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ABSTRACT OF THESIS 

The Manipulation and Examination of 
Wolbachia in Medically Important Mosquitoes 

Mosquitoes are a major vector of human disease and result in massive costs to public 

health in affected regions. It has been suggested that Wolbachia pipientis could be used for 

mosquito population reduction. Wolbachia is a maternally-transmitted endosymbiont of 

arthropods and nematodes that infects the cytoplasm of host cells. In mosquitoes, Wolbachia 

manipulates reproduction through Cytoplasmic Incompatibility (CI), which is characterized by a 

cessation of embryonic development in certain crossing-types. However, the relationship 

between Wolbachia and its host is complex and not fully understood. The crossing relationships 

between naturally-infected and aposymbiotic populations of Culex pipiens pipiens and Culex 

pipiens molestus were examined in order to better understand the effects of CI on life history 

traits such as egg production and egg hatch. Hatch consistent with a unidirectional 

incompatibility relationship was observed. However, low egg production was also observed in 

some crossing-types, implying that Wolbachia may manipulate its host in unknown ways. In 

addition, uninfected mosquito eggs were injected with cytoplasm from infected eggs to 

generate artificially infected Culex lines. While no transinfected lines were successfully 

generated, several observations were made that may prove useful in future microinjection 

research. 

KEYWORDS: Cytoplasmic Incompatibility, Wolbachia pipientis, Cytoplasmic Microinjection, 

Culex, Egg Production 
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Introduction 

 

Impact of Mosquitoes on Human Health 

Mosquitoes are the most significant animal vector of human pathogens. According to 

the World Health Organization, over half of the world population is at risk for diseases such as 

malaria and yellow fever (World Health Organization, 2014).  

Beyond the cost in human lives, mosquito-borne disease inflicts a significant economic 

cost resulting from losses in labor, productivity, and lifespan. This damage is quantified using 

Disability-adjusted Life Years (DALY), which measures the average years of productivity lost due 

to disease within a population. According to the World Health Organization, in 2012 the 

worldwide toll of malaria represented a loss of 778.9 years per 100,000 people. Considering the 

extreme cost associated with mosquito-borne pathogens, it is unsurprising that a great deal of 

attention is given to finding avenues to reduce occurrence. 

Historically, a primary method of mosquito control has been the widespread use of 

chemical insecticides. Initiatives such as the National Malaria Eradication Program, which 

occurred from 1947-1951 in the United States, succeeded in eliminating local malaria 

transmission from the American Southeast through widespread insecticide application. 

However, similar initiatives such as the World Health Organization’s Global Malaria Eradication 

Programme failed to produce lasting results in larger geographic regions (Waldemar, 2009; 

Sledge and Mohler, 2013). As such, a great deal of effort has been exerted into developing 

alternative methods of mosquito control. These have been quite varied, from the production of 

genetically modified mosquitoes to radiation-sterilized mosquitoes, but each has presented its 

own challenges (Knols et al., 2007; Klassen, 2009). One such avenue, which has received 
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substantial interest and attention, has been the α-proteobacterial endosymbiont Wolbachia 

pipientis.  

 

Classification and Distribution of Wolbachia 

Originally described as a rickettsia-like bacterium in Culex pipiens, it is now known that 

Wolbachia pipientis is a monophyletic group of endosymbiotic bacterial strains that is closely 

related to other α-proteobacteria such as Neorickettsia, Anaplasma, and Ehrlichia (Hertig and 

Wolbach, 1924; Hertig, 1936; O’Neill et al., 1992). Within Wolbachia, these bacterial strains are 

clustered into multiple clades based on genetic similarity. Each clade tends to be distributed 

within an individual host group, though multiple clades can exist within and even co-infect 

certain groups (Werren et al., 1995; Lo et al., 2007). For example, the Genus: Aedes is host to 

both the A and B clades; and in the case of Aedes albopictus this takes the form of a 

superinfection, where both A and B Wolbachia infect the same organism (Sinkins et al., 1995). 

This differs from Culex mosquitoes, which appear to only carry the B supergroup (Zhou et al., 

1998). Historically, it was believed that Anopheline mosquitoes lacked a native Wolbachia 

infection. Recent research has shown evidence for a B supergroup infection in some populations 

of Anopheles gambiae (Baldini et al., 2014). 

Wolbachia distribution is not limited to mosquitoes, but is common within other 

arthropods and nematodes, being present in as much as 40% of terrestrial arthropods (Zug and 

Hammerstein, 2012). Within infected species, the frequency of infection in localized populations 

can approach fixation. This ubiquity is often attributed to the ability of Wolbachia to establish 

itself within host populations through reproductive manipulations (Engelstadter and Hurst, 

2009). 
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Wolbachia in Populations 

Wolbachia has evolved a number of intriguing mechanisms that can increase its frequency 

within a host population such as male-killing, feminization of genetic males, induction of 

thelytokous parthenogenesis, and Cytoplasmic Incompatibility (CI). Each mechanism enhances 

the proportion of infected females in order to drive the frequency of infection towards fixation.   

Three of these, namely male-killing, feminization, and parthenogenesis, alter the sex 

ratio to increase the relative population of Wolbachia infected females (Cordaux et al., 2011). In 

male-killing, Wolbachia kills a large percentage of infected males in each clutch. This imparts an 

advantage in infected female siblings through reduced resource competition and crowding 

during development (Zug and Hammerstein, 2014). 

In cases of parthenogenesis-inducing Wolbachia, infected females lay unfertilized 

diploid eggs that develop into females. Since infection is vertically transmitted through the egg, 

this mechanism increases the proportion of the population capable of transmitting the infection 

(Cordaux et al., 2011; Werren 2011). Similarly, feminzation-inducing Wolbachia increases the 

proportion of infected females by causing genetic males to develop as females (Kageyama et al., 

2002). 

In contrast, CI biases infection by reducing egg hatch in uninfected females who mate 

with infected males (Cordaux et al., 2011). Incompatible crosses result in the cessation of early 

embryonic development. This can be described using a Modify/Rescue model, where the sperm 

in infected males is modified to induce mortality if not exposed to a factor in the egg that 

rescues normal development (Poinsot et al. 2003, Engelstädter and Hurst 2009).  
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Cytoplasmic Incompatibility Relationships between Wolbachia Strains 

There are cases where two Wolbachia strains interact during reproduction. In such cases 

CI relationships can be further complicated. One potential outcome is known as Unidirectional 

Incompatibility, where low hatch is observed along one direction of a cross but not in the 

reciprocal cross. A second potential outcome is a situation known as Bidirectional 

Incompatibility, where the interaction between two strains of Wolbachia results in 

incompatibility in reciprocal crossing directions. With both uni- and bi-directional CI, 

incompatibility can be partial, resulting in a mix of viable and inviable eggs, or complete, in 

which very few remain viable (Engelstädter and Hurst 2009). 

Both unidirectional and bidirectional incompatibility have been observed between 

different strains of native Cx. pipiens Wolbachia (wPip), even between naturally occurring 

populations in geographically small regions. Additionally, CI relationships have been shown to 

change in colony reared systems in as little as 50 generations (Engelstädter and Hurst, 2009; 

Duron et al., 2012; Bourtzis et al., 2014). This diversity and susceptibility to change makes 

understanding the fundamental relationship between Wolbachia and its Culex host difficult.  

Theoretically, one could examine the host’s part in this relationship by transinfecting a Culex line 

with a foreign strain of Wolbachia such as wAlbB, the B clade Wolbachia naturally infecting 

Aedes albopictus. 

 

Wolbachia as a Reproductive Parasite 

Regardless of the method Wolbachia utilizes to bias reproduction, it is capable of rapidly 

driving itself into populations, even if the infection incurs a decrease in host fitness. In both CI 

and parthenogenesis-inducing Wolbachia, infection has been found to be linked to reduced 
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lifespan and fecundity in infected females (Hoffmann et al., 1990; Stouthamer and Luck, 1993). 

Similarly, male-killing Wolbachia can spread to high prevalence despite imposing a high fitness 

cost to infected females, severely reducing offspring survivorship (Jiggins et al., 2002). This has 

led to Wolbachia being considered a reproductive parasite. 

But, in recent years there have been multiple instances of Wolbachia imparting some 

fitness benefit to its host (Giordano et al., 1995; Hoffmann et al., 1996; Perrot-Minnot et al., 

2002; Bian et al., 2010). In many such cases Wolbachia can simultaneously benefit its host and 

acts as a reproductive parasite, resulting in a “Jekyll and Hyde” infection (Jiggins & Hurst, 2011). 

Selection on CI-inducing Wolbachia favors strains that increase relative fecundity in infected 

females, even if this reduces the strength of CI (Turelli, 1994). Such an increase in fecundity 

would provide a competitive advantage in situations where two incompatible Wolbachia strains 

occur within the same geographic range, as it would help to offset a population reduction 

resulting from CI. 

In addition to benefits conferred through natural infection, unexpected advantageous 

traits have been observed in artificial infections. Most notably among these is the observation 

that some strains of Wolbachia can impart pathogen resistance in mosquito hosts (Teixeira et 

al., 2008; Moreira et al. 2009; Hughes et al. 2011; Bian et al., 2013; Caragata and Moreira 2016). 

Given that several RNA viral pathogens of humans, such as Dengue, are vectored by mosquitoes, 

this observation has sparked exploration into the use of Wolbachia based viral resistance as a 

means of disease control (Bian et al., 2010).  
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Wolbachia Mediated Inundative Release Programs 

Early work in CI was conducted before Wolbachia had been demonstrated as the 

causative agent (Laven, 1969). This work was facilitated through the translocation of existing 

Wolbachia infected populations to new geographic regions. In contrast, the majority of current 

release programs focus on artificially infected mosquito lines. Because the generation of 

artificial lines allows researchers to choose non-native Wolbachia strains that generate bi-

directional CI, decreasing the probability that the accidental release of females could result in 

the establishment of compatible populations and rendering further releases ineffective. 

Artificial lines in mosquitoes are generated by injecting cytoplasm that contains 

Wolbachia from a naturally infected host and into a newly laid egg of an uninfected organism. 

As the egg goes through cellularization, the injected Wolbachia becomes incorporated into the 

tissue of the host, resulting in an individual infected with and capable of transmitting the 

infection to its offspring. The recipient may be either uninfected lines or those already carrying a 

different infection. Historically these transinfected lines are largely limited to generated Aedes 

mosquito lines, although recently a wAlbB infection was induced in Anopheles stephensi (Xi et 

al., 2005; Bian et al., 2013). However, as of yet there have been no successfully transinfected 

Culex mosquito lines. 

Wolbachia-transinfected lines can theoretically be utilized in two ways. One way is to 

introduce large numbers of artificially infected male and female mosquitoes into a population in 

order to outcompete the existing population and establish the new infection in the release area. 

This is known as Population Replacement, and it relies heavily on observed partial RNA-viral 

resistance in generated Aedes lines (Hoffmann et al., 2011; Wong et al., 2011; Rances et al., 

2012). However, the long-term efficacy of such programs has been questioned based on the 
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possibility that viral resistant phenotypes are caused by upregulation of antiviral pathways 

resulting from the new infection (Zug et al., 2015). This is further corroborated by observations 

that antiviral effects are rare in naturally occurring infections (Vavre and Charlat, 2012). 

An alternate way to utilize Wolbachia-transinfected lines is through the release of male 

mosquitoes into wild populations. These males would compete with wild males, obtaining some 

portion of the mating events, and reducing the wild population through CI (Bourtzis et al., 2014). 

However, given Wolbachia’s tendency to rapidly drive itself into a population, the accidental 

release of females could quickly render the program ineffective. This risk is mitigated somewhat 

through the utilization of crosses that induce bidirectional incompatibility, because any 

accidentally released females would be unable to reproduce when they mate with incompatible 

wild type males, thus preventing the establishment of the novel Wolbachia infection in the 

breeding population (Dobson et al., 2002).  

 

Research Intent 

The relationship between Wolbachia and its Culex host is poorly understood. Attempts 

to better understand this relationship are confounded by the varied and fluid nature of CI 

relationships within wPip and the lack of transinfected Culex lines. Additionally, the 

establishment of a transinfected Culex mosquito line could aid the development of mosquito 

control programs. Taking this into account, I designed experiments to accomplish three tasks. 

First, to examine two life history traits (egg production and hatch) of naturally-infected and 

aposymbiotic Culex pipiens pipiens and Culex pipiens molestus. Second, to examine the CI 

relationships and short-term effects on these life history traits in cases of hybridization. Third, to 

examine the effects of foreign Wolbachia introduction on life history through the establishment 
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of artificially generated Cx. p. pipiens and Cx. p. molestus lines. Life history traits and CI 

relationship analysis were measured over multiple 5x5 crossing experiments. Finally, the 

development of novel transinfected lines would be achieved through the modification of 

existing cytoplasmic microinjection techniques. 

While the establishment of aposymbiotic lines and CI relationship analysis were 

accomplished successfully, I was unable to to produce a transinfected Culex mosquito line. 

However, analysis of my methodology may prove useful to others attempting the same process. 
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The Removal of Wolbachia from Two Medically Important Mosquitoes 

and Examining for an Effect on Reproduction

Introduction: 

Wolbachia pipientis is an α-proteobacterial endosymbiont infecting the cytoplasm of 

host cells. Infection is vertically transmitted and can bias infection rates through processes such 

as male killing, feminization of genetic males, parthenogenesis, and early embryonic death 

(Sinkins 2004).  The latter these, known as Cytoplasmic Incompatibility (CI), can occur when a 

Wolbachia infected male mates with either an uninfected female or with a female that is 

infected with an incompatible Wolbachia strain.  Cytoplasmic Incompatibility has been 

described using a Modify/Rescue model, where the sperm is modified and induces mortality if 

not exposed to a factor in the egg that rescues normal development (Poinsot et al. 2003, 

Engelstädter and Hurst 2009). 

Within the Culex pipiens complex, CI-Host interactions have been observed to be 

unusually complicated. Comparisons of ank2 and pk1 genes show the presence at least 100 

genetically distinct wPip strains belonging to five sub-clades spread throughout complex 

(Atyame et al., 2011; Dumas et al., 2013). Variations within the Culex pipiens complex have been 

shown to occur both between and within these sub-clades (Barr, 1980; Magnin et al., 1987; 

Duron et al. 2012). Functionally, this means that closely related subspecies within the complex 

can experience differing levels of incompatibility (Duron et al., 2006; Atyame et al., 2014). 

Variation in CI has even been observed between members of the same species within 

geographically contiguous regions (Duron et al., 2012). 
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Research focusing on how Wolbachia strains interact with each other and Aedes 

mosquitoes has been extensive, comparatively little attention has been given to how Wolbachia 

affects its Culex hosts (Sinkins et al., 2005; Almeida et al., 2011). Such examinations of Culex-

Wolbachia relationships may help to parse the complicated interactions within this species 

complex.  

With this in mind, I compared several life history traits in naturally-infected and 

aposymbiotic lines of two closely related subspecies that regularly inhabit similar environments, 

the obligate blood-feeding (anautogenous) Cx. p. pipiens and the facultative blood-feeding 

(autogenous) Cx. p. molestus (Kading, 2012). First, I examined if the loss of Wolbachia infection 

affected hatch rate or egg production. Second, I observed for the occurrence of Cytoplasmic 

Incompatibility in crosses between infected individuals of the two sub-species. Third, I examined 

if the loss of infection changed the CI relationship or egg production in hybrid crosses. 

 

Materials and Methods: 

Mosquito Lines 

Two mosquito lines were used in this experiment: A Cx. p. molestus “CMM” line carrying 

a natural wPip Wolbachia infection and a naturally-infected Cx. p. pipiens “CPP” line (Turrell et 

al., 2014). 

 

Removal of Wolbachia Infection 

Removal of Wolbachia was conducted using established techniques (Suenaga 1993; Yen 

and Barr 1973). Approximately 200 mosquito larvae were reared in a hinged lid container with 



11 
 

400ml of distilled water and 2.5ml of bovine liver powder (NOW foods) in solution (60g/L), with 

larvae exposed to tetracycline (25ppm) from third instar through the remainder of larval 

development. Adult were placed in a Bioquip 1450 BS collapsible cage and provided 10% 

sucrose solution. After approximately 7 days, females were provided with a mouse for a blood 

meal (IACUC protocol # 00905A2005) and a small cup (Conex 163 mL clear portion container) 

with 0.3mL of liver powder solution (60g/L) and 20 mL dH2O for oviposition. Three days later, 

egg rafts were removed from the cage and the rearing process was repeated. After ten 

generations, treatment with tetracycline was terminated, and the resultant aposymbiotic Cx. p. 

pipiens (CPT) and Cx. p. molestus (CMT) lines were reared using normal protocols.  

 

Verification of Wolbachia Removal through Polymerase Chain Reaction 

At generation 13, infection status was tested via PCR amplification using a Culex-

Wolbachia specific Orf7c primer set (5’-CCCACATGAGCCAATGACGTCTG-3’ forward, 5’-

TTGCTTGCTCAACACTTACACTT-3’ reverse) (Sanogo and Dobson, 2004). Individuals selected for 

PCR testing were female adults approximately one-week post-eclosion that had not received a 

blood meal. DNA was extracted using whole mosquitoes homogenized in 100 µL squash buffer 

(10 mM Tris – pH 8.2, 1 mM EDTA, 25 mM NaCl) (Gloor et al., 1991). Following extraction, 1 µL 

of squash buffer homogenate was added 2 µL NEB 10X buffer, 0.5 µL dNTP (10mM), 0.5 µL 

primers, 0.2 µL NEB Taq, and brought to a total volume of 20 µL using dH20. This mixture was 

then amplified in a PTC-200 Thermal Cycler. Samples were denatured at 94˚C for 2 minutes, 

then cycled 38 times between 94, 55, and 72˚C for 30, 45, and 90 seconds respectively, followed 

by 72˚C for 10 minutes. Finally, a 7 µL sample of amplified DNA was separated on 1% agarose 

gel, stained with GelRed Nucleic Acid Gel Stain, and visualized using ultraviolet light. 
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Crossing of Infected and Uninfected Lines 

Five replicates were conducted for each potential cross between CPP, CPT, CMM, and 

CMT lines. To ensure virginal pairings, pupae were isolated in sealed test tubes and allowed to 

emerge. Within 24 hours of eclosion, virgin adults were transferred to small cages and provided 

with sucrose. Each cage contained five females and five males. In cages containing 

anautogenous females, a blood meal was provided approximately seven days post-emergence. 

Oviposition sites were then provided approximately three days later. In cages containing 

autogenous females, no blood meal was given, and an oviposition site was provided 

approximately ten days post-eclosion. Resulting egg rafts were collected three days after an 

oviposition site was provided. 

Measurement of Crossing Effects 

Egg rafts were placed in a petri dish with water. The total number of eggs and number 

of hatched eggs were counted and recounted 48 and 96-hours after collection. Crosses were 

grouped together by female cross-type, with naturally-infected intraspecific crosses acting as 

controls. 

Statistical Analysis of Data 

Analysis for percent hatch among all compatible crosses was conducted using ANOVA in 

JMP 10 statistical analysis software. Post-hoc analysis between different crosses was conducted 

using Tukey-Kramer HSD in JMP 10. 
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Crossing data were examined using IBM SPSS statistical analysis software. Observed 

total egg production was found to be non-normal. However, further analysis showed that a 

square root transformation of total egg production resulted in normality. As a result, further 

ANOVA analysis of fecundity used the square root of total egg production. 

 

Results: 

Compatibility Crossing Results  

Egg hatch was observed to fall into two groups. The first group, defined as 

‘incompatible,’ had no observed egg hatch and was made up of the following crosses (female x 

male type): CMTxCMM, CMTxCPP, CPPxCMM, CPTxCMM, and CPTxCPP crosses. The second 

‘compatible’ group, contained all other cross types. Egg hatch among the compatible crosses 

was at rates of 88% hatch or higher (Table 2.1).  

Egg hatch within the compatible crosses was compared using ANOVA, which showed 

that differences occurred among groups (F10, 44=7.0065, p˂0.0001). Post-hoc examination of 

compatible crosses using Tukey-Kramer HSD analysis showed that the hatch rate resulting from 

one cross was different from all other crosses. Specifically, the egg hatch resulting from the 

CPPxCMT crosses was lower than other than other compatible crosses (Table 2.1).  No hatch 

occurred among the incompatible crosses, and therefore no statistical analysis of hatch rate 

could be performed within the incompatible group. 
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Fecundity Analysis 

Variation in egg production was observed among crosses containing infected females. 

Compared to CPPxCPP crosses, the CPPxCPT crosses were observed to produce significantly 

more eggs. The interspecific CPPxCMT crosses produced comparable egg numbers to CPPxCPP 

crosses. However, CPPxCMM crosses produced few eggs (Table 2.2). In contrast, no change in 

egg number was observed between any crosses involving CMM females, regardless of the male 

type to which she was mated (Table 2.2).  

Variation within egg production was also observed among crosses containing uninfected 

females. With the exception of one cross, aposymbiotic CPT females were observed to produce 

comparable egg numbers, regardless of the male mate type. The exception was CPT females 

mated to CMM males, which produced few eggs. Of the five replicate CPTxCMM cages, four 

resulted in no eggs (Table 2.2). The remaining cross resulted in 31 eggs, of which none were 

observed to hatch, as would be expected in an incompatible cross. Aposymbiotic CMT females 

produced high numbers of eggs, regardless of the male type, even in incompatible crosses 

(Table 2.2). 

 

Discussion: 

In these experiments, I examined the compatibility relationship among infected and 

uninfected lines of Cx. p. pipiens (CPP and CPT respectively) and Cx. p. molestus (CMM and 

CMT). My hypotheses regarding these relationships were two-fold. First, the CI relationship 

between naturally-infected CPP and CMM would be complete bidirectional incompatibility. 



15 
 

Second, the removal of infection from male-types in incompatible crosses would rescue hatch 

rate. 

Crosses within naturally-infected CPP and CMM strains produced viable eggs. Mating 

between aposymbiotic CPT individuals resulted in high egg hatch, as did matings between 

aposymbiotis CMT individuals. As hypothesized, a pattern of complete unidirectional CI in 

crosses between naturally-infected CPP and aposymbiotic CPT strains was noted. Specifically, 

high egg hatch was observed in CPPxCPP, CPPxCPT, and CPTxCPT; however, no hatch was 

observed to result from CPTxCPP crosses. With the CMM and CMT strains, a hatch pattern was 

observed that was consistent with complete unidirectional CI. Specifically, high egg hatch was 

observed in CMMxCMM, CMMxCMT, and CMTxCMT, but no hatch was observed in the 

CMTxCMM crosses. 

In examining crosses between naturally-infected and aposymbiotic strains, hybridization 

of CMTxCPT resulted in high egg hatch, demonstrating there to be no genetic mating isolation 

that prevents hybridization. A similar result was observed in the CMMxCPT crosses, with high 

egg hatch resulting. Interestingly, the CMM Wolbachia infection was able to rescue the CPP 

Wolbachia type, i.e., egg hatch was observed in the CMMxCPP crosses. This is consistent with 

expectations of CI, because no hatch was observed to result from the CMTxCPP crosses. The 

hatch pattern suggests that Wolbachia plays a role in low observed egg hatch. 

A different pattern was observed in the reciprocal crossing direction. No egg hatch was 

observed in the CPPxCMM crosses, and high egg hatch was observed in the CPPxCMT crosses. 

The latter suggests that low egg hatch in the CPPxCMM crosses was due to Wolbachia-induced 

CI and not genetic reproductive isolation. The absence of a genetic incompatibility was 

reinforced by the observation of high egg hatch in the CPTxCMT crosses. Also consistent with 
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expectations for CI, low egg hatch was observed in the CPTxCMM crosses. However, the latter is 

complicated by the observed low egg number (discussed below). 

The number of eggs produced by CMM and CMT females was relatively consistent, 

regardless of the male type with which the females were mated. For CPP and CPT females, the 

resulting egg number was generally consistent, with many eggs produced in all crosses. However 

the number of eggs produced by the CPPxCPT crosses were significantly higher than all other 

crosses of CPP or CPT females. The observation of higher egg numbers resulting from crosses 

with males without Wolbachia is unusual and merits further investigation. Wolbachia infection 

has been observed to increase egg production in insect populations (Dobson et al., 2002; 

Dobson et al., 2004; Weeks et al., 2007). However, the prior examples of increased egg number 

are associated with the Wolbachia infection in females, and there are no examples in which 

increased egg production results from mating with uninfected males. The number of eggs 

produced by CPP and CPT females was significantly lower in crosses with Cx. p. molestus males. 

Interestingly, the reduced egg production correlates to the presence of Wolbachia in male 

mates. For both CPP and CPT females mated with CMM males, very few eggs resulted. The low 

egg number does not appear to result from a genetic factor, but was due to the presence of 

Wolbachia in the male, CPP and CPT females mated with CMT males generated normal numbers 

of eggs.  

Cytoplasmic incompatibility is generally believed to manipulate embryonic development 

in its host (Bourtzis et al., 2014). However, my observations suggest that the Wolbachia 

infection may affect reproduction between Cx. p. pipiens females and Cx. p. molestus males. A 

Wolbachia-induced effect on mosquito fecundity has not been described previously. For 

example, Sinkins et al. (2005) examined CI relationships and egg hatch rates in two strains of 

Culex pipiens quinquefasciatus. While they observed a bidirectional incompatibility relationship 
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between the two strains, they made no note of a change in egg production. Similarly, Calvitti et 

al. (2012) examined the CI relationship between Aedes albopictus mosquitoes carrying the HTA, 

HTB, and wPip strains of Wolbachia. While they found that the CI relationship can change with 

male age, they did not note any change in egg production. 

Potential explanations for the observed reduction in egg production include a 

Wolbachia induced effect on male mating behavior, e.g., males failing to mate with females. 

Here, no observations were made of mating behavior or the rate of copulation in crosses. 

However, in future work this could be observed by replicating this experiment, observing 

matings, and dissecting females 24 hours after the initial cross to examine for sperm presence in 

female spermathecae. If the results show that rates of sperm deposit are comparable, an 

alternative hypothesis is that Wolbachia could be modifying egg development through changes 

in seminal fluid or male accessory gland proteins. Ultimately, additional experiments are 

necessary to elucidate the full extent to which Wolbachia interacts with its hosts in the Culex 

pipiens species complex. 
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Tables and Figures: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.1: Average Percent Hatch of Crossing Types 
Grey shaded cells indicate crosses defined as incompatible 
Data displayed as Avg ± Std Error. Although five replicate crosses were performed for each cross-type, in 
some cases, not all crosses produced eggs. Therefore, the number indicates only those crosses resulting in 
eggs. 
* CPPxCMT crosses exhibited a lower hatch rate than all other compatible crosses 
Statistical differences were obtained using Tukey-Kramer HSD analysis of One-Way ANOVA comparisons 
(p≤0.05)

N=5 N=3 

N=5 

N=5 

N=1 

N=5 

N=5 N=5 

N=5 

N=5 N=5 

N=5 

N=5 

N=5 N=5 



19 
 

 

 

Table 2.2: Average Egg Production by Cross 

Data displayed as Avg ± Std Error 

N=5 for all crosses 
Letters signify statistic relationship relative to other crosses 
Statistical differences were obtained using Tukey-Kramer HSD analysis of One-Way ANOVA comparisons 
(p≤0.05)   

CMM CMT CPP CPT

CMM 285±44 228±53 196±36 192±69

CMT 361±18 223±15 194±46 310±64

CPP 25±12 168±29 134±26 448±28

CPT 6±6 259±30 169±22 180±15

Male
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Generation of Artificially Infected Mosquito Lines 

Introduction: 

Wolbachia pipientis is a bacterial endosymbiont infecting in the cytoplasm of many 

insects and nematodes (Zug and Hammerstein, 2012). In mosquitoes, Wolbachia acts as a 

reproductive parasite and biases increased infection frequency through early embryonic death 

(Sinkins 2004).  This process is known as Cytoplasmic incompatibility (CI), and occurs when a 

Wolbachia infected male mates with an uninfected female or female infected with an 

incompatible strain.  

It has been suggested that CI could be utilized to control mosquito populations (Laven, 

1967; Knipling et al., 1968). This concept, known as Incompatible Insect Technique (IIT), involves 

the release of large numbers of male mosquitoes infected with an incompatible strain of 

Wolbachia into the environment. These released males would compete for mating events, 

resulting in population depression. Theoretically, over the course of multiple releases, this could 

even result in the population being pushed completely out of a region (Dobson et al., 2002).  

The most basic example of an applied IIT program is the translocation of an existing 

population into a region an incompatible endemic population. Translocation offers the benefit 

of needing little laboratory manipulation (Lin et al., 2013). However, it requires that two 

naturally occurring incompatible strains of Wolbachia are found within two mosquito strains 

capable of interbreeding.  

The translocation method can be modified through the introduction of an introgressed 

line, where Wolbachia has been introduced into a new host through hybridization and 

outcrossing. The earliest examples of IIT utilized this technique. Wolbachia from a Culex pipiens 
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line was introgressed into a Culex pipiens quinquefasciatus line and used to suppress a Cx. p. 

quinquefasciatus population in Myanmar (Laven, 1967). Since then, multiple introgressed lines 

have been developed with the intent of controlling mosquito populations (Brelsfoard et al., 

2008; Atyame et al., 2011). However, this technique limits potential Wolbachia strains to those 

that occur within a group of closely related mosquito species. 

Lines artificially infected through cytoplasmic microinjection, although comparatively 

more labor intense, lack this limitation; as such, they have received a great deal of attention. 

Extensive work has gone into generating artificially infected Aedes mosquito lines (see Xi et al., 

2005 as an example). And recently, an artificial Anopheles infection was generated (Bian et al., 

2013). However, no such artificial lines have been produced in the Culex genus. Culex 

mosquitoes are vectors of pathogens such as West Nile Virus and Equine Encephalitis. I 

attempted to generate several artificial lines, including a novel Culex line, with the hopes that 

such lines could be utilized in the development of future IIT programs. 

 

Materials and Methods: 

Mosquito Lines 

Six mosquito lines were used in this experiment. First, a wild-type Aedes albopictus 

“WC3” line infected with both the wAlbA and wAlbB Wolbachia types collected from Lexington, 

KY in the summer of 2014. Second, an Aedes albopictus “HT1” line originating from Houston, TX 

cleared of Wolbachia infection through repeated treatment with tetracycline and maintained in 

culture since 2001 (Dobson et al., 2001). Finally, we used a Culex pipiens molestus “CMM” line, 

an aposymbiotic CMT line, a wild type Culex pipiens “CPP” line, and an aposymbiotic CPT line 



22 
 

(See chapter 2 for information involving the origins and removal of infections from these four 

lines). 

 

Collection and Handling of Mosquito Eggs for Microinjection 

Oviposition behavior varies between Culex and Aedes mosquitoes. Culex eggs are 

oviposited directly on the surface of water, while Aedes eggs are typically laid on substrate 

adjacent to a water source. I therefore, modified the egg collection method depending on the 

genus. 

For the WC3 and HT1 Aedes lines, a small plastic cup (Conex 163 mL clear portion 

container) lined with a moist piece of Anchor Paper brand germination paper was placed in a 

Bioquip 1450 BS collapsible cage containing mosquitoes. The cage was then covered with black 

fabric and mosquitoes were allowed to oviposit for 30 minutes. At which point the cup was 

removed and any oviposited eggs were used for manipulations.  

For the CMM, CMT, CPP, and CPT Culex lines approximately ten adults of each sex were 

removed from the cage and placed in a lidded cup with 20 mL of bovine liver powder (NOW 

Foods) in solution (0.6g/L). This container was then covered with black fabric and left 

undisturbed for 1 hour, allowing the mosquitoes to oviposit. Adults were then aspirated out of 

the container and frozen. Resulting eggs were the used for manipulations.  

 

Preliminary Method Development Trial 

Preliminary and long-term observational data were collected to establish a baseline 

method for manipulating and desiccating Aedes mosquito eggs based on established methods. 
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Manipulated mosquito eggs were used as a control during injection experiments, and hatch 

rates were monitored as a measure of method success. Initial preliminary testing was conducted 

to examine the effects of egg desiccation in order to evaluat existing desiccation methods. 

Additionally, preliminary trials were conducted to develop the best methodology for 

injecting Culex mosquito eggs. CMT eggs were manipulated, and their resulting hatch compared 

to unmanipulated CMT eggs and manipulated HT1 eggs. Later, CMT eggs were desiccated for 

multiple time periods and their resulting hatch examined in order to determine an optimal 

desiccation period. Finally, CMT eggs were injected with SPG buffer solution (Bovarnick et al., 

1950), in order to examine injection induced mortality. 

 

Handling and lining of Collected Mosquito Eggs for Microinjection 

Collected eggs were allowed to melanize in the oviposition cup until they reached a light 

gray complexion, at which point they were transferred to moist filter paper using forceps. Eggs 

were then lined along the edge of the filter paper in units of 20, picked up using Scotch 

permanent double sided tape, and the tape placed on glass slides. Donor eggs were immediately 

covered with hydrated halocarbon oil and set aside. Recipient eggs were allowed to desiccate 

until approximately 10% had formed a dimple, approximately 3 minutes. 

 

Microinjection and Maintenance of Mosquito Eggs 

All three of the infected mosquito lines (WC3, CPP, and CMM) were used as donors for 

microinjection. Similarly, the three uninfected lines (HT1, CPT, and CMT) were used as 

recipients. However, not all potential pairings were conducted during the course of injections. 
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The Ae. albopictus line WC3 was injected into HT1 and CMT recipients. Cytoplasm from infected 

Cx. p. pipiens line CPP was injected into CPT and HT1 eggs. Finally, infected Cx p. molestus 

cytoplasm was injected into CMT eggs. 

Donor cytoplasm was drawn using a Sutter Instruments 1.0mm width quartz glass 

needle in conjunction with a Narishige IM 300 Microinjector. Cytoplasm was then injected into 

recipient eggs until the eggs appeared fully hydrated (Figure 3.1). Once all 20 recipient eggs on 

the slide were injected, the slide was set aside and the eggs allowed to rest in oil for 

approximately one hour. Eggs were then transferred to moist filter paper, and the oil cover 

removed. Cleaned eggs were then washed into labelled Petri dishes and provided two drops of 

liver powder solution (60g/L).  

Injected eggs were observed at 48 and 96 hours post-injection. Hatched individuals 

were transferred to small cups and allowed to develop. Any resulting pupae were transferred to 

test tubes to eclose. Resulting female adults were then transferred to small buckets and 

provided with newly eclosed uninfected males of the same species. Approximately seven days 

later, females were provided a mouse as a bloodmeal (IACUC protocol # 00905A2005) and an 

oviposition site.  

After three days, eggs were removed and placed in a Pactiv hinged lid container with 

400 mL of distilled water and 2.5 mL of liver powder solution (60g/L). Larvae were fed as needed 

until pupation, at which point they were treated identically to parental pupae. 

After the first ovigenesis cycle, adults were placed in a -20˚C freezer for approximately 1 

minute to reduce activity. They were then placed in centrifuge tubes and preserved in 200 proof 

ethanol until PCR analysis. 
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Verification of Infection through PCR 

A general CO1 primer set was used as a control for each sample and presence of 

Wolbachia was verified through the use of the general Wolbachia primer Wol438 set (5’-

CATACC TATTCGAAGGGATAG-3’ forward, 5’-AGCTTCGAGTGAA ACCAATTC-3’ reverse) (Folmer et 

al., 1994; Werren and Windsor, 2000). Additionally, a Culex-Wolbachia specific Orf7c primer set 

(5’-CCCACATGAGCCAATGACGTCTG-3’ forward, 5’-TTGCTTGCTCAACACTTACACTT-3’ reverse) was 

used to test for wPip strains in injected Aedes mosquitoes (Sanogo and Dobson, 2004).  

DNA was extracted using whole mosquitoes homogenized in 100 µL squash buffer 

(Gloor et al., 1991). Following extraction, 1 µL of each sample was amplified in 2 µL NEB 10X 

buffer, 0.5 µL dNTP (10mM), 0.5 µL primers, and 0.2 µL NEB Taq in a total volume of 20 µL. 

Amplifications occurred in a PTC-200 Thermal Cycler. Samples were denatured at 94˚C for 2 

minutes, then cycled 38 times among 94, 55, and 72˚C for 30, 45, and 90 seconds respectively, 

followed by 72˚C for 10 minutes. A volume of 7 µL of each amplification product was separated 

on 1% agarose gel, stained with GelRed, and visualized using ultraviolet light.   

 

Results: 

Manipulation and Desiccation of Aedes Mosquito Eggs 

Initial efforts focused on reproducing previously published Wolbachia injection method 

with Ae. albopictus as a means of assessing my injection technique. Initially the manipulation 

and alignment of newly laid eggs resulted in low hatch (Figure 3.2). Given these observations, 

the level of hydration in the filter paper on which the eggs were placed was increased. 
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Additionally, the tool used to manipulate eggs was changed from a brush to forceps.  

Subsequently, the average hatch increased to between 65% and 95% (Figure 3.2).  

The desiccation of manipulated Aedes eggs reduced hatch. Eggs desiccated for 

approximately three minutes before being covered in hydrated halocarbon oil were observed to 

have an average hatch rate of 19%±7.2% SE compared to an observed 60%±18% hatch among 

manipulated but undesiccated eggs (Figure 3.3).  

 

Microinjection of Aedes albopictus Eggs with Cytoplasm 

Over the course of multiple experiments conducted over seven months, HT1 eggs were 

injected with WC3 cytoplasm. Of these 2405 eggs, 1.4% hatched. Of these 48 hatched eggs, 32 

individuals survived to adulthood. Of the adults, 14 were female, and 12 successfully blood fed 

and produced eggs (Table 3.1). 

In a separate series of experiments conducted over Two months, HT1 eggs were 

injected with CPP cytoplasm. Of the 817 HT1 eggs injected, 1.7% hatched. Of these 21 hatched 

larvae, 11 individuals reached adulthood. Of the adults, five were female, all of which 

successfully blood fed and produced eggs (Table 3.1). 

 

Manipulation of Culex Mosquito Eggs 

The average hatch for unmanipulated Culex eggs was examined over the course of three 

experiments and was observed to be 88.3±11.6%. Newly laid Culex eggs that were lined, 

adhered to double-sided tape, and covered with hydrated halocarbon oil had an observed 
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average hatch rate of 60.3±22.7%, which did not differ (p=0.129) from unmanipulated eggs 

(Figure 3.4). 

The effect of desiccation on egg hatch rates was examined in a series of three 

experiments. In these experiments, manipulated eggs were desiccated for varying amounts of 

time. Desiccation was observed to be correlated to hatch rate, with increasing period of 

desiccation resulting in decreased hatch (Figure 3.5). 

Once the effect of desiccation on hatch had been established, three experiments were 

conducted to determine the effect of injection induced trauma on hatch by desiccating eggs for 

three minutes and injecting them with SPG buffer. Desiccated but uninjected eggs were 

observed to have an average hatch rate of 59.4±12.9%. However, similar desiccated eggs 

injected with SPG had a lower observed hatch rate of 6.1±1.4% (p=0.002; Figure 3.6). 

 

Microinjection of Culex pipiens Eggs with Cytoplasm 

The 6.1% observed egg hatch rate was adequate to proceed to injections using 

cytoplasm. Two sets of experiments were conducted involving the injection of uninfected Culex 

eggs with intraspecific infected cytoplasm. In the first, 128 CPT eggs were injected with CPP 

cytoplasm; however, none of these eggs hatched (Table 3.2). In the next set of experiments, 

conducted over three months, CMT eggs were injected with CMM cytoplasm. Of the 492 CMT 

mosquito eggs injected with CMM cytoplasm, 8(1.6%) hatched. However, none of these reached 

adulthood (Table 3.2). 

Additionally, two sets of Culex lines were injected with infected Ae. albopictus 

cytoplasm. In the first experiment, 90 CPT eggs were injected with WC3 cytoplasm; however, 
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none of these eggs hatched (Table 3.2). In the next set, conducted over four months, 471 CMT 

eggs were injected with WC3 cytoplasm. Of these injected eggs, 2(0.4%) hatched. Only one of 

these hatched eggs (50%) reached adulthood. However, the resulting individual was male (Table 

3.2). 

 

PCR Testing of Resulting Productive Female Lines 

 Injected eggs that survived to adulthood were tested to examine for the successful 

establishment of Wolbachia infection. PCR tests of the five HT1 individuals that survived 

injection with CPP cytoplasm revealed a ubiquitous infection among all five lines (Figure 3.7a). 

However, subsequent tests using a Culex-specific PCR assay demonstrated that none of the five 

were infected with the wPip Wolbachia type from Culex pipiens (Figure 3.7b). Subsequently, the 

HT1 line used in these experiments was PCR tested for Wolbachia infection was found to be 

Wolbachia-infected. Specifically, the original HT1 line remained aposymbiotic, but the subline 

created for these experiments had become infected with Wolbachia. Due to the contamination 

of the HT1 line, the remaining survivors from the CPP injections were not tested. Additionally, 

survivors of WC3 injections were not tested, because it would be impossible to differentiate 

between the contaminating HT1 infection and any infection resulting from the artificial 

infections. No Culex individuals survived the injection process, and therefore no PCR assays were 

performed. 
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Discussion: 

The development of artificially generated Wolbachia infections in mosquitoes offers a 

unique avenue for CI-mediated population control. While artificially infected lines have been 

developed in Aedes and Anopheles, there are no examples in Culex. While my experiments 

showed evidence of contamination and failed to generate an artificially infected line, my 

observations may help in the establishment of future Wolbachia lines in Culex mosquitoes. 

Melanization of Culex eggs was observed to be markedly different from Aedes 

mosquitoes. While eggs collected from the HT1 and WC3 lines transitioned from white to black, 

the CPP, CPT, CMM, and CMT lines never melanized beyond a light gray color. This made 

gauging the age of the eggs difficult. In order to reduce the potential variation in the age of eggs, 

the period of time allowed for oviposition should be reduced. A one hour oviposition period was 

used in this experiment because 30 minutes failed to consistently produce eggs. With this in 

mind, a series of simple experiments could find the shortest period between 30 and 60 minutes 

that allows for consistent egg production. 

It should also be noted that the elasticity of Culex eggs was different from Aedes. Culex 

eggs were more difficult to inject. Using the rate of dimpling as a marker for desiccation yielded 

eggs that were crushed by the needle rather than pierced by it. Even in cases where this did not 

occur, Culex eggs were more prone to bursting during the injection process than their Aedes 

counterparts. While I explored relying on desiccation time rather than physical appearance and 

saw a reduction in both crushed and burst eggs, the experiment was terminated before an 

optimal time could be found. I would suggest that future work begin exploring desiccation 

periods starting at approximately two minutes in high humidity environments.  
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The initial survival of my injected eggs ranged from an average of 0-1.68% across all 

injected groups. Additionally, between individual injection trials hatch varied between 0% and 

11.5%. This peak is comparable to previous work in this lab, which showed a peak hatch rate of 

12% (Xi et al., 2005). However, the average hatch rate is lower than other experiments, one of 

which produced an average hatch rate of 7.6% (Calvitti et al., 2010). 

It is possible that low egg survival resulted from injections occurring too far along in 

development. However, this seems unlikely, as hatch was observed in eggs injected with SPG. 

More likely, the introduction of cytoplasm acted as an additional source of mortality. 

Egg mortality resulting from injection trauma of eggs cannot be reduced easily. 

However, the post-injection procedure could be implemented to reduce mortality. Culex eggs 

are normally oviposited on the surface of the water, something which I attempted to simulate in 

the injected eggs. However, the presence of water may have acted as a means of fungi and 

bacteria to more easily invade the wound inflicted during injection and the damage to the 

chorion may have disrupted the water gradient within the egg. Taking this into account, I would 

suggest that early egg development, particularly the first 24 hours post-injection, take place on 

moist filter paper. 

While this attempt to produce artificially infected mosquito lines failed due to 

contamination and low post-injection hatch, my results and observations can provide valuable 

insight into how others may succeed in the future. Most importantly among these is the need to 

increase post-injection hatch rates, which can likely be achieved through modulations in egg 

handling that optimize desiccation time, account for reduced egg elasticity, and reduce the risk 

of bacterial or fungal infection. 
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Tables & Figures: 

 

 

 

 

 

Table 3.1: Hatch and Development Results of Uninfected Aedes Eggs Injected with Infected Cytoplasm 

Infected cytoplasm was injected into newly laid uninfected Aedes eggs. Resulting larvae were allowed to 

develop, and adult females were collected for breeding. 

Injection set described as (Donor → Recipient) 

HT1- Uninfected Ae. albopictus 

WC3- Naturally infected Ae. albopictus  

CPP- Naturally infected Cx. p. pipiens 

  

WC3 → HT1 CPP → HT1

Eggs Injected 2405 817

Eggs Hatched 48 21

Survived to Adulthood 32 11

Females 14 5

Produced Eggs 12 5



32 
 

 

 

 

 

 

Table 3.2: Hatch and Development Results of Injected Culex Eggs  

Infected cytoplasm was injected into newly laid uninfected Culex eggs. Resulting larvae were allowed to 

develop, and adult females were collected for breeding. 

Injection set described as (Donor → Recipient) 

WC3- Naturally infected Ae. albopictus  

CPP- Naturally infected Cx. p. pipiens 

CMM- Naturally infected Cx. p. molestus 

CPT- Uninfected Cx. p. pipiens 

CMT- Uninfected Cx. p. molestus 

  

WC3 → CPT WC3 → CMT CPP → CPT CMM → CMT

Eggs Injected 90 471 128 492

Eggs Hatched 0 2 0 8

Survived to Adulthood 0 1 0 0

Females 0 0 0 0

Produced Eggs 0 0 0 0
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Figure 3.1: Culex Mosquito Egg Injection Process 

Recipient eggs were innoculated with Wolbachia-infected cytoplasm using microinjection. The images 

shown are of an egg prior to (A), at the beginning of (B), and at the end of injection process (C). 
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Figure 3.2: Percent Egg Hatch of Manipulated Eggs over Time 

The hatch rate for manipulated Aedes eggs was initially low. However, it increased as more injection trials 

were conducted. Hatch rate for manipulated eggs based on 20 manipulated, but uninjected, eggs run as a 

separate control alongside each set of injected eggs. Dotted line represents running average hatch rate of 

manipulated eggs. 
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Figure 3.3: Box Plot of Hatch Rate for Desiccated and Undesiccated Aedes Eggs 

Six replicates of 20 Aedes mosquito eggs were either desiccated or left untouched. Desiccation 

of mosquito eggs was observed to result in reduced hatch rate. 
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Figure 3.4: Average Egg Hatch of Manipulated Culex Eggs Relative to Unmanipulated Eggs 

Three replicates of 20 recently laid Culex eggs were either manipulated or left untouched. Manipulation of 

Culex eggs had no observed effect on average hatch rate. 

Results are displayed as Avg ± St Error. 
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Figure 3.5: Average Percent Egg Hatch of Culex Eggs Desiccate for Variable Periods of Time 
Three replicates of 20 Culex mosquito eggs were desiccated for periods of time ranging from zero to six 
minutes. Increased period of desiccation was observed to result in decreased average hatch rate. 
Results are depicted as Avg ± St Error. 
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Figure 3.6: Average Percent Egg Hatch of Culex Mosquito Eggs Injected with SPG Buffer 
Three replicates of 20 manipulated and desiccated Culex eggs were either injected with SPG buffer or left 
untouched. Injection of eggs with SPG solution was observed to reduce hatch relative to uninjected eggs 
(p=0.002). 
Results are depicted as Avg ± St Error. 
* Represent statistical difference (p≤0.05) 



39 
 

Figure 3.7: Ploymerase Chain Reaction Results of Adult Female HT1 Mosquitoes Injected with Infected 
Cytoplasm 
Polymerase chain reactions were conducted on whole adult females resulting from the injection of 
uninfected Ae. albopictus (HT1) egg injected with naturally infected Cx. p. pipiens (CPP) cytoplasm using 
the general Wolbachia primer WOL438 (A) and the Culex-Wolbachia specific primer ORF7C (B). Resulting 
bands showed the presence of an infection in all samples (A). However, testing with the Culex Wolbachia 
specific primer Orf7C showed no presence of CPP Wolbachia (B). 
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Research Conclusions 

The mechanisms by which Wolbachia pipientis manipulates its host are poorly 

understood, but because it is a reproductive parasite, it is useful as a potential means of 

population control. Taking this into account, I began my research with two goals in mind. The 

first was to better understand the relationship between two members of the Culex pipiens 

complex and their Wolbachia infections. The second was to use cytoplasmic injection to 

establish a novel line of transinfected Culex mosquitoes. 

My examination of the relationship between Culex pipiens pipiens, Culex pipiens 

molestus, and their respective Wolbachia infections yielded intriguing results. Crossing 

experiments between the two sub-species showed complete unidirectional incompatibility, with 

Cx. p .molestus males acting as the source of incompatibility. Analysis of loss of Wolbachia 

infection status showed no effect on either hatch rate or egg production. Further analysis of 

how hybridization affected these metrics showed that only one cross, infected Cx. p. pipiens 

females crossed with uninfected Cx. p. molestus males resulted in a reduced hatch rate. 

My work in establishing artificial Wolbachia infections in Culex failed to produce a 

successfully transinfected line. Only one of the Culex eggs injected with foreign cytoplasm 

hatched, and no line resulted from it. Despite this, I noted several potential means to increase 

egg hatch in future experiments. 

The ultimate goal of these experiments was to better understand Wolbachia’s 

relationship with its host and develop new lines of artificially infected Culex mosquitoes for use 

in mosquito control. While I was unable to produce any transinfected lines, my observations on 

how Culex mosquitoes and Wolbachia interact may prove useful for future research by providing 

us with a better understanding of how Wolbachia manipulates its host. 
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