measured protein levels of ΔCN, a 

constitutively active CN fragment, in cytosolic fractions as well as protein levels of 

NFAT1, a downstream CN target, in nuclear fractions. With ranked levels of dCx43, we 

observed significant positive correlations with both CN activation (ΔCN) (p < 0.05) (Fig 

4.1D) and CN activity (NFAT1 translocation) (p < 0.01) (Fig 4.1E). These results indicate 

that dCx43 are elevated in early stages of AD in a CN-dependent manner. 
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4.3.2 Levels of dephosphorylated Cx43 are elevated under CN-stimulating 

conditions in rat primary astrocyte cultures, and are blocked with the use of CN 

inhibitors. 

To mimic the results we observed in the human biospecimens, we performed Western 

blot analyses using rat primary astrocyte cultures. Conditions of elevated CN activation 

were achieved with the application of exogenous Ca2+ mobilizers, ionomycin (Ion) and 

phorbol ester (PE), as well as the endogenous neuroinflammatory factor, interleukin 1 

beta (IL-1β). Similar to our human data, with both Ion/PE (Fig 4.2, left panels) and IL-1β 

(Fig 4.2, right panels) we saw a reduction in levels of total Cx43 (Fig 4.2 A,D) and a rise 

in levels of dCx43 (Fig 4.2, B,E) under conditions of CN stimulation relative to untreated 

controls. This resulted in significant increase (p < 0.05) in dephosphorylated-to-total 

Cx43 ratio after treatment with both Ion/PE and IL-1β (Fig 4.2 C,F). This effect was 

inhibited using the CN inhibitor, cyclosporin A (CsA) (Ion/PE, data not shown; IL-1β, see 

Fig 3). These results reinforce that the trends we see in our human data i.e. levels of 

dCx43 increase in tandem with CN proteolysis and activity, and can be replicated using 

a primary astrocyte culture system. 

 

4.3.3 A mimetic peptide that encompasses Serine 368 on the C-terminus of Cx43 

blocks dephosporylation of Cx43 but does not interfere with other CN substrates. 

To determine if our mimetic peptide (43Gap52) could prevent dephosphorylation of Cx43 

we performed Western blot analyses using rat primary astrocyte cultures stimulated IL-

1β. Inhibition of the inflammatory mediatior, IL-1β, with both CsA and 43Gap52 blocked 

dephosphorylation of Cx43 (p < 0.05) (Fig 4.3 A,B). Moreover, to ensure that 43Gap52 

does not interfere with other CN substrates e.g. Nuclear factor of activated T cells, we 

did an NFAT-luciferase reporter assay. Application of CsA to primary astrocyte cultures 

treated with IL-1β revealed a significant reduction in luciferase expression (p < 0.05) (Fig 
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4.3 C), but application of 43Gap52 did not reduce luciferase expression (Fig 4.3 D). 

Together, these results suggest that 43Gap52 sufficiently reduces dephosphorylation of 

Cx43, and is relatively selective for CN/Cx43 interactions.  

 

4.3.4 Hemichannel permeability is reduced using CN-AIP and 43Gap52 in primary 

astrocyte cultures treated with IL-1β. 

To assess hemichannel permeability, we performed ethidium bromide (EtBr) dye uptake 

assays in primary astrocyte cultures treated with IL-1β. Culture dishes with no EtBr 

treatment served as a negative control, and imaging revealed uniform auto-fluorescence 

but no uptake into the nuclei of cells (data not shown). Application of IL-1β resulted in 

significant EtBr uptake into cells (Fig 4.4 A, top right) versus untreated (UT) conditions (p 

< 0.001) while pre-treatment with both the CN-AIP (p < 0.01) or 43Gap52 (p < 0.001) had 

reduced EtBr uptake into cells (Fig 4.4 A, bottom panels). These results suggest that 

CN/Cx43 interactions lead to increased hemichannel permeability in astrocytes which 

may negatively impact synaptic function and neuronal viability. 

 

4.4 Discussion 

In this present study, levels of connexin43 dephosphorylation were elevated in both 

human MCI tissue and rat primary astrocyte cultures that had been treated with CN 

stimulators. Further, a novel mimetic peptide (43Gap52) was used as a potentially 

selective inhibitor for CN/Cx43 interactions. Lastly, ethidium bromide uptake assays 

revealed increased dye uptake under conditions of CN activation. Together, results 

suggest that CN/Cx43 interactions may have a major impact on the function of activated 

astrocytes and their role in synaptic maintenance. 
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4.4.1 Dephosphorylation of Cx43 in AD progression 

CNS injury and disease (e.g. Alzheimer’s disease) are associated with changes in 

connexins, including connexin43 (Cx43), which is the most abundant connexin 

expressed in astrocytes (Orellana et al., 2009; Koulakoff et al., 2012; Orellana et al., 

2012). Moreover, a specific residue on the C-terminus of Cx43, Ser368, is sensitive to 

CN (Li and Nagy, 2000; Tence et al., 2012). Work from our lab, and others, have shown 

CN expression and activation of downstream targets (i.e. NFATs) is elevated with 

Alzheimer’s disease (Hashimoto et al., 1998; Norris et al., 2005; Celsi et al., 2007; Abdul 

et al., 2009; Serrano-Perez et al., 2011; Neria et al., 2013; Furman et al., 2016; Pleiss et 

al., 2016). Consistent with these findings, the present study found elevated levels of 

dephosphorylated Cx43 in both primary astrocyte cultures and human MCI hippocampus 

in tandem with elevations in CN activity (Figs 4.1 and 4.2). These results suggest 

CN/Cx43 interactions may play a significant role in the initiation or progression in the 

early stages of AD (i.e. MCI).  

 Surprisingly, in human tissue, levels of dephosphorylated connexin43 were 

reduced to control levels (Fig 4.1 B). One possibility for this reduction is that AD tissue 

can have variable levels of both Aβ and NFT pathology, which could mask any trends in 

levels of dephosphorylated Cx43. Future studies to measure protein levels of 

dephosphorylated Cx43 across the course of AD (i.e. mild, moderate, severe) could help 

elicit the trend in Cx43 dephosphorylation. An alternative possibility is that tissue is too 

severely degenerated in AD cases to get a true measurement of dephosphorylated Cx43 

levels. Regardless, the elevations in dephosphorylated Cx43 in MCI tissue suggest that 

potential therapeutics should be delivered early in the disease progression.  
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4.4.2 Use of the novel mimetic peptide, 43Gap52 

Inhibition of CN using general inhibitors (e.g. cyclosporin A or FK506) can have 

beneficial effects for neurons and astrocytes, such as improved synaptic function 

(Taglialatela et al., 2009). However, not only is general inhibition of CN non-specific, 

there are also many adverse side effects, including nephrotoxicity and 

immunosuppression (Reese and Taglialatela, 2011; Taglialatela et al., 2015). We have 

previously shown that use of a selective CN/NFAT inhibitor (VIVIT) delivered to 

astrocytes in models of CNS injury and disease results in improved synaptic function 

(Furman et al., 2012; Furman et al., 2016; Sompol et al., in preparation), improved 

cognitive performance (Furman et al., 2012; Sompol et al., in preparation), and reduced 

glial activation (Furman et al., 2012). Using this rationale, in the present study we 

developed a small mimetic peptide to the C-terminus of Cx43 encompassing the CN-

sensitive residue, Ser368 (named 43Gap52) to act as a “decoy” substrate. While 43Gap52 

significantly reduced levels of dephosphorylated Cx43 in primary astrocyte culture (p < 

0.05) (Fig 4.3 B), it did not inhibit expression of NFAT-luciferase (Fig 4.3 D), suggesting 

the 43Gap52 is relatively selective at inhibiting CN/Cx43 interactions. 

 While the preliminary evidence is encouraging, the peptide is 52 residues in 

length (including 11 poly-Arg and 3 Gly linker residues to facilitate cellular uptake). 

Additionally, studies were performed in primary astrocyte culture and human tissue, but 

no in vivo studies using 43Gap52 have been performed. Future studies should first focus 

on refining 43Gap52 to reduce the peptide length but only to the extent that it is still 

effective at inhibiting CN/Cx43 interactions. Next, 43Gap52 could be put into an AAV 

vector with a Gfa2 promotor so that it could be delivered specifically to astrocytes in 

transgenic AD mouse models or HHcy diet-induced mouse models of VCID. The in vivo 

studies using 43Gap52 could measure synaptic function and plasticity, cognition, and 
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protein levels of dephosphorylated Cx43. Overall, the preliminary evidence for selective 

CN/Cx43 inhibition in the present study is encouraging for future in vivo studies. 

 

4.4.3 Modulation of Cx43 hemichannes: implications for synaptic function 

Hemichannels (HCs) are composed of connexin hexamers that are unopposed in the 

plasma membrane, and facilitate critical cross-talk between the cytosol and the 

extracellular milieu. Normally maintained in a closed state, HCs can significantly alter the 

composition of the astrocyte cytosol (via passage of glutamate, ATP, Ca2+) when open 

(Takeuchi and Suzumura, 2014; Moore and O’Brien, 2015; Olsen et al., 2015). 

Alterations in HCs in astrocytes have been implicated in several neurological disorders, 

including epilepsy (Seifert et al., 2010; Steinhauser et al., 2012) and neurodegeneration 

(Seifert et al., 2006; Rossi and Volterra, 2009; Quintanilla et al., 2012). Moreover, 

previous studies have not only found that AD-relevant factors can increase hemichannel 

activity in astrocytes but these astrocyte hemichannels also release neurotoxic factors 

such as glutamate (Orellana et al., 2011 a,b). Consistent with these findings, the present 

study found that application of IL-1β to primary astrocyte cultures resulted in increased 

ethidium bromide dye uptake (p < 0.001) (via Cx43 HCs) and this uptake was impaired 

using a CN auto-inhibtory peptide (p < 0.01) and 43Gap52 (p < 0.001) (Fig 4.4).  

 While the results show that inhibition of CN/Cx43 interactions in astrocytes using 

43Gap52 can have an effect on HCs, it is still unclear what effect HC modulation has on 

synaptic function. Finding a way to study this in vivo, possibly through an AAV vector 

(see above), will be critical for understanding the consequences of CN/Cx43 inhibition on 

synaptic function. In addition to obtaining electrophysiological outcomes of synaptic 

function and plasticity (i.e. basal synaptic strength and LTP), outcome measurements 
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could also include protein levels of synapse-relevant proteins (e.g. PSD-95, synapsin 1, 

GluR1, and NR2A/NR2B) (Ansari et al., 2013; Scheff et al., 2013; Furman et al., 2016). 

Regardless, this study provides encouraging proof-of-concept results for inhibition of 

CN/Cx43 interactions and provides rationale for studying synaptic function in vivo.  
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Human Subjects 

Group  
Classification 

n m/f Age  
(years) 

PMI  
(hours) 

Braak 
Stage 

MMSE 

Control 
(ND)  

12 2/10 87.8 ± 0.7 2.9 ± 0.6 0.83 ± 1 29.1 ± 1.3 

       
Mild 

Cognitive 
Impairment 

9 4/5 89.8 ± 5.7 3.9 ± 2.4 3.4 ± 1.2  23.8 ± 3.9 

       
Alzheimer’s 

disease 
15 6/9 79.1 ± 7.1 3.4 ± 0.87 5.7 ± 0.8 8.3 ± 7 

 

Table 4.1 Description of human subject tissue from non-demented control, mild 

cognitive impairment, and Alzheimer’s disease cases. Values expressed as Mean ± 

SD. PMI= postmortem autopsy interval. MMSE= mini mental state examination. 
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Figure 4.1 Levels of dephosphorylated connexin43 are elevated in MCI in tandem 

with increased CN activity. Representative bands and Mean ± SEM Cx43 (A) total 

Cx43, (B) Ser368 dephosphorylated Cx43 (p < 0.01), and (C) dephosphorylated:total 

Cx43 (p < 0.001) protein levels in human hippocampal tissue. Phosphorylation state 

changes markedly in MCI samples, but is not apparent in AD samples. Dephospho-Cx43 

shows a significant positive correlation with the constitutively active form of CN (D) and 

to activated NFAT1 (E), a CN-dependent transcription factor.  
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Figure 4.2 Levels of dephosphorylated connexin43 are elevated in rat primary 

astrocyte cultures treated with endogenous and exogenous stimulators of CN 

activity. Representative bands and mean ± SEM total Cx43 (A,D) and 

dephosphorylated Cx43 (B,E) protein levels normalized to Na+/K+ ATPase protein levels 

in primary astrocyte cultures treated for 1 hr with Ion/PE (Left panels) or IL-1β (Right 

panels). Stimulation of astrocytes with each treatment resulted in a significant increase 

in the ratio of dephosphorylated Cx43 to total Cx43 (p < 0.05) (C,F). 
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Figure 4.3 A decoy mimetic peptide, 43Gap52, selectively inhibits CN/Cx43 

interactions. Representative bands and Mean (% control) ± SEM dephosphorylated 

protein levels of primary astrocyte cultures treated with IL-1β in the presence or absence 

of CsA (p < 0.05) (A), or 43Gap52 (p < 0.05) (B). Mean (% control) ± SEM NFAT-

luciferase expression levels of primary astrocyte cultures treated with IL-1β in the 

presence or absence of CsA (p < 0.05) (C), or 43Gap52 (D).  
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Figure 4.4 The mimetic peptide 43Gap52 reduces ethidium bromide dye uptake into 

primary astrocyte cultures. 10x photomicrographs of EtBr uptake in UT p7 astrocytes 

(A, top left panel) and astrocytes treated for 3 h with 10 nM IL-1β (A, top right panel) 

with/without CN-AIP (A, bottom left panel), or 43Gap52 (A, bottom right panel). (B) 

Mean+SEM EtBr uptake. Experiment was done in triplicate. 
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CHAPTER V: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 
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5.1 General Conclusions 

Aging, injury, and neurodegenerative diseases have a unifying hallmark of 

neuroinflammation, characterized by neuroglial reactivity and a significant upregulation 

of cytokines, reactive oxygen species, and nitric oxide (Akiyama et al., 2000; Kitazawa et 

al., 2004; Skaper, 2007). Astrocytes, in tandem with microglia, help to coordinate the 

neuroinflammatory response which may be advantageous in an acute setting but 

detrimental under chronic conditions (Akiyama et al., 2000; Wyss-Coray and Mucke, 

2002; Skaper, 2007; Meraz-Rios et al., 2013). Furthermore, under pathological 

conditions activated astrocytes not only undergo increased production of pro-

inflammatory mediators but also lose or see a significant weakening in the regulation of 

critical, normal astrocyte functions (e.g. synaptic maintenance) (Fuller et al., 2009; 

Sofroniew and Vinters, 2010; Steele and Robinson, 2012). Several astrocyte signaling 

pathways have been implicated in neurodegeneration and one in particular, the protein 

phosphatase calcineurin, may help initiate and/or promote the activated astrocyte 

response (Norris et al., 2005; Fernandez et al., 2007; Canellada et al., 2008; Sama et 

al., 2008; Abdul et al., 2009; Furman et al., 2012; Pleiss et al., 2016). Moreover, aberrant 

Ca2+ dysregulation that is often seen in neurodegeneration may result in proteolysis of 

calcineurin that unregulated, constitutively active, and generally deleterious to cellular 

and synaptic function (Wu et al., 2004; Pleiss et al., 2016). Thus, astrocytic calcineurin 

signaling—both activation of and interactions with downstream targets is an ideal 

molecular target for modulating the harmful effects of activated astrocytes with 

neuroinflammation and neurodegeneration.  

 The all-encompassing goal of this dissertation was to explore calcineurin 

signaling in astrocytes in a variety of neurodegenerative conditions that share a 

neuroinflammatory hallmark. Using a novel antibody (ΔCN), we determined that highly 

active, proteolyzed calcineurin is abundant in astrocytes, especially those closely 
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associated with AD and vascular pathology (Chapter II) (Pleiss et al., 2016). A previous 

study using adeno-associated virus (AAV) to deliver an inhibitor of CN/NFAT signaling—

VIVIT—specifically to astrocytes in APP/PS1 mice revealed reduced glial activity and 

amyloid deposition, as well as improved synaptic function and cognitive performance 

(Furman et al., 2012). Using the same strategy in a diet-induced mouse model of VCID, 

we determined that inhibition of CN/NFAT in astrocytes was synaptoprotective but had 

no significant effect on cognitive performance (Chapter III). To explore other possible 

downstream targets, we looked at interactions between CN and Cx43 in AD. Using a 

novel mimetic peptide ‘decoy’ (43Gap52) to the C-terminus of Cx43, we determined that 

we could inhibit dephosphorylation of Cx43 without inhibiting CN’s effects on other 

targets. Moreover, application of 43Gap52 resulted in a functional normalization of Cx43 

hemichannel function (Chapter IV) (Pleiss et al., in preparation). Taken together, these 

results suggest that both CN activation and its interactions with downstream targets in 

astrocytes can significantly contribute to neurodegenerative disease (i.e. AD and VCID) 

processes, and therefore provides a valuable molecular target for therapeutics. 

 

 
5.2 The big picture: is astrocytic calcineurin a good therapeutic target for  
 
neurodegenerative diseases? 
 
The section above provides the rationale for why I chose to study calcineurin signaling in 

astrocytes for this dissertation, but it is possible that this may not be the best target for 

neurodegenerative disease therapeutics. Here, I will explore three possibilities where 

targeting of astrocytic calcineurin signaling may not be effective or may even be harmful 

to cells in the brain. 
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5.2.1 Alternative cell types 

While our previous work and the work in this dissertation presents strong evidence that 

inhibition of astrocytic CN is synaptoprotective (Furman et al., 2012; Furman et al., 2016; 

Sompol et al., in preparation), improves cognitive function (Furman et al., 2012; Sompol 

et al., in preparation), and reduces glial activation (Furman et al., 2012), it is possible 

that inhibition of CN signaling in other cell types (e.g. neurons or microglia) may be a 

more effective therapeutic. One study in AD transgenic mice revealed that acute, blanket 

inhibition of CN (which would include neurons and astrocytes) resulted in improved 

cognition (Dineley et al., 2007). Moreover, another study found that inhibition of CN in 

cortical cultures provided the neuroprotective effect of maintaining nitric oxide synthase 

catalytic activity (Dawson et al., 1993). Additionally, a recent study revealed that 

inhibition of NFAT—an almost exclusive substrate of CN-- in microglia, both in vitro and 

in a transgenic AD model, provides a robust anti-inflammatory effect (Rojanathammanee 

et al., 2013). A study that inhibited CN in oligodendrocytes saw a reduction in apoptosis 

(Sanchez-Gomez et al., 2003). Therefore, it is certainly plausible that astrocytes are not 

the only viable neural cell type where CN inhibition is protective.  

Initial future studies in our lab could focus on putting VIVIT or 43Gap52 into AAV 

vectors with neuronal-specific, microglial-specific, or oligodendrocyte-specific promoters 

to study the in vivo effect of CN inhibition in alternative neural cell types. Outcomes 

measures should include cognitive testing, synaptic transmission and plasticity, as well 

as protein/RNA measurements of glial activation and neuroinflammation. While multiple 

studies (including ours) have already established that inhibition of astrocytic CN provides 

cognitive and synaptic benefits, I think the next big obstacle to overcome in 

neuroscience research is dissecting the differences in phenotype between healthy and 

diseased tissue, and furthermore in response to different types of CNS injury and insult. 

In fact, a recent study in the Barres lab has started to explore this in healthy versus 
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diseased astrocytes in response to two different CNS insults (Zamanian et al., 2012), 

and I will elaborate on this more in section 5.2.2. This consideration is critical because 

many studies operate under the notion that all cells (e.g. all astrocytes) respond to 

disease insults uniformly when in fact the results in this dissertation (Fig 2.2 K, Fig 2.5) 

as well as other studies (e.g. Zamanian et al., 2012) suggest otherwise. Once these 

phenotypic differences are better understood, not only will we be able to target 

therapeutics to specific cell types, but we can hopefully target the specific cell 

phenotypes that exhibit detrimental properties (i.e. contribute to the disease processes) 

and at the same time maintain cells that are neuro-protective (i.e. function normally).  

 

5.2.2 Is CN activity protective? 

Our previous work and the work in this dissertation have established that exacerbated 

activation of CN is detrimental to synapses (Pleiss et al., 2016) and that inhibition of CN 

in astrocytes provides synaptic and cognitive benefits (Furman et al., 2012; Furman et 

al., 2016; Sompol et al., in preparation). However, it is possible that there are instances 

in which CN activation may be beneficial. First, time and duration of CN activity must be 

considered. In an acute setting, activation of CN and the glial response may be 

advantageous for isolating invading pathogens and/or sites of tissue damage. In fact, a 

study that examined the response of astrocytes to acute (ischemic) versus chronic 

(neuroinflammatory) insults found that astrocyte activation in acute injury is 

overwhelmingly protective and functions to repair the BBB, limits immune cell influx, and 

decreases neuronal cell death (Zamanian et al., 2012). Ignoring disease for a moment 

and focusing on healthy tissue, studies have shown that CN is abundant in neurons and 

plays a critical role in the maintenance of neuronal structure and function (e.g. dendritic 

spines and synaptic plasticity, respectively) (Halpain et al., 1998; Wu et al., 2010). 
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Moreover, outside of the CNS, calcineurin can play important roles in skeletal muscle 

differentiation (Friday et al., 2000) or Schwann cell differentiation (Kao et al., 2009).  

On the contrary, while CN activation certainly has protective and beneficial 

functions in some cases, in chronic neurodegenerative conditions such as AD or VCID-- 

which are the focus of this dissertation-- I think that increased CN activity is 

tremendously harmful. For instance, acute inhibition of CN in Tg2576 mice restored 

cognitive deficits (Taglialatela et al., 2009) or inhibition of CN in an acute model of CNS 

injury was incredibly synaptoprotective (Furman et al., 2016). Moreover, chronic 

activation of CN/NFAT-dependent transcription of pro-inflammatory factors are 

associated with neurodegeneration (Van Wagoner et al., 1999; Fernandez et al., 2007; 

Sama et al., 2008). Additionally, a study that observed the response of astrocytes to a 

neuroinflammatory response found that activation of astrocytes in this instance was 

overwhelmingly detrimental through inhibition of axonal regeneration, secretion of pro-

inflammatory factors, and activation of the complement cascade that ultimately 

contributes to synapse loss (Zamanian et al., 2012). Therefore, the focus on targeting 

CN-mediated astrocyte activation in these dissertation studies was on point; however, as 

mentioned in section 5.2.1, future studies should focus on better understanding 

astrocyte phenotypes in response to different CNS insults and diseases. 

 

5.2.3 Non-calcineurin targets 

While inhibition of CN in astrocytes has been shown to provide numerous cognitive and 

synaptic benefits (Furman et al., 2012; Furman et al., 2016; Sompol et al., in 

preparation), perhaps there are alternative, more effective therapeutic targets available. 

Many studies aimed at clearing or reducing Aβ levels in Alzheimer’s disease have been 

performed, yet none have provided compelling evidence for cognitive improvement due 

to reduction of beta-amyloid levels (Rosenblum, 2014). A therapeutic aimed at general 
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neuroinflammation and/or specific componenets may be beneficial. For example, one 

study revealed a lessened inflammatory response and reduction in Aβ levels in APP/PS1 

mice using intravenous immunoglobin, a general immune modulator (Sudduth et al., 

2013 a). Many different studies have explored the use of non-steroidal anti-inflammatory 

drugs (NSAIDs) as a therapeutic for AD and other diseases with neuroinflammatory 

components, and while people that are on long-term NSAID regimens have a reduced 

risk of developing AD (Andersen et al., 1995; Rich et al., 1995; McGeer et al., 1996; Lee 

et al., 2010), controlled trials have not been able replicate these beneficial effects (Aisen 

et al., 2003; Reines et al., 2004). Furthermore, recent studies have revealed that 

upregulation of reactive oxygen species and reactive nitrogen species may contribute to 

neurodegenerative disease, and thus may provide a good therapeutic target (Nakamura 

et al., 2013). Alternatively, reduction of aberrant tau using an inhibitor to a specific heat 

shock protein revealed improved synaptic function in vivo (Abisambra et al., 2013). So 

while many non-CN targets exist and may be advantageous, the benefit of targeting CN 

is that Ca2+ dysregulation is a common denominator in many neurodegenerative 

diseases, and therefore therapeutics aimed at CN inhibition could be targeted to a broad 

spectrum of diseases. However, many complex and multi-factorial processes are 

occuring in neurodegeneration, and as such, I think that CN inhibition in tandem with 

other therapeutics (e.g. Aβ clearance) will provide the most beneficial results. 

 

 
5.3 Concluding Remarks 
 
The work in this dissertation has presented a broad picture of astrocytic calcineurin 

activation and its interactions with downstream targets in several neurodegenerative 

diseases. Using a novel antibody, I have shown that constitutively active, proteolyzed 

CN is found in astrocytes strongly associated with both AD and vascular pathology. 
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Additionally, using AAV-mediated astrocyte-specific inhibition of CN/NFAT in a mouse 

model of VCID revealed synaptoprotective effects. Furthermore, a novel “decoy” mimetic 

peptide to the C-terminus of Cx43 was able to selectively interact CN/Cx43 interactions 

and functionally normalize hemichannels in rat primary astrocyte cultures. Together, this 

suggests the astrocytic CN signaling pathways are not only a major player in 

neurodegenerative disease processes but should also be considered a viable target for 

AD and VCID therapeutics.  
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